1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */ 2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */ 3 4 #ifndef _MLXSW_REG_H 5 #define _MLXSW_REG_H 6 7 #include <linux/kernel.h> 8 #include <linux/string.h> 9 #include <linux/bitops.h> 10 #include <linux/if_vlan.h> 11 12 #include "item.h" 13 #include "port.h" 14 15 struct mlxsw_reg_info { 16 u16 id; 17 u16 len; /* In u8 */ 18 const char *name; 19 }; 20 21 #define MLXSW_REG_DEFINE(_name, _id, _len) \ 22 static const struct mlxsw_reg_info mlxsw_reg_##_name = { \ 23 .id = _id, \ 24 .len = _len, \ 25 .name = #_name, \ 26 } 27 28 #define MLXSW_REG(type) (&mlxsw_reg_##type) 29 #define MLXSW_REG_LEN(type) MLXSW_REG(type)->len 30 #define MLXSW_REG_ZERO(type, payload) memset(payload, 0, MLXSW_REG(type)->len) 31 32 /* SGCR - Switch General Configuration Register 33 * -------------------------------------------- 34 * This register is used for configuration of the switch capabilities. 35 */ 36 #define MLXSW_REG_SGCR_ID 0x2000 37 #define MLXSW_REG_SGCR_LEN 0x10 38 39 MLXSW_REG_DEFINE(sgcr, MLXSW_REG_SGCR_ID, MLXSW_REG_SGCR_LEN); 40 41 /* reg_sgcr_llb 42 * Link Local Broadcast (Default=0) 43 * When set, all Link Local packets (224.0.0.X) will be treated as broadcast 44 * packets and ignore the IGMP snooping entries. 45 * Access: RW 46 */ 47 MLXSW_ITEM32(reg, sgcr, llb, 0x04, 0, 1); 48 49 static inline void mlxsw_reg_sgcr_pack(char *payload, bool llb) 50 { 51 MLXSW_REG_ZERO(sgcr, payload); 52 mlxsw_reg_sgcr_llb_set(payload, !!llb); 53 } 54 55 /* SPAD - Switch Physical Address Register 56 * --------------------------------------- 57 * The SPAD register configures the switch physical MAC address. 58 */ 59 #define MLXSW_REG_SPAD_ID 0x2002 60 #define MLXSW_REG_SPAD_LEN 0x10 61 62 MLXSW_REG_DEFINE(spad, MLXSW_REG_SPAD_ID, MLXSW_REG_SPAD_LEN); 63 64 /* reg_spad_base_mac 65 * Base MAC address for the switch partitions. 66 * Per switch partition MAC address is equal to: 67 * base_mac + swid 68 * Access: RW 69 */ 70 MLXSW_ITEM_BUF(reg, spad, base_mac, 0x02, 6); 71 72 /* SMID - Switch Multicast ID 73 * -------------------------- 74 * The MID record maps from a MID (Multicast ID), which is a unique identifier 75 * of the multicast group within the stacking domain, into a list of local 76 * ports into which the packet is replicated. 77 */ 78 #define MLXSW_REG_SMID_ID 0x2007 79 #define MLXSW_REG_SMID_LEN 0x240 80 81 MLXSW_REG_DEFINE(smid, MLXSW_REG_SMID_ID, MLXSW_REG_SMID_LEN); 82 83 /* reg_smid_swid 84 * Switch partition ID. 85 * Access: Index 86 */ 87 MLXSW_ITEM32(reg, smid, swid, 0x00, 24, 8); 88 89 /* reg_smid_mid 90 * Multicast identifier - global identifier that represents the multicast group 91 * across all devices. 92 * Access: Index 93 */ 94 MLXSW_ITEM32(reg, smid, mid, 0x00, 0, 16); 95 96 /* reg_smid_port 97 * Local port memebership (1 bit per port). 98 * Access: RW 99 */ 100 MLXSW_ITEM_BIT_ARRAY(reg, smid, port, 0x20, 0x20, 1); 101 102 /* reg_smid_port_mask 103 * Local port mask (1 bit per port). 104 * Access: W 105 */ 106 MLXSW_ITEM_BIT_ARRAY(reg, smid, port_mask, 0x220, 0x20, 1); 107 108 static inline void mlxsw_reg_smid_pack(char *payload, u16 mid, 109 u8 port, bool set) 110 { 111 MLXSW_REG_ZERO(smid, payload); 112 mlxsw_reg_smid_swid_set(payload, 0); 113 mlxsw_reg_smid_mid_set(payload, mid); 114 mlxsw_reg_smid_port_set(payload, port, set); 115 mlxsw_reg_smid_port_mask_set(payload, port, 1); 116 } 117 118 /* SSPR - Switch System Port Record Register 119 * ----------------------------------------- 120 * Configures the system port to local port mapping. 121 */ 122 #define MLXSW_REG_SSPR_ID 0x2008 123 #define MLXSW_REG_SSPR_LEN 0x8 124 125 MLXSW_REG_DEFINE(sspr, MLXSW_REG_SSPR_ID, MLXSW_REG_SSPR_LEN); 126 127 /* reg_sspr_m 128 * Master - if set, then the record describes the master system port. 129 * This is needed in case a local port is mapped into several system ports 130 * (for multipathing). That number will be reported as the source system 131 * port when packets are forwarded to the CPU. Only one master port is allowed 132 * per local port. 133 * 134 * Note: Must be set for Spectrum. 135 * Access: RW 136 */ 137 MLXSW_ITEM32(reg, sspr, m, 0x00, 31, 1); 138 139 /* reg_sspr_local_port 140 * Local port number. 141 * 142 * Access: RW 143 */ 144 MLXSW_ITEM32(reg, sspr, local_port, 0x00, 16, 8); 145 146 /* reg_sspr_sub_port 147 * Virtual port within the physical port. 148 * Should be set to 0 when virtual ports are not enabled on the port. 149 * 150 * Access: RW 151 */ 152 MLXSW_ITEM32(reg, sspr, sub_port, 0x00, 8, 8); 153 154 /* reg_sspr_system_port 155 * Unique identifier within the stacking domain that represents all the ports 156 * that are available in the system (external ports). 157 * 158 * Currently, only single-ASIC configurations are supported, so we default to 159 * 1:1 mapping between system ports and local ports. 160 * Access: Index 161 */ 162 MLXSW_ITEM32(reg, sspr, system_port, 0x04, 0, 16); 163 164 static inline void mlxsw_reg_sspr_pack(char *payload, u8 local_port) 165 { 166 MLXSW_REG_ZERO(sspr, payload); 167 mlxsw_reg_sspr_m_set(payload, 1); 168 mlxsw_reg_sspr_local_port_set(payload, local_port); 169 mlxsw_reg_sspr_sub_port_set(payload, 0); 170 mlxsw_reg_sspr_system_port_set(payload, local_port); 171 } 172 173 /* SFDAT - Switch Filtering Database Aging Time 174 * -------------------------------------------- 175 * Controls the Switch aging time. Aging time is able to be set per Switch 176 * Partition. 177 */ 178 #define MLXSW_REG_SFDAT_ID 0x2009 179 #define MLXSW_REG_SFDAT_LEN 0x8 180 181 MLXSW_REG_DEFINE(sfdat, MLXSW_REG_SFDAT_ID, MLXSW_REG_SFDAT_LEN); 182 183 /* reg_sfdat_swid 184 * Switch partition ID. 185 * Access: Index 186 */ 187 MLXSW_ITEM32(reg, sfdat, swid, 0x00, 24, 8); 188 189 /* reg_sfdat_age_time 190 * Aging time in seconds 191 * Min - 10 seconds 192 * Max - 1,000,000 seconds 193 * Default is 300 seconds. 194 * Access: RW 195 */ 196 MLXSW_ITEM32(reg, sfdat, age_time, 0x04, 0, 20); 197 198 static inline void mlxsw_reg_sfdat_pack(char *payload, u32 age_time) 199 { 200 MLXSW_REG_ZERO(sfdat, payload); 201 mlxsw_reg_sfdat_swid_set(payload, 0); 202 mlxsw_reg_sfdat_age_time_set(payload, age_time); 203 } 204 205 /* SFD - Switch Filtering Database 206 * ------------------------------- 207 * The following register defines the access to the filtering database. 208 * The register supports querying, adding, removing and modifying the database. 209 * The access is optimized for bulk updates in which case more than one 210 * FDB record is present in the same command. 211 */ 212 #define MLXSW_REG_SFD_ID 0x200A 213 #define MLXSW_REG_SFD_BASE_LEN 0x10 /* base length, without records */ 214 #define MLXSW_REG_SFD_REC_LEN 0x10 /* record length */ 215 #define MLXSW_REG_SFD_REC_MAX_COUNT 64 216 #define MLXSW_REG_SFD_LEN (MLXSW_REG_SFD_BASE_LEN + \ 217 MLXSW_REG_SFD_REC_LEN * MLXSW_REG_SFD_REC_MAX_COUNT) 218 219 MLXSW_REG_DEFINE(sfd, MLXSW_REG_SFD_ID, MLXSW_REG_SFD_LEN); 220 221 /* reg_sfd_swid 222 * Switch partition ID for queries. Reserved on Write. 223 * Access: Index 224 */ 225 MLXSW_ITEM32(reg, sfd, swid, 0x00, 24, 8); 226 227 enum mlxsw_reg_sfd_op { 228 /* Dump entire FDB a (process according to record_locator) */ 229 MLXSW_REG_SFD_OP_QUERY_DUMP = 0, 230 /* Query records by {MAC, VID/FID} value */ 231 MLXSW_REG_SFD_OP_QUERY_QUERY = 1, 232 /* Query and clear activity. Query records by {MAC, VID/FID} value */ 233 MLXSW_REG_SFD_OP_QUERY_QUERY_AND_CLEAR_ACTIVITY = 2, 234 /* Test. Response indicates if each of the records could be 235 * added to the FDB. 236 */ 237 MLXSW_REG_SFD_OP_WRITE_TEST = 0, 238 /* Add/modify. Aged-out records cannot be added. This command removes 239 * the learning notification of the {MAC, VID/FID}. Response includes 240 * the entries that were added to the FDB. 241 */ 242 MLXSW_REG_SFD_OP_WRITE_EDIT = 1, 243 /* Remove record by {MAC, VID/FID}. This command also removes 244 * the learning notification and aged-out notifications 245 * of the {MAC, VID/FID}. The response provides current (pre-removal) 246 * entries as non-aged-out. 247 */ 248 MLXSW_REG_SFD_OP_WRITE_REMOVE = 2, 249 /* Remove learned notification by {MAC, VID/FID}. The response provides 250 * the removed learning notification. 251 */ 252 MLXSW_REG_SFD_OP_WRITE_REMOVE_NOTIFICATION = 2, 253 }; 254 255 /* reg_sfd_op 256 * Operation. 257 * Access: OP 258 */ 259 MLXSW_ITEM32(reg, sfd, op, 0x04, 30, 2); 260 261 /* reg_sfd_record_locator 262 * Used for querying the FDB. Use record_locator=0 to initiate the 263 * query. When a record is returned, a new record_locator is 264 * returned to be used in the subsequent query. 265 * Reserved for database update. 266 * Access: Index 267 */ 268 MLXSW_ITEM32(reg, sfd, record_locator, 0x04, 0, 30); 269 270 /* reg_sfd_num_rec 271 * Request: Number of records to read/add/modify/remove 272 * Response: Number of records read/added/replaced/removed 273 * See above description for more details. 274 * Ranges 0..64 275 * Access: RW 276 */ 277 MLXSW_ITEM32(reg, sfd, num_rec, 0x08, 0, 8); 278 279 static inline void mlxsw_reg_sfd_pack(char *payload, enum mlxsw_reg_sfd_op op, 280 u32 record_locator) 281 { 282 MLXSW_REG_ZERO(sfd, payload); 283 mlxsw_reg_sfd_op_set(payload, op); 284 mlxsw_reg_sfd_record_locator_set(payload, record_locator); 285 } 286 287 /* reg_sfd_rec_swid 288 * Switch partition ID. 289 * Access: Index 290 */ 291 MLXSW_ITEM32_INDEXED(reg, sfd, rec_swid, MLXSW_REG_SFD_BASE_LEN, 24, 8, 292 MLXSW_REG_SFD_REC_LEN, 0x00, false); 293 294 enum mlxsw_reg_sfd_rec_type { 295 MLXSW_REG_SFD_REC_TYPE_UNICAST = 0x0, 296 MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG = 0x1, 297 MLXSW_REG_SFD_REC_TYPE_MULTICAST = 0x2, 298 MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL = 0xC, 299 }; 300 301 /* reg_sfd_rec_type 302 * FDB record type. 303 * Access: RW 304 */ 305 MLXSW_ITEM32_INDEXED(reg, sfd, rec_type, MLXSW_REG_SFD_BASE_LEN, 20, 4, 306 MLXSW_REG_SFD_REC_LEN, 0x00, false); 307 308 enum mlxsw_reg_sfd_rec_policy { 309 /* Replacement disabled, aging disabled. */ 310 MLXSW_REG_SFD_REC_POLICY_STATIC_ENTRY = 0, 311 /* (mlag remote): Replacement enabled, aging disabled, 312 * learning notification enabled on this port. 313 */ 314 MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_MLAG = 1, 315 /* (ingress device): Replacement enabled, aging enabled. */ 316 MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_INGRESS = 3, 317 }; 318 319 /* reg_sfd_rec_policy 320 * Policy. 321 * Access: RW 322 */ 323 MLXSW_ITEM32_INDEXED(reg, sfd, rec_policy, MLXSW_REG_SFD_BASE_LEN, 18, 2, 324 MLXSW_REG_SFD_REC_LEN, 0x00, false); 325 326 /* reg_sfd_rec_a 327 * Activity. Set for new static entries. Set for static entries if a frame SMAC 328 * lookup hits on the entry. 329 * To clear the a bit, use "query and clear activity" op. 330 * Access: RO 331 */ 332 MLXSW_ITEM32_INDEXED(reg, sfd, rec_a, MLXSW_REG_SFD_BASE_LEN, 16, 1, 333 MLXSW_REG_SFD_REC_LEN, 0x00, false); 334 335 /* reg_sfd_rec_mac 336 * MAC address. 337 * Access: Index 338 */ 339 MLXSW_ITEM_BUF_INDEXED(reg, sfd, rec_mac, MLXSW_REG_SFD_BASE_LEN, 6, 340 MLXSW_REG_SFD_REC_LEN, 0x02); 341 342 enum mlxsw_reg_sfd_rec_action { 343 /* forward */ 344 MLXSW_REG_SFD_REC_ACTION_NOP = 0, 345 /* forward and trap, trap_id is FDB_TRAP */ 346 MLXSW_REG_SFD_REC_ACTION_MIRROR_TO_CPU = 1, 347 /* trap and do not forward, trap_id is FDB_TRAP */ 348 MLXSW_REG_SFD_REC_ACTION_TRAP = 2, 349 /* forward to IP router */ 350 MLXSW_REG_SFD_REC_ACTION_FORWARD_IP_ROUTER = 3, 351 MLXSW_REG_SFD_REC_ACTION_DISCARD_ERROR = 15, 352 }; 353 354 /* reg_sfd_rec_action 355 * Action to apply on the packet. 356 * Note: Dynamic entries can only be configured with NOP action. 357 * Access: RW 358 */ 359 MLXSW_ITEM32_INDEXED(reg, sfd, rec_action, MLXSW_REG_SFD_BASE_LEN, 28, 4, 360 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 361 362 /* reg_sfd_uc_sub_port 363 * VEPA channel on local port. 364 * Valid only if local port is a non-stacking port. Must be 0 if multichannel 365 * VEPA is not enabled. 366 * Access: RW 367 */ 368 MLXSW_ITEM32_INDEXED(reg, sfd, uc_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8, 369 MLXSW_REG_SFD_REC_LEN, 0x08, false); 370 371 /* reg_sfd_uc_fid_vid 372 * Filtering ID or VLAN ID 373 * For SwitchX and SwitchX-2: 374 * - Dynamic entries (policy 2,3) use FID 375 * - Static entries (policy 0) use VID 376 * - When independent learning is configured, VID=FID 377 * For Spectrum: use FID for both Dynamic and Static entries. 378 * VID should not be used. 379 * Access: Index 380 */ 381 MLXSW_ITEM32_INDEXED(reg, sfd, uc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 382 MLXSW_REG_SFD_REC_LEN, 0x08, false); 383 384 /* reg_sfd_uc_system_port 385 * Unique port identifier for the final destination of the packet. 386 * Access: RW 387 */ 388 MLXSW_ITEM32_INDEXED(reg, sfd, uc_system_port, MLXSW_REG_SFD_BASE_LEN, 0, 16, 389 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 390 391 static inline void mlxsw_reg_sfd_rec_pack(char *payload, int rec_index, 392 enum mlxsw_reg_sfd_rec_type rec_type, 393 const char *mac, 394 enum mlxsw_reg_sfd_rec_action action) 395 { 396 u8 num_rec = mlxsw_reg_sfd_num_rec_get(payload); 397 398 if (rec_index >= num_rec) 399 mlxsw_reg_sfd_num_rec_set(payload, rec_index + 1); 400 mlxsw_reg_sfd_rec_swid_set(payload, rec_index, 0); 401 mlxsw_reg_sfd_rec_type_set(payload, rec_index, rec_type); 402 mlxsw_reg_sfd_rec_mac_memcpy_to(payload, rec_index, mac); 403 mlxsw_reg_sfd_rec_action_set(payload, rec_index, action); 404 } 405 406 static inline void mlxsw_reg_sfd_uc_pack(char *payload, int rec_index, 407 enum mlxsw_reg_sfd_rec_policy policy, 408 const char *mac, u16 fid_vid, 409 enum mlxsw_reg_sfd_rec_action action, 410 u8 local_port) 411 { 412 mlxsw_reg_sfd_rec_pack(payload, rec_index, 413 MLXSW_REG_SFD_REC_TYPE_UNICAST, mac, action); 414 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy); 415 mlxsw_reg_sfd_uc_sub_port_set(payload, rec_index, 0); 416 mlxsw_reg_sfd_uc_fid_vid_set(payload, rec_index, fid_vid); 417 mlxsw_reg_sfd_uc_system_port_set(payload, rec_index, local_port); 418 } 419 420 static inline void mlxsw_reg_sfd_uc_unpack(char *payload, int rec_index, 421 char *mac, u16 *p_fid_vid, 422 u8 *p_local_port) 423 { 424 mlxsw_reg_sfd_rec_mac_memcpy_from(payload, rec_index, mac); 425 *p_fid_vid = mlxsw_reg_sfd_uc_fid_vid_get(payload, rec_index); 426 *p_local_port = mlxsw_reg_sfd_uc_system_port_get(payload, rec_index); 427 } 428 429 /* reg_sfd_uc_lag_sub_port 430 * LAG sub port. 431 * Must be 0 if multichannel VEPA is not enabled. 432 * Access: RW 433 */ 434 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8, 435 MLXSW_REG_SFD_REC_LEN, 0x08, false); 436 437 /* reg_sfd_uc_lag_fid_vid 438 * Filtering ID or VLAN ID 439 * For SwitchX and SwitchX-2: 440 * - Dynamic entries (policy 2,3) use FID 441 * - Static entries (policy 0) use VID 442 * - When independent learning is configured, VID=FID 443 * For Spectrum: use FID for both Dynamic and Static entries. 444 * VID should not be used. 445 * Access: Index 446 */ 447 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 448 MLXSW_REG_SFD_REC_LEN, 0x08, false); 449 450 /* reg_sfd_uc_lag_lag_vid 451 * Indicates VID in case of vFIDs. Reserved for FIDs. 452 * Access: RW 453 */ 454 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_vid, MLXSW_REG_SFD_BASE_LEN, 16, 12, 455 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 456 457 /* reg_sfd_uc_lag_lag_id 458 * LAG Identifier - pointer into the LAG descriptor table. 459 * Access: RW 460 */ 461 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_id, MLXSW_REG_SFD_BASE_LEN, 0, 10, 462 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 463 464 static inline void 465 mlxsw_reg_sfd_uc_lag_pack(char *payload, int rec_index, 466 enum mlxsw_reg_sfd_rec_policy policy, 467 const char *mac, u16 fid_vid, 468 enum mlxsw_reg_sfd_rec_action action, u16 lag_vid, 469 u16 lag_id) 470 { 471 mlxsw_reg_sfd_rec_pack(payload, rec_index, 472 MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG, 473 mac, action); 474 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy); 475 mlxsw_reg_sfd_uc_lag_sub_port_set(payload, rec_index, 0); 476 mlxsw_reg_sfd_uc_lag_fid_vid_set(payload, rec_index, fid_vid); 477 mlxsw_reg_sfd_uc_lag_lag_vid_set(payload, rec_index, lag_vid); 478 mlxsw_reg_sfd_uc_lag_lag_id_set(payload, rec_index, lag_id); 479 } 480 481 static inline void mlxsw_reg_sfd_uc_lag_unpack(char *payload, int rec_index, 482 char *mac, u16 *p_vid, 483 u16 *p_lag_id) 484 { 485 mlxsw_reg_sfd_rec_mac_memcpy_from(payload, rec_index, mac); 486 *p_vid = mlxsw_reg_sfd_uc_lag_fid_vid_get(payload, rec_index); 487 *p_lag_id = mlxsw_reg_sfd_uc_lag_lag_id_get(payload, rec_index); 488 } 489 490 /* reg_sfd_mc_pgi 491 * 492 * Multicast port group index - index into the port group table. 493 * Value 0x1FFF indicates the pgi should point to the MID entry. 494 * For Spectrum this value must be set to 0x1FFF 495 * Access: RW 496 */ 497 MLXSW_ITEM32_INDEXED(reg, sfd, mc_pgi, MLXSW_REG_SFD_BASE_LEN, 16, 13, 498 MLXSW_REG_SFD_REC_LEN, 0x08, false); 499 500 /* reg_sfd_mc_fid_vid 501 * 502 * Filtering ID or VLAN ID 503 * Access: Index 504 */ 505 MLXSW_ITEM32_INDEXED(reg, sfd, mc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 506 MLXSW_REG_SFD_REC_LEN, 0x08, false); 507 508 /* reg_sfd_mc_mid 509 * 510 * Multicast identifier - global identifier that represents the multicast 511 * group across all devices. 512 * Access: RW 513 */ 514 MLXSW_ITEM32_INDEXED(reg, sfd, mc_mid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 515 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 516 517 static inline void 518 mlxsw_reg_sfd_mc_pack(char *payload, int rec_index, 519 const char *mac, u16 fid_vid, 520 enum mlxsw_reg_sfd_rec_action action, u16 mid) 521 { 522 mlxsw_reg_sfd_rec_pack(payload, rec_index, 523 MLXSW_REG_SFD_REC_TYPE_MULTICAST, mac, action); 524 mlxsw_reg_sfd_mc_pgi_set(payload, rec_index, 0x1FFF); 525 mlxsw_reg_sfd_mc_fid_vid_set(payload, rec_index, fid_vid); 526 mlxsw_reg_sfd_mc_mid_set(payload, rec_index, mid); 527 } 528 529 /* reg_sfd_uc_tunnel_uip_msb 530 * When protocol is IPv4, the most significant byte of the underlay IPv4 531 * destination IP. 532 * When protocol is IPv6, reserved. 533 * Access: RW 534 */ 535 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_msb, MLXSW_REG_SFD_BASE_LEN, 24, 536 8, MLXSW_REG_SFD_REC_LEN, 0x08, false); 537 538 /* reg_sfd_uc_tunnel_fid 539 * Filtering ID. 540 * Access: Index 541 */ 542 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_fid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 543 MLXSW_REG_SFD_REC_LEN, 0x08, false); 544 545 enum mlxsw_reg_sfd_uc_tunnel_protocol { 546 MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV4, 547 MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV6, 548 }; 549 550 /* reg_sfd_uc_tunnel_protocol 551 * IP protocol. 552 * Access: RW 553 */ 554 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_protocol, MLXSW_REG_SFD_BASE_LEN, 27, 555 1, MLXSW_REG_SFD_REC_LEN, 0x0C, false); 556 557 /* reg_sfd_uc_tunnel_uip_lsb 558 * When protocol is IPv4, the least significant bytes of the underlay 559 * IPv4 destination IP. 560 * When protocol is IPv6, pointer to the underlay IPv6 destination IP 561 * which is configured by RIPS. 562 * Access: RW 563 */ 564 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_lsb, MLXSW_REG_SFD_BASE_LEN, 0, 565 24, MLXSW_REG_SFD_REC_LEN, 0x0C, false); 566 567 static inline void 568 mlxsw_reg_sfd_uc_tunnel_pack(char *payload, int rec_index, 569 enum mlxsw_reg_sfd_rec_policy policy, 570 const char *mac, u16 fid, 571 enum mlxsw_reg_sfd_rec_action action, u32 uip, 572 enum mlxsw_reg_sfd_uc_tunnel_protocol proto) 573 { 574 mlxsw_reg_sfd_rec_pack(payload, rec_index, 575 MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL, mac, 576 action); 577 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy); 578 mlxsw_reg_sfd_uc_tunnel_uip_msb_set(payload, rec_index, uip >> 24); 579 mlxsw_reg_sfd_uc_tunnel_uip_lsb_set(payload, rec_index, uip); 580 mlxsw_reg_sfd_uc_tunnel_fid_set(payload, rec_index, fid); 581 mlxsw_reg_sfd_uc_tunnel_protocol_set(payload, rec_index, proto); 582 } 583 584 /* SFN - Switch FDB Notification Register 585 * ------------------------------------------- 586 * The switch provides notifications on newly learned FDB entries and 587 * aged out entries. The notifications can be polled by software. 588 */ 589 #define MLXSW_REG_SFN_ID 0x200B 590 #define MLXSW_REG_SFN_BASE_LEN 0x10 /* base length, without records */ 591 #define MLXSW_REG_SFN_REC_LEN 0x10 /* record length */ 592 #define MLXSW_REG_SFN_REC_MAX_COUNT 64 593 #define MLXSW_REG_SFN_LEN (MLXSW_REG_SFN_BASE_LEN + \ 594 MLXSW_REG_SFN_REC_LEN * MLXSW_REG_SFN_REC_MAX_COUNT) 595 596 MLXSW_REG_DEFINE(sfn, MLXSW_REG_SFN_ID, MLXSW_REG_SFN_LEN); 597 598 /* reg_sfn_swid 599 * Switch partition ID. 600 * Access: Index 601 */ 602 MLXSW_ITEM32(reg, sfn, swid, 0x00, 24, 8); 603 604 /* reg_sfn_end 605 * Forces the current session to end. 606 * Access: OP 607 */ 608 MLXSW_ITEM32(reg, sfn, end, 0x04, 20, 1); 609 610 /* reg_sfn_num_rec 611 * Request: Number of learned notifications and aged-out notification 612 * records requested. 613 * Response: Number of notification records returned (must be smaller 614 * than or equal to the value requested) 615 * Ranges 0..64 616 * Access: OP 617 */ 618 MLXSW_ITEM32(reg, sfn, num_rec, 0x04, 0, 8); 619 620 static inline void mlxsw_reg_sfn_pack(char *payload) 621 { 622 MLXSW_REG_ZERO(sfn, payload); 623 mlxsw_reg_sfn_swid_set(payload, 0); 624 mlxsw_reg_sfn_end_set(payload, 1); 625 mlxsw_reg_sfn_num_rec_set(payload, MLXSW_REG_SFN_REC_MAX_COUNT); 626 } 627 628 /* reg_sfn_rec_swid 629 * Switch partition ID. 630 * Access: RO 631 */ 632 MLXSW_ITEM32_INDEXED(reg, sfn, rec_swid, MLXSW_REG_SFN_BASE_LEN, 24, 8, 633 MLXSW_REG_SFN_REC_LEN, 0x00, false); 634 635 enum mlxsw_reg_sfn_rec_type { 636 /* MAC addresses learned on a regular port. */ 637 MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC = 0x5, 638 /* MAC addresses learned on a LAG port. */ 639 MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC_LAG = 0x6, 640 /* Aged-out MAC address on a regular port. */ 641 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC = 0x7, 642 /* Aged-out MAC address on a LAG port. */ 643 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC_LAG = 0x8, 644 /* Learned unicast tunnel record. */ 645 MLXSW_REG_SFN_REC_TYPE_LEARNED_UNICAST_TUNNEL = 0xD, 646 /* Aged-out unicast tunnel record. */ 647 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_UNICAST_TUNNEL = 0xE, 648 }; 649 650 /* reg_sfn_rec_type 651 * Notification record type. 652 * Access: RO 653 */ 654 MLXSW_ITEM32_INDEXED(reg, sfn, rec_type, MLXSW_REG_SFN_BASE_LEN, 20, 4, 655 MLXSW_REG_SFN_REC_LEN, 0x00, false); 656 657 /* reg_sfn_rec_mac 658 * MAC address. 659 * Access: RO 660 */ 661 MLXSW_ITEM_BUF_INDEXED(reg, sfn, rec_mac, MLXSW_REG_SFN_BASE_LEN, 6, 662 MLXSW_REG_SFN_REC_LEN, 0x02); 663 664 /* reg_sfn_mac_sub_port 665 * VEPA channel on the local port. 666 * 0 if multichannel VEPA is not enabled. 667 * Access: RO 668 */ 669 MLXSW_ITEM32_INDEXED(reg, sfn, mac_sub_port, MLXSW_REG_SFN_BASE_LEN, 16, 8, 670 MLXSW_REG_SFN_REC_LEN, 0x08, false); 671 672 /* reg_sfn_mac_fid 673 * Filtering identifier. 674 * Access: RO 675 */ 676 MLXSW_ITEM32_INDEXED(reg, sfn, mac_fid, MLXSW_REG_SFN_BASE_LEN, 0, 16, 677 MLXSW_REG_SFN_REC_LEN, 0x08, false); 678 679 /* reg_sfn_mac_system_port 680 * Unique port identifier for the final destination of the packet. 681 * Access: RO 682 */ 683 MLXSW_ITEM32_INDEXED(reg, sfn, mac_system_port, MLXSW_REG_SFN_BASE_LEN, 0, 16, 684 MLXSW_REG_SFN_REC_LEN, 0x0C, false); 685 686 static inline void mlxsw_reg_sfn_mac_unpack(char *payload, int rec_index, 687 char *mac, u16 *p_vid, 688 u8 *p_local_port) 689 { 690 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac); 691 *p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index); 692 *p_local_port = mlxsw_reg_sfn_mac_system_port_get(payload, rec_index); 693 } 694 695 /* reg_sfn_mac_lag_lag_id 696 * LAG ID (pointer into the LAG descriptor table). 697 * Access: RO 698 */ 699 MLXSW_ITEM32_INDEXED(reg, sfn, mac_lag_lag_id, MLXSW_REG_SFN_BASE_LEN, 0, 10, 700 MLXSW_REG_SFN_REC_LEN, 0x0C, false); 701 702 static inline void mlxsw_reg_sfn_mac_lag_unpack(char *payload, int rec_index, 703 char *mac, u16 *p_vid, 704 u16 *p_lag_id) 705 { 706 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac); 707 *p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index); 708 *p_lag_id = mlxsw_reg_sfn_mac_lag_lag_id_get(payload, rec_index); 709 } 710 711 /* reg_sfn_uc_tunnel_uip_msb 712 * When protocol is IPv4, the most significant byte of the underlay IPv4 713 * address of the remote VTEP. 714 * When protocol is IPv6, reserved. 715 * Access: RO 716 */ 717 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_msb, MLXSW_REG_SFN_BASE_LEN, 24, 718 8, MLXSW_REG_SFN_REC_LEN, 0x08, false); 719 720 enum mlxsw_reg_sfn_uc_tunnel_protocol { 721 MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV4, 722 MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV6, 723 }; 724 725 /* reg_sfn_uc_tunnel_protocol 726 * IP protocol. 727 * Access: RO 728 */ 729 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_protocol, MLXSW_REG_SFN_BASE_LEN, 27, 730 1, MLXSW_REG_SFN_REC_LEN, 0x0C, false); 731 732 /* reg_sfn_uc_tunnel_uip_lsb 733 * When protocol is IPv4, the least significant bytes of the underlay 734 * IPv4 address of the remote VTEP. 735 * When protocol is IPv6, ipv6_id to be queried from TNIPSD. 736 * Access: RO 737 */ 738 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_lsb, MLXSW_REG_SFN_BASE_LEN, 0, 739 24, MLXSW_REG_SFN_REC_LEN, 0x0C, false); 740 741 enum mlxsw_reg_sfn_tunnel_port { 742 MLXSW_REG_SFN_TUNNEL_PORT_NVE, 743 MLXSW_REG_SFN_TUNNEL_PORT_VPLS, 744 MLXSW_REG_SFN_TUNNEL_FLEX_TUNNEL0, 745 MLXSW_REG_SFN_TUNNEL_FLEX_TUNNEL1, 746 }; 747 748 /* reg_sfn_uc_tunnel_port 749 * Tunnel port. 750 * Reserved on Spectrum. 751 * Access: RO 752 */ 753 MLXSW_ITEM32_INDEXED(reg, sfn, tunnel_port, MLXSW_REG_SFN_BASE_LEN, 0, 4, 754 MLXSW_REG_SFN_REC_LEN, 0x10, false); 755 756 static inline void 757 mlxsw_reg_sfn_uc_tunnel_unpack(char *payload, int rec_index, char *mac, 758 u16 *p_fid, u32 *p_uip, 759 enum mlxsw_reg_sfn_uc_tunnel_protocol *p_proto) 760 { 761 u32 uip_msb, uip_lsb; 762 763 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac); 764 *p_fid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index); 765 uip_msb = mlxsw_reg_sfn_uc_tunnel_uip_msb_get(payload, rec_index); 766 uip_lsb = mlxsw_reg_sfn_uc_tunnel_uip_lsb_get(payload, rec_index); 767 *p_uip = uip_msb << 24 | uip_lsb; 768 *p_proto = mlxsw_reg_sfn_uc_tunnel_protocol_get(payload, rec_index); 769 } 770 771 /* SPMS - Switch Port MSTP/RSTP State Register 772 * ------------------------------------------- 773 * Configures the spanning tree state of a physical port. 774 */ 775 #define MLXSW_REG_SPMS_ID 0x200D 776 #define MLXSW_REG_SPMS_LEN 0x404 777 778 MLXSW_REG_DEFINE(spms, MLXSW_REG_SPMS_ID, MLXSW_REG_SPMS_LEN); 779 780 /* reg_spms_local_port 781 * Local port number. 782 * Access: Index 783 */ 784 MLXSW_ITEM32(reg, spms, local_port, 0x00, 16, 8); 785 786 enum mlxsw_reg_spms_state { 787 MLXSW_REG_SPMS_STATE_NO_CHANGE, 788 MLXSW_REG_SPMS_STATE_DISCARDING, 789 MLXSW_REG_SPMS_STATE_LEARNING, 790 MLXSW_REG_SPMS_STATE_FORWARDING, 791 }; 792 793 /* reg_spms_state 794 * Spanning tree state of each VLAN ID (VID) of the local port. 795 * 0 - Do not change spanning tree state (used only when writing). 796 * 1 - Discarding. No learning or forwarding to/from this port (default). 797 * 2 - Learning. Port is learning, but not forwarding. 798 * 3 - Forwarding. Port is learning and forwarding. 799 * Access: RW 800 */ 801 MLXSW_ITEM_BIT_ARRAY(reg, spms, state, 0x04, 0x400, 2); 802 803 static inline void mlxsw_reg_spms_pack(char *payload, u8 local_port) 804 { 805 MLXSW_REG_ZERO(spms, payload); 806 mlxsw_reg_spms_local_port_set(payload, local_port); 807 } 808 809 static inline void mlxsw_reg_spms_vid_pack(char *payload, u16 vid, 810 enum mlxsw_reg_spms_state state) 811 { 812 mlxsw_reg_spms_state_set(payload, vid, state); 813 } 814 815 /* SPVID - Switch Port VID 816 * ----------------------- 817 * The switch port VID configures the default VID for a port. 818 */ 819 #define MLXSW_REG_SPVID_ID 0x200E 820 #define MLXSW_REG_SPVID_LEN 0x08 821 822 MLXSW_REG_DEFINE(spvid, MLXSW_REG_SPVID_ID, MLXSW_REG_SPVID_LEN); 823 824 /* reg_spvid_local_port 825 * Local port number. 826 * Access: Index 827 */ 828 MLXSW_ITEM32(reg, spvid, local_port, 0x00, 16, 8); 829 830 /* reg_spvid_sub_port 831 * Virtual port within the physical port. 832 * Should be set to 0 when virtual ports are not enabled on the port. 833 * Access: Index 834 */ 835 MLXSW_ITEM32(reg, spvid, sub_port, 0x00, 8, 8); 836 837 /* reg_spvid_pvid 838 * Port default VID 839 * Access: RW 840 */ 841 MLXSW_ITEM32(reg, spvid, pvid, 0x04, 0, 12); 842 843 static inline void mlxsw_reg_spvid_pack(char *payload, u8 local_port, u16 pvid) 844 { 845 MLXSW_REG_ZERO(spvid, payload); 846 mlxsw_reg_spvid_local_port_set(payload, local_port); 847 mlxsw_reg_spvid_pvid_set(payload, pvid); 848 } 849 850 /* SPVM - Switch Port VLAN Membership 851 * ---------------------------------- 852 * The Switch Port VLAN Membership register configures the VLAN membership 853 * of a port in a VLAN denoted by VID. VLAN membership is managed per 854 * virtual port. The register can be used to add and remove VID(s) from a port. 855 */ 856 #define MLXSW_REG_SPVM_ID 0x200F 857 #define MLXSW_REG_SPVM_BASE_LEN 0x04 /* base length, without records */ 858 #define MLXSW_REG_SPVM_REC_LEN 0x04 /* record length */ 859 #define MLXSW_REG_SPVM_REC_MAX_COUNT 255 860 #define MLXSW_REG_SPVM_LEN (MLXSW_REG_SPVM_BASE_LEN + \ 861 MLXSW_REG_SPVM_REC_LEN * MLXSW_REG_SPVM_REC_MAX_COUNT) 862 863 MLXSW_REG_DEFINE(spvm, MLXSW_REG_SPVM_ID, MLXSW_REG_SPVM_LEN); 864 865 /* reg_spvm_pt 866 * Priority tagged. If this bit is set, packets forwarded to the port with 867 * untagged VLAN membership (u bit is set) will be tagged with priority tag 868 * (VID=0) 869 * Access: RW 870 */ 871 MLXSW_ITEM32(reg, spvm, pt, 0x00, 31, 1); 872 873 /* reg_spvm_pte 874 * Priority Tagged Update Enable. On Write operations, if this bit is cleared, 875 * the pt bit will NOT be updated. To update the pt bit, pte must be set. 876 * Access: WO 877 */ 878 MLXSW_ITEM32(reg, spvm, pte, 0x00, 30, 1); 879 880 /* reg_spvm_local_port 881 * Local port number. 882 * Access: Index 883 */ 884 MLXSW_ITEM32(reg, spvm, local_port, 0x00, 16, 8); 885 886 /* reg_spvm_sub_port 887 * Virtual port within the physical port. 888 * Should be set to 0 when virtual ports are not enabled on the port. 889 * Access: Index 890 */ 891 MLXSW_ITEM32(reg, spvm, sub_port, 0x00, 8, 8); 892 893 /* reg_spvm_num_rec 894 * Number of records to update. Each record contains: i, e, u, vid. 895 * Access: OP 896 */ 897 MLXSW_ITEM32(reg, spvm, num_rec, 0x00, 0, 8); 898 899 /* reg_spvm_rec_i 900 * Ingress membership in VLAN ID. 901 * Access: Index 902 */ 903 MLXSW_ITEM32_INDEXED(reg, spvm, rec_i, 904 MLXSW_REG_SPVM_BASE_LEN, 14, 1, 905 MLXSW_REG_SPVM_REC_LEN, 0, false); 906 907 /* reg_spvm_rec_e 908 * Egress membership in VLAN ID. 909 * Access: Index 910 */ 911 MLXSW_ITEM32_INDEXED(reg, spvm, rec_e, 912 MLXSW_REG_SPVM_BASE_LEN, 13, 1, 913 MLXSW_REG_SPVM_REC_LEN, 0, false); 914 915 /* reg_spvm_rec_u 916 * Untagged - port is an untagged member - egress transmission uses untagged 917 * frames on VID<n> 918 * Access: Index 919 */ 920 MLXSW_ITEM32_INDEXED(reg, spvm, rec_u, 921 MLXSW_REG_SPVM_BASE_LEN, 12, 1, 922 MLXSW_REG_SPVM_REC_LEN, 0, false); 923 924 /* reg_spvm_rec_vid 925 * Egress membership in VLAN ID. 926 * Access: Index 927 */ 928 MLXSW_ITEM32_INDEXED(reg, spvm, rec_vid, 929 MLXSW_REG_SPVM_BASE_LEN, 0, 12, 930 MLXSW_REG_SPVM_REC_LEN, 0, false); 931 932 static inline void mlxsw_reg_spvm_pack(char *payload, u8 local_port, 933 u16 vid_begin, u16 vid_end, 934 bool is_member, bool untagged) 935 { 936 int size = vid_end - vid_begin + 1; 937 int i; 938 939 MLXSW_REG_ZERO(spvm, payload); 940 mlxsw_reg_spvm_local_port_set(payload, local_port); 941 mlxsw_reg_spvm_num_rec_set(payload, size); 942 943 for (i = 0; i < size; i++) { 944 mlxsw_reg_spvm_rec_i_set(payload, i, is_member); 945 mlxsw_reg_spvm_rec_e_set(payload, i, is_member); 946 mlxsw_reg_spvm_rec_u_set(payload, i, untagged); 947 mlxsw_reg_spvm_rec_vid_set(payload, i, vid_begin + i); 948 } 949 } 950 951 /* SPAFT - Switch Port Acceptable Frame Types 952 * ------------------------------------------ 953 * The Switch Port Acceptable Frame Types register configures the frame 954 * admittance of the port. 955 */ 956 #define MLXSW_REG_SPAFT_ID 0x2010 957 #define MLXSW_REG_SPAFT_LEN 0x08 958 959 MLXSW_REG_DEFINE(spaft, MLXSW_REG_SPAFT_ID, MLXSW_REG_SPAFT_LEN); 960 961 /* reg_spaft_local_port 962 * Local port number. 963 * Access: Index 964 * 965 * Note: CPU port is not supported (all tag types are allowed). 966 */ 967 MLXSW_ITEM32(reg, spaft, local_port, 0x00, 16, 8); 968 969 /* reg_spaft_sub_port 970 * Virtual port within the physical port. 971 * Should be set to 0 when virtual ports are not enabled on the port. 972 * Access: RW 973 */ 974 MLXSW_ITEM32(reg, spaft, sub_port, 0x00, 8, 8); 975 976 /* reg_spaft_allow_untagged 977 * When set, untagged frames on the ingress are allowed (default). 978 * Access: RW 979 */ 980 MLXSW_ITEM32(reg, spaft, allow_untagged, 0x04, 31, 1); 981 982 /* reg_spaft_allow_prio_tagged 983 * When set, priority tagged frames on the ingress are allowed (default). 984 * Access: RW 985 */ 986 MLXSW_ITEM32(reg, spaft, allow_prio_tagged, 0x04, 30, 1); 987 988 /* reg_spaft_allow_tagged 989 * When set, tagged frames on the ingress are allowed (default). 990 * Access: RW 991 */ 992 MLXSW_ITEM32(reg, spaft, allow_tagged, 0x04, 29, 1); 993 994 static inline void mlxsw_reg_spaft_pack(char *payload, u8 local_port, 995 bool allow_untagged) 996 { 997 MLXSW_REG_ZERO(spaft, payload); 998 mlxsw_reg_spaft_local_port_set(payload, local_port); 999 mlxsw_reg_spaft_allow_untagged_set(payload, allow_untagged); 1000 mlxsw_reg_spaft_allow_prio_tagged_set(payload, allow_untagged); 1001 mlxsw_reg_spaft_allow_tagged_set(payload, true); 1002 } 1003 1004 /* SFGC - Switch Flooding Group Configuration 1005 * ------------------------------------------ 1006 * The following register controls the association of flooding tables and MIDs 1007 * to packet types used for flooding. 1008 */ 1009 #define MLXSW_REG_SFGC_ID 0x2011 1010 #define MLXSW_REG_SFGC_LEN 0x10 1011 1012 MLXSW_REG_DEFINE(sfgc, MLXSW_REG_SFGC_ID, MLXSW_REG_SFGC_LEN); 1013 1014 enum mlxsw_reg_sfgc_type { 1015 MLXSW_REG_SFGC_TYPE_BROADCAST, 1016 MLXSW_REG_SFGC_TYPE_UNKNOWN_UNICAST, 1017 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV4, 1018 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV6, 1019 MLXSW_REG_SFGC_TYPE_RESERVED, 1020 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_NON_IP, 1021 MLXSW_REG_SFGC_TYPE_IPV4_LINK_LOCAL, 1022 MLXSW_REG_SFGC_TYPE_IPV6_ALL_HOST, 1023 MLXSW_REG_SFGC_TYPE_MAX, 1024 }; 1025 1026 /* reg_sfgc_type 1027 * The traffic type to reach the flooding table. 1028 * Access: Index 1029 */ 1030 MLXSW_ITEM32(reg, sfgc, type, 0x00, 0, 4); 1031 1032 enum mlxsw_reg_sfgc_bridge_type { 1033 MLXSW_REG_SFGC_BRIDGE_TYPE_1Q_FID = 0, 1034 MLXSW_REG_SFGC_BRIDGE_TYPE_VFID = 1, 1035 }; 1036 1037 /* reg_sfgc_bridge_type 1038 * Access: Index 1039 * 1040 * Note: SwitchX-2 only supports 802.1Q mode. 1041 */ 1042 MLXSW_ITEM32(reg, sfgc, bridge_type, 0x04, 24, 3); 1043 1044 enum mlxsw_flood_table_type { 1045 MLXSW_REG_SFGC_TABLE_TYPE_VID = 1, 1046 MLXSW_REG_SFGC_TABLE_TYPE_SINGLE = 2, 1047 MLXSW_REG_SFGC_TABLE_TYPE_ANY = 0, 1048 MLXSW_REG_SFGC_TABLE_TYPE_FID_OFFSET = 3, 1049 MLXSW_REG_SFGC_TABLE_TYPE_FID = 4, 1050 }; 1051 1052 /* reg_sfgc_table_type 1053 * See mlxsw_flood_table_type 1054 * Access: RW 1055 * 1056 * Note: FID offset and FID types are not supported in SwitchX-2. 1057 */ 1058 MLXSW_ITEM32(reg, sfgc, table_type, 0x04, 16, 3); 1059 1060 /* reg_sfgc_flood_table 1061 * Flooding table index to associate with the specific type on the specific 1062 * switch partition. 1063 * Access: RW 1064 */ 1065 MLXSW_ITEM32(reg, sfgc, flood_table, 0x04, 0, 6); 1066 1067 /* reg_sfgc_mid 1068 * The multicast ID for the swid. Not supported for Spectrum 1069 * Access: RW 1070 */ 1071 MLXSW_ITEM32(reg, sfgc, mid, 0x08, 0, 16); 1072 1073 /* reg_sfgc_counter_set_type 1074 * Counter Set Type for flow counters. 1075 * Access: RW 1076 */ 1077 MLXSW_ITEM32(reg, sfgc, counter_set_type, 0x0C, 24, 8); 1078 1079 /* reg_sfgc_counter_index 1080 * Counter Index for flow counters. 1081 * Access: RW 1082 */ 1083 MLXSW_ITEM32(reg, sfgc, counter_index, 0x0C, 0, 24); 1084 1085 static inline void 1086 mlxsw_reg_sfgc_pack(char *payload, enum mlxsw_reg_sfgc_type type, 1087 enum mlxsw_reg_sfgc_bridge_type bridge_type, 1088 enum mlxsw_flood_table_type table_type, 1089 unsigned int flood_table) 1090 { 1091 MLXSW_REG_ZERO(sfgc, payload); 1092 mlxsw_reg_sfgc_type_set(payload, type); 1093 mlxsw_reg_sfgc_bridge_type_set(payload, bridge_type); 1094 mlxsw_reg_sfgc_table_type_set(payload, table_type); 1095 mlxsw_reg_sfgc_flood_table_set(payload, flood_table); 1096 mlxsw_reg_sfgc_mid_set(payload, MLXSW_PORT_MID); 1097 } 1098 1099 /* SFTR - Switch Flooding Table Register 1100 * ------------------------------------- 1101 * The switch flooding table is used for flooding packet replication. The table 1102 * defines a bit mask of ports for packet replication. 1103 */ 1104 #define MLXSW_REG_SFTR_ID 0x2012 1105 #define MLXSW_REG_SFTR_LEN 0x420 1106 1107 MLXSW_REG_DEFINE(sftr, MLXSW_REG_SFTR_ID, MLXSW_REG_SFTR_LEN); 1108 1109 /* reg_sftr_swid 1110 * Switch partition ID with which to associate the port. 1111 * Access: Index 1112 */ 1113 MLXSW_ITEM32(reg, sftr, swid, 0x00, 24, 8); 1114 1115 /* reg_sftr_flood_table 1116 * Flooding table index to associate with the specific type on the specific 1117 * switch partition. 1118 * Access: Index 1119 */ 1120 MLXSW_ITEM32(reg, sftr, flood_table, 0x00, 16, 6); 1121 1122 /* reg_sftr_index 1123 * Index. Used as an index into the Flooding Table in case the table is 1124 * configured to use VID / FID or FID Offset. 1125 * Access: Index 1126 */ 1127 MLXSW_ITEM32(reg, sftr, index, 0x00, 0, 16); 1128 1129 /* reg_sftr_table_type 1130 * See mlxsw_flood_table_type 1131 * Access: RW 1132 */ 1133 MLXSW_ITEM32(reg, sftr, table_type, 0x04, 16, 3); 1134 1135 /* reg_sftr_range 1136 * Range of entries to update 1137 * Access: Index 1138 */ 1139 MLXSW_ITEM32(reg, sftr, range, 0x04, 0, 16); 1140 1141 /* reg_sftr_port 1142 * Local port membership (1 bit per port). 1143 * Access: RW 1144 */ 1145 MLXSW_ITEM_BIT_ARRAY(reg, sftr, port, 0x20, 0x20, 1); 1146 1147 /* reg_sftr_cpu_port_mask 1148 * CPU port mask (1 bit per port). 1149 * Access: W 1150 */ 1151 MLXSW_ITEM_BIT_ARRAY(reg, sftr, port_mask, 0x220, 0x20, 1); 1152 1153 static inline void mlxsw_reg_sftr_pack(char *payload, 1154 unsigned int flood_table, 1155 unsigned int index, 1156 enum mlxsw_flood_table_type table_type, 1157 unsigned int range, u8 port, bool set) 1158 { 1159 MLXSW_REG_ZERO(sftr, payload); 1160 mlxsw_reg_sftr_swid_set(payload, 0); 1161 mlxsw_reg_sftr_flood_table_set(payload, flood_table); 1162 mlxsw_reg_sftr_index_set(payload, index); 1163 mlxsw_reg_sftr_table_type_set(payload, table_type); 1164 mlxsw_reg_sftr_range_set(payload, range); 1165 mlxsw_reg_sftr_port_set(payload, port, set); 1166 mlxsw_reg_sftr_port_mask_set(payload, port, 1); 1167 } 1168 1169 /* SFDF - Switch Filtering DB Flush 1170 * -------------------------------- 1171 * The switch filtering DB flush register is used to flush the FDB. 1172 * Note that FDB notifications are flushed as well. 1173 */ 1174 #define MLXSW_REG_SFDF_ID 0x2013 1175 #define MLXSW_REG_SFDF_LEN 0x14 1176 1177 MLXSW_REG_DEFINE(sfdf, MLXSW_REG_SFDF_ID, MLXSW_REG_SFDF_LEN); 1178 1179 /* reg_sfdf_swid 1180 * Switch partition ID. 1181 * Access: Index 1182 */ 1183 MLXSW_ITEM32(reg, sfdf, swid, 0x00, 24, 8); 1184 1185 enum mlxsw_reg_sfdf_flush_type { 1186 MLXSW_REG_SFDF_FLUSH_PER_SWID, 1187 MLXSW_REG_SFDF_FLUSH_PER_FID, 1188 MLXSW_REG_SFDF_FLUSH_PER_PORT, 1189 MLXSW_REG_SFDF_FLUSH_PER_PORT_AND_FID, 1190 MLXSW_REG_SFDF_FLUSH_PER_LAG, 1191 MLXSW_REG_SFDF_FLUSH_PER_LAG_AND_FID, 1192 MLXSW_REG_SFDF_FLUSH_PER_NVE, 1193 MLXSW_REG_SFDF_FLUSH_PER_NVE_AND_FID, 1194 }; 1195 1196 /* reg_sfdf_flush_type 1197 * Flush type. 1198 * 0 - All SWID dynamic entries are flushed. 1199 * 1 - All FID dynamic entries are flushed. 1200 * 2 - All dynamic entries pointing to port are flushed. 1201 * 3 - All FID dynamic entries pointing to port are flushed. 1202 * 4 - All dynamic entries pointing to LAG are flushed. 1203 * 5 - All FID dynamic entries pointing to LAG are flushed. 1204 * 6 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are 1205 * flushed. 1206 * 7 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are 1207 * flushed, per FID. 1208 * Access: RW 1209 */ 1210 MLXSW_ITEM32(reg, sfdf, flush_type, 0x04, 28, 4); 1211 1212 /* reg_sfdf_flush_static 1213 * Static. 1214 * 0 - Flush only dynamic entries. 1215 * 1 - Flush both dynamic and static entries. 1216 * Access: RW 1217 */ 1218 MLXSW_ITEM32(reg, sfdf, flush_static, 0x04, 24, 1); 1219 1220 static inline void mlxsw_reg_sfdf_pack(char *payload, 1221 enum mlxsw_reg_sfdf_flush_type type) 1222 { 1223 MLXSW_REG_ZERO(sfdf, payload); 1224 mlxsw_reg_sfdf_flush_type_set(payload, type); 1225 mlxsw_reg_sfdf_flush_static_set(payload, true); 1226 } 1227 1228 /* reg_sfdf_fid 1229 * FID to flush. 1230 * Access: RW 1231 */ 1232 MLXSW_ITEM32(reg, sfdf, fid, 0x0C, 0, 16); 1233 1234 /* reg_sfdf_system_port 1235 * Port to flush. 1236 * Access: RW 1237 */ 1238 MLXSW_ITEM32(reg, sfdf, system_port, 0x0C, 0, 16); 1239 1240 /* reg_sfdf_port_fid_system_port 1241 * Port to flush, pointed to by FID. 1242 * Access: RW 1243 */ 1244 MLXSW_ITEM32(reg, sfdf, port_fid_system_port, 0x08, 0, 16); 1245 1246 /* reg_sfdf_lag_id 1247 * LAG ID to flush. 1248 * Access: RW 1249 */ 1250 MLXSW_ITEM32(reg, sfdf, lag_id, 0x0C, 0, 10); 1251 1252 /* reg_sfdf_lag_fid_lag_id 1253 * LAG ID to flush, pointed to by FID. 1254 * Access: RW 1255 */ 1256 MLXSW_ITEM32(reg, sfdf, lag_fid_lag_id, 0x08, 0, 10); 1257 1258 /* SLDR - Switch LAG Descriptor Register 1259 * ----------------------------------------- 1260 * The switch LAG descriptor register is populated by LAG descriptors. 1261 * Each LAG descriptor is indexed by lag_id. The LAG ID runs from 0 to 1262 * max_lag-1. 1263 */ 1264 #define MLXSW_REG_SLDR_ID 0x2014 1265 #define MLXSW_REG_SLDR_LEN 0x0C /* counting in only one port in list */ 1266 1267 MLXSW_REG_DEFINE(sldr, MLXSW_REG_SLDR_ID, MLXSW_REG_SLDR_LEN); 1268 1269 enum mlxsw_reg_sldr_op { 1270 /* Indicates a creation of a new LAG-ID, lag_id must be valid */ 1271 MLXSW_REG_SLDR_OP_LAG_CREATE, 1272 MLXSW_REG_SLDR_OP_LAG_DESTROY, 1273 /* Ports that appear in the list have the Distributor enabled */ 1274 MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST, 1275 /* Removes ports from the disributor list */ 1276 MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST, 1277 }; 1278 1279 /* reg_sldr_op 1280 * Operation. 1281 * Access: RW 1282 */ 1283 MLXSW_ITEM32(reg, sldr, op, 0x00, 29, 3); 1284 1285 /* reg_sldr_lag_id 1286 * LAG identifier. The lag_id is the index into the LAG descriptor table. 1287 * Access: Index 1288 */ 1289 MLXSW_ITEM32(reg, sldr, lag_id, 0x00, 0, 10); 1290 1291 static inline void mlxsw_reg_sldr_lag_create_pack(char *payload, u8 lag_id) 1292 { 1293 MLXSW_REG_ZERO(sldr, payload); 1294 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_CREATE); 1295 mlxsw_reg_sldr_lag_id_set(payload, lag_id); 1296 } 1297 1298 static inline void mlxsw_reg_sldr_lag_destroy_pack(char *payload, u8 lag_id) 1299 { 1300 MLXSW_REG_ZERO(sldr, payload); 1301 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_DESTROY); 1302 mlxsw_reg_sldr_lag_id_set(payload, lag_id); 1303 } 1304 1305 /* reg_sldr_num_ports 1306 * The number of member ports of the LAG. 1307 * Reserved for Create / Destroy operations 1308 * For Add / Remove operations - indicates the number of ports in the list. 1309 * Access: RW 1310 */ 1311 MLXSW_ITEM32(reg, sldr, num_ports, 0x04, 24, 8); 1312 1313 /* reg_sldr_system_port 1314 * System port. 1315 * Access: RW 1316 */ 1317 MLXSW_ITEM32_INDEXED(reg, sldr, system_port, 0x08, 0, 16, 4, 0, false); 1318 1319 static inline void mlxsw_reg_sldr_lag_add_port_pack(char *payload, u8 lag_id, 1320 u8 local_port) 1321 { 1322 MLXSW_REG_ZERO(sldr, payload); 1323 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST); 1324 mlxsw_reg_sldr_lag_id_set(payload, lag_id); 1325 mlxsw_reg_sldr_num_ports_set(payload, 1); 1326 mlxsw_reg_sldr_system_port_set(payload, 0, local_port); 1327 } 1328 1329 static inline void mlxsw_reg_sldr_lag_remove_port_pack(char *payload, u8 lag_id, 1330 u8 local_port) 1331 { 1332 MLXSW_REG_ZERO(sldr, payload); 1333 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST); 1334 mlxsw_reg_sldr_lag_id_set(payload, lag_id); 1335 mlxsw_reg_sldr_num_ports_set(payload, 1); 1336 mlxsw_reg_sldr_system_port_set(payload, 0, local_port); 1337 } 1338 1339 /* SLCR - Switch LAG Configuration 2 Register 1340 * ------------------------------------------- 1341 * The Switch LAG Configuration register is used for configuring the 1342 * LAG properties of the switch. 