1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */ 2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */ 3 4 #ifndef _MLXSW_REG_H 5 #define _MLXSW_REG_H 6 7 #include <linux/kernel.h> 8 #include <linux/string.h> 9 #include <linux/bitops.h> 10 #include <linux/if_vlan.h> 11 12 #include "item.h" 13 #include "port.h" 14 15 struct mlxsw_reg_info { 16 u16 id; 17 u16 len; /* In u8 */ 18 const char *name; 19 }; 20 21 #define MLXSW_REG_DEFINE(_name, _id, _len) \ 22 static const struct mlxsw_reg_info mlxsw_reg_##_name = { \ 23 .id = _id, \ 24 .len = _len, \ 25 .name = #_name, \ 26 } 27 28 #define MLXSW_REG(type) (&mlxsw_reg_##type) 29 #define MLXSW_REG_LEN(type) MLXSW_REG(type)->len 30 #define MLXSW_REG_ZERO(type, payload) memset(payload, 0, MLXSW_REG(type)->len) 31 32 /* SGCR - Switch General Configuration Register 33 * -------------------------------------------- 34 * This register is used for configuration of the switch capabilities. 35 */ 36 #define MLXSW_REG_SGCR_ID 0x2000 37 #define MLXSW_REG_SGCR_LEN 0x10 38 39 MLXSW_REG_DEFINE(sgcr, MLXSW_REG_SGCR_ID, MLXSW_REG_SGCR_LEN); 40 41 /* reg_sgcr_llb 42 * Link Local Broadcast (Default=0) 43 * When set, all Link Local packets (224.0.0.X) will be treated as broadcast 44 * packets and ignore the IGMP snooping entries. 45 * Access: RW 46 */ 47 MLXSW_ITEM32(reg, sgcr, llb, 0x04, 0, 1); 48 49 static inline void mlxsw_reg_sgcr_pack(char *payload, bool llb) 50 { 51 MLXSW_REG_ZERO(sgcr, payload); 52 mlxsw_reg_sgcr_llb_set(payload, !!llb); 53 } 54 55 /* SPAD - Switch Physical Address Register 56 * --------------------------------------- 57 * The SPAD register configures the switch physical MAC address. 58 */ 59 #define MLXSW_REG_SPAD_ID 0x2002 60 #define MLXSW_REG_SPAD_LEN 0x10 61 62 MLXSW_REG_DEFINE(spad, MLXSW_REG_SPAD_ID, MLXSW_REG_SPAD_LEN); 63 64 /* reg_spad_base_mac 65 * Base MAC address for the switch partitions. 66 * Per switch partition MAC address is equal to: 67 * base_mac + swid 68 * Access: RW 69 */ 70 MLXSW_ITEM_BUF(reg, spad, base_mac, 0x02, 6); 71 72 /* SMID - Switch Multicast ID 73 * -------------------------- 74 * The MID record maps from a MID (Multicast ID), which is a unique identifier 75 * of the multicast group within the stacking domain, into a list of local 76 * ports into which the packet is replicated. 77 */ 78 #define MLXSW_REG_SMID_ID 0x2007 79 #define MLXSW_REG_SMID_LEN 0x240 80 81 MLXSW_REG_DEFINE(smid, MLXSW_REG_SMID_ID, MLXSW_REG_SMID_LEN); 82 83 /* reg_smid_swid 84 * Switch partition ID. 85 * Access: Index 86 */ 87 MLXSW_ITEM32(reg, smid, swid, 0x00, 24, 8); 88 89 /* reg_smid_mid 90 * Multicast identifier - global identifier that represents the multicast group 91 * across all devices. 92 * Access: Index 93 */ 94 MLXSW_ITEM32(reg, smid, mid, 0x00, 0, 16); 95 96 /* reg_smid_port 97 * Local port memebership (1 bit per port). 98 * Access: RW 99 */ 100 MLXSW_ITEM_BIT_ARRAY(reg, smid, port, 0x20, 0x20, 1); 101 102 /* reg_smid_port_mask 103 * Local port mask (1 bit per port). 104 * Access: W 105 */ 106 MLXSW_ITEM_BIT_ARRAY(reg, smid, port_mask, 0x220, 0x20, 1); 107 108 static inline void mlxsw_reg_smid_pack(char *payload, u16 mid, 109 u8 port, bool set) 110 { 111 MLXSW_REG_ZERO(smid, payload); 112 mlxsw_reg_smid_swid_set(payload, 0); 113 mlxsw_reg_smid_mid_set(payload, mid); 114 mlxsw_reg_smid_port_set(payload, port, set); 115 mlxsw_reg_smid_port_mask_set(payload, port, 1); 116 } 117 118 /* SSPR - Switch System Port Record Register 119 * ----------------------------------------- 120 * Configures the system port to local port mapping. 121 */ 122 #define MLXSW_REG_SSPR_ID 0x2008 123 #define MLXSW_REG_SSPR_LEN 0x8 124 125 MLXSW_REG_DEFINE(sspr, MLXSW_REG_SSPR_ID, MLXSW_REG_SSPR_LEN); 126 127 /* reg_sspr_m 128 * Master - if set, then the record describes the master system port. 129 * This is needed in case a local port is mapped into several system ports 130 * (for multipathing). That number will be reported as the source system 131 * port when packets are forwarded to the CPU. Only one master port is allowed 132 * per local port. 133 * 134 * Note: Must be set for Spectrum. 135 * Access: RW 136 */ 137 MLXSW_ITEM32(reg, sspr, m, 0x00, 31, 1); 138 139 /* reg_sspr_local_port 140 * Local port number. 141 * 142 * Access: RW 143 */ 144 MLXSW_ITEM32(reg, sspr, local_port, 0x00, 16, 8); 145 146 /* reg_sspr_sub_port 147 * Virtual port within the physical port. 148 * Should be set to 0 when virtual ports are not enabled on the port. 149 * 150 * Access: RW 151 */ 152 MLXSW_ITEM32(reg, sspr, sub_port, 0x00, 8, 8); 153 154 /* reg_sspr_system_port 155 * Unique identifier within the stacking domain that represents all the ports 156 * that are available in the system (external ports). 157 * 158 * Currently, only single-ASIC configurations are supported, so we default to 159 * 1:1 mapping between system ports and local ports. 160 * Access: Index 161 */ 162 MLXSW_ITEM32(reg, sspr, system_port, 0x04, 0, 16); 163 164 static inline void mlxsw_reg_sspr_pack(char *payload, u8 local_port) 165 { 166 MLXSW_REG_ZERO(sspr, payload); 167 mlxsw_reg_sspr_m_set(payload, 1); 168 mlxsw_reg_sspr_local_port_set(payload, local_port); 169 mlxsw_reg_sspr_sub_port_set(payload, 0); 170 mlxsw_reg_sspr_system_port_set(payload, local_port); 171 } 172 173 /* SFDAT - Switch Filtering Database Aging Time 174 * -------------------------------------------- 175 * Controls the Switch aging time. Aging time is able to be set per Switch 176 * Partition. 177 */ 178 #define MLXSW_REG_SFDAT_ID 0x2009 179 #define MLXSW_REG_SFDAT_LEN 0x8 180 181 MLXSW_REG_DEFINE(sfdat, MLXSW_REG_SFDAT_ID, MLXSW_REG_SFDAT_LEN); 182 183 /* reg_sfdat_swid 184 * Switch partition ID. 185 * Access: Index 186 */ 187 MLXSW_ITEM32(reg, sfdat, swid, 0x00, 24, 8); 188 189 /* reg_sfdat_age_time 190 * Aging time in seconds 191 * Min - 10 seconds 192 * Max - 1,000,000 seconds 193 * Default is 300 seconds. 194 * Access: RW 195 */ 196 MLXSW_ITEM32(reg, sfdat, age_time, 0x04, 0, 20); 197 198 static inline void mlxsw_reg_sfdat_pack(char *payload, u32 age_time) 199 { 200 MLXSW_REG_ZERO(sfdat, payload); 201 mlxsw_reg_sfdat_swid_set(payload, 0); 202 mlxsw_reg_sfdat_age_time_set(payload, age_time); 203 } 204 205 /* SFD - Switch Filtering Database 206 * ------------------------------- 207 * The following register defines the access to the filtering database. 208 * The register supports querying, adding, removing and modifying the database. 209 * The access is optimized for bulk updates in which case more than one 210 * FDB record is present in the same command. 211 */ 212 #define MLXSW_REG_SFD_ID 0x200A 213 #define MLXSW_REG_SFD_BASE_LEN 0x10 /* base length, without records */ 214 #define MLXSW_REG_SFD_REC_LEN 0x10 /* record length */ 215 #define MLXSW_REG_SFD_REC_MAX_COUNT 64 216 #define MLXSW_REG_SFD_LEN (MLXSW_REG_SFD_BASE_LEN + \ 217 MLXSW_REG_SFD_REC_LEN * MLXSW_REG_SFD_REC_MAX_COUNT) 218 219 MLXSW_REG_DEFINE(sfd, MLXSW_REG_SFD_ID, MLXSW_REG_SFD_LEN); 220 221 /* reg_sfd_swid 222 * Switch partition ID for queries. Reserved on Write. 223 * Access: Index 224 */ 225 MLXSW_ITEM32(reg, sfd, swid, 0x00, 24, 8); 226 227 enum mlxsw_reg_sfd_op { 228 /* Dump entire FDB a (process according to record_locator) */ 229 MLXSW_REG_SFD_OP_QUERY_DUMP = 0, 230 /* Query records by {MAC, VID/FID} value */ 231 MLXSW_REG_SFD_OP_QUERY_QUERY = 1, 232 /* Query and clear activity. Query records by {MAC, VID/FID} value */ 233 MLXSW_REG_SFD_OP_QUERY_QUERY_AND_CLEAR_ACTIVITY = 2, 234 /* Test. Response indicates if each of the records could be 235 * added to the FDB. 236 */ 237 MLXSW_REG_SFD_OP_WRITE_TEST = 0, 238 /* Add/modify. Aged-out records cannot be added. This command removes 239 * the learning notification of the {MAC, VID/FID}. Response includes 240 * the entries that were added to the FDB. 241 */ 242 MLXSW_REG_SFD_OP_WRITE_EDIT = 1, 243 /* Remove record by {MAC, VID/FID}. This command also removes 244 * the learning notification and aged-out notifications 245 * of the {MAC, VID/FID}. The response provides current (pre-removal) 246 * entries as non-aged-out. 247 */ 248 MLXSW_REG_SFD_OP_WRITE_REMOVE = 2, 249 /* Remove learned notification by {MAC, VID/FID}. The response provides 250 * the removed learning notification. 251 */ 252 MLXSW_REG_SFD_OP_WRITE_REMOVE_NOTIFICATION = 2, 253 }; 254 255 /* reg_sfd_op 256 * Operation. 257 * Access: OP 258 */ 259 MLXSW_ITEM32(reg, sfd, op, 0x04, 30, 2); 260 261 /* reg_sfd_record_locator 262 * Used for querying the FDB. Use record_locator=0 to initiate the 263 * query. When a record is returned, a new record_locator is 264 * returned to be used in the subsequent query. 265 * Reserved for database update. 266 * Access: Index 267 */ 268 MLXSW_ITEM32(reg, sfd, record_locator, 0x04, 0, 30); 269 270 /* reg_sfd_num_rec 271 * Request: Number of records to read/add/modify/remove 272 * Response: Number of records read/added/replaced/removed 273 * See above description for more details. 274 * Ranges 0..64 275 * Access: RW 276 */ 277 MLXSW_ITEM32(reg, sfd, num_rec, 0x08, 0, 8); 278 279 static inline void mlxsw_reg_sfd_pack(char *payload, enum mlxsw_reg_sfd_op op, 280 u32 record_locator) 281 { 282 MLXSW_REG_ZERO(sfd, payload); 283 mlxsw_reg_sfd_op_set(payload, op); 284 mlxsw_reg_sfd_record_locator_set(payload, record_locator); 285 } 286 287 /* reg_sfd_rec_swid 288 * Switch partition ID. 289 * Access: Index 290 */ 291 MLXSW_ITEM32_INDEXED(reg, sfd, rec_swid, MLXSW_REG_SFD_BASE_LEN, 24, 8, 292 MLXSW_REG_SFD_REC_LEN, 0x00, false); 293 294 enum mlxsw_reg_sfd_rec_type { 295 MLXSW_REG_SFD_REC_TYPE_UNICAST = 0x0, 296 MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG = 0x1, 297 MLXSW_REG_SFD_REC_TYPE_MULTICAST = 0x2, 298 MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL = 0xC, 299 }; 300 301 /* reg_sfd_rec_type 302 * FDB record type. 303 * Access: RW 304 */ 305 MLXSW_ITEM32_INDEXED(reg, sfd, rec_type, MLXSW_REG_SFD_BASE_LEN, 20, 4, 306 MLXSW_REG_SFD_REC_LEN, 0x00, false); 307 308 enum mlxsw_reg_sfd_rec_policy { 309 /* Replacement disabled, aging disabled. */ 310 MLXSW_REG_SFD_REC_POLICY_STATIC_ENTRY = 0, 311 /* (mlag remote): Replacement enabled, aging disabled, 312 * learning notification enabled on this port. 313 */ 314 MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_MLAG = 1, 315 /* (ingress device): Replacement enabled, aging enabled. */ 316 MLXSW_REG_SFD_REC_POLICY_DYNAMIC_ENTRY_INGRESS = 3, 317 }; 318 319 /* reg_sfd_rec_policy 320 * Policy. 321 * Access: RW 322 */ 323 MLXSW_ITEM32_INDEXED(reg, sfd, rec_policy, MLXSW_REG_SFD_BASE_LEN, 18, 2, 324 MLXSW_REG_SFD_REC_LEN, 0x00, false); 325 326 /* reg_sfd_rec_a 327 * Activity. Set for new static entries. Set for static entries if a frame SMAC 328 * lookup hits on the entry. 329 * To clear the a bit, use "query and clear activity" op. 330 * Access: RO 331 */ 332 MLXSW_ITEM32_INDEXED(reg, sfd, rec_a, MLXSW_REG_SFD_BASE_LEN, 16, 1, 333 MLXSW_REG_SFD_REC_LEN, 0x00, false); 334 335 /* reg_sfd_rec_mac 336 * MAC address. 337 * Access: Index 338 */ 339 MLXSW_ITEM_BUF_INDEXED(reg, sfd, rec_mac, MLXSW_REG_SFD_BASE_LEN, 6, 340 MLXSW_REG_SFD_REC_LEN, 0x02); 341 342 enum mlxsw_reg_sfd_rec_action { 343 /* forward */ 344 MLXSW_REG_SFD_REC_ACTION_NOP = 0, 345 /* forward and trap, trap_id is FDB_TRAP */ 346 MLXSW_REG_SFD_REC_ACTION_MIRROR_TO_CPU = 1, 347 /* trap and do not forward, trap_id is FDB_TRAP */ 348 MLXSW_REG_SFD_REC_ACTION_TRAP = 2, 349 /* forward to IP router */ 350 MLXSW_REG_SFD_REC_ACTION_FORWARD_IP_ROUTER = 3, 351 MLXSW_REG_SFD_REC_ACTION_DISCARD_ERROR = 15, 352 }; 353 354 /* reg_sfd_rec_action 355 * Action to apply on the packet. 356 * Note: Dynamic entries can only be configured with NOP action. 357 * Access: RW 358 */ 359 MLXSW_ITEM32_INDEXED(reg, sfd, rec_action, MLXSW_REG_SFD_BASE_LEN, 28, 4, 360 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 361 362 /* reg_sfd_uc_sub_port 363 * VEPA channel on local port. 364 * Valid only if local port is a non-stacking port. Must be 0 if multichannel 365 * VEPA is not enabled. 366 * Access: RW 367 */ 368 MLXSW_ITEM32_INDEXED(reg, sfd, uc_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8, 369 MLXSW_REG_SFD_REC_LEN, 0x08, false); 370 371 /* reg_sfd_uc_fid_vid 372 * Filtering ID or VLAN ID 373 * For SwitchX and SwitchX-2: 374 * - Dynamic entries (policy 2,3) use FID 375 * - Static entries (policy 0) use VID 376 * - When independent learning is configured, VID=FID 377 * For Spectrum: use FID for both Dynamic and Static entries. 378 * VID should not be used. 379 * Access: Index 380 */ 381 MLXSW_ITEM32_INDEXED(reg, sfd, uc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 382 MLXSW_REG_SFD_REC_LEN, 0x08, false); 383 384 /* reg_sfd_uc_system_port 385 * Unique port identifier for the final destination of the packet. 386 * Access: RW 387 */ 388 MLXSW_ITEM32_INDEXED(reg, sfd, uc_system_port, MLXSW_REG_SFD_BASE_LEN, 0, 16, 389 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 390 391 static inline void mlxsw_reg_sfd_rec_pack(char *payload, int rec_index, 392 enum mlxsw_reg_sfd_rec_type rec_type, 393 const char *mac, 394 enum mlxsw_reg_sfd_rec_action action) 395 { 396 u8 num_rec = mlxsw_reg_sfd_num_rec_get(payload); 397 398 if (rec_index >= num_rec) 399 mlxsw_reg_sfd_num_rec_set(payload, rec_index + 1); 400 mlxsw_reg_sfd_rec_swid_set(payload, rec_index, 0); 401 mlxsw_reg_sfd_rec_type_set(payload, rec_index, rec_type); 402 mlxsw_reg_sfd_rec_mac_memcpy_to(payload, rec_index, mac); 403 mlxsw_reg_sfd_rec_action_set(payload, rec_index, action); 404 } 405 406 static inline void mlxsw_reg_sfd_uc_pack(char *payload, int rec_index, 407 enum mlxsw_reg_sfd_rec_policy policy, 408 const char *mac, u16 fid_vid, 409 enum mlxsw_reg_sfd_rec_action action, 410 u8 local_port) 411 { 412 mlxsw_reg_sfd_rec_pack(payload, rec_index, 413 MLXSW_REG_SFD_REC_TYPE_UNICAST, mac, action); 414 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy); 415 mlxsw_reg_sfd_uc_sub_port_set(payload, rec_index, 0); 416 mlxsw_reg_sfd_uc_fid_vid_set(payload, rec_index, fid_vid); 417 mlxsw_reg_sfd_uc_system_port_set(payload, rec_index, local_port); 418 } 419 420 static inline void mlxsw_reg_sfd_uc_unpack(char *payload, int rec_index, 421 char *mac, u16 *p_fid_vid, 422 u8 *p_local_port) 423 { 424 mlxsw_reg_sfd_rec_mac_memcpy_from(payload, rec_index, mac); 425 *p_fid_vid = mlxsw_reg_sfd_uc_fid_vid_get(payload, rec_index); 426 *p_local_port = mlxsw_reg_sfd_uc_system_port_get(payload, rec_index); 427 } 428 429 /* reg_sfd_uc_lag_sub_port 430 * LAG sub port. 431 * Must be 0 if multichannel VEPA is not enabled. 432 * Access: RW 433 */ 434 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_sub_port, MLXSW_REG_SFD_BASE_LEN, 16, 8, 435 MLXSW_REG_SFD_REC_LEN, 0x08, false); 436 437 /* reg_sfd_uc_lag_fid_vid 438 * Filtering ID or VLAN ID 439 * For SwitchX and SwitchX-2: 440 * - Dynamic entries (policy 2,3) use FID 441 * - Static entries (policy 0) use VID 442 * - When independent learning is configured, VID=FID 443 * For Spectrum: use FID for both Dynamic and Static entries. 444 * VID should not be used. 445 * Access: Index 446 */ 447 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 448 MLXSW_REG_SFD_REC_LEN, 0x08, false); 449 450 /* reg_sfd_uc_lag_lag_vid 451 * Indicates VID in case of vFIDs. Reserved for FIDs. 452 * Access: RW 453 */ 454 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_vid, MLXSW_REG_SFD_BASE_LEN, 16, 12, 455 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 456 457 /* reg_sfd_uc_lag_lag_id 458 * LAG Identifier - pointer into the LAG descriptor table. 459 * Access: RW 460 */ 461 MLXSW_ITEM32_INDEXED(reg, sfd, uc_lag_lag_id, MLXSW_REG_SFD_BASE_LEN, 0, 10, 462 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 463 464 static inline void 465 mlxsw_reg_sfd_uc_lag_pack(char *payload, int rec_index, 466 enum mlxsw_reg_sfd_rec_policy policy, 467 const char *mac, u16 fid_vid, 468 enum mlxsw_reg_sfd_rec_action action, u16 lag_vid, 469 u16 lag_id) 470 { 471 mlxsw_reg_sfd_rec_pack(payload, rec_index, 472 MLXSW_REG_SFD_REC_TYPE_UNICAST_LAG, 473 mac, action); 474 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy); 475 mlxsw_reg_sfd_uc_lag_sub_port_set(payload, rec_index, 0); 476 mlxsw_reg_sfd_uc_lag_fid_vid_set(payload, rec_index, fid_vid); 477 mlxsw_reg_sfd_uc_lag_lag_vid_set(payload, rec_index, lag_vid); 478 mlxsw_reg_sfd_uc_lag_lag_id_set(payload, rec_index, lag_id); 479 } 480 481 static inline void mlxsw_reg_sfd_uc_lag_unpack(char *payload, int rec_index, 482 char *mac, u16 *p_vid, 483 u16 *p_lag_id) 484 { 485 mlxsw_reg_sfd_rec_mac_memcpy_from(payload, rec_index, mac); 486 *p_vid = mlxsw_reg_sfd_uc_lag_fid_vid_get(payload, rec_index); 487 *p_lag_id = mlxsw_reg_sfd_uc_lag_lag_id_get(payload, rec_index); 488 } 489 490 /* reg_sfd_mc_pgi 491 * 492 * Multicast port group index - index into the port group table. 493 * Value 0x1FFF indicates the pgi should point to the MID entry. 494 * For Spectrum this value must be set to 0x1FFF 495 * Access: RW 496 */ 497 MLXSW_ITEM32_INDEXED(reg, sfd, mc_pgi, MLXSW_REG_SFD_BASE_LEN, 16, 13, 498 MLXSW_REG_SFD_REC_LEN, 0x08, false); 499 500 /* reg_sfd_mc_fid_vid 501 * 502 * Filtering ID or VLAN ID 503 * Access: Index 504 */ 505 MLXSW_ITEM32_INDEXED(reg, sfd, mc_fid_vid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 506 MLXSW_REG_SFD_REC_LEN, 0x08, false); 507 508 /* reg_sfd_mc_mid 509 * 510 * Multicast identifier - global identifier that represents the multicast 511 * group across all devices. 512 * Access: RW 513 */ 514 MLXSW_ITEM32_INDEXED(reg, sfd, mc_mid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 515 MLXSW_REG_SFD_REC_LEN, 0x0C, false); 516 517 static inline void 518 mlxsw_reg_sfd_mc_pack(char *payload, int rec_index, 519 const char *mac, u16 fid_vid, 520 enum mlxsw_reg_sfd_rec_action action, u16 mid) 521 { 522 mlxsw_reg_sfd_rec_pack(payload, rec_index, 523 MLXSW_REG_SFD_REC_TYPE_MULTICAST, mac, action); 524 mlxsw_reg_sfd_mc_pgi_set(payload, rec_index, 0x1FFF); 525 mlxsw_reg_sfd_mc_fid_vid_set(payload, rec_index, fid_vid); 526 mlxsw_reg_sfd_mc_mid_set(payload, rec_index, mid); 527 } 528 529 /* reg_sfd_uc_tunnel_uip_msb 530 * When protocol is IPv4, the most significant byte of the underlay IPv4 531 * destination IP. 532 * When protocol is IPv6, reserved. 533 * Access: RW 534 */ 535 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_msb, MLXSW_REG_SFD_BASE_LEN, 24, 536 8, MLXSW_REG_SFD_REC_LEN, 0x08, false); 537 538 /* reg_sfd_uc_tunnel_fid 539 * Filtering ID. 540 * Access: Index 541 */ 542 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_fid, MLXSW_REG_SFD_BASE_LEN, 0, 16, 543 MLXSW_REG_SFD_REC_LEN, 0x08, false); 544 545 enum mlxsw_reg_sfd_uc_tunnel_protocol { 546 MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV4, 547 MLXSW_REG_SFD_UC_TUNNEL_PROTOCOL_IPV6, 548 }; 549 550 /* reg_sfd_uc_tunnel_protocol 551 * IP protocol. 