1 // SPDX-License-Identifier: GPL-2.0-only
2 /* drivers/net/ethernet/micrel/ks8851.c
3  *
4  * Copyright 2009 Simtec Electronics
5  *	http://www.simtec.co.uk/
6  *	Ben Dooks <ben@simtec.co.uk>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ethtool.h>
17 #include <linux/cache.h>
18 #include <linux/crc32.h>
19 #include <linux/mii.h>
20 #include <linux/regulator/consumer.h>
21 
22 #include <linux/gpio.h>
23 #include <linux/of_gpio.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 
27 #include "ks8851.h"
28 
29 /**
30  * ks8851_lock - register access lock
31  * @ks: The chip state
32  * @flags: Spinlock flags
33  *
34  * Claim chip register access lock
35  */
36 static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags)
37 {
38 	ks->lock(ks, flags);
39 }
40 
41 /**
42  * ks8851_unlock - register access unlock
43  * @ks: The chip state
44  * @flags: Spinlock flags
45  *
46  * Release chip register access lock
47  */
48 static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags)
49 {
50 	ks->unlock(ks, flags);
51 }
52 
53 /**
54  * ks8851_wrreg16 - write 16bit register value to chip
55  * @ks: The chip state
56  * @reg: The register address
57  * @val: The value to write
58  *
59  * Issue a write to put the value @val into the register specified in @reg.
60  */
61 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg,
62 			   unsigned int val)
63 {
64 	ks->wrreg16(ks, reg, val);
65 }
66 
67 /**
68  * ks8851_rdreg16 - read 16 bit register from device
69  * @ks: The chip information
70  * @reg: The register address
71  *
72  * Read a 16bit register from the chip, returning the result
73  */
74 static unsigned int ks8851_rdreg16(struct ks8851_net *ks,
75 				   unsigned int reg)
76 {
77 	return ks->rdreg16(ks, reg);
78 }
79 
80 /**
81  * ks8851_soft_reset - issue one of the soft reset to the device
82  * @ks: The device state.
83  * @op: The bit(s) to set in the GRR
84  *
85  * Issue the relevant soft-reset command to the device's GRR register
86  * specified by @op.
87  *
88  * Note, the delays are in there as a caution to ensure that the reset
89  * has time to take effect and then complete. Since the datasheet does
90  * not currently specify the exact sequence, we have chosen something
91  * that seems to work with our device.
92  */
93 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
94 {
95 	ks8851_wrreg16(ks, KS_GRR, op);
96 	mdelay(1);	/* wait a short time to effect reset */
97 	ks8851_wrreg16(ks, KS_GRR, 0);
98 	mdelay(1);	/* wait for condition to clear */
99 }
100 
101 /**
102  * ks8851_set_powermode - set power mode of the device
103  * @ks: The device state
104  * @pwrmode: The power mode value to write to KS_PMECR.
105  *
106  * Change the power mode of the chip.
107  */
108 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
109 {
110 	unsigned pmecr;
111 
112 	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
113 
114 	pmecr = ks8851_rdreg16(ks, KS_PMECR);
115 	pmecr &= ~PMECR_PM_MASK;
116 	pmecr |= pwrmode;
117 
118 	ks8851_wrreg16(ks, KS_PMECR, pmecr);
119 }
120 
121 /**
122  * ks8851_write_mac_addr - write mac address to device registers
123  * @dev: The network device
124  *
125  * Update the KS8851 MAC address registers from the address in @dev.
126  *
127  * This call assumes that the chip is not running, so there is no need to
128  * shutdown the RXQ process whilst setting this.
129 */
130 static int ks8851_write_mac_addr(struct net_device *dev)
131 {
132 	struct ks8851_net *ks = netdev_priv(dev);
133 	unsigned long flags;
134 	u16 val;
135 	int i;
136 
137 	ks8851_lock(ks, &flags);
138 
139 	/*
140 	 * Wake up chip in case it was powered off when stopped; otherwise,
141 	 * the first write to the MAC address does not take effect.
142 	 */
143 	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
144 
145 	for (i = 0; i < ETH_ALEN; i += 2) {
146 		val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1];
147 		ks8851_wrreg16(ks, KS_MAR(i), val);
148 	}
149 
150 	if (!netif_running(dev))
151 		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
152 
153 	ks8851_unlock(ks, &flags);
154 
155 	return 0;
156 }
157 
158 /**
159  * ks8851_read_mac_addr - read mac address from device registers
160  * @dev: The network device
161  *
162  * Update our copy of the KS8851 MAC address from the registers of @dev.
163 */
164 static void ks8851_read_mac_addr(struct net_device *dev)
165 {
166 	struct ks8851_net *ks = netdev_priv(dev);
167 	unsigned long flags;
168 	u8 addr[ETH_ALEN];
169 	u16 reg;
170 	int i;
171 
172 	ks8851_lock(ks, &flags);
173 
174 	for (i = 0; i < ETH_ALEN; i += 2) {
175 		reg = ks8851_rdreg16(ks, KS_MAR(i));
176 		addr[i] = reg >> 8;
177 		addr[i + 1] = reg & 0xff;
178 	}
179 	eth_hw_addr_set(dev, addr);
180 
181 	ks8851_unlock(ks, &flags);
182 }
183 
184 /**
185  * ks8851_init_mac - initialise the mac address
186  * @ks: The device structure
187  * @np: The device node pointer
188  *
189  * Get or create the initial mac address for the device and then set that
190  * into the station address register. A mac address supplied in the device
191  * tree takes precedence. Otherwise, if there is an EEPROM present, then
192  * we try that. If no valid mac address is found we use eth_random_addr()
193  * to create a new one.