1343 */ 1344 #define MLXSW_REG_SLCR_ID 0x2015 1345 #define MLXSW_REG_SLCR_LEN 0x10 1346 1347 MLXSW_REG_DEFINE(slcr, MLXSW_REG_SLCR_ID, MLXSW_REG_SLCR_LEN); 1348 1349 enum mlxsw_reg_slcr_pp { 1350 /* Global Configuration (for all ports) */ 1351 MLXSW_REG_SLCR_PP_GLOBAL, 1352 /* Per port configuration, based on local_port field */ 1353 MLXSW_REG_SLCR_PP_PER_PORT, 1354 }; 1355 1356 /* reg_slcr_pp 1357 * Per Port Configuration 1358 * Note: Reading at Global mode results in reading port 1 configuration. 1359 * Access: Index 1360 */ 1361 MLXSW_ITEM32(reg, slcr, pp, 0x00, 24, 1); 1362 1363 /* reg_slcr_local_port 1364 * Local port number 1365 * Supported from CPU port 1366 * Not supported from router port 1367 * Reserved when pp = Global Configuration 1368 * Access: Index 1369 */ 1370 MLXSW_ITEM32(reg, slcr, local_port, 0x00, 16, 8); 1371 1372 enum mlxsw_reg_slcr_type { 1373 MLXSW_REG_SLCR_TYPE_CRC, /* default */ 1374 MLXSW_REG_SLCR_TYPE_XOR, 1375 MLXSW_REG_SLCR_TYPE_RANDOM, 1376 }; 1377 1378 /* reg_slcr_type 1379 * Hash type 1380 * Access: RW 1381 */ 1382 MLXSW_ITEM32(reg, slcr, type, 0x00, 0, 4); 1383 1384 /* Ingress port */ 1385 #define MLXSW_REG_SLCR_LAG_HASH_IN_PORT BIT(0) 1386 /* SMAC - for IPv4 and IPv6 packets */ 1387 #define MLXSW_REG_SLCR_LAG_HASH_SMAC_IP BIT(1) 1388 /* SMAC - for non-IP packets */ 1389 #define MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP BIT(2) 1390 #define MLXSW_REG_SLCR_LAG_HASH_SMAC \ 1391 (MLXSW_REG_SLCR_LAG_HASH_SMAC_IP | \ 1392 MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP) 1393 /* DMAC - for IPv4 and IPv6 packets */ 1394 #define MLXSW_REG_SLCR_LAG_HASH_DMAC_IP BIT(3) 1395 /* DMAC - for non-IP packets */ 1396 #define MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP BIT(4) 1397 #define MLXSW_REG_SLCR_LAG_HASH_DMAC \ 1398 (MLXSW_REG_SLCR_LAG_HASH_DMAC_IP | \ 1399 MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP) 1400 /* Ethertype - for IPv4 and IPv6 packets */ 1401 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP BIT(5) 1402 /* Ethertype - for non-IP packets */ 1403 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP BIT(6) 1404 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE \ 1405 (MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP | \ 1406 MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP) 1407 /* VLAN ID - for IPv4 and IPv6 packets */ 1408 #define MLXSW_REG_SLCR_LAG_HASH_VLANID_IP BIT(7) 1409 /* VLAN ID - for non-IP packets */ 1410 #define MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP BIT(8) 1411 #define MLXSW_REG_SLCR_LAG_HASH_VLANID \ 1412 (MLXSW_REG_SLCR_LAG_HASH_VLANID_IP | \ 1413 MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP) 1414 /* Source IP address (can be IPv4 or IPv6) */ 1415 #define MLXSW_REG_SLCR_LAG_HASH_SIP BIT(9) 1416 /* Destination IP address (can be IPv4 or IPv6) */ 1417 #define MLXSW_REG_SLCR_LAG_HASH_DIP BIT(10) 1418 /* TCP/UDP source port */ 1419 #define MLXSW_REG_SLCR_LAG_HASH_SPORT BIT(11) 1420 /* TCP/UDP destination port*/ 1421 #define MLXSW_REG_SLCR_LAG_HASH_DPORT BIT(12) 1422 /* IPv4 Protocol/IPv6 Next Header */ 1423 #define MLXSW_REG_SLCR_LAG_HASH_IPPROTO BIT(13) 1424 /* IPv6 Flow label */ 1425 #define MLXSW_REG_SLCR_LAG_HASH_FLOWLABEL BIT(14) 1426 /* SID - FCoE source ID */ 1427 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_SID BIT(15) 1428 /* DID - FCoE destination ID */ 1429 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_DID BIT(16) 1430 /* OXID - FCoE originator exchange ID */ 1431 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_OXID BIT(17) 1432 /* Destination QP number - for RoCE packets */ 1433 #define MLXSW_REG_SLCR_LAG_HASH_ROCE_DQP BIT(19) 1434 1435 /* reg_slcr_lag_hash 1436 * LAG hashing configuration. This is a bitmask, in which each set 1437 * bit includes the corresponding item in the LAG hash calculation. 1438 * The default lag_hash contains SMAC, DMAC, VLANID and 1439 * Ethertype (for all packet types). 1440 * Access: RW 1441 */ 1442 MLXSW_ITEM32(reg, slcr, lag_hash, 0x04, 0, 20); 1443 1444 /* reg_slcr_seed 1445 * LAG seed value. The seed is the same for all ports. 1446 * Access: RW 1447 */ 1448 MLXSW_ITEM32(reg, slcr, seed, 0x08, 0, 32); 1449 1450 static inline void mlxsw_reg_slcr_pack(char *payload, u16 lag_hash, u32 seed) 1451 { 1452 MLXSW_REG_ZERO(slcr, payload); 1453 mlxsw_reg_slcr_pp_set(payload, MLXSW_REG_SLCR_PP_GLOBAL); 1454 mlxsw_reg_slcr_type_set(payload, MLXSW_REG_SLCR_TYPE_CRC); 1455 mlxsw_reg_slcr_lag_hash_set(payload, lag_hash); 1456 mlxsw_reg_slcr_seed_set(payload, seed); 1457 } 1458 1459 /* SLCOR - Switch LAG Collector Register 1460 * ------------------------------------- 1461 * The Switch LAG Collector register controls the Local Port membership 1462 * in a LAG and enablement of the collector. 1463 */ 1464 #define MLXSW_REG_SLCOR_ID 0x2016 1465 #define MLXSW_REG_SLCOR_LEN 0x10 1466 1467 MLXSW_REG_DEFINE(slcor, MLXSW_REG_SLCOR_ID, MLXSW_REG_SLCOR_LEN); 1468 1469 enum mlxsw_reg_slcor_col { 1470 /* Port is added with collector disabled */ 1471 MLXSW_REG_SLCOR_COL_LAG_ADD_PORT, 1472 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED, 1473 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_DISABLED, 1474 MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT, 1475 }; 1476 1477 /* reg_slcor_col 1478 * Collector configuration 1479 * Access: RW 1480 */ 1481 MLXSW_ITEM32(reg, slcor, col, 0x00, 30, 2); 1482 1483 /* reg_slcor_local_port 1484 * Local port number 1485 * Not supported for CPU port 1486 * Access: Index 1487 */ 1488 MLXSW_ITEM32(reg, slcor, local_port, 0x00, 16, 8); 1489 1490 /* reg_slcor_lag_id 1491 * LAG Identifier. Index into the LAG descriptor table. 1492 * Access: Index 1493 */ 1494 MLXSW_ITEM32(reg, slcor, lag_id, 0x00, 0, 10); 1495 1496 /* reg_slcor_port_index 1497 * Port index in the LAG list. Only valid on Add Port to LAG col. 1498 * Valid range is from 0 to cap_max_lag_members-1 1499 * Access: RW 1500 */ 1501 MLXSW_ITEM32(reg, slcor, port_index, 0x04, 0, 10); 1502 1503 static inline void mlxsw_reg_slcor_pack(char *payload, 1504 u8 local_port, u16 lag_id, 1505 enum mlxsw_reg_slcor_col col) 1506 { 1507 MLXSW_REG_ZERO(slcor, payload); 1508 mlxsw_reg_slcor_col_set(payload, col); 1509 mlxsw_reg_slcor_local_port_set(payload, local_port); 1510 mlxsw_reg_slcor_lag_id_set(payload, lag_id); 1511 } 1512 1513 static inline void mlxsw_reg_slcor_port_add_pack(char *payload, 1514 u8 local_port, u16 lag_id, 1515 u8 port_index) 1516 { 1517 mlxsw_reg_slcor_pack(payload, local_port, lag_id, 1518 MLXSW_REG_SLCOR_COL_LAG_ADD_PORT); 1519 mlxsw_reg_slcor_port_index_set(payload, port_index); 1520 } 1521 1522 static inline void mlxsw_reg_slcor_port_remove_pack(char *payload, 1523 u8 local_port, u16 lag_id) 1524 { 1525 mlxsw_reg_slcor_pack(payload, local_port, lag_id, 1526 MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT); 1527 } 1528 1529 static inline void mlxsw_reg_slcor_col_enable_pack(char *payload, 1530 u8 local_port, u16 lag_id) 1531 { 1532 mlxsw_reg_slcor_pack(payload, local_port, lag_id, 1533 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED); 1534 } 1535 1536 static inline void mlxsw_reg_slcor_col_disable_pack(char *payload, 1537 u8 local_port, u16 lag_id) 1538 { 1539 mlxsw_reg_slcor_pack(payload, local_port, lag_id, 1540 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED); 1541 } 1542 1543 /* SPMLR - Switch Port MAC Learning Register 1544 * ----------------------------------------- 1545 * Controls the Switch MAC learning policy per port. 1546 */ 1547 #define MLXSW_REG_SPMLR_ID 0x2018 1548 #define MLXSW_REG_SPMLR_LEN 0x8 1549 1550 MLXSW_REG_DEFINE(spmlr, MLXSW_REG_SPMLR_ID, MLXSW_REG_SPMLR_LEN); 1551 1552 /* reg_spmlr_local_port 1553 * Local port number. 1554 * Access: Index 1555 */ 1556 MLXSW_ITEM32(reg, spmlr, local_port, 0x00, 16, 8); 1557 1558 /* reg_spmlr_sub_port 1559 * Virtual port within the physical port. 1560 * Should be set to 0 when virtual ports are not enabled on the port. 1561 * Access: Index 1562 */ 1563 MLXSW_ITEM32(reg, spmlr, sub_port, 0x00, 8, 8); 1564 1565 enum mlxsw_reg_spmlr_learn_mode { 1566 MLXSW_REG_SPMLR_LEARN_MODE_DISABLE = 0, 1567 MLXSW_REG_SPMLR_LEARN_MODE_ENABLE = 2, 1568 MLXSW_REG_SPMLR_LEARN_MODE_SEC = 3, 1569 }; 1570 1571 /* reg_spmlr_learn_mode 1572 * Learning mode on the port. 1573 * 0 - Learning disabled. 1574 * 2 - Learning enabled. 1575 * 3 - Security mode. 1576 * 1577 * In security mode the switch does not learn MACs on the port, but uses the 1578 * SMAC to see if it exists on another ingress port. If so, the packet is 1579 * classified as a bad packet and is discarded unless the software registers 1580 * to receive port security error packets usign HPKT. 1581 */ 1582 MLXSW_ITEM32(reg, spmlr, learn_mode, 0x04, 30, 2); 1583 1584 static inline void mlxsw_reg_spmlr_pack(char *payload, u8 local_port, 1585 enum mlxsw_reg_spmlr_learn_mode mode) 1586 { 1587 MLXSW_REG_ZERO(spmlr, payload); 1588 mlxsw_reg_spmlr_local_port_set(payload, local_port); 1589 mlxsw_reg_spmlr_sub_port_set(payload, 0); 1590 mlxsw_reg_spmlr_learn_mode_set(payload, mode); 1591 } 1592 1593 /* SVFA - Switch VID to FID Allocation Register 1594 * -------------------------------------------- 1595 * Controls the VID to FID mapping and {Port, VID} to FID mapping for 1596 * virtualized ports. 1597 */ 1598 #define MLXSW_REG_SVFA_ID 0x201C 1599 #define MLXSW_REG_SVFA_LEN 0x10 1600 1601 MLXSW_REG_DEFINE(svfa, MLXSW_REG_SVFA_ID, MLXSW_REG_SVFA_LEN); 1602 1603 /* reg_svfa_swid 1604 * Switch partition ID. 1605 * Access: Index 1606 */ 1607 MLXSW_ITEM32(reg, svfa, swid, 0x00, 24, 8); 1608 1609 /* reg_svfa_local_port 1610 * Local port number. 1611 * Access: Index 1612 * 1613 * Note: Reserved for 802.1Q FIDs. 1614 */ 1615 MLXSW_ITEM32(reg, svfa, local_port, 0x00, 16, 8); 1616 1617 enum mlxsw_reg_svfa_mt { 1618 MLXSW_REG_SVFA_MT_VID_TO_FID, 1619 MLXSW_REG_SVFA_MT_PORT_VID_TO_FID, 1620 }; 1621 1622 /* reg_svfa_mapping_table 1623 * Mapping table: 1624 * 0 - VID to FID 1625 * 1 - {Port, VID} to FID 1626 * Access: Index 1627 * 1628 * Note: Reserved for SwitchX-2. 1629 */ 1630 MLXSW_ITEM32(reg, svfa, mapping_table, 0x00, 8, 3); 1631 1632 /* reg_svfa_v 1633 * Valid. 1634 * Valid if set. 1635 * Access: RW 1636 * 1637 * Note: Reserved for SwitchX-2. 1638 */ 1639 MLXSW_ITEM32(reg, svfa, v, 0x00, 0, 1); 1640 1641 /* reg_svfa_fid 1642 * Filtering ID. 1643 * Access: RW 1644 */ 1645 MLXSW_ITEM32(reg, svfa, fid, 0x04, 16, 16); 1646 1647 /* reg_svfa_vid 1648 * VLAN ID. 1649 * Access: Index 1650 */ 1651 MLXSW_ITEM32(reg, svfa, vid, 0x04, 0, 12); 1652 1653 /* reg_svfa_counter_set_type 1654 * Counter set type for flow counters. 1655 * Access: RW 1656 * 1657 * Note: Reserved for SwitchX-2. 1658 */ 1659 MLXSW_ITEM32(reg, svfa, counter_set_type, 0x08, 24, 8); 1660 1661 /* reg_svfa_counter_index 1662 * Counter index for flow counters. 1663 * Access: RW 1664 * 1665 * Note: Reserved for SwitchX-2. 1666 */ 1667 MLXSW_ITEM32(reg, svfa, counter_index, 0x08, 0, 24); 1668 1669 static inline void mlxsw_reg_svfa_pack(char *payload, u8 local_port, 1670 enum mlxsw_reg_svfa_mt mt, bool valid, 1671 u16 fid, u16 vid) 1672 { 1673 MLXSW_REG_ZERO(svfa, payload); 1674 local_port = mt == MLXSW_REG_SVFA_MT_VID_TO_FID ? 0 : local_port; 1675 mlxsw_reg_svfa_swid_set(payload, 0); 1676 mlxsw_reg_svfa_local_port_set(payload, local_port); 1677 mlxsw_reg_svfa_mapping_table_set(payload, mt); 1678 mlxsw_reg_svfa_v_set(payload, valid); 1679 mlxsw_reg_svfa_fid_set(payload, fid); 1680 mlxsw_reg_svfa_vid_set(payload, vid); 1681 } 1682 1683 /* SVPE - Switch Virtual-Port Enabling Register 1684 * -------------------------------------------- 1685 * Enables port virtualization. 1686 */ 1687 #define MLXSW_REG_SVPE_ID 0x201E 1688 #define MLXSW_REG_SVPE_LEN 0x4 1689 1690 MLXSW_REG_DEFINE(svpe, MLXSW_REG_SVPE_ID, MLXSW_REG_SVPE_LEN); 1691 1692 /* reg_svpe_local_port 1693 * Local port number 1694 * Access: Index 1695 * 1696 * Note: CPU port is not supported (uses VLAN mode only). 1697 */ 1698 MLXSW_ITEM32(reg, svpe, local_port, 0x00, 16, 8); 1699 1700 /* reg_svpe_vp_en 1701 * Virtual port enable. 1702 * 0 - Disable, VLAN mode (VID to FID). 1703 * 1 - Enable, Virtual port mode ({Port, VID} to FID). 1704 * Access: RW 1705 */ 1706 MLXSW_ITEM32(reg, svpe, vp_en, 0x00, 8, 1); 1707 1708 static inline void mlxsw_reg_svpe_pack(char *payload, u8 local_port, 1709 bool enable) 1710 { 1711 MLXSW_REG_ZERO(svpe, payload); 1712 mlxsw_reg_svpe_local_port_set(payload, local_port); 1713 mlxsw_reg_svpe_vp_en_set(payload, enable); 1714 } 1715 1716 /* SFMR - Switch FID Management Register 1717 * ------------------------------------- 1718 * Creates and configures FIDs. 1719 */ 1720 #define MLXSW_REG_SFMR_ID 0x201F 1721 #define MLXSW_REG_SFMR_LEN 0x18 1722 1723 MLXSW_REG_DEFINE(sfmr, MLXSW_REG_SFMR_ID, MLXSW_REG_SFMR_LEN); 1724 1725 enum mlxsw_reg_sfmr_op { 1726 MLXSW_REG_SFMR_OP_CREATE_FID, 1727 MLXSW_REG_SFMR_OP_DESTROY_FID, 1728 }; 1729 1730 /* reg_sfmr_op 1731 * Operation. 1732 * 0 - Create or edit FID. 1733 * 1 - Destroy FID. 1734 * Access: WO 1735 */ 1736 MLXSW_ITEM32(reg, sfmr, op, 0x00, 24, 4); 1737 1738 /* reg_sfmr_fid 1739 * Filtering ID. 1740 * Access: Index 1741 */ 1742 MLXSW_ITEM32(reg, sfmr, fid, 0x00, 0, 16); 1743 1744 /* reg_sfmr_fid_offset 1745 * FID offset. 1746 * Used to point into the flooding table selected by SFGC register if 1747 * the table is of type FID-Offset. Otherwise, this field is reserved. 1748 * Access: RW 1749 */ 1750 MLXSW_ITEM32(reg, sfmr, fid_offset, 0x08, 0, 16); 1751 1752 /* reg_sfmr_vtfp 1753 * Valid Tunnel Flood Pointer. 1754 * If not set, then nve_tunnel_flood_ptr is reserved and considered NULL. 1755 * Access: RW 1756 * 1757 * Note: Reserved for 802.1Q FIDs. 1758 */ 1759 MLXSW_ITEM32(reg, sfmr, vtfp, 0x0C, 31, 1); 1760 1761 /* reg_sfmr_nve_tunnel_flood_ptr 1762 * Underlay Flooding and BC Pointer. 1763 * Used as a pointer to the first entry of the group based link lists of 1764 * flooding or BC entries (for NVE tunnels). 1765 * Access: RW 1766 */ 1767 MLXSW_ITEM32(reg, sfmr, nve_tunnel_flood_ptr, 0x0C, 0, 24); 1768 1769 /* reg_sfmr_vv 1770 * VNI Valid. 1771 * If not set, then vni is reserved. 1772 * Access: RW 1773 * 1774 * Note: Reserved for 802.1Q FIDs. 1775 */ 1776 MLXSW_ITEM32(reg, sfmr, vv, 0x10, 31, 1); 1777 1778 /* reg_sfmr_vni 1779 * Virtual Network Identifier. 1780 * Access: RW 1781 * 1782 * Note: A given VNI can only be assigned to one FID. 1783 */ 1784 MLXSW_ITEM32(reg, sfmr, vni, 0x10, 0, 24); 1785 1786 static inline void mlxsw_reg_sfmr_pack(char *payload, 1787 enum mlxsw_reg_sfmr_op op, u16 fid, 1788 u16 fid_offset) 1789 { 1790 MLXSW_REG_ZERO(sfmr, payload); 1791 mlxsw_reg_sfmr_op_set(payload, op); 1792 mlxsw_reg_sfmr_fid_set(payload, fid); 1793 mlxsw_reg_sfmr_fid_offset_set(payload, fid_offset); 1794 mlxsw_reg_sfmr_vtfp_set(payload, false); 1795 mlxsw_reg_sfmr_vv_set(payload, false); 1796 } 1797 1798 /* SPVMLR - Switch Port VLAN MAC Learning Register 1799 * ----------------------------------------------- 1800 * Controls the switch MAC learning policy per {Port, VID}. 1801 */ 1802 #define MLXSW_REG_SPVMLR_ID 0x2020 1803 #define MLXSW_REG_SPVMLR_BASE_LEN 0x04 /* base length, without records */ 1804 #define MLXSW_REG_SPVMLR_REC_LEN 0x04 /* record length */ 1805 #define MLXSW_REG_SPVMLR_REC_MAX_COUNT 255 1806 #define MLXSW_REG_SPVMLR_LEN (MLXSW_REG_SPVMLR_BASE_LEN + \ 1807 MLXSW_REG_SPVMLR_REC_LEN * \ 1808 MLXSW_REG_SPVMLR_REC_MAX_COUNT) 1809 1810 MLXSW_REG_DEFINE(spvmlr, MLXSW_REG_SPVMLR_ID, MLXSW_REG_SPVMLR_LEN); 1811 1812 /* reg_spvmlr_local_port 1813 * Local ingress port. 1814 * Access: Index 1815 * 1816 * Note: CPU port is not supported. 1817 */ 1818 MLXSW_ITEM32(reg, spvmlr, local_port, 0x00, 16, 8); 1819 1820 /* reg_spvmlr_num_rec 1821 * Number of records to update. 1822 * Access: OP 1823 */ 1824 MLXSW_ITEM32(reg, spvmlr, num_rec, 0x00, 0, 8); 1825 1826 /* reg_spvmlr_rec_learn_enable 1827 * 0 - Disable learning for {Port, VID}. 1828 * 1 - Enable learning for {Port, VID}. 1829 * Access: RW 1830 */ 1831 MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_learn_enable, MLXSW_REG_SPVMLR_BASE_LEN, 1832 31, 1, MLXSW_REG_SPVMLR_REC_LEN, 0x00, false); 1833 1834 /* reg_spvmlr_rec_vid 1835 * VLAN ID to be added/removed from port or for querying. 1836 * Access: Index 1837 */ 1838 MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_vid, MLXSW_REG_SPVMLR_BASE_LEN, 0, 12, 1839 MLXSW_REG_SPVMLR_REC_LEN, 0x00, false); 1840 1841 static inline void mlxsw_reg_spvmlr_pack(char *payload, u8 local_port, 1842 u16 vid_begin, u16 vid_end, 1843 bool learn_enable) 1844 { 1845 int num_rec = vid_end - vid_begin + 1; 1846 int i; 1847 1848 WARN_ON(num_rec < 1 || num_rec > MLXSW_REG_SPVMLR_REC_MAX_COUNT); 1849 1850 MLXSW_REG_ZERO(spvmlr, payload); 1851 mlxsw_reg_spvmlr_local_port_set(payload, local_port); 1852 mlxsw_reg_spvmlr_num_rec_set(payload, num_rec); 1853 1854 for (i = 0; i < num_rec; i++) { 1855 mlxsw_reg_spvmlr_rec_learn_enable_set(payload, i, learn_enable); 1856 mlxsw_reg_spvmlr_rec_vid_set(payload, i, vid_begin + i); 1857 } 1858 } 1859 1860 /* CWTP - Congetion WRED ECN TClass Profile 1861 * ---------------------------------------- 1862 * Configures the profiles for queues of egress port and traffic class 1863 */ 1864 #define MLXSW_REG_CWTP_ID 0x2802 1865 #define MLXSW_REG_CWTP_BASE_LEN 0x28 1866 #define MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN 0x08 1867 #define MLXSW_REG_CWTP_LEN 0x40 1868 1869 MLXSW_REG_DEFINE(cwtp, MLXSW_REG_CWTP_ID, MLXSW_REG_CWTP_LEN); 1870 1871 /* reg_cwtp_local_port 1872 * Local port number 1873 * Not supported for CPU port 1874 * Access: Index 1875 */ 1876 MLXSW_ITEM32(reg, cwtp, local_port, 0, 16, 8); 1877 1878 /* reg_cwtp_traffic_class 1879 * Traffic Class to configure 1880 * Access: Index 1881 */ 1882 MLXSW_ITEM32(reg, cwtp, traffic_class, 32, 0, 8); 1883 1884 /* reg_cwtp_profile_min 1885 * Minimum Average Queue Size of the profile in cells. 1886 * Access: RW 1887 */ 1888 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_min, MLXSW_REG_CWTP_BASE_LEN, 1889 0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 0, false); 1890 1891 /* reg_cwtp_profile_percent 1892 * Percentage of WRED and ECN marking for maximum Average Queue size 1893 * Range is 0 to 100, units of integer percentage 1894 * Access: RW 1895 */ 1896 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_percent, MLXSW_REG_CWTP_BASE_LEN, 1897 24, 7, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false); 1898 1899 /* reg_cwtp_profile_max 1900 * Maximum Average Queue size of the profile in cells 1901 * Access: RW 1902 */ 1903 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_max, MLXSW_REG_CWTP_BASE_LEN, 1904 0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false); 1905 1906 #define MLXSW_REG_CWTP_MIN_VALUE 64 1907 #define MLXSW_REG_CWTP_MAX_PROFILE 2 1908 #define MLXSW_REG_CWTP_DEFAULT_PROFILE 1 1909 1910 static inline void mlxsw_reg_cwtp_pack(char *payload, u8 local_port, 1911 u8 traffic_class) 1912 { 1913 int i; 1914 1915 MLXSW_REG_ZERO(cwtp, payload); 1916 mlxsw_reg_cwtp_local_port_set(payload, local_port); 1917 mlxsw_reg_cwtp_traffic_class_set(payload, traffic_class); 1918 1919 for (i = 0; i <= MLXSW_REG_CWTP_MAX_PROFILE; i++) { 1920 mlxsw_reg_cwtp_profile_min_set(payload, i, 1921 MLXSW_REG_CWTP_MIN_VALUE); 1922 mlxsw_reg_cwtp_profile_max_set(payload, i, 1923 MLXSW_REG_CWTP_MIN_VALUE); 1924 } 1925 } 1926 1927 #define MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile) (profile - 1) 1928 1929 static inline void 1930 mlxsw_reg_cwtp_profile_pack(char *payload, u8 profile, u32 min, u32 max, 1931 u32 probability) 1932 { 1933 u8 index = MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile); 1934 1935 mlxsw_reg_cwtp_profile_min_set(payload, index, min); 1936 mlxsw_reg_cwtp_profile_max_set(payload, index, max); 1937 mlxsw_reg_cwtp_profile_percent_set(payload, index, probability); 1938 } 1939 1940 /* CWTPM - Congestion WRED ECN TClass and Pool Mapping 1941 * --------------------------------------------------- 1942 * The CWTPM register maps each egress port and traffic class to profile num. 1943 */ 1944 #define MLXSW_REG_CWTPM_ID 0x2803 1945 #define MLXSW_REG_CWTPM_LEN 0x44 1946 1947 MLXSW_REG_DEFINE(cwtpm, MLXSW_REG_CWTPM_ID, MLXSW_REG_CWTPM_LEN); 1948 1949 /* reg_cwtpm_local_port 1950 * Local port number 1951 * Not supported for CPU port 1952 * Access: Index 1953 */ 1954 MLXSW_ITEM32(reg, cwtpm, local_port, 0, 16, 8); 1955 1956 /* reg_cwtpm_traffic_class 1957 * Traffic Class to configure 1958 * Access: Index 1959 */ 1960 MLXSW_ITEM32(reg, cwtpm, traffic_class, 32, 0, 8); 1961 1962 /* reg_cwtpm_ew 1963 * Control enablement of WRED for traffic class: 1964 * 0 - Disable 1965 * 1 - Enable 1966 * Access: RW 1967 */ 1968 MLXSW_ITEM32(reg, cwtpm, ew, 36, 1, 1); 1969 1970 /* reg_cwtpm_ee 1971 * Control enablement of ECN for traffic class: 1972 * 0 - Disable 1973 * 1 - Enable 1974 * Access: RW 1975 */ 1976 MLXSW_ITEM32(reg, cwtpm, ee, 36, 0, 1); 1977 1978 /* reg_cwtpm_tcp_g 1979 * TCP Green Profile. 1980 * Index of the profile within {port, traffic class} to use. 1981 * 0 for disabling both WRED and ECN for this type of traffic. 1982 * Access: RW 1983 */ 1984 MLXSW_ITEM32(reg, cwtpm, tcp_g, 52, 0, 2); 1985 1986 /* reg_cwtpm_tcp_y 1987 * TCP Yellow Profile. 1988 * Index of the profile within {port, traffic class} to use. 1989 * 0 for disabling both WRED and ECN for this type of traffic. 1990 * Access: RW 1991 */ 1992 MLXSW_ITEM32(reg, cwtpm, tcp_y, 56, 16, 2); 1993 1994 /* reg_cwtpm_tcp_r 1995 * TCP Red Profile. 1996 * Index of the profile within {port, traffic class} to use. 1997 * 0 for disabling both WRED and ECN for this type of traffic. 1998 * Access: RW 1999 */ 2000 MLXSW_ITEM32(reg, cwtpm, tcp_r, 56, 0, 2); 2001 2002 /* reg_cwtpm_ntcp_g 2003 * Non-TCP Green Profile. 2004 * Index of the profile within {port, traffic class} to use. 2005 * 0 for disabling both WRED and ECN for this type of traffic. 2006 * Access: RW 2007 */ 2008 MLXSW_ITEM32(reg, cwtpm, ntcp_g, 60, 0, 2); 2009 2010 /* reg_cwtpm_ntcp_y 2011 * Non-TCP Yellow Profile. 2012 * Index of the profile within {port, traffic class} to use. 2013 * 0 for disabling both WRED and ECN for this type of traffic. 2014 * Access: RW 2015 */ 2016 MLXSW_ITEM32(reg, cwtpm, ntcp_y, 64, 16, 2); 2017 2018 /* reg_cwtpm_ntcp_r 2019 * Non-TCP Red Profile. 2020 * Index of the profile within {port, traffic class} to use. 2021 * 0 for disabling both WRED and ECN for this type of traffic. 2022 * Access: RW 2023 */ 2024 MLXSW_ITEM32(reg, cwtpm, ntcp_r, 64, 0, 2); 2025 2026 #define MLXSW_REG_CWTPM_RESET_PROFILE 0 2027 2028 static inline void mlxsw_reg_cwtpm_pack(char *payload, u8 local_port, 2029 u8 traffic_class, u8 profile, 2030 bool wred, bool ecn) 2031 { 2032 MLXSW_REG_ZERO(cwtpm, payload); 2033 mlxsw_reg_cwtpm_local_port_set(payload, local_port); 2034 mlxsw_reg_cwtpm_traffic_class_set(payload, traffic_class); 2035 mlxsw_reg_cwtpm_ew_set(payload, wred); 2036 mlxsw_reg_cwtpm_ee_set(payload, ecn); 2037 mlxsw_reg_cwtpm_tcp_g_set(payload, profile); 2038 mlxsw_reg_cwtpm_tcp_y_set(payload, profile); 2039 mlxsw_reg_cwtpm_tcp_r_set(payload, profile); 2040 mlxsw_reg_cwtpm_ntcp_g_set(payload, profile); 2041 mlxsw_reg_cwtpm_ntcp_y_set(payload, profile); 2042 mlxsw_reg_cwtpm_ntcp_r_set(payload, profile); 2043 } 2044 2045 /* PGCR - Policy-Engine General Configuration Register 2046 * --------------------------------------------------- 2047 * This register configures general Policy-Engine settings. 2048 */ 2049 #define MLXSW_REG_PGCR_ID 0x3001 2050 #define MLXSW_REG_PGCR_LEN 0x20 2051 2052 MLXSW_REG_DEFINE(pgcr, MLXSW_REG_PGCR_ID, MLXSW_REG_PGCR_LEN); 2053 2054 /* reg_pgcr_default_action_pointer_base 2055 * Default action pointer base. Each region has a default action pointer 2056 * which is equal to default_action_pointer_base + region_id. 2057 * Access: RW 2058 */ 2059 MLXSW_ITEM32(reg, pgcr, default_action_pointer_base, 0x1C, 0, 24); 2060 2061 static inline void mlxsw_reg_pgcr_pack(char *payload, u32 pointer_base) 2062 { 2063 MLXSW_REG_ZERO(pgcr, payload); 2064 mlxsw_reg_pgcr_default_action_pointer_base_set(payload, pointer_base); 2065 } 2066 2067 /* PPBT - Policy-Engine Port Binding Table 2068 * --------------------------------------- 2069 * This register is used for configuration of the Port Binding Table. 2070 */ 2071 #define MLXSW_REG_PPBT_ID 0x3002 2072 #define MLXSW_REG_PPBT_LEN 0x14 2073 2074 MLXSW_REG_DEFINE(ppbt, MLXSW_REG_PPBT_ID, MLXSW_REG_PPBT_LEN); 2075 2076 enum mlxsw_reg_pxbt_e { 2077 MLXSW_REG_PXBT_E_IACL, 2078 MLXSW_REG_PXBT_E_EACL, 2079 }; 2080 2081 /* reg_ppbt_e 2082 * Access: Index 2083 */ 2084 MLXSW_ITEM32(reg, ppbt, e, 0x00, 31, 1); 2085 2086 enum mlxsw_reg_pxbt_op { 2087 MLXSW_REG_PXBT_OP_BIND, 2088 MLXSW_REG_PXBT_OP_UNBIND, 2089 }; 2090 2091 /* reg_ppbt_op 2092 * Access: RW 2093 */ 2094 MLXSW_ITEM32(reg, ppbt, op, 0x00, 28, 3); 2095 2096 /* reg_ppbt_local_port 2097 * Local port. Not including CPU port. 2098 * Access: Index 2099 */ 2100 MLXSW_ITEM32(reg, ppbt, local_port, 0x00, 16, 8); 2101 2102 /* reg_ppbt_g 2103 * group - When set, the binding is of an ACL group. When cleared, 2104 * the binding is of an ACL. 2105 * Must be set to 1 for Spectrum. 2106 * Access: RW 2107 */ 2108 MLXSW_ITEM32(reg, ppbt, g, 0x10, 31, 1); 2109 2110 /* reg_ppbt_acl_info 2111 * ACL/ACL group identifier. If the g bit is set, this field should hold 2112 * the acl_group_id, else it should hold the acl_id. 2113 * Access: RW 2114 */ 2115 MLXSW_ITEM32(reg, ppbt, acl_info, 0x10, 0, 16); 2116 2117 static inline void mlxsw_reg_ppbt_pack(char *payload, enum mlxsw_reg_pxbt_e e, 2118 enum mlxsw_reg_pxbt_op op, 2119 u8 local_port, u16 acl_info) 2120 { 2121 MLXSW_REG_ZERO(ppbt, payload); 2122 mlxsw_reg_ppbt_e_set(payload, e); 2123 mlxsw_reg_ppbt_op_set(payload, op); 2124 mlxsw_reg_ppbt_local_port_set(payload, local_port); 2125 mlxsw_reg_ppbt_g_set(payload, true); 2126 mlxsw_reg_ppbt_acl_info_set(payload, acl_info); 2127 } 2128 2129 /* PACL - Policy-Engine ACL Register 2130 * --------------------------------- 2131 * This register is used for configuration of the ACL. 2132 */ 2133 #define MLXSW_REG_PACL_ID 0x3004 2134 #define MLXSW_REG_PACL_LEN 0x70 2135 2136 MLXSW_REG_DEFINE(pacl, MLXSW_REG_PACL_ID, MLXSW_REG_PACL_LEN); 2137 2138 /* reg_pacl_v 2139 * Valid. Setting the v bit makes the ACL valid. It should not be cleared 2140 * while the ACL is bounded to either a port, VLAN or ACL rule. 2141 * Access: RW 2142 */ 2143 MLXSW_ITEM32(reg, pacl, v, 0x00, 24, 1); 2144 2145 /* reg_pacl_acl_id 2146 * An identifier representing the ACL (managed by software) 2147 * Range 0 .. cap_max_acl_regions - 1 2148 * Access: Index 2149 */ 2150 MLXSW_ITEM32(reg, pacl, acl_id, 0x08, 0, 16); 2151 2152 #define MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN 16 2153 2154 /* reg_pacl_tcam_region_info 2155 * Opaque object that represents a TCAM region. 2156 * Obtained through PTAR register. 2157 * Access: RW 2158 */ 2159 MLXSW_ITEM_BUF(reg, pacl, tcam_region_info, 0x30, 2160 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 2161 2162 static inline void mlxsw_reg_pacl_pack(char *payload, u16 acl_id, 2163 bool valid, const char *tcam_region_info) 2164 { 2165 MLXSW_REG_ZERO(pacl, payload); 2166 mlxsw_reg_pacl_acl_id_set(payload, acl_id); 2167 mlxsw_reg_pacl_v_set(payload, valid); 2168 mlxsw_reg_pacl_tcam_region_info_memcpy_to(payload, tcam_region_info); 2169 } 2170 2171 /* PAGT - Policy-Engine ACL Group Table 2172 * ------------------------------------ 2173 * This register is used for configuration of the ACL Group Table. 2174 */ 2175 #define MLXSW_REG_PAGT_ID 0x3005 2176 #define MLXSW_REG_PAGT_BASE_LEN 0x30 2177 #define MLXSW_REG_PAGT_ACL_LEN 4 2178 #define MLXSW_REG_PAGT_ACL_MAX_NUM 16 2179 #define MLXSW_REG_PAGT_LEN (MLXSW_REG_PAGT_BASE_LEN + \ 2180 MLXSW_REG_PAGT_ACL_MAX_NUM * MLXSW_REG_PAGT_ACL_LEN) 2181 2182 MLXSW_REG_DEFINE(pagt, MLXSW_REG_PAGT_ID, MLXSW_REG_PAGT_LEN); 2183 2184 /* reg_pagt_size 2185 * Number of ACLs in the group. 2186 * Size 0 invalidates a group. 2187 * Range 0 .. cap_max_acl_group_size (hard coded to 16 for now) 2188 * Total number of ACLs in all groups must be lower or equal 2189 * to cap_max_acl_tot_groups 2190 * Note: a group which is binded must not be invalidated 2191 * Access: Index 2192 */ 2193 MLXSW_ITEM32(reg, pagt, size, 0x00, 0, 8); 2194 2195 /* reg_pagt_acl_group_id 2196 * An identifier (numbered from 0..cap_max_acl_groups-1) representing 2197 * the ACL Group identifier (managed by software). 2198 * Access: Index 2199 */ 2200 MLXSW_ITEM32(reg, pagt, acl_group_id, 0x08, 0, 16); 2201 2202 /* reg_pagt_multi 2203 * Multi-ACL 2204 * 0 - This ACL is the last ACL in the multi-ACL 2205 * 1 - This ACL is part of a multi-ACL 2206 * Access: RW 2207 */ 2208 MLXSW_ITEM32_INDEXED(reg, pagt, multi, 0x30, 31, 1, 0x04, 0x00, false); 2209 2210 /* reg_pagt_acl_id 2211 * ACL identifier 2212 * Access: RW 2213 */ 2214 MLXSW_ITEM32_INDEXED(reg, pagt, acl_id, 0x30, 0, 16, 0x04, 0x00, false); 2215 2216 static inline void mlxsw_reg_pagt_pack(char *payload, u16 acl_group_id) 2217 { 2218 MLXSW_REG_ZERO(pagt, payload); 2219 mlxsw_reg_pagt_acl_group_id_set(payload, acl_group_id); 2220 } 2221 2222 static inline void mlxsw_reg_pagt_acl_id_pack(char *payload, int index, 2223 u16 acl_id, bool multi) 2224 { 2225 u8 size = mlxsw_reg_pagt_size_get(payload); 2226 2227 if (index >= size) 2228 mlxsw_reg_pagt_size_set(payload, index + 1); 2229 mlxsw_reg_pagt_multi_set(payload, index, multi); 2230 mlxsw_reg_pagt_acl_id_set(payload, index, acl_id); 2231 } 2232 2233 /* PTAR - Policy-Engine TCAM Allocation Register 2234 * --------------------------------------------- 2235 * This register is used for allocation of regions in the TCAM. 2236 * Note: Query method is not supported on this register. 2237 */ 2238 #define MLXSW_REG_PTAR_ID 0x3006 2239 #define MLXSW_REG_PTAR_BASE_LEN 0x20 2240 #define MLXSW_REG_PTAR_KEY_ID_LEN 1 2241 #define MLXSW_REG_PTAR_KEY_ID_MAX_NUM 16 2242 #define MLXSW_REG_PTAR_LEN (MLXSW_REG_PTAR_BASE_LEN + \ 2243 MLXSW_REG_PTAR_KEY_ID_MAX_NUM * MLXSW_REG_PTAR_KEY_ID_LEN) 2244 2245 MLXSW_REG_DEFINE(ptar, MLXSW_REG_PTAR_ID, MLXSW_REG_PTAR_LEN); 2246 2247 enum mlxsw_reg_ptar_op { 2248 /* allocate a TCAM region */ 2249 MLXSW_REG_PTAR_OP_ALLOC, 2250 /* resize a TCAM region */ 2251 MLXSW_REG_PTAR_OP_RESIZE, 2252 /* deallocate TCAM region */ 2253 MLXSW_REG_PTAR_OP_FREE, 2254 /* test allocation */ 2255 MLXSW_REG_PTAR_OP_TEST, 2256 }; 2257 2258 /* reg_ptar_op 2259 * Access: OP 2260 */ 2261 MLXSW_ITEM32(reg, ptar, op, 0x00, 28, 4); 2262 2263 /* reg_ptar_action_set_type 2264 * Type of action set to be used on this region. 2265 * For Spectrum and Spectrum-2, this is always type 2 - "flexible" 2266 * Access: WO 2267 */ 2268 MLXSW_ITEM32(reg, ptar, action_set_type, 0x00, 16, 8); 2269 2270 enum mlxsw_reg_ptar_key_type { 2271 MLXSW_REG_PTAR_KEY_TYPE_FLEX = 0x50, /* Spetrum */ 2272 MLXSW_REG_PTAR_KEY_TYPE_FLEX2 = 0x51, /* Spectrum-2 */ 2273 }; 2274 2275 /* reg_ptar_key_type 2276 * TCAM key type for the region. 2277 * Access: WO 2278 */ 2279 MLXSW_ITEM32(reg, ptar, key_type, 0x00, 0, 8); 2280 2281 /* reg_ptar_region_size 2282 * TCAM region size. When allocating/resizing this is the requested size, 2283 * the response is the actual size. Note that actual size may be 2284 * larger than requested. 2285 * Allowed range 1 .. cap_max_rules-1 2286 * Reserved during op deallocate. 2287 * Access: WO 2288 */ 2289 MLXSW_ITEM32(reg, ptar, region_size, 0x04, 0, 16); 2290 2291 /* reg_ptar_region_id 2292 * Region identifier 2293 * Range 0 .. cap_max_regions-1 2294 * Access: Index 2295 */ 2296 MLXSW_ITEM32(reg, ptar, region_id, 0x08, 0, 16); 2297 2298 /* reg_ptar_tcam_region_info 2299 * Opaque object that represents the TCAM region. 2300 * Returned when allocating a region. 2301 * Provided by software for ACL generation and region deallocation and resize. 2302 * Access: RW 2303 */ 2304 MLXSW_ITEM_BUF(reg, ptar, tcam_region_info, 0x10, 2305 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 2306 2307 /* reg_ptar_flexible_key_id 2308 * Identifier of the Flexible Key. 2309 * Only valid if key_type == "FLEX_KEY" 2310 * The key size will be rounded up to one of the following values: 2311 * 9B, 18B, 36B, 54B. 2312 * This field is reserved for in resize operation. 2313 * Access: WO 2314 */ 2315 MLXSW_ITEM8_INDEXED(reg, ptar, flexible_key_id, 0x20, 0, 8, 2316 MLXSW_REG_PTAR_KEY_ID_LEN, 0x00, false); 2317 2318 static inline void mlxsw_reg_ptar_pack(char *payload, enum mlxsw_reg_ptar_op op, 2319 enum mlxsw_reg_ptar_key_type key_type, 2320 u16 region_size, u16 region_id, 2321 const char *tcam_region_info) 2322 { 2323 MLXSW_REG_ZERO(ptar, payload); 2324 mlxsw_reg_ptar_op_set(payload, op); 2325 mlxsw_reg_ptar_action_set_type_set(payload, 2); /* "flexible" */ 2326 mlxsw_reg_ptar_key_type_set(payload, key_type); 2327 mlxsw_reg_ptar_region_size_set(payload, region_size); 2328 mlxsw_reg_ptar_region_id_set(payload, region_id); 2329 mlxsw_reg_ptar_tcam_region_info_memcpy_to(payload, tcam_region_info); 2330 } 2331 2332 static inline void mlxsw_reg_ptar_key_id_pack(char *payload, int index, 2333 u16 key_id) 2334 { 2335 mlxsw_reg_ptar_flexible_key_id_set(payload, index, key_id); 2336 } 2337 2338 static inline void mlxsw_reg_ptar_unpack(char *payload, char *tcam_region_info) 2339 { 2340 mlxsw_reg_ptar_tcam_region_info_memcpy_from(payload, tcam_region_info); 2341 } 2342 2343 /* PPBS - Policy-Engine Policy Based Switching Register 2344 * ---------------------------------------------------- 2345 * This register retrieves and sets Policy Based Switching Table entries. 2346 */ 2347 #define MLXSW_REG_PPBS_ID 0x300C 2348 #define MLXSW_REG_PPBS_LEN 0x14 2349 2350 MLXSW_REG_DEFINE(ppbs, MLXSW_REG_PPBS_ID, MLXSW_REG_PPBS_LEN); 2351 2352 /* reg_ppbs_pbs_ptr 2353 * Index into the PBS table. 2354 * For Spectrum, the index points to the KVD Linear. 2355 * Access: Index 2356 */ 2357 MLXSW_ITEM32(reg, ppbs, pbs_ptr, 0x08, 0, 24); 2358 2359 /* reg_ppbs_system_port 2360 * Unique port identifier for the final destination of the packet. 2361 * Access: RW 2362 */ 2363 MLXSW_ITEM32(reg, ppbs, system_port, 0x10, 0, 16); 2364 2365 static inline void mlxsw_reg_ppbs_pack(char *payload, u32 pbs_ptr, 2366 u16 system_port) 2367 { 2368 MLXSW_REG_ZERO(ppbs, payload); 2369 mlxsw_reg_ppbs_pbs_ptr_set(payload, pbs_ptr); 2370 mlxsw_reg_ppbs_system_port_set(payload, system_port); 2371 } 2372 2373 /* PRCR - Policy-Engine Rules Copy Register 2374 * ---------------------------------------- 2375 * This register is used for accessing rules within a TCAM region. 2376 */ 2377 #define MLXSW_REG_PRCR_ID 0x300D 2378 #define MLXSW_REG_PRCR_LEN 0x40 2379 2380 MLXSW_REG_DEFINE(prcr, MLXSW_REG_PRCR_ID, MLXSW_REG_PRCR_LEN); 2381 2382 enum mlxsw_reg_prcr_op { 2383 /* Move rules. Moves the rules from "tcam_region_info" starting 2384 * at offset "offset" to "dest_tcam_region_info" 2385 * at offset "dest_offset." 2386 */ 2387 MLXSW_REG_PRCR_OP_MOVE, 2388 /* Copy rules. Copies the rules from "tcam_region_info" starting 2389 * at offset "offset" to "dest_tcam_region_info" 2390 * at offset "dest_offset." 2391 */ 2392 MLXSW_REG_PRCR_OP_COPY, 2393 }; 2394 2395 /* reg_prcr_op 2396 * Access: OP 2397 */ 2398 MLXSW_ITEM32(reg, prcr, op, 0x00, 28, 4); 2399 2400 /* reg_prcr_offset 2401 * Offset within the source region to copy/move from. 2402 * Access: Index 2403 */ 2404 MLXSW_ITEM32(reg, prcr, offset, 0x00, 0, 16); 2405 2406 /* reg_prcr_size 2407 * The number of rules to copy/move. 2408 * Access: WO 2409 */ 2410 MLXSW_ITEM32(reg, prcr, size, 0x04, 0, 16); 2411 2412 /* reg_prcr_tcam_region_info 2413 * Opaque object that represents the source TCAM region. 2414 * Access: Index 2415 */ 2416 MLXSW_ITEM_BUF(reg, prcr, tcam_region_info, 0x10, 2417 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 2418 2419 /* reg_prcr_dest_offset 2420 * Offset within the source region to copy/move to. 2421 * Access: Index 2422 */ 2423 MLXSW_ITEM32(reg, prcr, dest_offset, 0x20, 0, 16); 2424 2425 /* reg_prcr_dest_tcam_region_info 2426 * Opaque object that represents the destination TCAM region. 2427 * Access: Index 2428 */ 2429 MLXSW_ITEM_BUF(reg, prcr, dest_tcam_region_info, 0x30, 2430 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 2431 2432 static inline void mlxsw_reg_prcr_pack(char *payload, enum mlxsw_reg_prcr_op op, 2433 const char *src_tcam_region_info, 2434 u16 src_offset, 2435 const char *dest_tcam_region_info, 2436 u16 dest_offset, u16 size) 2437 { 2438 MLXSW_REG_ZERO(prcr, payload); 2439 mlxsw_reg_prcr_op_set(payload, op); 2440 mlxsw_reg_prcr_offset_set(payload, src_offset); 2441 mlxsw_reg_prcr_size_set(payload, size); 2442 mlxsw_reg_prcr_tcam_region_info_memcpy_to(payload, 2443 src_tcam_region_info); 2444 mlxsw_reg_prcr_dest_offset_set(payload, dest_offset); 2445 mlxsw_reg_prcr_dest_tcam_region_info_memcpy_to(payload, 2446 dest_tcam_region_info); 2447 } 2448 2449 /* PEFA - Policy-Engine Extended Flexible Action Register 2450 * ------------------------------------------------------ 2451 * This register is used for accessing an extended flexible action entry 2452 * in the central KVD Linear Database. 2453 */ 2454 #define MLXSW_REG_PEFA_ID 0x300F 2455 #define MLXSW_REG_PEFA_LEN 0xB0 2456 2457 MLXSW_REG_DEFINE(pefa, MLXSW_REG_PEFA_ID, MLXSW_REG_PEFA_LEN); 2458 2459 /* reg_pefa_index 2460 * Index in the KVD Linear Centralized Database. 2461 * Access: Index 2462 */ 2463 MLXSW_ITEM32(reg, pefa, index, 0x00, 0, 24); 2464 2465 /* reg_pefa_a 2466 * Index in the KVD Linear Centralized Database. 2467 * Activity 2468 * For a new entry: set if ca=0, clear if ca=1 2469 * Set if a packet lookup has hit on the specific entry 2470 * Access: RO 2471 */ 2472 MLXSW_ITEM32(reg, pefa, a, 0x04, 29, 1); 2473 2474 /* reg_pefa_ca 2475 * Clear activity 2476 * When write: activity is according to this field 2477 * When read: after reading the activity is cleared according to ca 2478 * Access: OP 2479 */ 2480 MLXSW_ITEM32(reg, pefa, ca, 0x04, 24, 1); 2481 2482 #define MLXSW_REG_FLEX_ACTION_SET_LEN 0xA8 2483 2484 /* reg_pefa_flex_action_set 2485 * Action-set to perform when rule is matched. 2486 * Must be zero padded if action set is shorter. 2487 * Access: RW 2488 */ 2489 MLXSW_ITEM_BUF(reg, pefa, flex_action_set, 0x08, MLXSW_REG_FLEX_ACTION_SET_LEN); 2490 2491 static inline void mlxsw_reg_pefa_pack(char *payload, u32 index, bool ca, 2492 const char *flex_action_set) 2493 { 2494 MLXSW_REG_ZERO(pefa, payload); 2495 mlxsw_reg_pefa_index_set(payload, index); 2496 mlxsw_reg_pefa_ca_set(payload, ca); 2497 if (flex_action_set) 2498 mlxsw_reg_pefa_flex_action_set_memcpy_to(payload, 2499 flex_action_set); 2500 } 2501 2502 static inline void mlxsw_reg_pefa_unpack(char *payload, bool *p_a) 2503 { 2504 *p_a = mlxsw_reg_pefa_a_get(payload); 2505 } 2506 2507 /* PEMRBT - Policy-Engine Multicast Router Binding Table Register 2508 * -------------------------------------------------------------- 2509 * This register is used for binding Multicast router to an ACL group 2510 * that serves the MC router. 2511 * This register is not supported by SwitchX/-2 and Spectrum. 2512 */ 2513 #define MLXSW_REG_PEMRBT_ID 0x3014 2514 #define MLXSW_REG_PEMRBT_LEN 0x14 2515 2516 MLXSW_REG_DEFINE(pemrbt, MLXSW_REG_PEMRBT_ID, MLXSW_REG_PEMRBT_LEN); 2517 2518 enum mlxsw_reg_pemrbt_protocol { 2519 MLXSW_REG_PEMRBT_PROTO_IPV4, 2520 MLXSW_REG_PEMRBT_PROTO_IPV6, 2521 }; 2522 2523 /* reg_pemrbt_protocol 2524 * Access: Index 2525 */ 2526 MLXSW_ITEM32(reg, pemrbt, protocol, 0x00, 0, 1); 2527 2528 /* reg_pemrbt_group_id 2529 * ACL group identifier. 2530 * Range 0..cap_max_acl_groups-1 2531 * Access: RW 2532 */ 2533 MLXSW_ITEM32(reg, pemrbt, group_id, 0x10, 0, 16); 2534 2535 static inline void 2536 mlxsw_reg_pemrbt_pack(char *payload, enum mlxsw_reg_pemrbt_protocol protocol, 2537 u16 group_id) 2538 { 2539 MLXSW_REG_ZERO(pemrbt, payload); 2540 mlxsw_reg_pemrbt_protocol_set(payload, protocol); 2541 mlxsw_reg_pemrbt_group_id_set(payload, group_id); 2542 } 2543 2544 /* PTCE-V2 - Policy-Engine TCAM Entry Register Version 2 2545 * ----------------------------------------------------- 2546 * This register is used for accessing rules within a TCAM region. 2547 * It is a new version of PTCE in order to support wider key, 2548 * mask and action within a TCAM region. This register is not supported 2549 * by SwitchX and SwitchX-2. 2550 */ 2551 #define MLXSW_REG_PTCE2_ID 0x3017 2552 #define MLXSW_REG_PTCE2_LEN 0x1D8 2553 2554 MLXSW_REG_DEFINE(ptce2, MLXSW_REG_PTCE2_ID, MLXSW_REG_PTCE2_LEN); 2555 2556 /* reg_ptce2_v 2557 * Valid. 2558 * Access: RW 2559 */ 2560 MLXSW_ITEM32(reg, ptce2, v, 0x00, 31, 1); 2561 2562 /* reg_ptce2_a 2563 * Activity. Set if a packet lookup has hit on the specific entry. 2564 * To clear the "a" bit, use "clear activity" op or "clear on read" op. 2565 * Access: RO 2566 */ 2567 MLXSW_ITEM32(reg, ptce2, a, 0x00, 30, 1); 2568 2569 enum mlxsw_reg_ptce2_op { 2570 /* Read operation. */ 2571 MLXSW_REG_PTCE2_OP_QUERY_READ = 0, 2572 /* clear on read operation. Used to read entry 2573 * and clear Activity bit. 2574 */ 2575 MLXSW_REG_PTCE2_OP_QUERY_CLEAR_ON_READ = 1, 2576 /* Write operation. Used to write a new entry to the table. 2577 * All R/W fields are relevant for new entry. Activity bit is set 2578 * for new entries - Note write with v = 0 will delete the entry. 2579 */ 2580 MLXSW_REG_PTCE2_OP_WRITE_WRITE = 0, 2581 /* Update action. Only action set will be updated. */ 2582 MLXSW_REG_PTCE2_OP_WRITE_UPDATE = 1, 2583 /* Clear activity. A bit is cleared for the entry. */ 2584 MLXSW_REG_PTCE2_OP_WRITE_CLEAR_ACTIVITY = 2, 2585 }; 2586 2587 /* reg_ptce2_op 2588 * Access: OP 2589 */ 2590 MLXSW_ITEM32(reg, ptce2, op, 0x00, 20, 3); 2591 2592 /* reg_ptce2_offset 2593 * Access: Index 2594 */ 2595 MLXSW_ITEM32(reg, ptce2, offset, 0x00, 0, 16); 2596 2597 /* reg_ptce2_priority 2598 * Priority of the rule, higher values win. The range is 1..cap_kvd_size-1. 2599 * Note: priority does not have to be unique per rule. 2600 * Within a region, higher priority should have lower offset (no limitation 2601 * between regions in a multi-region). 2602 * Access: RW 2603 */ 2604 MLXSW_ITEM32(reg, ptce2, priority, 0x04, 0, 24); 2605 2606 /* reg_ptce2_tcam_region_info 2607 * Opaque object that represents the TCAM region. 2608 * Access: Index 2609 */ 2610 MLXSW_ITEM_BUF(reg, ptce2, tcam_region_info, 0x10, 2611 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 2612 2613 #define MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN 96 2614 2615 /* reg_ptce2_flex_key_blocks 2616 * ACL Key. 2617 * Access: RW 2618 */ 2619 MLXSW_ITEM_BUF(reg, ptce2, flex_key_blocks, 0x20, 2620 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); 2621 2622 /* reg_ptce2_mask 2623 * mask- in the same size as key. A bit that is set directs the TCAM 2624 * to compare the corresponding bit in key. A bit that is clear directs 2625 * the TCAM to ignore the corresponding bit in key. 2626 * Access: RW 2627 */ 2628 MLXSW_ITEM_BUF(reg, ptce2, mask, 0x80, 2629 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); 2630 2631 /* reg_ptce2_flex_action_set 2632 * ACL action set. 2633 * Access: RW 2634 */ 2635 MLXSW_ITEM_BUF(reg, ptce2, flex_action_set, 0xE0, 2636 MLXSW_REG_FLEX_ACTION_SET_LEN); 2637 2638 static inline void mlxsw_reg_ptce2_pack(char *payload, bool valid, 2639 enum mlxsw_reg_ptce2_op op, 2640 const char *tcam_region_info, 2641 u16 offset, u32 priority) 2642 { 2643 MLXSW_REG_ZERO(ptce2, payload); 2644 mlxsw_reg_ptce2_v_set(payload, valid); 2645 mlxsw_reg_ptce2_op_set(payload, op); 2646 mlxsw_reg_ptce2_offset_set(payload, offset); 2647 mlxsw_reg_ptce2_priority_set(payload, priority); 2648 mlxsw_reg_ptce2_tcam_region_info_memcpy_to(payload, tcam_region_info); 2649 } 2650 2651 /* PERPT - Policy-Engine ERP Table Register 2652 * ---------------------------------------- 2653 * This register adds and removes eRPs from the eRP table. 2654 */ 2655 #define MLXSW_REG_PERPT_ID 0x3021 2656 #define MLXSW_REG_PERPT_LEN 0x80 2657 2658 MLXSW_REG_DEFINE(perpt, MLXSW_REG_PERPT_ID, MLXSW_REG_PERPT_LEN); 2659 2660 /* reg_perpt_erpt_bank 2661 * eRP table bank. 2662 * Range 0 .. cap_max_erp_table_banks - 1 2663 * Access: Index 2664 */ 2665 MLXSW_ITEM32(reg, perpt, erpt_bank, 0x00, 16, 4); 2666 2667 /* reg_perpt_erpt_index 2668 * Index to eRP table within the eRP bank. 2669 * Range is 0 .. cap_max_erp_table_bank_size - 1 2670 * Access: Index 2671 */ 2672 MLXSW_ITEM32(reg, perpt, erpt_index, 0x00, 0, 8); 2673 2674 enum mlxsw_reg_perpt_key_size { 2675 MLXSW_REG_PERPT_KEY_SIZE_2KB, 2676 MLXSW_REG_PERPT_KEY_SIZE_4KB, 2677 MLXSW_REG_PERPT_KEY_SIZE_8KB, 2678 MLXSW_REG_PERPT_KEY_SIZE_12KB, 2679 }; 2680 2681 /* reg_perpt_key_size 2682 * Access: OP 2683 */ 2684 MLXSW_ITEM32(reg, perpt, key_size, 0x04, 0, 4); 2685 2686 /* reg_perpt_bf_bypass 2687 * 0 - The eRP is used only if bloom filter state is set for the given 2688 * rule. 2689 * 1 - The eRP is used regardless of bloom filter state. 2690 * The bypass is an OR condition of region_id or eRP. See PERCR.bf_bypass 2691 * Access: RW 2692 */ 2693 MLXSW_ITEM32(reg, perpt, bf_bypass, 0x08, 8, 1); 2694 2695 /* reg_perpt_erp_id 2696 * eRP ID for use by the rules. 