552 * Access: RW 553 */ 554 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_protocol, MLXSW_REG_SFD_BASE_LEN, 27, 555 1, MLXSW_REG_SFD_REC_LEN, 0x0C, false); 556 557 /* reg_sfd_uc_tunnel_uip_lsb 558 * When protocol is IPv4, the least significant bytes of the underlay 559 * IPv4 destination IP. 560 * When protocol is IPv6, pointer to the underlay IPv6 destination IP 561 * which is configured by RIPS. 562 * Access: RW 563 */ 564 MLXSW_ITEM32_INDEXED(reg, sfd, uc_tunnel_uip_lsb, MLXSW_REG_SFD_BASE_LEN, 0, 565 24, MLXSW_REG_SFD_REC_LEN, 0x0C, false); 566 567 static inline void 568 mlxsw_reg_sfd_uc_tunnel_pack(char *payload, int rec_index, 569 enum mlxsw_reg_sfd_rec_policy policy, 570 const char *mac, u16 fid, 571 enum mlxsw_reg_sfd_rec_action action, u32 uip, 572 enum mlxsw_reg_sfd_uc_tunnel_protocol proto) 573 { 574 mlxsw_reg_sfd_rec_pack(payload, rec_index, 575 MLXSW_REG_SFD_REC_TYPE_UNICAST_TUNNEL, mac, 576 action); 577 mlxsw_reg_sfd_rec_policy_set(payload, rec_index, policy); 578 mlxsw_reg_sfd_uc_tunnel_uip_msb_set(payload, rec_index, uip >> 24); 579 mlxsw_reg_sfd_uc_tunnel_uip_lsb_set(payload, rec_index, uip); 580 mlxsw_reg_sfd_uc_tunnel_fid_set(payload, rec_index, fid); 581 mlxsw_reg_sfd_uc_tunnel_protocol_set(payload, rec_index, proto); 582 } 583 584 enum mlxsw_reg_tunnel_port { 585 MLXSW_REG_TUNNEL_PORT_NVE, 586 MLXSW_REG_TUNNEL_PORT_VPLS, 587 MLXSW_REG_TUNNEL_PORT_FLEX_TUNNEL0, 588 MLXSW_REG_TUNNEL_PORT_FLEX_TUNNEL1, 589 }; 590 591 /* SFN - Switch FDB Notification Register 592 * ------------------------------------------- 593 * The switch provides notifications on newly learned FDB entries and 594 * aged out entries. The notifications can be polled by software. 595 */ 596 #define MLXSW_REG_SFN_ID 0x200B 597 #define MLXSW_REG_SFN_BASE_LEN 0x10 /* base length, without records */ 598 #define MLXSW_REG_SFN_REC_LEN 0x10 /* record length */ 599 #define MLXSW_REG_SFN_REC_MAX_COUNT 64 600 #define MLXSW_REG_SFN_LEN (MLXSW_REG_SFN_BASE_LEN + \ 601 MLXSW_REG_SFN_REC_LEN * MLXSW_REG_SFN_REC_MAX_COUNT) 602 603 MLXSW_REG_DEFINE(sfn, MLXSW_REG_SFN_ID, MLXSW_REG_SFN_LEN); 604 605 /* reg_sfn_swid 606 * Switch partition ID. 607 * Access: Index 608 */ 609 MLXSW_ITEM32(reg, sfn, swid, 0x00, 24, 8); 610 611 /* reg_sfn_end 612 * Forces the current session to end. 613 * Access: OP 614 */ 615 MLXSW_ITEM32(reg, sfn, end, 0x04, 20, 1); 616 617 /* reg_sfn_num_rec 618 * Request: Number of learned notifications and aged-out notification 619 * records requested. 620 * Response: Number of notification records returned (must be smaller 621 * than or equal to the value requested) 622 * Ranges 0..64 623 * Access: OP 624 */ 625 MLXSW_ITEM32(reg, sfn, num_rec, 0x04, 0, 8); 626 627 static inline void mlxsw_reg_sfn_pack(char *payload) 628 { 629 MLXSW_REG_ZERO(sfn, payload); 630 mlxsw_reg_sfn_swid_set(payload, 0); 631 mlxsw_reg_sfn_end_set(payload, 0); 632 mlxsw_reg_sfn_num_rec_set(payload, MLXSW_REG_SFN_REC_MAX_COUNT); 633 } 634 635 /* reg_sfn_rec_swid 636 * Switch partition ID. 637 * Access: RO 638 */ 639 MLXSW_ITEM32_INDEXED(reg, sfn, rec_swid, MLXSW_REG_SFN_BASE_LEN, 24, 8, 640 MLXSW_REG_SFN_REC_LEN, 0x00, false); 641 642 enum mlxsw_reg_sfn_rec_type { 643 /* MAC addresses learned on a regular port. */ 644 MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC = 0x5, 645 /* MAC addresses learned on a LAG port. */ 646 MLXSW_REG_SFN_REC_TYPE_LEARNED_MAC_LAG = 0x6, 647 /* Aged-out MAC address on a regular port. */ 648 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC = 0x7, 649 /* Aged-out MAC address on a LAG port. */ 650 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_MAC_LAG = 0x8, 651 /* Learned unicast tunnel record. */ 652 MLXSW_REG_SFN_REC_TYPE_LEARNED_UNICAST_TUNNEL = 0xD, 653 /* Aged-out unicast tunnel record. */ 654 MLXSW_REG_SFN_REC_TYPE_AGED_OUT_UNICAST_TUNNEL = 0xE, 655 }; 656 657 /* reg_sfn_rec_type 658 * Notification record type. 659 * Access: RO 660 */ 661 MLXSW_ITEM32_INDEXED(reg, sfn, rec_type, MLXSW_REG_SFN_BASE_LEN, 20, 4, 662 MLXSW_REG_SFN_REC_LEN, 0x00, false); 663 664 /* reg_sfn_rec_mac 665 * MAC address. 666 * Access: RO 667 */ 668 MLXSW_ITEM_BUF_INDEXED(reg, sfn, rec_mac, MLXSW_REG_SFN_BASE_LEN, 6, 669 MLXSW_REG_SFN_REC_LEN, 0x02); 670 671 /* reg_sfn_mac_sub_port 672 * VEPA channel on the local port. 673 * 0 if multichannel VEPA is not enabled. 674 * Access: RO 675 */ 676 MLXSW_ITEM32_INDEXED(reg, sfn, mac_sub_port, MLXSW_REG_SFN_BASE_LEN, 16, 8, 677 MLXSW_REG_SFN_REC_LEN, 0x08, false); 678 679 /* reg_sfn_mac_fid 680 * Filtering identifier. 681 * Access: RO 682 */ 683 MLXSW_ITEM32_INDEXED(reg, sfn, mac_fid, MLXSW_REG_SFN_BASE_LEN, 0, 16, 684 MLXSW_REG_SFN_REC_LEN, 0x08, false); 685 686 /* reg_sfn_mac_system_port 687 * Unique port identifier for the final destination of the packet. 688 * Access: RO 689 */ 690 MLXSW_ITEM32_INDEXED(reg, sfn, mac_system_port, MLXSW_REG_SFN_BASE_LEN, 0, 16, 691 MLXSW_REG_SFN_REC_LEN, 0x0C, false); 692 693 static inline void mlxsw_reg_sfn_mac_unpack(char *payload, int rec_index, 694 char *mac, u16 *p_vid, 695 u8 *p_local_port) 696 { 697 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac); 698 *p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index); 699 *p_local_port = mlxsw_reg_sfn_mac_system_port_get(payload, rec_index); 700 } 701 702 /* reg_sfn_mac_lag_lag_id 703 * LAG ID (pointer into the LAG descriptor table). 704 * Access: RO 705 */ 706 MLXSW_ITEM32_INDEXED(reg, sfn, mac_lag_lag_id, MLXSW_REG_SFN_BASE_LEN, 0, 10, 707 MLXSW_REG_SFN_REC_LEN, 0x0C, false); 708 709 static inline void mlxsw_reg_sfn_mac_lag_unpack(char *payload, int rec_index, 710 char *mac, u16 *p_vid, 711 u16 *p_lag_id) 712 { 713 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac); 714 *p_vid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index); 715 *p_lag_id = mlxsw_reg_sfn_mac_lag_lag_id_get(payload, rec_index); 716 } 717 718 /* reg_sfn_uc_tunnel_uip_msb 719 * When protocol is IPv4, the most significant byte of the underlay IPv4 720 * address of the remote VTEP. 721 * When protocol is IPv6, reserved. 722 * Access: RO 723 */ 724 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_msb, MLXSW_REG_SFN_BASE_LEN, 24, 725 8, MLXSW_REG_SFN_REC_LEN, 0x08, false); 726 727 enum mlxsw_reg_sfn_uc_tunnel_protocol { 728 MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV4, 729 MLXSW_REG_SFN_UC_TUNNEL_PROTOCOL_IPV6, 730 }; 731 732 /* reg_sfn_uc_tunnel_protocol 733 * IP protocol. 734 * Access: RO 735 */ 736 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_protocol, MLXSW_REG_SFN_BASE_LEN, 27, 737 1, MLXSW_REG_SFN_REC_LEN, 0x0C, false); 738 739 /* reg_sfn_uc_tunnel_uip_lsb 740 * When protocol is IPv4, the least significant bytes of the underlay 741 * IPv4 address of the remote VTEP. 742 * When protocol is IPv6, ipv6_id to be queried from TNIPSD. 743 * Access: RO 744 */ 745 MLXSW_ITEM32_INDEXED(reg, sfn, uc_tunnel_uip_lsb, MLXSW_REG_SFN_BASE_LEN, 0, 746 24, MLXSW_REG_SFN_REC_LEN, 0x0C, false); 747 748 /* reg_sfn_uc_tunnel_port 749 * Tunnel port. 750 * Reserved on Spectrum. 751 * Access: RO 752 */ 753 MLXSW_ITEM32_INDEXED(reg, sfn, tunnel_port, MLXSW_REG_SFN_BASE_LEN, 0, 4, 754 MLXSW_REG_SFN_REC_LEN, 0x10, false); 755 756 static inline void 757 mlxsw_reg_sfn_uc_tunnel_unpack(char *payload, int rec_index, char *mac, 758 u16 *p_fid, u32 *p_uip, 759 enum mlxsw_reg_sfn_uc_tunnel_protocol *p_proto) 760 { 761 u32 uip_msb, uip_lsb; 762 763 mlxsw_reg_sfn_rec_mac_memcpy_from(payload, rec_index, mac); 764 *p_fid = mlxsw_reg_sfn_mac_fid_get(payload, rec_index); 765 uip_msb = mlxsw_reg_sfn_uc_tunnel_uip_msb_get(payload, rec_index); 766 uip_lsb = mlxsw_reg_sfn_uc_tunnel_uip_lsb_get(payload, rec_index); 767 *p_uip = uip_msb << 24 | uip_lsb; 768 *p_proto = mlxsw_reg_sfn_uc_tunnel_protocol_get(payload, rec_index); 769 } 770 771 /* SPMS - Switch Port MSTP/RSTP State Register 772 * ------------------------------------------- 773 * Configures the spanning tree state of a physical port. 774 */ 775 #define MLXSW_REG_SPMS_ID 0x200D 776 #define MLXSW_REG_SPMS_LEN 0x404 777 778 MLXSW_REG_DEFINE(spms, MLXSW_REG_SPMS_ID, MLXSW_REG_SPMS_LEN); 779 780 /* reg_spms_local_port 781 * Local port number. 782 * Access: Index 783 */ 784 MLXSW_ITEM32(reg, spms, local_port, 0x00, 16, 8); 785 786 enum mlxsw_reg_spms_state { 787 MLXSW_REG_SPMS_STATE_NO_CHANGE, 788 MLXSW_REG_SPMS_STATE_DISCARDING, 789 MLXSW_REG_SPMS_STATE_LEARNING, 790 MLXSW_REG_SPMS_STATE_FORWARDING, 791 }; 792 793 /* reg_spms_state 794 * Spanning tree state of each VLAN ID (VID) of the local port. 795 * 0 - Do not change spanning tree state (used only when writing). 796 * 1 - Discarding. No learning or forwarding to/from this port (default). 797 * 2 - Learning. Port is learning, but not forwarding. 798 * 3 - Forwarding. Port is learning and forwarding. 799 * Access: RW 800 */ 801 MLXSW_ITEM_BIT_ARRAY(reg, spms, state, 0x04, 0x400, 2); 802 803 static inline void mlxsw_reg_spms_pack(char *payload, u8 local_port) 804 { 805 MLXSW_REG_ZERO(spms, payload); 806 mlxsw_reg_spms_local_port_set(payload, local_port); 807 } 808 809 static inline void mlxsw_reg_spms_vid_pack(char *payload, u16 vid, 810 enum mlxsw_reg_spms_state state) 811 { 812 mlxsw_reg_spms_state_set(payload, vid, state); 813 } 814 815 /* SPVID - Switch Port VID 816 * ----------------------- 817 * The switch port VID configures the default VID for a port. 818 */ 819 #define MLXSW_REG_SPVID_ID 0x200E 820 #define MLXSW_REG_SPVID_LEN 0x08 821 822 MLXSW_REG_DEFINE(spvid, MLXSW_REG_SPVID_ID, MLXSW_REG_SPVID_LEN); 823 824 /* reg_spvid_tport 825 * Port is tunnel port. 826 * Reserved when SwitchX/-2 or Spectrum-1. 827 * Access: Index 828 */ 829 MLXSW_ITEM32(reg, spvid, tport, 0x00, 24, 1); 830 831 /* reg_spvid_local_port 832 * When tport = 0: Local port number. Not supported for CPU port. 833 * When tport = 1: Tunnel port. 834 * Access: Index 835 */ 836 MLXSW_ITEM32(reg, spvid, local_port, 0x00, 16, 8); 837 838 /* reg_spvid_sub_port 839 * Virtual port within the physical port. 840 * Should be set to 0 when virtual ports are not enabled on the port. 841 * Access: Index 842 */ 843 MLXSW_ITEM32(reg, spvid, sub_port, 0x00, 8, 8); 844 845 /* reg_spvid_egr_et_set 846 * When VLAN is pushed at ingress (for untagged packets or for 847 * QinQ push mode) then the EtherType is decided at the egress port. 848 * Reserved when Spectrum-1. 849 * Access: RW 850 */ 851 MLXSW_ITEM32(reg, spvid, egr_et_set, 0x04, 24, 1); 852 853 /* reg_spvid_et_vlan 854 * EtherType used for when VLAN is pushed at ingress (for untagged 855 * packets or for QinQ push mode). 856 * 0: ether_type0 - (default) 857 * 1: ether_type1 858 * 2: ether_type2 - Reserved when Spectrum-1, supported by Spectrum-2 859 * Ethertype IDs are configured by SVER. 860 * Reserved when egr_et_set = 1. 861 * Access: RW 862 */ 863 MLXSW_ITEM32(reg, spvid, et_vlan, 0x04, 16, 2); 864 865 /* reg_spvid_pvid 866 * Port default VID 867 * Access: RW 868 */ 869 MLXSW_ITEM32(reg, spvid, pvid, 0x04, 0, 12); 870 871 static inline void mlxsw_reg_spvid_pack(char *payload, u8 local_port, u16 pvid, 872 u8 et_vlan) 873 { 874 MLXSW_REG_ZERO(spvid, payload); 875 mlxsw_reg_spvid_local_port_set(payload, local_port); 876 mlxsw_reg_spvid_pvid_set(payload, pvid); 877 mlxsw_reg_spvid_et_vlan_set(payload, et_vlan); 878 } 879 880 /* SPVM - Switch Port VLAN Membership 881 * ---------------------------------- 882 * The Switch Port VLAN Membership register configures the VLAN membership 883 * of a port in a VLAN denoted by VID. VLAN membership is managed per 884 * virtual port. The register can be used to add and remove VID(s) from a port. 885 */ 886 #define MLXSW_REG_SPVM_ID 0x200F 887 #define MLXSW_REG_SPVM_BASE_LEN 0x04 /* base length, without records */ 888 #define MLXSW_REG_SPVM_REC_LEN 0x04 /* record length */ 889 #define MLXSW_REG_SPVM_REC_MAX_COUNT 255 890 #define MLXSW_REG_SPVM_LEN (MLXSW_REG_SPVM_BASE_LEN + \ 891 MLXSW_REG_SPVM_REC_LEN * MLXSW_REG_SPVM_REC_MAX_COUNT) 892 893 MLXSW_REG_DEFINE(spvm, MLXSW_REG_SPVM_ID, MLXSW_REG_SPVM_LEN); 894 895 /* reg_spvm_pt 896 * Priority tagged. If this bit is set, packets forwarded to the port with 897 * untagged VLAN membership (u bit is set) will be tagged with priority tag 898 * (VID=0) 899 * Access: RW 900 */ 901 MLXSW_ITEM32(reg, spvm, pt, 0x00, 31, 1); 902 903 /* reg_spvm_pte 904 * Priority Tagged Update Enable. On Write operations, if this bit is cleared, 905 * the pt bit will NOT be updated. To update the pt bit, pte must be set. 906 * Access: WO 907 */ 908 MLXSW_ITEM32(reg, spvm, pte, 0x00, 30, 1); 909 910 /* reg_spvm_local_port 911 * Local port number. 912 * Access: Index 913 */ 914 MLXSW_ITEM32(reg, spvm, local_port, 0x00, 16, 8); 915 916 /* reg_spvm_sub_port 917 * Virtual port within the physical port. 918 * Should be set to 0 when virtual ports are not enabled on the port. 919 * Access: Index 920 */ 921 MLXSW_ITEM32(reg, spvm, sub_port, 0x00, 8, 8); 922 923 /* reg_spvm_num_rec 924 * Number of records to update. Each record contains: i, e, u, vid. 925 * Access: OP 926 */ 927 MLXSW_ITEM32(reg, spvm, num_rec, 0x00, 0, 8); 928 929 /* reg_spvm_rec_i 930 * Ingress membership in VLAN ID. 931 * Access: Index 932 */ 933 MLXSW_ITEM32_INDEXED(reg, spvm, rec_i, 934 MLXSW_REG_SPVM_BASE_LEN, 14, 1, 935 MLXSW_REG_SPVM_REC_LEN, 0, false); 936 937 /* reg_spvm_rec_e 938 * Egress membership in VLAN ID. 939 * Access: Index 940 */ 941 MLXSW_ITEM32_INDEXED(reg, spvm, rec_e, 942 MLXSW_REG_SPVM_BASE_LEN, 13, 1, 943 MLXSW_REG_SPVM_REC_LEN, 0, false); 944 945 /* reg_spvm_rec_u 946 * Untagged - port is an untagged member - egress transmission uses untagged 947 * frames on VID<n> 948 * Access: Index 949 */ 950 MLXSW_ITEM32_INDEXED(reg, spvm, rec_u, 951 MLXSW_REG_SPVM_BASE_LEN, 12, 1, 952 MLXSW_REG_SPVM_REC_LEN, 0, false); 953 954 /* reg_spvm_rec_vid 955 * Egress membership in VLAN ID. 956 * Access: Index 957 */ 958 MLXSW_ITEM32_INDEXED(reg, spvm, rec_vid, 959 MLXSW_REG_SPVM_BASE_LEN, 0, 12, 960 MLXSW_REG_SPVM_REC_LEN, 0, false); 961 962 static inline void mlxsw_reg_spvm_pack(char *payload, u8 local_port, 963 u16 vid_begin, u16 vid_end, 964 bool is_member, bool untagged) 965 { 966 int size = vid_end - vid_begin + 1; 967 int i; 968 969 MLXSW_REG_ZERO(spvm, payload); 970 mlxsw_reg_spvm_local_port_set(payload, local_port); 971 mlxsw_reg_spvm_num_rec_set(payload, size); 972 973 for (i = 0; i < size; i++) { 974 mlxsw_reg_spvm_rec_i_set(payload, i, is_member); 975 mlxsw_reg_spvm_rec_e_set(payload, i, is_member); 976 mlxsw_reg_spvm_rec_u_set(payload, i, untagged); 977 mlxsw_reg_spvm_rec_vid_set(payload, i, vid_begin + i); 978 } 979 } 980 981 /* SPAFT - Switch Port Acceptable Frame Types 982 * ------------------------------------------ 983 * The Switch Port Acceptable Frame Types register configures the frame 984 * admittance of the port. 985 */ 986 #define MLXSW_REG_SPAFT_ID 0x2010 987 #define MLXSW_REG_SPAFT_LEN 0x08 988 989 MLXSW_REG_DEFINE(spaft, MLXSW_REG_SPAFT_ID, MLXSW_REG_SPAFT_LEN); 990 991 /* reg_spaft_local_port 992 * Local port number. 993 * Access: Index 994 * 995 * Note: CPU port is not supported (all tag types are allowed). 996 */ 997 MLXSW_ITEM32(reg, spaft, local_port, 0x00, 16, 8); 998 999 /* reg_spaft_sub_port 1000 * Virtual port within the physical port. 1001 * Should be set to 0 when virtual ports are not enabled on the port. 1002 * Access: RW 1003 */ 1004 MLXSW_ITEM32(reg, spaft, sub_port, 0x00, 8, 8); 1005 1006 /* reg_spaft_allow_untagged 1007 * When set, untagged frames on the ingress are allowed (default). 1008 * Access: RW 1009 */ 1010 MLXSW_ITEM32(reg, spaft, allow_untagged, 0x04, 31, 1); 1011 1012 /* reg_spaft_allow_prio_tagged 1013 * When set, priority tagged frames on the ingress are allowed (default). 1014 * Access: RW 1015 */ 1016 MLXSW_ITEM32(reg, spaft, allow_prio_tagged, 0x04, 30, 1); 1017 1018 /* reg_spaft_allow_tagged 1019 * When set, tagged frames on the ingress are allowed (default). 1020 * Access: RW 1021 */ 1022 MLXSW_ITEM32(reg, spaft, allow_tagged, 0x04, 29, 1); 1023 1024 static inline void mlxsw_reg_spaft_pack(char *payload, u8 local_port, 1025 bool allow_untagged) 1026 { 1027 MLXSW_REG_ZERO(spaft, payload); 1028 mlxsw_reg_spaft_local_port_set(payload, local_port); 1029 mlxsw_reg_spaft_allow_untagged_set(payload, allow_untagged); 1030 mlxsw_reg_spaft_allow_prio_tagged_set(payload, allow_untagged); 1031 mlxsw_reg_spaft_allow_tagged_set(payload, true); 1032 } 1033 1034 /* SFGC - Switch Flooding Group Configuration 1035 * ------------------------------------------ 1036 * The following register controls the association of flooding tables and MIDs 1037 * to packet types used for flooding. 1038 */ 1039 #define MLXSW_REG_SFGC_ID 0x2011 1040 #define MLXSW_REG_SFGC_LEN 0x10 1041 1042 MLXSW_REG_DEFINE(sfgc, MLXSW_REG_SFGC_ID, MLXSW_REG_SFGC_LEN); 1043 1044 enum mlxsw_reg_sfgc_type { 1045 MLXSW_REG_SFGC_TYPE_BROADCAST, 1046 MLXSW_REG_SFGC_TYPE_UNKNOWN_UNICAST, 1047 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV4, 1048 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_IPV6, 1049 MLXSW_REG_SFGC_TYPE_RESERVED, 1050 MLXSW_REG_SFGC_TYPE_UNREGISTERED_MULTICAST_NON_IP, 1051 MLXSW_REG_SFGC_TYPE_IPV4_LINK_LOCAL, 1052 MLXSW_REG_SFGC_TYPE_IPV6_ALL_HOST, 1053 MLXSW_REG_SFGC_TYPE_MAX, 1054 }; 1055 1056 /* reg_sfgc_type 1057 * The traffic type to reach the flooding table. 1058 * Access: Index 1059 */ 1060 MLXSW_ITEM32(reg, sfgc, type, 0x00, 0, 4); 1061 1062 enum mlxsw_reg_sfgc_bridge_type { 1063 MLXSW_REG_SFGC_BRIDGE_TYPE_1Q_FID = 0, 1064 MLXSW_REG_SFGC_BRIDGE_TYPE_VFID = 1, 1065 }; 1066 1067 /* reg_sfgc_bridge_type 1068 * Access: Index 1069 * 1070 * Note: SwitchX-2 only supports 802.1Q mode. 1071 */ 1072 MLXSW_ITEM32(reg, sfgc, bridge_type, 0x04, 24, 3); 1073 1074 enum mlxsw_flood_table_type { 1075 MLXSW_REG_SFGC_TABLE_TYPE_VID = 1, 1076 MLXSW_REG_SFGC_TABLE_TYPE_SINGLE = 2, 1077 MLXSW_REG_SFGC_TABLE_TYPE_ANY = 0, 1078 MLXSW_REG_SFGC_TABLE_TYPE_FID_OFFSET = 3, 1079 MLXSW_REG_SFGC_TABLE_TYPE_FID = 4, 1080 }; 1081 1082 /* reg_sfgc_table_type 1083 * See mlxsw_flood_table_type 1084 * Access: RW 1085 * 1086 * Note: FID offset and FID types are not supported in SwitchX-2. 1087 */ 1088 MLXSW_ITEM32(reg, sfgc, table_type, 0x04, 16, 3); 1089 1090 /* reg_sfgc_flood_table 1091 * Flooding table index to associate with the specific type on the specific 1092 * switch partition. 1093 * Access: RW 1094 */ 1095 MLXSW_ITEM32(reg, sfgc, flood_table, 0x04, 0, 6); 1096 1097 /* reg_sfgc_mid 1098 * The multicast ID for the swid. Not supported for Spectrum 1099 * Access: RW 1100 */ 1101 MLXSW_ITEM32(reg, sfgc, mid, 0x08, 0, 16); 1102 1103 /* reg_sfgc_counter_set_type 1104 * Counter Set Type for flow counters. 1105 * Access: RW 1106 */ 1107 MLXSW_ITEM32(reg, sfgc, counter_set_type, 0x0C, 24, 8); 1108 1109 /* reg_sfgc_counter_index 1110 * Counter Index for flow counters. 1111 * Access: RW 1112 */ 1113 MLXSW_ITEM32(reg, sfgc, counter_index, 0x0C, 0, 24); 1114 1115 static inline void 1116 mlxsw_reg_sfgc_pack(char *payload, enum mlxsw_reg_sfgc_type type, 1117 enum mlxsw_reg_sfgc_bridge_type bridge_type, 1118 enum mlxsw_flood_table_type table_type, 1119 unsigned int flood_table) 1120 { 1121 MLXSW_REG_ZERO(sfgc, payload); 1122 mlxsw_reg_sfgc_type_set(payload, type); 1123 mlxsw_reg_sfgc_bridge_type_set(payload, bridge_type); 1124 mlxsw_reg_sfgc_table_type_set(payload, table_type); 1125 mlxsw_reg_sfgc_flood_table_set(payload, flood_table); 1126 mlxsw_reg_sfgc_mid_set(payload, MLXSW_PORT_MID); 1127 } 1128 1129 /* SFTR - Switch Flooding Table Register 1130 * ------------------------------------- 1131 * The switch flooding table is used for flooding packet replication. The table 1132 * defines a bit mask of ports for packet replication. 