1 // SPDX-License-Identifier: GPL-2.0-only 2 /* drivers/net/ethernet/micrel/ks8851.c 3 * 4 * Copyright 2009 Simtec Electronics 5 * http://www.simtec.co.uk/ 6 * Ben Dooks <ben@simtec.co.uk> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/interrupt.h> 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/netdevice.h> 15 #include <linux/etherdevice.h> 16 #include <linux/ethtool.h> 17 #include <linux/cache.h> 18 #include <linux/crc32.h> 19 #include <linux/mii.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/regulator/consumer.h> 22 23 #include <linux/of_mdio.h> 24 #include <linux/of_net.h> 25 26 #include "ks8851.h" 27 28 /** 29 * ks8851_lock - register access lock 30 * @ks: The chip state 31 * @flags: Spinlock flags 32 * 33 * Claim chip register access lock 34 */ 35 static void ks8851_lock(struct ks8851_net *ks, unsigned long *flags) 36 { 37 ks->lock(ks, flags); 38 } 39 40 /** 41 * ks8851_unlock - register access unlock 42 * @ks: The chip state 43 * @flags: Spinlock flags 44 * 45 * Release chip register access lock 46 */ 47 static void ks8851_unlock(struct ks8851_net *ks, unsigned long *flags) 48 { 49 ks->unlock(ks, flags); 50 } 51 52 /** 53 * ks8851_wrreg16 - write 16bit register value to chip 54 * @ks: The chip state 55 * @reg: The register address 56 * @val: The value to write 57 * 58 * Issue a write to put the value @val into the register specified in @reg. 59 */ 60 static void ks8851_wrreg16(struct ks8851_net *ks, unsigned int reg, 61 unsigned int val) 62 { 63 ks->wrreg16(ks, reg, val); 64 } 65 66 /** 67 * ks8851_rdreg16 - read 16 bit register from device 68 * @ks: The chip information 69 * @reg: The register address 70 * 71 * Read a 16bit register from the chip, returning the result 72 */ 73 static unsigned int ks8851_rdreg16(struct ks8851_net *ks, 74 unsigned int reg) 75 { 76 return ks->rdreg16(ks, reg); 77 } 78 79 /** 80 * ks8851_soft_reset - issue one of the soft reset to the device 81 * @ks: The device state. 82 * @op: The bit(s) to set in the GRR 83 * 84 * Issue the relevant soft-reset command to the device's GRR register 85 * specified by @op. 86 * 87 * Note, the delays are in there as a caution to ensure that the reset 88 * has time to take effect and then complete. Since the datasheet does 89 * not currently specify the exact sequence, we have chosen something 90 * that seems to work with our device. 91 */ 92 static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op) 93 { 94 ks8851_wrreg16(ks, KS_GRR, op); 95 mdelay(1); /* wait a short time to effect reset */ 96 ks8851_wrreg16(ks, KS_GRR, 0); 97 mdelay(1); /* wait for condition to clear */ 98 } 99 100 /** 101 * ks8851_set_powermode - set power mode of the device 102 * @ks: The device state 103 * @pwrmode: The power mode value to write to KS_PMECR. 104 * 105 * Change the power mode of the chip. 106 */ 107 static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode) 108 { 109 unsigned pmecr; 110 111 netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode); 112 113 pmecr = ks8851_rdreg16(ks, KS_PMECR); 114 pmecr &= ~PMECR_PM_MASK; 115 pmecr |= pwrmode; 116 117 ks8851_wrreg16(ks, KS_PMECR, pmecr); 118 } 119 120 /** 121 * ks8851_write_mac_addr - write mac address to device registers 122 * @dev: The network device 123 * 124 * Update the KS8851 MAC address registers from the address in @dev. 125 * 126 * This call assumes that the chip is not running, so there is no need to 127 * shutdown the RXQ process whilst setting this. 128 */ 129 static int ks8851_write_mac_addr(struct net_device *dev) 130 { 131 struct ks8851_net *ks = netdev_priv(dev); 132 unsigned long flags; 133 u16 val; 134 int i; 135 136 ks8851_lock(ks, &flags); 137 138 /* 139 * Wake up chip in case it was powered off when stopped; otherwise, 140 * the first write to the MAC address does not take effect. 