2697 * Access: RW 2698 */ 2699 MLXSW_ITEM32(reg, perpt, erp_id, 0x08, 0, 4); 2700 2701 /* reg_perpt_erpt_base_bank 2702 * Base eRP table bank, points to head of erp_vector 2703 * Range is 0 .. cap_max_erp_table_banks - 1 2704 * Access: OP 2705 */ 2706 MLXSW_ITEM32(reg, perpt, erpt_base_bank, 0x0C, 16, 4); 2707 2708 /* reg_perpt_erpt_base_index 2709 * Base index to eRP table within the eRP bank 2710 * Range is 0 .. cap_max_erp_table_bank_size - 1 2711 * Access: OP 2712 */ 2713 MLXSW_ITEM32(reg, perpt, erpt_base_index, 0x0C, 0, 8); 2714 2715 /* reg_perpt_erp_index_in_vector 2716 * eRP index in the vector. 2717 * Access: OP 2718 */ 2719 MLXSW_ITEM32(reg, perpt, erp_index_in_vector, 0x10, 0, 4); 2720 2721 /* reg_perpt_erp_vector 2722 * eRP vector. 2723 * Access: OP 2724 */ 2725 MLXSW_ITEM_BIT_ARRAY(reg, perpt, erp_vector, 0x14, 4, 1); 2726 2727 /* reg_perpt_mask 2728 * Mask 2729 * 0 - A-TCAM will ignore the bit in key 2730 * 1 - A-TCAM will compare the bit in key 2731 * Access: RW 2732 */ 2733 MLXSW_ITEM_BUF(reg, perpt, mask, 0x20, MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); 2734 2735 static inline void mlxsw_reg_perpt_erp_vector_pack(char *payload, 2736 unsigned long *erp_vector, 2737 unsigned long size) 2738 { 2739 unsigned long bit; 2740 2741 for_each_set_bit(bit, erp_vector, size) 2742 mlxsw_reg_perpt_erp_vector_set(payload, bit, true); 2743 } 2744 2745 static inline void 2746 mlxsw_reg_perpt_pack(char *payload, u8 erpt_bank, u8 erpt_index, 2747 enum mlxsw_reg_perpt_key_size key_size, u8 erp_id, 2748 u8 erpt_base_bank, u8 erpt_base_index, u8 erp_index, 2749 char *mask) 2750 { 2751 MLXSW_REG_ZERO(perpt, payload); 2752 mlxsw_reg_perpt_erpt_bank_set(payload, erpt_bank); 2753 mlxsw_reg_perpt_erpt_index_set(payload, erpt_index); 2754 mlxsw_reg_perpt_key_size_set(payload, key_size); 2755 mlxsw_reg_perpt_bf_bypass_set(payload, false); 2756 mlxsw_reg_perpt_erp_id_set(payload, erp_id); 2757 mlxsw_reg_perpt_erpt_base_bank_set(payload, erpt_base_bank); 2758 mlxsw_reg_perpt_erpt_base_index_set(payload, erpt_base_index); 2759 mlxsw_reg_perpt_erp_index_in_vector_set(payload, erp_index); 2760 mlxsw_reg_perpt_mask_memcpy_to(payload, mask); 2761 } 2762 2763 /* PERAR - Policy-Engine Region Association Register 2764 * ------------------------------------------------- 2765 * This register associates a hw region for region_id's. Changing on the fly 2766 * is supported by the device. 2767 */ 2768 #define MLXSW_REG_PERAR_ID 0x3026 2769 #define MLXSW_REG_PERAR_LEN 0x08 2770 2771 MLXSW_REG_DEFINE(perar, MLXSW_REG_PERAR_ID, MLXSW_REG_PERAR_LEN); 2772 2773 /* reg_perar_region_id 2774 * Region identifier 2775 * Range 0 .. cap_max_regions-1 2776 * Access: Index 2777 */ 2778 MLXSW_ITEM32(reg, perar, region_id, 0x00, 0, 16); 2779 2780 static inline unsigned int 2781 mlxsw_reg_perar_hw_regions_needed(unsigned int block_num) 2782 { 2783 return DIV_ROUND_UP(block_num, 4); 2784 } 2785 2786 /* reg_perar_hw_region 2787 * HW Region 2788 * Range 0 .. cap_max_regions-1 2789 * Default: hw_region = region_id 2790 * For a 8 key block region, 2 consecutive regions are used 2791 * For a 12 key block region, 3 consecutive regions are used 2792 * Access: RW 2793 */ 2794 MLXSW_ITEM32(reg, perar, hw_region, 0x04, 0, 16); 2795 2796 static inline void mlxsw_reg_perar_pack(char *payload, u16 region_id, 2797 u16 hw_region) 2798 { 2799 MLXSW_REG_ZERO(perar, payload); 2800 mlxsw_reg_perar_region_id_set(payload, region_id); 2801 mlxsw_reg_perar_hw_region_set(payload, hw_region); 2802 } 2803 2804 /* PTCE-V3 - Policy-Engine TCAM Entry Register Version 3 2805 * ----------------------------------------------------- 2806 * This register is a new version of PTCE-V2 in order to support the 2807 * A-TCAM. This register is not supported by SwitchX/-2 and Spectrum. 2808 */ 2809 #define MLXSW_REG_PTCE3_ID 0x3027 2810 #define MLXSW_REG_PTCE3_LEN 0xF0 2811 2812 MLXSW_REG_DEFINE(ptce3, MLXSW_REG_PTCE3_ID, MLXSW_REG_PTCE3_LEN); 2813 2814 /* reg_ptce3_v 2815 * Valid. 2816 * Access: RW 2817 */ 2818 MLXSW_ITEM32(reg, ptce3, v, 0x00, 31, 1); 2819 2820 enum mlxsw_reg_ptce3_op { 2821 /* Write operation. Used to write a new entry to the table. 2822 * All R/W fields are relevant for new entry. Activity bit is set 2823 * for new entries. Write with v = 0 will delete the entry. Must 2824 * not be used if an entry exists. 2825 */ 2826 MLXSW_REG_PTCE3_OP_WRITE_WRITE = 0, 2827 /* Update operation */ 2828 MLXSW_REG_PTCE3_OP_WRITE_UPDATE = 1, 2829 /* Read operation */ 2830 MLXSW_REG_PTCE3_OP_QUERY_READ = 0, 2831 }; 2832 2833 /* reg_ptce3_op 2834 * Access: OP 2835 */ 2836 MLXSW_ITEM32(reg, ptce3, op, 0x00, 20, 3); 2837 2838 /* reg_ptce3_priority 2839 * Priority of the rule. Higher values win. 2840 * For Spectrum-2 range is 1..cap_kvd_size - 1 2841 * Note: Priority does not have to be unique per rule. 2842 * Access: RW 2843 */ 2844 MLXSW_ITEM32(reg, ptce3, priority, 0x04, 0, 24); 2845 2846 /* reg_ptce3_tcam_region_info 2847 * Opaque object that represents the TCAM region. 2848 * Access: Index 2849 */ 2850 MLXSW_ITEM_BUF(reg, ptce3, tcam_region_info, 0x10, 2851 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 2852 2853 /* reg_ptce3_flex2_key_blocks 2854 * ACL key. The key must be masked according to eRP (if exists) or 2855 * according to master mask. 2856 * Access: Index 2857 */ 2858 MLXSW_ITEM_BUF(reg, ptce3, flex2_key_blocks, 0x20, 2859 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); 2860 2861 /* reg_ptce3_erp_id 2862 * eRP ID. 2863 * Access: Index 2864 */ 2865 MLXSW_ITEM32(reg, ptce3, erp_id, 0x80, 0, 4); 2866 2867 /* reg_ptce3_delta_start 2868 * Start point of delta_value and delta_mask, in bits. Must not exceed 2869 * num_key_blocks * 36 - 8. Reserved when delta_mask = 0. 2870 * Access: Index 2871 */ 2872 MLXSW_ITEM32(reg, ptce3, delta_start, 0x84, 0, 10); 2873 2874 /* reg_ptce3_delta_mask 2875 * Delta mask. 2876 * 0 - Ignore relevant bit in delta_value 2877 * 1 - Compare relevant bit in delta_value 2878 * Delta mask must not be set for reserved fields in the key blocks. 2879 * Note: No delta when no eRPs. Thus, for regions with 2880 * PERERP.erpt_pointer_valid = 0 the delta mask must be 0. 2881 * Access: Index 2882 */ 2883 MLXSW_ITEM32(reg, ptce3, delta_mask, 0x88, 16, 8); 2884 2885 /* reg_ptce3_delta_value 2886 * Delta value. 2887 * Bits which are masked by delta_mask must be 0. 2888 * Access: Index 2889 */ 2890 MLXSW_ITEM32(reg, ptce3, delta_value, 0x88, 0, 8); 2891 2892 /* reg_ptce3_prune_vector 2893 * Pruning vector relative to the PERPT.erp_id. 2894 * Used for reducing lookups. 2895 * 0 - NEED: Do a lookup using the eRP. 2896 * 1 - PRUNE: Do not perform a lookup using the eRP. 2897 * Maybe be modified by PEAPBL and PEAPBM. 2898 * Note: In Spectrum-2, a region of 8 key blocks must be set to either 2899 * all 1's or all 0's. 2900 * Access: RW 2901 */ 2902 MLXSW_ITEM_BIT_ARRAY(reg, ptce3, prune_vector, 0x90, 4, 1); 2903 2904 /* reg_ptce3_prune_ctcam 2905 * Pruning on C-TCAM. Used for reducing lookups. 2906 * 0 - NEED: Do a lookup in the C-TCAM. 2907 * 1 - PRUNE: Do not perform a lookup in the C-TCAM. 2908 * Access: RW 2909 */ 2910 MLXSW_ITEM32(reg, ptce3, prune_ctcam, 0x94, 31, 1); 2911 2912 /* reg_ptce3_large_exists 2913 * Large entry key ID exists. 2914 * Within the region: 2915 * 0 - SINGLE: The large_entry_key_id is not currently in use. 2916 * For rule insert: The MSB of the key (blocks 6..11) will be added. 2917 * For rule delete: The MSB of the key will be removed. 2918 * 1 - NON_SINGLE: The large_entry_key_id is currently in use. 2919 * For rule insert: The MSB of the key (blocks 6..11) will not be added. 2920 * For rule delete: The MSB of the key will not be removed. 2921 * Access: WO 2922 */ 2923 MLXSW_ITEM32(reg, ptce3, large_exists, 0x98, 31, 1); 2924 2925 /* reg_ptce3_large_entry_key_id 2926 * Large entry key ID. 2927 * A key for 12 key blocks rules. Reserved when region has less than 12 key 2928 * blocks. Must be different for different keys which have the same common 2929 * 6 key blocks (MSB, blocks 6..11) key within a region. 2930 * Range is 0..cap_max_pe_large_key_id - 1 2931 * Access: RW 2932 */ 2933 MLXSW_ITEM32(reg, ptce3, large_entry_key_id, 0x98, 0, 24); 2934 2935 /* reg_ptce3_action_pointer 2936 * Pointer to action. 2937 * Range is 0..cap_max_kvd_action_sets - 1 2938 * Access: RW 2939 */ 2940 MLXSW_ITEM32(reg, ptce3, action_pointer, 0xA0, 0, 24); 2941 2942 static inline void mlxsw_reg_ptce3_pack(char *payload, bool valid, 2943 enum mlxsw_reg_ptce3_op op, 2944 u32 priority, 2945 const char *tcam_region_info, 2946 const char *key, u8 erp_id, 2947 u16 delta_start, u8 delta_mask, 2948 u8 delta_value, bool large_exists, 2949 u32 lkey_id, u32 action_pointer) 2950 { 2951 MLXSW_REG_ZERO(ptce3, payload); 2952 mlxsw_reg_ptce3_v_set(payload, valid); 2953 mlxsw_reg_ptce3_op_set(payload, op); 2954 mlxsw_reg_ptce3_priority_set(payload, priority); 2955 mlxsw_reg_ptce3_tcam_region_info_memcpy_to(payload, tcam_region_info); 2956 mlxsw_reg_ptce3_flex2_key_blocks_memcpy_to(payload, key); 2957 mlxsw_reg_ptce3_erp_id_set(payload, erp_id); 2958 mlxsw_reg_ptce3_delta_start_set(payload, delta_start); 2959 mlxsw_reg_ptce3_delta_mask_set(payload, delta_mask); 2960 mlxsw_reg_ptce3_delta_value_set(payload, delta_value); 2961 mlxsw_reg_ptce3_large_exists_set(payload, large_exists); 2962 mlxsw_reg_ptce3_large_entry_key_id_set(payload, lkey_id); 2963 mlxsw_reg_ptce3_action_pointer_set(payload, action_pointer); 2964 } 2965 2966 /* PERCR - Policy-Engine Region Configuration Register 2967 * --------------------------------------------------- 2968 * This register configures the region parameters. The region_id must be 2969 * allocated. 2970 */ 2971 #define MLXSW_REG_PERCR_ID 0x302A 2972 #define MLXSW_REG_PERCR_LEN 0x80 2973 2974 MLXSW_REG_DEFINE(percr, MLXSW_REG_PERCR_ID, MLXSW_REG_PERCR_LEN); 2975 2976 /* reg_percr_region_id 2977 * Region identifier. 2978 * Range 0..cap_max_regions-1 2979 * Access: Index 2980 */ 2981 MLXSW_ITEM32(reg, percr, region_id, 0x00, 0, 16); 2982 2983 /* reg_percr_atcam_ignore_prune 2984 * Ignore prune_vector by other A-TCAM rules. Used e.g., for a new rule. 2985 * Access: RW 2986 */ 2987 MLXSW_ITEM32(reg, percr, atcam_ignore_prune, 0x04, 25, 1); 2988 2989 /* reg_percr_ctcam_ignore_prune 2990 * Ignore prune_ctcam by other A-TCAM rules. Used e.g., for a new rule. 2991 * Access: RW 2992 */ 2993 MLXSW_ITEM32(reg, percr, ctcam_ignore_prune, 0x04, 24, 1); 2994 2995 /* reg_percr_bf_bypass 2996 * Bloom filter bypass. 2997 * 0 - Bloom filter is used (default) 2998 * 1 - Bloom filter is bypassed. The bypass is an OR condition of 2999 * region_id or eRP. See PERPT.bf_bypass 3000 * Access: RW 3001 */ 3002 MLXSW_ITEM32(reg, percr, bf_bypass, 0x04, 16, 1); 3003 3004 /* reg_percr_master_mask 3005 * Master mask. Logical OR mask of all masks of all rules of a region 3006 * (both A-TCAM and C-TCAM). When there are no eRPs 3007 * (erpt_pointer_valid = 0), then this provides the mask. 3008 * Access: RW 3009 */ 3010 MLXSW_ITEM_BUF(reg, percr, master_mask, 0x20, 96); 3011 3012 static inline void mlxsw_reg_percr_pack(char *payload, u16 region_id) 3013 { 3014 MLXSW_REG_ZERO(percr, payload); 3015 mlxsw_reg_percr_region_id_set(payload, region_id); 3016 mlxsw_reg_percr_atcam_ignore_prune_set(payload, false); 3017 mlxsw_reg_percr_ctcam_ignore_prune_set(payload, false); 3018 mlxsw_reg_percr_bf_bypass_set(payload, false); 3019 } 3020 3021 /* PERERP - Policy-Engine Region eRP Register 3022 * ------------------------------------------ 3023 * This register configures the region eRP. The region_id must be 3024 * allocated. 3025 */ 3026 #define MLXSW_REG_PERERP_ID 0x302B 3027 #define MLXSW_REG_PERERP_LEN 0x1C 3028 3029 MLXSW_REG_DEFINE(pererp, MLXSW_REG_PERERP_ID, MLXSW_REG_PERERP_LEN); 3030 3031 /* reg_pererp_region_id 3032 * Region identifier. 3033 * Range 0..cap_max_regions-1 3034 * Access: Index 3035 */ 3036 MLXSW_ITEM32(reg, pererp, region_id, 0x00, 0, 16); 3037 3038 /* reg_pererp_ctcam_le 3039 * C-TCAM lookup enable. Reserved when erpt_pointer_valid = 0. 3040 * Access: RW 3041 */ 3042 MLXSW_ITEM32(reg, pererp, ctcam_le, 0x04, 28, 1); 3043 3044 /* reg_pererp_erpt_pointer_valid 3045 * erpt_pointer is valid. 3046 * Access: RW 3047 */ 3048 MLXSW_ITEM32(reg, pererp, erpt_pointer_valid, 0x10, 31, 1); 3049 3050 /* reg_pererp_erpt_bank_pointer 3051 * Pointer to eRP table bank. May be modified at any time. 3052 * Range 0..cap_max_erp_table_banks-1 3053 * Reserved when erpt_pointer_valid = 0 3054 */ 3055 MLXSW_ITEM32(reg, pererp, erpt_bank_pointer, 0x10, 16, 4); 3056 3057 /* reg_pererp_erpt_pointer 3058 * Pointer to eRP table within the eRP bank. Can be changed for an 3059 * existing region. 3060 * Range 0..cap_max_erp_table_size-1 3061 * Reserved when erpt_pointer_valid = 0 3062 * Access: RW 3063 */ 3064 MLXSW_ITEM32(reg, pererp, erpt_pointer, 0x10, 0, 8); 3065 3066 /* reg_pererp_erpt_vector 3067 * Vector of allowed eRP indexes starting from erpt_pointer within the 3068 * erpt_bank_pointer. Next entries will be in next bank. 3069 * Note that eRP index is used and not eRP ID. 3070 * Reserved when erpt_pointer_valid = 0 3071 * Access: RW 3072 */ 3073 MLXSW_ITEM_BIT_ARRAY(reg, pererp, erpt_vector, 0x14, 4, 1); 3074 3075 /* reg_pererp_master_rp_id 3076 * Master RP ID. When there are no eRPs, then this provides the eRP ID 3077 * for the lookup. Can be changed for an existing region. 3078 * Reserved when erpt_pointer_valid = 1 3079 * Access: RW 3080 */ 3081 MLXSW_ITEM32(reg, pererp, master_rp_id, 0x18, 0, 4); 3082 3083 static inline void mlxsw_reg_pererp_erp_vector_pack(char *payload, 3084 unsigned long *erp_vector, 3085 unsigned long size) 3086 { 3087 unsigned long bit; 3088 3089 for_each_set_bit(bit, erp_vector, size) 3090 mlxsw_reg_pererp_erpt_vector_set(payload, bit, true); 3091 } 3092 3093 static inline void mlxsw_reg_pererp_pack(char *payload, u16 region_id, 3094 bool ctcam_le, bool erpt_pointer_valid, 3095 u8 erpt_bank_pointer, u8 erpt_pointer, 3096 u8 master_rp_id) 3097 { 3098 MLXSW_REG_ZERO(pererp, payload); 3099 mlxsw_reg_pererp_region_id_set(payload, region_id); 3100 mlxsw_reg_pererp_ctcam_le_set(payload, ctcam_le); 3101 mlxsw_reg_pererp_erpt_pointer_valid_set(payload, erpt_pointer_valid); 3102 mlxsw_reg_pererp_erpt_bank_pointer_set(payload, erpt_bank_pointer); 3103 mlxsw_reg_pererp_erpt_pointer_set(payload, erpt_pointer); 3104 mlxsw_reg_pererp_master_rp_id_set(payload, master_rp_id); 3105 } 3106 3107 /* PEABFE - Policy-Engine Algorithmic Bloom Filter Entries Register 3108 * ---------------------------------------------------------------- 3109 * This register configures the Bloom filter entries. 3110 */ 3111 #define MLXSW_REG_PEABFE_ID 0x3022 3112 #define MLXSW_REG_PEABFE_BASE_LEN 0x10 3113 #define MLXSW_REG_PEABFE_BF_REC_LEN 0x4 3114 #define MLXSW_REG_PEABFE_BF_REC_MAX_COUNT 256 3115 #define MLXSW_REG_PEABFE_LEN (MLXSW_REG_PEABFE_BASE_LEN + \ 3116 MLXSW_REG_PEABFE_BF_REC_LEN * \ 3117 MLXSW_REG_PEABFE_BF_REC_MAX_COUNT) 3118 3119 MLXSW_REG_DEFINE(peabfe, MLXSW_REG_PEABFE_ID, MLXSW_REG_PEABFE_LEN); 3120 3121 /* reg_peabfe_size 3122 * Number of BF entries to be updated. 3123 * Range 1..256 3124 * Access: Op 3125 */ 3126 MLXSW_ITEM32(reg, peabfe, size, 0x00, 0, 9); 3127 3128 /* reg_peabfe_bf_entry_state 3129 * Bloom filter state 3130 * 0 - Clear 3131 * 1 - Set 3132 * Access: RW 3133 */ 3134 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_state, 3135 MLXSW_REG_PEABFE_BASE_LEN, 31, 1, 3136 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false); 3137 3138 /* reg_peabfe_bf_entry_bank 3139 * Bloom filter bank ID 3140 * Range 0..cap_max_erp_table_banks-1 3141 * Access: Index 3142 */ 3143 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_bank, 3144 MLXSW_REG_PEABFE_BASE_LEN, 24, 4, 3145 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false); 3146 3147 /* reg_peabfe_bf_entry_index 3148 * Bloom filter entry index 3149 * Range 0..2^cap_max_bf_log-1 3150 * Access: Index 3151 */ 3152 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_index, 3153 MLXSW_REG_PEABFE_BASE_LEN, 0, 24, 3154 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false); 3155 3156 static inline void mlxsw_reg_peabfe_pack(char *payload) 3157 { 3158 MLXSW_REG_ZERO(peabfe, payload); 3159 } 3160 3161 static inline void mlxsw_reg_peabfe_rec_pack(char *payload, int rec_index, 3162 u8 state, u8 bank, u32 bf_index) 3163 { 3164 u8 num_rec = mlxsw_reg_peabfe_size_get(payload); 3165 3166 if (rec_index >= num_rec) 3167 mlxsw_reg_peabfe_size_set(payload, rec_index + 1); 3168 mlxsw_reg_peabfe_bf_entry_state_set(payload, rec_index, state); 3169 mlxsw_reg_peabfe_bf_entry_bank_set(payload, rec_index, bank); 3170 mlxsw_reg_peabfe_bf_entry_index_set(payload, rec_index, bf_index); 3171 } 3172 3173 /* IEDR - Infrastructure Entry Delete Register 3174 * ---------------------------------------------------- 3175 * This register is used for deleting entries from the entry tables. 3176 * It is legitimate to attempt to delete a nonexisting entry (the device will 3177 * respond as a good flow). 3178 */ 3179 #define MLXSW_REG_IEDR_ID 0x3804 3180 #define MLXSW_REG_IEDR_BASE_LEN 0x10 /* base length, without records */ 3181 #define MLXSW_REG_IEDR_REC_LEN 0x8 /* record length */ 3182 #define MLXSW_REG_IEDR_REC_MAX_COUNT 64 3183 #define MLXSW_REG_IEDR_LEN (MLXSW_REG_IEDR_BASE_LEN + \ 3184 MLXSW_REG_IEDR_REC_LEN * \ 3185 MLXSW_REG_IEDR_REC_MAX_COUNT) 3186 3187 MLXSW_REG_DEFINE(iedr, MLXSW_REG_IEDR_ID, MLXSW_REG_IEDR_LEN); 3188 3189 /* reg_iedr_num_rec 3190 * Number of records. 3191 * Access: OP 3192 */ 3193 MLXSW_ITEM32(reg, iedr, num_rec, 0x00, 0, 8); 3194 3195 /* reg_iedr_rec_type 3196 * Resource type. 3197 * Access: OP 3198 */ 3199 MLXSW_ITEM32_INDEXED(reg, iedr, rec_type, MLXSW_REG_IEDR_BASE_LEN, 24, 8, 3200 MLXSW_REG_IEDR_REC_LEN, 0x00, false); 3201 3202 /* reg_iedr_rec_size 3203 * Size of entries do be deleted. The unit is 1 entry, regardless of entry type. 3204 * Access: OP 3205 */ 3206 MLXSW_ITEM32_INDEXED(reg, iedr, rec_size, MLXSW_REG_IEDR_BASE_LEN, 0, 11, 3207 MLXSW_REG_IEDR_REC_LEN, 0x00, false); 3208 3209 /* reg_iedr_rec_index_start 3210 * Resource index start. 3211 * Access: OP 3212 */ 3213 MLXSW_ITEM32_INDEXED(reg, iedr, rec_index_start, MLXSW_REG_IEDR_BASE_LEN, 0, 24, 3214 MLXSW_REG_IEDR_REC_LEN, 0x04, false); 3215 3216 static inline void mlxsw_reg_iedr_pack(char *payload) 3217 { 3218 MLXSW_REG_ZERO(iedr, payload); 3219 } 3220 3221 static inline void mlxsw_reg_iedr_rec_pack(char *payload, int rec_index, 3222 u8 rec_type, u16 rec_size, 3223 u32 rec_index_start) 3224 { 3225 u8 num_rec = mlxsw_reg_iedr_num_rec_get(payload); 3226 3227 if (rec_index >= num_rec) 3228 mlxsw_reg_iedr_num_rec_set(payload, rec_index + 1); 3229 mlxsw_reg_iedr_rec_type_set(payload, rec_index, rec_type); 3230 mlxsw_reg_iedr_rec_size_set(payload, rec_index, rec_size); 3231 mlxsw_reg_iedr_rec_index_start_set(payload, rec_index, rec_index_start); 3232 } 3233 3234 /* QPTS - QoS Priority Trust State Register 3235 * ---------------------------------------- 3236 * This register controls the port policy to calculate the switch priority and 3237 * packet color based on incoming packet fields. 3238 */ 3239 #define MLXSW_REG_QPTS_ID 0x4002 3240 #define MLXSW_REG_QPTS_LEN 0x8 3241 3242 MLXSW_REG_DEFINE(qpts, MLXSW_REG_QPTS_ID, MLXSW_REG_QPTS_LEN); 3243 3244 /* reg_qpts_local_port 3245 * Local port number. 3246 * Access: Index 3247 * 3248 * Note: CPU port is supported. 3249 */ 3250 MLXSW_ITEM32(reg, qpts, local_port, 0x00, 16, 8); 3251 3252 enum mlxsw_reg_qpts_trust_state { 3253 MLXSW_REG_QPTS_TRUST_STATE_PCP = 1, 3254 MLXSW_REG_QPTS_TRUST_STATE_DSCP = 2, /* For MPLS, trust EXP. */ 3255 }; 3256 3257 /* reg_qpts_trust_state 3258 * Trust state for a given port. 3259 * Access: RW 3260 */ 3261 MLXSW_ITEM32(reg, qpts, trust_state, 0x04, 0, 3); 3262 3263 static inline void mlxsw_reg_qpts_pack(char *payload, u8 local_port, 3264 enum mlxsw_reg_qpts_trust_state ts) 3265 { 3266 MLXSW_REG_ZERO(qpts, payload); 3267 3268 mlxsw_reg_qpts_local_port_set(payload, local_port); 3269 mlxsw_reg_qpts_trust_state_set(payload, ts); 3270 } 3271 3272 /* QPCR - QoS Policer Configuration Register 3273 * ----------------------------------------- 3274 * The QPCR register is used to create policers - that limit 3275 * the rate of bytes or packets via some trap group. 3276 */ 3277 #define MLXSW_REG_QPCR_ID 0x4004 3278 #define MLXSW_REG_QPCR_LEN 0x28 3279 3280 MLXSW_REG_DEFINE(qpcr, MLXSW_REG_QPCR_ID, MLXSW_REG_QPCR_LEN); 3281 3282 enum mlxsw_reg_qpcr_g { 3283 MLXSW_REG_QPCR_G_GLOBAL = 2, 3284 MLXSW_REG_QPCR_G_STORM_CONTROL = 3, 3285 }; 3286 3287 /* reg_qpcr_g 3288 * The policer type. 3289 * Access: Index 3290 */ 3291 MLXSW_ITEM32(reg, qpcr, g, 0x00, 14, 2); 3292 3293 /* reg_qpcr_pid 3294 * Policer ID. 3295 * Access: Index 3296 */ 3297 MLXSW_ITEM32(reg, qpcr, pid, 0x00, 0, 14); 3298 3299 /* reg_qpcr_color_aware 3300 * Is the policer aware of colors. 3301 * Must be 0 (unaware) for cpu port. 3302 * Access: RW for unbounded policer. RO for bounded policer. 3303 */ 3304 MLXSW_ITEM32(reg, qpcr, color_aware, 0x04, 15, 1); 3305 3306 /* reg_qpcr_bytes 3307 * Is policer limit is for bytes per sec or packets per sec. 3308 * 0 - packets 3309 * 1 - bytes 3310 * Access: RW for unbounded policer. RO for bounded policer. 3311 */ 3312 MLXSW_ITEM32(reg, qpcr, bytes, 0x04, 14, 1); 3313 3314 enum mlxsw_reg_qpcr_ir_units { 3315 MLXSW_REG_QPCR_IR_UNITS_M, 3316 MLXSW_REG_QPCR_IR_UNITS_K, 3317 }; 3318 3319 /* reg_qpcr_ir_units 3320 * Policer's units for cir and eir fields (for bytes limits only) 3321 * 1 - 10^3 3322 * 0 - 10^6 3323 * Access: OP 3324 */ 3325 MLXSW_ITEM32(reg, qpcr, ir_units, 0x04, 12, 1); 3326 3327 enum mlxsw_reg_qpcr_rate_type { 3328 MLXSW_REG_QPCR_RATE_TYPE_SINGLE = 1, 3329 MLXSW_REG_QPCR_RATE_TYPE_DOUBLE = 2, 3330 }; 3331 3332 /* reg_qpcr_rate_type 3333 * Policer can have one limit (single rate) or 2 limits with specific operation 3334 * for packets that exceed the lower rate but not the upper one. 3335 * (For cpu port must be single rate) 3336 * Access: RW for unbounded policer. RO for bounded policer. 3337 */ 3338 MLXSW_ITEM32(reg, qpcr, rate_type, 0x04, 8, 2); 3339 3340 /* reg_qpc_cbs 3341 * Policer's committed burst size. 3342 * The policer is working with time slices of 50 nano sec. By default every 3343 * slice is granted the proportionate share of the committed rate. If we want to 3344 * allow a slice to exceed that share (while still keeping the rate per sec) we 3345 * can allow burst. The burst size is between the default proportionate share 3346 * (and no lower than 8) to 32Gb. (Even though giving a number higher than the 3347 * committed rate will result in exceeding the rate). The burst size must be a 3348 * log of 2 and will be determined by 2^cbs. 3349 * Access: RW 3350 */ 3351 MLXSW_ITEM32(reg, qpcr, cbs, 0x08, 24, 6); 3352 3353 /* reg_qpcr_cir 3354 * Policer's committed rate. 3355 * The rate used for sungle rate, the lower rate for double rate. 3356 * For bytes limits, the rate will be this value * the unit from ir_units. 3357 * (Resolution error is up to 1%). 3358 * Access: RW 3359 */ 3360 MLXSW_ITEM32(reg, qpcr, cir, 0x0C, 0, 32); 3361 3362 /* reg_qpcr_eir 3363 * Policer's exceed rate. 3364 * The higher rate for double rate, reserved for single rate. 3365 * Lower rate for double rate policer. 3366 * For bytes limits, the rate will be this value * the unit from ir_units. 3367 * (Resolution error is up to 1%). 3368 * Access: RW 3369 */ 3370 MLXSW_ITEM32(reg, qpcr, eir, 0x10, 0, 32); 3371 3372 #define MLXSW_REG_QPCR_DOUBLE_RATE_ACTION 2 3373 3374 /* reg_qpcr_exceed_action. 3375 * What to do with packets between the 2 limits for double rate. 3376 * Access: RW for unbounded policer. RO for bounded policer. 3377 */ 3378 MLXSW_ITEM32(reg, qpcr, exceed_action, 0x14, 0, 4); 3379 3380 enum mlxsw_reg_qpcr_action { 3381 /* Discard */ 3382 MLXSW_REG_QPCR_ACTION_DISCARD = 1, 3383 /* Forward and set color to red. 3384 * If the packet is intended to cpu port, it will be dropped. 3385 */ 3386 MLXSW_REG_QPCR_ACTION_FORWARD = 2, 3387 }; 3388 3389 /* reg_qpcr_violate_action 3390 * What to do with packets that cross the cir limit (for single rate) or the eir 3391 * limit (for double rate). 3392 * Access: RW for unbounded policer. RO for bounded policer. 3393 */ 3394 MLXSW_ITEM32(reg, qpcr, violate_action, 0x18, 0, 4); 3395 3396 static inline void mlxsw_reg_qpcr_pack(char *payload, u16 pid, 3397 enum mlxsw_reg_qpcr_ir_units ir_units, 3398 bool bytes, u32 cir, u16 cbs) 3399 { 3400 MLXSW_REG_ZERO(qpcr, payload); 3401 mlxsw_reg_qpcr_pid_set(payload, pid); 3402 mlxsw_reg_qpcr_g_set(payload, MLXSW_REG_QPCR_G_GLOBAL); 3403 mlxsw_reg_qpcr_rate_type_set(payload, MLXSW_REG_QPCR_RATE_TYPE_SINGLE); 3404 mlxsw_reg_qpcr_violate_action_set(payload, 3405 MLXSW_REG_QPCR_ACTION_DISCARD); 3406 mlxsw_reg_qpcr_cir_set(payload, cir); 3407 mlxsw_reg_qpcr_ir_units_set(payload, ir_units); 3408 mlxsw_reg_qpcr_bytes_set(payload, bytes); 3409 mlxsw_reg_qpcr_cbs_set(payload, cbs); 3410 } 3411 3412 /* QTCT - QoS Switch Traffic Class Table 3413 * ------------------------------------- 3414 * Configures the mapping between the packet switch priority and the 3415 * traffic class on the transmit port. 3416 */ 3417 #define MLXSW_REG_QTCT_ID 0x400A 3418 #define MLXSW_REG_QTCT_LEN 0x08 3419 3420 MLXSW_REG_DEFINE(qtct, MLXSW_REG_QTCT_ID, MLXSW_REG_QTCT_LEN); 3421 3422 /* reg_qtct_local_port 3423 * Local port number. 3424 * Access: Index 3425 * 3426 * Note: CPU port is not supported. 3427 */ 3428 MLXSW_ITEM32(reg, qtct, local_port, 0x00, 16, 8); 3429 3430 /* reg_qtct_sub_port 3431 * Virtual port within the physical port. 3432 * Should be set to 0 when virtual ports are not enabled on the port. 3433 * Access: Index 3434 */ 3435 MLXSW_ITEM32(reg, qtct, sub_port, 0x00, 8, 8); 3436 3437 /* reg_qtct_switch_prio 3438 * Switch priority. 3439 * Access: Index 3440 */ 3441 MLXSW_ITEM32(reg, qtct, switch_prio, 0x00, 0, 4); 3442 3443 /* reg_qtct_tclass 3444 * Traffic class. 3445 * Default values: 3446 * switch_prio 0 : tclass 1 3447 * switch_prio 1 : tclass 0 3448 * switch_prio i : tclass i, for i > 1 3449 * Access: RW 3450 */ 3451 MLXSW_ITEM32(reg, qtct, tclass, 0x04, 0, 4); 3452 3453 static inline void mlxsw_reg_qtct_pack(char *payload, u8 local_port, 3454 u8 switch_prio, u8 tclass) 3455 { 3456 MLXSW_REG_ZERO(qtct, payload); 3457 mlxsw_reg_qtct_local_port_set(payload, local_port); 3458 mlxsw_reg_qtct_switch_prio_set(payload, switch_prio); 3459 mlxsw_reg_qtct_tclass_set(payload, tclass); 3460 } 3461 3462 /* QEEC - QoS ETS Element Configuration Register 3463 * --------------------------------------------- 3464 * Configures the ETS elements. 3465 */ 3466 #define MLXSW_REG_QEEC_ID 0x400D 3467 #define MLXSW_REG_QEEC_LEN 0x20 3468 3469 MLXSW_REG_DEFINE(qeec, MLXSW_REG_QEEC_ID, MLXSW_REG_QEEC_LEN); 3470 3471 /* reg_qeec_local_port 3472 * Local port number. 3473 * Access: Index 3474 * 3475 * Note: CPU port is supported. 3476 */ 3477 MLXSW_ITEM32(reg, qeec, local_port, 0x00, 16, 8); 3478 3479 enum mlxsw_reg_qeec_hr { 3480 MLXSW_REG_QEEC_HIERARCY_PORT, 3481 MLXSW_REG_QEEC_HIERARCY_GROUP, 3482 MLXSW_REG_QEEC_HIERARCY_SUBGROUP, 3483 MLXSW_REG_QEEC_HIERARCY_TC, 3484 }; 3485 3486 /* reg_qeec_element_hierarchy 3487 * 0 - Port 3488 * 1 - Group 3489 * 2 - Subgroup 3490 * 3 - Traffic Class 3491 * Access: Index 3492 */ 3493 MLXSW_ITEM32(reg, qeec, element_hierarchy, 0x04, 16, 4); 3494 3495 /* reg_qeec_element_index 3496 * The index of the element in the hierarchy. 3497 * Access: Index 3498 */ 3499 MLXSW_ITEM32(reg, qeec, element_index, 0x04, 0, 8); 3500 3501 /* reg_qeec_next_element_index 3502 * The index of the next (lower) element in the hierarchy. 3503 * Access: RW 3504 * 3505 * Note: Reserved for element_hierarchy 0. 3506 */ 3507 MLXSW_ITEM32(reg, qeec, next_element_index, 0x08, 0, 8); 3508 3509 /* reg_qeec_mise 3510 * Min shaper configuration enable. Enables configuration of the min 3511 * shaper on this ETS element 3512 * 0 - Disable 3513 * 1 - Enable 3514 * Access: RW 3515 */ 3516 MLXSW_ITEM32(reg, qeec, mise, 0x0C, 31, 1); 3517 3518 /* reg_qeec_ptps 3519 * PTP shaper 3520 * 0: regular shaper mode 3521 * 1: PTP oriented shaper 3522 * Allowed only for hierarchy 0 3523 * Not supported for CPU port 3524 * Note that ptps mode may affect the shaper rates of all hierarchies 3525 * Supported only on Spectrum-1 3526 * Access: RW 3527 */ 3528 MLXSW_ITEM32(reg, qeec, ptps, 0x0C, 29, 1); 3529 3530 enum { 3531 MLXSW_REG_QEEC_BYTES_MODE, 3532 MLXSW_REG_QEEC_PACKETS_MODE, 3533 }; 3534 3535 /* reg_qeec_pb 3536 * Packets or bytes mode. 3537 * 0 - Bytes mode 3538 * 1 - Packets mode 3539 * Access: RW 3540 * 3541 * Note: Used for max shaper configuration. For Spectrum, packets mode 3542 * is supported only for traffic classes of CPU port. 3543 */ 3544 MLXSW_ITEM32(reg, qeec, pb, 0x0C, 28, 1); 3545 3546 /* The smallest permitted min shaper rate. */ 3547 #define MLXSW_REG_QEEC_MIS_MIN 200000 /* Kbps */ 3548 3549 /* reg_qeec_min_shaper_rate 3550 * Min shaper information rate. 3551 * For CPU port, can only be configured for port hierarchy. 3552 * When in bytes mode, value is specified in units of 1000bps. 3553 * Access: RW 3554 */ 3555 MLXSW_ITEM32(reg, qeec, min_shaper_rate, 0x0C, 0, 28); 3556 3557 /* reg_qeec_mase 3558 * Max shaper configuration enable. Enables configuration of the max 3559 * shaper on this ETS element. 3560 * 0 - Disable 3561 * 1 - Enable 3562 * Access: RW 3563 */ 3564 MLXSW_ITEM32(reg, qeec, mase, 0x10, 31, 1); 3565 3566 /* A large max rate will disable the max shaper. */ 3567 #define MLXSW_REG_QEEC_MAS_DIS 200000000 /* Kbps */ 3568 3569 /* reg_qeec_max_shaper_rate 3570 * Max shaper information rate. 3571 * For CPU port, can only be configured for port hierarchy. 3572 * When in bytes mode, value is specified in units of 1000bps. 3573 * Access: RW 3574 */ 3575 MLXSW_ITEM32(reg, qeec, max_shaper_rate, 0x10, 0, 28); 3576 3577 /* reg_qeec_de 3578 * DWRR configuration enable. Enables configuration of the dwrr and 3579 * dwrr_weight. 3580 * 0 - Disable 3581 * 1 - Enable 3582 * Access: RW 3583 */ 3584 MLXSW_ITEM32(reg, qeec, de, 0x18, 31, 1); 3585 3586 /* reg_qeec_dwrr 3587 * Transmission selection algorithm to use on the link going down from 3588 * the ETS element. 3589 * 0 - Strict priority 3590 * 1 - DWRR 3591 * Access: RW 3592 */ 3593 MLXSW_ITEM32(reg, qeec, dwrr, 0x18, 15, 1); 3594 3595 /* reg_qeec_dwrr_weight 3596 * DWRR weight on the link going down from the ETS element. The 3597 * percentage of bandwidth guaranteed to an ETS element within 3598 * its hierarchy. The sum of all weights across all ETS elements 3599 * within one hierarchy should be equal to 100. Reserved when 3600 * transmission selection algorithm is strict priority. 3601 * Access: RW 3602 */ 3603 MLXSW_ITEM32(reg, qeec, dwrr_weight, 0x18, 0, 8); 3604 3605 static inline void mlxsw_reg_qeec_pack(char *payload, u8 local_port, 3606 enum mlxsw_reg_qeec_hr hr, u8 index, 3607 u8 next_index) 3608 { 3609 MLXSW_REG_ZERO(qeec, payload); 3610 mlxsw_reg_qeec_local_port_set(payload, local_port); 3611 mlxsw_reg_qeec_element_hierarchy_set(payload, hr); 3612 mlxsw_reg_qeec_element_index_set(payload, index); 3613 mlxsw_reg_qeec_next_element_index_set(payload, next_index); 3614 } 3615 3616 static inline void mlxsw_reg_qeec_ptps_pack(char *payload, u8 local_port, 3617 bool ptps) 3618 { 3619 MLXSW_REG_ZERO(qeec, payload); 3620 mlxsw_reg_qeec_local_port_set(payload, local_port); 3621 mlxsw_reg_qeec_element_hierarchy_set(payload, 3622 MLXSW_REG_QEEC_HIERARCY_PORT); 3623 mlxsw_reg_qeec_ptps_set(payload, ptps); 3624 } 3625 3626 /* QRWE - QoS ReWrite Enable 3627 * ------------------------- 3628 * This register configures the rewrite enable per receive port. 3629 */ 3630 #define MLXSW_REG_QRWE_ID 0x400F 3631 #define MLXSW_REG_QRWE_LEN 0x08 3632 3633 MLXSW_REG_DEFINE(qrwe, MLXSW_REG_QRWE_ID, MLXSW_REG_QRWE_LEN); 3634 3635 /* reg_qrwe_local_port 3636 * Local port number. 3637 * Access: Index 3638 * 3639 * Note: CPU port is supported. No support for router port. 3640 */ 3641 MLXSW_ITEM32(reg, qrwe, local_port, 0x00, 16, 8); 3642 3643 /* reg_qrwe_dscp 3644 * Whether to enable DSCP rewrite (default is 0, don't rewrite). 3645 * Access: RW 3646 */ 3647 MLXSW_ITEM32(reg, qrwe, dscp, 0x04, 1, 1); 3648 3649 /* reg_qrwe_pcp 3650 * Whether to enable PCP and DEI rewrite (default is 0, don't rewrite). 3651 * Access: RW 3652 */ 3653 MLXSW_ITEM32(reg, qrwe, pcp, 0x04, 0, 1); 3654 3655 static inline void mlxsw_reg_qrwe_pack(char *payload, u8 local_port, 3656 bool rewrite_pcp, bool rewrite_dscp) 3657 { 3658 MLXSW_REG_ZERO(qrwe, payload); 3659 mlxsw_reg_qrwe_local_port_set(payload, local_port); 3660 mlxsw_reg_qrwe_pcp_set(payload, rewrite_pcp); 3661 mlxsw_reg_qrwe_dscp_set(payload, rewrite_dscp); 3662 } 3663 3664 /* QPDSM - QoS Priority to DSCP Mapping 3665 * ------------------------------------ 3666 * QoS Priority to DSCP Mapping Register 3667 */ 3668 #define MLXSW_REG_QPDSM_ID 0x4011 3669 #define MLXSW_REG_QPDSM_BASE_LEN 0x04 /* base length, without records */ 3670 #define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN 0x4 /* record length */ 3671 #define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT 16 3672 #define MLXSW_REG_QPDSM_LEN (MLXSW_REG_QPDSM_BASE_LEN + \ 3673 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN * \ 3674 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT) 3675 3676 MLXSW_REG_DEFINE(qpdsm, MLXSW_REG_QPDSM_ID, MLXSW_REG_QPDSM_LEN); 3677 3678 /* reg_qpdsm_local_port 3679 * Local Port. Supported for data packets from CPU port. 3680 * Access: Index 3681 */ 3682 MLXSW_ITEM32(reg, qpdsm, local_port, 0x00, 16, 8); 3683 3684 /* reg_qpdsm_prio_entry_color0_e 3685 * Enable update of the entry for color 0 and a given port. 3686 * Access: WO 3687 */ 3688 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_e, 3689 MLXSW_REG_QPDSM_BASE_LEN, 31, 1, 3690 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 3691 3692 /* reg_qpdsm_prio_entry_color0_dscp 3693 * DSCP field in the outer label of the packet for color 0 and a given port. 3694 * Reserved when e=0. 3695 * Access: RW 3696 */ 3697 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_dscp, 3698 MLXSW_REG_QPDSM_BASE_LEN, 24, 6, 3699 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 3700 3701 /* reg_qpdsm_prio_entry_color1_e 3702 * Enable update of the entry for color 1 and a given port. 3703 * Access: WO 3704 */ 3705 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_e, 3706 MLXSW_REG_QPDSM_BASE_LEN, 23, 1, 3707 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 3708 3709 /* reg_qpdsm_prio_entry_color1_dscp 3710 * DSCP field in the outer label of the packet for color 1 and a given port. 3711 * Reserved when e=0. 3712 * Access: RW 3713 */ 3714 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_dscp, 3715 MLXSW_REG_QPDSM_BASE_LEN, 16, 6, 3716 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 3717 3718 /* reg_qpdsm_prio_entry_color2_e 3719 * Enable update of the entry for color 2 and a given port. 3720 * Access: WO 3721 */ 3722 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_e, 3723 MLXSW_REG_QPDSM_BASE_LEN, 15, 1, 3724 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 3725 3726 /* reg_qpdsm_prio_entry_color2_dscp 3727 * DSCP field in the outer label of the packet for color 2 and a given port. 3728 * Reserved when e=0. 3729 * Access: RW 3730 */ 3731 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_dscp, 3732 MLXSW_REG_QPDSM_BASE_LEN, 8, 6, 3733 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 3734 3735 static inline void mlxsw_reg_qpdsm_pack(char *payload, u8 local_port) 3736 { 3737 MLXSW_REG_ZERO(qpdsm, payload); 3738 mlxsw_reg_qpdsm_local_port_set(payload, local_port); 3739 } 3740 3741 static inline void 3742 mlxsw_reg_qpdsm_prio_pack(char *payload, unsigned short prio, u8 dscp) 3743 { 3744 mlxsw_reg_qpdsm_prio_entry_color0_e_set(payload, prio, 1); 3745 mlxsw_reg_qpdsm_prio_entry_color0_dscp_set(payload, prio, dscp); 3746 mlxsw_reg_qpdsm_prio_entry_color1_e_set(payload, prio, 1); 3747 mlxsw_reg_qpdsm_prio_entry_color1_dscp_set(payload, prio, dscp); 3748 mlxsw_reg_qpdsm_prio_entry_color2_e_set(payload, prio, 1); 3749 mlxsw_reg_qpdsm_prio_entry_color2_dscp_set(payload, prio, dscp); 3750 } 3751 3752 /* QPDPM - QoS Port DSCP to Priority Mapping Register 3753 * -------------------------------------------------- 3754 * This register controls the mapping from DSCP field to 3755 * Switch Priority for IP packets. 3756 */ 3757 #define MLXSW_REG_QPDPM_ID 0x4013 3758 #define MLXSW_REG_QPDPM_BASE_LEN 0x4 /* base length, without records */ 3759 #define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN 0x2 /* record length */ 3760 #define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT 64 3761 #define MLXSW_REG_QPDPM_LEN (MLXSW_REG_QPDPM_BASE_LEN + \ 3762 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN * \ 3763 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT) 3764 3765 MLXSW_REG_DEFINE(qpdpm, MLXSW_REG_QPDPM_ID, MLXSW_REG_QPDPM_LEN); 3766 3767 /* reg_qpdpm_local_port 3768 * Local Port. Supported for data packets from CPU port. 3769 * Access: Index 3770 */ 3771 MLXSW_ITEM32(reg, qpdpm, local_port, 0x00, 16, 8); 3772 3773 /* reg_qpdpm_dscp_e 3774 * Enable update of the specific entry. When cleared, the switch_prio and color 3775 * fields are ignored and the previous switch_prio and color values are 3776 * preserved. 3777 * Access: WO 3778 */ 3779 MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_e, MLXSW_REG_QPDPM_BASE_LEN, 15, 1, 3780 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false); 3781 3782 /* reg_qpdpm_dscp_prio 3783 * The new Switch Priority value for the relevant DSCP value. 3784 * Access: RW 3785 */ 3786 MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_prio, 3787 MLXSW_REG_QPDPM_BASE_LEN, 0, 4, 3788 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false); 3789 3790 static inline void mlxsw_reg_qpdpm_pack(char *payload, u8 local_port) 3791 { 3792 MLXSW_REG_ZERO(qpdpm, payload); 3793 mlxsw_reg_qpdpm_local_port_set(payload, local_port); 3794 } 3795 3796 static inline void 3797 mlxsw_reg_qpdpm_dscp_pack(char *payload, unsigned short dscp, u8 prio) 3798 { 3799 mlxsw_reg_qpdpm_dscp_entry_e_set(payload, dscp, 1); 3800 mlxsw_reg_qpdpm_dscp_entry_prio_set(payload, dscp, prio); 3801 } 3802 3803 /* QTCTM - QoS Switch Traffic Class Table is Multicast-Aware Register 3804 * ------------------------------------------------------------------ 3805 * This register configures if the Switch Priority to Traffic Class mapping is 3806 * based on Multicast packet indication. If so, then multicast packets will get 3807 * a Traffic Class that is plus (cap_max_tclass_data/2) the value configured by 3808 * QTCT. 3809 * By default, Switch Priority to Traffic Class mapping is not based on 3810 * Multicast packet indication. 3811 */ 3812 #define MLXSW_REG_QTCTM_ID 0x401A 3813 #define MLXSW_REG_QTCTM_LEN 0x08 3814 3815 MLXSW_REG_DEFINE(qtctm, MLXSW_REG_QTCTM_ID, MLXSW_REG_QTCTM_LEN); 3816 3817 /* reg_qtctm_local_port 3818 * Local port number. 3819 * No support for CPU port. 3820 * Access: Index 3821 */ 3822 MLXSW_ITEM32(reg, qtctm, local_port, 0x00, 16, 8); 3823 3824 /* reg_qtctm_mc 3825 * Multicast Mode 3826 * Whether Switch Priority to Traffic Class mapping is based on Multicast packet 3827 * indication (default is 0, not based on Multicast packet indication). 3828 */ 3829 MLXSW_ITEM32(reg, qtctm, mc, 0x04, 0, 1); 3830 3831 static inline void 3832 mlxsw_reg_qtctm_pack(char *payload, u8 local_port, bool mc) 3833 { 3834 MLXSW_REG_ZERO(qtctm, payload); 3835 mlxsw_reg_qtctm_local_port_set(payload, local_port); 3836 mlxsw_reg_qtctm_mc_set(payload, mc); 3837 } 3838 3839 /* QPSC - QoS PTP Shaper Configuration Register 3840 * -------------------------------------------- 3841 * The QPSC allows advanced configuration of the shapers when QEEC.ptps=1. 3842 * Supported only on Spectrum-1. 3843 */ 3844 #define MLXSW_REG_QPSC_ID 0x401B 3845 #define MLXSW_REG_QPSC_LEN 0x28 3846 3847 MLXSW_REG_DEFINE(qpsc, MLXSW_REG_QPSC_ID, MLXSW_REG_QPSC_LEN); 3848 3849 enum mlxsw_reg_qpsc_port_speed { 3850 MLXSW_REG_QPSC_PORT_SPEED_100M, 3851 MLXSW_REG_QPSC_PORT_SPEED_1G, 3852 MLXSW_REG_QPSC_PORT_SPEED_10G, 3853 MLXSW_REG_QPSC_PORT_SPEED_25G, 3854 }; 3855 3856 /* reg_qpsc_port_speed 3857 * Port speed. 3858 * Access: Index 3859 */ 3860 MLXSW_ITEM32(reg, qpsc, port_speed, 0x00, 0, 4); 3861 3862 /* reg_qpsc_shaper_time_exp 3863 * The base-time-interval for updating the shapers tokens (for all hierarchies). 3864 * shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec 3865 * shaper_rate = 64bit * shaper_inc / shaper_update_rate 3866 * Access: RW 3867 */ 3868 MLXSW_ITEM32(reg, qpsc, shaper_time_exp, 0x04, 16, 4); 3869 3870 /* reg_qpsc_shaper_time_mantissa 3871 * The base-time-interval for updating the shapers tokens (for all hierarchies). 3872 * shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec 3873 * shaper_rate = 64bit * shaper_inc / shaper_update_rate 3874 * Access: RW 3875 */ 3876 MLXSW_ITEM32(reg, qpsc, shaper_time_mantissa, 0x04, 0, 5); 3877 3878 /* reg_qpsc_shaper_inc 3879 * Number of tokens added to shaper on each update. 3880 * Units of 8B. 3881 * Access: RW 3882 */ 3883 MLXSW_ITEM32(reg, qpsc, shaper_inc, 0x08, 0, 5); 3884 3885 /* reg_qpsc_shaper_bs 3886 * Max shaper Burst size. 3887 * Burst size is 2 ^ max_shaper_bs * 512 [bits] 3888 * Range is: 5..25 (from 2KB..2GB) 3889 * Access: RW 3890 */ 3891 MLXSW_ITEM32(reg, qpsc, shaper_bs, 0x0C, 0, 6); 3892 3893 /* reg_qpsc_ptsc_we 3894 * Write enable to port_to_shaper_credits. 3895 * Access: WO 3896 */ 3897 MLXSW_ITEM32(reg, qpsc, ptsc_we, 0x10, 31, 1); 3898 3899 /* reg_qpsc_port_to_shaper_credits 3900 * For split ports: range 1..57 3901 * For non-split ports: range 1..112 3902 * Written only when ptsc_we is set. 3903 * Access: RW 3904 */ 3905 MLXSW_ITEM32(reg, qpsc, port_to_shaper_credits, 0x10, 0, 8); 3906 3907 /* reg_qpsc_ing_timestamp_inc 3908 * Ingress timestamp increment. 3909 * 2's complement. 3910 * The timestamp of MTPPTR at ingress will be incremented by this value. Global 3911 * value for all ports. 3912 * Same units as used by MTPPTR. 3913 * Access: RW 3914 */ 3915 MLXSW_ITEM32(reg, qpsc, ing_timestamp_inc, 0x20, 0, 32); 3916 3917 /* reg_qpsc_egr_timestamp_inc 3918 * Egress timestamp increment. 3919 * 2's complement. 3920 * The timestamp of MTPPTR at egress will be incremented by this value. Global 3921 * value for all ports. 3922 * Same units as used by MTPPTR. 3923 * Access: RW 3924 */ 3925 MLXSW_ITEM32(reg, qpsc, egr_timestamp_inc, 0x24, 0, 32); 3926 3927 static inline void 3928 mlxsw_reg_qpsc_pack(char *payload, enum mlxsw_reg_qpsc_port_speed port_speed, 3929 u8 shaper_time_exp, u8 shaper_time_mantissa, u8 shaper_inc, 3930 u8 shaper_bs, u8 port_to_shaper_credits, 3931 int ing_timestamp_inc, int egr_timestamp_inc) 3932 { 3933 MLXSW_REG_ZERO(qpsc, payload); 3934 mlxsw_reg_qpsc_port_speed_set(payload, port_speed); 3935 mlxsw_reg_qpsc_shaper_time_exp_set(payload, shaper_time_exp); 3936 mlxsw_reg_qpsc_shaper_time_mantissa_set(payload, shaper_time_mantissa); 3937 mlxsw_reg_qpsc_shaper_inc_set(payload, shaper_inc); 3938 mlxsw_reg_qpsc_shaper_bs_set(payload, shaper_bs); 3939 mlxsw_reg_qpsc_ptsc_we_set(payload, true); 3940 mlxsw_reg_qpsc_port_to_shaper_credits_set(payload, port_to_shaper_credits); 3941 mlxsw_reg_qpsc_ing_timestamp_inc_set(payload, ing_timestamp_inc); 3942 mlxsw_reg_qpsc_egr_timestamp_inc_set(payload, egr_timestamp_inc); 3943 } 3944 3945 /* PMLP - Ports Module to Local Port Register 3946 * ------------------------------------------ 3947 * Configures the assignment of modules to local ports. 3948 */ 3949 #define MLXSW_REG_PMLP_ID 0x5002 3950 #define MLXSW_REG_PMLP_LEN 0x40 3951 3952 MLXSW_REG_DEFINE(pmlp, MLXSW_REG_PMLP_ID, MLXSW_REG_PMLP_LEN); 3953 3954 /* reg_pmlp_rxtx 3955 * 0 - Tx value is used for both Tx and Rx. 3956 * 1 - Rx value is taken from a separte field. 3957 * Access: RW 3958 */ 3959 MLXSW_ITEM32(reg, pmlp, rxtx, 0x00, 31, 1); 3960 3961 /* reg_pmlp_local_port 3962 * Local port number. 3963 * Access: Index 3964 */ 3965 MLXSW_ITEM32(reg, pmlp, local_port, 0x00, 16, 8); 3966 3967 /* reg_pmlp_width 3968 * 0 - Unmap local port. 3969 * 1 - Lane 0 is used. 3970 * 2 - Lanes 0 and 1 are used. 3971 * 4 - Lanes 0, 1, 2 and 3 are used. 3972 * 8 - Lanes 0-7 are used. 3973 * Access: RW 3974 */ 3975 MLXSW_ITEM32(reg, pmlp, width, 0x00, 0, 8); 3976 3977 /* reg_pmlp_module 3978 * Module number. 3979 * Access: RW 3980 */ 3981 MLXSW_ITEM32_INDEXED(reg, pmlp, module, 0x04, 0, 8, 0x04, 0x00, false); 3982 3983 /* reg_pmlp_tx_lane 3984 * Tx Lane. When rxtx field is cleared, this field is used for Rx as well. 3985 * Access: RW 3986 */ 3987 MLXSW_ITEM32_INDEXED(reg, pmlp, tx_lane, 0x04, 16, 4, 0x04, 0x00, false); 3988 3989 /* reg_pmlp_rx_lane 3990 * Rx Lane. When rxtx field is cleared, this field is ignored and Rx lane is 3991 * equal to Tx lane. 3992 * Access: RW 3993 */ 3994 MLXSW_ITEM32_INDEXED(reg, pmlp, rx_lane, 0x04, 24, 4, 0x04, 0x00, false); 3995 3996 static inline void mlxsw_reg_pmlp_pack(char *payload, u8 local_port) 3997 { 3998 MLXSW_REG_ZERO(pmlp, payload); 3999 mlxsw_reg_pmlp_local_port_set(payload, local_port); 4000 } 4001 4002 /* PMTU - Port MTU Register 4003 * ------------------------ 4004 * Configures and reports the port MTU. 4005 */ 4006 #define MLXSW_REG_PMTU_ID 0x5003 4007 #define MLXSW_REG_PMTU_LEN 0x10 4008 4009 MLXSW_REG_DEFINE(pmtu, MLXSW_REG_PMTU_ID, MLXSW_REG_PMTU_LEN); 4010 4011 /* reg_pmtu_local_port 4012 * Local port number. 