1133 */ 1134 #define MLXSW_REG_SFTR_ID 0x2012 1135 #define MLXSW_REG_SFTR_LEN 0x420 1136 1137 MLXSW_REG_DEFINE(sftr, MLXSW_REG_SFTR_ID, MLXSW_REG_SFTR_LEN); 1138 1139 /* reg_sftr_swid 1140 * Switch partition ID with which to associate the port. 1141 * Access: Index 1142 */ 1143 MLXSW_ITEM32(reg, sftr, swid, 0x00, 24, 8); 1144 1145 /* reg_sftr_flood_table 1146 * Flooding table index to associate with the specific type on the specific 1147 * switch partition. 1148 * Access: Index 1149 */ 1150 MLXSW_ITEM32(reg, sftr, flood_table, 0x00, 16, 6); 1151 1152 /* reg_sftr_index 1153 * Index. Used as an index into the Flooding Table in case the table is 1154 * configured to use VID / FID or FID Offset. 1155 * Access: Index 1156 */ 1157 MLXSW_ITEM32(reg, sftr, index, 0x00, 0, 16); 1158 1159 /* reg_sftr_table_type 1160 * See mlxsw_flood_table_type 1161 * Access: RW 1162 */ 1163 MLXSW_ITEM32(reg, sftr, table_type, 0x04, 16, 3); 1164 1165 /* reg_sftr_range 1166 * Range of entries to update 1167 * Access: Index 1168 */ 1169 MLXSW_ITEM32(reg, sftr, range, 0x04, 0, 16); 1170 1171 /* reg_sftr_port 1172 * Local port membership (1 bit per port). 1173 * Access: RW 1174 */ 1175 MLXSW_ITEM_BIT_ARRAY(reg, sftr, port, 0x20, 0x20, 1); 1176 1177 /* reg_sftr_cpu_port_mask 1178 * CPU port mask (1 bit per port). 1179 * Access: W 1180 */ 1181 MLXSW_ITEM_BIT_ARRAY(reg, sftr, port_mask, 0x220, 0x20, 1); 1182 1183 static inline void mlxsw_reg_sftr_pack(char *payload, 1184 unsigned int flood_table, 1185 unsigned int index, 1186 enum mlxsw_flood_table_type table_type, 1187 unsigned int range, u8 port, bool set) 1188 { 1189 MLXSW_REG_ZERO(sftr, payload); 1190 mlxsw_reg_sftr_swid_set(payload, 0); 1191 mlxsw_reg_sftr_flood_table_set(payload, flood_table); 1192 mlxsw_reg_sftr_index_set(payload, index); 1193 mlxsw_reg_sftr_table_type_set(payload, table_type); 1194 mlxsw_reg_sftr_range_set(payload, range); 1195 mlxsw_reg_sftr_port_set(payload, port, set); 1196 mlxsw_reg_sftr_port_mask_set(payload, port, 1); 1197 } 1198 1199 /* SFDF - Switch Filtering DB Flush 1200 * -------------------------------- 1201 * The switch filtering DB flush register is used to flush the FDB. 1202 * Note that FDB notifications are flushed as well. 1203 */ 1204 #define MLXSW_REG_SFDF_ID 0x2013 1205 #define MLXSW_REG_SFDF_LEN 0x14 1206 1207 MLXSW_REG_DEFINE(sfdf, MLXSW_REG_SFDF_ID, MLXSW_REG_SFDF_LEN); 1208 1209 /* reg_sfdf_swid 1210 * Switch partition ID. 1211 * Access: Index 1212 */ 1213 MLXSW_ITEM32(reg, sfdf, swid, 0x00, 24, 8); 1214 1215 enum mlxsw_reg_sfdf_flush_type { 1216 MLXSW_REG_SFDF_FLUSH_PER_SWID, 1217 MLXSW_REG_SFDF_FLUSH_PER_FID, 1218 MLXSW_REG_SFDF_FLUSH_PER_PORT, 1219 MLXSW_REG_SFDF_FLUSH_PER_PORT_AND_FID, 1220 MLXSW_REG_SFDF_FLUSH_PER_LAG, 1221 MLXSW_REG_SFDF_FLUSH_PER_LAG_AND_FID, 1222 MLXSW_REG_SFDF_FLUSH_PER_NVE, 1223 MLXSW_REG_SFDF_FLUSH_PER_NVE_AND_FID, 1224 }; 1225 1226 /* reg_sfdf_flush_type 1227 * Flush type. 1228 * 0 - All SWID dynamic entries are flushed. 1229 * 1 - All FID dynamic entries are flushed. 1230 * 2 - All dynamic entries pointing to port are flushed. 1231 * 3 - All FID dynamic entries pointing to port are flushed. 1232 * 4 - All dynamic entries pointing to LAG are flushed. 1233 * 5 - All FID dynamic entries pointing to LAG are flushed. 1234 * 6 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are 1235 * flushed. 1236 * 7 - All entries of type "Unicast Tunnel" or "Multicast Tunnel" are 1237 * flushed, per FID. 1238 * Access: RW 1239 */ 1240 MLXSW_ITEM32(reg, sfdf, flush_type, 0x04, 28, 4); 1241 1242 /* reg_sfdf_flush_static 1243 * Static. 1244 * 0 - Flush only dynamic entries. 1245 * 1 - Flush both dynamic and static entries. 1246 * Access: RW 1247 */ 1248 MLXSW_ITEM32(reg, sfdf, flush_static, 0x04, 24, 1); 1249 1250 static inline void mlxsw_reg_sfdf_pack(char *payload, 1251 enum mlxsw_reg_sfdf_flush_type type) 1252 { 1253 MLXSW_REG_ZERO(sfdf, payload); 1254 mlxsw_reg_sfdf_flush_type_set(payload, type); 1255 mlxsw_reg_sfdf_flush_static_set(payload, true); 1256 } 1257 1258 /* reg_sfdf_fid 1259 * FID to flush. 1260 * Access: RW 1261 */ 1262 MLXSW_ITEM32(reg, sfdf, fid, 0x0C, 0, 16); 1263 1264 /* reg_sfdf_system_port 1265 * Port to flush. 1266 * Access: RW 1267 */ 1268 MLXSW_ITEM32(reg, sfdf, system_port, 0x0C, 0, 16); 1269 1270 /* reg_sfdf_port_fid_system_port 1271 * Port to flush, pointed to by FID. 1272 * Access: RW 1273 */ 1274 MLXSW_ITEM32(reg, sfdf, port_fid_system_port, 0x08, 0, 16); 1275 1276 /* reg_sfdf_lag_id 1277 * LAG ID to flush. 1278 * Access: RW 1279 */ 1280 MLXSW_ITEM32(reg, sfdf, lag_id, 0x0C, 0, 10); 1281 1282 /* reg_sfdf_lag_fid_lag_id 1283 * LAG ID to flush, pointed to by FID. 1284 * Access: RW 1285 */ 1286 MLXSW_ITEM32(reg, sfdf, lag_fid_lag_id, 0x08, 0, 10); 1287 1288 /* SLDR - Switch LAG Descriptor Register 1289 * ----------------------------------------- 1290 * The switch LAG descriptor register is populated by LAG descriptors. 1291 * Each LAG descriptor is indexed by lag_id. The LAG ID runs from 0 to 1292 * max_lag-1. 1293 */ 1294 #define MLXSW_REG_SLDR_ID 0x2014 1295 #define MLXSW_REG_SLDR_LEN 0x0C /* counting in only one port in list */ 1296 1297 MLXSW_REG_DEFINE(sldr, MLXSW_REG_SLDR_ID, MLXSW_REG_SLDR_LEN); 1298 1299 enum mlxsw_reg_sldr_op { 1300 /* Indicates a creation of a new LAG-ID, lag_id must be valid */ 1301 MLXSW_REG_SLDR_OP_LAG_CREATE, 1302 MLXSW_REG_SLDR_OP_LAG_DESTROY, 1303 /* Ports that appear in the list have the Distributor enabled */ 1304 MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST, 1305 /* Removes ports from the disributor list */ 1306 MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST, 1307 }; 1308 1309 /* reg_sldr_op 1310 * Operation. 1311 * Access: RW 1312 */ 1313 MLXSW_ITEM32(reg, sldr, op, 0x00, 29, 3); 1314 1315 /* reg_sldr_lag_id 1316 * LAG identifier. The lag_id is the index into the LAG descriptor table. 1317 * Access: Index 1318 */ 1319 MLXSW_ITEM32(reg, sldr, lag_id, 0x00, 0, 10); 1320 1321 static inline void mlxsw_reg_sldr_lag_create_pack(char *payload, u8 lag_id) 1322 { 1323 MLXSW_REG_ZERO(sldr, payload); 1324 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_CREATE); 1325 mlxsw_reg_sldr_lag_id_set(payload, lag_id); 1326 } 1327 1328 static inline void mlxsw_reg_sldr_lag_destroy_pack(char *payload, u8 lag_id) 1329 { 1330 MLXSW_REG_ZERO(sldr, payload); 1331 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_DESTROY); 1332 mlxsw_reg_sldr_lag_id_set(payload, lag_id); 1333 } 1334 1335 /* reg_sldr_num_ports 1336 * The number of member ports of the LAG. 1337 * Reserved for Create / Destroy operations 1338 * For Add / Remove operations - indicates the number of ports in the list. 1339 * Access: RW 1340 */ 1341 MLXSW_ITEM32(reg, sldr, num_ports, 0x04, 24, 8); 1342 1343 /* reg_sldr_system_port 1344 * System port. 1345 * Access: RW 1346 */ 1347 MLXSW_ITEM32_INDEXED(reg, sldr, system_port, 0x08, 0, 16, 4, 0, false); 1348 1349 static inline void mlxsw_reg_sldr_lag_add_port_pack(char *payload, u8 lag_id, 1350 u8 local_port) 1351 { 1352 MLXSW_REG_ZERO(sldr, payload); 1353 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_ADD_PORT_LIST); 1354 mlxsw_reg_sldr_lag_id_set(payload, lag_id); 1355 mlxsw_reg_sldr_num_ports_set(payload, 1); 1356 mlxsw_reg_sldr_system_port_set(payload, 0, local_port); 1357 } 1358 1359 static inline void mlxsw_reg_sldr_lag_remove_port_pack(char *payload, u8 lag_id, 1360 u8 local_port) 1361 { 1362 MLXSW_REG_ZERO(sldr, payload); 1363 mlxsw_reg_sldr_op_set(payload, MLXSW_REG_SLDR_OP_LAG_REMOVE_PORT_LIST); 1364 mlxsw_reg_sldr_lag_id_set(payload, lag_id); 1365 mlxsw_reg_sldr_num_ports_set(payload, 1); 1366 mlxsw_reg_sldr_system_port_set(payload, 0, local_port); 1367 } 1368 1369 /* SLCR - Switch LAG Configuration 2 Register 1370 * ------------------------------------------- 1371 * The Switch LAG Configuration register is used for configuring the 1372 * LAG properties of the switch. 1373 */ 1374 #define MLXSW_REG_SLCR_ID 0x2015 1375 #define MLXSW_REG_SLCR_LEN 0x10 1376 1377 MLXSW_REG_DEFINE(slcr, MLXSW_REG_SLCR_ID, MLXSW_REG_SLCR_LEN); 1378 1379 enum mlxsw_reg_slcr_pp { 1380 /* Global Configuration (for all ports) */ 1381 MLXSW_REG_SLCR_PP_GLOBAL, 1382 /* Per port configuration, based on local_port field */ 1383 MLXSW_REG_SLCR_PP_PER_PORT, 1384 }; 1385 1386 /* reg_slcr_pp 1387 * Per Port Configuration 1388 * Note: Reading at Global mode results in reading port 1 configuration. 1389 * Access: Index 1390 */ 1391 MLXSW_ITEM32(reg, slcr, pp, 0x00, 24, 1); 1392 1393 /* reg_slcr_local_port 1394 * Local port number 1395 * Supported from CPU port 1396 * Not supported from router port 1397 * Reserved when pp = Global Configuration 1398 * Access: Index 1399 */ 1400 MLXSW_ITEM32(reg, slcr, local_port, 0x00, 16, 8); 1401 1402 enum mlxsw_reg_slcr_type { 1403 MLXSW_REG_SLCR_TYPE_CRC, /* default */ 1404 MLXSW_REG_SLCR_TYPE_XOR, 1405 MLXSW_REG_SLCR_TYPE_RANDOM, 1406 }; 1407 1408 /* reg_slcr_type 1409 * Hash type 1410 * Access: RW 1411 */ 1412 MLXSW_ITEM32(reg, slcr, type, 0x00, 0, 4); 1413 1414 /* Ingress port */ 1415 #define MLXSW_REG_SLCR_LAG_HASH_IN_PORT BIT(0) 1416 /* SMAC - for IPv4 and IPv6 packets */ 1417 #define MLXSW_REG_SLCR_LAG_HASH_SMAC_IP BIT(1) 1418 /* SMAC - for non-IP packets */ 1419 #define MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP BIT(2) 1420 #define MLXSW_REG_SLCR_LAG_HASH_SMAC \ 1421 (MLXSW_REG_SLCR_LAG_HASH_SMAC_IP | \ 1422 MLXSW_REG_SLCR_LAG_HASH_SMAC_NONIP) 1423 /* DMAC - for IPv4 and IPv6 packets */ 1424 #define MLXSW_REG_SLCR_LAG_HASH_DMAC_IP BIT(3) 1425 /* DMAC - for non-IP packets */ 1426 #define MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP BIT(4) 1427 #define MLXSW_REG_SLCR_LAG_HASH_DMAC \ 1428 (MLXSW_REG_SLCR_LAG_HASH_DMAC_IP | \ 1429 MLXSW_REG_SLCR_LAG_HASH_DMAC_NONIP) 1430 /* Ethertype - for IPv4 and IPv6 packets */ 1431 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP BIT(5) 1432 /* Ethertype - for non-IP packets */ 1433 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP BIT(6) 1434 #define MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE \ 1435 (MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_IP | \ 1436 MLXSW_REG_SLCR_LAG_HASH_ETHERTYPE_NONIP) 1437 /* VLAN ID - for IPv4 and IPv6 packets */ 1438 #define MLXSW_REG_SLCR_LAG_HASH_VLANID_IP BIT(7) 1439 /* VLAN ID - for non-IP packets */ 1440 #define MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP BIT(8) 1441 #define MLXSW_REG_SLCR_LAG_HASH_VLANID \ 1442 (MLXSW_REG_SLCR_LAG_HASH_VLANID_IP | \ 1443 MLXSW_REG_SLCR_LAG_HASH_VLANID_NONIP) 1444 /* Source IP address (can be IPv4 or IPv6) */ 1445 #define MLXSW_REG_SLCR_LAG_HASH_SIP BIT(9) 1446 /* Destination IP address (can be IPv4 or IPv6) */ 1447 #define MLXSW_REG_SLCR_LAG_HASH_DIP BIT(10) 1448 /* TCP/UDP source port */ 1449 #define MLXSW_REG_SLCR_LAG_HASH_SPORT BIT(11) 1450 /* TCP/UDP destination port*/ 1451 #define MLXSW_REG_SLCR_LAG_HASH_DPORT BIT(12) 1452 /* IPv4 Protocol/IPv6 Next Header */ 1453 #define MLXSW_REG_SLCR_LAG_HASH_IPPROTO BIT(13) 1454 /* IPv6 Flow label */ 1455 #define MLXSW_REG_SLCR_LAG_HASH_FLOWLABEL BIT(14) 1456 /* SID - FCoE source ID */ 1457 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_SID BIT(15) 1458 /* DID - FCoE destination ID */ 1459 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_DID BIT(16) 1460 /* OXID - FCoE originator exchange ID */ 1461 #define MLXSW_REG_SLCR_LAG_HASH_FCOE_OXID BIT(17) 1462 /* Destination QP number - for RoCE packets */ 1463 #define MLXSW_REG_SLCR_LAG_HASH_ROCE_DQP BIT(19) 1464 1465 /* reg_slcr_lag_hash 1466 * LAG hashing configuration. This is a bitmask, in which each set 1467 * bit includes the corresponding item in the LAG hash calculation. 1468 * The default lag_hash contains SMAC, DMAC, VLANID and 1469 * Ethertype (for all packet types). 1470 * Access: RW 1471 */ 1472 MLXSW_ITEM32(reg, slcr, lag_hash, 0x04, 0, 20); 1473 1474 /* reg_slcr_seed 1475 * LAG seed value. The seed is the same for all ports. 1476 * Access: RW 1477 */ 1478 MLXSW_ITEM32(reg, slcr, seed, 0x08, 0, 32); 1479 1480 static inline void mlxsw_reg_slcr_pack(char *payload, u16 lag_hash, u32 seed) 1481 { 1482 MLXSW_REG_ZERO(slcr, payload); 1483 mlxsw_reg_slcr_pp_set(payload, MLXSW_REG_SLCR_PP_GLOBAL); 1484 mlxsw_reg_slcr_type_set(payload, MLXSW_REG_SLCR_TYPE_CRC); 1485 mlxsw_reg_slcr_lag_hash_set(payload, lag_hash); 1486 mlxsw_reg_slcr_seed_set(payload, seed); 1487 } 1488 1489 /* SLCOR - Switch LAG Collector Register 1490 * ------------------------------------- 1491 * The Switch LAG Collector register controls the Local Port membership 1492 * in a LAG and enablement of the collector. 1493 */ 1494 #define MLXSW_REG_SLCOR_ID 0x2016 1495 #define MLXSW_REG_SLCOR_LEN 0x10 1496 1497 MLXSW_REG_DEFINE(slcor, MLXSW_REG_SLCOR_ID, MLXSW_REG_SLCOR_LEN); 1498 1499 enum mlxsw_reg_slcor_col { 1500 /* Port is added with collector disabled */ 1501 MLXSW_REG_SLCOR_COL_LAG_ADD_PORT, 1502 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED, 1503 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_DISABLED, 1504 MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT, 1505 }; 1506 1507 /* reg_slcor_col 1508 * Collector configuration 1509 * Access: RW 1510 */ 1511 MLXSW_ITEM32(reg, slcor, col, 0x00, 30, 2); 1512 1513 /* reg_slcor_local_port 1514 * Local port number 1515 * Not supported for CPU port 1516 * Access: Index 1517 */ 1518 MLXSW_ITEM32(reg, slcor, local_port, 0x00, 16, 8); 1519 1520 /* reg_slcor_lag_id 1521 * LAG Identifier. Index into the LAG descriptor table. 1522 * Access: Index 1523 */ 1524 MLXSW_ITEM32(reg, slcor, lag_id, 0x00, 0, 10); 1525 1526 /* reg_slcor_port_index 1527 * Port index in the LAG list. Only valid on Add Port to LAG col. 1528 * Valid range is from 0 to cap_max_lag_members-1 1529 * Access: RW 1530 */ 1531 MLXSW_ITEM32(reg, slcor, port_index, 0x04, 0, 10); 1532 1533 static inline void mlxsw_reg_slcor_pack(char *payload, 1534 u8 local_port, u16 lag_id, 1535 enum mlxsw_reg_slcor_col col) 1536 { 1537 MLXSW_REG_ZERO(slcor, payload); 1538 mlxsw_reg_slcor_col_set(payload, col); 1539 mlxsw_reg_slcor_local_port_set(payload, local_port); 1540 mlxsw_reg_slcor_lag_id_set(payload, lag_id); 1541 } 1542 1543 static inline void mlxsw_reg_slcor_port_add_pack(char *payload, 1544 u8 local_port, u16 lag_id, 1545 u8 port_index) 1546 { 1547 mlxsw_reg_slcor_pack(payload, local_port, lag_id, 1548 MLXSW_REG_SLCOR_COL_LAG_ADD_PORT); 1549 mlxsw_reg_slcor_port_index_set(payload, port_index); 1550 } 1551 1552 static inline void mlxsw_reg_slcor_port_remove_pack(char *payload, 1553 u8 local_port, u16 lag_id) 1554 { 1555 mlxsw_reg_slcor_pack(payload, local_port, lag_id, 1556 MLXSW_REG_SLCOR_COL_LAG_REMOVE_PORT); 1557 } 1558 1559 static inline void mlxsw_reg_slcor_col_enable_pack(char *payload, 1560 u8 local_port, u16 lag_id) 1561 { 1562 mlxsw_reg_slcor_pack(payload, local_port, lag_id, 1563 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED); 1564 } 1565 1566 static inline void mlxsw_reg_slcor_col_disable_pack(char *payload, 1567 u8 local_port, u16 lag_id) 1568 { 1569 mlxsw_reg_slcor_pack(payload, local_port, lag_id, 1570 MLXSW_REG_SLCOR_COL_LAG_COLLECTOR_ENABLED); 1571 } 1572 1573 /* SPMLR - Switch Port MAC Learning Register 1574 * ----------------------------------------- 1575 * Controls the Switch MAC learning policy per port. 1576 */ 1577 #define MLXSW_REG_SPMLR_ID 0x2018 1578 #define MLXSW_REG_SPMLR_LEN 0x8 1579 1580 MLXSW_REG_DEFINE(spmlr, MLXSW_REG_SPMLR_ID, MLXSW_REG_SPMLR_LEN); 1581 1582 /* reg_spmlr_local_port 1583 * Local port number. 1584 * Access: Index 1585 */ 1586 MLXSW_ITEM32(reg, spmlr, local_port, 0x00, 16, 8); 1587 1588 /* reg_spmlr_sub_port 1589 * Virtual port within the physical port. 1590 * Should be set to 0 when virtual ports are not enabled on the port. 1591 * Access: Index 1592 */ 1593 MLXSW_ITEM32(reg, spmlr, sub_port, 0x00, 8, 8); 1594 1595 enum mlxsw_reg_spmlr_learn_mode { 1596 MLXSW_REG_SPMLR_LEARN_MODE_DISABLE = 0, 1597 MLXSW_REG_SPMLR_LEARN_MODE_ENABLE = 2, 1598 MLXSW_REG_SPMLR_LEARN_MODE_SEC = 3, 1599 }; 1600 1601 /* reg_spmlr_learn_mode 1602 * Learning mode on the port. 1603 * 0 - Learning disabled. 1604 * 2 - Learning enabled. 1605 * 3 - Security mode. 1606 * 1607 * In security mode the switch does not learn MACs on the port, but uses the 1608 * SMAC to see if it exists on another ingress port. If so, the packet is 1609 * classified as a bad packet and is discarded unless the software registers 1610 * to receive port security error packets usign HPKT. 1611 */ 1612 MLXSW_ITEM32(reg, spmlr, learn_mode, 0x04, 30, 2); 1613 1614 static inline void mlxsw_reg_spmlr_pack(char *payload, u8 local_port, 1615 enum mlxsw_reg_spmlr_learn_mode mode) 1616 { 1617 MLXSW_REG_ZERO(spmlr, payload); 1618 mlxsw_reg_spmlr_local_port_set(payload, local_port); 1619 mlxsw_reg_spmlr_sub_port_set(payload, 0); 1620 mlxsw_reg_spmlr_learn_mode_set(payload, mode); 1621 } 1622 1623 /* SVFA - Switch VID to FID Allocation Register 1624 * -------------------------------------------- 1625 * Controls the VID to FID mapping and {Port, VID} to FID mapping for 1626 * virtualized ports. 1627 */ 1628 #define MLXSW_REG_SVFA_ID 0x201C 1629 #define MLXSW_REG_SVFA_LEN 0x10 1630 1631 MLXSW_REG_DEFINE(svfa, MLXSW_REG_SVFA_ID, MLXSW_REG_SVFA_LEN); 1632 1633 /* reg_svfa_swid 1634 * Switch partition ID. 1635 * Access: Index 1636 */ 1637 MLXSW_ITEM32(reg, svfa, swid, 0x00, 24, 8); 1638 1639 /* reg_svfa_local_port 1640 * Local port number. 1641 * Access: Index 1642 * 1643 * Note: Reserved for 802.1Q FIDs. 1644 */ 1645 MLXSW_ITEM32(reg, svfa, local_port, 0x00, 16, 8); 1646 1647 enum mlxsw_reg_svfa_mt { 1648 MLXSW_REG_SVFA_MT_VID_TO_FID, 1649 MLXSW_REG_SVFA_MT_PORT_VID_TO_FID, 1650 }; 1651 1652 /* reg_svfa_mapping_table 1653 * Mapping table: 1654 * 0 - VID to FID 1655 * 1 - {Port, VID} to FID 1656 * Access: Index 1657 * 1658 * Note: Reserved for SwitchX-2. 1659 */ 1660 MLXSW_ITEM32(reg, svfa, mapping_table, 0x00, 8, 3); 1661 1662 /* reg_svfa_v 1663 * Valid. 1664 * Valid if set. 1665 * Access: RW 1666 * 1667 * Note: Reserved for SwitchX-2. 1668 */ 1669 MLXSW_ITEM32(reg, svfa, v, 0x00, 0, 1); 1670 1671 /* reg_svfa_fid 1672 * Filtering ID. 1673 * Access: RW 1674 */ 1675 MLXSW_ITEM32(reg, svfa, fid, 0x04, 16, 16); 1676 1677 /* reg_svfa_vid 1678 * VLAN ID. 1679 * Access: Index 1680 */ 1681 MLXSW_ITEM32(reg, svfa, vid, 0x04, 0, 12); 1682 1683 /* reg_svfa_counter_set_type 1684 * Counter set type for flow counters. 1685 * Access: RW 1686 * 1687 * Note: Reserved for SwitchX-2. 1688 */ 1689 MLXSW_ITEM32(reg, svfa, counter_set_type, 0x08, 24, 8); 1690 1691 /* reg_svfa_counter_index 1692 * Counter index for flow counters. 1693 * Access: RW 1694 * 1695 * Note: Reserved for SwitchX-2. 1696 */ 1697 MLXSW_ITEM32(reg, svfa, counter_index, 0x08, 0, 24); 1698 1699 static inline void mlxsw_reg_svfa_pack(char *payload, u8 local_port, 1700 enum mlxsw_reg_svfa_mt mt, bool valid, 1701 u16 fid, u16 vid) 1702 { 1703 MLXSW_REG_ZERO(svfa, payload); 1704 local_port = mt == MLXSW_REG_SVFA_MT_VID_TO_FID ? 