194  */
195 static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np)
196 {
197 	struct net_device *dev = ks->netdev;
198 	int ret;
199 
200 	ret = of_get_ethdev_address(np, dev);
201 	if (!ret) {
202 		ks8851_write_mac_addr(dev);
203 		return;
204 	}
205 
206 	if (ks->rc_ccr & CCR_EEPROM) {
207 		ks8851_read_mac_addr(dev);
208 		if (is_valid_ether_addr(dev->dev_addr))
209 			return;
210 
211 		netdev_err(ks->netdev, "invalid mac address read %pM\n",
212 				dev->dev_addr);
213 	}
214 
215 	eth_hw_addr_random(dev);
216 	ks8851_write_mac_addr(dev);
217 }
218 
219 /**
220  * ks8851_dbg_dumpkkt - dump initial packet contents to debug
221  * @ks: The device state
222  * @rxpkt: The data for the received packet
223  *
224  * Dump the initial data from the packet to dev_dbg().
225  */
226 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
227 {
228 	netdev_dbg(ks->netdev,
229 		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
230 		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
231 		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
232 		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
233 }
234 
235 /**
236  * ks8851_rx_skb - receive skbuff
237  * @ks: The device state.
238  * @skb: The skbuff
239  */
240 static void ks8851_rx_skb(struct ks8851_net *ks, struct sk_buff *skb)
241 {
242 	ks->rx_skb(ks, skb);
243 }
244 
245 /**
246  * ks8851_rx_pkts - receive packets from the host
247  * @ks: The device information.
248  *
249  * This is called from the IRQ work queue when the system detects that there
250  * are packets in the receive queue. Find out how many packets there are and
251  * read them from the FIFO.
252  */
253 static void ks8851_rx_pkts(struct ks8851_net *ks)
254 {
255 	struct sk_buff *skb;
256 	unsigned rxfc;
257 	unsigned rxlen;
258 	unsigned rxstat;
259 	u8 *rxpkt;
260 
261 	rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff;
262 
263 	netif_dbg(ks, rx_status, ks->netdev,
264 		  "%s: %d packets\n", __func__, rxfc);
265 
266 	/* Currently we're issuing a read per packet, but we could possibly
267 	 * improve the code by issuing a single read, getting the receive
268 	 * header, allocating the packet and then reading the packet data
269 	 * out in one go.
270 	 *
271 	 * This form of operation would require us to hold the SPI bus'
272 	 * chipselect low during the entie transaction to avoid any
273 	 * reset to the data stream coming from the chip.
274 	 */
275 
276 	for (; rxfc != 0; rxfc--) {
277 		rxstat = ks8851_rdreg16(ks, KS_RXFHSR);
278 		rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK;
279 
280 		netif_dbg(ks, rx_status, ks->netdev,
281 			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
282 
283 		/* the length of the packet includes the 32bit CRC */
284 
285 		/* set dma read address */
286 		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
287 
288 		/* start DMA access */
289 		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
290 
291 		if (rxlen > 4) {
292 			unsigned int rxalign;
293 
294 			rxlen -= 4;
295 			rxalign = ALIGN(rxlen, 4);
296 			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
297 			if (skb) {
298 
299 				/* 4 bytes of status header + 4 bytes of
300 				 * garbage: we put them before ethernet
301 				 * header, so that they are copied,
302 				 * but ignored.
303 				 */
304 
305 				rxpkt = skb_put(skb, rxlen) - 8;
306 
307 				ks->rdfifo(ks, rxpkt, rxalign + 8);
308 
309 				if (netif_msg_pktdata(ks))
310 					ks8851_dbg_dumpkkt(ks, rxpkt);
311 
312 				skb->protocol = eth_type_trans(skb, ks->netdev);
313 				ks8851_rx_skb(ks, skb);
314 
315 				ks->netdev->stats.rx_packets++;
316 				ks->netdev->stats.rx_bytes += rxlen;
317 			}
318 		}
319 
320 		/* end DMA access and dequeue packet */
321 		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF);
322 	}
323 }
324 
325 /**
326  * ks8851_irq - IRQ handler for dealing with interrupt requests
327  * @irq: IRQ number
328  * @_ks: cookie
329  *
330  * This handler is invoked when the IRQ line asserts to find out what happened.
331  * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
332  * in thread context.
333  *
334  * Read the interrupt status, work out what needs to be done and then clear
335  * any of the interrupts that are not needed.