141 */ 142 ks8851_set_powermode(ks, PMECR_PM_NORMAL); 143 144 for (i = 0; i < ETH_ALEN; i += 2) { 145 val = (dev->dev_addr[i] << 8) | dev->dev_addr[i + 1]; 146 ks8851_wrreg16(ks, KS_MAR(i), val); 147 } 148 149 if (!netif_running(dev)) 150 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); 151 152 ks8851_unlock(ks, &flags); 153 154 return 0; 155 } 156 157 /** 158 * ks8851_read_mac_addr - read mac address from device registers 159 * @dev: The network device 160 * 161 * Update our copy of the KS8851 MAC address from the registers of @dev. 162 */ 163 static void ks8851_read_mac_addr(struct net_device *dev) 164 { 165 struct ks8851_net *ks = netdev_priv(dev); 166 unsigned long flags; 167 u8 addr[ETH_ALEN]; 168 u16 reg; 169 int i; 170 171 ks8851_lock(ks, &flags); 172 173 for (i = 0; i < ETH_ALEN; i += 2) { 174 reg = ks8851_rdreg16(ks, KS_MAR(i)); 175 addr[i] = reg >> 8; 176 addr[i + 1] = reg & 0xff; 177 } 178 eth_hw_addr_set(dev, addr); 179 180 ks8851_unlock(ks, &flags); 181 } 182 183 /** 184 * ks8851_init_mac - initialise the mac address 185 * @ks: The device structure 186 * @np: The device node pointer 187 * 188 * Get or create the initial mac address for the device and then set that 189 * into the station address register. A mac address supplied in the device 190 * tree takes precedence. Otherwise, if there is an EEPROM present, then 191 * we try that. If no valid mac address is found we use eth_random_addr() 192 * to create a new one. 193 */ 194 static void ks8851_init_mac(struct ks8851_net *ks, struct device_node *np) 195 { 196 struct net_device *dev = ks->netdev; 197 int ret; 198 199 ret = of_get_ethdev_address(np, dev); 200 if (!ret) { 201 ks8851_write_mac_addr(dev); 202 return; 203 } 204 205 if (ks->rc_ccr & CCR_EEPROM) { 206 ks8851_read_mac_addr(dev); 207 if (is_valid_ether_addr(dev->dev_addr)) 208 return; 209 210 netdev_err(ks->netdev, "invalid mac address read %pM\n", 211 dev->dev_addr); 212 } 213 214 eth_hw_addr_random(dev); 215 ks8851_write_mac_addr(dev); 216 } 217 218 /** 219 * ks8851_dbg_dumpkkt - dump initial packet contents to debug 220 * @ks: The device state 221 * @rxpkt: The data for the received packet 222 * 223 * Dump the initial data from the packet to dev_dbg(). 224 */ 225 static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt) 226 { 227 netdev_dbg(ks->netdev, 228 "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n", 229 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7], 230 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11], 231 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]); 232 } 233 234 /** 235 * ks8851_rx_pkts - receive packets from the host 236 * @ks: The device information. 237 * @rxq: Queue of packets received in this function. 238 * 239 * This is called from the IRQ work queue when the system detects that there 240 * are packets in the receive queue. Find out how many packets there are and 241 * read them from the FIFO. 242 */ 243 static void ks8851_rx_pkts(struct ks8851_net *ks, struct sk_buff_head *rxq) 244 { 245 struct sk_buff *skb; 246 unsigned rxfc; 247 unsigned rxlen; 248 unsigned rxstat; 249 u8 *rxpkt; 250 251 rxfc = (ks8851_rdreg16(ks, KS_RXFCTR) >> 8) & 0xff; 252 253 netif_dbg(ks, rx_status, ks->netdev, 254 "%s: %d packets\n", __func__, rxfc); 255 256 /* Currently we're issuing a read per packet, but we could possibly 257 * improve the code by issuing a single read, getting the receive 258 * header, allocating the packet and then reading the packet data 259 * out in one go. 260 * 261 * This form of operation would require us to hold the SPI bus' 262 * chipselect low during the entie transaction to avoid any 263 * reset to the data stream coming from the chip. 264 */ 265 266 for (; rxfc != 0; rxfc--) { 267 rxstat = ks8851_rdreg16(ks, KS_RXFHSR); 268 rxlen = ks8851_rdreg16(ks, KS_RXFHBCR) & RXFHBCR_CNT_MASK; 269 270 netif_dbg(ks, rx_status, ks->netdev, 271 "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen); 272 273 /* the length of the packet includes the 32bit CRC */ 274 275 /* set dma read address */ 276 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00); 277 278 /* start DMA access */ 279 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA); 280 281 if (rxlen > 4) { 282 unsigned int rxalign; 283 284 rxlen -= 4; 285 rxalign = ALIGN(rxlen, 4); 286 skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign); 287 if (skb) { 288 289 /* 4 bytes of status header + 4 bytes of 290 * garbage: we put them before ethernet 291 * header, so that they are copied, 292 * but ignored. 293 */ 294 295 rxpkt = skb_put(skb, rxlen) - 8; 296 297 ks->rdfifo(ks, rxpkt, rxalign + 8); 298 299 if (netif_msg_pktdata(ks)) 300 ks8851_dbg_dumpkkt(ks, rxpkt); 301 302 skb->protocol = eth_type_trans(skb, ks->netdev); 303 __skb_queue_tail(rxq, skb); 304 305 ks->netdev->stats.rx_packets++; 306 ks->netdev->stats.rx_bytes += rxlen; 307 } 308 } 309 310 /* end DMA access and dequeue packet */ 311 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_RRXEF); 312 } 313 } 314 315 /** 316 * ks8851_irq - IRQ handler for dealing with interrupt requests 317 * @irq: IRQ number 318 * @_ks: cookie 319 * 320 * This handler is invoked when the IRQ line asserts to find out what happened. 