0 : local_port; 1705 mlxsw_reg_svfa_swid_set(payload, 0); 1706 mlxsw_reg_svfa_local_port_set(payload, local_port); 1707 mlxsw_reg_svfa_mapping_table_set(payload, mt); 1708 mlxsw_reg_svfa_v_set(payload, valid); 1709 mlxsw_reg_svfa_fid_set(payload, fid); 1710 mlxsw_reg_svfa_vid_set(payload, vid); 1711 } 1712 1713 /* SPVTR - Switch Port VLAN Stacking Register 1714 * ------------------------------------------ 1715 * The Switch Port VLAN Stacking register configures the VLAN mode of the port 1716 * to enable VLAN stacking. 1717 */ 1718 #define MLXSW_REG_SPVTR_ID 0x201D 1719 #define MLXSW_REG_SPVTR_LEN 0x10 1720 1721 MLXSW_REG_DEFINE(spvtr, MLXSW_REG_SPVTR_ID, MLXSW_REG_SPVTR_LEN); 1722 1723 /* reg_spvtr_tport 1724 * Port is tunnel port. 1725 * Access: Index 1726 * 1727 * Note: Reserved when SwitchX/-2 or Spectrum-1. 1728 */ 1729 MLXSW_ITEM32(reg, spvtr, tport, 0x00, 24, 1); 1730 1731 /* reg_spvtr_local_port 1732 * When tport = 0: local port number (Not supported from/to CPU). 1733 * When tport = 1: tunnel port. 1734 * Access: Index 1735 */ 1736 MLXSW_ITEM32(reg, spvtr, local_port, 0x00, 16, 8); 1737 1738 /* reg_spvtr_ippe 1739 * Ingress Port Prio Mode Update Enable. 1740 * When set, the Port Prio Mode is updated with the provided ipprio_mode field. 1741 * Reserved on Get operations. 1742 * Access: OP 1743 */ 1744 MLXSW_ITEM32(reg, spvtr, ippe, 0x04, 31, 1); 1745 1746 /* reg_spvtr_ipve 1747 * Ingress Port VID Mode Update Enable. 1748 * When set, the Ingress Port VID Mode is updated with the provided ipvid_mode 1749 * field. 1750 * Reserved on Get operations. 1751 * Access: OP 1752 */ 1753 MLXSW_ITEM32(reg, spvtr, ipve, 0x04, 30, 1); 1754 1755 /* reg_spvtr_epve 1756 * Egress Port VID Mode Update Enable. 1757 * When set, the Egress Port VID Mode is updated with the provided epvid_mode 1758 * field. 1759 * Access: OP 1760 */ 1761 MLXSW_ITEM32(reg, spvtr, epve, 0x04, 29, 1); 1762 1763 /* reg_spvtr_ipprio_mode 1764 * Ingress Port Priority Mode. 1765 * This controls the PCP and DEI of the new outer VLAN 1766 * Note: for SwitchX/-2 the DEI is not affected. 1767 * 0: use port default PCP and DEI (configured by QPDPC). 1768 * 1: use C-VLAN PCP and DEI. 1769 * Has no effect when ipvid_mode = 0. 1770 * Reserved when tport = 1. 1771 * Access: RW 1772 */ 1773 MLXSW_ITEM32(reg, spvtr, ipprio_mode, 0x04, 20, 4); 1774 1775 enum mlxsw_reg_spvtr_ipvid_mode { 1776 /* IEEE Compliant PVID (default) */ 1777 MLXSW_REG_SPVTR_IPVID_MODE_IEEE_COMPLIANT_PVID, 1778 /* Push VLAN (for VLAN stacking, except prio tagged packets) */ 1779 MLXSW_REG_SPVTR_IPVID_MODE_PUSH_VLAN_FOR_UNTAGGED_PACKET, 1780 /* Always push VLAN (also for prio tagged packets) */ 1781 MLXSW_REG_SPVTR_IPVID_MODE_ALWAYS_PUSH_VLAN, 1782 }; 1783 1784 /* reg_spvtr_ipvid_mode 1785 * Ingress Port VLAN-ID Mode. 1786 * For Spectrum family, this affects the values of SPVM.i 1787 * Access: RW 1788 */ 1789 MLXSW_ITEM32(reg, spvtr, ipvid_mode, 0x04, 16, 4); 1790 1791 enum mlxsw_reg_spvtr_epvid_mode { 1792 /* IEEE Compliant VLAN membership */ 1793 MLXSW_REG_SPVTR_EPVID_MODE_IEEE_COMPLIANT_VLAN_MEMBERSHIP, 1794 /* Pop VLAN (for VLAN stacking) */ 1795 MLXSW_REG_SPVTR_EPVID_MODE_POP_VLAN, 1796 }; 1797 1798 /* reg_spvtr_epvid_mode 1799 * Egress Port VLAN-ID Mode. 1800 * For Spectrum family, this affects the values of SPVM.e,u,pt. 1801 * Access: WO 1802 */ 1803 MLXSW_ITEM32(reg, spvtr, epvid_mode, 0x04, 0, 4); 1804 1805 static inline void mlxsw_reg_spvtr_pack(char *payload, bool tport, 1806 u8 local_port, 1807 enum mlxsw_reg_spvtr_ipvid_mode ipvid_mode) 1808 { 1809 MLXSW_REG_ZERO(spvtr, payload); 1810 mlxsw_reg_spvtr_tport_set(payload, tport); 1811 mlxsw_reg_spvtr_local_port_set(payload, local_port); 1812 mlxsw_reg_spvtr_ipvid_mode_set(payload, ipvid_mode); 1813 mlxsw_reg_spvtr_ipve_set(payload, true); 1814 } 1815 1816 /* SVPE - Switch Virtual-Port Enabling Register 1817 * -------------------------------------------- 1818 * Enables port virtualization. 1819 */ 1820 #define MLXSW_REG_SVPE_ID 0x201E 1821 #define MLXSW_REG_SVPE_LEN 0x4 1822 1823 MLXSW_REG_DEFINE(svpe, MLXSW_REG_SVPE_ID, MLXSW_REG_SVPE_LEN); 1824 1825 /* reg_svpe_local_port 1826 * Local port number 1827 * Access: Index 1828 * 1829 * Note: CPU port is not supported (uses VLAN mode only). 1830 */ 1831 MLXSW_ITEM32(reg, svpe, local_port, 0x00, 16, 8); 1832 1833 /* reg_svpe_vp_en 1834 * Virtual port enable. 1835 * 0 - Disable, VLAN mode (VID to FID). 1836 * 1 - Enable, Virtual port mode ({Port, VID} to FID). 1837 * Access: RW 1838 */ 1839 MLXSW_ITEM32(reg, svpe, vp_en, 0x00, 8, 1); 1840 1841 static inline void mlxsw_reg_svpe_pack(char *payload, u8 local_port, 1842 bool enable) 1843 { 1844 MLXSW_REG_ZERO(svpe, payload); 1845 mlxsw_reg_svpe_local_port_set(payload, local_port); 1846 mlxsw_reg_svpe_vp_en_set(payload, enable); 1847 } 1848 1849 /* SFMR - Switch FID Management Register 1850 * ------------------------------------- 1851 * Creates and configures FIDs. 1852 */ 1853 #define MLXSW_REG_SFMR_ID 0x201F 1854 #define MLXSW_REG_SFMR_LEN 0x18 1855 1856 MLXSW_REG_DEFINE(sfmr, MLXSW_REG_SFMR_ID, MLXSW_REG_SFMR_LEN); 1857 1858 enum mlxsw_reg_sfmr_op { 1859 MLXSW_REG_SFMR_OP_CREATE_FID, 1860 MLXSW_REG_SFMR_OP_DESTROY_FID, 1861 }; 1862 1863 /* reg_sfmr_op 1864 * Operation. 1865 * 0 - Create or edit FID. 1866 * 1 - Destroy FID. 1867 * Access: WO 1868 */ 1869 MLXSW_ITEM32(reg, sfmr, op, 0x00, 24, 4); 1870 1871 /* reg_sfmr_fid 1872 * Filtering ID. 1873 * Access: Index 1874 */ 1875 MLXSW_ITEM32(reg, sfmr, fid, 0x00, 0, 16); 1876 1877 /* reg_sfmr_fid_offset 1878 * FID offset. 1879 * Used to point into the flooding table selected by SFGC register if 1880 * the table is of type FID-Offset. Otherwise, this field is reserved. 1881 * Access: RW 1882 */ 1883 MLXSW_ITEM32(reg, sfmr, fid_offset, 0x08, 0, 16); 1884 1885 /* reg_sfmr_vtfp 1886 * Valid Tunnel Flood Pointer. 1887 * If not set, then nve_tunnel_flood_ptr is reserved and considered NULL. 1888 * Access: RW 1889 * 1890 * Note: Reserved for 802.1Q FIDs. 1891 */ 1892 MLXSW_ITEM32(reg, sfmr, vtfp, 0x0C, 31, 1); 1893 1894 /* reg_sfmr_nve_tunnel_flood_ptr 1895 * Underlay Flooding and BC Pointer. 1896 * Used as a pointer to the first entry of the group based link lists of 1897 * flooding or BC entries (for NVE tunnels). 1898 * Access: RW 1899 */ 1900 MLXSW_ITEM32(reg, sfmr, nve_tunnel_flood_ptr, 0x0C, 0, 24); 1901 1902 /* reg_sfmr_vv 1903 * VNI Valid. 1904 * If not set, then vni is reserved. 1905 * Access: RW 1906 * 1907 * Note: Reserved for 802.1Q FIDs. 1908 */ 1909 MLXSW_ITEM32(reg, sfmr, vv, 0x10, 31, 1); 1910 1911 /* reg_sfmr_vni 1912 * Virtual Network Identifier. 1913 * Access: RW 1914 * 1915 * Note: A given VNI can only be assigned to one FID. 1916 */ 1917 MLXSW_ITEM32(reg, sfmr, vni, 0x10, 0, 24); 1918 1919 static inline void mlxsw_reg_sfmr_pack(char *payload, 1920 enum mlxsw_reg_sfmr_op op, u16 fid, 1921 u16 fid_offset) 1922 { 1923 MLXSW_REG_ZERO(sfmr, payload); 1924 mlxsw_reg_sfmr_op_set(payload, op); 1925 mlxsw_reg_sfmr_fid_set(payload, fid); 1926 mlxsw_reg_sfmr_fid_offset_set(payload, fid_offset); 1927 mlxsw_reg_sfmr_vtfp_set(payload, false); 1928 mlxsw_reg_sfmr_vv_set(payload, false); 1929 } 1930 1931 /* SPVMLR - Switch Port VLAN MAC Learning Register 1932 * ----------------------------------------------- 1933 * Controls the switch MAC learning policy per {Port, VID}. 1934 */ 1935 #define MLXSW_REG_SPVMLR_ID 0x2020 1936 #define MLXSW_REG_SPVMLR_BASE_LEN 0x04 /* base length, without records */ 1937 #define MLXSW_REG_SPVMLR_REC_LEN 0x04 /* record length */ 1938 #define MLXSW_REG_SPVMLR_REC_MAX_COUNT 255 1939 #define MLXSW_REG_SPVMLR_LEN (MLXSW_REG_SPVMLR_BASE_LEN + \ 1940 MLXSW_REG_SPVMLR_REC_LEN * \ 1941 MLXSW_REG_SPVMLR_REC_MAX_COUNT) 1942 1943 MLXSW_REG_DEFINE(spvmlr, MLXSW_REG_SPVMLR_ID, MLXSW_REG_SPVMLR_LEN); 1944 1945 /* reg_spvmlr_local_port 1946 * Local ingress port. 1947 * Access: Index 1948 * 1949 * Note: CPU port is not supported. 1950 */ 1951 MLXSW_ITEM32(reg, spvmlr, local_port, 0x00, 16, 8); 1952 1953 /* reg_spvmlr_num_rec 1954 * Number of records to update. 1955 * Access: OP 1956 */ 1957 MLXSW_ITEM32(reg, spvmlr, num_rec, 0x00, 0, 8); 1958 1959 /* reg_spvmlr_rec_learn_enable 1960 * 0 - Disable learning for {Port, VID}. 1961 * 1 - Enable learning for {Port, VID}. 1962 * Access: RW 1963 */ 1964 MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_learn_enable, MLXSW_REG_SPVMLR_BASE_LEN, 1965 31, 1, MLXSW_REG_SPVMLR_REC_LEN, 0x00, false); 1966 1967 /* reg_spvmlr_rec_vid 1968 * VLAN ID to be added/removed from port or for querying. 1969 * Access: Index 1970 */ 1971 MLXSW_ITEM32_INDEXED(reg, spvmlr, rec_vid, MLXSW_REG_SPVMLR_BASE_LEN, 0, 12, 1972 MLXSW_REG_SPVMLR_REC_LEN, 0x00, false); 1973 1974 static inline void mlxsw_reg_spvmlr_pack(char *payload, u8 local_port, 1975 u16 vid_begin, u16 vid_end, 1976 bool learn_enable) 1977 { 1978 int num_rec = vid_end - vid_begin + 1; 1979 int i; 1980 1981 WARN_ON(num_rec < 1 || num_rec > MLXSW_REG_SPVMLR_REC_MAX_COUNT); 1982 1983 MLXSW_REG_ZERO(spvmlr, payload); 1984 mlxsw_reg_spvmlr_local_port_set(payload, local_port); 1985 mlxsw_reg_spvmlr_num_rec_set(payload, num_rec); 1986 1987 for (i = 0; i < num_rec; i++) { 1988 mlxsw_reg_spvmlr_rec_learn_enable_set(payload, i, learn_enable); 1989 mlxsw_reg_spvmlr_rec_vid_set(payload, i, vid_begin + i); 1990 } 1991 } 1992 1993 /* SPVC - Switch Port VLAN Classification Register 1994 * ----------------------------------------------- 1995 * Configures the port to identify packets as untagged / single tagged / 1996 * double packets based on the packet EtherTypes. 1997 * Ethertype IDs are configured by SVER. 1998 */ 1999 #define MLXSW_REG_SPVC_ID 0x2026 2000 #define MLXSW_REG_SPVC_LEN 0x0C 2001 2002 MLXSW_REG_DEFINE(spvc, MLXSW_REG_SPVC_ID, MLXSW_REG_SPVC_LEN); 2003 2004 /* reg_spvc_local_port 2005 * Local port. 2006 * Access: Index 2007 * 2008 * Note: applies both to Rx port and Tx port, so if a packet traverses 2009 * through Rx port i and a Tx port j then port i and port j must have the 2010 * same configuration. 2011 */ 2012 MLXSW_ITEM32(reg, spvc, local_port, 0x00, 16, 8); 2013 2014 /* reg_spvc_inner_et2 2015 * Vlan Tag1 EtherType2 enable. 2016 * Packet is initially classified as double VLAN Tag if in addition to 2017 * being classified with a tag0 VLAN Tag its tag1 EtherType value is 2018 * equal to ether_type2. 2019 * 0: disable (default) 2020 * 1: enable 2021 * Access: RW 2022 */ 2023 MLXSW_ITEM32(reg, spvc, inner_et2, 0x08, 17, 1); 2024 2025 /* reg_spvc_et2 2026 * Vlan Tag0 EtherType2 enable. 2027 * Packet is initially classified as VLAN Tag if its tag0 EtherType is 2028 * equal to ether_type2. 2029 * 0: disable (default) 2030 * 1: enable 2031 * Access: RW 2032 */ 2033 MLXSW_ITEM32(reg, spvc, et2, 0x08, 16, 1); 2034 2035 /* reg_spvc_inner_et1 2036 * Vlan Tag1 EtherType1 enable. 2037 * Packet is initially classified as double VLAN Tag if in addition to 2038 * being classified with a tag0 VLAN Tag its tag1 EtherType value is 2039 * equal to ether_type1. 2040 * 0: disable 2041 * 1: enable (default) 2042 * Access: RW 2043 */ 2044 MLXSW_ITEM32(reg, spvc, inner_et1, 0x08, 9, 1); 2045 2046 /* reg_spvc_et1 2047 * Vlan Tag0 EtherType1 enable. 2048 * Packet is initially classified as VLAN Tag if its tag0 EtherType is 2049 * equal to ether_type1. 2050 * 0: disable 2051 * 1: enable (default) 2052 * Access: RW 2053 */ 2054 MLXSW_ITEM32(reg, spvc, et1, 0x08, 8, 1); 2055 2056 /* reg_inner_et0 2057 * Vlan Tag1 EtherType0 enable. 2058 * Packet is initially classified as double VLAN Tag if in addition to 2059 * being classified with a tag0 VLAN Tag its tag1 EtherType value is 2060 * equal to ether_type0. 2061 * 0: disable 2062 * 1: enable (default) 2063 * Access: RW 2064 */ 2065 MLXSW_ITEM32(reg, spvc, inner_et0, 0x08, 1, 1); 2066 2067 /* reg_et0 2068 * Vlan Tag0 EtherType0 enable. 2069 * Packet is initially classified as VLAN Tag if its tag0 EtherType is 2070 * equal to ether_type0. 2071 * 0: disable 2072 * 1: enable (default) 2073 * Access: RW 2074 */ 2075 MLXSW_ITEM32(reg, spvc, et0, 0x08, 0, 1); 2076 2077 static inline void mlxsw_reg_spvc_pack(char *payload, u8 local_port, bool et1, 2078 bool et0) 2079 { 2080 MLXSW_REG_ZERO(spvc, payload); 2081 mlxsw_reg_spvc_local_port_set(payload, local_port); 2082 /* Enable inner_et1 and inner_et0 to enable identification of double 2083 * tagged packets. 2084 */ 2085 mlxsw_reg_spvc_inner_et1_set(payload, 1); 2086 mlxsw_reg_spvc_inner_et0_set(payload, 1); 2087 mlxsw_reg_spvc_et1_set(payload, et1); 2088 mlxsw_reg_spvc_et0_set(payload, et0); 2089 } 2090 2091 /* SPEVET - Switch Port Egress VLAN EtherType 2092 * ------------------------------------------ 2093 * The switch port egress VLAN EtherType configures which EtherType to push at 2094 * egress for packets incoming through a local port for which 'SPVID.egr_et_set' 2095 * is set. 2096 */ 2097 #define MLXSW_REG_SPEVET_ID 0x202A 2098 #define MLXSW_REG_SPEVET_LEN 0x08 2099 2100 MLXSW_REG_DEFINE(spevet, MLXSW_REG_SPEVET_ID, MLXSW_REG_SPEVET_LEN); 2101 2102 /* reg_spevet_local_port 2103 * Egress Local port number. 2104 * Not supported to CPU port. 2105 * Access: Index 2106 */ 2107 MLXSW_ITEM32(reg, spevet, local_port, 0x00, 16, 8); 2108 2109 /* reg_spevet_et_vlan 2110 * Egress EtherType VLAN to push when SPVID.egr_et_set field set for the packet: 2111 * 0: ether_type0 - (default) 2112 * 1: ether_type1 2113 * 2: ether_type2 2114 * Access: RW 2115 */ 2116 MLXSW_ITEM32(reg, spevet, et_vlan, 0x04, 16, 2); 2117 2118 static inline void mlxsw_reg_spevet_pack(char *payload, u8 local_port, 2119 u8 et_vlan) 2120 { 2121 MLXSW_REG_ZERO(spevet, payload); 2122 mlxsw_reg_spevet_local_port_set(payload, local_port); 2123 mlxsw_reg_spevet_et_vlan_set(payload, et_vlan); 2124 } 2125 2126 /* CWTP - Congetion WRED ECN TClass Profile 2127 * ---------------------------------------- 2128 * Configures the profiles for queues of egress port and traffic class 2129 */ 2130 #define MLXSW_REG_CWTP_ID 0x2802 2131 #define MLXSW_REG_CWTP_BASE_LEN 0x28 2132 #define MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN 0x08 2133 #define MLXSW_REG_CWTP_LEN 0x40 2134 2135 MLXSW_REG_DEFINE(cwtp, MLXSW_REG_CWTP_ID, MLXSW_REG_CWTP_LEN); 2136 2137 /* reg_cwtp_local_port 2138 * Local port number 2139 * Not supported for CPU port 2140 * Access: Index 2141 */ 2142 MLXSW_ITEM32(reg, cwtp, local_port, 0, 16, 8); 2143 2144 /* reg_cwtp_traffic_class 2145 * Traffic Class to configure 2146 * Access: Index 2147 */ 2148 MLXSW_ITEM32(reg, cwtp, traffic_class, 32, 0, 8); 2149 2150 /* reg_cwtp_profile_min 2151 * Minimum Average Queue Size of the profile in cells. 2152 * Access: RW 2153 */ 2154 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_min, MLXSW_REG_CWTP_BASE_LEN, 2155 0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 0, false); 2156 2157 /* reg_cwtp_profile_percent 2158 * Percentage of WRED and ECN marking for maximum Average Queue size 2159 * Range is 0 to 100, units of integer percentage 2160 * Access: RW 2161 */ 2162 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_percent, MLXSW_REG_CWTP_BASE_LEN, 2163 24, 7, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false); 2164 2165 /* reg_cwtp_profile_max 2166 * Maximum Average Queue size of the profile in cells 2167 * Access: RW 2168 */ 2169 MLXSW_ITEM32_INDEXED(reg, cwtp, profile_max, MLXSW_REG_CWTP_BASE_LEN, 2170 0, 20, MLXSW_REG_CWTP_PROFILE_DATA_REC_LEN, 4, false); 2171 2172 #define MLXSW_REG_CWTP_MIN_VALUE 64 2173 #define MLXSW_REG_CWTP_MAX_PROFILE 2 2174 #define MLXSW_REG_CWTP_DEFAULT_PROFILE 1 2175 2176 static inline void mlxsw_reg_cwtp_pack(char *payload, u8 local_port, 2177 u8 traffic_class) 2178 { 2179 int i; 2180 2181 MLXSW_REG_ZERO(cwtp, payload); 2182 mlxsw_reg_cwtp_local_port_set(payload, local_port); 2183 mlxsw_reg_cwtp_traffic_class_set(payload, traffic_class); 2184 2185 for (i = 0; i <= MLXSW_REG_CWTP_MAX_PROFILE; i++) { 2186 mlxsw_reg_cwtp_profile_min_set(payload, i, 2187 MLXSW_REG_CWTP_MIN_VALUE); 2188 mlxsw_reg_cwtp_profile_max_set(payload, i, 2189 MLXSW_REG_CWTP_MIN_VALUE); 2190 } 2191 } 2192 2193 #define MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile) (profile - 1) 2194 2195 static inline void 2196 mlxsw_reg_cwtp_profile_pack(char *payload, u8 profile, u32 min, u32 max, 2197 u32 probability) 2198 { 2199 u8 index = MLXSW_REG_CWTP_PROFILE_TO_INDEX(profile); 2200 2201 mlxsw_reg_cwtp_profile_min_set(payload, index, min); 2202 mlxsw_reg_cwtp_profile_max_set(payload, index, max); 2203 mlxsw_reg_cwtp_profile_percent_set(payload, index, probability); 2204 } 2205 2206 /* CWTPM - Congestion WRED ECN TClass and Pool Mapping 2207 * --------------------------------------------------- 2208 * The CWTPM register maps each egress port and traffic class to profile num. 2209 */ 2210 #define MLXSW_REG_CWTPM_ID 0x2803 2211 #define MLXSW_REG_CWTPM_LEN 0x44 2212 2213 MLXSW_REG_DEFINE(cwtpm, MLXSW_REG_CWTPM_ID, MLXSW_REG_CWTPM_LEN); 2214 2215 /* reg_cwtpm_local_port 2216 * Local port number 2217 * Not supported for CPU port 2218 * Access: Index 2219 */ 2220 MLXSW_ITEM32(reg, cwtpm, local_port, 0, 16, 8); 2221 2222 /* reg_cwtpm_traffic_class 2223 * Traffic Class to configure 2224 * Access: Index 2225 */ 2226 MLXSW_ITEM32(reg, cwtpm, traffic_class, 32, 0, 8); 2227 2228 /* reg_cwtpm_ew 2229 * Control enablement of WRED for traffic class: 2230 * 0 - Disable 2231 * 1 - Enable 2232 * Access: RW 2233 */ 2234 MLXSW_ITEM32(reg, cwtpm, ew, 36, 1, 1); 2235 2236 /* reg_cwtpm_ee 2237 * Control enablement of ECN for traffic class: 2238 * 0 - Disable 2239 * 1 - Enable 2240 * Access: RW 2241 */ 2242 MLXSW_ITEM32(reg, cwtpm, ee, 36, 0, 1); 2243 2244 /* reg_cwtpm_tcp_g 2245 * TCP Green Profile. 2246 * Index of the profile within {port, traffic class} to use. 2247 * 0 for disabling both WRED and ECN for this type of traffic. 2248 * Access: RW 2249 */ 2250 MLXSW_ITEM32(reg, cwtpm, tcp_g, 52, 0, 2); 2251 2252 /* reg_cwtpm_tcp_y 2253 * TCP Yellow Profile. 2254 * Index of the profile within {port, traffic class} to use. 2255 * 0 for disabling both WRED and ECN for this type of traffic. 2256 * Access: RW 2257 */ 2258 MLXSW_ITEM32(reg, cwtpm, tcp_y, 56, 16, 2); 2259 2260 /* reg_cwtpm_tcp_r 2261 * TCP Red Profile. 2262 * Index of the profile within {port, traffic class} to use. 2263 * 0 for disabling both WRED and ECN for this type of traffic. 2264 * Access: RW 2265 */ 2266 MLXSW_ITEM32(reg, cwtpm, tcp_r, 56, 0, 2); 2267 2268 /* reg_cwtpm_ntcp_g 2269 * Non-TCP Green Profile. 2270 * Index of the profile within {port, traffic class} to use. 2271 * 0 for disabling both WRED and ECN for this type of traffic. 2272 * Access: RW 2273 */ 2274 MLXSW_ITEM32(reg, cwtpm, ntcp_g, 60, 0, 2); 2275 2276 /* reg_cwtpm_ntcp_y 2277 * Non-TCP Yellow Profile. 2278 * Index of the profile within {port, traffic class} to use. 2279 * 0 for disabling both WRED and ECN for this type of traffic. 2280 * Access: RW 2281 */ 2282 MLXSW_ITEM32(reg, cwtpm, ntcp_y, 64, 16, 2); 2283 2284 /* reg_cwtpm_ntcp_r 2285 * Non-TCP Red Profile. 