336  */
337 static irqreturn_t ks8851_irq(int irq, void *_ks)
338 {
339 	struct ks8851_net *ks = _ks;
340 	unsigned handled = 0;
341 	unsigned long flags;
342 	unsigned int status;
343 
344 	ks8851_lock(ks, &flags);
345 
346 	status = ks8851_rdreg16(ks, KS_ISR);
347 
348 	netif_dbg(ks, intr, ks->netdev,
349 		  "%s: status 0x%04x\n", __func__, status);
350 
351 	if (status & IRQ_LCI)
352 		handled |= IRQ_LCI;
353 
354 	if (status & IRQ_LDI) {
355 		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
356 		pmecr &= ~PMECR_WKEVT_MASK;
357 		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
358 
359 		handled |= IRQ_LDI;
360 	}
361 
362 	if (status & IRQ_RXPSI)
363 		handled |= IRQ_RXPSI;
364 
365 	if (status & IRQ_TXI) {
366 		handled |= IRQ_TXI;
367 
368 		/* no lock here, tx queue should have been stopped */
369 
370 		/* update our idea of how much tx space is available to the
371 		 * system */
372 		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
373 
374 		netif_dbg(ks, intr, ks->netdev,
375 			  "%s: txspace %d\n", __func__, ks->tx_space);
376 	}
377 
378 	if (status & IRQ_RXI)
379 		handled |= IRQ_RXI;
380 
381 	if (status & IRQ_SPIBEI) {
382 		netdev_err(ks->netdev, "%s: spi bus error\n", __func__);
383 		handled |= IRQ_SPIBEI;
384 	}
385 
386 	ks8851_wrreg16(ks, KS_ISR, handled);
387 
388 	if (status & IRQ_RXI) {
389 		/* the datasheet says to disable the rx interrupt during
390 		 * packet read-out, however we're masking the interrupt
391 		 * from the device so do not bother masking just the RX
392 		 * from the device. */
393 
394 		ks8851_rx_pkts(ks);
395 	}
396 
397 	/* if something stopped the rx process, probably due to wanting
398 	 * to change the rx settings, then do something about restarting
399 	 * it. */
400 	if (status & IRQ_RXPSI) {
401 		struct ks8851_rxctrl *rxc = &ks->rxctrl;
402 
403 		/* update the multicast hash table */
404 		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
405 		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
406 		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
407 		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
408 
409 		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
410 		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
411 	}
412 
413 	ks8851_unlock(ks, &flags);
414 
415 	if (status & IRQ_LCI)
416 		mii_check_link(&ks->mii);
417 
418 	if (status & IRQ_TXI)
419 		netif_wake_queue(ks->netdev);
420 
421 	return IRQ_HANDLED;
422 }
423 
424 /**
425  * ks8851_flush_tx_work - flush outstanding TX work
426  * @ks: The device state
427  */
428 static void ks8851_flush_tx_work(struct ks8851_net *ks)
429 {
430 	if (ks->flush_tx_work)
431 		ks->flush_tx_work(ks);
432 }
433 
434 /**
435  * ks8851_net_open - open network device
436  * @dev: The network device being opened.
437  *
438  * Called when the network device is marked active, such as a user executing
439  * 'ifconfig up' on the device.
440  */
441 static int ks8851_net_open(struct net_device *dev)
442 {
443 	struct ks8851_net *ks = netdev_priv(dev);
444 	unsigned long flags;
445 	int ret;
446 
447 	ret = request_threaded_irq(dev->irq, NULL, ks8851_irq,
448 				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
449 				   dev->name, ks);
450 	if (ret < 0) {
451 		netdev_err(dev, "failed to get irq\n");
452 		return ret;
453 	}
454 
455 	/* lock the card, even if we may not actually be doing anything
456 	 * else at the moment */
457 	ks8851_lock(ks, &flags);
458 
459 	netif_dbg(ks, ifup, ks->netdev, "opening\n");
460 
461 	/* bring chip out of any power saving mode it was in */
462 	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
463 
464 	/* issue a soft reset to the RX/TX QMU to put it into a known
465 	 * state. */
466 	ks8851_soft_reset(ks, GRR_QMU);
467 
468 	/* setup transmission parameters */
469 
470 	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
471 				     TXCR_TXPE | /* pad to min length */
472 				     TXCR_TXCRC | /* add CRC */
473 				     TXCR_TXFCE)); /* enable flow control */
474 
475 	/* auto-increment tx data, reset tx pointer */
476 	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
477 
478 	/* setup receiver control */
479 
480 	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
481 				      RXCR1_RXFCE | /* enable flow control */
482 				      RXCR1_RXBE | /* broadcast enable */
483 				      RXCR1_RXUE | /* unicast enable */
484 				      RXCR1_RXE)); /* enable rx block */
485 
486 	/* transfer entire frames out in one go */
487 	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
488 
489 	/* set receive counter timeouts */
490 	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
491 	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
492 	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
493 
494 	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
495 			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
496 			RXQCR_RXDTTE);  /* IRQ on time exceeded */
497 
498 	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
499 
500 	/* clear then enable interrupts */
501 	ks8851_wrreg16(ks, KS_ISR, ks->rc_ier);
502 	ks8851_wrreg16(ks, KS_IER, ks->rc_ier);
503 
504 	netif_start_queue(ks->netdev);
505 
506 	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
507 
508 	ks8851_unlock(ks, &flags);
509 	mii_check_link(&ks->mii);
510 	return 0;
511 }
512 
513 /**
514  * ks8851_net_stop - close network device
515  * @dev: The device being closed.