4013 * Access: Index 4014 */ 4015 MLXSW_ITEM32(reg, pmtu, local_port, 0x00, 16, 8); 4016 4017 /* reg_pmtu_max_mtu 4018 * Maximum MTU. 4019 * When port type (e.g. Ethernet) is configured, the relevant MTU is 4020 * reported, otherwise the minimum between the max_mtu of the different 4021 * types is reported. 4022 * Access: RO 4023 */ 4024 MLXSW_ITEM32(reg, pmtu, max_mtu, 0x04, 16, 16); 4025 4026 /* reg_pmtu_admin_mtu 4027 * MTU value to set port to. Must be smaller or equal to max_mtu. 4028 * Note: If port type is Infiniband, then port must be disabled, when its 4029 * MTU is set. 4030 * Access: RW 4031 */ 4032 MLXSW_ITEM32(reg, pmtu, admin_mtu, 0x08, 16, 16); 4033 4034 /* reg_pmtu_oper_mtu 4035 * The actual MTU configured on the port. Packets exceeding this size 4036 * will be dropped. 4037 * Note: In Ethernet and FC oper_mtu == admin_mtu, however, in Infiniband 4038 * oper_mtu might be smaller than admin_mtu. 4039 * Access: RO 4040 */ 4041 MLXSW_ITEM32(reg, pmtu, oper_mtu, 0x0C, 16, 16); 4042 4043 static inline void mlxsw_reg_pmtu_pack(char *payload, u8 local_port, 4044 u16 new_mtu) 4045 { 4046 MLXSW_REG_ZERO(pmtu, payload); 4047 mlxsw_reg_pmtu_local_port_set(payload, local_port); 4048 mlxsw_reg_pmtu_max_mtu_set(payload, 0); 4049 mlxsw_reg_pmtu_admin_mtu_set(payload, new_mtu); 4050 mlxsw_reg_pmtu_oper_mtu_set(payload, 0); 4051 } 4052 4053 /* PTYS - Port Type and Speed Register 4054 * ----------------------------------- 4055 * Configures and reports the port speed type. 4056 * 4057 * Note: When set while the link is up, the changes will not take effect 4058 * until the port transitions from down to up state. 4059 */ 4060 #define MLXSW_REG_PTYS_ID 0x5004 4061 #define MLXSW_REG_PTYS_LEN 0x40 4062 4063 MLXSW_REG_DEFINE(ptys, MLXSW_REG_PTYS_ID, MLXSW_REG_PTYS_LEN); 4064 4065 /* an_disable_admin 4066 * Auto negotiation disable administrative configuration 4067 * 0 - Device doesn't support AN disable. 4068 * 1 - Device supports AN disable. 4069 * Access: RW 4070 */ 4071 MLXSW_ITEM32(reg, ptys, an_disable_admin, 0x00, 30, 1); 4072 4073 /* reg_ptys_local_port 4074 * Local port number. 4075 * Access: Index 4076 */ 4077 MLXSW_ITEM32(reg, ptys, local_port, 0x00, 16, 8); 4078 4079 #define MLXSW_REG_PTYS_PROTO_MASK_IB BIT(0) 4080 #define MLXSW_REG_PTYS_PROTO_MASK_ETH BIT(2) 4081 4082 /* reg_ptys_proto_mask 4083 * Protocol mask. Indicates which protocol is used. 4084 * 0 - Infiniband. 4085 * 1 - Fibre Channel. 4086 * 2 - Ethernet. 4087 * Access: Index 4088 */ 4089 MLXSW_ITEM32(reg, ptys, proto_mask, 0x00, 0, 3); 4090 4091 enum { 4092 MLXSW_REG_PTYS_AN_STATUS_NA, 4093 MLXSW_REG_PTYS_AN_STATUS_OK, 4094 MLXSW_REG_PTYS_AN_STATUS_FAIL, 4095 }; 4096 4097 /* reg_ptys_an_status 4098 * Autonegotiation status. 4099 * Access: RO 4100 */ 4101 MLXSW_ITEM32(reg, ptys, an_status, 0x04, 28, 4); 4102 4103 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_SGMII_100M BIT(0) 4104 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_1000BASE_X_SGMII BIT(1) 4105 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_2_5GBASE_X_2_5GMII BIT(2) 4106 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_5GBASE_R BIT(3) 4107 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_XFI_XAUI_1_10G BIT(4) 4108 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_XLAUI_4_XLPPI_4_40G BIT(5) 4109 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_25GAUI_1_25GBASE_CR_KR BIT(6) 4110 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_2_LAUI_2_50GBASE_CR2_KR2 BIT(7) 4111 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_1_LAUI_1_50GBASE_CR_KR BIT(8) 4112 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_CAUI_4_100GBASE_CR4_KR4 BIT(9) 4113 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_100GAUI_2_100GBASE_CR2_KR2 BIT(10) 4114 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_200GAUI_4_200GBASE_CR4_KR4 BIT(12) 4115 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_400GAUI_8 BIT(15) 4116 4117 /* reg_ptys_ext_eth_proto_cap 4118 * Extended Ethernet port supported speeds and protocols. 4119 * Access: RO 4120 */ 4121 MLXSW_ITEM32(reg, ptys, ext_eth_proto_cap, 0x08, 0, 32); 4122 4123 #define MLXSW_REG_PTYS_ETH_SPEED_SGMII BIT(0) 4124 #define MLXSW_REG_PTYS_ETH_SPEED_1000BASE_KX BIT(1) 4125 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CX4 BIT(2) 4126 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KX4 BIT(3) 4127 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KR BIT(4) 4128 #define MLXSW_REG_PTYS_ETH_SPEED_20GBASE_KR2 BIT(5) 4129 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_CR4 BIT(6) 4130 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_KR4 BIT(7) 4131 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CR BIT(12) 4132 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_SR BIT(13) 4133 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_ER_LR BIT(14) 4134 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_SR4 BIT(15) 4135 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_LR4_ER4 BIT(16) 4136 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_SR2 BIT(18) 4137 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR4 BIT(19) 4138 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_CR4 BIT(20) 4139 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_SR4 BIT(21) 4140 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_KR4 BIT(22) 4141 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_LR4_ER4 BIT(23) 4142 #define MLXSW_REG_PTYS_ETH_SPEED_100BASE_TX BIT(24) 4143 #define MLXSW_REG_PTYS_ETH_SPEED_100BASE_T BIT(25) 4144 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_T BIT(26) 4145 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_CR BIT(27) 4146 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_KR BIT(28) 4147 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_SR BIT(29) 4148 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_CR2 BIT(30) 4149 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR2 BIT(31) 4150 4151 /* reg_ptys_eth_proto_cap 4152 * Ethernet port supported speeds and protocols. 4153 * Access: RO 4154 */ 4155 MLXSW_ITEM32(reg, ptys, eth_proto_cap, 0x0C, 0, 32); 4156 4157 /* reg_ptys_ib_link_width_cap 4158 * IB port supported widths. 4159 * Access: RO 4160 */ 4161 MLXSW_ITEM32(reg, ptys, ib_link_width_cap, 0x10, 16, 16); 4162 4163 #define MLXSW_REG_PTYS_IB_SPEED_SDR BIT(0) 4164 #define MLXSW_REG_PTYS_IB_SPEED_DDR BIT(1) 4165 #define MLXSW_REG_PTYS_IB_SPEED_QDR BIT(2) 4166 #define MLXSW_REG_PTYS_IB_SPEED_FDR10 BIT(3) 4167 #define MLXSW_REG_PTYS_IB_SPEED_FDR BIT(4) 4168 #define MLXSW_REG_PTYS_IB_SPEED_EDR BIT(5) 4169 4170 /* reg_ptys_ib_proto_cap 4171 * IB port supported speeds and protocols. 4172 * Access: RO 4173 */ 4174 MLXSW_ITEM32(reg, ptys, ib_proto_cap, 0x10, 0, 16); 4175 4176 /* reg_ptys_ext_eth_proto_admin 4177 * Extended speed and protocol to set port to. 4178 * Access: RW 4179 */ 4180 MLXSW_ITEM32(reg, ptys, ext_eth_proto_admin, 0x14, 0, 32); 4181 4182 /* reg_ptys_eth_proto_admin 4183 * Speed and protocol to set port to. 4184 * Access: RW 4185 */ 4186 MLXSW_ITEM32(reg, ptys, eth_proto_admin, 0x18, 0, 32); 4187 4188 /* reg_ptys_ib_link_width_admin 4189 * IB width to set port to. 4190 * Access: RW 4191 */ 4192 MLXSW_ITEM32(reg, ptys, ib_link_width_admin, 0x1C, 16, 16); 4193 4194 /* reg_ptys_ib_proto_admin 4195 * IB speeds and protocols to set port to. 4196 * Access: RW 4197 */ 4198 MLXSW_ITEM32(reg, ptys, ib_proto_admin, 0x1C, 0, 16); 4199 4200 /* reg_ptys_ext_eth_proto_oper 4201 * The extended current speed and protocol configured for the port. 4202 * Access: RO 4203 */ 4204 MLXSW_ITEM32(reg, ptys, ext_eth_proto_oper, 0x20, 0, 32); 4205 4206 /* reg_ptys_eth_proto_oper 4207 * The current speed and protocol configured for the port. 4208 * Access: RO 4209 */ 4210 MLXSW_ITEM32(reg, ptys, eth_proto_oper, 0x24, 0, 32); 4211 4212 /* reg_ptys_ib_link_width_oper 4213 * The current IB width to set port to. 4214 * Access: RO 4215 */ 4216 MLXSW_ITEM32(reg, ptys, ib_link_width_oper, 0x28, 16, 16); 4217 4218 /* reg_ptys_ib_proto_oper 4219 * The current IB speed and protocol. 4220 * Access: RO 4221 */ 4222 MLXSW_ITEM32(reg, ptys, ib_proto_oper, 0x28, 0, 16); 4223 4224 enum mlxsw_reg_ptys_connector_type { 4225 MLXSW_REG_PTYS_CONNECTOR_TYPE_UNKNOWN_OR_NO_CONNECTOR, 4226 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_NONE, 4227 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_TP, 4228 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_AUI, 4229 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_BNC, 4230 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_MII, 4231 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_FIBRE, 4232 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_DA, 4233 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_OTHER, 4234 }; 4235 4236 /* reg_ptys_connector_type 4237 * Connector type indication. 4238 * Access: RO 4239 */ 4240 MLXSW_ITEM32(reg, ptys, connector_type, 0x2C, 0, 4); 4241 4242 static inline void mlxsw_reg_ptys_eth_pack(char *payload, u8 local_port, 4243 u32 proto_admin, bool autoneg) 4244 { 4245 MLXSW_REG_ZERO(ptys, payload); 4246 mlxsw_reg_ptys_local_port_set(payload, local_port); 4247 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH); 4248 mlxsw_reg_ptys_eth_proto_admin_set(payload, proto_admin); 4249 mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg); 4250 } 4251 4252 static inline void mlxsw_reg_ptys_ext_eth_pack(char *payload, u8 local_port, 4253 u32 proto_admin, bool autoneg) 4254 { 4255 MLXSW_REG_ZERO(ptys, payload); 4256 mlxsw_reg_ptys_local_port_set(payload, local_port); 4257 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH); 4258 mlxsw_reg_ptys_ext_eth_proto_admin_set(payload, proto_admin); 4259 mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg); 4260 } 4261 4262 static inline void mlxsw_reg_ptys_eth_unpack(char *payload, 4263 u32 *p_eth_proto_cap, 4264 u32 *p_eth_proto_admin, 4265 u32 *p_eth_proto_oper) 4266 { 4267 if (p_eth_proto_cap) 4268 *p_eth_proto_cap = 4269 mlxsw_reg_ptys_eth_proto_cap_get(payload); 4270 if (p_eth_proto_admin) 4271 *p_eth_proto_admin = 4272 mlxsw_reg_ptys_eth_proto_admin_get(payload); 4273 if (p_eth_proto_oper) 4274 *p_eth_proto_oper = 4275 mlxsw_reg_ptys_eth_proto_oper_get(payload); 4276 } 4277 4278 static inline void mlxsw_reg_ptys_ext_eth_unpack(char *payload, 4279 u32 *p_eth_proto_cap, 4280 u32 *p_eth_proto_admin, 4281 u32 *p_eth_proto_oper) 4282 { 4283 if (p_eth_proto_cap) 4284 *p_eth_proto_cap = 4285 mlxsw_reg_ptys_ext_eth_proto_cap_get(payload); 4286 if (p_eth_proto_admin) 4287 *p_eth_proto_admin = 4288 mlxsw_reg_ptys_ext_eth_proto_admin_get(payload); 4289 if (p_eth_proto_oper) 4290 *p_eth_proto_oper = 4291 mlxsw_reg_ptys_ext_eth_proto_oper_get(payload); 4292 } 4293 4294 static inline void mlxsw_reg_ptys_ib_pack(char *payload, u8 local_port, 4295 u16 proto_admin, u16 link_width) 4296 { 4297 MLXSW_REG_ZERO(ptys, payload); 4298 mlxsw_reg_ptys_local_port_set(payload, local_port); 4299 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_IB); 4300 mlxsw_reg_ptys_ib_proto_admin_set(payload, proto_admin); 4301 mlxsw_reg_ptys_ib_link_width_admin_set(payload, link_width); 4302 } 4303 4304 static inline void mlxsw_reg_ptys_ib_unpack(char *payload, u16 *p_ib_proto_cap, 4305 u16 *p_ib_link_width_cap, 4306 u16 *p_ib_proto_oper, 4307 u16 *p_ib_link_width_oper) 4308 { 4309 if (p_ib_proto_cap) 4310 *p_ib_proto_cap = mlxsw_reg_ptys_ib_proto_cap_get(payload); 4311 if (p_ib_link_width_cap) 4312 *p_ib_link_width_cap = 4313 mlxsw_reg_ptys_ib_link_width_cap_get(payload); 4314 if (p_ib_proto_oper) 4315 *p_ib_proto_oper = mlxsw_reg_ptys_ib_proto_oper_get(payload); 4316 if (p_ib_link_width_oper) 4317 *p_ib_link_width_oper = 4318 mlxsw_reg_ptys_ib_link_width_oper_get(payload); 4319 } 4320 4321 /* PPAD - Port Physical Address Register 4322 * ------------------------------------- 4323 * The PPAD register configures the per port physical MAC address. 4324 */ 4325 #define MLXSW_REG_PPAD_ID 0x5005 4326 #define MLXSW_REG_PPAD_LEN 0x10 4327 4328 MLXSW_REG_DEFINE(ppad, MLXSW_REG_PPAD_ID, MLXSW_REG_PPAD_LEN); 4329 4330 /* reg_ppad_single_base_mac 4331 * 0: base_mac, local port should be 0 and mac[7:0] is 4332 * reserved. HW will set incremental 4333 * 1: single_mac - mac of the local_port 4334 * Access: RW 4335 */ 4336 MLXSW_ITEM32(reg, ppad, single_base_mac, 0x00, 28, 1); 4337 4338 /* reg_ppad_local_port 4339 * port number, if single_base_mac = 0 then local_port is reserved 4340 * Access: RW 4341 */ 4342 MLXSW_ITEM32(reg, ppad, local_port, 0x00, 16, 8); 4343 4344 /* reg_ppad_mac 4345 * If single_base_mac = 0 - base MAC address, mac[7:0] is reserved. 4346 * If single_base_mac = 1 - the per port MAC address 4347 * Access: RW 4348 */ 4349 MLXSW_ITEM_BUF(reg, ppad, mac, 0x02, 6); 4350 4351 static inline void mlxsw_reg_ppad_pack(char *payload, bool single_base_mac, 4352 u8 local_port) 4353 { 4354 MLXSW_REG_ZERO(ppad, payload); 4355 mlxsw_reg_ppad_single_base_mac_set(payload, !!single_base_mac); 4356 mlxsw_reg_ppad_local_port_set(payload, local_port); 4357 } 4358 4359 /* PAOS - Ports Administrative and Operational Status Register 4360 * ----------------------------------------------------------- 4361 * Configures and retrieves per port administrative and operational status. 4362 */ 4363 #define MLXSW_REG_PAOS_ID 0x5006 4364 #define MLXSW_REG_PAOS_LEN 0x10 4365 4366 MLXSW_REG_DEFINE(paos, MLXSW_REG_PAOS_ID, MLXSW_REG_PAOS_LEN); 4367 4368 /* reg_paos_swid 4369 * Switch partition ID with which to associate the port. 4370 * Note: while external ports uses unique local port numbers (and thus swid is 4371 * redundant), router ports use the same local port number where swid is the 4372 * only indication for the relevant port. 4373 * Access: Index 4374 */ 4375 MLXSW_ITEM32(reg, paos, swid, 0x00, 24, 8); 4376 4377 /* reg_paos_local_port 4378 * Local port number. 4379 * Access: Index 4380 */ 4381 MLXSW_ITEM32(reg, paos, local_port, 0x00, 16, 8); 4382 4383 /* reg_paos_admin_status 4384 * Port administrative state (the desired state of the port): 4385 * 1 - Up. 4386 * 2 - Down. 4387 * 3 - Up once. This means that in case of link failure, the port won't go 4388 * into polling mode, but will wait to be re-enabled by software. 4389 * 4 - Disabled by system. Can only be set by hardware. 4390 * Access: RW 4391 */ 4392 MLXSW_ITEM32(reg, paos, admin_status, 0x00, 8, 4); 4393 4394 /* reg_paos_oper_status 4395 * Port operational state (the current state): 4396 * 1 - Up. 4397 * 2 - Down. 4398 * 3 - Down by port failure. This means that the device will not let the 4399 * port up again until explicitly specified by software. 4400 * Access: RO 4401 */ 4402 MLXSW_ITEM32(reg, paos, oper_status, 0x00, 0, 4); 4403 4404 /* reg_paos_ase 4405 * Admin state update enabled. 4406 * Access: WO 4407 */ 4408 MLXSW_ITEM32(reg, paos, ase, 0x04, 31, 1); 4409 4410 /* reg_paos_ee 4411 * Event update enable. If this bit is set, event generation will be 4412 * updated based on the e field. 4413 * Access: WO 4414 */ 4415 MLXSW_ITEM32(reg, paos, ee, 0x04, 30, 1); 4416 4417 /* reg_paos_e 4418 * Event generation on operational state change: 4419 * 0 - Do not generate event. 4420 * 1 - Generate Event. 4421 * 2 - Generate Single Event. 4422 * Access: RW 4423 */ 4424 MLXSW_ITEM32(reg, paos, e, 0x04, 0, 2); 4425 4426 static inline void mlxsw_reg_paos_pack(char *payload, u8 local_port, 4427 enum mlxsw_port_admin_status status) 4428 { 4429 MLXSW_REG_ZERO(paos, payload); 4430 mlxsw_reg_paos_swid_set(payload, 0); 4431 mlxsw_reg_paos_local_port_set(payload, local_port); 4432 mlxsw_reg_paos_admin_status_set(payload, status); 4433 mlxsw_reg_paos_oper_status_set(payload, 0); 4434 mlxsw_reg_paos_ase_set(payload, 1); 4435 mlxsw_reg_paos_ee_set(payload, 1); 4436 mlxsw_reg_paos_e_set(payload, 1); 4437 } 4438 4439 /* PFCC - Ports Flow Control Configuration Register 4440 * ------------------------------------------------ 4441 * Configures and retrieves the per port flow control configuration. 4442 */ 4443 #define MLXSW_REG_PFCC_ID 0x5007 4444 #define MLXSW_REG_PFCC_LEN 0x20 4445 4446 MLXSW_REG_DEFINE(pfcc, MLXSW_REG_PFCC_ID, MLXSW_REG_PFCC_LEN); 4447 4448 /* reg_pfcc_local_port 4449 * Local port number. 4450 * Access: Index 4451 */ 4452 MLXSW_ITEM32(reg, pfcc, local_port, 0x00, 16, 8); 4453 4454 /* reg_pfcc_pnat 4455 * Port number access type. Determines the way local_port is interpreted: 4456 * 0 - Local port number. 4457 * 1 - IB / label port number. 4458 * Access: Index 4459 */ 4460 MLXSW_ITEM32(reg, pfcc, pnat, 0x00, 14, 2); 4461 4462 /* reg_pfcc_shl_cap 4463 * Send to higher layers capabilities: 4464 * 0 - No capability of sending Pause and PFC frames to higher layers. 4465 * 1 - Device has capability of sending Pause and PFC frames to higher 4466 * layers. 4467 * Access: RO 4468 */ 4469 MLXSW_ITEM32(reg, pfcc, shl_cap, 0x00, 1, 1); 4470 4471 /* reg_pfcc_shl_opr 4472 * Send to higher layers operation: 4473 * 0 - Pause and PFC frames are handled by the port (default). 4474 * 1 - Pause and PFC frames are handled by the port and also sent to 4475 * higher layers. Only valid if shl_cap = 1. 4476 * Access: RW 4477 */ 4478 MLXSW_ITEM32(reg, pfcc, shl_opr, 0x00, 0, 1); 4479 4480 /* reg_pfcc_ppan 4481 * Pause policy auto negotiation. 4482 * 0 - Disabled. Generate / ignore Pause frames based on pptx / pprtx. 4483 * 1 - Enabled. When auto-negotiation is performed, set the Pause policy 4484 * based on the auto-negotiation resolution. 4485 * Access: RW 4486 * 4487 * Note: The auto-negotiation advertisement is set according to pptx and 4488 * pprtx. When PFC is set on Tx / Rx, ppan must be set to 0. 4489 */ 4490 MLXSW_ITEM32(reg, pfcc, ppan, 0x04, 28, 4); 4491 4492 /* reg_pfcc_prio_mask_tx 4493 * Bit per priority indicating if Tx flow control policy should be 4494 * updated based on bit pfctx. 4495 * Access: WO 4496 */ 4497 MLXSW_ITEM32(reg, pfcc, prio_mask_tx, 0x04, 16, 8); 4498 4499 /* reg_pfcc_prio_mask_rx 4500 * Bit per priority indicating if Rx flow control policy should be 4501 * updated based on bit pfcrx. 4502 * Access: WO 4503 */ 4504 MLXSW_ITEM32(reg, pfcc, prio_mask_rx, 0x04, 0, 8); 4505 4506 /* reg_pfcc_pptx 4507 * Admin Pause policy on Tx. 4508 * 0 - Never generate Pause frames (default). 4509 * 1 - Generate Pause frames according to Rx buffer threshold. 4510 * Access: RW 4511 */ 4512 MLXSW_ITEM32(reg, pfcc, pptx, 0x08, 31, 1); 4513 4514 /* reg_pfcc_aptx 4515 * Active (operational) Pause policy on Tx. 4516 * 0 - Never generate Pause frames. 4517 * 1 - Generate Pause frames according to Rx buffer threshold. 4518 * Access: RO 4519 */ 4520 MLXSW_ITEM32(reg, pfcc, aptx, 0x08, 30, 1); 4521 4522 /* reg_pfcc_pfctx 4523 * Priority based flow control policy on Tx[7:0]. Per-priority bit mask: 4524 * 0 - Never generate priority Pause frames on the specified priority 4525 * (default). 4526 * 1 - Generate priority Pause frames according to Rx buffer threshold on 4527 * the specified priority. 4528 * Access: RW 4529 * 4530 * Note: pfctx and pptx must be mutually exclusive. 4531 */ 4532 MLXSW_ITEM32(reg, pfcc, pfctx, 0x08, 16, 8); 4533 4534 /* reg_pfcc_pprx 4535 * Admin Pause policy on Rx. 4536 * 0 - Ignore received Pause frames (default). 4537 * 1 - Respect received Pause frames. 4538 * Access: RW 4539 */ 4540 MLXSW_ITEM32(reg, pfcc, pprx, 0x0C, 31, 1); 4541 4542 /* reg_pfcc_aprx 4543 * Active (operational) Pause policy on Rx. 4544 * 0 - Ignore received Pause frames. 4545 * 1 - Respect received Pause frames. 4546 * Access: RO 4547 */ 4548 MLXSW_ITEM32(reg, pfcc, aprx, 0x0C, 30, 1); 4549 4550 /* reg_pfcc_pfcrx 4551 * Priority based flow control policy on Rx[7:0]. Per-priority bit mask: 4552 * 0 - Ignore incoming priority Pause frames on the specified priority 4553 * (default). 4554 * 1 - Respect incoming priority Pause frames on the specified priority. 4555 * Access: RW 4556 */ 4557 MLXSW_ITEM32(reg, pfcc, pfcrx, 0x0C, 16, 8); 4558 4559 #define MLXSW_REG_PFCC_ALL_PRIO 0xFF 4560 4561 static inline void mlxsw_reg_pfcc_prio_pack(char *payload, u8 pfc_en) 4562 { 4563 mlxsw_reg_pfcc_prio_mask_tx_set(payload, MLXSW_REG_PFCC_ALL_PRIO); 4564 mlxsw_reg_pfcc_prio_mask_rx_set(payload, MLXSW_REG_PFCC_ALL_PRIO); 4565 mlxsw_reg_pfcc_pfctx_set(payload, pfc_en); 4566 mlxsw_reg_pfcc_pfcrx_set(payload, pfc_en); 4567 } 4568 4569 static inline void mlxsw_reg_pfcc_pack(char *payload, u8 local_port) 4570 { 4571 MLXSW_REG_ZERO(pfcc, payload); 4572 mlxsw_reg_pfcc_local_port_set(payload, local_port); 4573 } 4574 4575 /* PPCNT - Ports Performance Counters Register 4576 * ------------------------------------------- 4577 * The PPCNT register retrieves per port performance counters. 4578 */ 4579 #define MLXSW_REG_PPCNT_ID 0x5008 4580 #define MLXSW_REG_PPCNT_LEN 0x100 4581 #define MLXSW_REG_PPCNT_COUNTERS_OFFSET 0x08 4582 4583 MLXSW_REG_DEFINE(ppcnt, MLXSW_REG_PPCNT_ID, MLXSW_REG_PPCNT_LEN); 4584 4585 /* reg_ppcnt_swid 4586 * For HCA: must be always 0. 4587 * Switch partition ID to associate port with. 4588 * Switch partitions are numbered from 0 to 7 inclusively. 4589 * Switch partition 254 indicates stacking ports. 4590 * Switch partition 255 indicates all switch partitions. 4591 * Only valid on Set() operation with local_port=255. 4592 * Access: Index 4593 */ 4594 MLXSW_ITEM32(reg, ppcnt, swid, 0x00, 24, 8); 4595 4596 /* reg_ppcnt_local_port 4597 * Local port number. 4598 * 255 indicates all ports on the device, and is only allowed 4599 * for Set() operation. 4600 * Access: Index 4601 */ 4602 MLXSW_ITEM32(reg, ppcnt, local_port, 0x00, 16, 8); 4603 4604 /* reg_ppcnt_pnat 4605 * Port number access type: 4606 * 0 - Local port number 4607 * 1 - IB port number 4608 * Access: Index 4609 */ 4610 MLXSW_ITEM32(reg, ppcnt, pnat, 0x00, 14, 2); 4611 4612 enum mlxsw_reg_ppcnt_grp { 4613 MLXSW_REG_PPCNT_IEEE_8023_CNT = 0x0, 4614 MLXSW_REG_PPCNT_RFC_2863_CNT = 0x1, 4615 MLXSW_REG_PPCNT_RFC_2819_CNT = 0x2, 4616 MLXSW_REG_PPCNT_RFC_3635_CNT = 0x3, 4617 MLXSW_REG_PPCNT_EXT_CNT = 0x5, 4618 MLXSW_REG_PPCNT_DISCARD_CNT = 0x6, 4619 MLXSW_REG_PPCNT_PRIO_CNT = 0x10, 4620 MLXSW_REG_PPCNT_TC_CNT = 0x11, 4621 MLXSW_REG_PPCNT_TC_CONG_TC = 0x13, 4622 }; 4623 4624 /* reg_ppcnt_grp 4625 * Performance counter group. 4626 * Group 63 indicates all groups. Only valid on Set() operation with 4627 * clr bit set. 4628 * 0x0: IEEE 802.3 Counters 4629 * 0x1: RFC 2863 Counters 4630 * 0x2: RFC 2819 Counters 4631 * 0x3: RFC 3635 Counters 4632 * 0x5: Ethernet Extended Counters 4633 * 0x6: Ethernet Discard Counters 4634 * 0x8: Link Level Retransmission Counters 4635 * 0x10: Per Priority Counters 4636 * 0x11: Per Traffic Class Counters 4637 * 0x12: Physical Layer Counters 4638 * 0x13: Per Traffic Class Congestion Counters 4639 * Access: Index 4640 */ 4641 MLXSW_ITEM32(reg, ppcnt, grp, 0x00, 0, 6); 4642 4643 /* reg_ppcnt_clr 4644 * Clear counters. Setting the clr bit will reset the counter value 4645 * for all counters in the counter group. This bit can be set 4646 * for both Set() and Get() operation. 4647 * Access: OP 4648 */ 4649 MLXSW_ITEM32(reg, ppcnt, clr, 0x04, 31, 1); 4650 4651 /* reg_ppcnt_prio_tc 4652 * Priority for counter set that support per priority, valid values: 0-7. 4653 * Traffic class for counter set that support per traffic class, 4654 * valid values: 0- cap_max_tclass-1 . 4655 * For HCA: cap_max_tclass is always 8. 4656 * Otherwise must be 0. 4657 * Access: Index 4658 */ 4659 MLXSW_ITEM32(reg, ppcnt, prio_tc, 0x04, 0, 5); 4660 4661 /* Ethernet IEEE 802.3 Counter Group */ 4662 4663 /* reg_ppcnt_a_frames_transmitted_ok 4664 * Access: RO 4665 */ 4666 MLXSW_ITEM64(reg, ppcnt, a_frames_transmitted_ok, 4667 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 4668 4669 /* reg_ppcnt_a_frames_received_ok 4670 * Access: RO 4671 */ 4672 MLXSW_ITEM64(reg, ppcnt, a_frames_received_ok, 4673 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 4674 4675 /* reg_ppcnt_a_frame_check_sequence_errors 4676 * Access: RO 4677 */ 4678 MLXSW_ITEM64(reg, ppcnt, a_frame_check_sequence_errors, 4679 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64); 4680 4681 /* reg_ppcnt_a_alignment_errors 4682 * Access: RO 4683 */ 4684 MLXSW_ITEM64(reg, ppcnt, a_alignment_errors, 4685 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64); 4686 4687 /* reg_ppcnt_a_octets_transmitted_ok 4688 * Access: RO 4689 */ 4690 MLXSW_ITEM64(reg, ppcnt, a_octets_transmitted_ok, 4691 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64); 4692 4693 /* reg_ppcnt_a_octets_received_ok 4694 * Access: RO 4695 */ 4696 MLXSW_ITEM64(reg, ppcnt, a_octets_received_ok, 4697 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64); 4698 4699 /* reg_ppcnt_a_multicast_frames_xmitted_ok 4700 * Access: RO 4701 */ 4702 MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_xmitted_ok, 4703 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64); 4704 4705 /* reg_ppcnt_a_broadcast_frames_xmitted_ok 4706 * Access: RO 4707 */ 4708 MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_xmitted_ok, 4709 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64); 4710 4711 /* reg_ppcnt_a_multicast_frames_received_ok 4712 * Access: RO 4713 */ 4714 MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_received_ok, 4715 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); 4716 4717 /* reg_ppcnt_a_broadcast_frames_received_ok 4718 * Access: RO 4719 */ 4720 MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_received_ok, 4721 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64); 4722 4723 /* reg_ppcnt_a_in_range_length_errors 4724 * Access: RO 4725 */ 4726 MLXSW_ITEM64(reg, ppcnt, a_in_range_length_errors, 4727 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64); 4728 4729 /* reg_ppcnt_a_out_of_range_length_field 4730 * Access: RO 4731 */ 4732 MLXSW_ITEM64(reg, ppcnt, a_out_of_range_length_field, 4733 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); 4734 4735 /* reg_ppcnt_a_frame_too_long_errors 4736 * Access: RO 4737 */ 4738 MLXSW_ITEM64(reg, ppcnt, a_frame_too_long_errors, 4739 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 4740 4741 /* reg_ppcnt_a_symbol_error_during_carrier 4742 * Access: RO 4743 */ 4744 MLXSW_ITEM64(reg, ppcnt, a_symbol_error_during_carrier, 4745 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); 4746 4747 /* reg_ppcnt_a_mac_control_frames_transmitted 4748 * Access: RO 4749 */ 4750 MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_transmitted, 4751 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 4752 4753 /* reg_ppcnt_a_mac_control_frames_received 4754 * Access: RO 4755 */ 4756 MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_received, 4757 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64); 4758 4759 /* reg_ppcnt_a_unsupported_opcodes_received 4760 * Access: RO 4761 */ 4762 MLXSW_ITEM64(reg, ppcnt, a_unsupported_opcodes_received, 4763 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64); 4764 4765 /* reg_ppcnt_a_pause_mac_ctrl_frames_received 4766 * Access: RO 4767 */ 4768 MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_received, 4769 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64); 4770 4771 /* reg_ppcnt_a_pause_mac_ctrl_frames_transmitted 4772 * Access: RO 4773 */ 4774 MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_transmitted, 4775 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64); 4776 4777 /* Ethernet RFC 2863 Counter Group */ 4778 4779 /* reg_ppcnt_if_in_discards 4780 * Access: RO 4781 */ 4782 MLXSW_ITEM64(reg, ppcnt, if_in_discards, 4783 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64); 4784 4785 /* reg_ppcnt_if_out_discards 4786 * Access: RO 4787 */ 4788 MLXSW_ITEM64(reg, ppcnt, if_out_discards, 4789 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64); 4790 4791 /* reg_ppcnt_if_out_errors 4792 * Access: RO 4793 */ 4794 MLXSW_ITEM64(reg, ppcnt, if_out_errors, 4795 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); 4796 4797 /* Ethernet RFC 2819 Counter Group */ 4798 4799 /* reg_ppcnt_ether_stats_undersize_pkts 4800 * Access: RO 4801 */ 4802 MLXSW_ITEM64(reg, ppcnt, ether_stats_undersize_pkts, 4803 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64); 4804 4805 /* reg_ppcnt_ether_stats_oversize_pkts 4806 * Access: RO 4807 */ 4808 MLXSW_ITEM64(reg, ppcnt, ether_stats_oversize_pkts, 4809 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64); 4810 4811 /* reg_ppcnt_ether_stats_fragments 4812 * Access: RO 4813 */ 4814 MLXSW_ITEM64(reg, ppcnt, ether_stats_fragments, 4815 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); 4816 4817 /* reg_ppcnt_ether_stats_pkts64octets 4818 * Access: RO 4819 */ 4820 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts64octets, 4821 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); 4822 4823 /* reg_ppcnt_ether_stats_pkts65to127octets 4824 * Access: RO 4825 */ 4826 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts65to127octets, 4827 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 4828 4829 /* reg_ppcnt_ether_stats_pkts128to255octets 4830 * Access: RO 4831 */ 4832 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts128to255octets, 4833 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); 4834 4835 /* reg_ppcnt_ether_stats_pkts256to511octets 4836 * Access: RO 4837 */ 4838 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts256to511octets, 4839 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 4840 4841 /* reg_ppcnt_ether_stats_pkts512to1023octets 4842 * Access: RO 4843 */ 4844 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts512to1023octets, 4845 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64); 4846 4847 /* reg_ppcnt_ether_stats_pkts1024to1518octets 4848 * Access: RO 4849 */ 4850 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1024to1518octets, 4851 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64); 4852 4853 /* reg_ppcnt_ether_stats_pkts1519to2047octets 4854 * Access: RO 4855 */ 4856 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1519to2047octets, 4857 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64); 4858 4859 /* reg_ppcnt_ether_stats_pkts2048to4095octets 4860 * Access: RO 4861 */ 4862 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts2048to4095octets, 4863 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64); 4864 4865 /* reg_ppcnt_ether_stats_pkts4096to8191octets 4866 * Access: RO 4867 */ 4868 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts4096to8191octets, 4869 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x98, 0, 64); 4870 4871 /* reg_ppcnt_ether_stats_pkts8192to10239octets 4872 * Access: RO 4873 */ 4874 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts8192to10239octets, 4875 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0xA0, 0, 64); 4876 4877 /* Ethernet RFC 3635 Counter Group */ 4878 4879 /* reg_ppcnt_dot3stats_fcs_errors 4880 * Access: RO 4881 */ 4882 MLXSW_ITEM64(reg, ppcnt, dot3stats_fcs_errors, 4883 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 4884 4885 /* reg_ppcnt_dot3stats_symbol_errors 4886 * Access: RO 4887 */ 4888 MLXSW_ITEM64(reg, ppcnt, dot3stats_symbol_errors, 4889 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 4890 4891 /* reg_ppcnt_dot3control_in_unknown_opcodes 4892 * Access: RO 4893 */ 4894 MLXSW_ITEM64(reg, ppcnt, dot3control_in_unknown_opcodes, 4895 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); 4896 4897 /* reg_ppcnt_dot3in_pause_frames 4898 * Access: RO 4899 */ 4900 MLXSW_ITEM64(reg, ppcnt, dot3in_pause_frames, 4901 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 4902 4903 /* Ethernet Extended Counter Group Counters */ 4904 4905 /* reg_ppcnt_ecn_marked 4906 * Access: RO 4907 */ 4908 MLXSW_ITEM64(reg, ppcnt, ecn_marked, 4909 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 4910 4911 /* Ethernet Discard Counter Group Counters */ 4912 4913 /* reg_ppcnt_ingress_general 4914 * Access: RO 4915 */ 4916 MLXSW_ITEM64(reg, ppcnt, ingress_general, 4917 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 4918 4919 /* reg_ppcnt_ingress_policy_engine 4920 * Access: RO 4921 */ 4922 MLXSW_ITEM64(reg, ppcnt, ingress_policy_engine, 4923 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 4924 4925 /* reg_ppcnt_ingress_vlan_membership 4926 * Access: RO 4927 */ 4928 MLXSW_ITEM64(reg, ppcnt, ingress_vlan_membership, 4929 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64); 4930 4931 /* reg_ppcnt_ingress_tag_frame_type 4932 * Access: RO 4933 */ 4934 MLXSW_ITEM64(reg, ppcnt, ingress_tag_frame_type, 4935 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64); 4936 4937 /* reg_ppcnt_egress_vlan_membership 4938 * Access: RO 4939 */ 4940 MLXSW_ITEM64(reg, ppcnt, egress_vlan_membership, 4941 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64); 4942 4943 /* reg_ppcnt_loopback_filter 4944 * Access: RO 4945 */ 4946 MLXSW_ITEM64(reg, ppcnt, loopback_filter, 4947 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64); 4948 4949 /* reg_ppcnt_egress_general 4950 * Access: RO 4951 */ 4952 MLXSW_ITEM64(reg, ppcnt, egress_general, 4953 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64); 4954 4955 /* reg_ppcnt_egress_hoq 4956 * Access: RO 4957 */ 4958 MLXSW_ITEM64(reg, ppcnt, egress_hoq, 4959 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); 4960 4961 /* reg_ppcnt_egress_policy_engine 4962 * Access: RO 4963 */ 4964 MLXSW_ITEM64(reg, ppcnt, egress_policy_engine, 4965 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64); 4966 4967 /* reg_ppcnt_ingress_tx_link_down 4968 * Access: RO 4969 */ 4970 MLXSW_ITEM64(reg, ppcnt, ingress_tx_link_down, 4971 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); 4972 4973 /* reg_ppcnt_egress_stp_filter 4974 * Access: RO 4975 */ 4976 MLXSW_ITEM64(reg, ppcnt, egress_stp_filter, 4977 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 4978 4979 /* reg_ppcnt_egress_sll 4980 * Access: RO 4981 */ 4982 MLXSW_ITEM64(reg, ppcnt, egress_sll, 4983 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 4984 4985 /* Ethernet Per Priority Group Counters */ 4986 4987 /* reg_ppcnt_rx_octets 4988 * Access: RO 4989 */ 4990 MLXSW_ITEM64(reg, ppcnt, rx_octets, 4991 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 4992 4993 /* reg_ppcnt_rx_frames 4994 * Access: RO 4995 */ 4996 MLXSW_ITEM64(reg, ppcnt, rx_frames, 4997 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64); 4998 4999 /* reg_ppcnt_tx_octets 5000 * Access: RO 5001 */ 5002 MLXSW_ITEM64(reg, ppcnt, tx_octets, 5003 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64); 5004 5005 /* reg_ppcnt_tx_frames 5006 * Access: RO 5007 */ 5008 MLXSW_ITEM64(reg, ppcnt, tx_frames, 5009 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64); 5010 5011 /* reg_ppcnt_rx_pause 5012 * Access: RO 5013 */ 5014 MLXSW_ITEM64(reg, ppcnt, rx_pause, 5015 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64); 5016 5017 /* reg_ppcnt_rx_pause_duration 5018 * Access: RO 5019 */ 5020 MLXSW_ITEM64(reg, ppcnt, rx_pause_duration, 5021 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); 5022 5023 /* reg_ppcnt_tx_pause 5024 * Access: RO 5025 */ 5026 MLXSW_ITEM64(reg, ppcnt, tx_pause, 5027 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 5028 5029 /* reg_ppcnt_tx_pause_duration 5030 * Access: RO 5031 */ 5032 MLXSW_ITEM64(reg, ppcnt, tx_pause_duration, 5033 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); 5034 5035 /* reg_ppcnt_rx_pause_transition 5036 * Access: RO 5037 */ 5038 MLXSW_ITEM64(reg, ppcnt, tx_pause_transition, 5039 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 5040 5041 /* Ethernet Per Traffic Group Counters */ 5042 5043 /* reg_ppcnt_tc_transmit_queue 5044 * Contains the transmit queue depth in cells of traffic class 5045 * selected by prio_tc and the port selected by local_port. 5046 * The field cannot be cleared. 5047 * Access: RO 5048 */ 5049 MLXSW_ITEM64(reg, ppcnt, tc_transmit_queue, 5050 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 5051 5052 /* reg_ppcnt_tc_no_buffer_discard_uc 5053 * The number of unicast packets dropped due to lack of shared 5054 * buffer resources. 5055 * Access: RO 5056 */ 5057 MLXSW_ITEM64(reg, ppcnt, tc_no_buffer_discard_uc, 5058 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 5059 5060 /* Ethernet Per Traffic Class Congestion Group Counters */ 5061 5062 /* reg_ppcnt_wred_discard 5063 * Access: RO 5064 */ 5065 MLXSW_ITEM64(reg, ppcnt, wred_discard, 5066 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 5067 5068 static inline void mlxsw_reg_ppcnt_pack(char *payload, u8 local_port, 5069 enum mlxsw_reg_ppcnt_grp grp, 5070 u8 prio_tc) 5071 { 5072 MLXSW_REG_ZERO(ppcnt, payload); 5073 mlxsw_reg_ppcnt_swid_set(payload, 0); 5074 mlxsw_reg_ppcnt_local_port_set(payload, local_port); 5075 mlxsw_reg_ppcnt_pnat_set(payload, 0); 5076 mlxsw_reg_ppcnt_grp_set(payload, grp); 5077 mlxsw_reg_ppcnt_clr_set(payload, 0); 5078 mlxsw_reg_ppcnt_prio_tc_set(payload, prio_tc); 5079 } 5080 5081 /* PLIB - Port Local to InfiniBand Port 5082 * ------------------------------------ 5083 * The PLIB register performs mapping from Local Port into InfiniBand Port. 5084 */ 5085 #define MLXSW_REG_PLIB_ID 0x500A 5086 #define MLXSW_REG_PLIB_LEN 0x10 5087 5088 MLXSW_REG_DEFINE(plib, MLXSW_REG_PLIB_ID, MLXSW_REG_PLIB_LEN); 5089 5090 /* reg_plib_local_port 5091 * Local port number. 5092 * Access: Index 5093 */ 5094 MLXSW_ITEM32(reg, plib, local_port, 0x00, 16, 8); 5095 5096 /* reg_plib_ib_port 5097 * InfiniBand port remapping for local_port. 5098 * Access: RW 5099 */ 5100 MLXSW_ITEM32(reg, plib, ib_port, 0x00, 0, 8); 5101 5102 /* PPTB - Port Prio To Buffer Register 5103 * ----------------------------------- 5104 * Configures the switch priority to buffer table. 5105 */ 5106 #define MLXSW_REG_PPTB_ID 0x500B 5107 #define MLXSW_REG_PPTB_LEN 0x10 5108 5109 MLXSW_REG_DEFINE(pptb, MLXSW_REG_PPTB_ID, MLXSW_REG_PPTB_LEN); 5110 5111 enum { 5112 MLXSW_REG_PPTB_MM_UM, 5113 MLXSW_REG_PPTB_MM_UNICAST, 5114 MLXSW_REG_PPTB_MM_MULTICAST, 5115 }; 5116 5117 /* reg_pptb_mm 5118 * Mapping mode. 5119 * 0 - Map both unicast and multicast packets to the same buffer. 5120 * 1 - Map only unicast packets. 5121 * 2 - Map only multicast packets. 5122 * Access: Index 5123 * 5124 * Note: SwitchX-2 only supports the first option. 5125 */ 5126 MLXSW_ITEM32(reg, pptb, mm, 0x00, 28, 2); 5127 5128 /* reg_pptb_local_port 5129 * Local port number. 5130 * Access: Index 5131 */ 5132 MLXSW_ITEM32(reg, pptb, local_port, 0x00, 16, 8); 5133 5134 /* reg_pptb_um 5135 * Enables the update of the untagged_buf field. 5136 * Access: RW 5137 */ 5138 MLXSW_ITEM32(reg, pptb, um, 0x00, 8, 1); 5139 5140 /* reg_pptb_pm 5141 * Enables the update of the prio_to_buff field. 5142 * Bit <i> is a flag for updating the mapping for switch priority <i>. 5143 * Access: RW 5144 */ 5145 MLXSW_ITEM32(reg, pptb, pm, 0x00, 0, 8); 5146 5147 /* reg_pptb_prio_to_buff 5148 * Mapping of switch priority <i> to one of the allocated receive port 5149 * buffers. 5150 * Access: RW 5151 */ 5152 MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff, 0x04, 0x04, 4); 5153 5154 /* reg_pptb_pm_msb 5155 * Enables the update of the prio_to_buff field. 5156 * Bit <i> is a flag for updating the mapping for switch priority <i+8>. 5157 * Access: RW 5158 */ 5159 MLXSW_ITEM32(reg, pptb, pm_msb, 0x08, 24, 8); 5160 5161 /* reg_pptb_untagged_buff 5162 * Mapping of untagged frames to one of the allocated receive port buffers. 5163 * Access: RW 5164 * 5165 * Note: In SwitchX-2 this field must be mapped to buffer 8. Reserved for 5166 * Spectrum, as it maps untagged packets based on the default switch priority. 5167 */ 5168 MLXSW_ITEM32(reg, pptb, untagged_buff, 0x08, 0, 4); 5169 5170 /* reg_pptb_prio_to_buff_msb 5171 * Mapping of switch priority <i+8> to one of the allocated receive port 5172 * buffers. 5173 * Access: RW 5174 */ 5175 MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff_msb, 0x0C, 0x04, 4); 5176 5177 #define MLXSW_REG_PPTB_ALL_PRIO 0xFF 5178 5179 static inline void mlxsw_reg_pptb_pack(char *payload, u8 local_port) 5180 { 5181 MLXSW_REG_ZERO(pptb, payload); 5182 mlxsw_reg_pptb_mm_set(payload, MLXSW_REG_PPTB_MM_UM); 5183 mlxsw_reg_pptb_local_port_set(payload, local_port); 5184 mlxsw_reg_pptb_pm_set(payload, MLXSW_REG_PPTB_ALL_PRIO); 5185 mlxsw_reg_pptb_pm_msb_set(payload, MLXSW_REG_PPTB_ALL_PRIO); 5186 } 5187 5188 static inline void mlxsw_reg_pptb_prio_to_buff_pack(char *payload, u8 prio, 5189 u8 buff) 5190 { 5191 mlxsw_reg_pptb_prio_to_buff_set(payload, prio, buff); 5192 mlxsw_reg_pptb_prio_to_buff_msb_set(payload, prio, buff); 5193 } 5194 5195 /* PBMC - Port Buffer Management Control Register 5196 * ---------------------------------------------- 5197 * The PBMC register configures and retrieves the port packet buffer 5198 * allocation for different Prios, and the Pause threshold management. 5199 */ 5200 #define MLXSW_REG_PBMC_ID 0x500C 5201 #define MLXSW_REG_PBMC_LEN 0x6C 5202 5203 MLXSW_REG_DEFINE(pbmc, MLXSW_REG_PBMC_ID, MLXSW_REG_PBMC_LEN); 5204 5205 /* reg_pbmc_local_port 5206 * Local port number. 5207 * Access: Index 5208 */ 5209 MLXSW_ITEM32(reg, pbmc, local_port, 0x00, 16, 8); 5210 5211 /* reg_pbmc_xoff_timer_value 5212 * When device generates a pause frame, it uses this value as the pause 5213 * timer (time for the peer port to pause in quota-512 bit time). 5214 * Access: RW 5215 */ 5216 MLXSW_ITEM32(reg, pbmc, xoff_timer_value, 0x04, 16, 16); 5217 5218 /* reg_pbmc_xoff_refresh 5219 * The time before a new pause frame should be sent to refresh the pause RW 5220 * state. Using the same units as xoff_timer_value above (in quota-512 bit 5221 * time). 5222 * Access: RW 5223 */ 5224 MLXSW_ITEM32(reg, pbmc, xoff_refresh, 0x04, 0, 16); 5225 5226 #define MLXSW_REG_PBMC_PORT_SHARED_BUF_IDX 11 5227 5228 /* reg_pbmc_buf_lossy 5229 * The field indicates if the buffer is lossy. 5230 * 0 - Lossless 5231 * 1 - Lossy 5232 * Access: RW 5233 */ 5234 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_lossy, 0x0C, 25, 1, 0x08, 0x00, false); 5235 5236 /* reg_pbmc_buf_epsb 5237 * Eligible for Port Shared buffer. 5238 * If epsb is set, packets assigned to buffer are allowed to insert the port 5239 * shared buffer. 5240 * When buf_lossy is MLXSW_REG_PBMC_LOSSY_LOSSY this field is reserved. 5241 * Access: RW 5242 */ 5243 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_epsb, 0x0C, 24, 1, 0x08, 0x00, false); 5244 5245 /* reg_pbmc_buf_size 5246 * The part of the packet buffer array is allocated for the specific buffer. 5247 * Units are represented in cells. 5248 * Access: RW 5249 */ 5250 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_size, 0x0C, 0, 16, 0x08, 0x00, false); 5251 5252 /* reg_pbmc_buf_xoff_threshold 5253 * Once the amount of data in the buffer goes above this value, device 5254 * starts sending PFC frames for all priorities associated with the 5255 * buffer. Units are represented in cells. Reserved in case of lossy 5256 * buffer. 5257 * Access: RW 5258 * 5259 * Note: In Spectrum, reserved for buffer[9]. 5260 */ 5261 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xoff_threshold, 0x0C, 16, 16, 5262 0x08, 0x04, false); 5263 5264 /* reg_pbmc_buf_xon_threshold 5265 * When the amount of data in the buffer goes below this value, device 5266 * stops sending PFC frames for the priorities associated with the 5267 * buffer. Units are represented in cells. Reserved in case of lossy 5268 * buffer. 5269 * Access: RW 5270 * 5271 * Note: In Spectrum, reserved for buffer[9]. 5272 */ 5273 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xon_threshold, 0x0C, 0, 16, 5274 0x08, 0x04, false); 5275 5276 static inline void mlxsw_reg_pbmc_pack(char *payload, u8 local_port, 5277 u16 xoff_timer_value, u16 xoff_refresh) 5278 { 5279 MLXSW_REG_ZERO(pbmc, payload); 5280 mlxsw_reg_pbmc_local_port_set(payload, local_port); 5281 mlxsw_reg_pbmc_xoff_timer_value_set(payload, xoff_timer_value); 5282 mlxsw_reg_pbmc_xoff_refresh_set(payload, xoff_refresh); 5283 } 5284 5285 static inline void mlxsw_reg_pbmc_lossy_buffer_pack(char *payload, 5286 int buf_index, 5287 u16 size) 5288 { 5289 mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 1); 5290 mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0); 5291 mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size); 5292 } 5293 5294 static inline void mlxsw_reg_pbmc_lossless_buffer_pack(char *payload, 5295 int buf_index, u16 size, 5296 u16 threshold) 5297 { 5298 mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 0); 5299 mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0); 5300 mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size); 5301 mlxsw_reg_pbmc_buf_xoff_threshold_set(payload, buf_index, threshold); 5302 mlxsw_reg_pbmc_buf_xon_threshold_set(payload, buf_index, threshold); 5303 } 5304 5305 /* PSPA - Port Switch Partition Allocation 5306 * --------------------------------------- 5307 * Controls the association of a port with a switch partition and enables 5308 * configuring ports as stacking ports. 5309 */ 5310 #define MLXSW_REG_PSPA_ID 0x500D 5311 #define MLXSW_REG_PSPA_LEN 0x8 5312 5313 MLXSW_REG_DEFINE(pspa, MLXSW_REG_PSPA_ID, MLXSW_REG_PSPA_LEN); 5314 5315 /* reg_pspa_swid 5316 * Switch partition ID. 5317 * Access: RW 5318 */ 5319 MLXSW_ITEM32(reg, pspa, swid, 0x00, 24, 8); 5320 5321 /* reg_pspa_local_port 5322 * Local port number. 