2286 * Index of the profile within {port, traffic class} to use. 2287 * 0 for disabling both WRED and ECN for this type of traffic. 2288 * Access: RW 2289 */ 2290 MLXSW_ITEM32(reg, cwtpm, ntcp_r, 64, 0, 2); 2291 2292 #define MLXSW_REG_CWTPM_RESET_PROFILE 0 2293 2294 static inline void mlxsw_reg_cwtpm_pack(char *payload, u8 local_port, 2295 u8 traffic_class, u8 profile, 2296 bool wred, bool ecn) 2297 { 2298 MLXSW_REG_ZERO(cwtpm, payload); 2299 mlxsw_reg_cwtpm_local_port_set(payload, local_port); 2300 mlxsw_reg_cwtpm_traffic_class_set(payload, traffic_class); 2301 mlxsw_reg_cwtpm_ew_set(payload, wred); 2302 mlxsw_reg_cwtpm_ee_set(payload, ecn); 2303 mlxsw_reg_cwtpm_tcp_g_set(payload, profile); 2304 mlxsw_reg_cwtpm_tcp_y_set(payload, profile); 2305 mlxsw_reg_cwtpm_tcp_r_set(payload, profile); 2306 mlxsw_reg_cwtpm_ntcp_g_set(payload, profile); 2307 mlxsw_reg_cwtpm_ntcp_y_set(payload, profile); 2308 mlxsw_reg_cwtpm_ntcp_r_set(payload, profile); 2309 } 2310 2311 /* PGCR - Policy-Engine General Configuration Register 2312 * --------------------------------------------------- 2313 * This register configures general Policy-Engine settings. 2314 */ 2315 #define MLXSW_REG_PGCR_ID 0x3001 2316 #define MLXSW_REG_PGCR_LEN 0x20 2317 2318 MLXSW_REG_DEFINE(pgcr, MLXSW_REG_PGCR_ID, MLXSW_REG_PGCR_LEN); 2319 2320 /* reg_pgcr_default_action_pointer_base 2321 * Default action pointer base. Each region has a default action pointer 2322 * which is equal to default_action_pointer_base + region_id. 2323 * Access: RW 2324 */ 2325 MLXSW_ITEM32(reg, pgcr, default_action_pointer_base, 0x1C, 0, 24); 2326 2327 static inline void mlxsw_reg_pgcr_pack(char *payload, u32 pointer_base) 2328 { 2329 MLXSW_REG_ZERO(pgcr, payload); 2330 mlxsw_reg_pgcr_default_action_pointer_base_set(payload, pointer_base); 2331 } 2332 2333 /* PPBT - Policy-Engine Port Binding Table 2334 * --------------------------------------- 2335 * This register is used for configuration of the Port Binding Table. 2336 */ 2337 #define MLXSW_REG_PPBT_ID 0x3002 2338 #define MLXSW_REG_PPBT_LEN 0x14 2339 2340 MLXSW_REG_DEFINE(ppbt, MLXSW_REG_PPBT_ID, MLXSW_REG_PPBT_LEN); 2341 2342 enum mlxsw_reg_pxbt_e { 2343 MLXSW_REG_PXBT_E_IACL, 2344 MLXSW_REG_PXBT_E_EACL, 2345 }; 2346 2347 /* reg_ppbt_e 2348 * Access: Index 2349 */ 2350 MLXSW_ITEM32(reg, ppbt, e, 0x00, 31, 1); 2351 2352 enum mlxsw_reg_pxbt_op { 2353 MLXSW_REG_PXBT_OP_BIND, 2354 MLXSW_REG_PXBT_OP_UNBIND, 2355 }; 2356 2357 /* reg_ppbt_op 2358 * Access: RW 2359 */ 2360 MLXSW_ITEM32(reg, ppbt, op, 0x00, 28, 3); 2361 2362 /* reg_ppbt_local_port 2363 * Local port. Not including CPU port. 2364 * Access: Index 2365 */ 2366 MLXSW_ITEM32(reg, ppbt, local_port, 0x00, 16, 8); 2367 2368 /* reg_ppbt_g 2369 * group - When set, the binding is of an ACL group. When cleared, 2370 * the binding is of an ACL. 2371 * Must be set to 1 for Spectrum. 2372 * Access: RW 2373 */ 2374 MLXSW_ITEM32(reg, ppbt, g, 0x10, 31, 1); 2375 2376 /* reg_ppbt_acl_info 2377 * ACL/ACL group identifier. If the g bit is set, this field should hold 2378 * the acl_group_id, else it should hold the acl_id. 2379 * Access: RW 2380 */ 2381 MLXSW_ITEM32(reg, ppbt, acl_info, 0x10, 0, 16); 2382 2383 static inline void mlxsw_reg_ppbt_pack(char *payload, enum mlxsw_reg_pxbt_e e, 2384 enum mlxsw_reg_pxbt_op op, 2385 u8 local_port, u16 acl_info) 2386 { 2387 MLXSW_REG_ZERO(ppbt, payload); 2388 mlxsw_reg_ppbt_e_set(payload, e); 2389 mlxsw_reg_ppbt_op_set(payload, op); 2390 mlxsw_reg_ppbt_local_port_set(payload, local_port); 2391 mlxsw_reg_ppbt_g_set(payload, true); 2392 mlxsw_reg_ppbt_acl_info_set(payload, acl_info); 2393 } 2394 2395 /* PACL - Policy-Engine ACL Register 2396 * --------------------------------- 2397 * This register is used for configuration of the ACL. 2398 */ 2399 #define MLXSW_REG_PACL_ID 0x3004 2400 #define MLXSW_REG_PACL_LEN 0x70 2401 2402 MLXSW_REG_DEFINE(pacl, MLXSW_REG_PACL_ID, MLXSW_REG_PACL_LEN); 2403 2404 /* reg_pacl_v 2405 * Valid. Setting the v bit makes the ACL valid. It should not be cleared 2406 * while the ACL is bounded to either a port, VLAN or ACL rule. 2407 * Access: RW 2408 */ 2409 MLXSW_ITEM32(reg, pacl, v, 0x00, 24, 1); 2410 2411 /* reg_pacl_acl_id 2412 * An identifier representing the ACL (managed by software) 2413 * Range 0 .. cap_max_acl_regions - 1 2414 * Access: Index 2415 */ 2416 MLXSW_ITEM32(reg, pacl, acl_id, 0x08, 0, 16); 2417 2418 #define MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN 16 2419 2420 /* reg_pacl_tcam_region_info 2421 * Opaque object that represents a TCAM region. 2422 * Obtained through PTAR register. 2423 * Access: RW 2424 */ 2425 MLXSW_ITEM_BUF(reg, pacl, tcam_region_info, 0x30, 2426 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 2427 2428 static inline void mlxsw_reg_pacl_pack(char *payload, u16 acl_id, 2429 bool valid, const char *tcam_region_info) 2430 { 2431 MLXSW_REG_ZERO(pacl, payload); 2432 mlxsw_reg_pacl_acl_id_set(payload, acl_id); 2433 mlxsw_reg_pacl_v_set(payload, valid); 2434 mlxsw_reg_pacl_tcam_region_info_memcpy_to(payload, tcam_region_info); 2435 } 2436 2437 /* PAGT - Policy-Engine ACL Group Table 2438 * ------------------------------------ 2439 * This register is used for configuration of the ACL Group Table. 2440 */ 2441 #define MLXSW_REG_PAGT_ID 0x3005 2442 #define MLXSW_REG_PAGT_BASE_LEN 0x30 2443 #define MLXSW_REG_PAGT_ACL_LEN 4 2444 #define MLXSW_REG_PAGT_ACL_MAX_NUM 16 2445 #define MLXSW_REG_PAGT_LEN (MLXSW_REG_PAGT_BASE_LEN + \ 2446 MLXSW_REG_PAGT_ACL_MAX_NUM * MLXSW_REG_PAGT_ACL_LEN) 2447 2448 MLXSW_REG_DEFINE(pagt, MLXSW_REG_PAGT_ID, MLXSW_REG_PAGT_LEN); 2449 2450 /* reg_pagt_size 2451 * Number of ACLs in the group. 2452 * Size 0 invalidates a group. 2453 * Range 0 .. cap_max_acl_group_size (hard coded to 16 for now) 2454 * Total number of ACLs in all groups must be lower or equal 2455 * to cap_max_acl_tot_groups 2456 * Note: a group which is binded must not be invalidated 2457 * Access: Index 2458 */ 2459 MLXSW_ITEM32(reg, pagt, size, 0x00, 0, 8); 2460 2461 /* reg_pagt_acl_group_id 2462 * An identifier (numbered from 0..cap_max_acl_groups-1) representing 2463 * the ACL Group identifier (managed by software). 2464 * Access: Index 2465 */ 2466 MLXSW_ITEM32(reg, pagt, acl_group_id, 0x08, 0, 16); 2467 2468 /* reg_pagt_multi 2469 * Multi-ACL 2470 * 0 - This ACL is the last ACL in the multi-ACL 2471 * 1 - This ACL is part of a multi-ACL 2472 * Access: RW 2473 */ 2474 MLXSW_ITEM32_INDEXED(reg, pagt, multi, 0x30, 31, 1, 0x04, 0x00, false); 2475 2476 /* reg_pagt_acl_id 2477 * ACL identifier 2478 * Access: RW 2479 */ 2480 MLXSW_ITEM32_INDEXED(reg, pagt, acl_id, 0x30, 0, 16, 0x04, 0x00, false); 2481 2482 static inline void mlxsw_reg_pagt_pack(char *payload, u16 acl_group_id) 2483 { 2484 MLXSW_REG_ZERO(pagt, payload); 2485 mlxsw_reg_pagt_acl_group_id_set(payload, acl_group_id); 2486 } 2487 2488 static inline void mlxsw_reg_pagt_acl_id_pack(char *payload, int index, 2489 u16 acl_id, bool multi) 2490 { 2491 u8 size = mlxsw_reg_pagt_size_get(payload); 2492 2493 if (index >= size) 2494 mlxsw_reg_pagt_size_set(payload, index + 1); 2495 mlxsw_reg_pagt_multi_set(payload, index, multi); 2496 mlxsw_reg_pagt_acl_id_set(payload, index, acl_id); 2497 } 2498 2499 /* PTAR - Policy-Engine TCAM Allocation Register 2500 * --------------------------------------------- 2501 * This register is used for allocation of regions in the TCAM. 2502 * Note: Query method is not supported on this register. 2503 */ 2504 #define MLXSW_REG_PTAR_ID 0x3006 2505 #define MLXSW_REG_PTAR_BASE_LEN 0x20 2506 #define MLXSW_REG_PTAR_KEY_ID_LEN 1 2507 #define MLXSW_REG_PTAR_KEY_ID_MAX_NUM 16 2508 #define MLXSW_REG_PTAR_LEN (MLXSW_REG_PTAR_BASE_LEN + \ 2509 MLXSW_REG_PTAR_KEY_ID_MAX_NUM * MLXSW_REG_PTAR_KEY_ID_LEN) 2510 2511 MLXSW_REG_DEFINE(ptar, MLXSW_REG_PTAR_ID, MLXSW_REG_PTAR_LEN); 2512 2513 enum mlxsw_reg_ptar_op { 2514 /* allocate a TCAM region */ 2515 MLXSW_REG_PTAR_OP_ALLOC, 2516 /* resize a TCAM region */ 2517 MLXSW_REG_PTAR_OP_RESIZE, 2518 /* deallocate TCAM region */ 2519 MLXSW_REG_PTAR_OP_FREE, 2520 /* test allocation */ 2521 MLXSW_REG_PTAR_OP_TEST, 2522 }; 2523 2524 /* reg_ptar_op 2525 * Access: OP 2526 */ 2527 MLXSW_ITEM32(reg, ptar, op, 0x00, 28, 4); 2528 2529 /* reg_ptar_action_set_type 2530 * Type of action set to be used on this region. 2531 * For Spectrum and Spectrum-2, this is always type 2 - "flexible" 2532 * Access: WO 2533 */ 2534 MLXSW_ITEM32(reg, ptar, action_set_type, 0x00, 16, 8); 2535 2536 enum mlxsw_reg_ptar_key_type { 2537 MLXSW_REG_PTAR_KEY_TYPE_FLEX = 0x50, /* Spetrum */ 2538 MLXSW_REG_PTAR_KEY_TYPE_FLEX2 = 0x51, /* Spectrum-2 */ 2539 }; 2540 2541 /* reg_ptar_key_type 2542 * TCAM key type for the region. 2543 * Access: WO 2544 */ 2545 MLXSW_ITEM32(reg, ptar, key_type, 0x00, 0, 8); 2546 2547 /* reg_ptar_region_size 2548 * TCAM region size. When allocating/resizing this is the requested size, 2549 * the response is the actual size. Note that actual size may be 2550 * larger than requested. 2551 * Allowed range 1 .. cap_max_rules-1 2552 * Reserved during op deallocate. 2553 * Access: WO 2554 */ 2555 MLXSW_ITEM32(reg, ptar, region_size, 0x04, 0, 16); 2556 2557 /* reg_ptar_region_id 2558 * Region identifier 2559 * Range 0 .. cap_max_regions-1 2560 * Access: Index 2561 */ 2562 MLXSW_ITEM32(reg, ptar, region_id, 0x08, 0, 16); 2563 2564 /* reg_ptar_tcam_region_info 2565 * Opaque object that represents the TCAM region. 2566 * Returned when allocating a region. 2567 * Provided by software for ACL generation and region deallocation and resize. 2568 * Access: RW 2569 */ 2570 MLXSW_ITEM_BUF(reg, ptar, tcam_region_info, 0x10, 2571 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 2572 2573 /* reg_ptar_flexible_key_id 2574 * Identifier of the Flexible Key. 2575 * Only valid if key_type == "FLEX_KEY" 2576 * The key size will be rounded up to one of the following values: 2577 * 9B, 18B, 36B, 54B. 2578 * This field is reserved for in resize operation. 2579 * Access: WO 2580 */ 2581 MLXSW_ITEM8_INDEXED(reg, ptar, flexible_key_id, 0x20, 0, 8, 2582 MLXSW_REG_PTAR_KEY_ID_LEN, 0x00, false); 2583 2584 static inline void mlxsw_reg_ptar_pack(char *payload, enum mlxsw_reg_ptar_op op, 2585 enum mlxsw_reg_ptar_key_type key_type, 2586 u16 region_size, u16 region_id, 2587 const char *tcam_region_info) 2588 { 2589 MLXSW_REG_ZERO(ptar, payload); 2590 mlxsw_reg_ptar_op_set(payload, op); 2591 mlxsw_reg_ptar_action_set_type_set(payload, 2); /* "flexible" */ 2592 mlxsw_reg_ptar_key_type_set(payload, key_type); 2593 mlxsw_reg_ptar_region_size_set(payload, region_size); 2594 mlxsw_reg_ptar_region_id_set(payload, region_id); 2595 mlxsw_reg_ptar_tcam_region_info_memcpy_to(payload, tcam_region_info); 2596 } 2597 2598 static inline void mlxsw_reg_ptar_key_id_pack(char *payload, int index, 2599 u16 key_id) 2600 { 2601 mlxsw_reg_ptar_flexible_key_id_set(payload, index, key_id); 2602 } 2603 2604 static inline void mlxsw_reg_ptar_unpack(char *payload, char *tcam_region_info) 2605 { 2606 mlxsw_reg_ptar_tcam_region_info_memcpy_from(payload, tcam_region_info); 2607 } 2608 2609 /* PPBS - Policy-Engine Policy Based Switching Register 2610 * ---------------------------------------------------- 2611 * This register retrieves and sets Policy Based Switching Table entries. 2612 */ 2613 #define MLXSW_REG_PPBS_ID 0x300C 2614 #define MLXSW_REG_PPBS_LEN 0x14 2615 2616 MLXSW_REG_DEFINE(ppbs, MLXSW_REG_PPBS_ID, MLXSW_REG_PPBS_LEN); 2617 2618 /* reg_ppbs_pbs_ptr 2619 * Index into the PBS table. 2620 * For Spectrum, the index points to the KVD Linear. 2621 * Access: Index 2622 */ 2623 MLXSW_ITEM32(reg, ppbs, pbs_ptr, 0x08, 0, 24); 2624 2625 /* reg_ppbs_system_port 2626 * Unique port identifier for the final destination of the packet. 2627 * Access: RW 2628 */ 2629 MLXSW_ITEM32(reg, ppbs, system_port, 0x10, 0, 16); 2630 2631 static inline void mlxsw_reg_ppbs_pack(char *payload, u32 pbs_ptr, 2632 u16 system_port) 2633 { 2634 MLXSW_REG_ZERO(ppbs, payload); 2635 mlxsw_reg_ppbs_pbs_ptr_set(payload, pbs_ptr); 2636 mlxsw_reg_ppbs_system_port_set(payload, system_port); 2637 } 2638 2639 /* PRCR - Policy-Engine Rules Copy Register 2640 * ---------------------------------------- 2641 * This register is used for accessing rules within a TCAM region. 2642 */ 2643 #define MLXSW_REG_PRCR_ID 0x300D 2644 #define MLXSW_REG_PRCR_LEN 0x40 2645 2646 MLXSW_REG_DEFINE(prcr, MLXSW_REG_PRCR_ID, MLXSW_REG_PRCR_LEN); 2647 2648 enum mlxsw_reg_prcr_op { 2649 /* Move rules. Moves the rules from "tcam_region_info" starting 2650 * at offset "offset" to "dest_tcam_region_info" 2651 * at offset "dest_offset." 2652 */ 2653 MLXSW_REG_PRCR_OP_MOVE, 2654 /* Copy rules. Copies the rules from "tcam_region_info" starting 2655 * at offset "offset" to "dest_tcam_region_info" 2656 * at offset "dest_offset." 2657 */ 2658 MLXSW_REG_PRCR_OP_COPY, 2659 }; 2660 2661 /* reg_prcr_op 2662 * Access: OP 2663 */ 2664 MLXSW_ITEM32(reg, prcr, op, 0x00, 28, 4); 2665 2666 /* reg_prcr_offset 2667 * Offset within the source region to copy/move from. 2668 * Access: Index 2669 */ 2670 MLXSW_ITEM32(reg, prcr, offset, 0x00, 0, 16); 2671 2672 /* reg_prcr_size 2673 * The number of rules to copy/move. 2674 * Access: WO 2675 */ 2676 MLXSW_ITEM32(reg, prcr, size, 0x04, 0, 16); 2677 2678 /* reg_prcr_tcam_region_info 2679 * Opaque object that represents the source TCAM region. 2680 * Access: Index 2681 */ 2682 MLXSW_ITEM_BUF(reg, prcr, tcam_region_info, 0x10, 2683 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 2684 2685 /* reg_prcr_dest_offset 2686 * Offset within the source region to copy/move to. 2687 * Access: Index 2688 */ 2689 MLXSW_ITEM32(reg, prcr, dest_offset, 0x20, 0, 16); 2690 2691 /* reg_prcr_dest_tcam_region_info 2692 * Opaque object that represents the destination TCAM region. 2693 * Access: Index 2694 */ 2695 MLXSW_ITEM_BUF(reg, prcr, dest_tcam_region_info, 0x30, 2696 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 2697 2698 static inline void mlxsw_reg_prcr_pack(char *payload, enum mlxsw_reg_prcr_op op, 2699 const char *src_tcam_region_info, 2700 u16 src_offset, 2701 const char *dest_tcam_region_info, 2702 u16 dest_offset, u16 size) 2703 { 2704 MLXSW_REG_ZERO(prcr, payload); 2705 mlxsw_reg_prcr_op_set(payload, op); 2706 mlxsw_reg_prcr_offset_set(payload, src_offset); 2707 mlxsw_reg_prcr_size_set(payload, size); 2708 mlxsw_reg_prcr_tcam_region_info_memcpy_to(payload, 2709 src_tcam_region_info); 2710 mlxsw_reg_prcr_dest_offset_set(payload, dest_offset); 2711 mlxsw_reg_prcr_dest_tcam_region_info_memcpy_to(payload, 2712 dest_tcam_region_info); 2713 } 2714 2715 /* PEFA - Policy-Engine Extended Flexible Action Register 2716 * ------------------------------------------------------ 2717 * This register is used for accessing an extended flexible action entry 2718 * in the central KVD Linear Database. 2719 */ 2720 #define MLXSW_REG_PEFA_ID 0x300F 2721 #define MLXSW_REG_PEFA_LEN 0xB0 2722 2723 MLXSW_REG_DEFINE(pefa, MLXSW_REG_PEFA_ID, MLXSW_REG_PEFA_LEN); 2724 2725 /* reg_pefa_index 2726 * Index in the KVD Linear Centralized Database. 2727 * Access: Index 2728 */ 2729 MLXSW_ITEM32(reg, pefa, index, 0x00, 0, 24); 2730 2731 /* reg_pefa_a 2732 * Index in the KVD Linear Centralized Database. 2733 * Activity 2734 * For a new entry: set if ca=0, clear if ca=1 2735 * Set if a packet lookup has hit on the specific entry 2736 * Access: RO 2737 */ 2738 MLXSW_ITEM32(reg, pefa, a, 0x04, 29, 1); 2739 2740 /* reg_pefa_ca 2741 * Clear activity 2742 * When write: activity is according to this field 2743 * When read: after reading the activity is cleared according to ca 2744 * Access: OP 2745 */ 2746 MLXSW_ITEM32(reg, pefa, ca, 0x04, 24, 1); 2747 2748 #define MLXSW_REG_FLEX_ACTION_SET_LEN 0xA8 2749 2750 /* reg_pefa_flex_action_set 2751 * Action-set to perform when rule is matched. 2752 * Must be zero padded if action set is shorter. 2753 * Access: RW 2754 */ 2755 MLXSW_ITEM_BUF(reg, pefa, flex_action_set, 0x08, MLXSW_REG_FLEX_ACTION_SET_LEN); 2756 2757 static inline void mlxsw_reg_pefa_pack(char *payload, u32 index, bool ca, 2758 const char *flex_action_set) 2759 { 2760 MLXSW_REG_ZERO(pefa, payload); 2761 mlxsw_reg_pefa_index_set(payload, index); 2762 mlxsw_reg_pefa_ca_set(payload, ca); 2763 if (flex_action_set) 2764 mlxsw_reg_pefa_flex_action_set_memcpy_to(payload, 2765 flex_action_set); 2766 } 2767 2768 static inline void mlxsw_reg_pefa_unpack(char *payload, bool *p_a) 2769 { 2770 *p_a = mlxsw_reg_pefa_a_get(payload); 2771 } 2772 2773 /* PEMRBT - Policy-Engine Multicast Router Binding Table Register 2774 * -------------------------------------------------------------- 2775 * This register is used for binding Multicast router to an ACL group 2776 * that serves the MC router. 2777 * This register is not supported by SwitchX/-2 and Spectrum. 2778 */ 2779 #define MLXSW_REG_PEMRBT_ID 0x3014 2780 #define MLXSW_REG_PEMRBT_LEN 0x14 2781 2782 MLXSW_REG_DEFINE(pemrbt, MLXSW_REG_PEMRBT_ID, MLXSW_REG_PEMRBT_LEN); 2783 2784 enum mlxsw_reg_pemrbt_protocol { 2785 MLXSW_REG_PEMRBT_PROTO_IPV4, 2786 MLXSW_REG_PEMRBT_PROTO_IPV6, 2787 }; 2788 2789 /* reg_pemrbt_protocol 2790 * Access: Index 2791 */ 2792 MLXSW_ITEM32(reg, pemrbt, protocol, 0x00, 0, 1); 2793 2794 /* reg_pemrbt_group_id 2795 * ACL group identifier. 2796 * Range 0..cap_max_acl_groups-1 2797 * Access: RW 2798 */ 2799 MLXSW_ITEM32(reg, pemrbt, group_id, 0x10, 0, 16); 2800 2801 static inline void 2802 mlxsw_reg_pemrbt_pack(char *payload, enum mlxsw_reg_pemrbt_protocol protocol, 2803 u16 group_id) 2804 { 2805 MLXSW_REG_ZERO(pemrbt, payload); 2806 mlxsw_reg_pemrbt_protocol_set(payload, protocol); 2807 mlxsw_reg_pemrbt_group_id_set(payload, group_id); 2808 } 2809 2810 /* PTCE-V2 - Policy-Engine TCAM Entry Register Version 2 2811 * ----------------------------------------------------- 2812 * This register is used for accessing rules within a TCAM region. 2813 * It is a new version of PTCE in order to support wider key, 2814 * mask and action within a TCAM region. This register is not supported 2815 * by SwitchX and SwitchX-2. 2816 */ 2817 #define MLXSW_REG_PTCE2_ID 0x3017 2818 #define MLXSW_REG_PTCE2_LEN 0x1D8 2819 2820 MLXSW_REG_DEFINE(ptce2, MLXSW_REG_PTCE2_ID, MLXSW_REG_PTCE2_LEN); 2821 2822 /* reg_ptce2_v 2823 * Valid. 2824 * Access: RW 2825 */ 2826 MLXSW_ITEM32(reg, ptce2, v, 0x00, 31, 1); 2827 2828 /* reg_ptce2_a 2829 * Activity. Set if a packet lookup has hit on the specific entry. 2830 * To clear the "a" bit, use "clear activity" op or "clear on read" op. 2831 * Access: RO 2832 */ 2833 MLXSW_ITEM32(reg, ptce2, a, 0x00, 30, 1); 2834 2835 enum mlxsw_reg_ptce2_op { 2836 /* Read operation. */ 2837 MLXSW_REG_PTCE2_OP_QUERY_READ = 0, 2838 /* clear on read operation. Used to read entry 2839 * and clear Activity bit. 2840 */ 2841 MLXSW_REG_PTCE2_OP_QUERY_CLEAR_ON_READ = 1, 2842 /* Write operation. Used to write a new entry to the table. 2843 * All R/W fields are relevant for new entry. Activity bit is set 2844 * for new entries - Note write with v = 0 will delete the entry. 