516  *
517  * Called to close down a network device which has been active. Cancell any
518  * work, shutdown the RX and TX process and then place the chip into a low
519  * power state whilst it is not being used.
520  */
521 static int ks8851_net_stop(struct net_device *dev)
522 {
523 	struct ks8851_net *ks = netdev_priv(dev);
524 	unsigned long flags;
525 
526 	netif_info(ks, ifdown, dev, "shutting down\n");
527 
528 	netif_stop_queue(dev);
529 
530 	ks8851_lock(ks, &flags);
531 	/* turn off the IRQs and ack any outstanding */
532 	ks8851_wrreg16(ks, KS_IER, 0x0000);
533 	ks8851_wrreg16(ks, KS_ISR, 0xffff);
534 	ks8851_unlock(ks, &flags);
535 
536 	/* stop any outstanding work */
537 	ks8851_flush_tx_work(ks);
538 	flush_work(&ks->rxctrl_work);
539 
540 	ks8851_lock(ks, &flags);
541 	/* shutdown RX process */
542 	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
543 
544 	/* shutdown TX process */
545 	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
546 
547 	/* set powermode to soft power down to save power */
548 	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
549 	ks8851_unlock(ks, &flags);
550 
551 	/* ensure any queued tx buffers are dumped */
552 	while (!skb_queue_empty(&ks->txq)) {
553 		struct sk_buff *txb = skb_dequeue(&ks->txq);
554 
555 		netif_dbg(ks, ifdown, ks->netdev,
556 			  "%s: freeing txb %p\n", __func__, txb);
557 
558 		dev_kfree_skb(txb);
559 	}
560 
561 	free_irq(dev->irq, ks);
562 
563 	return 0;
564 }
565 
566 /**
567  * ks8851_start_xmit - transmit packet
568  * @skb: The buffer to transmit
569  * @dev: The device used to transmit the packet.
570  *
571  * Called by the network layer to transmit the @skb. Queue the packet for
572  * the device and schedule the necessary work to transmit the packet when
573  * it is free.
574  *
575  * We do this to firstly avoid sleeping with the network device locked,
576  * and secondly so we can round up more than one packet to transmit which
577  * means we can try and avoid generating too many transmit done interrupts.
578  */
579 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
580 				     struct net_device *dev)
581 {
582 	struct ks8851_net *ks = netdev_priv(dev);
583 
584 	return ks->start_xmit(skb, dev);
585 }
586 
587 /**
588  * ks8851_rxctrl_work - work handler to change rx mode
589  * @work: The work structure this belongs to.
590  *
591  * Lock the device and issue the necessary changes to the receive mode from
592  * the network device layer. This is done so that we can do this without
593  * having to sleep whilst holding the network device lock.
594  *
595  * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
596  * receive parameters are programmed, we issue a write to disable the RXQ and
597  * then wait for the interrupt handler to be triggered once the RXQ shutdown is
598  * complete. The interrupt handler then writes the new values into the chip.
599  */
600 static void ks8851_rxctrl_work(struct work_struct *work)
601 {
602 	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
603 	unsigned long flags;
604 
605 	ks8851_lock(ks, &flags);
606 
607 	/* need to shutdown RXQ before modifying filter parameters */
608 	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
609 
610 	ks8851_unlock(ks, &flags);
611 }
612 
613 static void ks8851_set_rx_mode(struct net_device *dev)
614 {
615 	struct ks8851_net *ks = netdev_priv(dev);
616 	struct ks8851_rxctrl rxctrl;
617 
618 	memset(&rxctrl, 0, sizeof(rxctrl));
619 
620 	if (dev->flags & IFF_PROMISC) {
621 		/* interface to receive everything */
622 
623 		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
624 	} else if (dev->flags & IFF_ALLMULTI) {
625 		/* accept all multicast packets */
626 
627 		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
628 				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
629 	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
630 		struct netdev_hw_addr *ha;
631 		u32 crc;
632 
633 		/* accept some multicast */
634 
635 		netdev_for_each_mc_addr(ha, dev) {
636 			crc = ether_crc(ETH_ALEN, ha->addr);
637 			crc >>= (32 - 6);  /* get top six bits */
638 
639 			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
640 		}
641 