5323 * Access: Index 5324 */ 5325 MLXSW_ITEM32(reg, pspa, local_port, 0x00, 16, 8); 5326 5327 /* reg_pspa_sub_port 5328 * Virtual port within the local port. Set to 0 when virtual ports are 5329 * disabled on the local port. 5330 * Access: Index 5331 */ 5332 MLXSW_ITEM32(reg, pspa, sub_port, 0x00, 8, 8); 5333 5334 static inline void mlxsw_reg_pspa_pack(char *payload, u8 swid, u8 local_port) 5335 { 5336 MLXSW_REG_ZERO(pspa, payload); 5337 mlxsw_reg_pspa_swid_set(payload, swid); 5338 mlxsw_reg_pspa_local_port_set(payload, local_port); 5339 mlxsw_reg_pspa_sub_port_set(payload, 0); 5340 } 5341 5342 /* PPLR - Port Physical Loopback Register 5343 * -------------------------------------- 5344 * This register allows configuration of the port's loopback mode. 5345 */ 5346 #define MLXSW_REG_PPLR_ID 0x5018 5347 #define MLXSW_REG_PPLR_LEN 0x8 5348 5349 MLXSW_REG_DEFINE(pplr, MLXSW_REG_PPLR_ID, MLXSW_REG_PPLR_LEN); 5350 5351 /* reg_pplr_local_port 5352 * Local port number. 5353 * Access: Index 5354 */ 5355 MLXSW_ITEM32(reg, pplr, local_port, 0x00, 16, 8); 5356 5357 /* Phy local loopback. When set the port's egress traffic is looped back 5358 * to the receiver and the port transmitter is disabled. 5359 */ 5360 #define MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL BIT(1) 5361 5362 /* reg_pplr_lb_en 5363 * Loopback enable. 5364 * Access: RW 5365 */ 5366 MLXSW_ITEM32(reg, pplr, lb_en, 0x04, 0, 8); 5367 5368 static inline void mlxsw_reg_pplr_pack(char *payload, u8 local_port, 5369 bool phy_local) 5370 { 5371 MLXSW_REG_ZERO(pplr, payload); 5372 mlxsw_reg_pplr_local_port_set(payload, local_port); 5373 mlxsw_reg_pplr_lb_en_set(payload, 5374 phy_local ? 5375 MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL : 0); 5376 } 5377 5378 /* PMTM - Port Module Type Mapping Register 5379 * ---------------------------------------- 5380 * The PMTM allows query or configuration of module types. 5381 */ 5382 #define MLXSW_REG_PMTM_ID 0x5067 5383 #define MLXSW_REG_PMTM_LEN 0x10 5384 5385 MLXSW_REG_DEFINE(pmtm, MLXSW_REG_PMTM_ID, MLXSW_REG_PMTM_LEN); 5386 5387 /* reg_pmtm_module 5388 * Module number. 5389 * Access: Index 5390 */ 5391 MLXSW_ITEM32(reg, pmtm, module, 0x00, 16, 8); 5392 5393 enum mlxsw_reg_pmtm_module_type { 5394 /* Backplane with 4 lanes */ 5395 MLXSW_REG_PMTM_MODULE_TYPE_BP_4X, 5396 /* QSFP */ 5397 MLXSW_REG_PMTM_MODULE_TYPE_BP_QSFP, 5398 /* SFP */ 5399 MLXSW_REG_PMTM_MODULE_TYPE_BP_SFP, 5400 /* Backplane with single lane */ 5401 MLXSW_REG_PMTM_MODULE_TYPE_BP_1X = 4, 5402 /* Backplane with two lane */ 5403 MLXSW_REG_PMTM_MODULE_TYPE_BP_2X = 8, 5404 /* Chip2Chip */ 5405 MLXSW_REG_PMTM_MODULE_TYPE_C2C = 10, 5406 }; 5407 5408 /* reg_pmtm_module_type 5409 * Module type. 5410 * Access: RW 5411 */ 5412 MLXSW_ITEM32(reg, pmtm, module_type, 0x04, 0, 4); 5413 5414 static inline void mlxsw_reg_pmtm_pack(char *payload, u8 module) 5415 { 5416 MLXSW_REG_ZERO(pmtm, payload); 5417 mlxsw_reg_pmtm_module_set(payload, module); 5418 } 5419 5420 static inline void 5421 mlxsw_reg_pmtm_unpack(char *payload, 5422 enum mlxsw_reg_pmtm_module_type *module_type) 5423 { 5424 *module_type = mlxsw_reg_pmtm_module_type_get(payload); 5425 } 5426 5427 /* HTGT - Host Trap Group Table 5428 * ---------------------------- 5429 * Configures the properties for forwarding to CPU. 5430 */ 5431 #define MLXSW_REG_HTGT_ID 0x7002 5432 #define MLXSW_REG_HTGT_LEN 0x20 5433 5434 MLXSW_REG_DEFINE(htgt, MLXSW_REG_HTGT_ID, MLXSW_REG_HTGT_LEN); 5435 5436 /* reg_htgt_swid 5437 * Switch partition ID. 5438 * Access: Index 5439 */ 5440 MLXSW_ITEM32(reg, htgt, swid, 0x00, 24, 8); 5441 5442 #define MLXSW_REG_HTGT_PATH_TYPE_LOCAL 0x0 /* For locally attached CPU */ 5443 5444 /* reg_htgt_type 5445 * CPU path type. 5446 * Access: RW 5447 */ 5448 MLXSW_ITEM32(reg, htgt, type, 0x00, 8, 4); 5449 5450 enum mlxsw_reg_htgt_trap_group { 5451 MLXSW_REG_HTGT_TRAP_GROUP_EMAD, 5452 MLXSW_REG_HTGT_TRAP_GROUP_SX2_RX, 5453 MLXSW_REG_HTGT_TRAP_GROUP_SX2_CTRL, 5454 MLXSW_REG_HTGT_TRAP_GROUP_SP_STP, 5455 MLXSW_REG_HTGT_TRAP_GROUP_SP_LACP, 5456 MLXSW_REG_HTGT_TRAP_GROUP_SP_LLDP, 5457 MLXSW_REG_HTGT_TRAP_GROUP_SP_IGMP, 5458 MLXSW_REG_HTGT_TRAP_GROUP_SP_BGP, 5459 MLXSW_REG_HTGT_TRAP_GROUP_SP_OSPF, 5460 MLXSW_REG_HTGT_TRAP_GROUP_SP_PIM, 5461 MLXSW_REG_HTGT_TRAP_GROUP_SP_MULTICAST, 5462 MLXSW_REG_HTGT_TRAP_GROUP_SP_ARP, 5463 MLXSW_REG_HTGT_TRAP_GROUP_SP_HOST_MISS, 5464 MLXSW_REG_HTGT_TRAP_GROUP_SP_ROUTER_EXP, 5465 MLXSW_REG_HTGT_TRAP_GROUP_SP_REMOTE_ROUTE, 5466 MLXSW_REG_HTGT_TRAP_GROUP_SP_IP2ME, 5467 MLXSW_REG_HTGT_TRAP_GROUP_SP_DHCP, 5468 MLXSW_REG_HTGT_TRAP_GROUP_SP_RPF, 5469 MLXSW_REG_HTGT_TRAP_GROUP_SP_EVENT, 5470 MLXSW_REG_HTGT_TRAP_GROUP_SP_IPV6_MLD, 5471 MLXSW_REG_HTGT_TRAP_GROUP_SP_IPV6_ND, 5472 MLXSW_REG_HTGT_TRAP_GROUP_SP_LBERROR, 5473 MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP0, 5474 MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP1, 5475 MLXSW_REG_HTGT_TRAP_GROUP_SP_VRRP, 5476 5477 __MLXSW_REG_HTGT_TRAP_GROUP_MAX, 5478 MLXSW_REG_HTGT_TRAP_GROUP_MAX = __MLXSW_REG_HTGT_TRAP_GROUP_MAX - 1 5479 }; 5480 5481 enum mlxsw_reg_htgt_discard_trap_group { 5482 MLXSW_REG_HTGT_DISCARD_TRAP_GROUP_BASE = MLXSW_REG_HTGT_TRAP_GROUP_MAX, 5483 MLXSW_REG_HTGT_TRAP_GROUP_SP_L2_DISCARDS, 5484 MLXSW_REG_HTGT_TRAP_GROUP_SP_L3_DISCARDS, 5485 }; 5486 5487 /* reg_htgt_trap_group 5488 * Trap group number. User defined number specifying which trap groups 5489 * should be forwarded to the CPU. The mapping between trap IDs and trap 5490 * groups is configured using HPKT register. 5491 * Access: Index 5492 */ 5493 MLXSW_ITEM32(reg, htgt, trap_group, 0x00, 0, 8); 5494 5495 enum { 5496 MLXSW_REG_HTGT_POLICER_DISABLE, 5497 MLXSW_REG_HTGT_POLICER_ENABLE, 5498 }; 5499 5500 /* reg_htgt_pide 5501 * Enable policer ID specified using 'pid' field. 5502 * Access: RW 5503 */ 5504 MLXSW_ITEM32(reg, htgt, pide, 0x04, 15, 1); 5505 5506 #define MLXSW_REG_HTGT_INVALID_POLICER 0xff 5507 5508 /* reg_htgt_pid 5509 * Policer ID for the trap group. 5510 * Access: RW 5511 */ 5512 MLXSW_ITEM32(reg, htgt, pid, 0x04, 0, 8); 5513 5514 #define MLXSW_REG_HTGT_TRAP_TO_CPU 0x0 5515 5516 /* reg_htgt_mirror_action 5517 * Mirror action to use. 5518 * 0 - Trap to CPU. 5519 * 1 - Trap to CPU and mirror to a mirroring agent. 5520 * 2 - Mirror to a mirroring agent and do not trap to CPU. 5521 * Access: RW 5522 * 5523 * Note: Mirroring to a mirroring agent is only supported in Spectrum. 5524 */ 5525 MLXSW_ITEM32(reg, htgt, mirror_action, 0x08, 8, 2); 5526 5527 /* reg_htgt_mirroring_agent 5528 * Mirroring agent. 5529 * Access: RW 5530 */ 5531 MLXSW_ITEM32(reg, htgt, mirroring_agent, 0x08, 0, 3); 5532 5533 #define MLXSW_REG_HTGT_DEFAULT_PRIORITY 0 5534 5535 /* reg_htgt_priority 5536 * Trap group priority. 5537 * In case a packet matches multiple classification rules, the packet will 5538 * only be trapped once, based on the trap ID associated with the group (via 5539 * register HPKT) with the highest priority. 5540 * Supported values are 0-7, with 7 represnting the highest priority. 5541 * Access: RW 5542 * 5543 * Note: In SwitchX-2 this field is ignored and the priority value is replaced 5544 * by the 'trap_group' field. 5545 */ 5546 MLXSW_ITEM32(reg, htgt, priority, 0x0C, 0, 4); 5547 5548 #define MLXSW_REG_HTGT_DEFAULT_TC 7 5549 5550 /* reg_htgt_local_path_cpu_tclass 5551 * CPU ingress traffic class for the trap group. 5552 * Access: RW 5553 */ 5554 MLXSW_ITEM32(reg, htgt, local_path_cpu_tclass, 0x10, 16, 6); 5555 5556 enum mlxsw_reg_htgt_local_path_rdq { 5557 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_CTRL = 0x13, 5558 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_RX = 0x14, 5559 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_EMAD = 0x15, 5560 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SIB_EMAD = 0x15, 5561 }; 5562 /* reg_htgt_local_path_rdq 5563 * Receive descriptor queue (RDQ) to use for the trap group. 5564 * Access: RW 5565 */ 5566 MLXSW_ITEM32(reg, htgt, local_path_rdq, 0x10, 0, 6); 5567 5568 static inline void mlxsw_reg_htgt_pack(char *payload, u8 group, u8 policer_id, 5569 u8 priority, u8 tc) 5570 { 5571 MLXSW_REG_ZERO(htgt, payload); 5572 5573 if (policer_id == MLXSW_REG_HTGT_INVALID_POLICER) { 5574 mlxsw_reg_htgt_pide_set(payload, 5575 MLXSW_REG_HTGT_POLICER_DISABLE); 5576 } else { 5577 mlxsw_reg_htgt_pide_set(payload, 5578 MLXSW_REG_HTGT_POLICER_ENABLE); 5579 mlxsw_reg_htgt_pid_set(payload, policer_id); 5580 } 5581 5582 mlxsw_reg_htgt_type_set(payload, MLXSW_REG_HTGT_PATH_TYPE_LOCAL); 5583 mlxsw_reg_htgt_trap_group_set(payload, group); 5584 mlxsw_reg_htgt_mirror_action_set(payload, MLXSW_REG_HTGT_TRAP_TO_CPU); 5585 mlxsw_reg_htgt_mirroring_agent_set(payload, 0); 5586 mlxsw_reg_htgt_priority_set(payload, priority); 5587 mlxsw_reg_htgt_local_path_cpu_tclass_set(payload, tc); 5588 mlxsw_reg_htgt_local_path_rdq_set(payload, group); 5589 } 5590 5591 /* HPKT - Host Packet Trap 5592 * ----------------------- 5593 * Configures trap IDs inside trap groups. 5594 */ 5595 #define MLXSW_REG_HPKT_ID 0x7003 5596 #define MLXSW_REG_HPKT_LEN 0x10 5597 5598 MLXSW_REG_DEFINE(hpkt, MLXSW_REG_HPKT_ID, MLXSW_REG_HPKT_LEN); 5599 5600 enum { 5601 MLXSW_REG_HPKT_ACK_NOT_REQUIRED, 5602 MLXSW_REG_HPKT_ACK_REQUIRED, 5603 }; 5604 5605 /* reg_hpkt_ack 5606 * Require acknowledgements from the host for events. 5607 * If set, then the device will wait for the event it sent to be acknowledged 5608 * by the host. This option is only relevant for event trap IDs. 5609 * Access: RW 5610 * 5611 * Note: Currently not supported by firmware. 5612 */ 5613 MLXSW_ITEM32(reg, hpkt, ack, 0x00, 24, 1); 5614 5615 enum mlxsw_reg_hpkt_action { 5616 MLXSW_REG_HPKT_ACTION_FORWARD, 5617 MLXSW_REG_HPKT_ACTION_TRAP_TO_CPU, 5618 MLXSW_REG_HPKT_ACTION_MIRROR_TO_CPU, 5619 MLXSW_REG_HPKT_ACTION_DISCARD, 5620 MLXSW_REG_HPKT_ACTION_SOFT_DISCARD, 5621 MLXSW_REG_HPKT_ACTION_TRAP_AND_SOFT_DISCARD, 5622 MLXSW_REG_HPKT_ACTION_TRAP_EXCEPTION_TO_CPU, 5623 MLXSW_REG_HPKT_ACTION_SET_FW_DEFAULT = 15, 5624 }; 5625 5626 /* reg_hpkt_action 5627 * Action to perform on packet when trapped. 5628 * 0 - No action. Forward to CPU based on switching rules. 5629 * 1 - Trap to CPU (CPU receives sole copy). 5630 * 2 - Mirror to CPU (CPU receives a replica of the packet). 5631 * 3 - Discard. 5632 * 4 - Soft discard (allow other traps to act on the packet). 5633 * 5 - Trap and soft discard (allow other traps to overwrite this trap). 5634 * 6 - Trap to CPU (CPU receives sole copy) and count it as error. 5635 * 15 - Restore the firmware's default action. 5636 * Access: RW 5637 * 5638 * Note: Must be set to 0 (forward) for event trap IDs, as they are already 5639 * addressed to the CPU. 5640 */ 5641 MLXSW_ITEM32(reg, hpkt, action, 0x00, 20, 3); 5642 5643 /* reg_hpkt_trap_group 5644 * Trap group to associate the trap with. 5645 * Access: RW 5646 */ 5647 MLXSW_ITEM32(reg, hpkt, trap_group, 0x00, 12, 6); 5648 5649 /* reg_hpkt_trap_id 5650 * Trap ID. 5651 * Access: Index 5652 * 5653 * Note: A trap ID can only be associated with a single trap group. The device 5654 * will associate the trap ID with the last trap group configured. 5655 */ 5656 MLXSW_ITEM32(reg, hpkt, trap_id, 0x00, 0, 9); 5657 5658 enum { 5659 MLXSW_REG_HPKT_CTRL_PACKET_DEFAULT, 5660 MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER, 5661 MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER, 5662 }; 5663 5664 /* reg_hpkt_ctrl 5665 * Configure dedicated buffer resources for control packets. 5666 * Ignored by SwitchX-2. 5667 * 0 - Keep factory defaults. 5668 * 1 - Do not use control buffer for this trap ID. 5669 * 2 - Use control buffer for this trap ID. 5670 * Access: RW 5671 */ 5672 MLXSW_ITEM32(reg, hpkt, ctrl, 0x04, 16, 2); 5673 5674 static inline void mlxsw_reg_hpkt_pack(char *payload, u8 action, u16 trap_id, 5675 enum mlxsw_reg_htgt_trap_group trap_group, 5676 bool is_ctrl) 5677 { 5678 MLXSW_REG_ZERO(hpkt, payload); 5679 mlxsw_reg_hpkt_ack_set(payload, MLXSW_REG_HPKT_ACK_NOT_REQUIRED); 5680 mlxsw_reg_hpkt_action_set(payload, action); 5681 mlxsw_reg_hpkt_trap_group_set(payload, trap_group); 5682 mlxsw_reg_hpkt_trap_id_set(payload, trap_id); 5683 mlxsw_reg_hpkt_ctrl_set(payload, is_ctrl ? 5684 MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER : 5685 MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER); 5686 } 5687 5688 /* RGCR - Router General Configuration Register 5689 * -------------------------------------------- 5690 * The register is used for setting up the router configuration. 5691 */ 5692 #define MLXSW_REG_RGCR_ID 0x8001 5693 #define MLXSW_REG_RGCR_LEN 0x28 5694 5695 MLXSW_REG_DEFINE(rgcr, MLXSW_REG_RGCR_ID, MLXSW_REG_RGCR_LEN); 5696 5697 /* reg_rgcr_ipv4_en 5698 * IPv4 router enable. 5699 * Access: RW 5700 */ 5701 MLXSW_ITEM32(reg, rgcr, ipv4_en, 0x00, 31, 1); 5702 5703 /* reg_rgcr_ipv6_en 5704 * IPv6 router enable. 5705 * Access: RW 5706 */ 5707 MLXSW_ITEM32(reg, rgcr, ipv6_en, 0x00, 30, 1); 5708 5709 /* reg_rgcr_max_router_interfaces 5710 * Defines the maximum number of active router interfaces for all virtual 5711 * routers. 5712 * Access: RW 5713 */ 5714 MLXSW_ITEM32(reg, rgcr, max_router_interfaces, 0x10, 0, 16); 5715 5716 /* reg_rgcr_usp 5717 * Update switch priority and packet color. 5718 * 0 - Preserve the value of Switch Priority and packet color. 5719 * 1 - Recalculate the value of Switch Priority and packet color. 5720 * Access: RW 5721 * 5722 * Note: Not supported by SwitchX and SwitchX-2. 5723 */ 5724 MLXSW_ITEM32(reg, rgcr, usp, 0x18, 20, 1); 5725 5726 /* reg_rgcr_pcp_rw 5727 * Indicates how to handle the pcp_rewrite_en value: 5728 * 0 - Preserve the value of pcp_rewrite_en. 5729 * 2 - Disable PCP rewrite. 5730 * 3 - Enable PCP rewrite. 5731 * Access: RW 5732 * 5733 * Note: Not supported by SwitchX and SwitchX-2. 5734 */ 5735 MLXSW_ITEM32(reg, rgcr, pcp_rw, 0x18, 16, 2); 5736 5737 /* reg_rgcr_activity_dis 5738 * Activity disable: 5739 * 0 - Activity will be set when an entry is hit (default). 5740 * 1 - Activity will not be set when an entry is hit. 5741 * 5742 * Bit 0 - Disable activity bit in Router Algorithmic LPM Unicast Entry 5743 * (RALUE). 5744 * Bit 1 - Disable activity bit in Router Algorithmic LPM Unicast Host 5745 * Entry (RAUHT). 5746 * Bits 2:7 are reserved. 5747 * Access: RW 5748 * 5749 * Note: Not supported by SwitchX, SwitchX-2 and Switch-IB. 5750 */ 5751 MLXSW_ITEM32(reg, rgcr, activity_dis, 0x20, 0, 8); 5752 5753 static inline void mlxsw_reg_rgcr_pack(char *payload, bool ipv4_en, 5754 bool ipv6_en) 5755 { 5756 MLXSW_REG_ZERO(rgcr, payload); 5757 mlxsw_reg_rgcr_ipv4_en_set(payload, ipv4_en); 5758 mlxsw_reg_rgcr_ipv6_en_set(payload, ipv6_en); 5759 } 5760 5761 /* RITR - Router Interface Table Register 5762 * -------------------------------------- 5763 * The register is used to configure the router interface table. 5764 */ 5765 #define MLXSW_REG_RITR_ID 0x8002 5766 #define MLXSW_REG_RITR_LEN 0x40 5767 5768 MLXSW_REG_DEFINE(ritr, MLXSW_REG_RITR_ID, MLXSW_REG_RITR_LEN); 5769 5770 /* reg_ritr_enable 5771 * Enables routing on the router interface. 5772 * Access: RW 5773 */ 5774 MLXSW_ITEM32(reg, ritr, enable, 0x00, 31, 1); 5775 5776 /* reg_ritr_ipv4 5777 * IPv4 routing enable. Enables routing of IPv4 traffic on the router 5778 * interface. 5779 * Access: RW 5780 */ 5781 MLXSW_ITEM32(reg, ritr, ipv4, 0x00, 29, 1); 5782 5783 /* reg_ritr_ipv6 5784 * IPv6 routing enable. Enables routing of IPv6 traffic on the router 5785 * interface. 5786 * Access: RW 5787 */ 5788 MLXSW_ITEM32(reg, ritr, ipv6, 0x00, 28, 1); 5789 5790 /* reg_ritr_ipv4_mc 5791 * IPv4 multicast routing enable. 5792 * Access: RW 5793 */ 5794 MLXSW_ITEM32(reg, ritr, ipv4_mc, 0x00, 27, 1); 5795 5796 /* reg_ritr_ipv6_mc 5797 * IPv6 multicast routing enable. 5798 * Access: RW 5799 */ 5800 MLXSW_ITEM32(reg, ritr, ipv6_mc, 0x00, 26, 1); 5801 5802 enum mlxsw_reg_ritr_if_type { 5803 /* VLAN interface. */ 5804 MLXSW_REG_RITR_VLAN_IF, 5805 /* FID interface. */ 5806 MLXSW_REG_RITR_FID_IF, 5807 /* Sub-port interface. */ 5808 MLXSW_REG_RITR_SP_IF, 5809 /* Loopback Interface. */ 5810 MLXSW_REG_RITR_LOOPBACK_IF, 5811 }; 5812 5813 /* reg_ritr_type 5814 * Router interface type as per enum mlxsw_reg_ritr_if_type. 5815 * Access: RW 5816 */ 5817 MLXSW_ITEM32(reg, ritr, type, 0x00, 23, 3); 5818 5819 enum { 5820 MLXSW_REG_RITR_RIF_CREATE, 5821 MLXSW_REG_RITR_RIF_DEL, 5822 }; 5823 5824 /* reg_ritr_op 5825 * Opcode: 5826 * 0 - Create or edit RIF. 5827 * 1 - Delete RIF. 5828 * Reserved for SwitchX-2. For Spectrum, editing of interface properties 5829 * is not supported. An interface must be deleted and re-created in order 5830 * to update properties. 5831 * Access: WO 5832 */ 5833 MLXSW_ITEM32(reg, ritr, op, 0x00, 20, 2); 5834 5835 /* reg_ritr_rif 5836 * Router interface index. A pointer to the Router Interface Table. 5837 * Access: Index 5838 */ 5839 MLXSW_ITEM32(reg, ritr, rif, 0x00, 0, 16); 5840 5841 /* reg_ritr_ipv4_fe 5842 * IPv4 Forwarding Enable. 5843 * Enables routing of IPv4 traffic on the router interface. When disabled, 5844 * forwarding is blocked but local traffic (traps and IP2ME) will be enabled. 5845 * Not supported in SwitchX-2. 5846 * Access: RW 5847 */ 5848 MLXSW_ITEM32(reg, ritr, ipv4_fe, 0x04, 29, 1); 5849 5850 /* reg_ritr_ipv6_fe 5851 * IPv6 Forwarding Enable. 5852 * Enables routing of IPv6 traffic on the router interface. When disabled, 5853 * forwarding is blocked but local traffic (traps and IP2ME) will be enabled. 5854 * Not supported in SwitchX-2. 5855 * Access: RW 5856 */ 5857 MLXSW_ITEM32(reg, ritr, ipv6_fe, 0x04, 28, 1); 5858 5859 /* reg_ritr_ipv4_mc_fe 5860 * IPv4 Multicast Forwarding Enable. 5861 * When disabled, forwarding is blocked but local traffic (traps and IP to me) 5862 * will be enabled. 5863 * Access: RW 5864 */ 5865 MLXSW_ITEM32(reg, ritr, ipv4_mc_fe, 0x04, 27, 1); 5866 5867 /* reg_ritr_ipv6_mc_fe 5868 * IPv6 Multicast Forwarding Enable. 5869 * When disabled, forwarding is blocked but local traffic (traps and IP to me) 5870 * will be enabled. 5871 * Access: RW 5872 */ 5873 MLXSW_ITEM32(reg, ritr, ipv6_mc_fe, 0x04, 26, 1); 5874 5875 /* reg_ritr_lb_en 5876 * Loop-back filter enable for unicast packets. 5877 * If the flag is set then loop-back filter for unicast packets is 5878 * implemented on the RIF. Multicast packets are always subject to 5879 * loop-back filtering. 5880 * Access: RW 5881 */ 5882 MLXSW_ITEM32(reg, ritr, lb_en, 0x04, 24, 1); 5883 5884 /* reg_ritr_virtual_router 5885 * Virtual router ID associated with the router interface. 5886 * Access: RW 5887 */ 5888 MLXSW_ITEM32(reg, ritr, virtual_router, 0x04, 0, 16); 5889 5890 /* reg_ritr_mtu 5891 * Router interface MTU. 5892 * Access: RW 5893 */ 5894 MLXSW_ITEM32(reg, ritr, mtu, 0x34, 0, 16); 5895 5896 /* reg_ritr_if_swid 5897 * Switch partition ID. 5898 * Access: RW 5899 */ 5900 MLXSW_ITEM32(reg, ritr, if_swid, 0x08, 24, 8); 5901 5902 /* reg_ritr_if_mac 5903 * Router interface MAC address. 5904 * In Spectrum, all MAC addresses must have the same 38 MSBits. 5905 * Access: RW 5906 */ 5907 MLXSW_ITEM_BUF(reg, ritr, if_mac, 0x12, 6); 5908 5909 /* reg_ritr_if_vrrp_id_ipv6 5910 * VRRP ID for IPv6 5911 * Note: Reserved for RIF types other than VLAN, FID and Sub-port. 5912 * Access: RW 5913 */ 5914 MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv6, 0x1C, 8, 8); 5915 5916 /* reg_ritr_if_vrrp_id_ipv4 5917 * VRRP ID for IPv4 5918 * Note: Reserved for RIF types other than VLAN, FID and Sub-port. 5919 * Access: RW 5920 */ 5921 MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv4, 0x1C, 0, 8); 5922 5923 /* VLAN Interface */ 5924 5925 /* reg_ritr_vlan_if_vid 5926 * VLAN ID. 5927 * Access: RW 5928 */ 5929 MLXSW_ITEM32(reg, ritr, vlan_if_vid, 0x08, 0, 12); 5930 5931 /* FID Interface */ 5932 5933 /* reg_ritr_fid_if_fid 5934 * Filtering ID. Used to connect a bridge to the router. Only FIDs from 5935 * the vFID range are supported. 5936 * Access: RW 5937 */ 5938 MLXSW_ITEM32(reg, ritr, fid_if_fid, 0x08, 0, 16); 5939 5940 static inline void mlxsw_reg_ritr_fid_set(char *payload, 5941 enum mlxsw_reg_ritr_if_type rif_type, 5942 u16 fid) 5943 { 5944 if (rif_type == MLXSW_REG_RITR_FID_IF) 5945 mlxsw_reg_ritr_fid_if_fid_set(payload, fid); 5946 else 5947 mlxsw_reg_ritr_vlan_if_vid_set(payload, fid); 5948 } 5949 5950 /* Sub-port Interface */ 5951 5952 /* reg_ritr_sp_if_lag 5953 * LAG indication. When this bit is set the system_port field holds the 5954 * LAG identifier. 5955 * Access: RW 5956 */ 5957 MLXSW_ITEM32(reg, ritr, sp_if_lag, 0x08, 24, 1); 5958 5959 /* reg_ritr_sp_system_port 5960 * Port unique indentifier. When lag bit is set, this field holds the 5961 * lag_id in bits 0:9. 5962 * Access: RW 5963 */ 5964 MLXSW_ITEM32(reg, ritr, sp_if_system_port, 0x08, 0, 16); 5965 5966 /* reg_ritr_sp_if_vid 5967 * VLAN ID. 5968 * Access: RW 5969 */ 5970 MLXSW_ITEM32(reg, ritr, sp_if_vid, 0x18, 0, 12); 5971 5972 /* Loopback Interface */ 5973 5974 enum mlxsw_reg_ritr_loopback_protocol { 5975 /* IPinIP IPv4 underlay Unicast */ 5976 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4, 5977 /* IPinIP IPv6 underlay Unicast */ 5978 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV6, 5979 /* IPinIP generic - used for Spectrum-2 underlay RIF */ 5980 MLXSW_REG_RITR_LOOPBACK_GENERIC, 5981 }; 5982 5983 /* reg_ritr_loopback_protocol 5984 * Access: RW 5985 */ 5986 MLXSW_ITEM32(reg, ritr, loopback_protocol, 0x08, 28, 4); 5987 5988 enum mlxsw_reg_ritr_loopback_ipip_type { 5989 /* Tunnel is IPinIP. */ 5990 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_IP, 5991 /* Tunnel is GRE, no key. */ 5992 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_IN_IP, 5993 /* Tunnel is GRE, with a key. */ 5994 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_KEY_IN_IP, 5995 }; 5996 5997 /* reg_ritr_loopback_ipip_type 5998 * Encapsulation type. 5999 * Access: RW 6000 */ 6001 MLXSW_ITEM32(reg, ritr, loopback_ipip_type, 0x10, 24, 4); 6002 6003 enum mlxsw_reg_ritr_loopback_ipip_options { 6004 /* The key is defined by gre_key. */ 6005 MLXSW_REG_RITR_LOOPBACK_IPIP_OPTIONS_GRE_KEY_PRESET, 6006 }; 6007 6008 /* reg_ritr_loopback_ipip_options 6009 * Access: RW 6010 */ 6011 MLXSW_ITEM32(reg, ritr, loopback_ipip_options, 0x10, 20, 4); 6012 6013 /* reg_ritr_loopback_ipip_uvr 6014 * Underlay Virtual Router ID. 6015 * Range is 0..cap_max_virtual_routers-1. 6016 * Reserved for Spectrum-2. 6017 * Access: RW 6018 */ 6019 MLXSW_ITEM32(reg, ritr, loopback_ipip_uvr, 0x10, 0, 16); 6020 6021 /* reg_ritr_loopback_ipip_underlay_rif 6022 * Underlay ingress router interface. 6023 * Reserved for Spectrum. 6024 * Access: RW 6025 */ 6026 MLXSW_ITEM32(reg, ritr, loopback_ipip_underlay_rif, 0x14, 0, 16); 6027 6028 /* reg_ritr_loopback_ipip_usip* 6029 * Encapsulation Underlay source IP. 6030 * Access: RW 6031 */ 6032 MLXSW_ITEM_BUF(reg, ritr, loopback_ipip_usip6, 0x18, 16); 6033 MLXSW_ITEM32(reg, ritr, loopback_ipip_usip4, 0x24, 0, 32); 6034 6035 /* reg_ritr_loopback_ipip_gre_key 6036 * GRE Key. 6037 * Reserved when ipip_type is not IP_IN_GRE_KEY_IN_IP. 6038 * Access: RW 6039 */ 6040 MLXSW_ITEM32(reg, ritr, loopback_ipip_gre_key, 0x28, 0, 32); 6041 6042 /* Shared between ingress/egress */ 6043 enum mlxsw_reg_ritr_counter_set_type { 6044 /* No Count. */ 6045 MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT = 0x0, 6046 /* Basic. Used for router interfaces, counting the following: 6047 * - Error and Discard counters. 6048 * - Unicast, Multicast and Broadcast counters. Sharing the 6049 * same set of counters for the different type of traffic 6050 * (IPv4, IPv6 and mpls). 6051 */ 6052 MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC = 0x9, 6053 }; 6054 6055 /* reg_ritr_ingress_counter_index 6056 * Counter Index for flow counter. 6057 * Access: RW 6058 */ 6059 MLXSW_ITEM32(reg, ritr, ingress_counter_index, 0x38, 0, 24); 6060 6061 /* reg_ritr_ingress_counter_set_type 6062 * Igress Counter Set Type for router interface counter. 6063 * Access: RW 6064 */ 6065 MLXSW_ITEM32(reg, ritr, ingress_counter_set_type, 0x38, 24, 8); 6066 6067 /* reg_ritr_egress_counter_index 6068 * Counter Index for flow counter. 6069 * Access: RW 6070 */ 6071 MLXSW_ITEM32(reg, ritr, egress_counter_index, 0x3C, 0, 24); 6072 6073 /* reg_ritr_egress_counter_set_type 6074 * Egress Counter Set Type for router interface counter. 6075 * Access: RW 6076 */ 6077 MLXSW_ITEM32(reg, ritr, egress_counter_set_type, 0x3C, 24, 8); 6078 6079 static inline void mlxsw_reg_ritr_counter_pack(char *payload, u32 index, 6080 bool enable, bool egress) 6081 { 6082 enum mlxsw_reg_ritr_counter_set_type set_type; 6083 6084 if (enable) 6085 set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC; 6086 else 6087 set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT; 6088 mlxsw_reg_ritr_egress_counter_set_type_set(payload, set_type); 6089 6090 if (egress) 6091 mlxsw_reg_ritr_egress_counter_index_set(payload, index); 6092 else 6093 mlxsw_reg_ritr_ingress_counter_index_set(payload, index); 6094 } 6095 6096 static inline void mlxsw_reg_ritr_rif_pack(char *payload, u16 rif) 6097 { 6098 MLXSW_REG_ZERO(ritr, payload); 6099 mlxsw_reg_ritr_rif_set(payload, rif); 6100 } 6101 6102 static inline void mlxsw_reg_ritr_sp_if_pack(char *payload, bool lag, 6103 u16 system_port, u16 vid) 6104 { 6105 mlxsw_reg_ritr_sp_if_lag_set(payload, lag); 6106 mlxsw_reg_ritr_sp_if_system_port_set(payload, system_port); 6107 mlxsw_reg_ritr_sp_if_vid_set(payload, vid); 6108 } 6109 6110 static inline void mlxsw_reg_ritr_pack(char *payload, bool enable, 6111 enum mlxsw_reg_ritr_if_type type, 6112 u16 rif, u16 vr_id, u16 mtu) 6113 { 6114 bool op = enable ? MLXSW_REG_RITR_RIF_CREATE : MLXSW_REG_RITR_RIF_DEL; 6115 6116 MLXSW_REG_ZERO(ritr, payload); 6117 mlxsw_reg_ritr_enable_set(payload, enable); 6118 mlxsw_reg_ritr_ipv4_set(payload, 1); 6119 mlxsw_reg_ritr_ipv6_set(payload, 1); 6120 mlxsw_reg_ritr_ipv4_mc_set(payload, 1); 6121 mlxsw_reg_ritr_ipv6_mc_set(payload, 1); 6122 mlxsw_reg_ritr_type_set(payload, type); 6123 mlxsw_reg_ritr_op_set(payload, op); 6124 mlxsw_reg_ritr_rif_set(payload, rif); 6125 mlxsw_reg_ritr_ipv4_fe_set(payload, 1); 6126 mlxsw_reg_ritr_ipv6_fe_set(payload, 1); 6127 mlxsw_reg_ritr_ipv4_mc_fe_set(payload, 1); 6128 mlxsw_reg_ritr_ipv6_mc_fe_set(payload, 1); 6129 mlxsw_reg_ritr_lb_en_set(payload, 1); 6130 mlxsw_reg_ritr_virtual_router_set(payload, vr_id); 6131 mlxsw_reg_ritr_mtu_set(payload, mtu); 6132 } 6133 6134 static inline void mlxsw_reg_ritr_mac_pack(char *payload, const char *mac) 6135 { 6136 mlxsw_reg_ritr_if_mac_memcpy_to(payload, mac); 6137 } 6138 6139 static inline void 6140 mlxsw_reg_ritr_loopback_ipip_common_pack(char *payload, 6141 enum mlxsw_reg_ritr_loopback_ipip_type ipip_type, 6142 enum mlxsw_reg_ritr_loopback_ipip_options options, 6143 u16 uvr_id, u16 underlay_rif, u32 gre_key) 6144 { 6145 mlxsw_reg_ritr_loopback_ipip_type_set(payload, ipip_type); 6146 mlxsw_reg_ritr_loopback_ipip_options_set(payload, options); 6147 mlxsw_reg_ritr_loopback_ipip_uvr_set(payload, uvr_id); 6148 mlxsw_reg_ritr_loopback_ipip_underlay_rif_set(payload, underlay_rif); 6149 mlxsw_reg_ritr_loopback_ipip_gre_key_set(payload, gre_key); 6150 } 6151 6152 static inline void 6153 mlxsw_reg_ritr_loopback_ipip4_pack(char *payload, 6154 enum mlxsw_reg_ritr_loopback_ipip_type ipip_type, 6155 enum mlxsw_reg_ritr_loopback_ipip_options options, 6156 u16 uvr_id, u16 underlay_rif, u32 usip, u32 gre_key) 6157 { 6158 mlxsw_reg_ritr_loopback_protocol_set(payload, 6159 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4); 6160 mlxsw_reg_ritr_loopback_ipip_common_pack(payload, ipip_type, options, 6161 uvr_id, underlay_rif, gre_key); 6162 mlxsw_reg_ritr_loopback_ipip_usip4_set(payload, usip); 6163 } 6164 6165 /* RTAR - Router TCAM Allocation Register 6166 * -------------------------------------- 6167 * This register is used for allocation of regions in the TCAM table. 6168 */ 6169 #define MLXSW_REG_RTAR_ID 0x8004 6170 #define MLXSW_REG_RTAR_LEN 0x20 6171 6172 MLXSW_REG_DEFINE(rtar, MLXSW_REG_RTAR_ID, MLXSW_REG_RTAR_LEN); 6173 6174 enum mlxsw_reg_rtar_op { 6175 MLXSW_REG_RTAR_OP_ALLOCATE, 6176 MLXSW_REG_RTAR_OP_RESIZE, 6177 MLXSW_REG_RTAR_OP_DEALLOCATE, 6178 }; 6179 6180 /* reg_rtar_op 6181 * Access: WO 6182 */ 6183 MLXSW_ITEM32(reg, rtar, op, 0x00, 28, 4); 6184 6185 enum mlxsw_reg_rtar_key_type { 6186 MLXSW_REG_RTAR_KEY_TYPE_IPV4_MULTICAST = 1, 6187 MLXSW_REG_RTAR_KEY_TYPE_IPV6_MULTICAST = 3 6188 }; 6189 6190 /* reg_rtar_key_type 6191 * TCAM key type for the region. 6192 * Access: WO 6193 */ 6194 MLXSW_ITEM32(reg, rtar, key_type, 0x00, 0, 8); 6195 6196 /* reg_rtar_region_size 6197 * TCAM region size. When allocating/resizing this is the requested 6198 * size, the response is the actual size. 6199 * Note: Actual size may be larger than requested. 6200 * Reserved for op = Deallocate 6201 * Access: WO 6202 */ 6203 MLXSW_ITEM32(reg, rtar, region_size, 0x04, 0, 16); 6204 6205 static inline void mlxsw_reg_rtar_pack(char *payload, 6206 enum mlxsw_reg_rtar_op op, 6207 enum mlxsw_reg_rtar_key_type key_type, 6208 u16 region_size) 6209 { 6210 MLXSW_REG_ZERO(rtar, payload); 6211 mlxsw_reg_rtar_op_set(payload, op); 6212 mlxsw_reg_rtar_key_type_set(payload, key_type); 6213 mlxsw_reg_rtar_region_size_set(payload, region_size); 6214 } 6215 6216 /* RATR - Router Adjacency Table Register 6217 * -------------------------------------- 6218 * The RATR register is used to configure the Router Adjacency (next-hop) 6219 * Table. 6220 */ 6221 #define MLXSW_REG_RATR_ID 0x8008 6222 #define MLXSW_REG_RATR_LEN 0x2C 6223 6224 MLXSW_REG_DEFINE(ratr, MLXSW_REG_RATR_ID, MLXSW_REG_RATR_LEN); 6225 6226 enum mlxsw_reg_ratr_op { 6227 /* Read */ 6228 MLXSW_REG_RATR_OP_QUERY_READ = 0, 6229 /* Read and clear activity */ 6230 MLXSW_REG_RATR_OP_QUERY_READ_CLEAR = 2, 6231 /* Write Adjacency entry */ 6232 MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY = 1, 6233 /* Write Adjacency entry only if the activity is cleared. 6234 * The write may not succeed if the activity is set. There is not 6235 * direct feedback if the write has succeeded or not, however 6236 * the get will reveal the actual entry (SW can compare the get 6237 * response to the set command). 6238 */ 6239 MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY_ON_ACTIVITY = 3, 6240 }; 6241 6242 /* reg_ratr_op 6243 * Note that Write operation may also be used for updating 6244 * counter_set_type and counter_index. In this case all other 6245 * fields must not be updated. 6246 * Access: OP 6247 */ 6248 MLXSW_ITEM32(reg, ratr, op, 0x00, 28, 4); 6249 6250 /* reg_ratr_v 6251 * Valid bit. Indicates if the adjacency entry is valid. 6252 * Note: the device may need some time before reusing an invalidated 6253 * entry. During this time the entry can not be reused. It is 6254 * recommended to use another entry before reusing an invalidated 6255 * entry (e.g. software can put it at the end of the list for 6256 * reusing). Trying to access an invalidated entry not yet cleared 6257 * by the device results with failure indicating "Try Again" status. 6258 * When valid is '0' then egress_router_interface,trap_action, 6259 * adjacency_parameters and counters are reserved 6260 * Access: RW 6261 */ 6262 MLXSW_ITEM32(reg, ratr, v, 0x00, 24, 1); 6263 6264 /* reg_ratr_a 6265 * Activity. Set for new entries. Set if a packet lookup has hit on 6266 * the specific entry. To clear the a bit, use "clear activity". 6267 * Access: RO 6268 */ 6269 MLXSW_ITEM32(reg, ratr, a, 0x00, 16, 1); 6270 6271 enum mlxsw_reg_ratr_type { 6272 /* Ethernet */ 6273 MLXSW_REG_RATR_TYPE_ETHERNET, 6274 /* IPoIB Unicast without GRH. 6275 * Reserved for Spectrum. 6276 */ 6277 MLXSW_REG_RATR_TYPE_IPOIB_UC, 6278 /* IPoIB Unicast with GRH. Supported only in table 0 (Ethernet unicast 6279 * adjacency). 6280 * Reserved for Spectrum. 6281 */ 6282 MLXSW_REG_RATR_TYPE_IPOIB_UC_W_GRH, 6283 /* IPoIB Multicast. 6284 * Reserved for Spectrum. 6285 */ 6286 MLXSW_REG_RATR_TYPE_IPOIB_MC, 6287 /* MPLS. 6288 * Reserved for SwitchX/-2. 6289 */ 6290 MLXSW_REG_RATR_TYPE_MPLS, 6291 /* IPinIP Encap. 6292 * Reserved for SwitchX/-2. 6293 */ 6294 MLXSW_REG_RATR_TYPE_IPIP, 6295 }; 6296 6297 /* reg_ratr_type 6298 * Adjacency entry type. 6299 * Access: RW 6300 */ 6301 MLXSW_ITEM32(reg, ratr, type, 0x04, 28, 4); 6302 6303 /* reg_ratr_adjacency_index_low 6304 * Bits 15:0 of index into the adjacency table. 6305 * For SwitchX and SwitchX-2, the adjacency table is linear and 6306 * used for adjacency entries only. 6307 * For Spectrum, the index is to the KVD linear. 6308 * Access: Index 6309 */ 6310 MLXSW_ITEM32(reg, ratr, adjacency_index_low, 0x04, 0, 16); 6311 6312 /* reg_ratr_egress_router_interface 6313 * Range is 0 .. cap_max_router_interfaces - 1 6314 * Access: RW 6315 */ 6316 MLXSW_ITEM32(reg, ratr, egress_router_interface, 0x08, 0, 16); 6317 6318 enum mlxsw_reg_ratr_trap_action { 6319 MLXSW_REG_RATR_TRAP_ACTION_NOP, 6320 MLXSW_REG_RATR_TRAP_ACTION_TRAP, 6321 MLXSW_REG_RATR_TRAP_ACTION_MIRROR_TO_CPU, 6322 MLXSW_REG_RATR_TRAP_ACTION_MIRROR, 6323 MLXSW_REG_RATR_TRAP_ACTION_DISCARD_ERRORS, 6324 }; 6325 6326 /* reg_ratr_trap_action 6327 * see mlxsw_reg_ratr_trap_action 6328 * Access: RW 6329 */ 6330 MLXSW_ITEM32(reg, ratr, trap_action, 0x0C, 28, 4); 6331 6332 /* reg_ratr_adjacency_index_high 6333 * Bits 23:16 of the adjacency_index. 6334 * Access: Index 6335 */ 6336 MLXSW_ITEM32(reg, ratr, adjacency_index_high, 0x0C, 16, 8); 6337 6338 enum mlxsw_reg_ratr_trap_id { 6339 MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS0, 6340 MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS1, 6341 }; 6342 6343 /* reg_ratr_trap_id 6344 * Trap ID to be reported to CPU. 6345 * Trap-ID is RTR_EGRESS0 or RTR_EGRESS1. 6346 * For trap_action of NOP, MIRROR and DISCARD_ERROR 6347 * Access: RW 6348 */ 6349 MLXSW_ITEM32(reg, ratr, trap_id, 0x0C, 0, 8); 6350 6351 /* reg_ratr_eth_destination_mac 6352 * MAC address of the destination next-hop. 6353 * Access: RW 6354 */ 6355 MLXSW_ITEM_BUF(reg, ratr, eth_destination_mac, 0x12, 6); 6356 6357 enum mlxsw_reg_ratr_ipip_type { 6358 /* IPv4, address set by mlxsw_reg_ratr_ipip_ipv4_udip. */ 6359 MLXSW_REG_RATR_IPIP_TYPE_IPV4, 6360 /* IPv6, address set by mlxsw_reg_ratr_ipip_ipv6_ptr. */ 6361 MLXSW_REG_RATR_IPIP_TYPE_IPV6, 6362 }; 6363 6364 /* reg_ratr_ipip_type 6365 * Underlay destination ip type. 6366 * Note: the type field must match the protocol of the router interface. 6367 * Access: RW 6368 */ 6369 MLXSW_ITEM32(reg, ratr, ipip_type, 0x10, 16, 4); 6370 6371 /* reg_ratr_ipip_ipv4_udip 6372 * Underlay ipv4 dip. 6373 * Reserved when ipip_type is IPv6. 6374 * Access: RW 6375 */ 6376 MLXSW_ITEM32(reg, ratr, ipip_ipv4_udip, 0x18, 0, 32); 6377 6378 /* reg_ratr_ipip_ipv6_ptr 6379 * Pointer to IPv6 underlay destination ip address. 6380 * For Spectrum: Pointer to KVD linear space. 6381 * Access: RW 6382 */ 6383 MLXSW_ITEM32(reg, ratr, ipip_ipv6_ptr, 0x1C, 0, 24); 6384 6385 enum mlxsw_reg_flow_counter_set_type { 6386 /* No count */ 6387 MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT = 0x00, 6388 /* Count packets and bytes */ 6389 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES = 0x03, 6390 /* Count only packets */ 6391 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS = 0x05, 6392 }; 6393 6394 /* reg_ratr_counter_set_type 6395 * Counter set type for flow counters 6396 * Access: RW 6397 */ 6398 MLXSW_ITEM32(reg, ratr, counter_set_type, 0x28, 24, 8); 6399 6400 /* reg_ratr_counter_index 6401 * Counter index for flow counters 6402 * Access: RW 6403 */ 6404 MLXSW_ITEM32(reg, ratr, counter_index, 0x28, 0, 24); 6405 6406 static inline void 6407 mlxsw_reg_ratr_pack(char *payload, 6408 enum mlxsw_reg_ratr_op op, bool valid, 6409 enum mlxsw_reg_ratr_type type, 6410 u32 adjacency_index, u16 egress_rif) 6411 { 6412 MLXSW_REG_ZERO(ratr, payload); 6413 mlxsw_reg_ratr_op_set(payload, op); 6414 mlxsw_reg_ratr_v_set(payload, valid); 6415 mlxsw_reg_ratr_type_set(payload, type); 6416 mlxsw_reg_ratr_adjacency_index_low_set(payload, adjacency_index); 6417 mlxsw_reg_ratr_adjacency_index_high_set(payload, adjacency_index >> 16); 6418 mlxsw_reg_ratr_egress_router_interface_set(payload, egress_rif); 6419 } 6420 6421 static inline void mlxsw_reg_ratr_eth_entry_pack(char *payload, 6422 const char *dest_mac) 6423 { 6424 mlxsw_reg_ratr_eth_destination_mac_memcpy_to(payload, dest_mac); 6425 } 6426 6427 static inline void mlxsw_reg_ratr_ipip4_entry_pack(char *payload, u32 ipv4_udip) 6428 { 6429 mlxsw_reg_ratr_ipip_type_set(payload, MLXSW_REG_RATR_IPIP_TYPE_IPV4); 6430 mlxsw_reg_ratr_ipip_ipv4_udip_set(payload, ipv4_udip); 6431 } 6432 6433 static inline void mlxsw_reg_ratr_counter_pack(char *payload, u64 counter_index, 6434 bool counter_enable) 6435 { 6436 enum mlxsw_reg_flow_counter_set_type set_type; 6437 6438 if (counter_enable) 6439 set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES; 6440 else 6441 set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT; 6442 6443 mlxsw_reg_ratr_counter_index_set(payload, counter_index); 6444 mlxsw_reg_ratr_counter_set_type_set(payload, set_type); 6445 } 6446 6447 /* RDPM - Router DSCP to Priority Mapping 6448 * -------------------------------------- 6449 * Controls the mapping from DSCP field to switch priority on routed packets 6450 */ 6451 #define MLXSW_REG_RDPM_ID 0x8009 6452 #define MLXSW_REG_RDPM_BASE_LEN 0x00 6453 #define MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN 0x01 6454 #define MLXSW_REG_RDPM_DSCP_ENTRY_REC_MAX_COUNT 64 6455 #define MLXSW_REG_RDPM_LEN 0x40 6456 #define MLXSW_REG_RDPM_LAST_ENTRY (MLXSW_REG_RDPM_BASE_LEN + \ 6457 MLXSW_REG_RDPM_LEN - \ 6458 MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN) 6459 6460 MLXSW_REG_DEFINE(rdpm, MLXSW_REG_RDPM_ID, MLXSW_REG_RDPM_LEN); 6461 6462 /* reg_dscp_entry_e 6463 * Enable update of the specific entry 6464 * Access: Index 6465 */ 6466 MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_e, MLXSW_REG_RDPM_LAST_ENTRY, 7, 1, 6467 -MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false); 6468 6469 /* reg_dscp_entry_prio 6470 * Switch Priority 6471 * Access: RW 6472 */ 6473 MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_prio, MLXSW_REG_RDPM_LAST_ENTRY, 0, 4, 6474 -MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false); 6475 6476 static inline void mlxsw_reg_rdpm_pack(char *payload, unsigned short index, 6477 u8 prio) 6478 { 6479 mlxsw_reg_rdpm_dscp_entry_e_set(payload, index, 1); 6480 mlxsw_reg_rdpm_dscp_entry_prio_set(payload, index, prio); 6481 } 6482 6483 /* RICNT - Router Interface Counter Register 6484 * ----------------------------------------- 6485 * The RICNT register retrieves per port performance counters 6486 */ 6487 #define MLXSW_REG_RICNT_ID 0x800B 6488 #define MLXSW_REG_RICNT_LEN 0x100 6489 6490 MLXSW_REG_DEFINE(ricnt, MLXSW_REG_RICNT_ID, MLXSW_REG_RICNT_LEN); 6491 6492 /* reg_ricnt_counter_index 6493 * Counter index 6494 * Access: RW 6495 */ 6496 MLXSW_ITEM32(reg, ricnt, counter_index, 0x04, 0, 24); 6497 6498 enum mlxsw_reg_ricnt_counter_set_type { 6499 /* No Count. */ 6500 MLXSW_REG_RICNT_COUNTER_SET_TYPE_NO_COUNT = 0x00, 6501 /* Basic. Used for router interfaces, counting the following: 6502 * - Error and Discard counters. 6503 * - Unicast, Multicast and Broadcast counters. Sharing the 6504 * same set of counters for the different type of traffic 6505 * (IPv4, IPv6 and mpls). 6506 */ 6507 MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC = 0x09, 6508 }; 6509 6510 /* reg_ricnt_counter_set_type 6511 * Counter Set Type for router interface counter 6512 * Access: RW 6513 */ 6514 MLXSW_ITEM32(reg, ricnt, counter_set_type, 0x04, 24, 8); 6515 6516 enum mlxsw_reg_ricnt_opcode { 6517 /* Nop. Supported only for read access*/ 6518 MLXSW_REG_RICNT_OPCODE_NOP = 0x00, 6519 /* Clear. Setting the clr bit will reset the counter value for 6520 * all counters of the specified Router Interface. 6521 */ 6522 MLXSW_REG_RICNT_OPCODE_CLEAR = 0x08, 6523 }; 6524 6525 /* reg_ricnt_opcode 6526 * Opcode 6527 * Access: RW 6528 */ 6529 MLXSW_ITEM32(reg, ricnt, op, 0x00, 28, 4); 6530 6531 /* reg_ricnt_good_unicast_packets 6532 * good unicast packets. 6533 * Access: RW 6534 */ 6535 MLXSW_ITEM64(reg, ricnt, good_unicast_packets, 0x08, 0, 64); 6536 6537 /* reg_ricnt_good_multicast_packets 6538 * good multicast packets. 6539 * Access: RW 6540 */ 6541 MLXSW_ITEM64(reg, ricnt, good_multicast_packets, 0x10, 0, 64); 6542 6543 /* reg_ricnt_good_broadcast_packets 6544 * good broadcast packets 6545 * Access: RW 6546 */ 6547 MLXSW_ITEM64(reg, ricnt, good_broadcast_packets, 0x18, 0, 64); 6548 6549 /* reg_ricnt_good_unicast_bytes 6550 * A count of L3 data and padding octets not including L2 headers 6551 * for good unicast frames. 6552 * Access: RW 6553 */ 6554 MLXSW_ITEM64(reg, ricnt, good_unicast_bytes, 0x20, 0, 64); 6555 6556 /* reg_ricnt_good_multicast_bytes 6557 * A count of L3 data and padding octets not including L2 headers 6558 * for good multicast frames. 6559 * Access: RW 6560 */ 6561 MLXSW_ITEM64(reg, ricnt, good_multicast_bytes, 0x28, 0, 64); 6562 6563 /* reg_ritr_good_broadcast_bytes 6564 * A count of L3 data and padding octets not including L2 headers 6565 * for good broadcast frames. 6566 * Access: RW 6567 */ 6568 MLXSW_ITEM64(reg, ricnt, good_broadcast_bytes, 0x30, 0, 64); 6569 6570 /* reg_ricnt_error_packets 6571 * A count of errored frames that do not pass the router checks. 6572 * Access: RW 6573 */ 6574 MLXSW_ITEM64(reg, ricnt, error_packets, 0x38, 0, 64); 6575 6576 /* reg_ricnt_discrad_packets 6577 * A count of non-errored frames that do not pass the router checks. 6578 * Access: RW 6579 */ 6580 MLXSW_ITEM64(reg, ricnt, discard_packets, 0x40, 0, 64); 6581 6582 /* reg_ricnt_error_bytes 6583 * A count of L3 data and padding octets not including L2 headers 6584 * for errored frames. 6585 * Access: RW 6586 */ 6587 MLXSW_ITEM64(reg, ricnt, error_bytes, 0x48, 0, 64); 6588 6589 /* reg_ricnt_discard_bytes 6590 * A count of L3 data and padding octets not including L2 headers 6591 * for non-errored frames that do not pass the router checks. 6592 * Access: RW 6593 */ 6594 MLXSW_ITEM64(reg, ricnt, discard_bytes, 0x50, 0, 64); 6595 6596 static inline void mlxsw_reg_ricnt_pack(char *payload, u32 index, 6597 enum mlxsw_reg_ricnt_opcode op) 6598 { 6599 MLXSW_REG_ZERO(ricnt, payload); 6600 mlxsw_reg_ricnt_op_set(payload, op); 6601 mlxsw_reg_ricnt_counter_index_set(payload, index); 6602 mlxsw_reg_ricnt_counter_set_type_set(payload, 6603 MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC); 6604 } 6605 6606 /* RRCR - Router Rules Copy Register Layout 6607 * ---------------------------------------- 6608 * This register is used for moving and copying route entry rules. 6609 */ 6610 #define MLXSW_REG_RRCR_ID 0x800F 6611 #define MLXSW_REG_RRCR_LEN 0x24 6612 6613 MLXSW_REG_DEFINE(rrcr, MLXSW_REG_RRCR_ID, MLXSW_REG_RRCR_LEN); 6614 6615 enum mlxsw_reg_rrcr_op { 6616 /* Move rules */ 6617 MLXSW_REG_RRCR_OP_MOVE, 6618 /* Copy rules */ 6619 MLXSW_REG_RRCR_OP_COPY, 6620 }; 6621 6622 /* reg_rrcr_op 6623 * Access: WO 6624 */ 6625 MLXSW_ITEM32(reg, rrcr, op, 0x00, 28, 4); 6626 6627 /* reg_rrcr_offset 6628 * Offset within the region from which to copy/move. 6629 * Access: Index 6630 */ 6631 MLXSW_ITEM32(reg, rrcr, offset, 0x00, 0, 16); 6632 6633 /* reg_rrcr_size 6634 * The number of rules to copy/move. 6635 * Access: WO 6636 */ 6637 MLXSW_ITEM32(reg, rrcr, size, 0x04, 0, 16); 6638 6639 /* reg_rrcr_table_id 6640 * Identifier of the table on which to perform the operation. Encoding is the 6641 * same as in RTAR.key_type 6642 * Access: Index 6643 */ 6644 MLXSW_ITEM32(reg, rrcr, table_id, 0x10, 0, 4); 6645 6646 /* reg_rrcr_dest_offset 6647 * Offset within the region to which to copy/move 6648 * Access: Index 6649 */ 6650 MLXSW_ITEM32(reg, rrcr, dest_offset, 0x20, 0, 16); 6651 6652 static inline void mlxsw_reg_rrcr_pack(char *payload, enum mlxsw_reg_rrcr_op op, 6653 u16 offset, u16 size, 6654 enum mlxsw_reg_rtar_key_type table_id, 6655 u16 dest_offset) 6656 { 6657 MLXSW_REG_ZERO(rrcr, payload); 6658 mlxsw_reg_rrcr_op_set(payload, op); 6659 mlxsw_reg_rrcr_offset_set(payload, offset); 6660 mlxsw_reg_rrcr_size_set(payload, size); 6661 mlxsw_reg_rrcr_table_id_set(payload, table_id); 6662 mlxsw_reg_rrcr_dest_offset_set(payload, dest_offset); 6663 } 6664 6665 /* RALTA - Router Algorithmic LPM Tree Allocation Register 6666 * ------------------------------------------------------- 6667 * RALTA is used to allocate the LPM trees of the SHSPM method. 6668 */ 6669 #define MLXSW_REG_RALTA_ID 0x8010 6670 #define MLXSW_REG_RALTA_LEN 0x04 6671 6672 MLXSW_REG_DEFINE(ralta, MLXSW_REG_RALTA_ID, MLXSW_REG_RALTA_LEN); 6673 6674 /* reg_ralta_op 6675 * opcode (valid for Write, must be 0 on Read) 6676 * 0 - allocate a tree 6677 * 1 - deallocate a tree 6678 * Access: OP 6679 */ 6680 MLXSW_ITEM32(reg, ralta, op, 0x00, 28, 2); 6681 6682 enum mlxsw_reg_ralxx_protocol { 6683 MLXSW_REG_RALXX_PROTOCOL_IPV4, 6684 MLXSW_REG_RALXX_PROTOCOL_IPV6, 6685 }; 6686 6687 /* reg_ralta_protocol 6688 * Protocol. 6689 * Deallocation opcode: Reserved. 6690 * Access: RW 6691 */ 6692 MLXSW_ITEM32(reg, ralta, protocol, 0x00, 24, 4); 6693 6694 /* reg_ralta_tree_id 6695 * An identifier (numbered from 1..cap_shspm_max_trees-1) representing 6696 * the tree identifier (managed by software). 