2845 */ 2846 MLXSW_REG_PTCE2_OP_WRITE_WRITE = 0, 2847 /* Update action. Only action set will be updated. */ 2848 MLXSW_REG_PTCE2_OP_WRITE_UPDATE = 1, 2849 /* Clear activity. A bit is cleared for the entry. */ 2850 MLXSW_REG_PTCE2_OP_WRITE_CLEAR_ACTIVITY = 2, 2851 }; 2852 2853 /* reg_ptce2_op 2854 * Access: OP 2855 */ 2856 MLXSW_ITEM32(reg, ptce2, op, 0x00, 20, 3); 2857 2858 /* reg_ptce2_offset 2859 * Access: Index 2860 */ 2861 MLXSW_ITEM32(reg, ptce2, offset, 0x00, 0, 16); 2862 2863 /* reg_ptce2_priority 2864 * Priority of the rule, higher values win. The range is 1..cap_kvd_size-1. 2865 * Note: priority does not have to be unique per rule. 2866 * Within a region, higher priority should have lower offset (no limitation 2867 * between regions in a multi-region). 2868 * Access: RW 2869 */ 2870 MLXSW_ITEM32(reg, ptce2, priority, 0x04, 0, 24); 2871 2872 /* reg_ptce2_tcam_region_info 2873 * Opaque object that represents the TCAM region. 2874 * Access: Index 2875 */ 2876 MLXSW_ITEM_BUF(reg, ptce2, tcam_region_info, 0x10, 2877 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 2878 2879 #define MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN 96 2880 2881 /* reg_ptce2_flex_key_blocks 2882 * ACL Key. 2883 * Access: RW 2884 */ 2885 MLXSW_ITEM_BUF(reg, ptce2, flex_key_blocks, 0x20, 2886 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); 2887 2888 /* reg_ptce2_mask 2889 * mask- in the same size as key. A bit that is set directs the TCAM 2890 * to compare the corresponding bit in key. A bit that is clear directs 2891 * the TCAM to ignore the corresponding bit in key. 2892 * Access: RW 2893 */ 2894 MLXSW_ITEM_BUF(reg, ptce2, mask, 0x80, 2895 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); 2896 2897 /* reg_ptce2_flex_action_set 2898 * ACL action set. 2899 * Access: RW 2900 */ 2901 MLXSW_ITEM_BUF(reg, ptce2, flex_action_set, 0xE0, 2902 MLXSW_REG_FLEX_ACTION_SET_LEN); 2903 2904 static inline void mlxsw_reg_ptce2_pack(char *payload, bool valid, 2905 enum mlxsw_reg_ptce2_op op, 2906 const char *tcam_region_info, 2907 u16 offset, u32 priority) 2908 { 2909 MLXSW_REG_ZERO(ptce2, payload); 2910 mlxsw_reg_ptce2_v_set(payload, valid); 2911 mlxsw_reg_ptce2_op_set(payload, op); 2912 mlxsw_reg_ptce2_offset_set(payload, offset); 2913 mlxsw_reg_ptce2_priority_set(payload, priority); 2914 mlxsw_reg_ptce2_tcam_region_info_memcpy_to(payload, tcam_region_info); 2915 } 2916 2917 /* PERPT - Policy-Engine ERP Table Register 2918 * ---------------------------------------- 2919 * This register adds and removes eRPs from the eRP table. 2920 */ 2921 #define MLXSW_REG_PERPT_ID 0x3021 2922 #define MLXSW_REG_PERPT_LEN 0x80 2923 2924 MLXSW_REG_DEFINE(perpt, MLXSW_REG_PERPT_ID, MLXSW_REG_PERPT_LEN); 2925 2926 /* reg_perpt_erpt_bank 2927 * eRP table bank. 2928 * Range 0 .. cap_max_erp_table_banks - 1 2929 * Access: Index 2930 */ 2931 MLXSW_ITEM32(reg, perpt, erpt_bank, 0x00, 16, 4); 2932 2933 /* reg_perpt_erpt_index 2934 * Index to eRP table within the eRP bank. 2935 * Range is 0 .. cap_max_erp_table_bank_size - 1 2936 * Access: Index 2937 */ 2938 MLXSW_ITEM32(reg, perpt, erpt_index, 0x00, 0, 8); 2939 2940 enum mlxsw_reg_perpt_key_size { 2941 MLXSW_REG_PERPT_KEY_SIZE_2KB, 2942 MLXSW_REG_PERPT_KEY_SIZE_4KB, 2943 MLXSW_REG_PERPT_KEY_SIZE_8KB, 2944 MLXSW_REG_PERPT_KEY_SIZE_12KB, 2945 }; 2946 2947 /* reg_perpt_key_size 2948 * Access: OP 2949 */ 2950 MLXSW_ITEM32(reg, perpt, key_size, 0x04, 0, 4); 2951 2952 /* reg_perpt_bf_bypass 2953 * 0 - The eRP is used only if bloom filter state is set for the given 2954 * rule. 2955 * 1 - The eRP is used regardless of bloom filter state. 2956 * The bypass is an OR condition of region_id or eRP. See PERCR.bf_bypass 2957 * Access: RW 2958 */ 2959 MLXSW_ITEM32(reg, perpt, bf_bypass, 0x08, 8, 1); 2960 2961 /* reg_perpt_erp_id 2962 * eRP ID for use by the rules. 2963 * Access: RW 2964 */ 2965 MLXSW_ITEM32(reg, perpt, erp_id, 0x08, 0, 4); 2966 2967 /* reg_perpt_erpt_base_bank 2968 * Base eRP table bank, points to head of erp_vector 2969 * Range is 0 .. cap_max_erp_table_banks - 1 2970 * Access: OP 2971 */ 2972 MLXSW_ITEM32(reg, perpt, erpt_base_bank, 0x0C, 16, 4); 2973 2974 /* reg_perpt_erpt_base_index 2975 * Base index to eRP table within the eRP bank 2976 * Range is 0 .. cap_max_erp_table_bank_size - 1 2977 * Access: OP 2978 */ 2979 MLXSW_ITEM32(reg, perpt, erpt_base_index, 0x0C, 0, 8); 2980 2981 /* reg_perpt_erp_index_in_vector 2982 * eRP index in the vector. 2983 * Access: OP 2984 */ 2985 MLXSW_ITEM32(reg, perpt, erp_index_in_vector, 0x10, 0, 4); 2986 2987 /* reg_perpt_erp_vector 2988 * eRP vector. 2989 * Access: OP 2990 */ 2991 MLXSW_ITEM_BIT_ARRAY(reg, perpt, erp_vector, 0x14, 4, 1); 2992 2993 /* reg_perpt_mask 2994 * Mask 2995 * 0 - A-TCAM will ignore the bit in key 2996 * 1 - A-TCAM will compare the bit in key 2997 * Access: RW 2998 */ 2999 MLXSW_ITEM_BUF(reg, perpt, mask, 0x20, MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); 3000 3001 static inline void mlxsw_reg_perpt_erp_vector_pack(char *payload, 3002 unsigned long *erp_vector, 3003 unsigned long size) 3004 { 3005 unsigned long bit; 3006 3007 for_each_set_bit(bit, erp_vector, size) 3008 mlxsw_reg_perpt_erp_vector_set(payload, bit, true); 3009 } 3010 3011 static inline void 3012 mlxsw_reg_perpt_pack(char *payload, u8 erpt_bank, u8 erpt_index, 3013 enum mlxsw_reg_perpt_key_size key_size, u8 erp_id, 3014 u8 erpt_base_bank, u8 erpt_base_index, u8 erp_index, 3015 char *mask) 3016 { 3017 MLXSW_REG_ZERO(perpt, payload); 3018 mlxsw_reg_perpt_erpt_bank_set(payload, erpt_bank); 3019 mlxsw_reg_perpt_erpt_index_set(payload, erpt_index); 3020 mlxsw_reg_perpt_key_size_set(payload, key_size); 3021 mlxsw_reg_perpt_bf_bypass_set(payload, false); 3022 mlxsw_reg_perpt_erp_id_set(payload, erp_id); 3023 mlxsw_reg_perpt_erpt_base_bank_set(payload, erpt_base_bank); 3024 mlxsw_reg_perpt_erpt_base_index_set(payload, erpt_base_index); 3025 mlxsw_reg_perpt_erp_index_in_vector_set(payload, erp_index); 3026 mlxsw_reg_perpt_mask_memcpy_to(payload, mask); 3027 } 3028 3029 /* PERAR - Policy-Engine Region Association Register 3030 * ------------------------------------------------- 3031 * This register associates a hw region for region_id's. Changing on the fly 3032 * is supported by the device. 3033 */ 3034 #define MLXSW_REG_PERAR_ID 0x3026 3035 #define MLXSW_REG_PERAR_LEN 0x08 3036 3037 MLXSW_REG_DEFINE(perar, MLXSW_REG_PERAR_ID, MLXSW_REG_PERAR_LEN); 3038 3039 /* reg_perar_region_id 3040 * Region identifier 3041 * Range 0 .. cap_max_regions-1 3042 * Access: Index 3043 */ 3044 MLXSW_ITEM32(reg, perar, region_id, 0x00, 0, 16); 3045 3046 static inline unsigned int 3047 mlxsw_reg_perar_hw_regions_needed(unsigned int block_num) 3048 { 3049 return DIV_ROUND_UP(block_num, 4); 3050 } 3051 3052 /* reg_perar_hw_region 3053 * HW Region 3054 * Range 0 .. cap_max_regions-1 3055 * Default: hw_region = region_id 3056 * For a 8 key block region, 2 consecutive regions are used 3057 * For a 12 key block region, 3 consecutive regions are used 3058 * Access: RW 3059 */ 3060 MLXSW_ITEM32(reg, perar, hw_region, 0x04, 0, 16); 3061 3062 static inline void mlxsw_reg_perar_pack(char *payload, u16 region_id, 3063 u16 hw_region) 3064 { 3065 MLXSW_REG_ZERO(perar, payload); 3066 mlxsw_reg_perar_region_id_set(payload, region_id); 3067 mlxsw_reg_perar_hw_region_set(payload, hw_region); 3068 } 3069 3070 /* PTCE-V3 - Policy-Engine TCAM Entry Register Version 3 3071 * ----------------------------------------------------- 3072 * This register is a new version of PTCE-V2 in order to support the 3073 * A-TCAM. This register is not supported by SwitchX/-2 and Spectrum. 3074 */ 3075 #define MLXSW_REG_PTCE3_ID 0x3027 3076 #define MLXSW_REG_PTCE3_LEN 0xF0 3077 3078 MLXSW_REG_DEFINE(ptce3, MLXSW_REG_PTCE3_ID, MLXSW_REG_PTCE3_LEN); 3079 3080 /* reg_ptce3_v 3081 * Valid. 3082 * Access: RW 3083 */ 3084 MLXSW_ITEM32(reg, ptce3, v, 0x00, 31, 1); 3085 3086 enum mlxsw_reg_ptce3_op { 3087 /* Write operation. Used to write a new entry to the table. 3088 * All R/W fields are relevant for new entry. Activity bit is set 3089 * for new entries. Write with v = 0 will delete the entry. Must 3090 * not be used if an entry exists. 3091 */ 3092 MLXSW_REG_PTCE3_OP_WRITE_WRITE = 0, 3093 /* Update operation */ 3094 MLXSW_REG_PTCE3_OP_WRITE_UPDATE = 1, 3095 /* Read operation */ 3096 MLXSW_REG_PTCE3_OP_QUERY_READ = 0, 3097 }; 3098 3099 /* reg_ptce3_op 3100 * Access: OP 3101 */ 3102 MLXSW_ITEM32(reg, ptce3, op, 0x00, 20, 3); 3103 3104 /* reg_ptce3_priority 3105 * Priority of the rule. Higher values win. 3106 * For Spectrum-2 range is 1..cap_kvd_size - 1 3107 * Note: Priority does not have to be unique per rule. 3108 * Access: RW 3109 */ 3110 MLXSW_ITEM32(reg, ptce3, priority, 0x04, 0, 24); 3111 3112 /* reg_ptce3_tcam_region_info 3113 * Opaque object that represents the TCAM region. 3114 * Access: Index 3115 */ 3116 MLXSW_ITEM_BUF(reg, ptce3, tcam_region_info, 0x10, 3117 MLXSW_REG_PXXX_TCAM_REGION_INFO_LEN); 3118 3119 /* reg_ptce3_flex2_key_blocks 3120 * ACL key. The key must be masked according to eRP (if exists) or 3121 * according to master mask. 3122 * Access: Index 3123 */ 3124 MLXSW_ITEM_BUF(reg, ptce3, flex2_key_blocks, 0x20, 3125 MLXSW_REG_PTCEX_FLEX_KEY_BLOCKS_LEN); 3126 3127 /* reg_ptce3_erp_id 3128 * eRP ID. 3129 * Access: Index 3130 */ 3131 MLXSW_ITEM32(reg, ptce3, erp_id, 0x80, 0, 4); 3132 3133 /* reg_ptce3_delta_start 3134 * Start point of delta_value and delta_mask, in bits. Must not exceed 3135 * num_key_blocks * 36 - 8. Reserved when delta_mask = 0. 3136 * Access: Index 3137 */ 3138 MLXSW_ITEM32(reg, ptce3, delta_start, 0x84, 0, 10); 3139 3140 /* reg_ptce3_delta_mask 3141 * Delta mask. 3142 * 0 - Ignore relevant bit in delta_value 3143 * 1 - Compare relevant bit in delta_value 3144 * Delta mask must not be set for reserved fields in the key blocks. 3145 * Note: No delta when no eRPs. Thus, for regions with 3146 * PERERP.erpt_pointer_valid = 0 the delta mask must be 0. 3147 * Access: Index 3148 */ 3149 MLXSW_ITEM32(reg, ptce3, delta_mask, 0x88, 16, 8); 3150 3151 /* reg_ptce3_delta_value 3152 * Delta value. 3153 * Bits which are masked by delta_mask must be 0. 3154 * Access: Index 3155 */ 3156 MLXSW_ITEM32(reg, ptce3, delta_value, 0x88, 0, 8); 3157 3158 /* reg_ptce3_prune_vector 3159 * Pruning vector relative to the PERPT.erp_id. 3160 * Used for reducing lookups. 3161 * 0 - NEED: Do a lookup using the eRP. 3162 * 1 - PRUNE: Do not perform a lookup using the eRP. 3163 * Maybe be modified by PEAPBL and PEAPBM. 3164 * Note: In Spectrum-2, a region of 8 key blocks must be set to either 3165 * all 1's or all 0's. 3166 * Access: RW 3167 */ 3168 MLXSW_ITEM_BIT_ARRAY(reg, ptce3, prune_vector, 0x90, 4, 1); 3169 3170 /* reg_ptce3_prune_ctcam 3171 * Pruning on C-TCAM. Used for reducing lookups. 3172 * 0 - NEED: Do a lookup in the C-TCAM. 3173 * 1 - PRUNE: Do not perform a lookup in the C-TCAM. 3174 * Access: RW 3175 */ 3176 MLXSW_ITEM32(reg, ptce3, prune_ctcam, 0x94, 31, 1); 3177 3178 /* reg_ptce3_large_exists 3179 * Large entry key ID exists. 3180 * Within the region: 3181 * 0 - SINGLE: The large_entry_key_id is not currently in use. 3182 * For rule insert: The MSB of the key (blocks 6..11) will be added. 3183 * For rule delete: The MSB of the key will be removed. 3184 * 1 - NON_SINGLE: The large_entry_key_id is currently in use. 3185 * For rule insert: The MSB of the key (blocks 6..11) will not be added. 3186 * For rule delete: The MSB of the key will not be removed. 3187 * Access: WO 3188 */ 3189 MLXSW_ITEM32(reg, ptce3, large_exists, 0x98, 31, 1); 3190 3191 /* reg_ptce3_large_entry_key_id 3192 * Large entry key ID. 3193 * A key for 12 key blocks rules. Reserved when region has less than 12 key 3194 * blocks. Must be different for different keys which have the same common 3195 * 6 key blocks (MSB, blocks 6..11) key within a region. 3196 * Range is 0..cap_max_pe_large_key_id - 1 3197 * Access: RW 3198 */ 3199 MLXSW_ITEM32(reg, ptce3, large_entry_key_id, 0x98, 0, 24); 3200 3201 /* reg_ptce3_action_pointer 3202 * Pointer to action. 3203 * Range is 0..cap_max_kvd_action_sets - 1 3204 * Access: RW 3205 */ 3206 MLXSW_ITEM32(reg, ptce3, action_pointer, 0xA0, 0, 24); 3207 3208 static inline void mlxsw_reg_ptce3_pack(char *payload, bool valid, 3209 enum mlxsw_reg_ptce3_op op, 3210 u32 priority, 3211 const char *tcam_region_info, 3212 const char *key, u8 erp_id, 3213 u16 delta_start, u8 delta_mask, 3214 u8 delta_value, bool large_exists, 3215 u32 lkey_id, u32 action_pointer) 3216 { 3217 MLXSW_REG_ZERO(ptce3, payload); 3218 mlxsw_reg_ptce3_v_set(payload, valid); 3219 mlxsw_reg_ptce3_op_set(payload, op); 3220 mlxsw_reg_ptce3_priority_set(payload, priority); 3221 mlxsw_reg_ptce3_tcam_region_info_memcpy_to(payload, tcam_region_info); 3222 mlxsw_reg_ptce3_flex2_key_blocks_memcpy_to(payload, key); 3223 mlxsw_reg_ptce3_erp_id_set(payload, erp_id); 3224 mlxsw_reg_ptce3_delta_start_set(payload, delta_start); 3225 mlxsw_reg_ptce3_delta_mask_set(payload, delta_mask); 3226 mlxsw_reg_ptce3_delta_value_set(payload, delta_value); 3227 mlxsw_reg_ptce3_large_exists_set(payload, large_exists); 3228 mlxsw_reg_ptce3_large_entry_key_id_set(payload, lkey_id); 3229 mlxsw_reg_ptce3_action_pointer_set(payload, action_pointer); 3230 } 3231 3232 /* PERCR - Policy-Engine Region Configuration Register 3233 * --------------------------------------------------- 3234 * This register configures the region parameters. The region_id must be 3235 * allocated. 3236 */ 3237 #define MLXSW_REG_PERCR_ID 0x302A 3238 #define MLXSW_REG_PERCR_LEN 0x80 3239 3240 MLXSW_REG_DEFINE(percr, MLXSW_REG_PERCR_ID, MLXSW_REG_PERCR_LEN); 3241 3242 /* reg_percr_region_id 3243 * Region identifier. 3244 * Range 0..cap_max_regions-1 3245 * Access: Index 3246 */ 3247 MLXSW_ITEM32(reg, percr, region_id, 0x00, 0, 16); 3248 3249 /* reg_percr_atcam_ignore_prune 3250 * Ignore prune_vector by other A-TCAM rules. Used e.g., for a new rule. 3251 * Access: RW 3252 */ 3253 MLXSW_ITEM32(reg, percr, atcam_ignore_prune, 0x04, 25, 1); 3254 3255 /* reg_percr_ctcam_ignore_prune 3256 * Ignore prune_ctcam by other A-TCAM rules. Used e.g., for a new rule. 3257 * Access: RW 3258 */ 3259 MLXSW_ITEM32(reg, percr, ctcam_ignore_prune, 0x04, 24, 1); 3260 3261 /* reg_percr_bf_bypass 3262 * Bloom filter bypass. 3263 * 0 - Bloom filter is used (default) 3264 * 1 - Bloom filter is bypassed. The bypass is an OR condition of 3265 * region_id or eRP. See PERPT.bf_bypass 3266 * Access: RW 3267 */ 3268 MLXSW_ITEM32(reg, percr, bf_bypass, 0x04, 16, 1); 3269 3270 /* reg_percr_master_mask 3271 * Master mask. Logical OR mask of all masks of all rules of a region 3272 * (both A-TCAM and C-TCAM). When there are no eRPs 3273 * (erpt_pointer_valid = 0), then this provides the mask. 3274 * Access: RW 3275 */ 3276 MLXSW_ITEM_BUF(reg, percr, master_mask, 0x20, 96); 3277 3278 static inline void mlxsw_reg_percr_pack(char *payload, u16 region_id) 3279 { 3280 MLXSW_REG_ZERO(percr, payload); 3281 mlxsw_reg_percr_region_id_set(payload, region_id); 3282 mlxsw_reg_percr_atcam_ignore_prune_set(payload, false); 3283 mlxsw_reg_percr_ctcam_ignore_prune_set(payload, false); 3284 mlxsw_reg_percr_bf_bypass_set(payload, false); 3285 } 3286 3287 /* PERERP - Policy-Engine Region eRP Register 3288 * ------------------------------------------ 3289 * This register configures the region eRP. The region_id must be 3290 * allocated. 3291 */ 3292 #define MLXSW_REG_PERERP_ID 0x302B 3293 #define MLXSW_REG_PERERP_LEN 0x1C 3294 3295 MLXSW_REG_DEFINE(pererp, MLXSW_REG_PERERP_ID, MLXSW_REG_PERERP_LEN); 3296 3297 /* reg_pererp_region_id 3298 * Region identifier. 3299 * Range 0..cap_max_regions-1 3300 * Access: Index 3301 */ 3302 MLXSW_ITEM32(reg, pererp, region_id, 0x00, 0, 16); 3303 3304 /* reg_pererp_ctcam_le 3305 * C-TCAM lookup enable. Reserved when erpt_pointer_valid = 0. 3306 * Access: RW 3307 */ 3308 MLXSW_ITEM32(reg, pererp, ctcam_le, 0x04, 28, 1); 3309 3310 /* reg_pererp_erpt_pointer_valid 3311 * erpt_pointer is valid. 3312 * Access: RW 3313 */ 3314 MLXSW_ITEM32(reg, pererp, erpt_pointer_valid, 0x10, 31, 1); 3315 3316 /* reg_pererp_erpt_bank_pointer 3317 * Pointer to eRP table bank. May be modified at any time. 3318 * Range 0..cap_max_erp_table_banks-1 3319 * Reserved when erpt_pointer_valid = 0 3320 */ 3321 MLXSW_ITEM32(reg, pererp, erpt_bank_pointer, 0x10, 16, 4); 3322 3323 /* reg_pererp_erpt_pointer 3324 * Pointer to eRP table within the eRP bank. Can be changed for an 3325 * existing region. 3326 * Range 0..cap_max_erp_table_size-1 3327 * Reserved when erpt_pointer_valid = 0 3328 * Access: RW 3329 */ 3330 MLXSW_ITEM32(reg, pererp, erpt_pointer, 0x10, 0, 8); 3331 3332 /* reg_pererp_erpt_vector 3333 * Vector of allowed eRP indexes starting from erpt_pointer within the 3334 * erpt_bank_pointer. Next entries will be in next bank. 3335 * Note that eRP index is used and not eRP ID. 3336 * Reserved when erpt_pointer_valid = 0 3337 * Access: RW 3338 */ 3339 MLXSW_ITEM_BIT_ARRAY(reg, pererp, erpt_vector, 0x14, 4, 1); 3340 3341 /* reg_pererp_master_rp_id 3342 * Master RP ID. When there are no eRPs, then this provides the eRP ID 3343 * for the lookup. Can be changed for an existing region. 3344 * Reserved when erpt_pointer_valid = 1 3345 * Access: RW 3346 */ 3347 MLXSW_ITEM32(reg, pererp, master_rp_id, 0x18, 0, 4); 3348 3349 static inline void mlxsw_reg_pererp_erp_vector_pack(char *payload, 3350 unsigned long *erp_vector, 3351 unsigned long size) 3352 { 3353 unsigned long bit; 3354 3355 for_each_set_bit(bit, erp_vector, size) 3356 mlxsw_reg_pererp_erpt_vector_set(payload, bit, true); 3357 } 3358 3359 static inline void mlxsw_reg_pererp_pack(char *payload, u16 region_id, 3360 bool ctcam_le, bool erpt_pointer_valid, 3361 u8 erpt_bank_pointer, u8 erpt_pointer, 3362 u8 master_rp_id) 3363 { 3364 MLXSW_REG_ZERO(pererp, payload); 3365 mlxsw_reg_pererp_region_id_set(payload, region_id); 3366 mlxsw_reg_pererp_ctcam_le_set(payload, ctcam_le); 3367 mlxsw_reg_pererp_erpt_pointer_valid_set(payload, erpt_pointer_valid); 3368 mlxsw_reg_pererp_erpt_bank_pointer_set(payload, erpt_bank_pointer); 3369 mlxsw_reg_pererp_erpt_pointer_set(payload, erpt_pointer); 3370 mlxsw_reg_pererp_master_rp_id_set(payload, master_rp_id); 3371 } 3372 3373 /* PEABFE - Policy-Engine Algorithmic Bloom Filter Entries Register 3374 * ---------------------------------------------------------------- 3375 * This register configures the Bloom filter entries. 3376 */ 3377 #define MLXSW_REG_PEABFE_ID 0x3022 3378 #define MLXSW_REG_PEABFE_BASE_LEN 0x10 3379 #define MLXSW_REG_PEABFE_BF_REC_LEN 0x4 3380 #define MLXSW_REG_PEABFE_BF_REC_MAX_COUNT 256 3381 #define MLXSW_REG_PEABFE_LEN (MLXSW_REG_PEABFE_BASE_LEN + \ 3382 MLXSW_REG_PEABFE_BF_REC_LEN * \ 3383 MLXSW_REG_PEABFE_BF_REC_MAX_COUNT) 3384 3385 MLXSW_REG_DEFINE(peabfe, MLXSW_REG_PEABFE_ID, MLXSW_REG_PEABFE_LEN); 3386 3387 /* reg_peabfe_size 3388 * Number of BF entries to be updated. 