642 		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
643 	} else {
644 		/* just accept broadcast / unicast */
645 		rxctrl.rxcr1 = RXCR1_RXPAFMA;
646 	}
647 
648 	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
649 			 RXCR1_RXBE | /* broadcast enable */
650 			 RXCR1_RXE | /* RX process enable */
651 			 RXCR1_RXFCE); /* enable flow control */
652 
653 	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
654 
655 	/* schedule work to do the actual set of the data if needed */
656 
657 	spin_lock(&ks->statelock);
658 
659 	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
660 		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
661 		schedule_work(&ks->rxctrl_work);
662 	}
663 
664 	spin_unlock(&ks->statelock);
665 }
666 
667 static int ks8851_set_mac_address(struct net_device *dev, void *addr)
668 {
669 	struct sockaddr *sa = addr;
670 
671 	if (netif_running(dev))
672 		return -EBUSY;
673 
674 	if (!is_valid_ether_addr(sa->sa_data))
675 		return -EADDRNOTAVAIL;
676 
677 	eth_hw_addr_set(dev, sa->sa_data);
678 	return ks8851_write_mac_addr(dev);
679 }
680 
681 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
682 {
683 	struct ks8851_net *ks = netdev_priv(dev);
684 
685 	if (!netif_running(dev))
686 		return -EINVAL;
687 
688 	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
689 }
690 
691 static const struct net_device_ops ks8851_netdev_ops = {
692 	.ndo_open		= ks8851_net_open,
693 	.ndo_stop		= ks8851_net_stop,
694 	.ndo_eth_ioctl		= ks8851_net_ioctl,
695 	.ndo_start_xmit		= ks8851_start_xmit,
696 	.ndo_set_mac_address	= ks8851_set_mac_address,
697 	.ndo_set_rx_mode	= ks8851_set_rx_mode,
698 	.ndo_validate_addr	= eth_validate_addr,
699 };
700 
701 /* ethtool support */
702 
703 static void ks8851_get_drvinfo(struct net_device *dev,
704 			       struct ethtool_drvinfo *di)
705 {
706 	strlcpy(di->driver, "KS8851", sizeof(di->driver));
707 	strlcpy(di->version, "1.00", sizeof(di->version));
708 	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
709 }
710 
711 static u32 ks8851_get_msglevel(struct net_device *dev)
712 {
713 	struct ks8851_net *ks = netdev_priv(dev);
714 	return ks->msg_enable;
715 }
716 
717 static void ks8851_set_msglevel(struct net_device *dev, u32 to)
718 {
719 	struct ks8851_net *ks = netdev_priv(dev);
720 	ks->msg_enable = to;
721 }
722 
723 static int ks8851_get_link_ksettings(struct net_device *dev,
724 				     struct ethtool_link_ksettings *cmd)
725 {
726 	struct ks8851_net *ks = netdev_priv(dev);
727 
728 	mii_ethtool_get_link_ksettings(&ks->mii, cmd);
729 
730 	return 0;
731 }
732 
733 static int ks8851_set_link_ksettings(struct net_device *dev,
734 				     const struct ethtool_link_ksettings *cmd)
735 {
736 	struct ks8851_net *ks = netdev_priv(dev);
737 	return mii_ethtool_set_link_ksettings(&ks->mii, cmd);
738 }
739 
740 static u32 ks8851_get_link(struct net_device *dev)
741 {
742 	struct ks8851_net *ks = netdev_priv(dev);
743 	return mii_link_ok(&ks->mii);
744 }
745 
746 static int ks8851_nway_reset(struct net_device *dev)
747 {
748 	struct ks8851_net *ks = netdev_priv(dev);
749 	return mii_nway_restart(&ks->mii);
750 }
751 
752 /* EEPROM support */
753 
754 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
755 {
756 	struct ks8851_net *ks = ee->data;
757 	unsigned val;
758 
759 	val = ks8851_rdreg16(ks, KS_EEPCR);
760 
761 	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
762 	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
763 	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
764 }
765 
766 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
767 {
768 	struct ks8851_net *ks = ee->data;
769 	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
770 
771 	if (ee->drive_data)
772 		val |= EEPCR_EESRWA;
773 	if (ee->reg_data_in)
774 		val |= EEPCR_EEDO;
775 	if (ee->reg_data_clock)
776 		val |= EEPCR_EESCK;
777 	if (ee->reg_chip_select)
778 		val |= EEPCR_EECS;
779 
780 	ks8851_wrreg16(ks, KS_EEPCR, val);
781 }
782 
783 /**
784  * ks8851_eeprom_claim - claim device EEPROM and activate the interface
785  * @ks: The network device state.
786  *
787  * Check for the presence of an EEPROM, and then activate software access
788  * to the device.