321 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs 322 * in thread context. 323 * 324 * Read the interrupt status, work out what needs to be done and then clear 325 * any of the interrupts that are not needed. 326 */ 327 static irqreturn_t ks8851_irq(int irq, void *_ks) 328 { 329 struct ks8851_net *ks = _ks; 330 struct sk_buff_head rxq; 331 unsigned handled = 0; 332 unsigned long flags; 333 unsigned int status; 334 struct sk_buff *skb; 335 336 ks8851_lock(ks, &flags); 337 338 status = ks8851_rdreg16(ks, KS_ISR); 339 340 netif_dbg(ks, intr, ks->netdev, 341 "%s: status 0x%04x\n", __func__, status); 342 343 if (status & IRQ_LCI) 344 handled |= IRQ_LCI; 345 346 if (status & IRQ_LDI) { 347 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR); 348 pmecr &= ~PMECR_WKEVT_MASK; 349 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK); 350 351 handled |= IRQ_LDI; 352 } 353 354 if (status & IRQ_RXPSI) 355 handled |= IRQ_RXPSI; 356 357 if (status & IRQ_TXI) { 358 unsigned short tx_space = ks8851_rdreg16(ks, KS_TXMIR); 359 360 netif_dbg(ks, intr, ks->netdev, 361 "%s: txspace %d\n", __func__, tx_space); 362 363 spin_lock(&ks->statelock); 364 ks->tx_space = tx_space; 365 if (netif_queue_stopped(ks->netdev)) 366 netif_wake_queue(ks->netdev); 367 spin_unlock(&ks->statelock); 368 369 handled |= IRQ_TXI; 370 } 371 372 if (status & IRQ_RXI) 373 handled |= IRQ_RXI; 374 375 if (status & IRQ_SPIBEI) { 376 netdev_err(ks->netdev, "%s: spi bus error\n", __func__); 377 handled |= IRQ_SPIBEI; 378 } 379 380 ks8851_wrreg16(ks, KS_ISR, handled); 381 382 if (status & IRQ_RXI) { 383 /* the datasheet says to disable the rx interrupt during 384 * packet read-out, however we're masking the interrupt 385 * from the device so do not bother masking just the RX 386 * from the device. */ 387 388 __skb_queue_head_init(&rxq); 389 ks8851_rx_pkts(ks, &rxq); 390 } 391 392 /* if something stopped the rx process, probably due to wanting 393 * to change the rx settings, then do something about restarting 394 * it. */ 395 if (status & IRQ_RXPSI) { 396 struct ks8851_rxctrl *rxc = &ks->rxctrl; 397 398 /* update the multicast hash table */ 399 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]); 400 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]); 401 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]); 402 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]); 403 404 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2); 405 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1); 406 } 407 408 ks8851_unlock(ks, &flags); 409 410 if (status & IRQ_LCI) 411 mii_check_link(&ks->mii); 412 413 if (status & IRQ_RXI) 414 while ((skb = __skb_dequeue(&rxq))) 415 netif_rx(skb); 416 417 return IRQ_HANDLED; 418 } 419 420 /** 421 * ks8851_flush_tx_work - flush outstanding TX work 422 * @ks: The device state 423 */ 424 static void ks8851_flush_tx_work(struct ks8851_net *ks) 425 { 426 if (ks->flush_tx_work) 427 ks->flush_tx_work(ks); 428 } 429 430 /** 431 * ks8851_net_open - open network device 432 * @dev: The network device being opened. 433 * 434 * Called when the network device is marked active, such as a user executing 435 * 'ifconfig up' on the device. 436 */ 437 static int ks8851_net_open(struct net_device *dev) 438 { 439 struct ks8851_net *ks = netdev_priv(dev); 440 unsigned long flags; 441 int ret; 442 443 ret = request_threaded_irq(dev->irq, NULL, ks8851_irq, 444 IRQF_TRIGGER_LOW | IRQF_ONESHOT, 445 dev->name, ks); 446 if (ret < 0) { 447 netdev_err(dev, "failed to get irq\n"); 448 return ret; 449 } 450 451 /* lock the card, even if we may not actually be doing anything 452 * else at the moment */ 453 ks8851_lock(ks, &flags); 454 455 netif_dbg(ks, ifup, ks->netdev, "opening\n"); 456 457 /* bring chip out of any power saving mode it was in */ 458 ks8851_set_powermode(ks, PMECR_PM_NORMAL); 459 460 /* issue a soft reset to the RX/TX QMU to put it into a known 461 * state. */ 462 ks8851_soft_reset(ks, GRR_QMU); 463 464 /* setup transmission parameters */ 465 466 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */ 467 TXCR_TXPE | /* pad to min length */ 468 TXCR_TXCRC | /* add CRC */ 469 TXCR_TXFCE)); /* enable flow control */ 470 471 /* auto-increment tx data, reset tx pointer */ 472 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI); 