6697 * Note that tree_id 0 is allocated for a default-route tree. 6698 * Access: Index 6699 */ 6700 MLXSW_ITEM32(reg, ralta, tree_id, 0x00, 0, 8); 6701 6702 static inline void mlxsw_reg_ralta_pack(char *payload, bool alloc, 6703 enum mlxsw_reg_ralxx_protocol protocol, 6704 u8 tree_id) 6705 { 6706 MLXSW_REG_ZERO(ralta, payload); 6707 mlxsw_reg_ralta_op_set(payload, !alloc); 6708 mlxsw_reg_ralta_protocol_set(payload, protocol); 6709 mlxsw_reg_ralta_tree_id_set(payload, tree_id); 6710 } 6711 6712 /* RALST - Router Algorithmic LPM Structure Tree Register 6713 * ------------------------------------------------------ 6714 * RALST is used to set and query the structure of an LPM tree. 6715 * The structure of the tree must be sorted as a sorted binary tree, while 6716 * each node is a bin that is tagged as the length of the prefixes the lookup 6717 * will refer to. Therefore, bin X refers to a set of entries with prefixes 6718 * of X bits to match with the destination address. The bin 0 indicates 6719 * the default action, when there is no match of any prefix. 6720 */ 6721 #define MLXSW_REG_RALST_ID 0x8011 6722 #define MLXSW_REG_RALST_LEN 0x104 6723 6724 MLXSW_REG_DEFINE(ralst, MLXSW_REG_RALST_ID, MLXSW_REG_RALST_LEN); 6725 6726 /* reg_ralst_root_bin 6727 * The bin number of the root bin. 6728 * 0<root_bin=<(length of IP address) 6729 * For a default-route tree configure 0xff 6730 * Access: RW 6731 */ 6732 MLXSW_ITEM32(reg, ralst, root_bin, 0x00, 16, 8); 6733 6734 /* reg_ralst_tree_id 6735 * Tree identifier numbered from 1..(cap_shspm_max_trees-1). 6736 * Access: Index 6737 */ 6738 MLXSW_ITEM32(reg, ralst, tree_id, 0x00, 0, 8); 6739 6740 #define MLXSW_REG_RALST_BIN_NO_CHILD 0xff 6741 #define MLXSW_REG_RALST_BIN_OFFSET 0x04 6742 #define MLXSW_REG_RALST_BIN_COUNT 128 6743 6744 /* reg_ralst_left_child_bin 6745 * Holding the children of the bin according to the stored tree's structure. 6746 * For trees composed of less than 4 blocks, the bins in excess are reserved. 6747 * Note that tree_id 0 is allocated for a default-route tree, bins are 0xff 6748 * Access: RW 6749 */ 6750 MLXSW_ITEM16_INDEXED(reg, ralst, left_child_bin, 0x04, 8, 8, 0x02, 0x00, false); 6751 6752 /* reg_ralst_right_child_bin 6753 * Holding the children of the bin according to the stored tree's structure. 6754 * For trees composed of less than 4 blocks, the bins in excess are reserved. 6755 * Note that tree_id 0 is allocated for a default-route tree, bins are 0xff 6756 * Access: RW 6757 */ 6758 MLXSW_ITEM16_INDEXED(reg, ralst, right_child_bin, 0x04, 0, 8, 0x02, 0x00, 6759 false); 6760 6761 static inline void mlxsw_reg_ralst_pack(char *payload, u8 root_bin, u8 tree_id) 6762 { 6763 MLXSW_REG_ZERO(ralst, payload); 6764 6765 /* Initialize all bins to have no left or right child */ 6766 memset(payload + MLXSW_REG_RALST_BIN_OFFSET, 6767 MLXSW_REG_RALST_BIN_NO_CHILD, MLXSW_REG_RALST_BIN_COUNT * 2); 6768 6769 mlxsw_reg_ralst_root_bin_set(payload, root_bin); 6770 mlxsw_reg_ralst_tree_id_set(payload, tree_id); 6771 } 6772 6773 static inline void mlxsw_reg_ralst_bin_pack(char *payload, u8 bin_number, 6774 u8 left_child_bin, 6775 u8 right_child_bin) 6776 { 6777 int bin_index = bin_number - 1; 6778 6779 mlxsw_reg_ralst_left_child_bin_set(payload, bin_index, left_child_bin); 6780 mlxsw_reg_ralst_right_child_bin_set(payload, bin_index, 6781 right_child_bin); 6782 } 6783 6784 /* RALTB - Router Algorithmic LPM Tree Binding Register 6785 * ---------------------------------------------------- 6786 * RALTB is used to bind virtual router and protocol to an allocated LPM tree. 6787 */ 6788 #define MLXSW_REG_RALTB_ID 0x8012 6789 #define MLXSW_REG_RALTB_LEN 0x04 6790 6791 MLXSW_REG_DEFINE(raltb, MLXSW_REG_RALTB_ID, MLXSW_REG_RALTB_LEN); 6792 6793 /* reg_raltb_virtual_router 6794 * Virtual Router ID 6795 * Range is 0..cap_max_virtual_routers-1 6796 * Access: Index 6797 */ 6798 MLXSW_ITEM32(reg, raltb, virtual_router, 0x00, 16, 16); 6799 6800 /* reg_raltb_protocol 6801 * Protocol. 6802 * Access: Index 6803 */ 6804 MLXSW_ITEM32(reg, raltb, protocol, 0x00, 12, 4); 6805 6806 /* reg_raltb_tree_id 6807 * Tree to be used for the {virtual_router, protocol} 6808 * Tree identifier numbered from 1..(cap_shspm_max_trees-1). 6809 * By default, all Unicast IPv4 and IPv6 are bound to tree_id 0. 6810 * Access: RW 6811 */ 6812 MLXSW_ITEM32(reg, raltb, tree_id, 0x00, 0, 8); 6813 6814 static inline void mlxsw_reg_raltb_pack(char *payload, u16 virtual_router, 6815 enum mlxsw_reg_ralxx_protocol protocol, 6816 u8 tree_id) 6817 { 6818 MLXSW_REG_ZERO(raltb, payload); 6819 mlxsw_reg_raltb_virtual_router_set(payload, virtual_router); 6820 mlxsw_reg_raltb_protocol_set(payload, protocol); 6821 mlxsw_reg_raltb_tree_id_set(payload, tree_id); 6822 } 6823 6824 /* RALUE - Router Algorithmic LPM Unicast Entry Register 6825 * ----------------------------------------------------- 6826 * RALUE is used to configure and query LPM entries that serve 6827 * the Unicast protocols. 6828 */ 6829 #define MLXSW_REG_RALUE_ID 0x8013 6830 #define MLXSW_REG_RALUE_LEN 0x38 6831 6832 MLXSW_REG_DEFINE(ralue, MLXSW_REG_RALUE_ID, MLXSW_REG_RALUE_LEN); 6833 6834 /* reg_ralue_protocol 6835 * Protocol. 6836 * Access: Index 6837 */ 6838 MLXSW_ITEM32(reg, ralue, protocol, 0x00, 24, 4); 6839 6840 enum mlxsw_reg_ralue_op { 6841 /* Read operation. If entry doesn't exist, the operation fails. */ 6842 MLXSW_REG_RALUE_OP_QUERY_READ = 0, 6843 /* Clear on read operation. Used to read entry and 6844 * clear Activity bit. 6845 */ 6846 MLXSW_REG_RALUE_OP_QUERY_CLEAR = 1, 6847 /* Write operation. Used to write a new entry to the table. All RW 6848 * fields are written for new entry. Activity bit is set 6849 * for new entries. 6850 */ 6851 MLXSW_REG_RALUE_OP_WRITE_WRITE = 0, 6852 /* Update operation. Used to update an existing route entry and 6853 * only update the RW fields that are detailed in the field 6854 * op_u_mask. If entry doesn't exist, the operation fails. 6855 */ 6856 MLXSW_REG_RALUE_OP_WRITE_UPDATE = 1, 6857 /* Clear activity. The Activity bit (the field a) is cleared 6858 * for the entry. 6859 */ 6860 MLXSW_REG_RALUE_OP_WRITE_CLEAR = 2, 6861 /* Delete operation. Used to delete an existing entry. If entry 6862 * doesn't exist, the operation fails. 6863 */ 6864 MLXSW_REG_RALUE_OP_WRITE_DELETE = 3, 6865 }; 6866 6867 /* reg_ralue_op 6868 * Operation. 6869 * Access: OP 6870 */ 6871 MLXSW_ITEM32(reg, ralue, op, 0x00, 20, 3); 6872 6873 /* reg_ralue_a 6874 * Activity. Set for new entries. Set if a packet lookup has hit on the 6875 * specific entry, only if the entry is a route. To clear the a bit, use 6876 * "clear activity" op. 6877 * Enabled by activity_dis in RGCR 6878 * Access: RO 6879 */ 6880 MLXSW_ITEM32(reg, ralue, a, 0x00, 16, 1); 6881 6882 /* reg_ralue_virtual_router 6883 * Virtual Router ID 6884 * Range is 0..cap_max_virtual_routers-1 6885 * Access: Index 6886 */ 6887 MLXSW_ITEM32(reg, ralue, virtual_router, 0x04, 16, 16); 6888 6889 #define MLXSW_REG_RALUE_OP_U_MASK_ENTRY_TYPE BIT(0) 6890 #define MLXSW_REG_RALUE_OP_U_MASK_BMP_LEN BIT(1) 6891 #define MLXSW_REG_RALUE_OP_U_MASK_ACTION BIT(2) 6892 6893 /* reg_ralue_op_u_mask 6894 * opcode update mask. 6895 * On read operation, this field is reserved. 6896 * This field is valid for update opcode, otherwise - reserved. 6897 * This field is a bitmask of the fields that should be updated. 6898 * Access: WO 6899 */ 6900 MLXSW_ITEM32(reg, ralue, op_u_mask, 0x04, 8, 3); 6901 6902 /* reg_ralue_prefix_len 6903 * Number of bits in the prefix of the LPM route. 6904 * Note that for IPv6 prefixes, if prefix_len>64 the entry consumes 6905 * two entries in the physical HW table. 6906 * Access: Index 6907 */ 6908 MLXSW_ITEM32(reg, ralue, prefix_len, 0x08, 0, 8); 6909 6910 /* reg_ralue_dip* 6911 * The prefix of the route or of the marker that the object of the LPM 6912 * is compared with. The most significant bits of the dip are the prefix. 6913 * The least significant bits must be '0' if the prefix_len is smaller 6914 * than 128 for IPv6 or smaller than 32 for IPv4. 6915 * IPv4 address uses bits dip[31:0] and bits dip[127:32] are reserved. 6916 * Access: Index 6917 */ 6918 MLXSW_ITEM32(reg, ralue, dip4, 0x18, 0, 32); 6919 MLXSW_ITEM_BUF(reg, ralue, dip6, 0x0C, 16); 6920 6921 enum mlxsw_reg_ralue_entry_type { 6922 MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_ENTRY = 1, 6923 MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY = 2, 6924 MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_AND_ROUTE_ENTRY = 3, 6925 }; 6926 6927 /* reg_ralue_entry_type 6928 * Entry type. 6929 * Note - for Marker entries, the action_type and action fields are reserved. 6930 * Access: RW 6931 */ 6932 MLXSW_ITEM32(reg, ralue, entry_type, 0x1C, 30, 2); 6933 6934 /* reg_ralue_bmp_len 6935 * The best match prefix length in the case that there is no match for 6936 * longer prefixes. 6937 * If (entry_type != MARKER_ENTRY), bmp_len must be equal to prefix_len 6938 * Note for any update operation with entry_type modification this 6939 * field must be set. 6940 * Access: RW 6941 */ 6942 MLXSW_ITEM32(reg, ralue, bmp_len, 0x1C, 16, 8); 6943 6944 enum mlxsw_reg_ralue_action_type { 6945 MLXSW_REG_RALUE_ACTION_TYPE_REMOTE, 6946 MLXSW_REG_RALUE_ACTION_TYPE_LOCAL, 6947 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME, 6948 }; 6949 6950 /* reg_ralue_action_type 6951 * Action Type 6952 * Indicates how the IP address is connected. 6953 * It can be connected to a local subnet through local_erif or can be 6954 * on a remote subnet connected through a next-hop router, 6955 * or transmitted to the CPU. 6956 * Reserved when entry_type = MARKER_ENTRY 6957 * Access: RW 6958 */ 6959 MLXSW_ITEM32(reg, ralue, action_type, 0x1C, 0, 2); 6960 6961 enum mlxsw_reg_ralue_trap_action { 6962 MLXSW_REG_RALUE_TRAP_ACTION_NOP, 6963 MLXSW_REG_RALUE_TRAP_ACTION_TRAP, 6964 MLXSW_REG_RALUE_TRAP_ACTION_MIRROR_TO_CPU, 6965 MLXSW_REG_RALUE_TRAP_ACTION_MIRROR, 6966 MLXSW_REG_RALUE_TRAP_ACTION_DISCARD_ERROR, 6967 }; 6968 6969 /* reg_ralue_trap_action 6970 * Trap action. 6971 * For IP2ME action, only NOP and MIRROR are possible. 6972 * Access: RW 6973 */ 6974 MLXSW_ITEM32(reg, ralue, trap_action, 0x20, 28, 4); 6975 6976 /* reg_ralue_trap_id 6977 * Trap ID to be reported to CPU. 6978 * Trap ID is RTR_INGRESS0 or RTR_INGRESS1. 6979 * For trap_action of NOP, MIRROR and DISCARD_ERROR, trap_id is reserved. 6980 * Access: RW 6981 */ 6982 MLXSW_ITEM32(reg, ralue, trap_id, 0x20, 0, 9); 6983 6984 /* reg_ralue_adjacency_index 6985 * Points to the first entry of the group-based ECMP. 6986 * Only relevant in case of REMOTE action. 6987 * Access: RW 6988 */ 6989 MLXSW_ITEM32(reg, ralue, adjacency_index, 0x24, 0, 24); 6990 6991 /* reg_ralue_ecmp_size 6992 * Amount of sequential entries starting 6993 * from the adjacency_index (the number of ECMPs). 6994 * The valid range is 1-64, 512, 1024, 2048 and 4096. 6995 * Reserved when trap_action is TRAP or DISCARD_ERROR. 6996 * Only relevant in case of REMOTE action. 6997 * Access: RW 6998 */ 6999 MLXSW_ITEM32(reg, ralue, ecmp_size, 0x28, 0, 13); 7000 7001 /* reg_ralue_local_erif 7002 * Egress Router Interface. 7003 * Only relevant in case of LOCAL action. 7004 * Access: RW 7005 */ 7006 MLXSW_ITEM32(reg, ralue, local_erif, 0x24, 0, 16); 7007 7008 /* reg_ralue_ip2me_v 7009 * Valid bit for the tunnel_ptr field. 7010 * If valid = 0 then trap to CPU as IP2ME trap ID. 7011 * If valid = 1 and the packet format allows NVE or IPinIP tunnel 7012 * decapsulation then tunnel decapsulation is done. 7013 * If valid = 1 and packet format does not allow NVE or IPinIP tunnel 7014 * decapsulation then trap as IP2ME trap ID. 7015 * Only relevant in case of IP2ME action. 7016 * Access: RW 7017 */ 7018 MLXSW_ITEM32(reg, ralue, ip2me_v, 0x24, 31, 1); 7019 7020 /* reg_ralue_ip2me_tunnel_ptr 7021 * Tunnel Pointer for NVE or IPinIP tunnel decapsulation. 7022 * For Spectrum, pointer to KVD Linear. 7023 * Only relevant in case of IP2ME action. 7024 * Access: RW 7025 */ 7026 MLXSW_ITEM32(reg, ralue, ip2me_tunnel_ptr, 0x24, 0, 24); 7027 7028 static inline void mlxsw_reg_ralue_pack(char *payload, 7029 enum mlxsw_reg_ralxx_protocol protocol, 7030 enum mlxsw_reg_ralue_op op, 7031 u16 virtual_router, u8 prefix_len) 7032 { 7033 MLXSW_REG_ZERO(ralue, payload); 7034 mlxsw_reg_ralue_protocol_set(payload, protocol); 7035 mlxsw_reg_ralue_op_set(payload, op); 7036 mlxsw_reg_ralue_virtual_router_set(payload, virtual_router); 7037 mlxsw_reg_ralue_prefix_len_set(payload, prefix_len); 7038 mlxsw_reg_ralue_entry_type_set(payload, 7039 MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY); 7040 mlxsw_reg_ralue_bmp_len_set(payload, prefix_len); 7041 } 7042 7043 static inline void mlxsw_reg_ralue_pack4(char *payload, 7044 enum mlxsw_reg_ralxx_protocol protocol, 7045 enum mlxsw_reg_ralue_op op, 7046 u16 virtual_router, u8 prefix_len, 7047 u32 dip) 7048 { 7049 mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len); 7050 mlxsw_reg_ralue_dip4_set(payload, dip); 7051 } 7052 7053 static inline void mlxsw_reg_ralue_pack6(char *payload, 7054 enum mlxsw_reg_ralxx_protocol protocol, 7055 enum mlxsw_reg_ralue_op op, 7056 u16 virtual_router, u8 prefix_len, 7057 const void *dip) 7058 { 7059 mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len); 7060 mlxsw_reg_ralue_dip6_memcpy_to(payload, dip); 7061 } 7062 7063 static inline void 7064 mlxsw_reg_ralue_act_remote_pack(char *payload, 7065 enum mlxsw_reg_ralue_trap_action trap_action, 7066 u16 trap_id, u32 adjacency_index, u16 ecmp_size) 7067 { 7068 mlxsw_reg_ralue_action_type_set(payload, 7069 MLXSW_REG_RALUE_ACTION_TYPE_REMOTE); 7070 mlxsw_reg_ralue_trap_action_set(payload, trap_action); 7071 mlxsw_reg_ralue_trap_id_set(payload, trap_id); 7072 mlxsw_reg_ralue_adjacency_index_set(payload, adjacency_index); 7073 mlxsw_reg_ralue_ecmp_size_set(payload, ecmp_size); 7074 } 7075 7076 static inline void 7077 mlxsw_reg_ralue_act_local_pack(char *payload, 7078 enum mlxsw_reg_ralue_trap_action trap_action, 7079 u16 trap_id, u16 local_erif) 7080 { 7081 mlxsw_reg_ralue_action_type_set(payload, 7082 MLXSW_REG_RALUE_ACTION_TYPE_LOCAL); 7083 mlxsw_reg_ralue_trap_action_set(payload, trap_action); 7084 mlxsw_reg_ralue_trap_id_set(payload, trap_id); 7085 mlxsw_reg_ralue_local_erif_set(payload, local_erif); 7086 } 7087 7088 static inline void 7089 mlxsw_reg_ralue_act_ip2me_pack(char *payload) 7090 { 7091 mlxsw_reg_ralue_action_type_set(payload, 7092 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME); 7093 } 7094 7095 static inline void 7096 mlxsw_reg_ralue_act_ip2me_tun_pack(char *payload, u32 tunnel_ptr) 7097 { 7098 mlxsw_reg_ralue_action_type_set(payload, 7099 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME); 7100 mlxsw_reg_ralue_ip2me_v_set(payload, 1); 7101 mlxsw_reg_ralue_ip2me_tunnel_ptr_set(payload, tunnel_ptr); 7102 } 7103 7104 /* RAUHT - Router Algorithmic LPM Unicast Host Table Register 7105 * ---------------------------------------------------------- 7106 * The RAUHT register is used to configure and query the Unicast Host table in 7107 * devices that implement the Algorithmic LPM. 7108 */ 7109 #define MLXSW_REG_RAUHT_ID 0x8014 7110 #define MLXSW_REG_RAUHT_LEN 0x74 7111 7112 MLXSW_REG_DEFINE(rauht, MLXSW_REG_RAUHT_ID, MLXSW_REG_RAUHT_LEN); 7113 7114 enum mlxsw_reg_rauht_type { 7115 MLXSW_REG_RAUHT_TYPE_IPV4, 7116 MLXSW_REG_RAUHT_TYPE_IPV6, 7117 }; 7118 7119 /* reg_rauht_type 7120 * Access: Index 7121 */ 7122 MLXSW_ITEM32(reg, rauht, type, 0x00, 24, 2); 7123 7124 enum mlxsw_reg_rauht_op { 7125 MLXSW_REG_RAUHT_OP_QUERY_READ = 0, 7126 /* Read operation */ 7127 MLXSW_REG_RAUHT_OP_QUERY_CLEAR_ON_READ = 1, 7128 /* Clear on read operation. Used to read entry and clear 7129 * activity bit. 7130 */ 7131 MLXSW_REG_RAUHT_OP_WRITE_ADD = 0, 7132 /* Add. Used to write a new entry to the table. All R/W fields are 7133 * relevant for new entry. Activity bit is set for new entries. 7134 */ 7135 MLXSW_REG_RAUHT_OP_WRITE_UPDATE = 1, 7136 /* Update action. Used to update an existing route entry and 7137 * only update the following fields: 7138 * trap_action, trap_id, mac, counter_set_type, counter_index 7139 */ 7140 MLXSW_REG_RAUHT_OP_WRITE_CLEAR_ACTIVITY = 2, 7141 /* Clear activity. A bit is cleared for the entry. */ 7142 MLXSW_REG_RAUHT_OP_WRITE_DELETE = 3, 7143 /* Delete entry */ 7144 MLXSW_REG_RAUHT_OP_WRITE_DELETE_ALL = 4, 7145 /* Delete all host entries on a RIF. In this command, dip 7146 * field is reserved. 7147 */ 7148 }; 7149 7150 /* reg_rauht_op 7151 * Access: OP 7152 */ 7153 MLXSW_ITEM32(reg, rauht, op, 0x00, 20, 3); 7154 7155 /* reg_rauht_a 7156 * Activity. Set for new entries. Set if a packet lookup has hit on 7157 * the specific entry. 7158 * To clear the a bit, use "clear activity" op. 7159 * Enabled by activity_dis in RGCR 7160 * Access: RO 7161 */ 7162 MLXSW_ITEM32(reg, rauht, a, 0x00, 16, 1); 7163 7164 /* reg_rauht_rif 7165 * Router Interface 7166 * Access: Index 7167 */ 7168 MLXSW_ITEM32(reg, rauht, rif, 0x00, 0, 16); 7169 7170 /* reg_rauht_dip* 7171 * Destination address. 7172 * Access: Index 7173 */ 7174 MLXSW_ITEM32(reg, rauht, dip4, 0x1C, 0x0, 32); 7175 MLXSW_ITEM_BUF(reg, rauht, dip6, 0x10, 16); 7176 7177 enum mlxsw_reg_rauht_trap_action { 7178 MLXSW_REG_RAUHT_TRAP_ACTION_NOP, 7179 MLXSW_REG_RAUHT_TRAP_ACTION_TRAP, 7180 MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR_TO_CPU, 7181 MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR, 7182 MLXSW_REG_RAUHT_TRAP_ACTION_DISCARD_ERRORS, 7183 }; 7184 7185 /* reg_rauht_trap_action 7186 * Access: RW 7187 */ 7188 MLXSW_ITEM32(reg, rauht, trap_action, 0x60, 28, 4); 7189 7190 enum mlxsw_reg_rauht_trap_id { 7191 MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS0, 7192 MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS1, 7193 }; 7194 7195 /* reg_rauht_trap_id 7196 * Trap ID to be reported to CPU. 7197 * Trap-ID is RTR_EGRESS0 or RTR_EGRESS1. 7198 * For trap_action of NOP, MIRROR and DISCARD_ERROR, 7199 * trap_id is reserved. 7200 * Access: RW 7201 */ 7202 MLXSW_ITEM32(reg, rauht, trap_id, 0x60, 0, 9); 7203 7204 /* reg_rauht_counter_set_type 7205 * Counter set type for flow counters 7206 * Access: RW 7207 */ 7208 MLXSW_ITEM32(reg, rauht, counter_set_type, 0x68, 24, 8); 7209 7210 /* reg_rauht_counter_index 7211 * Counter index for flow counters 7212 * Access: RW 7213 */ 7214 MLXSW_ITEM32(reg, rauht, counter_index, 0x68, 0, 24); 7215 7216 /* reg_rauht_mac 7217 * MAC address. 7218 * Access: RW 7219 */ 7220 MLXSW_ITEM_BUF(reg, rauht, mac, 0x6E, 6); 7221 7222 static inline void mlxsw_reg_rauht_pack(char *payload, 7223 enum mlxsw_reg_rauht_op op, u16 rif, 7224 const char *mac) 7225 { 7226 MLXSW_REG_ZERO(rauht, payload); 7227 mlxsw_reg_rauht_op_set(payload, op); 7228 mlxsw_reg_rauht_rif_set(payload, rif); 7229 mlxsw_reg_rauht_mac_memcpy_to(payload, mac); 7230 } 7231 7232 static inline void mlxsw_reg_rauht_pack4(char *payload, 7233 enum mlxsw_reg_rauht_op op, u16 rif, 7234 const char *mac, u32 dip) 7235 { 7236 mlxsw_reg_rauht_pack(payload, op, rif, mac); 7237 mlxsw_reg_rauht_dip4_set(payload, dip); 7238 } 7239 7240 static inline void mlxsw_reg_rauht_pack6(char *payload, 7241 enum mlxsw_reg_rauht_op op, u16 rif, 7242 const char *mac, const char *dip) 7243 { 7244 mlxsw_reg_rauht_pack(payload, op, rif, mac); 7245 mlxsw_reg_rauht_type_set(payload, MLXSW_REG_RAUHT_TYPE_IPV6); 7246 mlxsw_reg_rauht_dip6_memcpy_to(payload, dip); 7247 } 7248 7249 static inline void mlxsw_reg_rauht_pack_counter(char *payload, 7250 u64 counter_index) 7251 { 7252 mlxsw_reg_rauht_counter_index_set(payload, counter_index); 7253 mlxsw_reg_rauht_counter_set_type_set(payload, 7254 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES); 7255 } 7256 7257 /* RALEU - Router Algorithmic LPM ECMP Update Register 7258 * --------------------------------------------------- 7259 * The register enables updating the ECMP section in the action for multiple 7260 * LPM Unicast entries in a single operation. The update is executed to 7261 * all entries of a {virtual router, protocol} tuple using the same ECMP group. 7262 */ 7263 #define MLXSW_REG_RALEU_ID 0x8015 7264 #define MLXSW_REG_RALEU_LEN 0x28 7265 7266 MLXSW_REG_DEFINE(raleu, MLXSW_REG_RALEU_ID, MLXSW_REG_RALEU_LEN); 7267 7268 /* reg_raleu_protocol 7269 * Protocol. 7270 * Access: Index 7271 */ 7272 MLXSW_ITEM32(reg, raleu, protocol, 0x00, 24, 4); 7273 7274 /* reg_raleu_virtual_router 7275 * Virtual Router ID 7276 * Range is 0..cap_max_virtual_routers-1 7277 * Access: Index 7278 */ 7279 MLXSW_ITEM32(reg, raleu, virtual_router, 0x00, 0, 16); 7280 7281 /* reg_raleu_adjacency_index 7282 * Adjacency Index used for matching on the existing entries. 7283 * Access: Index 7284 */ 7285 MLXSW_ITEM32(reg, raleu, adjacency_index, 0x10, 0, 24); 7286 7287 /* reg_raleu_ecmp_size 7288 * ECMP Size used for matching on the existing entries. 7289 * Access: Index 7290 */ 7291 MLXSW_ITEM32(reg, raleu, ecmp_size, 0x14, 0, 13); 7292 7293 /* reg_raleu_new_adjacency_index 7294 * New Adjacency Index. 7295 * Access: WO 7296 */ 7297 MLXSW_ITEM32(reg, raleu, new_adjacency_index, 0x20, 0, 24); 7298 7299 /* reg_raleu_new_ecmp_size 7300 * New ECMP Size. 7301 * Access: WO 7302 */ 7303 MLXSW_ITEM32(reg, raleu, new_ecmp_size, 0x24, 0, 13); 7304 7305 static inline void mlxsw_reg_raleu_pack(char *payload, 7306 enum mlxsw_reg_ralxx_protocol protocol, 7307 u16 virtual_router, 7308 u32 adjacency_index, u16 ecmp_size, 7309 u32 new_adjacency_index, 7310 u16 new_ecmp_size) 7311 { 7312 MLXSW_REG_ZERO(raleu, payload); 7313 mlxsw_reg_raleu_protocol_set(payload, protocol); 7314 mlxsw_reg_raleu_virtual_router_set(payload, virtual_router); 7315 mlxsw_reg_raleu_adjacency_index_set(payload, adjacency_index); 7316 mlxsw_reg_raleu_ecmp_size_set(payload, ecmp_size); 7317 mlxsw_reg_raleu_new_adjacency_index_set(payload, new_adjacency_index); 7318 mlxsw_reg_raleu_new_ecmp_size_set(payload, new_ecmp_size); 7319 } 7320 7321 /* RAUHTD - Router Algorithmic LPM Unicast Host Table Dump Register 7322 * ---------------------------------------------------------------- 7323 * The RAUHTD register allows dumping entries from the Router Unicast Host 7324 * Table. For a given session an entry is dumped no more than one time. The 7325 * first RAUHTD access after reset is a new session. A session ends when the 7326 * num_rec response is smaller than num_rec request or for IPv4 when the 7327 * num_entries is smaller than 4. The clear activity affect the current session 7328 * or the last session if a new session has not started. 7329 */ 7330 #define MLXSW_REG_RAUHTD_ID 0x8018 7331 #define MLXSW_REG_RAUHTD_BASE_LEN 0x20 7332 #define MLXSW_REG_RAUHTD_REC_LEN 0x20 7333 #define MLXSW_REG_RAUHTD_REC_MAX_NUM 32 7334 #define MLXSW_REG_RAUHTD_LEN (MLXSW_REG_RAUHTD_BASE_LEN + \ 7335 MLXSW_REG_RAUHTD_REC_MAX_NUM * MLXSW_REG_RAUHTD_REC_LEN) 7336 #define MLXSW_REG_RAUHTD_IPV4_ENT_PER_REC 4 7337 7338 MLXSW_REG_DEFINE(rauhtd, MLXSW_REG_RAUHTD_ID, MLXSW_REG_RAUHTD_LEN); 7339 7340 #define MLXSW_REG_RAUHTD_FILTER_A BIT(0) 7341 #define MLXSW_REG_RAUHTD_FILTER_RIF BIT(3) 7342 7343 /* reg_rauhtd_filter_fields 7344 * if a bit is '0' then the relevant field is ignored and dump is done 7345 * regardless of the field value 7346 * Bit0 - filter by activity: entry_a 7347 * Bit3 - filter by entry rip: entry_rif 7348 * Access: Index 7349 */ 7350 MLXSW_ITEM32(reg, rauhtd, filter_fields, 0x00, 0, 8); 7351 7352 enum mlxsw_reg_rauhtd_op { 7353 MLXSW_REG_RAUHTD_OP_DUMP, 7354 MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR, 7355 }; 7356 7357 /* reg_rauhtd_op 7358 * Access: OP 7359 */ 7360 MLXSW_ITEM32(reg, rauhtd, op, 0x04, 24, 2); 7361 7362 /* reg_rauhtd_num_rec 7363 * At request: number of records requested 7364 * At response: number of records dumped 7365 * For IPv4, each record has 4 entries at request and up to 4 entries 7366 * at response 7367 * Range is 0..MLXSW_REG_RAUHTD_REC_MAX_NUM 7368 * Access: Index 7369 */ 7370 MLXSW_ITEM32(reg, rauhtd, num_rec, 0x04, 0, 8); 7371 7372 /* reg_rauhtd_entry_a 7373 * Dump only if activity has value of entry_a 7374 * Reserved if filter_fields bit0 is '0' 7375 * Access: Index 7376 */ 7377 MLXSW_ITEM32(reg, rauhtd, entry_a, 0x08, 16, 1); 7378 7379 enum mlxsw_reg_rauhtd_type { 7380 MLXSW_REG_RAUHTD_TYPE_IPV4, 7381 MLXSW_REG_RAUHTD_TYPE_IPV6, 7382 }; 7383 7384 /* reg_rauhtd_type 7385 * Dump only if record type is: 7386 * 0 - IPv4 7387 * 1 - IPv6 7388 * Access: Index 7389 */ 7390 MLXSW_ITEM32(reg, rauhtd, type, 0x08, 0, 4); 7391 7392 /* reg_rauhtd_entry_rif 7393 * Dump only if RIF has value of entry_rif 7394 * Reserved if filter_fields bit3 is '0' 7395 * Access: Index 7396 */ 7397 MLXSW_ITEM32(reg, rauhtd, entry_rif, 0x0C, 0, 16); 7398 7399 static inline void mlxsw_reg_rauhtd_pack(char *payload, 7400 enum mlxsw_reg_rauhtd_type type) 7401 { 7402 MLXSW_REG_ZERO(rauhtd, payload); 7403 mlxsw_reg_rauhtd_filter_fields_set(payload, MLXSW_REG_RAUHTD_FILTER_A); 7404 mlxsw_reg_rauhtd_op_set(payload, MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR); 7405 mlxsw_reg_rauhtd_num_rec_set(payload, MLXSW_REG_RAUHTD_REC_MAX_NUM); 7406 mlxsw_reg_rauhtd_entry_a_set(payload, 1); 7407 mlxsw_reg_rauhtd_type_set(payload, type); 7408 } 7409 7410 /* reg_rauhtd_ipv4_rec_num_entries 7411 * Number of valid entries in this record: 7412 * 0 - 1 valid entry 7413 * 1 - 2 valid entries 7414 * 2 - 3 valid entries 7415 * 3 - 4 valid entries 7416 * Access: RO 7417 */ 7418 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_rec_num_entries, 7419 MLXSW_REG_RAUHTD_BASE_LEN, 28, 2, 7420 MLXSW_REG_RAUHTD_REC_LEN, 0x00, false); 7421 7422 /* reg_rauhtd_rec_type 7423 * Record type. 7424 * 0 - IPv4 7425 * 1 - IPv6 7426 * Access: RO 7427 */ 7428 MLXSW_ITEM32_INDEXED(reg, rauhtd, rec_type, MLXSW_REG_RAUHTD_BASE_LEN, 24, 2, 7429 MLXSW_REG_RAUHTD_REC_LEN, 0x00, false); 7430 7431 #define MLXSW_REG_RAUHTD_IPV4_ENT_LEN 0x8 7432 7433 /* reg_rauhtd_ipv4_ent_a 7434 * Activity. Set for new entries. Set if a packet lookup has hit on the 7435 * specific entry. 7436 * Access: RO 7437 */ 7438 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1, 7439 MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false); 7440 7441 /* reg_rauhtd_ipv4_ent_rif 7442 * Router interface. 7443 * Access: RO 7444 */ 7445 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0, 7446 16, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false); 7447 7448 /* reg_rauhtd_ipv4_ent_dip 7449 * Destination IPv4 address. 7450 * Access: RO 7451 */ 7452 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN, 0, 7453 32, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x04, false); 7454 7455 #define MLXSW_REG_RAUHTD_IPV6_ENT_LEN 0x20 7456 7457 /* reg_rauhtd_ipv6_ent_a 7458 * Activity. Set for new entries. Set if a packet lookup has hit on the 7459 * specific entry. 7460 * Access: RO 7461 */ 7462 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1, 7463 MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false); 7464 7465 /* reg_rauhtd_ipv6_ent_rif 7466 * Router interface. 7467 * Access: RO 7468 */ 7469 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0, 7470 16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false); 7471 7472 /* reg_rauhtd_ipv6_ent_dip 7473 * Destination IPv6 address. 7474 * Access: RO 7475 */ 7476 MLXSW_ITEM_BUF_INDEXED(reg, rauhtd, ipv6_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN, 7477 16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x10); 7478 7479 static inline void mlxsw_reg_rauhtd_ent_ipv4_unpack(char *payload, 7480 int ent_index, u16 *p_rif, 7481 u32 *p_dip) 7482 { 7483 *p_rif = mlxsw_reg_rauhtd_ipv4_ent_rif_get(payload, ent_index); 7484 *p_dip = mlxsw_reg_rauhtd_ipv4_ent_dip_get(payload, ent_index); 7485 } 7486 7487 static inline void mlxsw_reg_rauhtd_ent_ipv6_unpack(char *payload, 7488 int rec_index, u16 *p_rif, 7489 char *p_dip) 7490 { 7491 *p_rif = mlxsw_reg_rauhtd_ipv6_ent_rif_get(payload, rec_index); 7492 mlxsw_reg_rauhtd_ipv6_ent_dip_memcpy_from(payload, rec_index, p_dip); 7493 } 7494 7495 /* RTDP - Routing Tunnel Decap Properties Register 7496 * ----------------------------------------------- 7497 * The RTDP register is used for configuring the tunnel decap properties of NVE 7498 * and IPinIP. 7499 */ 7500 #define MLXSW_REG_RTDP_ID 0x8020 7501 #define MLXSW_REG_RTDP_LEN 0x44 7502 7503 MLXSW_REG_DEFINE(rtdp, MLXSW_REG_RTDP_ID, MLXSW_REG_RTDP_LEN); 7504 7505 enum mlxsw_reg_rtdp_type { 7506 MLXSW_REG_RTDP_TYPE_NVE, 7507 MLXSW_REG_RTDP_TYPE_IPIP, 7508 }; 7509 7510 /* reg_rtdp_type 7511 * Type of the RTDP entry as per enum mlxsw_reg_rtdp_type. 7512 * Access: RW 7513 */ 7514 MLXSW_ITEM32(reg, rtdp, type, 0x00, 28, 4); 7515 7516 /* reg_rtdp_tunnel_index 7517 * Index to the Decap entry. 7518 * For Spectrum, Index to KVD Linear. 7519 * Access: Index 7520 */ 7521 MLXSW_ITEM32(reg, rtdp, tunnel_index, 0x00, 0, 24); 7522 7523 /* reg_rtdp_egress_router_interface 7524 * Underlay egress router interface. 7525 * Valid range is from 0 to cap_max_router_interfaces - 1 7526 * Access: RW 7527 */ 7528 MLXSW_ITEM32(reg, rtdp, egress_router_interface, 0x40, 0, 16); 7529 7530 /* IPinIP */ 7531 7532 /* reg_rtdp_ipip_irif 7533 * Ingress Router Interface for the overlay router 7534 * Access: RW 7535 */ 7536 MLXSW_ITEM32(reg, rtdp, ipip_irif, 0x04, 16, 16); 7537 7538 enum mlxsw_reg_rtdp_ipip_sip_check { 7539 /* No sip checks. */ 7540 MLXSW_REG_RTDP_IPIP_SIP_CHECK_NO, 7541 /* Filter packet if underlay is not IPv4 or if underlay SIP does not 7542 * equal ipv4_usip. 7543 */ 7544 MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV4, 7545 /* Filter packet if underlay is not IPv6 or if underlay SIP does not 7546 * equal ipv6_usip. 7547 */ 7548 MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6 = 3, 7549 }; 7550 7551 /* reg_rtdp_ipip_sip_check 7552 * SIP check to perform. If decapsulation failed due to these configurations 7553 * then trap_id is IPIP_DECAP_ERROR. 7554 * Access: RW 7555 */ 7556 MLXSW_ITEM32(reg, rtdp, ipip_sip_check, 0x04, 0, 3); 7557 7558 /* If set, allow decapsulation of IPinIP (without GRE). */ 7559 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_IPIP BIT(0) 7560 /* If set, allow decapsulation of IPinGREinIP without a key. */ 7561 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE BIT(1) 7562 /* If set, allow decapsulation of IPinGREinIP with a key. */ 7563 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE_KEY BIT(2) 7564 7565 /* reg_rtdp_ipip_type_check 7566 * Flags as per MLXSW_REG_RTDP_IPIP_TYPE_CHECK_*. If decapsulation failed due to 7567 * these configurations then trap_id is IPIP_DECAP_ERROR. 7568 * Access: RW 7569 */ 7570 MLXSW_ITEM32(reg, rtdp, ipip_type_check, 0x08, 24, 3); 7571 7572 /* reg_rtdp_ipip_gre_key_check 7573 * Whether GRE key should be checked. When check is enabled: 7574 * - A packet received as IPinIP (without GRE) will always pass. 7575 * - A packet received as IPinGREinIP without a key will not pass the check. 7576 * - A packet received as IPinGREinIP with a key will pass the check only if the 7577 * key in the packet is equal to expected_gre_key. 7578 * If decapsulation failed due to GRE key then trap_id is IPIP_DECAP_ERROR. 7579 * Access: RW 7580 */ 7581 MLXSW_ITEM32(reg, rtdp, ipip_gre_key_check, 0x08, 23, 1); 7582 7583 /* reg_rtdp_ipip_ipv4_usip 7584 * Underlay IPv4 address for ipv4 source address check. 7585 * Reserved when sip_check is not '1'. 7586 * Access: RW 7587 */ 7588 MLXSW_ITEM32(reg, rtdp, ipip_ipv4_usip, 0x0C, 0, 32); 7589 7590 /* reg_rtdp_ipip_ipv6_usip_ptr 7591 * This field is valid when sip_check is "sipv6 check explicitly". This is a 7592 * pointer to the IPv6 DIP which is configured by RIPS. For Spectrum, the index 7593 * is to the KVD linear. 7594 * Reserved when sip_check is not MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6. 7595 * Access: RW 7596 */ 7597 MLXSW_ITEM32(reg, rtdp, ipip_ipv6_usip_ptr, 0x10, 0, 24); 7598 7599 /* reg_rtdp_ipip_expected_gre_key 7600 * GRE key for checking. 7601 * Reserved when gre_key_check is '0'. 7602 * Access: RW 7603 */ 7604 MLXSW_ITEM32(reg, rtdp, ipip_expected_gre_key, 0x14, 0, 32); 7605 7606 static inline void mlxsw_reg_rtdp_pack(char *payload, 7607 enum mlxsw_reg_rtdp_type type, 7608 u32 tunnel_index) 7609 { 7610 MLXSW_REG_ZERO(rtdp, payload); 7611 mlxsw_reg_rtdp_type_set(payload, type); 7612 mlxsw_reg_rtdp_tunnel_index_set(payload, tunnel_index); 7613 } 7614 7615 static inline void 7616 mlxsw_reg_rtdp_ipip4_pack(char *payload, u16 irif, 7617 enum mlxsw_reg_rtdp_ipip_sip_check sip_check, 7618 unsigned int type_check, bool gre_key_check, 7619 u32 ipv4_usip, u32 expected_gre_key) 7620 { 7621 mlxsw_reg_rtdp_ipip_irif_set(payload, irif); 7622 mlxsw_reg_rtdp_ipip_sip_check_set(payload, sip_check); 7623 mlxsw_reg_rtdp_ipip_type_check_set(payload, type_check); 7624 mlxsw_reg_rtdp_ipip_gre_key_check_set(payload, gre_key_check); 7625 mlxsw_reg_rtdp_ipip_ipv4_usip_set(payload, ipv4_usip); 7626 mlxsw_reg_rtdp_ipip_expected_gre_key_set(payload, expected_gre_key); 7627 } 7628 7629 /* RIGR-V2 - Router Interface Group Register Version 2 7630 * --------------------------------------------------- 7631 * The RIGR_V2 register is used to add, remove and query egress interface list 7632 * of a multicast forwarding entry. 7633 */ 7634 #define MLXSW_REG_RIGR2_ID 0x8023 7635 #define MLXSW_REG_RIGR2_LEN 0xB0 7636 7637 #define MLXSW_REG_RIGR2_MAX_ERIFS 32 7638 7639 MLXSW_REG_DEFINE(rigr2, MLXSW_REG_RIGR2_ID, MLXSW_REG_RIGR2_LEN); 7640 7641 /* reg_rigr2_rigr_index 7642 * KVD Linear index. 7643 * Access: Index 7644 */ 7645 MLXSW_ITEM32(reg, rigr2, rigr_index, 0x04, 0, 24); 7646 7647 /* reg_rigr2_vnext 7648 * Next RIGR Index is valid. 7649 * Access: RW 7650 */ 7651 MLXSW_ITEM32(reg, rigr2, vnext, 0x08, 31, 1); 7652 7653 /* reg_rigr2_next_rigr_index 7654 * Next RIGR Index. The index is to the KVD linear. 7655 * Reserved when vnxet = '0'. 7656 * Access: RW 7657 */ 7658 MLXSW_ITEM32(reg, rigr2, next_rigr_index, 0x08, 0, 24); 7659 7660 /* reg_rigr2_vrmid 7661 * RMID Index is valid. 7662 * Access: RW 7663 */ 7664 MLXSW_ITEM32(reg, rigr2, vrmid, 0x20, 31, 1); 7665 7666 /* reg_rigr2_rmid_index 7667 * RMID Index. 7668 * Range 0 .. max_mid - 1 7669 * Reserved when vrmid = '0'. 7670 * The index is to the Port Group Table (PGT) 7671 * Access: RW 7672 */ 7673 MLXSW_ITEM32(reg, rigr2, rmid_index, 0x20, 0, 16); 7674 7675 /* reg_rigr2_erif_entry_v 7676 * Egress Router Interface is valid. 7677 * Note that low-entries must be set if high-entries are set. For 7678 * example: if erif_entry[2].v is set then erif_entry[1].v and 7679 * erif_entry[0].v must be set. 7680 * Index can be from 0 to cap_mc_erif_list_entries-1 7681 * Access: RW 7682 */ 7683 MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_v, 0x24, 31, 1, 4, 0, false); 7684 7685 /* reg_rigr2_erif_entry_erif 7686 * Egress Router Interface. 7687 * Valid range is from 0 to cap_max_router_interfaces - 1 7688 * Index can be from 0 to MLXSW_REG_RIGR2_MAX_ERIFS - 1 7689 * Access: RW 7690 */ 7691 MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_erif, 0x24, 0, 16, 4, 0, false); 7692 7693 static inline void mlxsw_reg_rigr2_pack(char *payload, u32 rigr_index, 7694 bool vnext, u32 next_rigr_index) 7695 { 7696 MLXSW_REG_ZERO(rigr2, payload); 7697 mlxsw_reg_rigr2_rigr_index_set(payload, rigr_index); 7698 mlxsw_reg_rigr2_vnext_set(payload, vnext); 7699 mlxsw_reg_rigr2_next_rigr_index_set(payload, next_rigr_index); 7700 mlxsw_reg_rigr2_vrmid_set(payload, 0); 7701 mlxsw_reg_rigr2_rmid_index_set(payload, 0); 7702 } 7703 7704 static inline void mlxsw_reg_rigr2_erif_entry_pack(char *payload, int index, 7705 bool v, u16 erif) 7706 { 7707 mlxsw_reg_rigr2_erif_entry_v_set(payload, index, v); 7708 mlxsw_reg_rigr2_erif_entry_erif_set(payload, index, erif); 7709 } 7710 7711 /* RECR-V2 - Router ECMP Configuration Version 2 Register 7712 * ------------------------------------------------------ 7713 */ 7714 #define MLXSW_REG_RECR2_ID 0x8025 7715 #define MLXSW_REG_RECR2_LEN 0x38 7716 7717 MLXSW_REG_DEFINE(recr2, MLXSW_REG_RECR2_ID, MLXSW_REG_RECR2_LEN); 7718 7719 /* reg_recr2_pp 7720 * Per-port configuration 7721 * Access: Index 7722 */ 7723 MLXSW_ITEM32(reg, recr2, pp, 0x00, 24, 1); 7724 7725 /* reg_recr2_sh 7726 * Symmetric hash 7727 * Access: RW 7728 */ 7729 MLXSW_ITEM32(reg, recr2, sh, 0x00, 8, 1); 7730 7731 /* reg_recr2_seed 7732 * Seed 7733 * Access: RW 7734 */ 7735 MLXSW_ITEM32(reg, recr2, seed, 0x08, 0, 32); 7736 7737 enum { 7738 /* Enable IPv4 fields if packet is not TCP and not UDP */ 7739 MLXSW_REG_RECR2_IPV4_EN_NOT_TCP_NOT_UDP = 3, 7740 /* Enable IPv4 fields if packet is TCP or UDP */ 7741 MLXSW_REG_RECR2_IPV4_EN_TCP_UDP = 4, 7742 /* Enable IPv6 fields if packet is not TCP and not UDP */ 7743 MLXSW_REG_RECR2_IPV6_EN_NOT_TCP_NOT_UDP = 5, 7744 /* Enable IPv6 fields if packet is TCP or UDP */ 7745 MLXSW_REG_RECR2_IPV6_EN_TCP_UDP = 6, 7746 /* Enable TCP/UDP header fields if packet is IPv4 */ 7747 MLXSW_REG_RECR2_TCP_UDP_EN_IPV4 = 7, 7748 /* Enable TCP/UDP header fields if packet is IPv6 */ 7749 MLXSW_REG_RECR2_TCP_UDP_EN_IPV6 = 8, 7750 }; 7751 7752 /* reg_recr2_outer_header_enables 7753 * Bit mask where each bit enables a specific layer to be included in 7754 * the hash calculation. 7755 * Access: RW 7756 */ 7757 MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_enables, 0x10, 0x04, 1); 7758 7759 enum { 7760 /* IPv4 Source IP */ 7761 MLXSW_REG_RECR2_IPV4_SIP0 = 9, 7762 MLXSW_REG_RECR2_IPV4_SIP3 = 12, 7763 /* IPv4 Destination IP */ 7764 MLXSW_REG_RECR2_IPV4_DIP0 = 13, 7765 MLXSW_REG_RECR2_IPV4_DIP3 = 16, 7766 /* IP Protocol */ 7767 MLXSW_REG_RECR2_IPV4_PROTOCOL = 17, 7768 /* IPv6 Source IP */ 7769 MLXSW_REG_RECR2_IPV6_SIP0_7 = 21, 7770 MLXSW_REG_RECR2_IPV6_SIP8 = 29, 7771 MLXSW_REG_RECR2_IPV6_SIP15 = 36, 7772 /* IPv6 Destination IP */ 7773 MLXSW_REG_RECR2_IPV6_DIP0_7 = 37, 7774 MLXSW_REG_RECR2_IPV6_DIP8 = 45, 7775 MLXSW_REG_RECR2_IPV6_DIP15 = 52, 7776 /* IPv6 Next Header */ 7777 MLXSW_REG_RECR2_IPV6_NEXT_HEADER = 53, 7778 /* IPv6 Flow Label */ 7779 MLXSW_REG_RECR2_IPV6_FLOW_LABEL = 57, 7780 /* TCP/UDP Source Port */ 7781 MLXSW_REG_RECR2_TCP_UDP_SPORT = 74, 7782 /* TCP/UDP Destination Port */ 7783 MLXSW_REG_RECR2_TCP_UDP_DPORT = 75, 7784 }; 7785 7786 /* reg_recr2_outer_header_fields_enable 7787 * Packet fields to enable for ECMP hash subject to outer_header_enable. 7788 * Access: RW 7789 */ 7790 MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_fields_enable, 0x14, 0x14, 1); 7791 7792 static inline void mlxsw_reg_recr2_ipv4_sip_enable(char *payload) 7793 { 7794 int i; 7795 7796 for (i = MLXSW_REG_RECR2_IPV4_SIP0; i <= MLXSW_REG_RECR2_IPV4_SIP3; i++) 7797 mlxsw_reg_recr2_outer_header_fields_enable_set(payload, i, 7798 true); 7799 } 7800 7801 static inline void mlxsw_reg_recr2_ipv4_dip_enable(char *payload) 7802 { 7803 int i; 7804 7805 for (i = MLXSW_REG_RECR2_IPV4_DIP0; i <= MLXSW_REG_RECR2_IPV4_DIP3; i++) 7806 mlxsw_reg_recr2_outer_header_fields_enable_set(payload, i, 7807 true); 7808 } 7809 7810 static inline void mlxsw_reg_recr2_ipv6_sip_enable(char *payload) 7811 { 7812 int i = MLXSW_REG_RECR2_IPV6_SIP0_7; 7813 7814 mlxsw_reg_recr2_outer_header_fields_enable_set(payload, i, true); 7815 7816 i = MLXSW_REG_RECR2_IPV6_SIP8; 7817 for (; i <= MLXSW_REG_RECR2_IPV6_SIP15; i++) 7818 mlxsw_reg_recr2_outer_header_fields_enable_set(payload, i, 7819 true); 7820 } 7821 7822 static inline void mlxsw_reg_recr2_ipv6_dip_enable(char *payload) 7823 { 7824 int i = MLXSW_REG_RECR2_IPV6_DIP0_7; 7825 7826 mlxsw_reg_recr2_outer_header_fields_enable_set(payload, i, true); 7827 7828 i = MLXSW_REG_RECR2_IPV6_DIP8; 7829 for (; i <= MLXSW_REG_RECR2_IPV6_DIP15; i++) 7830 mlxsw_reg_recr2_outer_header_fields_enable_set(payload, i, 7831 true); 7832 } 7833 7834 static inline void mlxsw_reg_recr2_pack(char *payload, u32 seed) 7835 { 7836 MLXSW_REG_ZERO(recr2, payload); 7837 mlxsw_reg_recr2_pp_set(payload, false); 7838 mlxsw_reg_recr2_sh_set(payload, true); 7839 mlxsw_reg_recr2_seed_set(payload, seed); 7840 } 7841 7842 /* RMFT-V2 - Router Multicast Forwarding Table Version 2 Register 7843 * -------------------------------------------------------------- 7844 * The RMFT_V2 register is used to configure and query the multicast table. 7845 */ 7846 #define MLXSW_REG_RMFT2_ID 0x8027 7847 #define MLXSW_REG_RMFT2_LEN 0x174 7848 7849 MLXSW_REG_DEFINE(rmft2, MLXSW_REG_RMFT2_ID, MLXSW_REG_RMFT2_LEN); 7850 7851 /* reg_rmft2_v 7852 * Valid 7853 * Access: RW 7854 */ 7855 MLXSW_ITEM32(reg, rmft2, v, 0x00, 31, 1); 7856 7857 enum mlxsw_reg_rmft2_type { 7858 MLXSW_REG_RMFT2_TYPE_IPV4, 7859 MLXSW_REG_RMFT2_TYPE_IPV6 7860 }; 7861 7862 /* reg_rmft2_type 7863 * Access: Index 7864 */ 7865 MLXSW_ITEM32(reg, rmft2, type, 0x00, 28, 2); 7866 7867 enum mlxsw_sp_reg_rmft2_op { 7868 /* For Write: 7869 * Write operation. Used to write a new entry to the table. All RW 7870 * fields are relevant for new entry. Activity bit is set for new 7871 * entries - Note write with v (Valid) 0 will delete the entry. 7872 * For Query: 7873 * Read operation 7874 */ 7875 MLXSW_REG_RMFT2_OP_READ_WRITE, 7876 }; 7877 7878 /* reg_rmft2_op 7879 * Operation. 7880 * Access: OP 7881 */ 7882 MLXSW_ITEM32(reg, rmft2, op, 0x00, 20, 2); 7883 7884 /* reg_rmft2_a 7885 * Activity. Set for new entries. Set if a packet lookup has hit on the specific 7886 * entry. 7887 * Access: RO 7888 */ 7889 MLXSW_ITEM32(reg, rmft2, a, 0x00, 16, 1); 7890 7891 /* reg_rmft2_offset 7892 * Offset within the multicast forwarding table to write to. 7893 * Access: Index 7894 */ 7895 MLXSW_ITEM32(reg, rmft2, offset, 0x00, 0, 16); 7896 7897 /* reg_rmft2_virtual_router 7898 * Virtual Router ID. Range from 0..cap_max_virtual_routers-1 7899 * Access: RW 7900 */ 7901 MLXSW_ITEM32(reg, rmft2, virtual_router, 0x04, 0, 16); 7902 7903 enum mlxsw_reg_rmft2_irif_mask { 7904 MLXSW_REG_RMFT2_IRIF_MASK_IGNORE, 7905 MLXSW_REG_RMFT2_IRIF_MASK_COMPARE 7906 }; 7907 7908 /* reg_rmft2_irif_mask 7909 * Ingress RIF mask. 7910 * Access: RW 7911 */ 7912 MLXSW_ITEM32(reg, rmft2, irif_mask, 0x08, 24, 1); 7913 7914 /* reg_rmft2_irif 7915 * Ingress RIF index. 7916 * Access: RW 7917 */ 7918 MLXSW_ITEM32(reg, rmft2, irif, 0x08, 0, 16); 7919 7920 /* reg_rmft2_dip{4,6} 7921 * Destination IPv4/6 address 7922 * Access: RW 7923 */ 7924 MLXSW_ITEM_BUF(reg, rmft2, dip6, 0x10, 16); 7925 MLXSW_ITEM32(reg, rmft2, dip4, 0x1C, 0, 32); 7926 7927 /* reg_rmft2_dip{4,6}_mask 7928 * A bit that is set directs the TCAM to compare the corresponding bit in key. A 7929 * bit that is clear directs the TCAM to ignore the corresponding bit in key. 7930 * Access: RW 7931 */ 7932 MLXSW_ITEM_BUF(reg, rmft2, dip6_mask, 0x20, 16); 7933 MLXSW_ITEM32(reg, rmft2, dip4_mask, 0x2C, 0, 32); 7934 7935 /* reg_rmft2_sip{4,6} 7936 * Source IPv4/6 address 7937 * Access: RW 7938 */ 7939 MLXSW_ITEM_BUF(reg, rmft2, sip6, 0x30, 16); 7940 MLXSW_ITEM32(reg, rmft2, sip4, 0x3C, 0, 32); 7941 7942 /* reg_rmft2_sip{4,6}_mask 7943 * A bit that is set directs the TCAM to compare the corresponding bit in key. A 7944 * bit that is clear directs the TCAM to ignore the corresponding bit in key. 7945 * Access: RW 7946 */ 7947 MLXSW_ITEM_BUF(reg, rmft2, sip6_mask, 0x40, 16); 7948 MLXSW_ITEM32(reg, rmft2, sip4_mask, 0x4C, 0, 32); 7949 7950 /* reg_rmft2_flexible_action_set 7951 * ACL action set. The only supported action types in this field and in any 7952 * action-set pointed from here are as follows: 7953 * 00h: ACTION_NULL 7954 * 01h: ACTION_MAC_TTL, only TTL configuration is supported. 7955 * 03h: ACTION_TRAP 7956 * 06h: ACTION_QOS 7957 * 08h: ACTION_POLICING_MONITORING 7958 * 10h: ACTION_ROUTER_MC 7959 * Access: RW 7960 */ 7961 MLXSW_ITEM_BUF(reg, rmft2, flexible_action_set, 0x80, 7962 MLXSW_REG_FLEX_ACTION_SET_LEN); 7963 7964 static inline void 7965 mlxsw_reg_rmft2_common_pack(char *payload, bool v, u16 offset, 7966 u16 virtual_router, 7967 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif, 7968 const char *flex_action_set) 7969 { 7970 MLXSW_REG_ZERO(rmft2, payload); 7971 mlxsw_reg_rmft2_v_set(payload, v); 7972 mlxsw_reg_rmft2_op_set(payload, MLXSW_REG_RMFT2_OP_READ_WRITE); 7973 mlxsw_reg_rmft2_offset_set(payload, offset); 7974 mlxsw_reg_rmft2_virtual_router_set(payload, virtual_router); 7975 mlxsw_reg_rmft2_irif_mask_set(payload, irif_mask); 7976 mlxsw_reg_rmft2_irif_set(payload, irif); 7977 if (flex_action_set) 7978 mlxsw_reg_rmft2_flexible_action_set_memcpy_to(payload, 7979 flex_action_set); 7980 } 7981 7982 static inline void 7983 mlxsw_reg_rmft2_ipv4_pack(char *payload, bool v, u16 offset, u16 virtual_router, 7984 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif, 7985 u32 dip4, u32 dip4_mask, u32 sip4, u32 sip4_mask, 7986 const char *flexible_action_set) 7987 { 7988 mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router, 7989 irif_mask, irif, flexible_action_set); 7990 mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV4); 7991 mlxsw_reg_rmft2_dip4_set(payload, dip4); 7992 mlxsw_reg_rmft2_dip4_mask_set(payload, dip4_mask); 7993 mlxsw_reg_rmft2_sip4_set(payload, sip4); 7994 mlxsw_reg_rmft2_sip4_mask_set(payload, sip4_mask); 7995 } 7996 7997 static inline void 7998 mlxsw_reg_rmft2_ipv6_pack(char *payload, bool v, u16 offset, u16 virtual_router, 7999 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif, 8000 struct in6_addr dip6, struct in6_addr dip6_mask, 8001 struct in6_addr sip6, struct in6_addr sip6_mask, 8002 const char *flexible_action_set) 8003 { 8004 mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router, 8005 irif_mask, irif, flexible_action_set); 8006 mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV6); 8007 mlxsw_reg_rmft2_dip6_memcpy_to(payload, (void *)&dip6); 8008 mlxsw_reg_rmft2_dip6_mask_memcpy_to(payload, (void *)&dip6_mask); 8009 mlxsw_reg_rmft2_sip6_memcpy_to(payload, (void *)&sip6); 8010 mlxsw_reg_rmft2_sip6_mask_memcpy_to(payload, (void *)&sip6_mask); 8011 } 8012 8013 /* MFCR - Management Fan Control Register 8014 * -------------------------------------- 8015 * This register controls the settings of the Fan Speed PWM mechanism. 