789  */
790 static int ks8851_eeprom_claim(struct ks8851_net *ks)
791 {
792 	/* start with clock low, cs high */
793 	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
794 	return 0;
795 }
796 
797 /**
798  * ks8851_eeprom_release - release the EEPROM interface
799  * @ks: The device state
800  *
801  * Release the software access to the device EEPROM
802  */
803 static void ks8851_eeprom_release(struct ks8851_net *ks)
804 {
805 	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
806 
807 	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
808 }
809 
810 #define KS_EEPROM_MAGIC (0x00008851)
811 
812 static int ks8851_set_eeprom(struct net_device *dev,
813 			     struct ethtool_eeprom *ee, u8 *data)
814 {
815 	struct ks8851_net *ks = netdev_priv(dev);
816 	int offset = ee->offset;
817 	unsigned long flags;
818 	int len = ee->len;
819 	u16 tmp;
820 
821 	/* currently only support byte writing */
822 	if (len != 1)
823 		return -EINVAL;
824 
825 	if (ee->magic != KS_EEPROM_MAGIC)
826 		return -EINVAL;
827 
828 	if (!(ks->rc_ccr & CCR_EEPROM))
829 		return -ENOENT;
830 
831 	ks8851_lock(ks, &flags);
832 
833 	ks8851_eeprom_claim(ks);
834 
835 	eeprom_93cx6_wren(&ks->eeprom, true);
836 
837 	/* ethtool currently only supports writing bytes, which means
838 	 * we have to read/modify/write our 16bit EEPROMs */
839 
840 	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
841 
842 	if (offset & 1) {
843 		tmp &= 0xff;
844 		tmp |= *data << 8;
845 	} else {
846 		tmp &= 0xff00;
847 		tmp |= *data;
848 	}
849 
850 	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
851 	eeprom_93cx6_wren(&ks->eeprom, false);
852 
853 	ks8851_eeprom_release(ks);
854 	ks8851_unlock(ks, &flags);
855 
856 	return 0;
857 }
858 
859 static int ks8851_get_eeprom(struct net_device *dev,
860 			     struct ethtool_eeprom *ee, u8 *data)
861 {
862 	struct ks8851_net *ks = netdev_priv(dev);
863 	int offset = ee->offset;
864 	unsigned long flags;
865 	int len = ee->len;
866 
867 	/* must be 2 byte aligned */
868 	if (len & 1 || offset & 1)
869 		return -EINVAL;
870 
871 	if (!(ks->rc_ccr & CCR_EEPROM))
872 		return -ENOENT;
873 
874 	ks8851_lock(ks, &flags);
875 
876 	ks8851_eeprom_claim(ks);
877 
878 	ee->magic = KS_EEPROM_MAGIC;
879 
880 	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
881 	ks8851_eeprom_release(ks);
882 	ks8851_unlock(ks, &flags);
883 
884 	return 0;
885 }
886 
887 static int ks8851_get_eeprom_len(struct net_device *dev)
888 {
889 	struct ks8851_net *ks = netdev_priv(dev);
890 
891 	/* currently, we assume it is an 93C46 attached, so return 128 */
892 	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
893 }
894 
895 static const struct ethtool_ops ks8851_ethtool_ops = {
896 	.get_drvinfo	= ks8851_get_drvinfo,
897 	.get_msglevel	= ks8851_get_msglevel,
898 	.set_msglevel	= ks8851_set_msglevel,
899 	.get_link	= ks8851_get_link,
900 	.nway_reset	= ks8851_nway_reset,
901 	.get_eeprom_len	= ks8851_get_eeprom_len,
902 	.get_eeprom	= ks8851_get_eeprom,
903 	.set_eeprom	= ks8851_set_eeprom,
904 	.get_link_ksettings = ks8851_get_link_ksettings,
905 	.set_link_ksettings = ks8851_set_link_ksettings,
906 };
907 
908 /* MII interface controls */
909 
910 /**
911  * ks8851_phy_reg - convert MII register into a KS8851 register
912  * @reg: MII register number.
913  *
914  * Return the KS8851 register number for the corresponding MII PHY register
915  * if possible. Return zero if the MII register has no direct mapping to the
916  * KS8851 register set.
917  */
918 static int ks8851_phy_reg(int reg)
919 {
920 	switch (reg) {
921 	case MII_BMCR:
922 		return KS_P1MBCR;
923 	case MII_BMSR:
924 		return KS_P1MBSR;
925 	case MII_PHYSID1:
926 		return KS_PHY1ILR;
927 	case MII_PHYSID2:
928 		return KS_PHY1IHR;
929 	case MII_ADVERTISE:
930 		return KS_P1ANAR;
931 	case MII_LPA:
932 		return KS_P1ANLPR;
933 	}
934 
935 	return -EOPNOTSUPP;
936 }
937 
938 static int ks8851_phy_read_common(struct net_device *dev, int phy_addr, int reg)
939 {
940 	struct ks8851_net *ks = netdev_priv(dev);
941 	unsigned long flags;
942 	int result;
943 	int ksreg;
944 
945 	ksreg = ks8851_phy_reg(reg);
946 	if (ksreg < 0)
947 		return ksreg;
948 
949 	ks8851_lock(ks, &flags);
950 	result = ks8851_rdreg16(ks, ksreg);
951 	ks8851_unlock(ks, &flags);
952 
953 	return result;
954 }
955 
956 /**
957  * ks8851_phy_read - MII interface PHY register read.
958  * @dev: The network device the PHY is on.
959  * @phy_addr: Address of PHY (ignored as we only have one)
960  * @reg: The register to read.
961  *
962  * This call reads data from the PHY register specified in @reg. Since the
963  * device does not support all the MII registers, the non-existent values
964  * are always returned as zero.
965  *
966  * We return zero for unsupported registers as the MII code does not check
967  * the value returned for any error status, and simply returns it to the
968  * caller. The mii-tool that the driver was tested with takes any -ve error
969  * as real PHY capabilities, thus displaying incorrect data to the user.