473 474 /* setup receiver control */ 475 476 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */ 477 RXCR1_RXFCE | /* enable flow control */ 478 RXCR1_RXBE | /* broadcast enable */ 479 RXCR1_RXUE | /* unicast enable */ 480 RXCR1_RXE)); /* enable rx block */ 481 482 /* transfer entire frames out in one go */ 483 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME); 484 485 /* set receive counter timeouts */ 486 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */ 487 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */ 488 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */ 489 490 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */ 491 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */ 492 RXQCR_RXDTTE); /* IRQ on time exceeded */ 493 494 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); 495 496 /* clear then enable interrupts */ 497 ks8851_wrreg16(ks, KS_ISR, ks->rc_ier); 498 ks8851_wrreg16(ks, KS_IER, ks->rc_ier); 499 500 ks->queued_len = 0; 501 netif_start_queue(ks->netdev); 502 503 netif_dbg(ks, ifup, ks->netdev, "network device up\n"); 504 505 ks8851_unlock(ks, &flags); 506 mii_check_link(&ks->mii); 507 return 0; 508 } 509 510 /** 511 * ks8851_net_stop - close network device 512 * @dev: The device being closed. 513 * 514 * Called to close down a network device which has been active. Cancell any 515 * work, shutdown the RX and TX process and then place the chip into a low 516 * power state whilst it is not being used. 517 */ 518 static int ks8851_net_stop(struct net_device *dev) 519 { 520 struct ks8851_net *ks = netdev_priv(dev); 521 unsigned long flags; 522 523 netif_info(ks, ifdown, dev, "shutting down\n"); 524 525 netif_stop_queue(dev); 526 527 ks8851_lock(ks, &flags); 528 /* turn off the IRQs and ack any outstanding */ 529 ks8851_wrreg16(ks, KS_IER, 0x0000); 530 ks8851_wrreg16(ks, KS_ISR, 0xffff); 531 ks8851_unlock(ks, &flags); 532 533 /* stop any outstanding work */ 534 ks8851_flush_tx_work(ks); 535 flush_work(&ks->rxctrl_work); 536 537 ks8851_lock(ks, &flags); 538 /* shutdown RX process */ 539 ks8851_wrreg16(ks, KS_RXCR1, 0x0000); 540 541 /* shutdown TX process */ 542 ks8851_wrreg16(ks, KS_TXCR, 0x0000); 543 544 /* set powermode to soft power down to save power */ 545 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); 546 ks8851_unlock(ks, &flags); 547 548 /* ensure any queued tx buffers are dumped */ 549 while (!skb_queue_empty(&ks->txq)) { 550 struct sk_buff *txb = skb_dequeue(&ks->txq); 551 552 netif_dbg(ks, ifdown, ks->netdev, 553 "%s: freeing txb %p\n", __func__, txb); 554 555 dev_kfree_skb(txb); 556 } 557 558 free_irq(dev->irq, ks); 559 560 return 0; 561 } 562 563 /** 564 * ks8851_start_xmit - transmit packet 565 * @skb: The buffer to transmit 566 * @dev: The device used to transmit the packet. 567 * 568 * Called by the network layer to transmit the @skb. Queue the packet for 569 * the device and schedule the necessary work to transmit the packet when 570 * it is free. 571 * 572 * We do this to firstly avoid sleeping with the network device locked, 573 * and secondly so we can round up more than one packet to transmit which 574 * means we can try and avoid generating too many transmit done interrupts. 575 */ 576 static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb, 577 struct net_device *dev) 578 { 579 struct ks8851_net *ks = netdev_priv(dev); 580 581 return ks->start_xmit(skb, dev); 582 } 583 584 /** 585 * ks8851_rxctrl_work - work handler to change rx mode 586 * @work: The work structure this belongs to. 587 * 588 * Lock the device and issue the necessary changes to the receive mode from 589 * the network device layer. This is done so that we can do this without 590 * having to sleep whilst holding the network device lock. 591 * 592 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the 593 * receive parameters are programmed, we issue a write to disable the RXQ and 594 * then wait for the interrupt handler to be triggered once the RXQ shutdown is 595 * complete. The interrupt handler then writes the new values into the chip. 596 */ 597 static void ks8851_rxctrl_work(struct work_struct *work) 598 { 599 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work); 600 unsigned long flags; 601 602 ks8851_lock(ks, &flags); 603 604 /* need to shutdown RXQ before modifying filter parameters */ 605 ks8851_wrreg16(ks, KS_RXCR1, 0x00); 606 607 ks8851_unlock(ks, &flags); 608 } 609 610 static void