3389 * Range 1..256 3390 * Access: Op 3391 */ 3392 MLXSW_ITEM32(reg, peabfe, size, 0x00, 0, 9); 3393 3394 /* reg_peabfe_bf_entry_state 3395 * Bloom filter state 3396 * 0 - Clear 3397 * 1 - Set 3398 * Access: RW 3399 */ 3400 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_state, 3401 MLXSW_REG_PEABFE_BASE_LEN, 31, 1, 3402 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false); 3403 3404 /* reg_peabfe_bf_entry_bank 3405 * Bloom filter bank ID 3406 * Range 0..cap_max_erp_table_banks-1 3407 * Access: Index 3408 */ 3409 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_bank, 3410 MLXSW_REG_PEABFE_BASE_LEN, 24, 4, 3411 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false); 3412 3413 /* reg_peabfe_bf_entry_index 3414 * Bloom filter entry index 3415 * Range 0..2^cap_max_bf_log-1 3416 * Access: Index 3417 */ 3418 MLXSW_ITEM32_INDEXED(reg, peabfe, bf_entry_index, 3419 MLXSW_REG_PEABFE_BASE_LEN, 0, 24, 3420 MLXSW_REG_PEABFE_BF_REC_LEN, 0x00, false); 3421 3422 static inline void mlxsw_reg_peabfe_pack(char *payload) 3423 { 3424 MLXSW_REG_ZERO(peabfe, payload); 3425 } 3426 3427 static inline void mlxsw_reg_peabfe_rec_pack(char *payload, int rec_index, 3428 u8 state, u8 bank, u32 bf_index) 3429 { 3430 u8 num_rec = mlxsw_reg_peabfe_size_get(payload); 3431 3432 if (rec_index >= num_rec) 3433 mlxsw_reg_peabfe_size_set(payload, rec_index + 1); 3434 mlxsw_reg_peabfe_bf_entry_state_set(payload, rec_index, state); 3435 mlxsw_reg_peabfe_bf_entry_bank_set(payload, rec_index, bank); 3436 mlxsw_reg_peabfe_bf_entry_index_set(payload, rec_index, bf_index); 3437 } 3438 3439 /* IEDR - Infrastructure Entry Delete Register 3440 * ---------------------------------------------------- 3441 * This register is used for deleting entries from the entry tables. 3442 * It is legitimate to attempt to delete a nonexisting entry (the device will 3443 * respond as a good flow). 3444 */ 3445 #define MLXSW_REG_IEDR_ID 0x3804 3446 #define MLXSW_REG_IEDR_BASE_LEN 0x10 /* base length, without records */ 3447 #define MLXSW_REG_IEDR_REC_LEN 0x8 /* record length */ 3448 #define MLXSW_REG_IEDR_REC_MAX_COUNT 64 3449 #define MLXSW_REG_IEDR_LEN (MLXSW_REG_IEDR_BASE_LEN + \ 3450 MLXSW_REG_IEDR_REC_LEN * \ 3451 MLXSW_REG_IEDR_REC_MAX_COUNT) 3452 3453 MLXSW_REG_DEFINE(iedr, MLXSW_REG_IEDR_ID, MLXSW_REG_IEDR_LEN); 3454 3455 /* reg_iedr_num_rec 3456 * Number of records. 3457 * Access: OP 3458 */ 3459 MLXSW_ITEM32(reg, iedr, num_rec, 0x00, 0, 8); 3460 3461 /* reg_iedr_rec_type 3462 * Resource type. 3463 * Access: OP 3464 */ 3465 MLXSW_ITEM32_INDEXED(reg, iedr, rec_type, MLXSW_REG_IEDR_BASE_LEN, 24, 8, 3466 MLXSW_REG_IEDR_REC_LEN, 0x00, false); 3467 3468 /* reg_iedr_rec_size 3469 * Size of entries do be deleted. The unit is 1 entry, regardless of entry type. 3470 * Access: OP 3471 */ 3472 MLXSW_ITEM32_INDEXED(reg, iedr, rec_size, MLXSW_REG_IEDR_BASE_LEN, 0, 13, 3473 MLXSW_REG_IEDR_REC_LEN, 0x00, false); 3474 3475 /* reg_iedr_rec_index_start 3476 * Resource index start. 3477 * Access: OP 3478 */ 3479 MLXSW_ITEM32_INDEXED(reg, iedr, rec_index_start, MLXSW_REG_IEDR_BASE_LEN, 0, 24, 3480 MLXSW_REG_IEDR_REC_LEN, 0x04, false); 3481 3482 static inline void mlxsw_reg_iedr_pack(char *payload) 3483 { 3484 MLXSW_REG_ZERO(iedr, payload); 3485 } 3486 3487 static inline void mlxsw_reg_iedr_rec_pack(char *payload, int rec_index, 3488 u8 rec_type, u16 rec_size, 3489 u32 rec_index_start) 3490 { 3491 u8 num_rec = mlxsw_reg_iedr_num_rec_get(payload); 3492 3493 if (rec_index >= num_rec) 3494 mlxsw_reg_iedr_num_rec_set(payload, rec_index + 1); 3495 mlxsw_reg_iedr_rec_type_set(payload, rec_index, rec_type); 3496 mlxsw_reg_iedr_rec_size_set(payload, rec_index, rec_size); 3497 mlxsw_reg_iedr_rec_index_start_set(payload, rec_index, rec_index_start); 3498 } 3499 3500 /* QPTS - QoS Priority Trust State Register 3501 * ---------------------------------------- 3502 * This register controls the port policy to calculate the switch priority and 3503 * packet color based on incoming packet fields. 3504 */ 3505 #define MLXSW_REG_QPTS_ID 0x4002 3506 #define MLXSW_REG_QPTS_LEN 0x8 3507 3508 MLXSW_REG_DEFINE(qpts, MLXSW_REG_QPTS_ID, MLXSW_REG_QPTS_LEN); 3509 3510 /* reg_qpts_local_port 3511 * Local port number. 3512 * Access: Index 3513 * 3514 * Note: CPU port is supported. 3515 */ 3516 MLXSW_ITEM32(reg, qpts, local_port, 0x00, 16, 8); 3517 3518 enum mlxsw_reg_qpts_trust_state { 3519 MLXSW_REG_QPTS_TRUST_STATE_PCP = 1, 3520 MLXSW_REG_QPTS_TRUST_STATE_DSCP = 2, /* For MPLS, trust EXP. */ 3521 }; 3522 3523 /* reg_qpts_trust_state 3524 * Trust state for a given port. 3525 * Access: RW 3526 */ 3527 MLXSW_ITEM32(reg, qpts, trust_state, 0x04, 0, 3); 3528 3529 static inline void mlxsw_reg_qpts_pack(char *payload, u8 local_port, 3530 enum mlxsw_reg_qpts_trust_state ts) 3531 { 3532 MLXSW_REG_ZERO(qpts, payload); 3533 3534 mlxsw_reg_qpts_local_port_set(payload, local_port); 3535 mlxsw_reg_qpts_trust_state_set(payload, ts); 3536 } 3537 3538 /* QPCR - QoS Policer Configuration Register 3539 * ----------------------------------------- 3540 * The QPCR register is used to create policers - that limit 3541 * the rate of bytes or packets via some trap group. 3542 */ 3543 #define MLXSW_REG_QPCR_ID 0x4004 3544 #define MLXSW_REG_QPCR_LEN 0x28 3545 3546 MLXSW_REG_DEFINE(qpcr, MLXSW_REG_QPCR_ID, MLXSW_REG_QPCR_LEN); 3547 3548 enum mlxsw_reg_qpcr_g { 3549 MLXSW_REG_QPCR_G_GLOBAL = 2, 3550 MLXSW_REG_QPCR_G_STORM_CONTROL = 3, 3551 }; 3552 3553 /* reg_qpcr_g 3554 * The policer type. 3555 * Access: Index 3556 */ 3557 MLXSW_ITEM32(reg, qpcr, g, 0x00, 14, 2); 3558 3559 /* reg_qpcr_pid 3560 * Policer ID. 3561 * Access: Index 3562 */ 3563 MLXSW_ITEM32(reg, qpcr, pid, 0x00, 0, 14); 3564 3565 /* reg_qpcr_clear_counter 3566 * Clear counters. 3567 * Access: OP 3568 */ 3569 MLXSW_ITEM32(reg, qpcr, clear_counter, 0x04, 31, 1); 3570 3571 /* reg_qpcr_color_aware 3572 * Is the policer aware of colors. 3573 * Must be 0 (unaware) for cpu port. 3574 * Access: RW for unbounded policer. RO for bounded policer. 3575 */ 3576 MLXSW_ITEM32(reg, qpcr, color_aware, 0x04, 15, 1); 3577 3578 /* reg_qpcr_bytes 3579 * Is policer limit is for bytes per sec or packets per sec. 3580 * 0 - packets 3581 * 1 - bytes 3582 * Access: RW for unbounded policer. RO for bounded policer. 3583 */ 3584 MLXSW_ITEM32(reg, qpcr, bytes, 0x04, 14, 1); 3585 3586 enum mlxsw_reg_qpcr_ir_units { 3587 MLXSW_REG_QPCR_IR_UNITS_M, 3588 MLXSW_REG_QPCR_IR_UNITS_K, 3589 }; 3590 3591 /* reg_qpcr_ir_units 3592 * Policer's units for cir and eir fields (for bytes limits only) 3593 * 1 - 10^3 3594 * 0 - 10^6 3595 * Access: OP 3596 */ 3597 MLXSW_ITEM32(reg, qpcr, ir_units, 0x04, 12, 1); 3598 3599 enum mlxsw_reg_qpcr_rate_type { 3600 MLXSW_REG_QPCR_RATE_TYPE_SINGLE = 1, 3601 MLXSW_REG_QPCR_RATE_TYPE_DOUBLE = 2, 3602 }; 3603 3604 /* reg_qpcr_rate_type 3605 * Policer can have one limit (single rate) or 2 limits with specific operation 3606 * for packets that exceed the lower rate but not the upper one. 3607 * (For cpu port must be single rate) 3608 * Access: RW for unbounded policer. RO for bounded policer. 3609 */ 3610 MLXSW_ITEM32(reg, qpcr, rate_type, 0x04, 8, 2); 3611 3612 /* reg_qpc_cbs 3613 * Policer's committed burst size. 3614 * The policer is working with time slices of 50 nano sec. By default every 3615 * slice is granted the proportionate share of the committed rate. If we want to 3616 * allow a slice to exceed that share (while still keeping the rate per sec) we 3617 * can allow burst. The burst size is between the default proportionate share 3618 * (and no lower than 8) to 32Gb. (Even though giving a number higher than the 3619 * committed rate will result in exceeding the rate). The burst size must be a 3620 * log of 2 and will be determined by 2^cbs. 3621 * Access: RW 3622 */ 3623 MLXSW_ITEM32(reg, qpcr, cbs, 0x08, 24, 6); 3624 3625 /* reg_qpcr_cir 3626 * Policer's committed rate. 3627 * The rate used for sungle rate, the lower rate for double rate. 3628 * For bytes limits, the rate will be this value * the unit from ir_units. 3629 * (Resolution error is up to 1%). 3630 * Access: RW 3631 */ 3632 MLXSW_ITEM32(reg, qpcr, cir, 0x0C, 0, 32); 3633 3634 /* reg_qpcr_eir 3635 * Policer's exceed rate. 3636 * The higher rate for double rate, reserved for single rate. 3637 * Lower rate for double rate policer. 3638 * For bytes limits, the rate will be this value * the unit from ir_units. 3639 * (Resolution error is up to 1%). 3640 * Access: RW 3641 */ 3642 MLXSW_ITEM32(reg, qpcr, eir, 0x10, 0, 32); 3643 3644 #define MLXSW_REG_QPCR_DOUBLE_RATE_ACTION 2 3645 3646 /* reg_qpcr_exceed_action. 3647 * What to do with packets between the 2 limits for double rate. 3648 * Access: RW for unbounded policer. RO for bounded policer. 3649 */ 3650 MLXSW_ITEM32(reg, qpcr, exceed_action, 0x14, 0, 4); 3651 3652 enum mlxsw_reg_qpcr_action { 3653 /* Discard */ 3654 MLXSW_REG_QPCR_ACTION_DISCARD = 1, 3655 /* Forward and set color to red. 3656 * If the packet is intended to cpu port, it will be dropped. 3657 */ 3658 MLXSW_REG_QPCR_ACTION_FORWARD = 2, 3659 }; 3660 3661 /* reg_qpcr_violate_action 3662 * What to do with packets that cross the cir limit (for single rate) or the eir 3663 * limit (for double rate). 3664 * Access: RW for unbounded policer. RO for bounded policer. 3665 */ 3666 MLXSW_ITEM32(reg, qpcr, violate_action, 0x18, 0, 4); 3667 3668 /* reg_qpcr_violate_count 3669 * Counts the number of times violate_action happened on this PID. 3670 * Access: RW 3671 */ 3672 MLXSW_ITEM64(reg, qpcr, violate_count, 0x20, 0, 64); 3673 3674 /* Packets */ 3675 #define MLXSW_REG_QPCR_LOWEST_CIR 1 3676 #define MLXSW_REG_QPCR_HIGHEST_CIR (2 * 1000 * 1000 * 1000) /* 2Gpps */ 3677 #define MLXSW_REG_QPCR_LOWEST_CBS 4 3678 #define MLXSW_REG_QPCR_HIGHEST_CBS 24 3679 3680 /* Bandwidth */ 3681 #define MLXSW_REG_QPCR_LOWEST_CIR_BITS 1024 /* bps */ 3682 #define MLXSW_REG_QPCR_HIGHEST_CIR_BITS 2000000000000ULL /* 2Tbps */ 3683 #define MLXSW_REG_QPCR_LOWEST_CBS_BITS_SP1 4 3684 #define MLXSW_REG_QPCR_LOWEST_CBS_BITS_SP2 4 3685 #define MLXSW_REG_QPCR_HIGHEST_CBS_BITS_SP1 25 3686 #define MLXSW_REG_QPCR_HIGHEST_CBS_BITS_SP2 31 3687 3688 static inline void mlxsw_reg_qpcr_pack(char *payload, u16 pid, 3689 enum mlxsw_reg_qpcr_ir_units ir_units, 3690 bool bytes, u32 cir, u16 cbs) 3691 { 3692 MLXSW_REG_ZERO(qpcr, payload); 3693 mlxsw_reg_qpcr_pid_set(payload, pid); 3694 mlxsw_reg_qpcr_g_set(payload, MLXSW_REG_QPCR_G_GLOBAL); 3695 mlxsw_reg_qpcr_rate_type_set(payload, MLXSW_REG_QPCR_RATE_TYPE_SINGLE); 3696 mlxsw_reg_qpcr_violate_action_set(payload, 3697 MLXSW_REG_QPCR_ACTION_DISCARD); 3698 mlxsw_reg_qpcr_cir_set(payload, cir); 3699 mlxsw_reg_qpcr_ir_units_set(payload, ir_units); 3700 mlxsw_reg_qpcr_bytes_set(payload, bytes); 3701 mlxsw_reg_qpcr_cbs_set(payload, cbs); 3702 } 3703 3704 /* QTCT - QoS Switch Traffic Class Table 3705 * ------------------------------------- 3706 * Configures the mapping between the packet switch priority and the 3707 * traffic class on the transmit port. 3708 */ 3709 #define MLXSW_REG_QTCT_ID 0x400A 3710 #define MLXSW_REG_QTCT_LEN 0x08 3711 3712 MLXSW_REG_DEFINE(qtct, MLXSW_REG_QTCT_ID, MLXSW_REG_QTCT_LEN); 3713 3714 /* reg_qtct_local_port 3715 * Local port number. 3716 * Access: Index 3717 * 3718 * Note: CPU port is not supported. 3719 */ 3720 MLXSW_ITEM32(reg, qtct, local_port, 0x00, 16, 8); 3721 3722 /* reg_qtct_sub_port 3723 * Virtual port within the physical port. 3724 * Should be set to 0 when virtual ports are not enabled on the port. 3725 * Access: Index 3726 */ 3727 MLXSW_ITEM32(reg, qtct, sub_port, 0x00, 8, 8); 3728 3729 /* reg_qtct_switch_prio 3730 * Switch priority. 3731 * Access: Index 3732 */ 3733 MLXSW_ITEM32(reg, qtct, switch_prio, 0x00, 0, 4); 3734 3735 /* reg_qtct_tclass 3736 * Traffic class. 3737 * Default values: 3738 * switch_prio 0 : tclass 1 3739 * switch_prio 1 : tclass 0 3740 * switch_prio i : tclass i, for i > 1 3741 * Access: RW 3742 */ 3743 MLXSW_ITEM32(reg, qtct, tclass, 0x04, 0, 4); 3744 3745 static inline void mlxsw_reg_qtct_pack(char *payload, u8 local_port, 3746 u8 switch_prio, u8 tclass) 3747 { 3748 MLXSW_REG_ZERO(qtct, payload); 3749 mlxsw_reg_qtct_local_port_set(payload, local_port); 3750 mlxsw_reg_qtct_switch_prio_set(payload, switch_prio); 3751 mlxsw_reg_qtct_tclass_set(payload, tclass); 3752 } 3753 3754 /* QEEC - QoS ETS Element Configuration Register 3755 * --------------------------------------------- 3756 * Configures the ETS elements. 3757 */ 3758 #define MLXSW_REG_QEEC_ID 0x400D 3759 #define MLXSW_REG_QEEC_LEN 0x20 3760 3761 MLXSW_REG_DEFINE(qeec, MLXSW_REG_QEEC_ID, MLXSW_REG_QEEC_LEN); 3762 3763 /* reg_qeec_local_port 3764 * Local port number. 3765 * Access: Index 3766 * 3767 * Note: CPU port is supported. 3768 */ 3769 MLXSW_ITEM32(reg, qeec, local_port, 0x00, 16, 8); 3770 3771 enum mlxsw_reg_qeec_hr { 3772 MLXSW_REG_QEEC_HR_PORT, 3773 MLXSW_REG_QEEC_HR_GROUP, 3774 MLXSW_REG_QEEC_HR_SUBGROUP, 3775 MLXSW_REG_QEEC_HR_TC, 3776 }; 3777 3778 /* reg_qeec_element_hierarchy 3779 * 0 - Port 3780 * 1 - Group 3781 * 2 - Subgroup 3782 * 3 - Traffic Class 3783 * Access: Index 3784 */ 3785 MLXSW_ITEM32(reg, qeec, element_hierarchy, 0x04, 16, 4); 3786 3787 /* reg_qeec_element_index 3788 * The index of the element in the hierarchy. 3789 * Access: Index 3790 */ 3791 MLXSW_ITEM32(reg, qeec, element_index, 0x04, 0, 8); 3792 3793 /* reg_qeec_next_element_index 3794 * The index of the next (lower) element in the hierarchy. 3795 * Access: RW 3796 * 3797 * Note: Reserved for element_hierarchy 0. 3798 */ 3799 MLXSW_ITEM32(reg, qeec, next_element_index, 0x08, 0, 8); 3800 3801 /* reg_qeec_mise 3802 * Min shaper configuration enable. Enables configuration of the min 3803 * shaper on this ETS element 3804 * 0 - Disable 3805 * 1 - Enable 3806 * Access: RW 3807 */ 3808 MLXSW_ITEM32(reg, qeec, mise, 0x0C, 31, 1); 3809 3810 /* reg_qeec_ptps 3811 * PTP shaper 3812 * 0: regular shaper mode 3813 * 1: PTP oriented shaper 3814 * Allowed only for hierarchy 0 3815 * Not supported for CPU port 3816 * Note that ptps mode may affect the shaper rates of all hierarchies 3817 * Supported only on Spectrum-1 3818 * Access: RW 3819 */ 3820 MLXSW_ITEM32(reg, qeec, ptps, 0x0C, 29, 1); 3821 3822 enum { 3823 MLXSW_REG_QEEC_BYTES_MODE, 3824 MLXSW_REG_QEEC_PACKETS_MODE, 3825 }; 3826 3827 /* reg_qeec_pb 3828 * Packets or bytes mode. 3829 * 0 - Bytes mode 3830 * 1 - Packets mode 3831 * Access: RW 3832 * 3833 * Note: Used for max shaper configuration. For Spectrum, packets mode 3834 * is supported only for traffic classes of CPU port. 3835 */ 3836 MLXSW_ITEM32(reg, qeec, pb, 0x0C, 28, 1); 3837 3838 /* The smallest permitted min shaper rate. */ 3839 #define MLXSW_REG_QEEC_MIS_MIN 200000 /* Kbps */ 3840 3841 /* reg_qeec_min_shaper_rate 3842 * Min shaper information rate. 3843 * For CPU port, can only be configured for port hierarchy. 3844 * When in bytes mode, value is specified in units of 1000bps. 3845 * Access: RW 3846 */ 3847 MLXSW_ITEM32(reg, qeec, min_shaper_rate, 0x0C, 0, 28); 3848 3849 /* reg_qeec_mase 3850 * Max shaper configuration enable. Enables configuration of the max 3851 * shaper on this ETS element. 3852 * 0 - Disable 3853 * 1 - Enable 3854 * Access: RW 3855 */ 3856 MLXSW_ITEM32(reg, qeec, mase, 0x10, 31, 1); 3857 3858 /* The largest max shaper value possible to disable the shaper. */ 3859 #define MLXSW_REG_QEEC_MAS_DIS ((1u << 31) - 1) /* Kbps */ 3860 3861 /* reg_qeec_max_shaper_rate 3862 * Max shaper information rate. 3863 * For CPU port, can only be configured for port hierarchy. 3864 * When in bytes mode, value is specified in units of 1000bps. 3865 * Access: RW 3866 */ 3867 MLXSW_ITEM32(reg, qeec, max_shaper_rate, 0x10, 0, 31); 3868 3869 /* reg_qeec_de 3870 * DWRR configuration enable. Enables configuration of the dwrr and 3871 * dwrr_weight. 3872 * 0 - Disable 3873 * 1 - Enable 3874 * Access: RW 3875 */ 3876 MLXSW_ITEM32(reg, qeec, de, 0x18, 31, 1); 3877 3878 /* reg_qeec_dwrr 3879 * Transmission selection algorithm to use on the link going down from 3880 * the ETS element. 3881 * 0 - Strict priority 3882 * 1 - DWRR 3883 * Access: RW 3884 */ 3885 MLXSW_ITEM32(reg, qeec, dwrr, 0x18, 15, 1); 3886 3887 /* reg_qeec_dwrr_weight 3888 * DWRR weight on the link going down from the ETS element. The 3889 * percentage of bandwidth guaranteed to an ETS element within 3890 * its hierarchy. The sum of all weights across all ETS elements 3891 * within one hierarchy should be equal to 100. Reserved when 3892 * transmission selection algorithm is strict priority. 3893 * Access: RW 3894 */ 3895 MLXSW_ITEM32(reg, qeec, dwrr_weight, 0x18, 0, 8); 3896 3897 /* reg_qeec_max_shaper_bs 3898 * Max shaper burst size 3899 * Burst size is 2^max_shaper_bs * 512 bits 3900 * For Spectrum-1: Range is: 5..25 3901 * For Spectrum-2: Range is: 11..25 3902 * Reserved when ptps = 1 3903 * Access: RW 3904 */ 3905 MLXSW_ITEM32(reg, qeec, max_shaper_bs, 0x1C, 0, 6); 3906 3907 #define MLXSW_REG_QEEC_HIGHEST_SHAPER_BS 25 3908 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP1 5 3909 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP2 11 3910 #define MLXSW_REG_QEEC_LOWEST_SHAPER_BS_SP3 11 3911 3912 static inline void mlxsw_reg_qeec_pack(char *payload, u8 local_port, 3913 enum mlxsw_reg_qeec_hr hr, u8 index, 3914 u8 next_index) 3915 { 3916 MLXSW_REG_ZERO(qeec, payload); 3917 mlxsw_reg_qeec_local_port_set(payload, local_port); 3918 mlxsw_reg_qeec_element_hierarchy_set(payload, hr); 3919 mlxsw_reg_qeec_element_index_set(payload, index); 3920 mlxsw_reg_qeec_next_element_index_set(payload, next_index); 3921 } 3922 3923 static inline void mlxsw_reg_qeec_ptps_pack(char *payload, u8 local_port, 3924 bool ptps) 3925 { 3926 MLXSW_REG_ZERO(qeec, payload); 3927 mlxsw_reg_qeec_local_port_set(payload, local_port); 3928 mlxsw_reg_qeec_element_hierarchy_set(payload, MLXSW_REG_QEEC_HR_PORT); 3929 mlxsw_reg_qeec_ptps_set(payload, ptps); 3930 } 3931 3932 /* QRWE - QoS ReWrite Enable 3933 * ------------------------- 3934 * This register configures the rewrite enable per receive port. 3935 */ 3936 #define MLXSW_REG_QRWE_ID 0x400F 3937 #define MLXSW_REG_QRWE_LEN 0x08 3938 3939 MLXSW_REG_DEFINE(qrwe, MLXSW_REG_QRWE_ID, MLXSW_REG_QRWE_LEN); 3940 3941 /* reg_qrwe_local_port 3942 * Local port number. 3943 * Access: Index 3944 * 3945 * Note: CPU port is supported. No support for router port. 3946 */ 3947 MLXSW_ITEM32(reg, qrwe, local_port, 0x00, 16, 8); 3948 3949 /* reg_qrwe_dscp 3950 * Whether to enable DSCP rewrite (default is 0, don't rewrite). 3951 * Access: RW 3952 */ 3953 MLXSW_ITEM32(reg, qrwe, dscp, 0x04, 1, 1); 3954 3955 /* reg_qrwe_pcp 3956 * Whether to enable PCP and DEI rewrite (default is 0, don't rewrite). 3957 * Access: RW 3958 */ 3959 MLXSW_ITEM32(reg, qrwe, pcp, 0x04, 0, 1); 3960 3961 static inline void mlxsw_reg_qrwe_pack(char *payload, u8 local_port, 3962 bool rewrite_pcp, bool rewrite_dscp) 3963 { 3964 MLXSW_REG_ZERO(qrwe, payload); 3965 mlxsw_reg_qrwe_local_port_set(payload, local_port); 3966 mlxsw_reg_qrwe_pcp_set(payload, rewrite_pcp); 3967 mlxsw_reg_qrwe_dscp_set(payload, rewrite_dscp); 3968 } 3969 3970 /* QPDSM - QoS Priority to DSCP Mapping 3971 * ------------------------------------ 3972 * QoS Priority to DSCP Mapping Register 3973 */ 3974 #define MLXSW_REG_QPDSM_ID 0x4011 3975 #define MLXSW_REG_QPDSM_BASE_LEN 0x04 /* base length, without records */ 3976 #define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN 0x4 /* record length */ 3977 #define MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT 16 3978 #define MLXSW_REG_QPDSM_LEN (MLXSW_REG_QPDSM_BASE_LEN + \ 3979 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN * \ 3980 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_MAX_COUNT) 3981 3982 MLXSW_REG_DEFINE(qpdsm, MLXSW_REG_QPDSM_ID, MLXSW_REG_QPDSM_LEN); 3983 3984 /* reg_qpdsm_local_port 3985 * Local Port. Supported for data packets from CPU port. 3986 * Access: Index 3987 */ 3988 MLXSW_ITEM32(reg, qpdsm, local_port, 0x00, 16, 8); 3989 3990 /* reg_qpdsm_prio_entry_color0_e 3991 * Enable update of the entry for color 0 and a given port. 3992 * Access: WO 3993 */ 3994 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_e, 3995 MLXSW_REG_QPDSM_BASE_LEN, 31, 1, 3996 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 3997 3998 /* reg_qpdsm_prio_entry_color0_dscp 3999 * DSCP field in the outer label of the packet for color 0 and a given port. 4000 * Reserved when e=0. 