970  */
971 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
972 {
973 	int ret;
974 
975 	ret = ks8851_phy_read_common(dev, phy_addr, reg);
976 	if (ret < 0)
977 		return 0x0;	/* no error return allowed, so use zero */
978 
979 	return ret;
980 }
981 
982 static void ks8851_phy_write(struct net_device *dev,
983 			     int phy, int reg, int value)
984 {
985 	struct ks8851_net *ks = netdev_priv(dev);
986 	unsigned long flags;
987 	int ksreg;
988 
989 	ksreg = ks8851_phy_reg(reg);
990 	if (ksreg >= 0) {
991 		ks8851_lock(ks, &flags);
992 		ks8851_wrreg16(ks, ksreg, value);
993 		ks8851_unlock(ks, &flags);
994 	}
995 }
996 
997 static int ks8851_mdio_read(struct mii_bus *bus, int phy_id, int reg)
998 {
999 	struct ks8851_net *ks = bus->priv;
1000 
1001 	if (phy_id != 0)
1002 		return -EOPNOTSUPP;
1003 
1004 	/* KS8851 PHY ID registers are swapped in HW, swap them back. */
1005 	if (reg == MII_PHYSID1)
1006 		reg = MII_PHYSID2;
1007 	else if (reg == MII_PHYSID2)
1008 		reg = MII_PHYSID1;
1009 
1010 	return ks8851_phy_read_common(ks->netdev, phy_id, reg);
1011 }
1012 
1013 static int ks8851_mdio_write(struct mii_bus *bus, int phy_id, int reg, u16 val)
1014 {
1015 	struct ks8851_net *ks = bus->priv;
1016 
1017 	ks8851_phy_write(ks->netdev, phy_id, reg, val);
1018 	return 0;
1019 }
1020 
1021 /**
1022  * ks8851_read_selftest - read the selftest memory info.
1023  * @ks: The device state
1024  *
1025  * Read and check the TX/RX memory selftest information.
1026  */
1027 static void ks8851_read_selftest(struct ks8851_net *ks)
1028 {
1029 	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1030 	unsigned rd;
1031 
1032 	rd = ks8851_rdreg16(ks, KS_MBIR);
1033 
1034 	if ((rd & both_done) != both_done) {
1035 		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1036 		return;
1037 	}
1038 
1039 	if (rd & MBIR_TXMBFA)
1040 		netdev_err(ks->netdev, "TX memory selftest fail\n");
1041 
1042 	if (rd & MBIR_RXMBFA)
1043 		netdev_err(ks->netdev, "RX memory selftest fail\n");
1044 }
1045 
1046 /* driver bus management functions */
1047 
1048 #ifdef CONFIG_PM_SLEEP
1049 
1050 int ks8851_suspend(struct device *dev)
1051 {
1052 	struct ks8851_net *ks = dev_get_drvdata(dev);
1053 	struct net_device *netdev = ks->netdev;
1054 
1055 	if (netif_running(netdev)) {
1056 		netif_device_detach(netdev);
1057 		ks8851_net_stop(netdev);
1058 	}
1059 
1060 	return 0;
1061 }
1062 EXPORT_SYMBOL_GPL(ks8851_suspend);
1063 
1064 int ks8851_resume(struct device *dev)
1065 {
1066 	struct ks8851_net *ks = dev_get_drvdata(dev);
1067 	struct net_device *netdev = ks->netdev;
1068 
1069 	if (netif_running(netdev)) {
1070 		ks8851_net_open(netdev);
1071 		netif_device_attach(netdev);
1072 	}
1073 
1074 	return 0;
1075 }
1076 EXPORT_SYMBOL_GPL(ks8851_resume);
1077 #endif
1078 
1079 static int ks8851_register_mdiobus(struct ks8851_net *ks, struct device *dev)
1080 {
1081 	struct mii_bus *mii_bus;
1082 	int ret;
1083 
1084 	mii_bus = mdiobus_alloc();
1085 	if (!mii_bus)
1086 		return -ENOMEM;
1087 
1088 	mii_bus->name = "ks8851_eth_mii";
1089 	mii_bus->read = ks8851_mdio_read;
1090 	mii_bus->write = ks8851_mdio_write;
1091 	mii_bus->priv = ks;
1092 	mii_bus->parent = dev;
1093 	mii_bus->phy_mask = ~((u32)BIT(0));
1094 	snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
1095 
1096 	ret = mdiobus_register(mii_bus);
1097 	if (ret)
1098 		goto err_mdiobus_register;
1099 
1100 	ks->mii_bus = mii_bus;
1101 
1102 	return 0;
1103 
1104 err_mdiobus_register:
1105 	mdiobus_free(mii_bus);
1106 	return ret;
1107 }
1108 
1109 static void ks8851_unregister_mdiobus(struct ks8851_net *ks)
1110 {
1111 	mdiobus_unregister(ks->mii_bus);
1112 	mdiobus_free(ks->mii_bus);
1113 }
1114 
1115 int ks8851_probe_common(struct net_device *netdev, struct device *dev,
1116 			int msg_en)
1117 {
1118 	struct ks8851_net *ks = netdev_priv(netdev);
1119 	unsigned cider;
1120 	int gpio;
1121 	int ret;
1122 
1123 	ks->netdev = netdev;
1124 	ks->tx_space = 6144;
1125 
1126 	gpio = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0, NULL);
1127 	if (gpio == -EPROBE_DEFER)
1128 		return gpio;
1129 
1130 	ks->gpio = gpio;