ks8851_set_rx_mode(struct net_device *dev) 611 { 612 struct ks8851_net *ks = netdev_priv(dev); 613 struct ks8851_rxctrl rxctrl; 614 615 memset(&rxctrl, 0, sizeof(rxctrl)); 616 617 if (dev->flags & IFF_PROMISC) { 618 /* interface to receive everything */ 619 620 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF; 621 } else if (dev->flags & IFF_ALLMULTI) { 622 /* accept all multicast packets */ 623 624 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE | 625 RXCR1_RXPAFMA | RXCR1_RXMAFMA); 626 } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) { 627 struct netdev_hw_addr *ha; 628 u32 crc; 629 630 /* accept some multicast */ 631 632 netdev_for_each_mc_addr(ha, dev) { 633 crc = ether_crc(ETH_ALEN, ha->addr); 634 crc >>= (32 - 6); /* get top six bits */ 635 636 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf)); 637 } 638 639 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA; 640 } else { 641 /* just accept broadcast / unicast */ 642 rxctrl.rxcr1 = RXCR1_RXPAFMA; 643 } 644 645 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */ 646 RXCR1_RXBE | /* broadcast enable */ 647 RXCR1_RXE | /* RX process enable */ 648 RXCR1_RXFCE); /* enable flow control */ 649 650 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME; 651 652 /* schedule work to do the actual set of the data if needed */ 653 654 spin_lock(&ks->statelock); 655 656 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) { 657 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl)); 658 schedule_work(&ks->rxctrl_work); 659 } 660 661 spin_unlock(&ks->statelock); 662 } 663 664 static int ks8851_set_mac_address(struct net_device *dev, void *addr) 665 { 666 struct sockaddr *sa = addr; 667 668 if (netif_running(dev)) 669 return -EBUSY; 670 671 if (!is_valid_ether_addr(sa->sa_data)) 672 return -EADDRNOTAVAIL; 673 674 eth_hw_addr_set(dev, sa->sa_data); 675 return ks8851_write_mac_addr(dev); 676 } 677 678 static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 679 { 680 struct ks8851_net *ks = netdev_priv(dev); 681 682 if (!netif_running(dev)) 683 return -EINVAL; 684 685 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL); 686 } 687 688 static const struct net_device_ops ks8851_netdev_ops = { 689 .ndo_open = ks8851_net_open, 690 .ndo_stop = ks8851_net_stop, 691 .ndo_eth_ioctl = ks8851_net_ioctl, 692 .ndo_start_xmit = ks8851_start_xmit, 693 .ndo_set_mac_address = ks8851_set_mac_address, 694 .ndo_set_rx_mode = ks8851_set_rx_mode, 695 .ndo_validate_addr = eth_validate_addr, 696 }; 697 698 /* ethtool support */ 699 700 static void ks8851_get_drvinfo(struct net_device *dev, 701 struct ethtool_drvinfo *di) 702 { 703 strscpy(di->driver, "KS8851", sizeof(di->driver)); 704 strscpy(di->version, "1.00", sizeof(di->version)); 705 strscpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info)); 706 } 707 708 static u32 ks8851_get_msglevel(struct net_device *dev) 709 { 710 struct ks8851_net *ks = netdev_priv(dev); 711 return ks->msg_enable; 712 } 713 714 static void ks8851_set_msglevel(struct net_device *dev, u32 to) 715 { 716 struct ks8851_net *ks = netdev_priv(dev); 717 ks->msg_enable = to; 718 } 719 720 static int ks8851_get_link_ksettings(struct net_device *dev, 721 struct ethtool_link_ksettings *cmd) 722 { 723 struct ks8851_net *ks = netdev_priv(dev); 724 725 mii_ethtool_get_link_ksettings(&ks->mii, cmd); 726 727 return 0; 728 } 729 730 static int ks8851_set_link_ksettings(struct net_device *dev, 731 const struct ethtool_link_ksettings *cmd) 732 { 733 struct ks8851_net *ks = netdev_priv(dev); 734 return mii_ethtool_set_link_ksettings(&ks->mii, cmd); 735 } 736 737 static u32 ks8851_get_link(struct net_device *dev) 738 { 739 struct ks8851_net *ks = netdev_priv(dev); 740 return mii_link_ok(&ks->mii); 741 } 742 743 static int ks8851_nway_reset(struct net_device *dev) 744 { 745 struct ks8851_net *ks = netdev_priv(dev); 746 return mii_nway_restart(&ks->mii); 747 } 748 749 /* EEPROM support */ 750 751 static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee) 752 { 753 struct ks8851_net *ks = ee->data; 754 unsigned val; 755 756 val = ks8851_rdreg16(ks, KS_EEPCR); 757 758 ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0; 759 ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0; 760 ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0; 761 } 762 763 static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee) 764 { 765 struct ks8851_net *ks = ee->data; 766 unsigned val = EEPCR_EESA; /* default - eeprom access on */ 767 768 if (ee->drive_data) 769 val |= EEPCR_EESRWA; 770 if (ee->reg_data_in) 771 val |= EEPCR_EEDO; 772 if (ee->reg_data_clock) 773 val |= EEPCR_EESCK; 774 if (ee->reg_chip_select) 775 val |= EEPCR_EECS; 776 777 ks8851_wrreg16(ks, KS_EEPCR, val); 778 } 779 780 /** 781 * ks8851_eeprom_claim - claim device EEPROM and activate the interface 782 * @ks: The network device state. 