8016 */ 8017 #define MLXSW_REG_MFCR_ID 0x9001 8018 #define MLXSW_REG_MFCR_LEN 0x08 8019 8020 MLXSW_REG_DEFINE(mfcr, MLXSW_REG_MFCR_ID, MLXSW_REG_MFCR_LEN); 8021 8022 enum mlxsw_reg_mfcr_pwm_frequency { 8023 MLXSW_REG_MFCR_PWM_FEQ_11HZ = 0x00, 8024 MLXSW_REG_MFCR_PWM_FEQ_14_7HZ = 0x01, 8025 MLXSW_REG_MFCR_PWM_FEQ_22_1HZ = 0x02, 8026 MLXSW_REG_MFCR_PWM_FEQ_1_4KHZ = 0x40, 8027 MLXSW_REG_MFCR_PWM_FEQ_5KHZ = 0x41, 8028 MLXSW_REG_MFCR_PWM_FEQ_20KHZ = 0x42, 8029 MLXSW_REG_MFCR_PWM_FEQ_22_5KHZ = 0x43, 8030 MLXSW_REG_MFCR_PWM_FEQ_25KHZ = 0x44, 8031 }; 8032 8033 /* reg_mfcr_pwm_frequency 8034 * Controls the frequency of the PWM signal. 8035 * Access: RW 8036 */ 8037 MLXSW_ITEM32(reg, mfcr, pwm_frequency, 0x00, 0, 7); 8038 8039 #define MLXSW_MFCR_TACHOS_MAX 10 8040 8041 /* reg_mfcr_tacho_active 8042 * Indicates which of the tachometer is active (bit per tachometer). 8043 * Access: RO 8044 */ 8045 MLXSW_ITEM32(reg, mfcr, tacho_active, 0x04, 16, MLXSW_MFCR_TACHOS_MAX); 8046 8047 #define MLXSW_MFCR_PWMS_MAX 5 8048 8049 /* reg_mfcr_pwm_active 8050 * Indicates which of the PWM control is active (bit per PWM). 8051 * Access: RO 8052 */ 8053 MLXSW_ITEM32(reg, mfcr, pwm_active, 0x04, 0, MLXSW_MFCR_PWMS_MAX); 8054 8055 static inline void 8056 mlxsw_reg_mfcr_pack(char *payload, 8057 enum mlxsw_reg_mfcr_pwm_frequency pwm_frequency) 8058 { 8059 MLXSW_REG_ZERO(mfcr, payload); 8060 mlxsw_reg_mfcr_pwm_frequency_set(payload, pwm_frequency); 8061 } 8062 8063 static inline void 8064 mlxsw_reg_mfcr_unpack(char *payload, 8065 enum mlxsw_reg_mfcr_pwm_frequency *p_pwm_frequency, 8066 u16 *p_tacho_active, u8 *p_pwm_active) 8067 { 8068 *p_pwm_frequency = mlxsw_reg_mfcr_pwm_frequency_get(payload); 8069 *p_tacho_active = mlxsw_reg_mfcr_tacho_active_get(payload); 8070 *p_pwm_active = mlxsw_reg_mfcr_pwm_active_get(payload); 8071 } 8072 8073 /* MFSC - Management Fan Speed Control Register 8074 * -------------------------------------------- 8075 * This register controls the settings of the Fan Speed PWM mechanism. 8076 */ 8077 #define MLXSW_REG_MFSC_ID 0x9002 8078 #define MLXSW_REG_MFSC_LEN 0x08 8079 8080 MLXSW_REG_DEFINE(mfsc, MLXSW_REG_MFSC_ID, MLXSW_REG_MFSC_LEN); 8081 8082 /* reg_mfsc_pwm 8083 * Fan pwm to control / monitor. 8084 * Access: Index 8085 */ 8086 MLXSW_ITEM32(reg, mfsc, pwm, 0x00, 24, 3); 8087 8088 /* reg_mfsc_pwm_duty_cycle 8089 * Controls the duty cycle of the PWM. Value range from 0..255 to 8090 * represent duty cycle of 0%...100%. 8091 * Access: RW 8092 */ 8093 MLXSW_ITEM32(reg, mfsc, pwm_duty_cycle, 0x04, 0, 8); 8094 8095 static inline void mlxsw_reg_mfsc_pack(char *payload, u8 pwm, 8096 u8 pwm_duty_cycle) 8097 { 8098 MLXSW_REG_ZERO(mfsc, payload); 8099 mlxsw_reg_mfsc_pwm_set(payload, pwm); 8100 mlxsw_reg_mfsc_pwm_duty_cycle_set(payload, pwm_duty_cycle); 8101 } 8102 8103 /* MFSM - Management Fan Speed Measurement 8104 * --------------------------------------- 8105 * This register controls the settings of the Tacho measurements and 8106 * enables reading the Tachometer measurements. 8107 */ 8108 #define MLXSW_REG_MFSM_ID 0x9003 8109 #define MLXSW_REG_MFSM_LEN 0x08 8110 8111 MLXSW_REG_DEFINE(mfsm, MLXSW_REG_MFSM_ID, MLXSW_REG_MFSM_LEN); 8112 8113 /* reg_mfsm_tacho 8114 * Fan tachometer index. 8115 * Access: Index 8116 */ 8117 MLXSW_ITEM32(reg, mfsm, tacho, 0x00, 24, 4); 8118 8119 /* reg_mfsm_rpm 8120 * Fan speed (round per minute). 8121 * Access: RO 8122 */ 8123 MLXSW_ITEM32(reg, mfsm, rpm, 0x04, 0, 16); 8124 8125 static inline void mlxsw_reg_mfsm_pack(char *payload, u8 tacho) 8126 { 8127 MLXSW_REG_ZERO(mfsm, payload); 8128 mlxsw_reg_mfsm_tacho_set(payload, tacho); 8129 } 8130 8131 /* MFSL - Management Fan Speed Limit Register 8132 * ------------------------------------------ 8133 * The Fan Speed Limit register is used to configure the fan speed 8134 * event / interrupt notification mechanism. Fan speed threshold are 8135 * defined for both under-speed and over-speed. 8136 */ 8137 #define MLXSW_REG_MFSL_ID 0x9004 8138 #define MLXSW_REG_MFSL_LEN 0x0C 8139 8140 MLXSW_REG_DEFINE(mfsl, MLXSW_REG_MFSL_ID, MLXSW_REG_MFSL_LEN); 8141 8142 /* reg_mfsl_tacho 8143 * Fan tachometer index. 8144 * Access: Index 8145 */ 8146 MLXSW_ITEM32(reg, mfsl, tacho, 0x00, 24, 4); 8147 8148 /* reg_mfsl_tach_min 8149 * Tachometer minimum value (minimum RPM). 8150 * Access: RW 8151 */ 8152 MLXSW_ITEM32(reg, mfsl, tach_min, 0x04, 0, 16); 8153 8154 /* reg_mfsl_tach_max 8155 * Tachometer maximum value (maximum RPM). 8156 * Access: RW 8157 */ 8158 MLXSW_ITEM32(reg, mfsl, tach_max, 0x08, 0, 16); 8159 8160 static inline void mlxsw_reg_mfsl_pack(char *payload, u8 tacho, 8161 u16 tach_min, u16 tach_max) 8162 { 8163 MLXSW_REG_ZERO(mfsl, payload); 8164 mlxsw_reg_mfsl_tacho_set(payload, tacho); 8165 mlxsw_reg_mfsl_tach_min_set(payload, tach_min); 8166 mlxsw_reg_mfsl_tach_max_set(payload, tach_max); 8167 } 8168 8169 static inline void mlxsw_reg_mfsl_unpack(char *payload, u8 tacho, 8170 u16 *p_tach_min, u16 *p_tach_max) 8171 { 8172 if (p_tach_min) 8173 *p_tach_min = mlxsw_reg_mfsl_tach_min_get(payload); 8174 8175 if (p_tach_max) 8176 *p_tach_max = mlxsw_reg_mfsl_tach_max_get(payload); 8177 } 8178 8179 /* FORE - Fan Out of Range Event Register 8180 * -------------------------------------- 8181 * This register reports the status of the controlled fans compared to the 8182 * range defined by the MFSL register. 8183 */ 8184 #define MLXSW_REG_FORE_ID 0x9007 8185 #define MLXSW_REG_FORE_LEN 0x0C 8186 8187 MLXSW_REG_DEFINE(fore, MLXSW_REG_FORE_ID, MLXSW_REG_FORE_LEN); 8188 8189 /* fan_under_limit 8190 * Fan speed is below the low limit defined in MFSL register. Each bit relates 8191 * to a single tachometer and indicates the specific tachometer reading is 8192 * below the threshold. 8193 * Access: RO 8194 */ 8195 MLXSW_ITEM32(reg, fore, fan_under_limit, 0x00, 16, 10); 8196 8197 static inline void mlxsw_reg_fore_unpack(char *payload, u8 tacho, 8198 bool *fault) 8199 { 8200 u16 limit; 8201 8202 if (fault) { 8203 limit = mlxsw_reg_fore_fan_under_limit_get(payload); 8204 *fault = limit & BIT(tacho); 8205 } 8206 } 8207 8208 /* MTCAP - Management Temperature Capabilities 8209 * ------------------------------------------- 8210 * This register exposes the capabilities of the device and 8211 * system temperature sensing. 8212 */ 8213 #define MLXSW_REG_MTCAP_ID 0x9009 8214 #define MLXSW_REG_MTCAP_LEN 0x08 8215 8216 MLXSW_REG_DEFINE(mtcap, MLXSW_REG_MTCAP_ID, MLXSW_REG_MTCAP_LEN); 8217 8218 /* reg_mtcap_sensor_count 8219 * Number of sensors supported by the device. 8220 * This includes the QSFP module sensors (if exists in the QSFP module). 8221 * Access: RO 8222 */ 8223 MLXSW_ITEM32(reg, mtcap, sensor_count, 0x00, 0, 7); 8224 8225 /* MTMP - Management Temperature 8226 * ----------------------------- 8227 * This register controls the settings of the temperature measurements 8228 * and enables reading the temperature measurements. Note that temperature 8229 * is in 0.125 degrees Celsius. 8230 */ 8231 #define MLXSW_REG_MTMP_ID 0x900A 8232 #define MLXSW_REG_MTMP_LEN 0x20 8233 8234 MLXSW_REG_DEFINE(mtmp, MLXSW_REG_MTMP_ID, MLXSW_REG_MTMP_LEN); 8235 8236 #define MLXSW_REG_MTMP_MODULE_INDEX_MIN 64 8237 #define MLXSW_REG_MTMP_GBOX_INDEX_MIN 256 8238 /* reg_mtmp_sensor_index 8239 * Sensors index to access. 8240 * 64-127 of sensor_index are mapped to the SFP+/QSFP modules sequentially 8241 * (module 0 is mapped to sensor_index 64). 8242 * Access: Index 8243 */ 8244 MLXSW_ITEM32(reg, mtmp, sensor_index, 0x00, 0, 12); 8245 8246 /* Convert to milli degrees Celsius */ 8247 #define MLXSW_REG_MTMP_TEMP_TO_MC(val) ({ typeof(val) v_ = (val); \ 8248 ((v_) >= 0) ? ((v_) * 125) : \ 8249 ((s16)((GENMASK(15, 0) + (v_) + 1) \ 8250 * 125)); }) 8251 8252 /* reg_mtmp_temperature 8253 * Temperature reading from the sensor. Reading is in 0.125 Celsius 8254 * degrees units. 8255 * Access: RO 8256 */ 8257 MLXSW_ITEM32(reg, mtmp, temperature, 0x04, 0, 16); 8258 8259 /* reg_mtmp_mte 8260 * Max Temperature Enable - enables measuring the max temperature on a sensor. 8261 * Access: RW 8262 */ 8263 MLXSW_ITEM32(reg, mtmp, mte, 0x08, 31, 1); 8264 8265 /* reg_mtmp_mtr 8266 * Max Temperature Reset - clears the value of the max temperature register. 8267 * Access: WO 8268 */ 8269 MLXSW_ITEM32(reg, mtmp, mtr, 0x08, 30, 1); 8270 8271 /* reg_mtmp_max_temperature 8272 * The highest measured temperature from the sensor. 8273 * When the bit mte is cleared, the field max_temperature is reserved. 8274 * Access: RO 8275 */ 8276 MLXSW_ITEM32(reg, mtmp, max_temperature, 0x08, 0, 16); 8277 8278 /* reg_mtmp_tee 8279 * Temperature Event Enable. 8280 * 0 - Do not generate event 8281 * 1 - Generate event 8282 * 2 - Generate single event 8283 * Access: RW 8284 */ 8285 MLXSW_ITEM32(reg, mtmp, tee, 0x0C, 30, 2); 8286 8287 #define MLXSW_REG_MTMP_THRESH_HI 0x348 /* 105 Celsius */ 8288 8289 /* reg_mtmp_temperature_threshold_hi 8290 * High threshold for Temperature Warning Event. In 0.125 Celsius. 8291 * Access: RW 8292 */ 8293 MLXSW_ITEM32(reg, mtmp, temperature_threshold_hi, 0x0C, 0, 16); 8294 8295 /* reg_mtmp_temperature_threshold_lo 8296 * Low threshold for Temperature Warning Event. In 0.125 Celsius. 8297 * Access: RW 8298 */ 8299 MLXSW_ITEM32(reg, mtmp, temperature_threshold_lo, 0x10, 0, 16); 8300 8301 #define MLXSW_REG_MTMP_SENSOR_NAME_SIZE 8 8302 8303 /* reg_mtmp_sensor_name 8304 * Sensor Name 8305 * Access: RO 8306 */ 8307 MLXSW_ITEM_BUF(reg, mtmp, sensor_name, 0x18, MLXSW_REG_MTMP_SENSOR_NAME_SIZE); 8308 8309 static inline void mlxsw_reg_mtmp_pack(char *payload, u16 sensor_index, 8310 bool max_temp_enable, 8311 bool max_temp_reset) 8312 { 8313 MLXSW_REG_ZERO(mtmp, payload); 8314 mlxsw_reg_mtmp_sensor_index_set(payload, sensor_index); 8315 mlxsw_reg_mtmp_mte_set(payload, max_temp_enable); 8316 mlxsw_reg_mtmp_mtr_set(payload, max_temp_reset); 8317 mlxsw_reg_mtmp_temperature_threshold_hi_set(payload, 8318 MLXSW_REG_MTMP_THRESH_HI); 8319 } 8320 8321 static inline void mlxsw_reg_mtmp_unpack(char *payload, int *p_temp, 8322 int *p_max_temp, char *sensor_name) 8323 { 8324 s16 temp; 8325 8326 if (p_temp) { 8327 temp = mlxsw_reg_mtmp_temperature_get(payload); 8328 *p_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp); 8329 } 8330 if (p_max_temp) { 8331 temp = mlxsw_reg_mtmp_max_temperature_get(payload); 8332 *p_max_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp); 8333 } 8334 if (sensor_name) 8335 mlxsw_reg_mtmp_sensor_name_memcpy_from(payload, sensor_name); 8336 } 8337 8338 /* MTBR - Management Temperature Bulk Register 8339 * ------------------------------------------- 8340 * This register is used for bulk temperature reading. 8341 */ 8342 #define MLXSW_REG_MTBR_ID 0x900F 8343 #define MLXSW_REG_MTBR_BASE_LEN 0x10 /* base length, without records */ 8344 #define MLXSW_REG_MTBR_REC_LEN 0x04 /* record length */ 8345 #define MLXSW_REG_MTBR_REC_MAX_COUNT 47 /* firmware limitation */ 8346 #define MLXSW_REG_MTBR_LEN (MLXSW_REG_MTBR_BASE_LEN + \ 8347 MLXSW_REG_MTBR_REC_LEN * \ 8348 MLXSW_REG_MTBR_REC_MAX_COUNT) 8349 8350 MLXSW_REG_DEFINE(mtbr, MLXSW_REG_MTBR_ID, MLXSW_REG_MTBR_LEN); 8351 8352 /* reg_mtbr_base_sensor_index 8353 * Base sensors index to access (0 - ASIC sensor, 1-63 - ambient sensors, 8354 * 64-127 are mapped to the SFP+/QSFP modules sequentially). 8355 * Access: Index 8356 */ 8357 MLXSW_ITEM32(reg, mtbr, base_sensor_index, 0x00, 0, 12); 8358 8359 /* reg_mtbr_num_rec 8360 * Request: Number of records to read 8361 * Response: Number of records read 8362 * See above description for more details. 8363 * Range 1..255 8364 * Access: RW 8365 */ 8366 MLXSW_ITEM32(reg, mtbr, num_rec, 0x04, 0, 8); 8367 8368 /* reg_mtbr_rec_max_temp 8369 * The highest measured temperature from the sensor. 8370 * When the bit mte is cleared, the field max_temperature is reserved. 8371 * Access: RO 8372 */ 8373 MLXSW_ITEM32_INDEXED(reg, mtbr, rec_max_temp, MLXSW_REG_MTBR_BASE_LEN, 16, 8374 16, MLXSW_REG_MTBR_REC_LEN, 0x00, false); 8375 8376 /* reg_mtbr_rec_temp 8377 * Temperature reading from the sensor. Reading is in 0..125 Celsius 8378 * degrees units. 8379 * Access: RO 8380 */ 8381 MLXSW_ITEM32_INDEXED(reg, mtbr, rec_temp, MLXSW_REG_MTBR_BASE_LEN, 0, 16, 8382 MLXSW_REG_MTBR_REC_LEN, 0x00, false); 8383 8384 static inline void mlxsw_reg_mtbr_pack(char *payload, u16 base_sensor_index, 8385 u8 num_rec) 8386 { 8387 MLXSW_REG_ZERO(mtbr, payload); 8388 mlxsw_reg_mtbr_base_sensor_index_set(payload, base_sensor_index); 8389 mlxsw_reg_mtbr_num_rec_set(payload, num_rec); 8390 } 8391 8392 /* Error codes from temperatute reading */ 8393 enum mlxsw_reg_mtbr_temp_status { 8394 MLXSW_REG_MTBR_NO_CONN = 0x8000, 8395 MLXSW_REG_MTBR_NO_TEMP_SENS = 0x8001, 8396 MLXSW_REG_MTBR_INDEX_NA = 0x8002, 8397 MLXSW_REG_MTBR_BAD_SENS_INFO = 0x8003, 8398 }; 8399 8400 /* Base index for reading modules temperature */ 8401 #define MLXSW_REG_MTBR_BASE_MODULE_INDEX 64 8402 8403 static inline void mlxsw_reg_mtbr_temp_unpack(char *payload, int rec_ind, 8404 u16 *p_temp, u16 *p_max_temp) 8405 { 8406 if (p_temp) 8407 *p_temp = mlxsw_reg_mtbr_rec_temp_get(payload, rec_ind); 8408 if (p_max_temp) 8409 *p_max_temp = mlxsw_reg_mtbr_rec_max_temp_get(payload, rec_ind); 8410 } 8411 8412 /* MCIA - Management Cable Info Access 8413 * ----------------------------------- 8414 * MCIA register is used to access the SFP+ and QSFP connector's EPROM. 8415 */ 8416 8417 #define MLXSW_REG_MCIA_ID 0x9014 8418 #define MLXSW_REG_MCIA_LEN 0x40 8419 8420 MLXSW_REG_DEFINE(mcia, MLXSW_REG_MCIA_ID, MLXSW_REG_MCIA_LEN); 8421 8422 /* reg_mcia_l 8423 * Lock bit. Setting this bit will lock the access to the specific 8424 * cable. Used for updating a full page in a cable EPROM. Any access 8425 * other then subsequence writes will fail while the port is locked. 8426 * Access: RW 8427 */ 8428 MLXSW_ITEM32(reg, mcia, l, 0x00, 31, 1); 8429 8430 /* reg_mcia_module 8431 * Module number. 8432 * Access: Index 8433 */ 8434 MLXSW_ITEM32(reg, mcia, module, 0x00, 16, 8); 8435 8436 /* reg_mcia_status 8437 * Module status. 8438 * Access: RO 8439 */ 8440 MLXSW_ITEM32(reg, mcia, status, 0x00, 0, 8); 8441 8442 /* reg_mcia_i2c_device_address 8443 * I2C device address. 8444 * Access: RW 8445 */ 8446 MLXSW_ITEM32(reg, mcia, i2c_device_address, 0x04, 24, 8); 8447 8448 /* reg_mcia_page_number 8449 * Page number. 8450 * Access: RW 8451 */ 8452 MLXSW_ITEM32(reg, mcia, page_number, 0x04, 16, 8); 8453 8454 /* reg_mcia_device_address 8455 * Device address. 8456 * Access: RW 8457 */ 8458 MLXSW_ITEM32(reg, mcia, device_address, 0x04, 0, 16); 8459 8460 /* reg_mcia_size 8461 * Number of bytes to read/write (up to 48 bytes). 8462 * Access: RW 8463 */ 8464 MLXSW_ITEM32(reg, mcia, size, 0x08, 0, 16); 8465 8466 #define MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH 256 8467 #define MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH 128 8468 #define MLXSW_REG_MCIA_EEPROM_SIZE 48 8469 #define MLXSW_REG_MCIA_I2C_ADDR_LOW 0x50 8470 #define MLXSW_REG_MCIA_I2C_ADDR_HIGH 0x51 8471 #define MLXSW_REG_MCIA_PAGE0_LO_OFF 0xa0 8472 #define MLXSW_REG_MCIA_TH_ITEM_SIZE 2 8473 #define MLXSW_REG_MCIA_TH_PAGE_NUM 3 8474 #define MLXSW_REG_MCIA_PAGE0_LO 0 8475 #define MLXSW_REG_MCIA_TH_PAGE_OFF 0x80 8476 8477 enum mlxsw_reg_mcia_eeprom_module_info_rev_id { 8478 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_UNSPC = 0x00, 8479 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8436 = 0x01, 8480 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8636 = 0x03, 8481 }; 8482 8483 enum mlxsw_reg_mcia_eeprom_module_info_id { 8484 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_SFP = 0x03, 8485 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP = 0x0C, 8486 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_PLUS = 0x0D, 8487 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP28 = 0x11, 8488 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_DD = 0x18, 8489 }; 8490 8491 enum mlxsw_reg_mcia_eeprom_module_info { 8492 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID, 8493 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID, 8494 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_SIZE, 8495 }; 8496 8497 /* reg_mcia_eeprom 8498 * Bytes to read/write. 8499 * Access: RW 8500 */ 8501 MLXSW_ITEM_BUF(reg, mcia, eeprom, 0x10, MLXSW_REG_MCIA_EEPROM_SIZE); 8502 8503 /* This is used to access the optional upper pages (1-3) in the QSFP+ 8504 * memory map. Page 1 is available on offset 256 through 383, page 2 - 8505 * on offset 384 through 511, page 3 - on offset 512 through 639. 8506 */ 8507 #define MLXSW_REG_MCIA_PAGE_GET(off) (((off) - \ 8508 MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH) / \ 8509 MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH + 1) 8510 8511 static inline void mlxsw_reg_mcia_pack(char *payload, u8 module, u8 lock, 8512 u8 page_number, u16 device_addr, 8513 u8 size, u8 i2c_device_addr) 8514 { 8515 MLXSW_REG_ZERO(mcia, payload); 8516 mlxsw_reg_mcia_module_set(payload, module); 8517 mlxsw_reg_mcia_l_set(payload, lock); 8518 mlxsw_reg_mcia_page_number_set(payload, page_number); 8519 mlxsw_reg_mcia_device_address_set(payload, device_addr); 8520 mlxsw_reg_mcia_size_set(payload, size); 8521 mlxsw_reg_mcia_i2c_device_address_set(payload, i2c_device_addr); 8522 } 8523 8524 /* MPAT - Monitoring Port Analyzer Table 8525 * ------------------------------------- 8526 * MPAT Register is used to query and configure the Switch PortAnalyzer Table. 8527 * For an enabled analyzer, all fields except e (enable) cannot be modified. 8528 */ 8529 #define MLXSW_REG_MPAT_ID 0x901A 8530 #define MLXSW_REG_MPAT_LEN 0x78 8531 8532 MLXSW_REG_DEFINE(mpat, MLXSW_REG_MPAT_ID, MLXSW_REG_MPAT_LEN); 8533 8534 /* reg_mpat_pa_id 8535 * Port Analyzer ID. 8536 * Access: Index 8537 */ 8538 MLXSW_ITEM32(reg, mpat, pa_id, 0x00, 28, 4); 8539 8540 /* reg_mpat_system_port 8541 * A unique port identifier for the final destination of the packet. 8542 * Access: RW 8543 */ 8544 MLXSW_ITEM32(reg, mpat, system_port, 0x00, 0, 16); 8545 8546 /* reg_mpat_e 8547 * Enable. Indicating the Port Analyzer is enabled. 8548 * Access: RW 8549 */ 8550 MLXSW_ITEM32(reg, mpat, e, 0x04, 31, 1); 8551 8552 /* reg_mpat_qos 8553 * Quality Of Service Mode. 8554 * 0: CONFIGURED - QoS parameters (Switch Priority, and encapsulation 8555 * PCP, DEI, DSCP or VL) are configured. 8556 * 1: MAINTAIN - QoS parameters (Switch Priority, Color) are the 8557 * same as in the original packet that has triggered the mirroring. For 8558 * SPAN also the pcp,dei are maintained. 8559 * Access: RW 8560 */ 8561 MLXSW_ITEM32(reg, mpat, qos, 0x04, 26, 1); 8562 8563 /* reg_mpat_be 8564 * Best effort mode. Indicates mirroring traffic should not cause packet 8565 * drop or back pressure, but will discard the mirrored packets. Mirrored 8566 * packets will be forwarded on a best effort manner. 8567 * 0: Do not discard mirrored packets 8568 * 1: Discard mirrored packets if causing congestion 8569 * Access: RW 8570 */ 8571 MLXSW_ITEM32(reg, mpat, be, 0x04, 25, 1); 8572 8573 enum mlxsw_reg_mpat_span_type { 8574 /* Local SPAN Ethernet. 8575 * The original packet is not encapsulated. 8576 */ 8577 MLXSW_REG_MPAT_SPAN_TYPE_LOCAL_ETH = 0x0, 8578 8579 /* Remote SPAN Ethernet VLAN. 8580 * The packet is forwarded to the monitoring port on the monitoring 8581 * VLAN. 8582 */ 8583 MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH = 0x1, 8584 8585 /* Encapsulated Remote SPAN Ethernet L3 GRE. 8586 * The packet is encapsulated with GRE header. 8587 */ 8588 MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH_L3 = 0x3, 8589 }; 8590 8591 /* reg_mpat_span_type 8592 * SPAN type. 8593 * Access: RW 8594 */ 8595 MLXSW_ITEM32(reg, mpat, span_type, 0x04, 0, 4); 8596 8597 /* Remote SPAN - Ethernet VLAN 8598 * - - - - - - - - - - - - - - 8599 */ 8600 8601 /* reg_mpat_eth_rspan_vid 8602 * Encapsulation header VLAN ID. 8603 * Access: RW 8604 */ 8605 MLXSW_ITEM32(reg, mpat, eth_rspan_vid, 0x18, 0, 12); 8606 8607 /* Encapsulated Remote SPAN - Ethernet L2 8608 * - - - - - - - - - - - - - - - - - - - 8609 */ 8610 8611 enum mlxsw_reg_mpat_eth_rspan_version { 8612 MLXSW_REG_MPAT_ETH_RSPAN_VERSION_NO_HEADER = 15, 8613 }; 8614 8615 /* reg_mpat_eth_rspan_version 8616 * RSPAN mirror header version. 8617 * Access: RW 8618 */ 8619 MLXSW_ITEM32(reg, mpat, eth_rspan_version, 0x10, 18, 4); 8620 8621 /* reg_mpat_eth_rspan_mac 8622 * Destination MAC address. 8623 * Access: RW 8624 */ 8625 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_mac, 0x12, 6); 8626 8627 /* reg_mpat_eth_rspan_tp 8628 * Tag Packet. Indicates whether the mirroring header should be VLAN tagged. 8629 * Access: RW 8630 */ 8631 MLXSW_ITEM32(reg, mpat, eth_rspan_tp, 0x18, 16, 1); 8632 8633 /* Encapsulated Remote SPAN - Ethernet L3 8634 * - - - - - - - - - - - - - - - - - - - 8635 */ 8636 8637 enum mlxsw_reg_mpat_eth_rspan_protocol { 8638 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4, 8639 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6, 8640 }; 8641 8642 /* reg_mpat_eth_rspan_protocol 8643 * SPAN encapsulation protocol. 8644 * Access: RW 8645 */ 8646 MLXSW_ITEM32(reg, mpat, eth_rspan_protocol, 0x18, 24, 4); 8647 8648 /* reg_mpat_eth_rspan_ttl 8649 * Encapsulation header Time-to-Live/HopLimit. 8650 * Access: RW 8651 */ 8652 MLXSW_ITEM32(reg, mpat, eth_rspan_ttl, 0x1C, 4, 8); 8653 8654 /* reg_mpat_eth_rspan_smac 8655 * Source MAC address 8656 * Access: RW 8657 */ 8658 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_smac, 0x22, 6); 8659 8660 /* reg_mpat_eth_rspan_dip* 8661 * Destination IP address. The IP version is configured by protocol. 8662 * Access: RW 8663 */ 8664 MLXSW_ITEM32(reg, mpat, eth_rspan_dip4, 0x4C, 0, 32); 8665 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_dip6, 0x40, 16); 8666 8667 /* reg_mpat_eth_rspan_sip* 8668 * Source IP address. The IP version is configured by protocol. 8669 * Access: RW 8670 */ 8671 MLXSW_ITEM32(reg, mpat, eth_rspan_sip4, 0x5C, 0, 32); 8672 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_sip6, 0x50, 16); 8673 8674 static inline void mlxsw_reg_mpat_pack(char *payload, u8 pa_id, 8675 u16 system_port, bool e, 8676 enum mlxsw_reg_mpat_span_type span_type) 8677 { 8678 MLXSW_REG_ZERO(mpat, payload); 8679 mlxsw_reg_mpat_pa_id_set(payload, pa_id); 8680 mlxsw_reg_mpat_system_port_set(payload, system_port); 8681 mlxsw_reg_mpat_e_set(payload, e); 8682 mlxsw_reg_mpat_qos_set(payload, 1); 8683 mlxsw_reg_mpat_be_set(payload, 1); 8684 mlxsw_reg_mpat_span_type_set(payload, span_type); 8685 } 8686 8687 static inline void mlxsw_reg_mpat_eth_rspan_pack(char *payload, u16 vid) 8688 { 8689 mlxsw_reg_mpat_eth_rspan_vid_set(payload, vid); 8690 } 8691 8692 static inline void 8693 mlxsw_reg_mpat_eth_rspan_l2_pack(char *payload, 8694 enum mlxsw_reg_mpat_eth_rspan_version version, 8695 const char *mac, 8696 bool tp) 8697 { 8698 mlxsw_reg_mpat_eth_rspan_version_set(payload, version); 8699 mlxsw_reg_mpat_eth_rspan_mac_memcpy_to(payload, mac); 8700 mlxsw_reg_mpat_eth_rspan_tp_set(payload, tp); 8701 } 8702 8703 static inline void 8704 mlxsw_reg_mpat_eth_rspan_l3_ipv4_pack(char *payload, u8 ttl, 8705 const char *smac, 8706 u32 sip, u32 dip) 8707 { 8708 mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl); 8709 mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac); 8710 mlxsw_reg_mpat_eth_rspan_protocol_set(payload, 8711 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4); 8712 mlxsw_reg_mpat_eth_rspan_sip4_set(payload, sip); 8713 mlxsw_reg_mpat_eth_rspan_dip4_set(payload, dip); 8714 } 8715 8716 static inline void 8717 mlxsw_reg_mpat_eth_rspan_l3_ipv6_pack(char *payload, u8 ttl, 8718 const char *smac, 8719 struct in6_addr sip, struct in6_addr dip) 8720 { 8721 mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl); 8722 mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac); 8723 mlxsw_reg_mpat_eth_rspan_protocol_set(payload, 8724 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6); 8725 mlxsw_reg_mpat_eth_rspan_sip6_memcpy_to(payload, (void *)&sip); 8726 mlxsw_reg_mpat_eth_rspan_dip6_memcpy_to(payload, (void *)&dip); 8727 } 8728 8729 /* MPAR - Monitoring Port Analyzer Register 8730 * ---------------------------------------- 8731 * MPAR register is used to query and configure the port analyzer port mirroring 8732 * properties. 8733 */ 8734 #define MLXSW_REG_MPAR_ID 0x901B 8735 #define MLXSW_REG_MPAR_LEN 0x0C 8736 8737 MLXSW_REG_DEFINE(mpar, MLXSW_REG_MPAR_ID, MLXSW_REG_MPAR_LEN); 8738 8739 /* reg_mpar_local_port 8740 * The local port to mirror the packets from. 8741 * Access: Index 8742 */ 8743 MLXSW_ITEM32(reg, mpar, local_port, 0x00, 16, 8); 8744 8745 enum mlxsw_reg_mpar_i_e { 8746 MLXSW_REG_MPAR_TYPE_EGRESS, 8747 MLXSW_REG_MPAR_TYPE_INGRESS, 8748 }; 8749 8750 /* reg_mpar_i_e 8751 * Ingress/Egress 8752 * Access: Index 8753 */ 8754 MLXSW_ITEM32(reg, mpar, i_e, 0x00, 0, 4); 8755 8756 /* reg_mpar_enable 8757 * Enable mirroring 8758 * By default, port mirroring is disabled for all ports. 8759 * Access: RW 8760 */ 8761 MLXSW_ITEM32(reg, mpar, enable, 0x04, 31, 1); 8762 8763 /* reg_mpar_pa_id 8764 * Port Analyzer ID. 8765 * Access: RW 8766 */ 8767 MLXSW_ITEM32(reg, mpar, pa_id, 0x04, 0, 4); 8768 8769 static inline void mlxsw_reg_mpar_pack(char *payload, u8 local_port, 8770 enum mlxsw_reg_mpar_i_e i_e, 8771 bool enable, u8 pa_id) 8772 { 8773 MLXSW_REG_ZERO(mpar, payload); 8774 mlxsw_reg_mpar_local_port_set(payload, local_port); 8775 mlxsw_reg_mpar_enable_set(payload, enable); 8776 mlxsw_reg_mpar_i_e_set(payload, i_e); 8777 mlxsw_reg_mpar_pa_id_set(payload, pa_id); 8778 } 8779 8780 /* MGIR - Management General Information Register 8781 * ---------------------------------------------- 8782 * MGIR register allows software to query the hardware and firmware general 8783 * information. 8784 */ 8785 #define MLXSW_REG_MGIR_ID 0x9020 8786 #define MLXSW_REG_MGIR_LEN 0x9C 8787 8788 MLXSW_REG_DEFINE(mgir, MLXSW_REG_MGIR_ID, MLXSW_REG_MGIR_LEN); 8789 8790 /* reg_mgir_hw_info_device_hw_revision 8791 * Access: RO 8792 */ 8793 MLXSW_ITEM32(reg, mgir, hw_info_device_hw_revision, 0x0, 16, 16); 8794 8795 #define MLXSW_REG_MGIR_FW_INFO_PSID_SIZE 16 8796 8797 /* reg_mgir_fw_info_psid 8798 * PSID (ASCII string). 8799 * Access: RO 8800 */ 8801 MLXSW_ITEM_BUF(reg, mgir, fw_info_psid, 0x30, MLXSW_REG_MGIR_FW_INFO_PSID_SIZE); 8802 8803 /* reg_mgir_fw_info_extended_major 8804 * Access: RO 8805 */ 8806 MLXSW_ITEM32(reg, mgir, fw_info_extended_major, 0x44, 0, 32); 8807 8808 /* reg_mgir_fw_info_extended_minor 8809 * Access: RO 8810 */ 8811 MLXSW_ITEM32(reg, mgir, fw_info_extended_minor, 0x48, 0, 32); 8812 8813 /* reg_mgir_fw_info_extended_sub_minor 8814 * Access: RO 8815 */ 8816 MLXSW_ITEM32(reg, mgir, fw_info_extended_sub_minor, 0x4C, 0, 32); 8817 8818 static inline void mlxsw_reg_mgir_pack(char *payload) 8819 { 8820 MLXSW_REG_ZERO(mgir, payload); 8821 } 8822 8823 static inline void 8824 mlxsw_reg_mgir_unpack(char *payload, u32 *hw_rev, char *fw_info_psid, 8825 u32 *fw_major, u32 *fw_minor, u32 *fw_sub_minor) 8826 { 8827 *hw_rev = mlxsw_reg_mgir_hw_info_device_hw_revision_get(payload); 8828 mlxsw_reg_mgir_fw_info_psid_memcpy_from(payload, fw_info_psid); 8829 *fw_major = mlxsw_reg_mgir_fw_info_extended_major_get(payload); 8830 *fw_minor = mlxsw_reg_mgir_fw_info_extended_minor_get(payload); 8831 *fw_sub_minor = mlxsw_reg_mgir_fw_info_extended_sub_minor_get(payload); 8832 } 8833 8834 /* MRSR - Management Reset and Shutdown Register 8835 * --------------------------------------------- 8836 * MRSR register is used to reset or shutdown the switch or 8837 * the entire system (when applicable). 8838 */ 8839 #define MLXSW_REG_MRSR_ID 0x9023 8840 #define MLXSW_REG_MRSR_LEN 0x08 8841 8842 MLXSW_REG_DEFINE(mrsr, MLXSW_REG_MRSR_ID, MLXSW_REG_MRSR_LEN); 8843 8844 /* reg_mrsr_command 8845 * Reset/shutdown command 8846 * 0 - do nothing 8847 * 1 - software reset 8848 * Access: WO 8849 */ 8850 MLXSW_ITEM32(reg, mrsr, command, 0x00, 0, 4); 8851 8852 static inline void mlxsw_reg_mrsr_pack(char *payload) 8853 { 8854 MLXSW_REG_ZERO(mrsr, payload); 8855 mlxsw_reg_mrsr_command_set(payload, 1); 8856 } 8857 8858 /* MLCR - Management LED Control Register 8859 * -------------------------------------- 8860 * Controls the system LEDs. 8861 */ 8862 #define MLXSW_REG_MLCR_ID 0x902B 8863 #define MLXSW_REG_MLCR_LEN 0x0C 8864 8865 MLXSW_REG_DEFINE(mlcr, MLXSW_REG_MLCR_ID, MLXSW_REG_MLCR_LEN); 8866 8867 /* reg_mlcr_local_port 8868 * Local port number. 8869 * Access: RW 8870 */ 8871 MLXSW_ITEM32(reg, mlcr, local_port, 0x00, 16, 8); 8872 8873 #define MLXSW_REG_MLCR_DURATION_MAX 0xFFFF 8874 8875 /* reg_mlcr_beacon_duration 8876 * Duration of the beacon to be active, in seconds. 8877 * 0x0 - Will turn off the beacon. 8878 * 0xFFFF - Will turn on the beacon until explicitly turned off. 8879 * Access: RW 8880 */ 8881 MLXSW_ITEM32(reg, mlcr, beacon_duration, 0x04, 0, 16); 8882 8883 /* reg_mlcr_beacon_remain 8884 * Remaining duration of the beacon, in seconds. 8885 * 0xFFFF indicates an infinite amount of time. 8886 * Access: RO 8887 */ 8888 MLXSW_ITEM32(reg, mlcr, beacon_remain, 0x08, 0, 16); 8889 8890 static inline void mlxsw_reg_mlcr_pack(char *payload, u8 local_port, 8891 bool active) 8892 { 8893 MLXSW_REG_ZERO(mlcr, payload); 8894 mlxsw_reg_mlcr_local_port_set(payload, local_port); 8895 mlxsw_reg_mlcr_beacon_duration_set(payload, active ? 8896 MLXSW_REG_MLCR_DURATION_MAX : 0); 8897 } 8898 8899 /* MTPPS - Management Pulse Per Second Register 8900 * -------------------------------------------- 8901 * This register provides the device PPS capabilities, configure the PPS in and 8902 * out modules and holds the PPS in time stamp. 8903 */ 8904 #define MLXSW_REG_MTPPS_ID 0x9053 8905 #define MLXSW_REG_MTPPS_LEN 0x3C 8906 8907 MLXSW_REG_DEFINE(mtpps, MLXSW_REG_MTPPS_ID, MLXSW_REG_MTPPS_LEN); 8908 8909 /* reg_mtpps_enable 8910 * Enables the PPS functionality the specific pin. 8911 * A boolean variable. 8912 * Access: RW 8913 */ 8914 MLXSW_ITEM32(reg, mtpps, enable, 0x20, 31, 1); 8915 8916 enum mlxsw_reg_mtpps_pin_mode { 8917 MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN = 0x2, 8918 }; 8919 8920 /* reg_mtpps_pin_mode 8921 * Pin mode to be used. The mode must comply with the supported modes of the 8922 * requested pin. 8923 * Access: RW 8924 */ 8925 MLXSW_ITEM32(reg, mtpps, pin_mode, 0x20, 8, 4); 8926 8927 #define MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN 7 8928 8929 /* reg_mtpps_pin 8930 * Pin to be configured or queried out of the supported pins. 8931 * Access: Index 8932 */ 8933 MLXSW_ITEM32(reg, mtpps, pin, 0x20, 0, 8); 8934 8935 /* reg_mtpps_time_stamp 8936 * When pin_mode = pps_in, the latched device time when it was triggered from 8937 * the external GPIO pin. 8938 * When pin_mode = pps_out or virtual_pin or pps_out_and_virtual_pin, the target 8939 * time to generate next output signal. 8940 * Time is in units of device clock. 8941 * Access: RW 8942 */ 8943 MLXSW_ITEM64(reg, mtpps, time_stamp, 0x28, 0, 64); 8944 8945 static inline void 8946 mlxsw_reg_mtpps_vpin_pack(char *payload, u64 time_stamp) 8947 { 8948 MLXSW_REG_ZERO(mtpps, payload); 8949 mlxsw_reg_mtpps_pin_set(payload, MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN); 8950 mlxsw_reg_mtpps_pin_mode_set(payload, 8951 MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN); 8952 mlxsw_reg_mtpps_enable_set(payload, true); 8953 mlxsw_reg_mtpps_time_stamp_set(payload, time_stamp); 8954 } 8955 8956 /* MTUTC - Management UTC Register 8957 * ------------------------------- 8958 * Configures the HW UTC counter. 8959 */ 8960 #define MLXSW_REG_MTUTC_ID 0x9055 8961 #define MLXSW_REG_MTUTC_LEN 0x1C 8962 8963 MLXSW_REG_DEFINE(mtutc, MLXSW_REG_MTUTC_ID, MLXSW_REG_MTUTC_LEN); 8964 8965 enum mlxsw_reg_mtutc_operation { 8966 MLXSW_REG_MTUTC_OPERATION_SET_TIME_AT_NEXT_SEC = 0, 8967 MLXSW_REG_MTUTC_OPERATION_ADJUST_FREQ = 3, 8968 }; 8969 8970 /* reg_mtutc_operation 8971 * Operation. 8972 * Access: OP 8973 */ 8974 MLXSW_ITEM32(reg, mtutc, operation, 0x00, 0, 4); 8975 8976 /* reg_mtutc_freq_adjustment 8977 * Frequency adjustment: Every PPS the HW frequency will be 8978 * adjusted by this value. Units of HW clock, where HW counts 8979 * 10^9 HW clocks for 1 HW second. 8980 * Access: RW 8981 */ 8982 MLXSW_ITEM32(reg, mtutc, freq_adjustment, 0x04, 0, 32); 8983 8984 /* reg_mtutc_utc_sec 8985 * UTC seconds. 8986 * Access: WO 8987 */ 8988 MLXSW_ITEM32(reg, mtutc, utc_sec, 0x10, 0, 32); 8989 8990 static inline void 8991 mlxsw_reg_mtutc_pack(char *payload, enum mlxsw_reg_mtutc_operation oper, 8992 u32 freq_adj, u32 utc_sec) 8993 { 8994 MLXSW_REG_ZERO(mtutc, payload); 8995 mlxsw_reg_mtutc_operation_set(payload, oper); 8996 mlxsw_reg_mtutc_freq_adjustment_set(payload, freq_adj); 8997 mlxsw_reg_mtutc_utc_sec_set(payload, utc_sec); 8998 } 8999 9000 /* MCQI - Management Component Query Information 9001 * --------------------------------------------- 9002 * This register allows querying information about firmware components. 9003 */ 9004 #define MLXSW_REG_MCQI_ID 0x9061 9005 #define MLXSW_REG_MCQI_BASE_LEN 0x18 9006 #define MLXSW_REG_MCQI_CAP_LEN 0x14 9007 #define MLXSW_REG_MCQI_LEN (MLXSW_REG_MCQI_BASE_LEN + MLXSW_REG_MCQI_CAP_LEN) 9008 9009 MLXSW_REG_DEFINE(mcqi, MLXSW_REG_MCQI_ID, MLXSW_REG_MCQI_LEN); 9010 9011 /* reg_mcqi_component_index 9012 * Index of the accessed component. 9013 * Access: Index 9014 */ 9015 MLXSW_ITEM32(reg, mcqi, component_index, 0x00, 0, 16); 9016 9017 enum mlxfw_reg_mcqi_info_type { 9018 MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES, 9019 }; 9020 9021 /* reg_mcqi_info_type 9022 * Component properties set. 9023 * Access: RW 9024 */ 9025 MLXSW_ITEM32(reg, mcqi, info_type, 0x08, 0, 5); 9026 9027 /* reg_mcqi_offset 9028 * The requested/returned data offset from the section start, given in bytes. 9029 * Must be DWORD aligned. 9030 * Access: RW 9031 */ 9032 MLXSW_ITEM32(reg, mcqi, offset, 0x10, 0, 32); 9033 9034 /* reg_mcqi_data_size 9035 * The requested/returned data size, given in bytes. If data_size is not DWORD 9036 * aligned, the last bytes are zero padded. 9037 * Access: RW 9038 */ 9039 MLXSW_ITEM32(reg, mcqi, data_size, 0x14, 0, 16); 9040 9041 /* reg_mcqi_cap_max_component_size 9042 * Maximum size for this component, given in bytes. 9043 * Access: RO 9044 */ 9045 MLXSW_ITEM32(reg, mcqi, cap_max_component_size, 0x20, 0, 32); 9046 9047 /* reg_mcqi_cap_log_mcda_word_size 9048 * Log 2 of the access word size in bytes. Read and write access must be aligned 9049 * to the word size. Write access must be done for an integer number of words. 9050 * Access: RO 9051 */ 9052 MLXSW_ITEM32(reg, mcqi, cap_log_mcda_word_size, 0x24, 28, 4); 9053 9054 /* reg_mcqi_cap_mcda_max_write_size 9055 * Maximal write size for MCDA register 9056 * Access: RO 9057 */ 9058 MLXSW_ITEM32(reg, mcqi, cap_mcda_max_write_size, 0x24, 0, 16); 9059 9060 static inline void mlxsw_reg_mcqi_pack(char *payload, u16 component_index) 9061 { 9062 MLXSW_REG_ZERO(mcqi, payload); 9063 mlxsw_reg_mcqi_component_index_set(payload, component_index); 9064 mlxsw_reg_mcqi_info_type_set(payload, 9065 MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES); 9066 mlxsw_reg_mcqi_offset_set(payload, 0); 9067 mlxsw_reg_mcqi_data_size_set(payload, MLXSW_REG_MCQI_CAP_LEN); 9068 } 9069 9070 static inline void mlxsw_reg_mcqi_unpack(char *payload, 9071 u32 *p_cap_max_component_size, 9072 u8 *p_cap_log_mcda_word_size, 9073 u16 *p_cap_mcda_max_write_size) 9074 { 9075 *p_cap_max_component_size = 9076 mlxsw_reg_mcqi_cap_max_component_size_get(payload); 9077 *p_cap_log_mcda_word_size = 9078 mlxsw_reg_mcqi_cap_log_mcda_word_size_get(payload); 9079 *p_cap_mcda_max_write_size = 9080 mlxsw_reg_mcqi_cap_mcda_max_write_size_get(payload); 9081 } 9082 9083 /* MCC - Management Component Control 9084 * ---------------------------------- 9085 * Controls the firmware component and updates the FSM. 9086 */ 9087 #define MLXSW_REG_MCC_ID 0x9062 9088 #define MLXSW_REG_MCC_LEN 0x1C 9089 9090 MLXSW_REG_DEFINE(mcc, MLXSW_REG_MCC_ID, MLXSW_REG_MCC_LEN); 9091 9092 enum mlxsw_reg_mcc_instruction { 9093 MLXSW_REG_MCC_INSTRUCTION_LOCK_UPDATE_HANDLE = 0x01, 9094 MLXSW_REG_MCC_INSTRUCTION_RELEASE_UPDATE_HANDLE = 0x02, 9095 MLXSW_REG_MCC_INSTRUCTION_UPDATE_COMPONENT = 0x03, 9096 MLXSW_REG_MCC_INSTRUCTION_VERIFY_COMPONENT = 0x04, 9097 MLXSW_REG_MCC_INSTRUCTION_ACTIVATE = 0x06, 9098 MLXSW_REG_MCC_INSTRUCTION_CANCEL = 0x08, 9099 }; 9100 9101 /* reg_mcc_instruction 9102 * Command to be executed by the FSM. 9103 * Applicable for write operation only. 9104 * Access: RW 9105 */ 9106 MLXSW_ITEM32(reg, mcc, instruction, 0x00, 0, 8); 9107 9108 /* reg_mcc_component_index 9109 * Index of the accessed component. Applicable only for commands that 9110 * refer to components. Otherwise, this field is reserved. 9111 * Access: Index 9112 */ 9113 MLXSW_ITEM32(reg, mcc, component_index, 0x04, 0, 16); 9114 9115 /* reg_mcc_update_handle 9116 * Token representing the current flow executed by the FSM. 9117 * Access: WO 9118 */ 9119 MLXSW_ITEM32(reg, mcc, update_handle, 0x08, 0, 24); 9120 9121 /* reg_mcc_error_code 9122 * Indicates the successful completion of the instruction, or the reason it 9123 * failed 9124 * Access: RO 9125 */ 9126 MLXSW_ITEM32(reg, mcc, error_code, 0x0C, 8, 8); 9127 9128 /* reg_mcc_control_state 9129 * Current FSM state 9130 * Access: RO 9131 */ 9132 MLXSW_ITEM32(reg, mcc, control_state, 0x0C, 0, 4); 9133 9134 /* reg_mcc_component_size 9135 * Component size in bytes. Valid for UPDATE_COMPONENT instruction. Specifying 9136 * the size may shorten the update time. Value 0x0 means that size is 9137 * unspecified. 9138 * Access: WO 9139 */ 9140 MLXSW_ITEM32(reg, mcc, component_size, 0x10, 0, 32); 9141 9142 static inline void mlxsw_reg_mcc_pack(char *payload, 9143 enum mlxsw_reg_mcc_instruction instr, 9144 u16 component_index, u32 update_handle, 9145 u32 component_size) 9146 { 9147 MLXSW_REG_ZERO(mcc, payload); 9148 mlxsw_reg_mcc_instruction_set(payload, instr); 9149 mlxsw_reg_mcc_component_index_set(payload, component_index); 9150 mlxsw_reg_mcc_update_handle_set(payload, update_handle); 9151 mlxsw_reg_mcc_component_size_set(payload, component_size); 9152 } 9153 9154 static inline void mlxsw_reg_mcc_unpack(char *payload, u32 *p_update_handle, 9155 u8 *p_error_code, u8 *p_control_state) 9156 { 9157 if (p_update_handle) 9158 *p_update_handle = mlxsw_reg_mcc_update_handle_get(payload); 9159 if (p_error_code) 9160 *p_error_code = mlxsw_reg_mcc_error_code_get(payload); 9161 if (p_control_state) 9162 *p_control_state = mlxsw_reg_mcc_control_state_get(payload); 9163 } 9164 9165 /* MCDA - Management Component Data Access 9166 * --------------------------------------- 9167 * This register allows reading and writing a firmware component. 9168 */ 9169 #define MLXSW_REG_MCDA_ID 0x9063 9170 #define MLXSW_REG_MCDA_BASE_LEN 0x10 9171 #define MLXSW_REG_MCDA_MAX_DATA_LEN 0x80 9172 #define MLXSW_REG_MCDA_LEN \ 9173 (MLXSW_REG_MCDA_BASE_LEN + MLXSW_REG_MCDA_MAX_DATA_LEN) 9174 9175 MLXSW_REG_DEFINE(mcda, MLXSW_REG_MCDA_ID, MLXSW_REG_MCDA_LEN); 9176 9177 /* reg_mcda_update_handle 9178 * Token representing the current flow executed by the FSM. 9179 * Access: RW 9180 */ 9181 MLXSW_ITEM32(reg, mcda, update_handle, 0x00, 0, 24); 9182 9183 /* reg_mcda_offset 9184 * Offset of accessed address relative to component start. Accesses must be in 9185 * accordance to log_mcda_word_size in MCQI reg. 9186 * Access: RW 9187 */ 9188 MLXSW_ITEM32(reg, mcda, offset, 0x04, 0, 32); 9189 9190 /* reg_mcda_size 9191 * Size of the data accessed, given in bytes. 9192 * Access: RW 9193 */ 9194 MLXSW_ITEM32(reg, mcda, size, 0x08, 0, 16); 9195 9196 /* reg_mcda_data 9197 * Data block accessed. 9198 * Access: RW 9199 */ 9200 MLXSW_ITEM32_INDEXED(reg, mcda, data, 0x10, 0, 32, 4, 0, false); 9201 9202 static inline void mlxsw_reg_mcda_pack(char *payload, u32 update_handle, 9203 u32 offset, u16 size, u8 *data) 9204 { 9205 int i; 9206 9207 MLXSW_REG_ZERO(mcda, payload); 9208 mlxsw_reg_mcda_update_handle_set(payload, update_handle); 9209 mlxsw_reg_mcda_offset_set(payload, offset); 9210 mlxsw_reg_mcda_size_set(payload, size); 9211 9212 for (i = 0; i < size / 4; i++) 9213 mlxsw_reg_mcda_data_set(payload, i, *(u32 *) &data[i * 4]); 9214 } 9215 9216 /* MPSC - Monitoring Packet Sampling Configuration Register 9217 * -------------------------------------------------------- 9218 * MPSC Register is used to configure the Packet Sampling mechanism. 9219 */ 9220 #define MLXSW_REG_MPSC_ID 0x9080 9221 #define MLXSW_REG_MPSC_LEN 0x1C 9222 9223 MLXSW_REG_DEFINE(mpsc, MLXSW_REG_MPSC_ID, MLXSW_REG_MPSC_LEN); 9224 9225 /* reg_mpsc_local_port 9226 * Local port number 9227 * Not supported for CPU port 9228 * Access: Index 9229 */ 9230 MLXSW_ITEM32(reg, mpsc, local_port, 0x00, 16, 8); 9231 9232 /* reg_mpsc_e 9233 * Enable sampling on port local_port 9234 * Access: RW 9235 */ 9236 MLXSW_ITEM32(reg, mpsc, e, 0x04, 30, 1); 9237 9238 #define MLXSW_REG_MPSC_RATE_MAX 3500000000UL 9239 9240 /* reg_mpsc_rate 9241 * Sampling rate = 1 out of rate packets (with randomization around 9242 * the point). Valid values are: 1 to MLXSW_REG_MPSC_RATE_MAX 9243 * Access: RW 9244 */ 9245 MLXSW_ITEM32(reg, mpsc, rate, 0x08, 0, 32); 9246 9247 static inline void mlxsw_reg_mpsc_pack(char *payload, u8 local_port, bool e, 9248 u32 rate) 9249 { 9250 MLXSW_REG_ZERO(mpsc, payload); 9251 mlxsw_reg_mpsc_local_port_set(payload, local_port); 9252 mlxsw_reg_mpsc_e_set(payload, e); 9253 mlxsw_reg_mpsc_rate_set(payload, rate); 9254 } 9255 9256 /* MGPC - Monitoring General Purpose Counter Set Register 9257 * The MGPC register retrieves and sets the General Purpose Counter Set. 9258 */ 9259 #define MLXSW_REG_MGPC_ID 0x9081 9260 #define MLXSW_REG_MGPC_LEN 0x18 9261 9262 MLXSW_REG_DEFINE(mgpc, MLXSW_REG_MGPC_ID, MLXSW_REG_MGPC_LEN); 9263 9264 /* reg_mgpc_counter_set_type 9265 * Counter set type. 9266 * Access: OP 9267 */ 9268 MLXSW_ITEM32(reg, mgpc, counter_set_type, 0x00, 24, 8); 9269 9270 /* reg_mgpc_counter_index 9271 * Counter index. 9272 * Access: Index 9273 */ 9274 MLXSW_ITEM32(reg, mgpc, counter_index, 0x00, 0, 24); 9275 9276 enum mlxsw_reg_mgpc_opcode { 9277 /* Nop */ 9278 MLXSW_REG_MGPC_OPCODE_NOP = 0x00, 9279 /* Clear counters */ 9280 MLXSW_REG_MGPC_OPCODE_CLEAR = 0x08, 9281 }; 9282 9283 /* reg_mgpc_opcode 9284 * Opcode. 9285 * Access: OP 9286 */ 9287 MLXSW_ITEM32(reg, mgpc, opcode, 0x04, 28, 4); 9288 9289 /* reg_mgpc_byte_counter 9290 * Byte counter value. 9291 * Access: RW 9292 */ 9293 MLXSW_ITEM64(reg, mgpc, byte_counter, 0x08, 0, 64); 9294 9295 /* reg_mgpc_packet_counter 9296 * Packet counter value. 9297 * Access: RW 9298 */ 9299 MLXSW_ITEM64(reg, mgpc, packet_counter, 0x10, 0, 64); 9300 9301 static inline void mlxsw_reg_mgpc_pack(char *payload, u32 counter_index, 9302 enum mlxsw_reg_mgpc_opcode opcode, 9303 enum mlxsw_reg_flow_counter_set_type set_type) 9304 { 9305 MLXSW_REG_ZERO(mgpc, payload); 9306 mlxsw_reg_mgpc_counter_index_set(payload, counter_index); 9307 mlxsw_reg_mgpc_counter_set_type_set(payload, set_type); 9308 mlxsw_reg_mgpc_opcode_set(payload, opcode); 9309 } 9310 9311 /* MPRS - Monitoring Parsing State Register 9312 * ---------------------------------------- 9313 * The MPRS register is used for setting up the parsing for hash, 9314 * policy-engine and routing. 9315 */ 9316 #define MLXSW_REG_MPRS_ID 0x9083 9317 #define MLXSW_REG_MPRS_LEN 0x14 9318 9319 MLXSW_REG_DEFINE(mprs, MLXSW_REG_MPRS_ID, MLXSW_REG_MPRS_LEN); 9320 9321 /* reg_mprs_parsing_depth 9322 * Minimum parsing depth. 9323 * Need to enlarge parsing depth according to L3, MPLS, tunnels, ACL 9324 * rules, traps, hash, etc. Default is 96 bytes. Reserved when SwitchX-2. 9325 * Access: RW 9326 */ 9327 MLXSW_ITEM32(reg, mprs, parsing_depth, 0x00, 0, 16); 9328 9329 /* reg_mprs_parsing_en 9330 * Parsing enable. 9331 * Bit 0 - Enable parsing of NVE of types VxLAN, VxLAN-GPE, GENEVE and 9332 * NVGRE. Default is enabled. Reserved when SwitchX-2. 9333 * Access: RW 9334 */ 9335 MLXSW_ITEM32(reg, mprs, parsing_en, 0x04, 0, 16); 9336 9337 /* reg_mprs_vxlan_udp_dport 9338 * VxLAN UDP destination port. 9339 * Used for identifying VxLAN packets and for dport field in 9340 * encapsulation. Default is 4789. 9341 * Access: RW 9342 */ 9343 MLXSW_ITEM32(reg, mprs, vxlan_udp_dport, 0x10, 0, 16); 9344 9345 static inline void mlxsw_reg_mprs_pack(char *payload, u16 parsing_depth, 9346 u16 vxlan_udp_dport) 9347 { 9348 MLXSW_REG_ZERO(mprs, payload); 9349 mlxsw_reg_mprs_parsing_depth_set(payload, parsing_depth); 9350 mlxsw_reg_mprs_parsing_en_set(payload, true); 9351 mlxsw_reg_mprs_vxlan_udp_dport_set(payload, vxlan_udp_dport); 9352 } 9353 9354 /* MOGCR - Monitoring Global Configuration Register 9355 * ------------------------------------------------ 9356 */ 9357 #define MLXSW_REG_MOGCR_ID 0x9086 9358 #define MLXSW_REG_MOGCR_LEN 0x20 9359 9360 MLXSW_REG_DEFINE(mogcr, MLXSW_REG_MOGCR_ID, MLXSW_REG_MOGCR_LEN); 9361 9362 /* reg_mogcr_ptp_iftc 9363 * PTP Ingress FIFO Trap Clear 9364 * The PTP_ING_FIFO trap provides MTPPTR with clr according 9365 * to this value. Default 0. 