1131 	if (gpio_is_valid(gpio)) {
1132 		ret = devm_gpio_request_one(dev, gpio,
1133 					    GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1134 		if (ret) {
1135 			dev_err(dev, "reset gpio request failed\n");
1136 			return ret;
1137 		}
1138 	}
1139 
1140 	ks->vdd_io = devm_regulator_get(dev, "vdd-io");
1141 	if (IS_ERR(ks->vdd_io)) {
1142 		ret = PTR_ERR(ks->vdd_io);
1143 		goto err_reg_io;
1144 	}
1145 
1146 	ret = regulator_enable(ks->vdd_io);
1147 	if (ret) {
1148 		dev_err(dev, "regulator vdd_io enable fail: %d\n", ret);
1149 		goto err_reg_io;
1150 	}
1151 
1152 	ks->vdd_reg = devm_regulator_get(dev, "vdd");
1153 	if (IS_ERR(ks->vdd_reg)) {
1154 		ret = PTR_ERR(ks->vdd_reg);
1155 		goto err_reg;
1156 	}
1157 
1158 	ret = regulator_enable(ks->vdd_reg);
1159 	if (ret) {
1160 		dev_err(dev, "regulator vdd enable fail: %d\n", ret);
1161 		goto err_reg;
1162 	}
1163 
1164 	if (gpio_is_valid(gpio)) {
1165 		usleep_range(10000, 11000);
1166 		gpio_set_value(gpio, 1);
1167 	}
1168 
1169 	spin_lock_init(&ks->statelock);
1170 
1171 	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1172 
1173 	SET_NETDEV_DEV(netdev, dev);
1174 
1175 	/* setup EEPROM state */
1176 	ks->eeprom.data = ks;
1177 	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1178 	ks->eeprom.register_read = ks8851_eeprom_regread;
1179 	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1180 
1181 	/* setup mii state */
1182 	ks->mii.dev		= netdev;
1183 	ks->mii.phy_id		= 1;
1184 	ks->mii.phy_id_mask	= 1;
1185 	ks->mii.reg_num_mask	= 0xf;
1186 	ks->mii.mdio_read	= ks8851_phy_read;
1187 	ks->mii.mdio_write	= ks8851_phy_write;
1188 
1189 	dev_info(dev, "message enable is %d\n", msg_en);
1190 
1191 	ret = ks8851_register_mdiobus(ks, dev);
1192 	if (ret)
1193 		goto err_mdio;
1194 
1195 	/* set the default message enable */
1196 	ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV |
1197 						NETIF_MSG_PROBE |
1198 						NETIF_MSG_LINK);
1199 
1200 	skb_queue_head_init(&ks->txq);
1201 
1202 	netdev->ethtool_ops = &ks8851_ethtool_ops;
1203 
1204 	dev_set_drvdata(dev, ks);
1205 
1206 	netif_carrier_off(ks->netdev);
1207 	netdev->if_port = IF_PORT_100BASET;
1208 	netdev->netdev_ops = &ks8851_netdev_ops;
1209 
1210 	/* issue a global soft reset to reset the device. */
1211 	ks8851_soft_reset(ks, GRR_GSR);
1212 
1213 	/* simple check for a valid chip being connected to the bus */
1214 	cider = ks8851_rdreg16(ks, KS_CIDER);
1215 	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1216 		dev_err(dev, "failed to read device ID\n");
1217 		ret = -ENODEV;
1218 		goto err_id;
1219 	}
1220 
1221 	/* cache the contents of the CCR register for EEPROM, etc. */
1222 	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1223 
1224 	ks8851_read_selftest(ks);
1225 	ks8851_init_mac(ks, dev->of_node);
1226 
1227 	ret = register_netdev(netdev);
1228 	if (ret) {
1229 		dev_err(dev, "failed to register network device\n");
1230 		goto err_id;
1231 	}
1232 
1233 	netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1234 		    CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq,
1235 		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1236 
1237 	return 0;
1238 
1239 err_id:
1240 	ks8851_unregister_mdiobus(ks);
1241 err_mdio:
1242 	if (gpio_is_valid(gpio))
1243 		gpio_set_value(gpio, 0);
1244 	regulator_disable(ks->vdd_reg);
1245 err_reg:
1246 	regulator_disable(ks->vdd_io);
1247 err_reg_io:
1248 	return ret;
1249 }
1250 EXPORT_SYMBOL_GPL(ks8851_probe_common);
1251 
1252 void ks8851_remove_common(struct device *dev)
1253 {
1254 	struct ks8851_net *priv = dev_get_drvdata(dev);
1255 
1256 	ks8851_unregister_mdiobus(priv);
1257 
1258 	if (netif_msg_drv(priv))
1259 		dev_info(dev, "remove\n");
1260 
1261 	unregister_netdev(priv->netdev);
1262 	if (gpio_is_valid(priv->gpio))
1263 		gpio_set_value(priv->gpio, 0);
1264 	regulator_disable(priv->vdd_reg);
1265 	regulator_disable(priv->vdd_io);
1266 }
1267 EXPORT_SYMBOL_GPL(ks8851_remove_common);
1268 
1269 MODULE_DESCRIPTION("KS8851 Network driver");
1270 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1271 MODULE_LICENSE("GPL");
1272