783 * 784 * Check for the presence of an EEPROM, and then activate software access 785 * to the device. 786 */ 787 static int ks8851_eeprom_claim(struct ks8851_net *ks) 788 { 789 /* start with clock low, cs high */ 790 ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS); 791 return 0; 792 } 793 794 /** 795 * ks8851_eeprom_release - release the EEPROM interface 796 * @ks: The device state 797 * 798 * Release the software access to the device EEPROM 799 */ 800 static void ks8851_eeprom_release(struct ks8851_net *ks) 801 { 802 unsigned val = ks8851_rdreg16(ks, KS_EEPCR); 803 804 ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA); 805 } 806 807 #define KS_EEPROM_MAGIC (0x00008851) 808 809 static int ks8851_set_eeprom(struct net_device *dev, 810 struct ethtool_eeprom *ee, u8 *data) 811 { 812 struct ks8851_net *ks = netdev_priv(dev); 813 int offset = ee->offset; 814 unsigned long flags; 815 int len = ee->len; 816 u16 tmp; 817 818 /* currently only support byte writing */ 819 if (len != 1) 820 return -EINVAL; 821 822 if (ee->magic != KS_EEPROM_MAGIC) 823 return -EINVAL; 824 825 if (!(ks->rc_ccr & CCR_EEPROM)) 826 return -ENOENT; 827 828 ks8851_lock(ks, &flags); 829 830 ks8851_eeprom_claim(ks); 831 832 eeprom_93cx6_wren(&ks->eeprom, true); 833 834 /* ethtool currently only supports writing bytes, which means 835 * we have to read/modify/write our 16bit EEPROMs */ 836 837 eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp); 838 839 if (offset & 1) { 840 tmp &= 0xff; 841 tmp |= *data << 8; 842 } else { 843 tmp &= 0xff00; 844 tmp |= *data; 845 } 846 847 eeprom_93cx6_write(&ks->eeprom, offset/2, tmp); 848 eeprom_93cx6_wren(&ks->eeprom, false); 849 850 ks8851_eeprom_release(ks); 851 ks8851_unlock(ks, &flags); 852 853 return 0; 854 } 855 856 static int ks8851_get_eeprom(struct net_device *dev, 857 struct ethtool_eeprom *ee, u8 *data) 858 { 859 struct ks8851_net *ks = netdev_priv(dev); 860 int offset = ee->offset; 861 unsigned long flags; 862 int len = ee->len; 863 864 /* must be 2 byte aligned */ 865 if (len & 1 || offset & 1) 866 return -EINVAL; 867 868 if (!(ks->rc_ccr & CCR_EEPROM)) 869 return -ENOENT; 870 871 ks8851_lock(ks, &flags); 872 873 ks8851_eeprom_claim(ks); 874 875 ee->magic = KS_EEPROM_MAGIC; 876 877 eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2); 878 ks8851_eeprom_release(ks); 879 ks8851_unlock(ks, &flags); 880 881 return 0; 882 } 883 884 static int ks8851_get_eeprom_len(struct net_device *dev) 885 { 886 struct ks8851_net *ks = netdev_priv(dev); 887 888 /* currently, we assume it is an 93C46 attached, so return 128 */ 889 return ks->rc_ccr & CCR_EEPROM ? 128 : 0; 890 } 891 892 static const struct ethtool_ops ks8851_ethtool_ops = { 893 .get_drvinfo = ks8851_get_drvinfo, 894 .get_msglevel = ks8851_get_msglevel, 895 .set_msglevel = ks8851_set_msglevel, 896 .get_link = ks8851_get_link, 897 .nway_reset = ks8851_nway_reset, 898 .get_eeprom_len = ks8851_get_eeprom_len, 899 .get_eeprom = ks8851_get_eeprom, 900 .set_eeprom = ks8851_set_eeprom, 901 .get_link_ksettings = ks8851_get_link_ksettings, 902 .set_link_ksettings = ks8851_set_link_ksettings, 903 }; 904 905 /* MII interface controls */ 906 907 /** 908 * ks8851_phy_reg - convert MII register into a KS8851 register 909 * @reg: MII register number. 910 * 911 * Return the KS8851 register number for the corresponding MII PHY register 912 * if possible. Return zero if the MII register has no direct mapping to the 913 * KS8851 register set. 914 */ 915 static int ks8851_phy_reg(int reg) 916 { 917 switch (reg) { 918 case MII_BMCR: 919 return KS_P1MBCR; 920 case MII_BMSR: 921 return KS_P1MBSR; 922 case MII_PHYSID1: 923 return KS_PHY1ILR; 924 case MII_PHYSID2: 925 return KS_PHY1IHR; 926 case MII_ADVERTISE: 927 return KS_P1ANAR; 928 case MII_LPA: 929 return KS_P1ANLPR; 930 } 931 932 return -EOPNOTSUPP; 933 } 934 935 static int ks8851_phy_read_common(struct net_device *dev, int phy_addr, int reg) 936 { 937 struct ks8851_net *ks = netdev_priv(dev); 938 unsigned long flags; 939 int result; 