9366 * Reserved when IB switches and when SwitchX/-2, Spectrum-2 9367 * Access: RW 9368 */ 9369 MLXSW_ITEM32(reg, mogcr, ptp_iftc, 0x00, 1, 1); 9370 9371 /* reg_mogcr_ptp_eftc 9372 * PTP Egress FIFO Trap Clear 9373 * The PTP_EGR_FIFO trap provides MTPPTR with clr according 9374 * to this value. Default 0. 9375 * Reserved when IB switches and when SwitchX/-2, Spectrum-2 9376 * Access: RW 9377 */ 9378 MLXSW_ITEM32(reg, mogcr, ptp_eftc, 0x00, 0, 1); 9379 9380 /* MTPPPC - Time Precision Packet Port Configuration 9381 * ------------------------------------------------- 9382 * This register serves for configuration of which PTP messages should be 9383 * timestamped. This is a global configuration, despite the register name. 9384 * 9385 * Reserved when Spectrum-2. 9386 */ 9387 #define MLXSW_REG_MTPPPC_ID 0x9090 9388 #define MLXSW_REG_MTPPPC_LEN 0x28 9389 9390 MLXSW_REG_DEFINE(mtpppc, MLXSW_REG_MTPPPC_ID, MLXSW_REG_MTPPPC_LEN); 9391 9392 /* reg_mtpppc_ing_timestamp_message_type 9393 * Bitwise vector of PTP message types to timestamp at ingress. 9394 * MessageType field as defined by IEEE 1588 9395 * Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req) 9396 * Default all 0 9397 * Access: RW 9398 */ 9399 MLXSW_ITEM32(reg, mtpppc, ing_timestamp_message_type, 0x08, 0, 16); 9400 9401 /* reg_mtpppc_egr_timestamp_message_type 9402 * Bitwise vector of PTP message types to timestamp at egress. 9403 * MessageType field as defined by IEEE 1588 9404 * Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req) 9405 * Default all 0 9406 * Access: RW 9407 */ 9408 MLXSW_ITEM32(reg, mtpppc, egr_timestamp_message_type, 0x0C, 0, 16); 9409 9410 static inline void mlxsw_reg_mtpppc_pack(char *payload, u16 ing, u16 egr) 9411 { 9412 MLXSW_REG_ZERO(mtpppc, payload); 9413 mlxsw_reg_mtpppc_ing_timestamp_message_type_set(payload, ing); 9414 mlxsw_reg_mtpppc_egr_timestamp_message_type_set(payload, egr); 9415 } 9416 9417 /* MTPPTR - Time Precision Packet Timestamping Reading 9418 * --------------------------------------------------- 9419 * The MTPPTR is used for reading the per port PTP timestamp FIFO. 9420 * There is a trap for packets which are latched to the timestamp FIFO, thus the 9421 * SW knows which FIFO to read. Note that packets enter the FIFO before been 9422 * trapped. The sequence number is used to synchronize the timestamp FIFO 9423 * entries and the trapped packets. 9424 * Reserved when Spectrum-2. 9425 */ 9426 9427 #define MLXSW_REG_MTPPTR_ID 0x9091 9428 #define MLXSW_REG_MTPPTR_BASE_LEN 0x10 /* base length, without records */ 9429 #define MLXSW_REG_MTPPTR_REC_LEN 0x10 /* record length */ 9430 #define MLXSW_REG_MTPPTR_REC_MAX_COUNT 4 9431 #define MLXSW_REG_MTPPTR_LEN (MLXSW_REG_MTPPTR_BASE_LEN + \ 9432 MLXSW_REG_MTPPTR_REC_LEN * MLXSW_REG_MTPPTR_REC_MAX_COUNT) 9433 9434 MLXSW_REG_DEFINE(mtpptr, MLXSW_REG_MTPPTR_ID, MLXSW_REG_MTPPTR_LEN); 9435 9436 /* reg_mtpptr_local_port 9437 * Not supported for CPU port. 9438 * Access: Index 9439 */ 9440 MLXSW_ITEM32(reg, mtpptr, local_port, 0x00, 16, 8); 9441 9442 enum mlxsw_reg_mtpptr_dir { 9443 MLXSW_REG_MTPPTR_DIR_INGRESS, 9444 MLXSW_REG_MTPPTR_DIR_EGRESS, 9445 }; 9446 9447 /* reg_mtpptr_dir 9448 * Direction. 9449 * Access: Index 9450 */ 9451 MLXSW_ITEM32(reg, mtpptr, dir, 0x00, 0, 1); 9452 9453 /* reg_mtpptr_clr 9454 * Clear the records. 9455 * Access: OP 9456 */ 9457 MLXSW_ITEM32(reg, mtpptr, clr, 0x04, 31, 1); 9458 9459 /* reg_mtpptr_num_rec 9460 * Number of valid records in the response 9461 * Range 0.. cap_ptp_timestamp_fifo 9462 * Access: RO 9463 */ 9464 MLXSW_ITEM32(reg, mtpptr, num_rec, 0x08, 0, 4); 9465 9466 /* reg_mtpptr_rec_message_type 9467 * MessageType field as defined by IEEE 1588 Each bit corresponds to a value 9468 * (e.g. Bit0: Sync, Bit1: Delay_Req) 9469 * Access: RO 9470 */ 9471 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_message_type, 9472 MLXSW_REG_MTPPTR_BASE_LEN, 8, 4, 9473 MLXSW_REG_MTPPTR_REC_LEN, 0, false); 9474 9475 /* reg_mtpptr_rec_domain_number 9476 * DomainNumber field as defined by IEEE 1588 9477 * Access: RO 9478 */ 9479 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_domain_number, 9480 MLXSW_REG_MTPPTR_BASE_LEN, 0, 8, 9481 MLXSW_REG_MTPPTR_REC_LEN, 0, false); 9482 9483 /* reg_mtpptr_rec_sequence_id 9484 * SequenceId field as defined by IEEE 1588 9485 * Access: RO 9486 */ 9487 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_sequence_id, 9488 MLXSW_REG_MTPPTR_BASE_LEN, 0, 16, 9489 MLXSW_REG_MTPPTR_REC_LEN, 0x4, false); 9490 9491 /* reg_mtpptr_rec_timestamp_high 9492 * Timestamp of when the PTP packet has passed through the port Units of PLL 9493 * clock time. 9494 * For Spectrum-1 the PLL clock is 156.25Mhz and PLL clock time is 6.4nSec. 9495 * Access: RO 9496 */ 9497 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_high, 9498 MLXSW_REG_MTPPTR_BASE_LEN, 0, 32, 9499 MLXSW_REG_MTPPTR_REC_LEN, 0x8, false); 9500 9501 /* reg_mtpptr_rec_timestamp_low 9502 * See rec_timestamp_high. 9503 * Access: RO 9504 */ 9505 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_low, 9506 MLXSW_REG_MTPPTR_BASE_LEN, 0, 32, 9507 MLXSW_REG_MTPPTR_REC_LEN, 0xC, false); 9508 9509 static inline void mlxsw_reg_mtpptr_unpack(const char *payload, 9510 unsigned int rec, 9511 u8 *p_message_type, 9512 u8 *p_domain_number, 9513 u16 *p_sequence_id, 9514 u64 *p_timestamp) 9515 { 9516 u32 timestamp_high, timestamp_low; 9517 9518 *p_message_type = mlxsw_reg_mtpptr_rec_message_type_get(payload, rec); 9519 *p_domain_number = mlxsw_reg_mtpptr_rec_domain_number_get(payload, rec); 9520 *p_sequence_id = mlxsw_reg_mtpptr_rec_sequence_id_get(payload, rec); 9521 timestamp_high = mlxsw_reg_mtpptr_rec_timestamp_high_get(payload, rec); 9522 timestamp_low = mlxsw_reg_mtpptr_rec_timestamp_low_get(payload, rec); 9523 *p_timestamp = (u64)timestamp_high << 32 | timestamp_low; 9524 } 9525 9526 /* MTPTPT - Monitoring Precision Time Protocol Trap Register 9527 * --------------------------------------------------------- 9528 * This register is used for configuring under which trap to deliver PTP 9529 * packets depending on type of the packet. 9530 */ 9531 #define MLXSW_REG_MTPTPT_ID 0x9092 9532 #define MLXSW_REG_MTPTPT_LEN 0x08 9533 9534 MLXSW_REG_DEFINE(mtptpt, MLXSW_REG_MTPTPT_ID, MLXSW_REG_MTPTPT_LEN); 9535 9536 enum mlxsw_reg_mtptpt_trap_id { 9537 MLXSW_REG_MTPTPT_TRAP_ID_PTP0, 9538 MLXSW_REG_MTPTPT_TRAP_ID_PTP1, 9539 }; 9540 9541 /* reg_mtptpt_trap_id 9542 * Trap id. 9543 * Access: Index 9544 */ 9545 MLXSW_ITEM32(reg, mtptpt, trap_id, 0x00, 0, 4); 9546 9547 /* reg_mtptpt_message_type 9548 * Bitwise vector of PTP message types to trap. This is a necessary but 9549 * non-sufficient condition since need to enable also per port. See MTPPPC. 9550 * Message types are defined by IEEE 1588 Each bit corresponds to a value (e.g. 9551 * Bit0: Sync, Bit1: Delay_Req) 9552 */ 9553 MLXSW_ITEM32(reg, mtptpt, message_type, 0x04, 0, 16); 9554 9555 static inline void mlxsw_reg_mtptptp_pack(char *payload, 9556 enum mlxsw_reg_mtptpt_trap_id trap_id, 9557 u16 message_type) 9558 { 9559 MLXSW_REG_ZERO(mtptpt, payload); 9560 mlxsw_reg_mtptpt_trap_id_set(payload, trap_id); 9561 mlxsw_reg_mtptpt_message_type_set(payload, message_type); 9562 } 9563 9564 /* MGPIR - Management General Peripheral Information Register 9565 * ---------------------------------------------------------- 9566 * MGPIR register allows software to query the hardware and 9567 * firmware general information of peripheral entities. 9568 */ 9569 #define MLXSW_REG_MGPIR_ID 0x9100 9570 #define MLXSW_REG_MGPIR_LEN 0xA0 9571 9572 MLXSW_REG_DEFINE(mgpir, MLXSW_REG_MGPIR_ID, MLXSW_REG_MGPIR_LEN); 9573 9574 enum mlxsw_reg_mgpir_device_type { 9575 MLXSW_REG_MGPIR_DEVICE_TYPE_NONE, 9576 MLXSW_REG_MGPIR_DEVICE_TYPE_GEARBOX_DIE, 9577 }; 9578 9579 /* device_type 9580 * Access: RO 9581 */ 9582 MLXSW_ITEM32(reg, mgpir, device_type, 0x00, 24, 4); 9583 9584 /* devices_per_flash 9585 * Number of devices of device_type per flash (can be shared by few devices). 9586 * Access: RO 9587 */ 9588 MLXSW_ITEM32(reg, mgpir, devices_per_flash, 0x00, 16, 8); 9589 9590 /* num_of_devices 9591 * Number of devices of device_type. 9592 * Access: RO 9593 */ 9594 MLXSW_ITEM32(reg, mgpir, num_of_devices, 0x00, 0, 8); 9595 9596 /* num_of_modules 9597 * Number of modules. 9598 * Access: RO 9599 */ 9600 MLXSW_ITEM32(reg, mgpir, num_of_modules, 0x04, 0, 8); 9601 9602 static inline void mlxsw_reg_mgpir_pack(char *payload) 9603 { 9604 MLXSW_REG_ZERO(mgpir, payload); 9605 } 9606 9607 static inline void 9608 mlxsw_reg_mgpir_unpack(char *payload, u8 *num_of_devices, 9609 enum mlxsw_reg_mgpir_device_type *device_type, 9610 u8 *devices_per_flash, u8 *num_of_modules) 9611 { 9612 if (num_of_devices) 9613 *num_of_devices = mlxsw_reg_mgpir_num_of_devices_get(payload); 9614 if (device_type) 9615 *device_type = mlxsw_reg_mgpir_device_type_get(payload); 9616 if (devices_per_flash) 9617 *devices_per_flash = 9618 mlxsw_reg_mgpir_devices_per_flash_get(payload); 9619 if (num_of_modules) 9620 *num_of_modules = mlxsw_reg_mgpir_num_of_modules_get(payload); 9621 } 9622 9623 /* TNGCR - Tunneling NVE General Configuration Register 9624 * ---------------------------------------------------- 9625 * The TNGCR register is used for setting up the NVE Tunneling configuration. 9626 */ 9627 #define MLXSW_REG_TNGCR_ID 0xA001 9628 #define MLXSW_REG_TNGCR_LEN 0x44 9629 9630 MLXSW_REG_DEFINE(tngcr, MLXSW_REG_TNGCR_ID, MLXSW_REG_TNGCR_LEN); 9631 9632 enum mlxsw_reg_tngcr_type { 9633 MLXSW_REG_TNGCR_TYPE_VXLAN, 9634 MLXSW_REG_TNGCR_TYPE_VXLAN_GPE, 9635 MLXSW_REG_TNGCR_TYPE_GENEVE, 9636 MLXSW_REG_TNGCR_TYPE_NVGRE, 9637 }; 9638 9639 /* reg_tngcr_type 9640 * Tunnel type for encapsulation and decapsulation. The types are mutually 9641 * exclusive. 9642 * Note: For Spectrum the NVE parsing must be enabled in MPRS. 9643 * Access: RW 9644 */ 9645 MLXSW_ITEM32(reg, tngcr, type, 0x00, 0, 4); 9646 9647 /* reg_tngcr_nve_valid 9648 * The VTEP is valid. Allows adding FDB entries for tunnel encapsulation. 9649 * Access: RW 9650 */ 9651 MLXSW_ITEM32(reg, tngcr, nve_valid, 0x04, 31, 1); 9652 9653 /* reg_tngcr_nve_ttl_uc 9654 * The TTL for NVE tunnel encapsulation underlay unicast packets. 9655 * Access: RW 9656 */ 9657 MLXSW_ITEM32(reg, tngcr, nve_ttl_uc, 0x04, 0, 8); 9658 9659 /* reg_tngcr_nve_ttl_mc 9660 * The TTL for NVE tunnel encapsulation underlay multicast packets. 9661 * Access: RW 9662 */ 9663 MLXSW_ITEM32(reg, tngcr, nve_ttl_mc, 0x08, 0, 8); 9664 9665 enum { 9666 /* Do not copy flow label. Calculate flow label using nve_flh. */ 9667 MLXSW_REG_TNGCR_FL_NO_COPY, 9668 /* Copy flow label from inner packet if packet is IPv6 and 9669 * encapsulation is by IPv6. Otherwise, calculate flow label using 9670 * nve_flh. 9671 */ 9672 MLXSW_REG_TNGCR_FL_COPY, 9673 }; 9674 9675 /* reg_tngcr_nve_flc 9676 * For NVE tunnel encapsulation: Flow label copy from inner packet. 9677 * Access: RW 9678 */ 9679 MLXSW_ITEM32(reg, tngcr, nve_flc, 0x0C, 25, 1); 9680 9681 enum { 9682 /* Flow label is static. In Spectrum this means '0'. Spectrum-2 9683 * uses {nve_fl_prefix, nve_fl_suffix}. 9684 */ 9685 MLXSW_REG_TNGCR_FL_NO_HASH, 9686 /* 8 LSBs of the flow label are calculated from ECMP hash of the 9687 * inner packet. 12 MSBs are configured by nve_fl_prefix. 9688 */ 9689 MLXSW_REG_TNGCR_FL_HASH, 9690 }; 9691 9692 /* reg_tngcr_nve_flh 9693 * NVE flow label hash. 9694 * Access: RW 9695 */ 9696 MLXSW_ITEM32(reg, tngcr, nve_flh, 0x0C, 24, 1); 9697 9698 /* reg_tngcr_nve_fl_prefix 9699 * NVE flow label prefix. Constant 12 MSBs of the flow label. 9700 * Access: RW 9701 */ 9702 MLXSW_ITEM32(reg, tngcr, nve_fl_prefix, 0x0C, 8, 12); 9703 9704 /* reg_tngcr_nve_fl_suffix 9705 * NVE flow label suffix. Constant 8 LSBs of the flow label. 9706 * Reserved when nve_flh=1 and for Spectrum. 9707 * Access: RW 9708 */ 9709 MLXSW_ITEM32(reg, tngcr, nve_fl_suffix, 0x0C, 0, 8); 9710 9711 enum { 9712 /* Source UDP port is fixed (default '0') */ 9713 MLXSW_REG_TNGCR_UDP_SPORT_NO_HASH, 9714 /* Source UDP port is calculated based on hash */ 9715 MLXSW_REG_TNGCR_UDP_SPORT_HASH, 9716 }; 9717 9718 /* reg_tngcr_nve_udp_sport_type 9719 * NVE UDP source port type. 9720 * Spectrum uses LAG hash (SLCRv2). Spectrum-2 uses ECMP hash (RECRv2). 9721 * When the source UDP port is calculated based on hash, then the 8 LSBs 9722 * are calculated from hash the 8 MSBs are configured by 9723 * nve_udp_sport_prefix. 9724 * Access: RW 9725 */ 9726 MLXSW_ITEM32(reg, tngcr, nve_udp_sport_type, 0x10, 24, 1); 9727 9728 /* reg_tngcr_nve_udp_sport_prefix 9729 * NVE UDP source port prefix. Constant 8 MSBs of the UDP source port. 9730 * Reserved when NVE type is NVGRE. 9731 * Access: RW 9732 */ 9733 MLXSW_ITEM32(reg, tngcr, nve_udp_sport_prefix, 0x10, 8, 8); 9734 9735 /* reg_tngcr_nve_group_size_mc 9736 * The amount of sequential linked lists of MC entries. The first linked 9737 * list is configured by SFD.underlay_mc_ptr. 9738 * Valid values: 1, 2, 4, 8, 16, 32, 64 9739 * The linked list are configured by TNUMT. 9740 * The hash is set by LAG hash. 9741 * Access: RW 9742 */ 9743 MLXSW_ITEM32(reg, tngcr, nve_group_size_mc, 0x18, 0, 8); 9744 9745 /* reg_tngcr_nve_group_size_flood 9746 * The amount of sequential linked lists of flooding entries. The first 9747 * linked list is configured by SFMR.nve_tunnel_flood_ptr 9748 * Valid values: 1, 2, 4, 8, 16, 32, 64 9749 * The linked list are configured by TNUMT. 9750 * The hash is set by LAG hash. 9751 * Access: RW 9752 */ 9753 MLXSW_ITEM32(reg, tngcr, nve_group_size_flood, 0x1C, 0, 8); 9754 9755 /* reg_tngcr_learn_enable 9756 * During decapsulation, whether to learn from NVE port. 9757 * Reserved when Spectrum-2. See TNPC. 9758 * Access: RW 9759 */ 9760 MLXSW_ITEM32(reg, tngcr, learn_enable, 0x20, 31, 1); 9761 9762 /* reg_tngcr_underlay_virtual_router 9763 * Underlay virtual router. 9764 * Reserved when Spectrum-2. 9765 * Access: RW 9766 */ 9767 MLXSW_ITEM32(reg, tngcr, underlay_virtual_router, 0x20, 0, 16); 9768 9769 /* reg_tngcr_underlay_rif 9770 * Underlay ingress router interface. RIF type should be loopback generic. 9771 * Reserved when Spectrum. 9772 * Access: RW 9773 */ 9774 MLXSW_ITEM32(reg, tngcr, underlay_rif, 0x24, 0, 16); 9775 9776 /* reg_tngcr_usipv4 9777 * Underlay source IPv4 address of the NVE. 9778 * Access: RW 9779 */ 9780 MLXSW_ITEM32(reg, tngcr, usipv4, 0x28, 0, 32); 9781 9782 /* reg_tngcr_usipv6 9783 * Underlay source IPv6 address of the NVE. For Spectrum, must not be 9784 * modified under traffic of NVE tunneling encapsulation. 9785 * Access: RW 9786 */ 9787 MLXSW_ITEM_BUF(reg, tngcr, usipv6, 0x30, 16); 9788 9789 static inline void mlxsw_reg_tngcr_pack(char *payload, 9790 enum mlxsw_reg_tngcr_type type, 9791 bool valid, u8 ttl) 9792 { 9793 MLXSW_REG_ZERO(tngcr, payload); 9794 mlxsw_reg_tngcr_type_set(payload, type); 9795 mlxsw_reg_tngcr_nve_valid_set(payload, valid); 9796 mlxsw_reg_tngcr_nve_ttl_uc_set(payload, ttl); 9797 mlxsw_reg_tngcr_nve_ttl_mc_set(payload, ttl); 9798 mlxsw_reg_tngcr_nve_flc_set(payload, MLXSW_REG_TNGCR_FL_NO_COPY); 9799 mlxsw_reg_tngcr_nve_flh_set(payload, 0); 9800 mlxsw_reg_tngcr_nve_udp_sport_type_set(payload, 9801 MLXSW_REG_TNGCR_UDP_SPORT_HASH); 9802 mlxsw_reg_tngcr_nve_udp_sport_prefix_set(payload, 0); 9803 mlxsw_reg_tngcr_nve_group_size_mc_set(payload, 1); 9804 mlxsw_reg_tngcr_nve_group_size_flood_set(payload, 1); 9805 } 9806 9807 /* TNUMT - Tunneling NVE Underlay Multicast Table Register 9808 * ------------------------------------------------------- 9809 * The TNUMT register is for building the underlay MC table. It is used 9810 * for MC, flooding and BC traffic into the NVE tunnel. 9811 */ 9812 #define MLXSW_REG_TNUMT_ID 0xA003 9813 #define MLXSW_REG_TNUMT_LEN 0x20 9814 9815 MLXSW_REG_DEFINE(tnumt, MLXSW_REG_TNUMT_ID, MLXSW_REG_TNUMT_LEN); 9816 9817 enum mlxsw_reg_tnumt_record_type { 9818 MLXSW_REG_TNUMT_RECORD_TYPE_IPV4, 9819 MLXSW_REG_TNUMT_RECORD_TYPE_IPV6, 9820 MLXSW_REG_TNUMT_RECORD_TYPE_LABEL, 9821 }; 9822 9823 /* reg_tnumt_record_type 9824 * Record type. 9825 * Access: RW 9826 */ 9827 MLXSW_ITEM32(reg, tnumt, record_type, 0x00, 28, 4); 9828 9829 enum mlxsw_reg_tnumt_tunnel_port { 9830 MLXSW_REG_TNUMT_TUNNEL_PORT_NVE, 9831 MLXSW_REG_TNUMT_TUNNEL_PORT_VPLS, 9832 MLXSW_REG_TNUMT_TUNNEL_FLEX_TUNNEL0, 9833 MLXSW_REG_TNUMT_TUNNEL_FLEX_TUNNEL1, 9834 }; 9835 9836 /* reg_tnumt_tunnel_port 9837 * Tunnel port. 9838 * Access: RW 9839 */ 9840 MLXSW_ITEM32(reg, tnumt, tunnel_port, 0x00, 24, 4); 9841 9842 /* reg_tnumt_underlay_mc_ptr 9843 * Index to the underlay multicast table. 9844 * For Spectrum the index is to the KVD linear. 9845 * Access: Index 9846 */ 9847 MLXSW_ITEM32(reg, tnumt, underlay_mc_ptr, 0x00, 0, 24); 9848 9849 /* reg_tnumt_vnext 9850 * The next_underlay_mc_ptr is valid. 9851 * Access: RW 9852 */ 9853 MLXSW_ITEM32(reg, tnumt, vnext, 0x04, 31, 1); 9854 9855 /* reg_tnumt_next_underlay_mc_ptr 9856 * The next index to the underlay multicast table. 9857 * Access: RW 9858 */ 9859 MLXSW_ITEM32(reg, tnumt, next_underlay_mc_ptr, 0x04, 0, 24); 9860 9861 /* reg_tnumt_record_size 9862 * Number of IP addresses in the record. 9863 * Range is 1..cap_max_nve_mc_entries_ipv{4,6} 9864 * Access: RW 9865 */ 9866 MLXSW_ITEM32(reg, tnumt, record_size, 0x08, 0, 3); 9867 9868 /* reg_tnumt_udip 9869 * The underlay IPv4 addresses. udip[i] is reserved if i >= size 9870 * Access: RW 9871 */ 9872 MLXSW_ITEM32_INDEXED(reg, tnumt, udip, 0x0C, 0, 32, 0x04, 0x00, false); 9873 9874 /* reg_tnumt_udip_ptr 9875 * The pointer to the underlay IPv6 addresses. udip_ptr[i] is reserved if 9876 * i >= size. The IPv6 addresses are configured by RIPS. 9877 * Access: RW 9878 */ 9879 MLXSW_ITEM32_INDEXED(reg, tnumt, udip_ptr, 0x0C, 0, 24, 0x04, 0x00, false); 9880 9881 static inline void mlxsw_reg_tnumt_pack(char *payload, 9882 enum mlxsw_reg_tnumt_record_type type, 9883 enum mlxsw_reg_tnumt_tunnel_port tport, 9884 u32 underlay_mc_ptr, bool vnext, 9885 u32 next_underlay_mc_ptr, 9886 u8 record_size) 9887 { 9888 MLXSW_REG_ZERO(tnumt, payload); 9889 mlxsw_reg_tnumt_record_type_set(payload, type); 9890 mlxsw_reg_tnumt_tunnel_port_set(payload, tport); 9891 mlxsw_reg_tnumt_underlay_mc_ptr_set(payload, underlay_mc_ptr); 9892 mlxsw_reg_tnumt_vnext_set(payload, vnext); 9893 mlxsw_reg_tnumt_next_underlay_mc_ptr_set(payload, next_underlay_mc_ptr); 9894 mlxsw_reg_tnumt_record_size_set(payload, record_size); 9895 } 9896 9897 /* TNQCR - Tunneling NVE QoS Configuration Register 9898 * ------------------------------------------------ 9899 * The TNQCR register configures how QoS is set in encapsulation into the 9900 * underlay network. 9901 */ 9902 #define MLXSW_REG_TNQCR_ID 0xA010 9903 #define MLXSW_REG_TNQCR_LEN 0x0C 9904 9905 MLXSW_REG_DEFINE(tnqcr, MLXSW_REG_TNQCR_ID, MLXSW_REG_TNQCR_LEN); 9906 9907 /* reg_tnqcr_enc_set_dscp 9908 * For encapsulation: How to set DSCP field: 9909 * 0 - Copy the DSCP from the overlay (inner) IP header to the underlay 9910 * (outer) IP header. If there is no IP header, use TNQDR.dscp 9911 * 1 - Set the DSCP field as TNQDR.dscp 9912 * Access: RW 9913 */ 9914 MLXSW_ITEM32(reg, tnqcr, enc_set_dscp, 0x04, 28, 1); 9915 9916 static inline void mlxsw_reg_tnqcr_pack(char *payload) 9917 { 9918 MLXSW_REG_ZERO(tnqcr, payload); 9919 mlxsw_reg_tnqcr_enc_set_dscp_set(payload, 0); 9920 } 9921 9922 /* TNQDR - Tunneling NVE QoS Default Register 9923 * ------------------------------------------ 9924 * The TNQDR register configures the default QoS settings for NVE 9925 * encapsulation. 9926 */ 9927 #define MLXSW_REG_TNQDR_ID 0xA011 9928 #define MLXSW_REG_TNQDR_LEN 0x08 9929 9930 MLXSW_REG_DEFINE(tnqdr, MLXSW_REG_TNQDR_ID, MLXSW_REG_TNQDR_LEN); 9931 9932 /* reg_tnqdr_local_port 9933 * Local port number (receive port). CPU port is supported. 9934 * Access: Index 9935 */ 9936 MLXSW_ITEM32(reg, tnqdr, local_port, 0x00, 16, 8); 9937 9938 /* reg_tnqdr_dscp 9939 * For encapsulation, the default DSCP. 9940 * Access: RW 9941 */ 9942 MLXSW_ITEM32(reg, tnqdr, dscp, 0x04, 0, 6); 9943 9944 static inline void mlxsw_reg_tnqdr_pack(char *payload, u8 local_port) 9945 { 9946 MLXSW_REG_ZERO(tnqdr, payload); 9947 mlxsw_reg_tnqdr_local_port_set(payload, local_port); 9948 mlxsw_reg_tnqdr_dscp_set(payload, 0); 9949 } 9950 9951 /* TNEEM - Tunneling NVE Encapsulation ECN Mapping Register 9952 * -------------------------------------------------------- 9953 * The TNEEM register maps ECN of the IP header at the ingress to the 9954 * encapsulation to the ECN of the underlay network. 9955 */ 9956 #define MLXSW_REG_TNEEM_ID 0xA012 9957 #define MLXSW_REG_TNEEM_LEN 0x0C 9958 9959 MLXSW_REG_DEFINE(tneem, MLXSW_REG_TNEEM_ID, MLXSW_REG_TNEEM_LEN); 9960 9961 /* reg_tneem_overlay_ecn 9962 * ECN of the IP header in the overlay network. 9963 * Access: Index 9964 */ 9965 MLXSW_ITEM32(reg, tneem, overlay_ecn, 0x04, 24, 2); 9966 9967 /* reg_tneem_underlay_ecn 9968 * ECN of the IP header in the underlay network. 9969 * Access: RW 9970 */ 9971 MLXSW_ITEM32(reg, tneem, underlay_ecn, 0x04, 16, 2); 9972 9973 static inline void mlxsw_reg_tneem_pack(char *payload, u8 overlay_ecn, 9974 u8 underlay_ecn) 9975 { 9976 MLXSW_REG_ZERO(tneem, payload); 9977 mlxsw_reg_tneem_overlay_ecn_set(payload, overlay_ecn); 9978 mlxsw_reg_tneem_underlay_ecn_set(payload, underlay_ecn); 9979 } 9980 9981 /* TNDEM - Tunneling NVE Decapsulation ECN Mapping Register 9982 * -------------------------------------------------------- 9983 * The TNDEM register configures the actions that are done in the 9984 * decapsulation. 9985 */ 9986 #define MLXSW_REG_TNDEM_ID 0xA013 9987 #define MLXSW_REG_TNDEM_LEN 0x0C 9988 9989 MLXSW_REG_DEFINE(tndem, MLXSW_REG_TNDEM_ID, MLXSW_REG_TNDEM_LEN); 9990 9991 /* reg_tndem_underlay_ecn 9992 * ECN field of the IP header in the underlay network. 9993 * Access: Index 9994 */ 9995 MLXSW_ITEM32(reg, tndem, underlay_ecn, 0x04, 24, 2); 9996 9997 /* reg_tndem_overlay_ecn 9998 * ECN field of the IP header in the overlay network. 9999 * Access: Index 10000 */ 10001 MLXSW_ITEM32(reg, tndem, overlay_ecn, 0x04, 16, 2); 10002 10003 /* reg_tndem_eip_ecn 10004 * Egress IP ECN. ECN field of the IP header of the packet which goes out 10005 * from the decapsulation. 10006 * Access: RW 10007 */ 10008 MLXSW_ITEM32(reg, tndem, eip_ecn, 0x04, 8, 2); 10009 10010 /* reg_tndem_trap_en 10011 * Trap enable: 10012 * 0 - No trap due to decap ECN 10013 * 1 - Trap enable with trap_id 10014 * Access: RW 10015 */ 10016 MLXSW_ITEM32(reg, tndem, trap_en, 0x08, 28, 4); 10017 10018 /* reg_tndem_trap_id 10019 * Trap ID. Either DECAP_ECN0 or DECAP_ECN1. 10020 * Reserved when trap_en is '0'. 10021 * Access: RW 10022 */ 10023 MLXSW_ITEM32(reg, tndem, trap_id, 0x08, 0, 9); 10024 10025 static inline void mlxsw_reg_tndem_pack(char *payload, u8 underlay_ecn, 10026 u8 overlay_ecn, u8 ecn, bool trap_en, 10027 u16 trap_id) 10028 { 10029 MLXSW_REG_ZERO(tndem, payload); 10030 mlxsw_reg_tndem_underlay_ecn_set(payload, underlay_ecn); 10031 mlxsw_reg_tndem_overlay_ecn_set(payload, overlay_ecn); 10032 mlxsw_reg_tndem_eip_ecn_set(payload, ecn); 10033 mlxsw_reg_tndem_trap_en_set(payload, trap_en); 10034 mlxsw_reg_tndem_trap_id_set(payload, trap_id); 10035 } 10036 10037 /* TNPC - Tunnel Port Configuration Register 10038 * ----------------------------------------- 10039 * The TNPC register is used for tunnel port configuration. 10040 * Reserved when Spectrum. 10041 */ 10042 #define MLXSW_REG_TNPC_ID 0xA020 10043 #define MLXSW_REG_TNPC_LEN 0x18 10044 10045 MLXSW_REG_DEFINE(tnpc, MLXSW_REG_TNPC_ID, MLXSW_REG_TNPC_LEN); 10046 10047 enum mlxsw_reg_tnpc_tunnel_port { 10048 MLXSW_REG_TNPC_TUNNEL_PORT_NVE, 10049 MLXSW_REG_TNPC_TUNNEL_PORT_VPLS, 10050 MLXSW_REG_TNPC_TUNNEL_FLEX_TUNNEL0, 10051 MLXSW_REG_TNPC_TUNNEL_FLEX_TUNNEL1, 10052 }; 10053 10054 /* reg_tnpc_tunnel_port 10055 * Tunnel port. 10056 * Access: Index 10057 */ 10058 MLXSW_ITEM32(reg, tnpc, tunnel_port, 0x00, 0, 4); 10059 10060 /* reg_tnpc_learn_enable_v6 10061 * During IPv6 underlay decapsulation, whether to learn from tunnel port. 10062 * Access: RW 10063 */ 10064 MLXSW_ITEM32(reg, tnpc, learn_enable_v6, 0x04, 1, 1); 10065 10066 /* reg_tnpc_learn_enable_v4 10067 * During IPv4 underlay decapsulation, whether to learn from tunnel port. 10068 * Access: RW 10069 */ 10070 MLXSW_ITEM32(reg, tnpc, learn_enable_v4, 0x04, 0, 1); 10071 10072 static inline void mlxsw_reg_tnpc_pack(char *payload, 10073 enum mlxsw_reg_tnpc_tunnel_port tport, 10074 bool learn_enable) 10075 { 10076 MLXSW_REG_ZERO(tnpc, payload); 10077 mlxsw_reg_tnpc_tunnel_port_set(payload, tport); 10078 mlxsw_reg_tnpc_learn_enable_v4_set(payload, learn_enable); 10079 mlxsw_reg_tnpc_learn_enable_v6_set(payload, learn_enable); 10080 } 10081 10082 /* TIGCR - Tunneling IPinIP General Configuration Register 10083 * ------------------------------------------------------- 10084 * The TIGCR register is used for setting up the IPinIP Tunnel configuration. 10085 */ 10086 #define MLXSW_REG_TIGCR_ID 0xA801 10087 #define MLXSW_REG_TIGCR_LEN 0x10 10088 10089 MLXSW_REG_DEFINE(tigcr, MLXSW_REG_TIGCR_ID, MLXSW_REG_TIGCR_LEN); 10090 10091 /* reg_tigcr_ipip_ttlc 10092 * For IPinIP Tunnel encapsulation: whether to copy the ttl from the packet 10093 * header. 10094 * Access: RW 10095 */ 10096 MLXSW_ITEM32(reg, tigcr, ttlc, 0x04, 8, 1); 10097 10098 /* reg_tigcr_ipip_ttl_uc 10099 * The TTL for IPinIP Tunnel encapsulation of unicast packets if 10100 * reg_tigcr_ipip_ttlc is unset. 10101 * Access: RW 10102 */ 10103 MLXSW_ITEM32(reg, tigcr, ttl_uc, 0x04, 0, 8); 10104 10105 static inline void mlxsw_reg_tigcr_pack(char *payload, bool ttlc, u8 ttl_uc) 10106 { 10107 MLXSW_REG_ZERO(tigcr, payload); 10108 mlxsw_reg_tigcr_ttlc_set(payload, ttlc); 10109 mlxsw_reg_tigcr_ttl_uc_set(payload, ttl_uc); 10110 } 10111 10112 /* SBPR - Shared Buffer Pools Register 10113 * ----------------------------------- 10114 * The SBPR configures and retrieves the shared buffer pools and configuration. 10115 */ 10116 #define MLXSW_REG_SBPR_ID 0xB001 10117 #define MLXSW_REG_SBPR_LEN 0x14 10118 10119 MLXSW_REG_DEFINE(sbpr, MLXSW_REG_SBPR_ID, MLXSW_REG_SBPR_LEN); 10120 10121 /* shared direstion enum for SBPR, SBCM, SBPM */ 10122 enum mlxsw_reg_sbxx_dir { 10123 MLXSW_REG_SBXX_DIR_INGRESS, 10124 MLXSW_REG_SBXX_DIR_EGRESS, 10125 }; 10126 10127 /* reg_sbpr_dir 10128 * Direction. 10129 * Access: Index 10130 */ 10131 MLXSW_ITEM32(reg, sbpr, dir, 0x00, 24, 2); 10132 10133 /* reg_sbpr_pool 10134 * Pool index. 10135 * Access: Index 10136 */ 10137 MLXSW_ITEM32(reg, sbpr, pool, 0x00, 0, 4); 10138 10139 /* reg_sbpr_infi_size 10140 * Size is infinite. 10141 * Access: RW 10142 */ 10143 MLXSW_ITEM32(reg, sbpr, infi_size, 0x04, 31, 1); 10144 10145 /* reg_sbpr_size 10146 * Pool size in buffer cells. 10147 * Reserved when infi_size = 1. 10148 * Access: RW 10149 */ 10150 MLXSW_ITEM32(reg, sbpr, size, 0x04, 0, 24); 10151 10152 enum mlxsw_reg_sbpr_mode { 10153 MLXSW_REG_SBPR_MODE_STATIC, 10154 MLXSW_REG_SBPR_MODE_DYNAMIC, 10155 }; 10156 10157 /* reg_sbpr_mode 10158 * Pool quota calculation mode. 10159 * Access: RW 10160 */ 10161 MLXSW_ITEM32(reg, sbpr, mode, 0x08, 0, 4); 10162 10163 static inline void mlxsw_reg_sbpr_pack(char *payload, u8 pool, 10164 enum mlxsw_reg_sbxx_dir dir, 10165 enum mlxsw_reg_sbpr_mode mode, u32 size, 10166 bool infi_size) 10167 { 10168 MLXSW_REG_ZERO(sbpr, payload); 10169 mlxsw_reg_sbpr_pool_set(payload, pool); 10170 mlxsw_reg_sbpr_dir_set(payload, dir); 10171 mlxsw_reg_sbpr_mode_set(payload, mode); 10172 mlxsw_reg_sbpr_size_set(payload, size); 10173 mlxsw_reg_sbpr_infi_size_set(payload, infi_size); 10174 } 10175 10176 /* SBCM - Shared Buffer Class Management Register 10177 * ---------------------------------------------- 10178 * The SBCM register configures and retrieves the shared buffer allocation 10179 * and configuration according to Port-PG, including the binding to pool 10180 * and definition of the associated quota. 10181 */ 10182 #define MLXSW_REG_SBCM_ID 0xB002 10183 #define MLXSW_REG_SBCM_LEN 0x28 10184 10185 MLXSW_REG_DEFINE(sbcm, MLXSW_REG_SBCM_ID, MLXSW_REG_SBCM_LEN); 10186 10187 /* reg_sbcm_local_port 10188 * Local port number. 10189 * For Ingress: excludes CPU port and Router port 10190 * For Egress: excludes IP Router 10191 * Access: Index 10192 */ 10193 MLXSW_ITEM32(reg, sbcm, local_port, 0x00, 16, 8); 10194 10195 /* reg_sbcm_pg_buff 10196 * PG buffer - Port PG (dir=ingress) / traffic class (dir=egress) 10197 * For PG buffer: range is 0..cap_max_pg_buffers - 1 10198 * For traffic class: range is 0..cap_max_tclass - 1 10199 * Note that when traffic class is in MC aware mode then the traffic 10200 * classes which are MC aware cannot be configured. 10201 * Access: Index 10202 */ 10203 MLXSW_ITEM32(reg, sbcm, pg_buff, 0x00, 8, 6); 10204 10205 /* reg_sbcm_dir 10206 * Direction. 10207 * Access: Index 10208 */ 10209 MLXSW_ITEM32(reg, sbcm, dir, 0x00, 0, 2); 10210 10211 /* reg_sbcm_min_buff 10212 * Minimum buffer size for the limiter, in cells. 10213 * Access: RW 10214 */ 10215 MLXSW_ITEM32(reg, sbcm, min_buff, 0x18, 0, 24); 10216 10217 /* shared max_buff limits for dynamic threshold for SBCM, SBPM */ 10218 #define MLXSW_REG_SBXX_DYN_MAX_BUFF_MIN 1 10219 #define MLXSW_REG_SBXX_DYN_MAX_BUFF_MAX 14 10220 10221 /* reg_sbcm_infi_max 10222 * Max buffer is infinite. 10223 * Access: RW 10224 */ 10225 MLXSW_ITEM32(reg, sbcm, infi_max, 0x1C, 31, 1); 10226 10227 /* reg_sbcm_max_buff 10228 * When the pool associated to the port-pg/tclass is configured to 10229 * static, Maximum buffer size for the limiter configured in cells. 10230 * When the pool associated to the port-pg/tclass is configured to 10231 * dynamic, the max_buff holds the "alpha" parameter, supporting 10232 * the following values: 10233 * 0: 0 10234 * i: (1/128)*2^(i-1), for i=1..14 10235 * 0xFF: Infinity 10236 * Reserved when infi_max = 1. 10237 * Access: RW 10238 */ 10239 MLXSW_ITEM32(reg, sbcm, max_buff, 0x1C, 0, 24); 10240 10241 /* reg_sbcm_pool 10242 * Association of the port-priority to a pool. 10243 * Access: RW 10244 */ 10245 MLXSW_ITEM32(reg, sbcm, pool, 0x24, 0, 4); 10246 10247 static inline void mlxsw_reg_sbcm_pack(char *payload, u8 local_port, u8 pg_buff, 10248 enum mlxsw_reg_sbxx_dir dir, 10249 u32 min_buff, u32 max_buff, 10250 bool infi_max, u8 pool) 10251 { 10252 MLXSW_REG_ZERO(sbcm, payload); 10253 mlxsw_reg_sbcm_local_port_set(payload, local_port); 10254 mlxsw_reg_sbcm_pg_buff_set(payload, pg_buff); 10255 mlxsw_reg_sbcm_dir_set(payload, dir); 10256 mlxsw_reg_sbcm_min_buff_set(payload, min_buff); 10257 mlxsw_reg_sbcm_max_buff_set(payload, max_buff); 10258 mlxsw_reg_sbcm_infi_max_set(payload, infi_max); 10259 mlxsw_reg_sbcm_pool_set(payload, pool); 10260 } 10261 10262 /* SBPM - Shared Buffer Port Management Register 10263 * --------------------------------------------- 10264 * The SBPM register configures and retrieves the shared buffer allocation 10265 * and configuration according to Port-Pool, including the definition 10266 * of the associated quota. 10267 */ 10268 #define MLXSW_REG_SBPM_ID 0xB003 10269 #define MLXSW_REG_SBPM_LEN 0x28 10270 10271 MLXSW_REG_DEFINE(sbpm, MLXSW_REG_SBPM_ID, MLXSW_REG_SBPM_LEN); 10272 10273 /* reg_sbpm_local_port 10274 * Local port number. 10275 * For Ingress: excludes CPU port and Router port 10276 * For Egress: excludes IP Router 10277 * Access: Index 10278 */ 10279 MLXSW_ITEM32(reg, sbpm, local_port, 0x00, 16, 8); 10280 10281 /* reg_sbpm_pool 10282 * The pool associated to quota counting on the local_port. 10283 * Access: Index 10284 */ 10285 MLXSW_ITEM32(reg, sbpm, pool, 0x00, 8, 4); 10286 10287 /* reg_sbpm_dir 10288 * Direction. 10289 * Access: Index 10290 */ 10291 MLXSW_ITEM32(reg, sbpm, dir, 0x00, 0, 2); 10292 10293 /* reg_sbpm_buff_occupancy 10294 * Current buffer occupancy in cells. 10295 * Access: RO 10296 */ 10297 MLXSW_ITEM32(reg, sbpm, buff_occupancy, 0x10, 0, 24); 10298 10299 /* reg_sbpm_clr 10300 * Clear Max Buffer Occupancy 10301 * When this bit is set, max_buff_occupancy field is cleared (and a 10302 * new max value is tracked from the time the clear was performed). 10303 * Access: OP 10304 */ 10305 MLXSW_ITEM32(reg, sbpm, clr, 0x14, 31, 1); 10306 10307 /* reg_sbpm_max_buff_occupancy 10308 * Maximum value of buffer occupancy in cells monitored. Cleared by 10309 * writing to the clr field. 10310 * Access: RO 10311 */ 10312 MLXSW_ITEM32(reg, sbpm, max_buff_occupancy, 0x14, 0, 24); 10313 10314 /* reg_sbpm_min_buff 10315 * Minimum buffer size for the limiter, in cells. 10316 * Access: RW 10317 */ 10318 MLXSW_ITEM32(reg, sbpm, min_buff, 0x18, 0, 24); 10319 10320 /* reg_sbpm_max_buff 10321 * When the pool associated to the port-pg/tclass is configured to 10322 * static, Maximum buffer size for the limiter configured in cells. 10323 * When the pool associated to the port-pg/tclass is configured to 10324 * dynamic, the max_buff holds the "alpha" parameter, supporting 10325 * the following values: 10326 * 0: 0 10327 * i: (1/128)*2^(i-1), for i=1..14 10328 * 0xFF: Infinity 10329 * Access: RW 10330 */ 10331 MLXSW_ITEM32(reg, sbpm, max_buff, 0x1C, 0, 24); 10332 10333 static inline void mlxsw_reg_sbpm_pack(char *payload, u8 local_port, u8 pool, 10334 enum mlxsw_reg_sbxx_dir dir, bool clr, 10335 u32 min_buff, u32 max_buff) 10336 { 10337 MLXSW_REG_ZERO(sbpm, payload); 10338 mlxsw_reg_sbpm_local_port_set(payload, local_port); 10339 mlxsw_reg_sbpm_pool_set(payload, pool); 10340 mlxsw_reg_sbpm_dir_set(payload, dir); 10341 mlxsw_reg_sbpm_clr_set(payload, clr); 10342 mlxsw_reg_sbpm_min_buff_set(payload, min_buff); 10343 mlxsw_reg_sbpm_max_buff_set(payload, max_buff); 10344 } 10345 10346 static inline void mlxsw_reg_sbpm_unpack(char *payload, u32 *p_buff_occupancy, 10347 u32 *p_max_buff_occupancy) 10348 { 10349 *p_buff_occupancy = mlxsw_reg_sbpm_buff_occupancy_get(payload); 10350 *p_max_buff_occupancy = mlxsw_reg_sbpm_max_buff_occupancy_get(payload); 10351 } 10352 10353 /* SBMM - Shared Buffer Multicast Management Register 10354 * -------------------------------------------------- 10355 * The SBMM register configures and retrieves the shared buffer allocation 10356 * and configuration for MC packets according to Switch-Priority, including 10357 * the binding to pool and definition of the associated quota. 10358 */ 10359 #define MLXSW_REG_SBMM_ID 0xB004 10360 #define MLXSW_REG_SBMM_LEN 0x28 10361 10362 MLXSW_REG_DEFINE(sbmm, MLXSW_REG_SBMM_ID, MLXSW_REG_SBMM_LEN); 10363 10364 /* reg_sbmm_prio 10365 * Switch Priority. 10366 * Access: Index 10367 */ 10368 MLXSW_ITEM32(reg, sbmm, prio, 0x00, 8, 4); 10369 10370 /* reg_sbmm_min_buff 10371 * Minimum buffer size for the limiter, in cells. 10372 * Access: RW 10373 */ 10374 MLXSW_ITEM32(reg, sbmm, min_buff, 0x18, 0, 24); 10375 10376 /* reg_sbmm_max_buff 10377 * When the pool associated to the port-pg/tclass is configured to 10378 * static, Maximum buffer size for the limiter configured in cells. 10379 * When the pool associated to the port-pg/tclass is configured to 10380 * dynamic, the max_buff holds the "alpha" parameter, supporting 10381 * the following values: 10382 * 0: 0 10383 * i: (1/128)*2^(i-1), for i=1..14 10384 * 0xFF: Infinity 10385 * Access: RW 10386 */ 10387 MLXSW_ITEM32(reg, sbmm, max_buff, 0x1C, 0, 24); 10388 10389 /* reg_sbmm_pool 10390 * Association of the port-priority to a pool. 10391 * Access: RW 10392 */ 10393 MLXSW_ITEM32(reg, sbmm, pool, 0x24, 0, 4); 10394 10395 static inline void mlxsw_reg_sbmm_pack(char *payload, u8 prio, u32 min_buff, 10396 u32 max_buff, u8 pool) 10397 { 10398 MLXSW_REG_ZERO(sbmm, payload); 10399 mlxsw_reg_sbmm_prio_set(payload, prio); 10400 mlxsw_reg_sbmm_min_buff_set(payload, min_buff); 10401 mlxsw_reg_sbmm_max_buff_set(payload, max_buff); 10402 mlxsw_reg_sbmm_pool_set(payload, pool); 10403 } 10404 10405 /* SBSR - Shared Buffer Status Register 10406 * ------------------------------------ 10407 * The SBSR register retrieves the shared buffer occupancy according to 10408 * Port-Pool. Note that this register enables reading a large amount of data. 10409 * It is the user's responsibility to limit the amount of data to ensure the 10410 * response can match the maximum transfer unit. In case the response exceeds 10411 * the maximum transport unit, it will be truncated with no special notice. 10412 */ 10413 #define MLXSW_REG_SBSR_ID 0xB005 10414 #define MLXSW_REG_SBSR_BASE_LEN 0x5C /* base length, without records */ 10415 #define MLXSW_REG_SBSR_REC_LEN 0x8 /* record length */ 10416 #define MLXSW_REG_SBSR_REC_MAX_COUNT 120 10417 #define MLXSW_REG_SBSR_LEN (MLXSW_REG_SBSR_BASE_LEN + \ 10418 MLXSW_REG_SBSR_REC_LEN * \ 10419 MLXSW_REG_SBSR_REC_MAX_COUNT) 10420 10421 MLXSW_REG_DEFINE(sbsr, MLXSW_REG_SBSR_ID, MLXSW_REG_SBSR_LEN); 10422 10423 /* reg_sbsr_clr 10424 * Clear Max Buffer Occupancy. When this bit is set, the max_buff_occupancy 10425 * field is cleared (and a new max value is tracked from the time the clear 10426 * was performed). 10427 * Access: OP 10428 */ 10429 MLXSW_ITEM32(reg, sbsr, clr, 0x00, 31, 1); 10430 10431 /* reg_sbsr_ingress_port_mask 10432 * Bit vector for all ingress network ports. 10433 * Indicates which of the ports (for which the relevant bit is set) 10434 * are affected by the set operation. Configuration of any other port 10435 * does not change. 10436 * Access: Index 10437 */ 10438 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, ingress_port_mask, 0x10, 0x20, 1); 10439 10440 /* reg_sbsr_pg_buff_mask 10441 * Bit vector for all switch priority groups. 10442 * Indicates which of the priorities (for which the relevant bit is set) 10443 * are affected by the set operation. Configuration of any other priority 10444 * does not change. 10445 * Range is 0..cap_max_pg_buffers - 1 10446 * Access: Index 10447 */ 10448 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, pg_buff_mask, 0x30, 0x4, 1); 10449 10450 /* reg_sbsr_egress_port_mask 10451 * Bit vector for all egress network ports. 10452 * Indicates which of the ports (for which the relevant bit is set) 10453 * are affected by the set operation. Configuration of any other port 10454 * does not change. 10455 * Access: Index 10456 */ 10457 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, egress_port_mask, 0x34, 0x20, 1); 10458 10459 /* reg_sbsr_tclass_mask 10460 * Bit vector for all traffic classes. 10461 * Indicates which of the traffic classes (for which the relevant bit is 10462 * set) are affected by the set operation. Configuration of any other 10463 * traffic class does not change. 10464 * Range is 0..cap_max_tclass - 1 10465 * Access: Index 10466 */ 10467 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, tclass_mask, 0x54, 0x8, 1); 10468 10469 static inline void mlxsw_reg_sbsr_pack(char *payload, bool clr) 10470 { 10471 MLXSW_REG_ZERO(sbsr, payload); 10472 mlxsw_reg_sbsr_clr_set(payload, clr); 10473 } 10474 10475 /* reg_sbsr_rec_buff_occupancy 10476 * Current buffer occupancy in cells. 10477 * Access: RO 10478 */ 10479 MLXSW_ITEM32_INDEXED(reg, sbsr, rec_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN, 10480 0, 24, MLXSW_REG_SBSR_REC_LEN, 0x00, false); 10481 10482 /* reg_sbsr_rec_max_buff_occupancy 10483 * Maximum value of buffer occupancy in cells monitored. Cleared by 10484 * writing to the clr field. 10485 * Access: RO 10486 */ 10487 MLXSW_ITEM32_INDEXED(reg, sbsr, rec_max_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN, 10488 0, 24, MLXSW_REG_SBSR_REC_LEN, 0x04, false); 10489 10490 static inline void mlxsw_reg_sbsr_rec_unpack(char *payload, int rec_index, 10491 u32 *p_buff_occupancy, 10492 u32 *p_max_buff_occupancy) 10493 { 10494 *p_buff_occupancy = 10495 mlxsw_reg_sbsr_rec_buff_occupancy_get(payload, rec_index); 10496 *p_max_buff_occupancy = 10497 mlxsw_reg_sbsr_rec_max_buff_occupancy_get(payload, rec_index); 10498 } 10499 10500 /* SBIB - Shared Buffer Internal Buffer Register 10501 * --------------------------------------------- 10502 * The SBIB register configures per port buffers for internal use. The internal 10503 * buffers consume memory on the port buffers (note that the port buffers are 10504 * used also by PBMC). 10505 * 10506 * For Spectrum this is used for egress mirroring. 10507 */ 10508 #define MLXSW_REG_SBIB_ID 0xB006 10509 #define MLXSW_REG_SBIB_LEN 0x10 10510 10511 MLXSW_REG_DEFINE(sbib, MLXSW_REG_SBIB_ID, MLXSW_REG_SBIB_LEN); 10512 10513 /* reg_sbib_local_port 10514 * Local port number 10515 * Not supported for CPU port and router port 10516 * Access: Index 10517 */ 10518 MLXSW_ITEM32(reg, sbib, local_port, 0x00, 16, 8); 10519 10520 /* reg_sbib_buff_size 10521 * Units represented in cells 10522 * Allowed range is 0 to (cap_max_headroom_size - 1) 10523 * Default is 0 10524 * Access: RW 10525 */ 10526 MLXSW_ITEM32(reg, sbib, buff_size, 0x08, 0, 24); 10527 10528 static inline void mlxsw_reg_sbib_pack(char *payload, u8 local_port, 10529 u32 buff_size) 10530 { 10531 MLXSW_REG_ZERO(sbib, payload); 10532 mlxsw_reg_sbib_local_port_set(payload, local_port); 10533 mlxsw_reg_sbib_buff_size_set(payload, buff_size); 10534 } 10535 10536 static const struct mlxsw_reg_info *mlxsw_reg_infos[] = { 10537 MLXSW_REG(sgcr), 10538 MLXSW_REG(spad), 10539 MLXSW_REG(smid), 10540 MLXSW_REG(sspr), 10541 MLXSW_REG(sfdat), 10542 MLXSW_REG(sfd), 10543 MLXSW_REG(sfn), 10544 MLXSW_REG(spms), 10545 MLXSW_REG(spvid), 10546 MLXSW_REG(spvm), 10547 MLXSW_REG(spaft), 10548 MLXSW_REG(sfgc), 10549 MLXSW_REG(sftr), 10550 MLXSW_REG(sfdf), 10551 MLXSW_REG(sldr), 10552 MLXSW_REG(slcr), 10553 MLXSW_REG(slcor), 10554 MLXSW_REG(spmlr), 10555 MLXSW_REG(svfa), 10556 MLXSW_REG(svpe), 10557 MLXSW_REG(sfmr), 10558 MLXSW_REG(spvmlr), 10559 MLXSW_REG(cwtp), 10560 MLXSW_REG(cwtpm), 10561 MLXSW_REG(pgcr), 10562 MLXSW_REG(ppbt), 10563 MLXSW_REG(pacl), 10564 MLXSW_REG(pagt), 10565 MLXSW_REG(ptar), 10566 MLXSW_REG(ppbs), 10567 MLXSW_REG(prcr), 10568 MLXSW_REG(pefa), 10569 MLXSW_REG(pemrbt), 10570 MLXSW_REG(ptce2), 10571 MLXSW_REG(perpt), 10572 MLXSW_REG(peabfe), 10573 MLXSW_REG(perar), 10574 MLXSW_REG(ptce3), 10575 MLXSW_REG(percr), 10576 MLXSW_REG(pererp), 10577 MLXSW_REG(iedr), 10578 MLXSW_REG(qpts), 10579 MLXSW_REG(qpcr), 10580 MLXSW_REG(qtct), 10581 MLXSW_REG(qeec), 10582 MLXSW_REG(qrwe), 10583 MLXSW_REG(qpdsm), 10584 MLXSW_REG(qpdpm), 10585 MLXSW_REG(qtctm), 10586 MLXSW_REG(qpsc), 10587 MLXSW_REG(pmlp), 10588 MLXSW_REG(pmtu), 10589 MLXSW_REG(ptys), 10590 MLXSW_REG(ppad), 10591 MLXSW_REG(paos), 10592 MLXSW_REG(pfcc), 10593 MLXSW_REG(ppcnt), 10594 MLXSW_REG(plib), 10595 MLXSW_REG(pptb), 10596 MLXSW_REG(pbmc), 10597 MLXSW_REG(pspa), 10598 MLXSW_REG(pplr), 10599 MLXSW_REG(pmtm), 10600 MLXSW_REG(htgt), 10601 MLXSW_REG(hpkt), 10602 MLXSW_REG(rgcr), 10603 MLXSW_REG(ritr), 10604 MLXSW_REG(rtar), 10605 MLXSW_REG(ratr), 10606 MLXSW_REG(rtdp), 10607 MLXSW_REG(rdpm), 10608 MLXSW_REG(ricnt), 10609 MLXSW_REG(rrcr), 10610 MLXSW_REG(ralta), 10611 MLXSW_REG(ralst), 10612 MLXSW_REG(raltb), 10613 MLXSW_REG(ralue), 10614 MLXSW_REG(rauht), 10615 MLXSW_REG(raleu), 10616 MLXSW_REG(rauhtd), 10617 MLXSW_REG(rigr2), 10618 MLXSW_REG(recr2), 10619 MLXSW_REG(rmft2), 10620 MLXSW_REG(mfcr), 10621 MLXSW_REG(mfsc), 10622 MLXSW_REG(mfsm), 10623 MLXSW_REG(mfsl), 10624 MLXSW_REG(fore), 10625 MLXSW_REG(mtcap), 10626 MLXSW_REG(mtmp), 10627 MLXSW_REG(mtbr), 10628 MLXSW_REG(mcia), 10629 MLXSW_REG(mpat), 10630 MLXSW_REG(mpar), 10631 MLXSW_REG(mgir), 10632 MLXSW_REG(mrsr), 10633 MLXSW_REG(mlcr), 10634 MLXSW_REG(mtpps), 10635 MLXSW_REG(mtutc), 10636 MLXSW_REG(mpsc), 10637 MLXSW_REG(mcqi), 10638 MLXSW_REG(mcc), 10639 MLXSW_REG(mcda), 10640 MLXSW_REG(mgpc), 10641 MLXSW_REG(mprs), 10642 MLXSW_REG(mogcr), 10643 MLXSW_REG(mtpppc), 10644 MLXSW_REG(mtpptr), 10645 MLXSW_REG(mtptpt), 10646 MLXSW_REG(mgpir), 10647 MLXSW_REG(tngcr), 10648 MLXSW_REG(tnumt), 10649 MLXSW_REG(tnqcr), 10650 MLXSW_REG(tnqdr), 10651 MLXSW_REG(tneem), 10652 MLXSW_REG(tndem), 10653 MLXSW_REG(tnpc), 10654 MLXSW_REG(tigcr), 10655 MLXSW_REG(sbpr), 10656 MLXSW_REG(sbcm), 10657 MLXSW_REG(sbpm), 10658 MLXSW_REG(sbmm), 10659 MLXSW_REG(sbsr), 10660 MLXSW_REG(sbib), 10661 }; 10662 10663 static inline const char *mlxsw_reg_id_str(u16 reg_id) 10664 { 10665 const struct mlxsw_reg_info *reg_info; 10666 int i; 10667 10668 for (i = 0; i < ARRAY_SIZE(mlxsw_reg_infos); i++) { 10669 reg_info = mlxsw_reg_infos[i]; 10670 if (reg_info->id == reg_id) 10671 return reg_info->name; 10672 } 10673 return "*UNKNOWN*"; 10674 } 10675 10676 /* PUDE - Port Up / Down Event 10677 * --------------------------- 10678 * Reports the operational state change of a port. 10679 */ 10680 #define MLXSW_REG_PUDE_LEN 0x10 10681 10682 /* reg_pude_swid 10683 * Switch partition ID with which to associate the port. 10684 * Access: Index 10685 */ 10686 MLXSW_ITEM32(reg, pude, swid, 0x00, 24, 8); 10687 10688 /* reg_pude_local_port 10689 * Local port number. 10690 * Access: Index 10691 */ 10692 MLXSW_ITEM32(reg, pude, local_port, 0x00, 16, 8); 10693 10694 /* reg_pude_admin_status 10695 * Port administrative state (the desired state). 10696 * 1 - Up. 10697 * 2 - Down. 10698 * 3 - Up once. This means that in case of link failure, the port won't go 10699 * into polling mode, but will wait to be re-enabled by software. 10700 * 4 - Disabled by system. Can only be set by hardware. 10701 * Access: RO 10702 */ 10703 MLXSW_ITEM32(reg, pude, admin_status, 0x00, 8, 4); 10704 10705 /* reg_pude_oper_status 10706 * Port operatioanl state. 10707 * 1 - Up. 10708 * 2 - Down. 10709 * 3 - Down by port failure. This means that the device will not let the 10710 * port up again until explicitly specified by software. 10711 * Access: RO 10712 */ 10713 MLXSW_ITEM32(reg, pude, oper_status, 0x00, 0, 4); 10714 10715 #endif 10716