940 int ksreg; 941 942 ksreg = ks8851_phy_reg(reg); 943 if (ksreg < 0) 944 return ksreg; 945 946 ks8851_lock(ks, &flags); 947 result = ks8851_rdreg16(ks, ksreg); 948 ks8851_unlock(ks, &flags); 949 950 return result; 951 } 952 953 /** 954 * ks8851_phy_read - MII interface PHY register read. 955 * @dev: The network device the PHY is on. 956 * @phy_addr: Address of PHY (ignored as we only have one) 957 * @reg: The register to read. 958 * 959 * This call reads data from the PHY register specified in @reg. Since the 960 * device does not support all the MII registers, the non-existent values 961 * are always returned as zero. 962 * 963 * We return zero for unsupported registers as the MII code does not check 964 * the value returned for any error status, and simply returns it to the 965 * caller. The mii-tool that the driver was tested with takes any -ve error 966 * as real PHY capabilities, thus displaying incorrect data to the user. 967 */ 968 static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg) 969 { 970 int ret; 971 972 ret = ks8851_phy_read_common(dev, phy_addr, reg); 973 if (ret < 0) 974 return 0x0; /* no error return allowed, so use zero */ 975 976 return ret; 977 } 978 979 static void ks8851_phy_write(struct net_device *dev, 980 int phy, int reg, int value) 981 { 982 struct ks8851_net *ks = netdev_priv(dev); 983 unsigned long flags; 984 int ksreg; 985 986 ksreg = ks8851_phy_reg(reg); 987 if (ksreg >= 0) { 988 ks8851_lock(ks, &flags); 989 ks8851_wrreg16(ks, ksreg, value); 990 ks8851_unlock(ks, &flags); 991 } 992 } 993 994 static int ks8851_mdio_read(struct mii_bus *bus, int phy_id, int reg) 995 { 996 struct ks8851_net *ks = bus->priv; 997 998 if (phy_id != 0) 999 return -EOPNOTSUPP; 1000 1001 /* KS8851 PHY ID registers are swapped in HW, swap them back. */ 1002 if (reg == MII_PHYSID1) 1003 reg = MII_PHYSID2; 1004 else if (reg == MII_PHYSID2) 1005 reg = MII_PHYSID1; 1006 1007 return ks8851_phy_read_common(ks->netdev, phy_id, reg); 1008 } 1009 1010 static int ks8851_mdio_write(struct mii_bus *bus, int phy_id, int reg, u16 val) 1011 { 1012 struct ks8851_net *ks = bus->priv; 1013 1014 ks8851_phy_write(ks->netdev, phy_id, reg, val); 1015 return 0; 1016 } 1017 1018 /** 1019 * ks8851_read_selftest - read the selftest memory info. 1020 * @ks: The device state 1021 * 1022 * Read and check the TX/RX memory selftest information. 1023 */ 1024 static void ks8851_read_selftest(struct ks8851_net *ks) 1025 { 1026 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF; 1027 unsigned rd; 1028 1029 rd = ks8851_rdreg16(ks, KS_MBIR); 1030 1031 if ((rd & both_done) != both_done) { 1032 netdev_warn(ks->netdev, "Memory selftest not finished\n"); 1033 return; 1034 } 1035 1036 if (rd & MBIR_TXMBFA) 1037 netdev_err(ks->netdev, "TX memory selftest fail\n"); 1038 1039 if (rd & MBIR_RXMBFA) 1040 netdev_err(ks->netdev, "RX memory selftest fail\n"); 1041 } 1042 1043 /* driver bus management functions */ 1044 1045 #ifdef CONFIG_PM_SLEEP 1046 1047 int ks8851_suspend(struct device *dev) 1048 { 1049 struct ks8851_net *ks = dev_get_drvdata(dev); 1050 struct net_device *netdev = ks->netdev; 1051 1052 if (netif_running(netdev)) { 1053 netif_device_detach(netdev); 1054 ks8851_net_stop(netdev); 1055 } 1056 1057 return 0; 1058 } 1059 EXPORT_SYMBOL_GPL(ks8851_suspend); 1060 1061 int ks8851_resume(struct device *dev) 1062 { 1063 struct ks8851_net *ks = dev_get_drvdata(dev); 1064 struct net_device *netdev = ks->netdev; 1065 1066 if (netif_running(netdev)) { 1067 ks8851_net_open(netdev); 1068 netif_device_attach(netdev); 1069 } 1070 1071 return 0; 1072 } 1073 EXPORT_SYMBOL_GPL(ks8851_resume); 1074 #endif 1075 1076 static int ks8851_register_mdiobus(struct ks8851_net *ks, struct device *dev) 1077 { 1078 struct mii_bus *mii_bus; 1079 int ret; 1080 1081 mii_bus = mdiobus_alloc(); 1082 if (!mii_bus) 1083 return -ENOMEM; 1084 1085 mii_bus->name = "ks8851_eth_mii"; 1086 mii_bus->read = ks8851_mdio_read; 1087 mii_bus->write = ks8851_mdio_write; 1088 mii_bus->priv = ks; 1089 mii_bus->parent = dev; 1090 mii_bus->phy_mask = ~((u32)BIT(0)); 1091 snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev)); 1092 1093 ret = mdiobus_register(mii_bus); 1094 if (ret) 1095 goto err_mdiobus_register; 1096 1097 ks->mii_bus = mii_bus; 1098 1099 return 0; 1100 1101 err_mdiobus_register: 1102 mdiobus_free(mii_bus); 1103 return ret; 1104 } 1105 1106 static void ks8851_unregister_mdiobus(struct ks8851_net *ks) 1107 { 1108 mdiobus_unregister(ks->mii_bus); 1109 mdiobus_free(ks->mii_bus); 1110 } 1111 1112 int ks8851_probe_common(struct net_device *netdev, struct device *dev, 1113 int msg_en) 1114 { 1115 struct ks8851_net *ks = netdev_priv(netdev); 1116 unsigned cider; 1117 int ret; 1118 1119 ks->netdev = netdev; 1120 ks->tx_space = 6144; 1121 1122 ks->gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); 1123 ret = PTR_ERR_OR_ZERO(ks->gpio); 1124 if (ret) { 1125 if (ret != -EPROBE_DEFER) 1126 dev_err(dev, "reset gpio request failed: %d\n", ret); 1127 return ret; 1128 } 1129 1130 ret = gpiod_set_consumer_name(ks->gpio, "ks8851_rst_n"); 1131 if (ret) { 1132 dev_err(dev, "failed to set reset gpio name: %d\n", ret); 1133 return ret; 1134 } 1135 1136 ks->vdd_io = devm_regulator_get(dev, "vdd-io"); 1137 if (IS_ERR(ks->vdd_io)) { 1138 ret = PTR_ERR(ks->vdd_io); 1139 goto err_reg_io; 1140 } 1141 1142 ret = regulator_enable(ks->vdd_io); 1143 if (ret) { 1144 dev_err(dev, "regulator vdd_io enable fail: %d\n", ret); 1145 goto err_reg_io; 1146 } 1147 1148 ks->vdd_reg = devm_regulator_get(dev, "vdd"); 1149 if (IS_ERR(ks->vdd_reg)) { 1150 ret = PTR_ERR(ks->vdd_reg); 1151 goto err_reg; 1152 } 1153 1154 ret = regulator_enable(ks->vdd_reg); 1155 if (ret) { 1156 dev_err(dev, "regulator vdd enable fail: %d\n", ret); 1157 goto err_reg; 1158 } 1159 1160 if (ks->gpio) { 1161 usleep_range(10000, 11000); 1162 gpiod_set_value_cansleep(ks->gpio, 0); 1163 } 1164 1165 spin_lock_init(&ks->statelock); 1166 1167 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work); 1168 1169 SET_NETDEV_DEV(netdev, dev); 1170 1171 /* setup EEPROM state */ 1172 ks->eeprom.data = ks; 1173 ks->eeprom.width = PCI_EEPROM_WIDTH_93C46; 1174 ks->eeprom.register_read = ks8851_eeprom_regread; 1175 ks->eeprom.register_write = ks8851_eeprom_regwrite; 1176 1177 /* setup mii state */ 1178 ks->mii.dev = netdev; 1179 ks->mii.phy_id = 1; 1180 ks->mii.phy_id_mask = 1; 1181 ks->mii.reg_num_mask = 0xf; 1182 ks->mii.mdio_read = ks8851_phy_read; 1183 ks->mii.mdio_write = ks8851_phy_write; 1184 1185 dev_info(dev, "message enable is %d\n", msg_en); 1186 1187 ret = ks8851_register_mdiobus(ks, dev); 1188 if (ret) 1189 goto err_mdio; 1190 1191 /* set the default message enable */ 1192 ks->msg_enable = netif_msg_init(msg_en, NETIF_MSG_DRV | 1193 NETIF_MSG_PROBE | 1194 NETIF_MSG_LINK); 1195 1196 skb_queue_head_init(&ks->txq); 1197 1198 netdev->ethtool_ops = &ks8851_ethtool_ops; 1199 1200 dev_set_drvdata(dev, ks); 1201 1202 netif_carrier_off(ks->netdev); 1203 netdev->if_port = IF_PORT_100BASET; 1204 netdev->netdev_ops = &ks8851_netdev_ops; 1205 1206 /* issue a global soft reset to reset the device. */ 1207 ks8851_soft_reset(ks, GRR_GSR); 1208 1209 /* simple check for a valid chip being connected to the bus */ 1210 cider = ks8851_rdreg16(ks, KS_CIDER); 1211 if ((cider & ~CIDER_REV_MASK) != CIDER_ID) { 1212 dev_err(dev, "failed to read device ID\n"); 1213 ret = -ENODEV; 1214 goto err_id; 1215 } 1216 1217 /* cache the contents of the CCR register for EEPROM, etc. */ 1218 ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR); 1219 1220 ks8851_read_selftest(ks); 1221 ks8851_init_mac(ks, dev->of_node); 1222 1223 ret = register_netdev(netdev); 1224 if (ret) { 1225 dev_err(dev, "failed to register network device\n"); 1226 goto err_id; 1227 } 1228 1229 netdev_info(netdev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n", 1230 CIDER_REV_GET(cider), netdev->dev_addr, netdev->irq, 1231 ks->rc_ccr & CCR_EEPROM ? "has" : "no"); 1232 1233 return 0; 1234 1235 err_id: 1236 ks8851_unregister_mdiobus(ks); 1237 err_mdio: 1238 if (ks->gpio) 1239 gpiod_set_value_cansleep(ks->gpio, 1); 1240 regulator_disable(ks->vdd_reg); 1241 err_reg: 1242 regulator_disable(ks->vdd_io); 1243 err_reg_io: 1244 return ret; 1245 } 1246 EXPORT_SYMBOL_GPL(ks8851_probe_common); 1247 1248 void ks8851_remove_common(struct device *dev) 1249 { 1250 struct ks8851_net *priv = dev_get_drvdata(dev); 1251 1252 ks8851_unregister_mdiobus(priv); 1253 1254 if (netif_msg_drv(priv)) 1255 dev_info(dev, "remove\n"); 1256 1257 unregister_netdev(priv->netdev); 1258 if (priv->gpio) 1259 gpiod_set_value_cansleep(priv->gpio, 1); 1260 regulator_disable(priv->vdd_reg); 1261 regulator_disable(priv->vdd_io); 1262 } 1263 EXPORT_SYMBOL_GPL(ks8851_remove_common); 1264 1265 MODULE_DESCRIPTION("KS8851 Network driver"); 1266 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); 1267 MODULE_LICENSE("GPL"); 1268