4001 * Access: RW 4002 */ 4003 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color0_dscp, 4004 MLXSW_REG_QPDSM_BASE_LEN, 24, 6, 4005 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 4006 4007 /* reg_qpdsm_prio_entry_color1_e 4008 * Enable update of the entry for color 1 and a given port. 4009 * Access: WO 4010 */ 4011 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_e, 4012 MLXSW_REG_QPDSM_BASE_LEN, 23, 1, 4013 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 4014 4015 /* reg_qpdsm_prio_entry_color1_dscp 4016 * DSCP field in the outer label of the packet for color 1 and a given port. 4017 * Reserved when e=0. 4018 * Access: RW 4019 */ 4020 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color1_dscp, 4021 MLXSW_REG_QPDSM_BASE_LEN, 16, 6, 4022 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 4023 4024 /* reg_qpdsm_prio_entry_color2_e 4025 * Enable update of the entry for color 2 and a given port. 4026 * Access: WO 4027 */ 4028 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_e, 4029 MLXSW_REG_QPDSM_BASE_LEN, 15, 1, 4030 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 4031 4032 /* reg_qpdsm_prio_entry_color2_dscp 4033 * DSCP field in the outer label of the packet for color 2 and a given port. 4034 * Reserved when e=0. 4035 * Access: RW 4036 */ 4037 MLXSW_ITEM32_INDEXED(reg, qpdsm, prio_entry_color2_dscp, 4038 MLXSW_REG_QPDSM_BASE_LEN, 8, 6, 4039 MLXSW_REG_QPDSM_PRIO_ENTRY_REC_LEN, 0x00, false); 4040 4041 static inline void mlxsw_reg_qpdsm_pack(char *payload, u8 local_port) 4042 { 4043 MLXSW_REG_ZERO(qpdsm, payload); 4044 mlxsw_reg_qpdsm_local_port_set(payload, local_port); 4045 } 4046 4047 static inline void 4048 mlxsw_reg_qpdsm_prio_pack(char *payload, unsigned short prio, u8 dscp) 4049 { 4050 mlxsw_reg_qpdsm_prio_entry_color0_e_set(payload, prio, 1); 4051 mlxsw_reg_qpdsm_prio_entry_color0_dscp_set(payload, prio, dscp); 4052 mlxsw_reg_qpdsm_prio_entry_color1_e_set(payload, prio, 1); 4053 mlxsw_reg_qpdsm_prio_entry_color1_dscp_set(payload, prio, dscp); 4054 mlxsw_reg_qpdsm_prio_entry_color2_e_set(payload, prio, 1); 4055 mlxsw_reg_qpdsm_prio_entry_color2_dscp_set(payload, prio, dscp); 4056 } 4057 4058 /* QPDP - QoS Port DSCP to Priority Mapping Register 4059 * ------------------------------------------------- 4060 * This register controls the port default Switch Priority and Color. The 4061 * default Switch Priority and Color are used for frames where the trust state 4062 * uses default values. All member ports of a LAG should be configured with the 4063 * same default values. 4064 */ 4065 #define MLXSW_REG_QPDP_ID 0x4007 4066 #define MLXSW_REG_QPDP_LEN 0x8 4067 4068 MLXSW_REG_DEFINE(qpdp, MLXSW_REG_QPDP_ID, MLXSW_REG_QPDP_LEN); 4069 4070 /* reg_qpdp_local_port 4071 * Local Port. Supported for data packets from CPU port. 4072 * Access: Index 4073 */ 4074 MLXSW_ITEM32(reg, qpdp, local_port, 0x00, 16, 8); 4075 4076 /* reg_qpdp_switch_prio 4077 * Default port Switch Priority (default 0) 4078 * Access: RW 4079 */ 4080 MLXSW_ITEM32(reg, qpdp, switch_prio, 0x04, 0, 4); 4081 4082 static inline void mlxsw_reg_qpdp_pack(char *payload, u8 local_port, 4083 u8 switch_prio) 4084 { 4085 MLXSW_REG_ZERO(qpdp, payload); 4086 mlxsw_reg_qpdp_local_port_set(payload, local_port); 4087 mlxsw_reg_qpdp_switch_prio_set(payload, switch_prio); 4088 } 4089 4090 /* QPDPM - QoS Port DSCP to Priority Mapping Register 4091 * -------------------------------------------------- 4092 * This register controls the mapping from DSCP field to 4093 * Switch Priority for IP packets. 4094 */ 4095 #define MLXSW_REG_QPDPM_ID 0x4013 4096 #define MLXSW_REG_QPDPM_BASE_LEN 0x4 /* base length, without records */ 4097 #define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN 0x2 /* record length */ 4098 #define MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT 64 4099 #define MLXSW_REG_QPDPM_LEN (MLXSW_REG_QPDPM_BASE_LEN + \ 4100 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN * \ 4101 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_MAX_COUNT) 4102 4103 MLXSW_REG_DEFINE(qpdpm, MLXSW_REG_QPDPM_ID, MLXSW_REG_QPDPM_LEN); 4104 4105 /* reg_qpdpm_local_port 4106 * Local Port. Supported for data packets from CPU port. 4107 * Access: Index 4108 */ 4109 MLXSW_ITEM32(reg, qpdpm, local_port, 0x00, 16, 8); 4110 4111 /* reg_qpdpm_dscp_e 4112 * Enable update of the specific entry. When cleared, the switch_prio and color 4113 * fields are ignored and the previous switch_prio and color values are 4114 * preserved. 4115 * Access: WO 4116 */ 4117 MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_e, MLXSW_REG_QPDPM_BASE_LEN, 15, 1, 4118 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false); 4119 4120 /* reg_qpdpm_dscp_prio 4121 * The new Switch Priority value for the relevant DSCP value. 4122 * Access: RW 4123 */ 4124 MLXSW_ITEM16_INDEXED(reg, qpdpm, dscp_entry_prio, 4125 MLXSW_REG_QPDPM_BASE_LEN, 0, 4, 4126 MLXSW_REG_QPDPM_DSCP_ENTRY_REC_LEN, 0x00, false); 4127 4128 static inline void mlxsw_reg_qpdpm_pack(char *payload, u8 local_port) 4129 { 4130 MLXSW_REG_ZERO(qpdpm, payload); 4131 mlxsw_reg_qpdpm_local_port_set(payload, local_port); 4132 } 4133 4134 static inline void 4135 mlxsw_reg_qpdpm_dscp_pack(char *payload, unsigned short dscp, u8 prio) 4136 { 4137 mlxsw_reg_qpdpm_dscp_entry_e_set(payload, dscp, 1); 4138 mlxsw_reg_qpdpm_dscp_entry_prio_set(payload, dscp, prio); 4139 } 4140 4141 /* QTCTM - QoS Switch Traffic Class Table is Multicast-Aware Register 4142 * ------------------------------------------------------------------ 4143 * This register configures if the Switch Priority to Traffic Class mapping is 4144 * based on Multicast packet indication. If so, then multicast packets will get 4145 * a Traffic Class that is plus (cap_max_tclass_data/2) the value configured by 4146 * QTCT. 4147 * By default, Switch Priority to Traffic Class mapping is not based on 4148 * Multicast packet indication. 4149 */ 4150 #define MLXSW_REG_QTCTM_ID 0x401A 4151 #define MLXSW_REG_QTCTM_LEN 0x08 4152 4153 MLXSW_REG_DEFINE(qtctm, MLXSW_REG_QTCTM_ID, MLXSW_REG_QTCTM_LEN); 4154 4155 /* reg_qtctm_local_port 4156 * Local port number. 4157 * No support for CPU port. 4158 * Access: Index 4159 */ 4160 MLXSW_ITEM32(reg, qtctm, local_port, 0x00, 16, 8); 4161 4162 /* reg_qtctm_mc 4163 * Multicast Mode 4164 * Whether Switch Priority to Traffic Class mapping is based on Multicast packet 4165 * indication (default is 0, not based on Multicast packet indication). 4166 */ 4167 MLXSW_ITEM32(reg, qtctm, mc, 0x04, 0, 1); 4168 4169 static inline void 4170 mlxsw_reg_qtctm_pack(char *payload, u8 local_port, bool mc) 4171 { 4172 MLXSW_REG_ZERO(qtctm, payload); 4173 mlxsw_reg_qtctm_local_port_set(payload, local_port); 4174 mlxsw_reg_qtctm_mc_set(payload, mc); 4175 } 4176 4177 /* QPSC - QoS PTP Shaper Configuration Register 4178 * -------------------------------------------- 4179 * The QPSC allows advanced configuration of the shapers when QEEC.ptps=1. 4180 * Supported only on Spectrum-1. 4181 */ 4182 #define MLXSW_REG_QPSC_ID 0x401B 4183 #define MLXSW_REG_QPSC_LEN 0x28 4184 4185 MLXSW_REG_DEFINE(qpsc, MLXSW_REG_QPSC_ID, MLXSW_REG_QPSC_LEN); 4186 4187 enum mlxsw_reg_qpsc_port_speed { 4188 MLXSW_REG_QPSC_PORT_SPEED_100M, 4189 MLXSW_REG_QPSC_PORT_SPEED_1G, 4190 MLXSW_REG_QPSC_PORT_SPEED_10G, 4191 MLXSW_REG_QPSC_PORT_SPEED_25G, 4192 }; 4193 4194 /* reg_qpsc_port_speed 4195 * Port speed. 4196 * Access: Index 4197 */ 4198 MLXSW_ITEM32(reg, qpsc, port_speed, 0x00, 0, 4); 4199 4200 /* reg_qpsc_shaper_time_exp 4201 * The base-time-interval for updating the shapers tokens (for all hierarchies). 4202 * shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec 4203 * shaper_rate = 64bit * shaper_inc / shaper_update_rate 4204 * Access: RW 4205 */ 4206 MLXSW_ITEM32(reg, qpsc, shaper_time_exp, 0x04, 16, 4); 4207 4208 /* reg_qpsc_shaper_time_mantissa 4209 * The base-time-interval for updating the shapers tokens (for all hierarchies). 4210 * shaper_update_rate = 2 ^ shaper_time_exp * (1 + shaper_time_mantissa) * 32nSec 4211 * shaper_rate = 64bit * shaper_inc / shaper_update_rate 4212 * Access: RW 4213 */ 4214 MLXSW_ITEM32(reg, qpsc, shaper_time_mantissa, 0x04, 0, 5); 4215 4216 /* reg_qpsc_shaper_inc 4217 * Number of tokens added to shaper on each update. 4218 * Units of 8B. 4219 * Access: RW 4220 */ 4221 MLXSW_ITEM32(reg, qpsc, shaper_inc, 0x08, 0, 5); 4222 4223 /* reg_qpsc_shaper_bs 4224 * Max shaper Burst size. 4225 * Burst size is 2 ^ max_shaper_bs * 512 [bits] 4226 * Range is: 5..25 (from 2KB..2GB) 4227 * Access: RW 4228 */ 4229 MLXSW_ITEM32(reg, qpsc, shaper_bs, 0x0C, 0, 6); 4230 4231 /* reg_qpsc_ptsc_we 4232 * Write enable to port_to_shaper_credits. 4233 * Access: WO 4234 */ 4235 MLXSW_ITEM32(reg, qpsc, ptsc_we, 0x10, 31, 1); 4236 4237 /* reg_qpsc_port_to_shaper_credits 4238 * For split ports: range 1..57 4239 * For non-split ports: range 1..112 4240 * Written only when ptsc_we is set. 4241 * Access: RW 4242 */ 4243 MLXSW_ITEM32(reg, qpsc, port_to_shaper_credits, 0x10, 0, 8); 4244 4245 /* reg_qpsc_ing_timestamp_inc 4246 * Ingress timestamp increment. 4247 * 2's complement. 4248 * The timestamp of MTPPTR at ingress will be incremented by this value. Global 4249 * value for all ports. 4250 * Same units as used by MTPPTR. 4251 * Access: RW 4252 */ 4253 MLXSW_ITEM32(reg, qpsc, ing_timestamp_inc, 0x20, 0, 32); 4254 4255 /* reg_qpsc_egr_timestamp_inc 4256 * Egress timestamp increment. 4257 * 2's complement. 4258 * The timestamp of MTPPTR at egress will be incremented by this value. Global 4259 * value for all ports. 4260 * Same units as used by MTPPTR. 4261 * Access: RW 4262 */ 4263 MLXSW_ITEM32(reg, qpsc, egr_timestamp_inc, 0x24, 0, 32); 4264 4265 static inline void 4266 mlxsw_reg_qpsc_pack(char *payload, enum mlxsw_reg_qpsc_port_speed port_speed, 4267 u8 shaper_time_exp, u8 shaper_time_mantissa, u8 shaper_inc, 4268 u8 shaper_bs, u8 port_to_shaper_credits, 4269 int ing_timestamp_inc, int egr_timestamp_inc) 4270 { 4271 MLXSW_REG_ZERO(qpsc, payload); 4272 mlxsw_reg_qpsc_port_speed_set(payload, port_speed); 4273 mlxsw_reg_qpsc_shaper_time_exp_set(payload, shaper_time_exp); 4274 mlxsw_reg_qpsc_shaper_time_mantissa_set(payload, shaper_time_mantissa); 4275 mlxsw_reg_qpsc_shaper_inc_set(payload, shaper_inc); 4276 mlxsw_reg_qpsc_shaper_bs_set(payload, shaper_bs); 4277 mlxsw_reg_qpsc_ptsc_we_set(payload, true); 4278 mlxsw_reg_qpsc_port_to_shaper_credits_set(payload, port_to_shaper_credits); 4279 mlxsw_reg_qpsc_ing_timestamp_inc_set(payload, ing_timestamp_inc); 4280 mlxsw_reg_qpsc_egr_timestamp_inc_set(payload, egr_timestamp_inc); 4281 } 4282 4283 /* PMLP - Ports Module to Local Port Register 4284 * ------------------------------------------ 4285 * Configures the assignment of modules to local ports. 4286 */ 4287 #define MLXSW_REG_PMLP_ID 0x5002 4288 #define MLXSW_REG_PMLP_LEN 0x40 4289 4290 MLXSW_REG_DEFINE(pmlp, MLXSW_REG_PMLP_ID, MLXSW_REG_PMLP_LEN); 4291 4292 /* reg_pmlp_rxtx 4293 * 0 - Tx value is used for both Tx and Rx. 4294 * 1 - Rx value is taken from a separte field. 4295 * Access: RW 4296 */ 4297 MLXSW_ITEM32(reg, pmlp, rxtx, 0x00, 31, 1); 4298 4299 /* reg_pmlp_local_port 4300 * Local port number. 4301 * Access: Index 4302 */ 4303 MLXSW_ITEM32(reg, pmlp, local_port, 0x00, 16, 8); 4304 4305 /* reg_pmlp_width 4306 * 0 - Unmap local port. 4307 * 1 - Lane 0 is used. 4308 * 2 - Lanes 0 and 1 are used. 4309 * 4 - Lanes 0, 1, 2 and 3 are used. 4310 * 8 - Lanes 0-7 are used. 4311 * Access: RW 4312 */ 4313 MLXSW_ITEM32(reg, pmlp, width, 0x00, 0, 8); 4314 4315 /* reg_pmlp_module 4316 * Module number. 4317 * Access: RW 4318 */ 4319 MLXSW_ITEM32_INDEXED(reg, pmlp, module, 0x04, 0, 8, 0x04, 0x00, false); 4320 4321 /* reg_pmlp_tx_lane 4322 * Tx Lane. When rxtx field is cleared, this field is used for Rx as well. 4323 * Access: RW 4324 */ 4325 MLXSW_ITEM32_INDEXED(reg, pmlp, tx_lane, 0x04, 16, 4, 0x04, 0x00, false); 4326 4327 /* reg_pmlp_rx_lane 4328 * Rx Lane. When rxtx field is cleared, this field is ignored and Rx lane is 4329 * equal to Tx lane. 4330 * Access: RW 4331 */ 4332 MLXSW_ITEM32_INDEXED(reg, pmlp, rx_lane, 0x04, 24, 4, 0x04, 0x00, false); 4333 4334 static inline void mlxsw_reg_pmlp_pack(char *payload, u8 local_port) 4335 { 4336 MLXSW_REG_ZERO(pmlp, payload); 4337 mlxsw_reg_pmlp_local_port_set(payload, local_port); 4338 } 4339 4340 /* PMTU - Port MTU Register 4341 * ------------------------ 4342 * Configures and reports the port MTU. 4343 */ 4344 #define MLXSW_REG_PMTU_ID 0x5003 4345 #define MLXSW_REG_PMTU_LEN 0x10 4346 4347 MLXSW_REG_DEFINE(pmtu, MLXSW_REG_PMTU_ID, MLXSW_REG_PMTU_LEN); 4348 4349 /* reg_pmtu_local_port 4350 * Local port number. 4351 * Access: Index 4352 */ 4353 MLXSW_ITEM32(reg, pmtu, local_port, 0x00, 16, 8); 4354 4355 /* reg_pmtu_max_mtu 4356 * Maximum MTU. 4357 * When port type (e.g. Ethernet) is configured, the relevant MTU is 4358 * reported, otherwise the minimum between the max_mtu of the different 4359 * types is reported. 4360 * Access: RO 4361 */ 4362 MLXSW_ITEM32(reg, pmtu, max_mtu, 0x04, 16, 16); 4363 4364 /* reg_pmtu_admin_mtu 4365 * MTU value to set port to. Must be smaller or equal to max_mtu. 4366 * Note: If port type is Infiniband, then port must be disabled, when its 4367 * MTU is set. 4368 * Access: RW 4369 */ 4370 MLXSW_ITEM32(reg, pmtu, admin_mtu, 0x08, 16, 16); 4371 4372 /* reg_pmtu_oper_mtu 4373 * The actual MTU configured on the port. Packets exceeding this size 4374 * will be dropped. 4375 * Note: In Ethernet and FC oper_mtu == admin_mtu, however, in Infiniband 4376 * oper_mtu might be smaller than admin_mtu. 4377 * Access: RO 4378 */ 4379 MLXSW_ITEM32(reg, pmtu, oper_mtu, 0x0C, 16, 16); 4380 4381 static inline void mlxsw_reg_pmtu_pack(char *payload, u8 local_port, 4382 u16 new_mtu) 4383 { 4384 MLXSW_REG_ZERO(pmtu, payload); 4385 mlxsw_reg_pmtu_local_port_set(payload, local_port); 4386 mlxsw_reg_pmtu_max_mtu_set(payload, 0); 4387 mlxsw_reg_pmtu_admin_mtu_set(payload, new_mtu); 4388 mlxsw_reg_pmtu_oper_mtu_set(payload, 0); 4389 } 4390 4391 /* PTYS - Port Type and Speed Register 4392 * ----------------------------------- 4393 * Configures and reports the port speed type. 4394 * 4395 * Note: When set while the link is up, the changes will not take effect 4396 * until the port transitions from down to up state. 4397 */ 4398 #define MLXSW_REG_PTYS_ID 0x5004 4399 #define MLXSW_REG_PTYS_LEN 0x40 4400 4401 MLXSW_REG_DEFINE(ptys, MLXSW_REG_PTYS_ID, MLXSW_REG_PTYS_LEN); 4402 4403 /* an_disable_admin 4404 * Auto negotiation disable administrative configuration 4405 * 0 - Device doesn't support AN disable. 4406 * 1 - Device supports AN disable. 4407 * Access: RW 4408 */ 4409 MLXSW_ITEM32(reg, ptys, an_disable_admin, 0x00, 30, 1); 4410 4411 /* reg_ptys_local_port 4412 * Local port number. 4413 * Access: Index 4414 */ 4415 MLXSW_ITEM32(reg, ptys, local_port, 0x00, 16, 8); 4416 4417 #define MLXSW_REG_PTYS_PROTO_MASK_IB BIT(0) 4418 #define MLXSW_REG_PTYS_PROTO_MASK_ETH BIT(2) 4419 4420 /* reg_ptys_proto_mask 4421 * Protocol mask. Indicates which protocol is used. 4422 * 0 - Infiniband. 4423 * 1 - Fibre Channel. 4424 * 2 - Ethernet. 4425 * Access: Index 4426 */ 4427 MLXSW_ITEM32(reg, ptys, proto_mask, 0x00, 0, 3); 4428 4429 enum { 4430 MLXSW_REG_PTYS_AN_STATUS_NA, 4431 MLXSW_REG_PTYS_AN_STATUS_OK, 4432 MLXSW_REG_PTYS_AN_STATUS_FAIL, 4433 }; 4434 4435 /* reg_ptys_an_status 4436 * Autonegotiation status. 4437 * Access: RO 4438 */ 4439 MLXSW_ITEM32(reg, ptys, an_status, 0x04, 28, 4); 4440 4441 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_SGMII_100M BIT(0) 4442 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_1000BASE_X_SGMII BIT(1) 4443 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_5GBASE_R BIT(3) 4444 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_XFI_XAUI_1_10G BIT(4) 4445 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_XLAUI_4_XLPPI_4_40G BIT(5) 4446 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_25GAUI_1_25GBASE_CR_KR BIT(6) 4447 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_2_LAUI_2_50GBASE_CR2_KR2 BIT(7) 4448 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_50GAUI_1_LAUI_1_50GBASE_CR_KR BIT(8) 4449 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_CAUI_4_100GBASE_CR4_KR4 BIT(9) 4450 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_100GAUI_2_100GBASE_CR2_KR2 BIT(10) 4451 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_200GAUI_4_200GBASE_CR4_KR4 BIT(12) 4452 #define MLXSW_REG_PTYS_EXT_ETH_SPEED_400GAUI_8 BIT(15) 4453 4454 /* reg_ptys_ext_eth_proto_cap 4455 * Extended Ethernet port supported speeds and protocols. 4456 * Access: RO 4457 */ 4458 MLXSW_ITEM32(reg, ptys, ext_eth_proto_cap, 0x08, 0, 32); 4459 4460 #define MLXSW_REG_PTYS_ETH_SPEED_SGMII BIT(0) 4461 #define MLXSW_REG_PTYS_ETH_SPEED_1000BASE_KX BIT(1) 4462 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CX4 BIT(2) 4463 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KX4 BIT(3) 4464 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_KR BIT(4) 4465 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_CR4 BIT(6) 4466 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_KR4 BIT(7) 4467 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_CR BIT(12) 4468 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_SR BIT(13) 4469 #define MLXSW_REG_PTYS_ETH_SPEED_10GBASE_ER_LR BIT(14) 4470 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_SR4 BIT(15) 4471 #define MLXSW_REG_PTYS_ETH_SPEED_40GBASE_LR4_ER4 BIT(16) 4472 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_SR2 BIT(18) 4473 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR4 BIT(19) 4474 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_CR4 BIT(20) 4475 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_SR4 BIT(21) 4476 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_KR4 BIT(22) 4477 #define MLXSW_REG_PTYS_ETH_SPEED_100GBASE_LR4_ER4 BIT(23) 4478 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_CR BIT(27) 4479 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_KR BIT(28) 4480 #define MLXSW_REG_PTYS_ETH_SPEED_25GBASE_SR BIT(29) 4481 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_CR2 BIT(30) 4482 #define MLXSW_REG_PTYS_ETH_SPEED_50GBASE_KR2 BIT(31) 4483 4484 /* reg_ptys_eth_proto_cap 4485 * Ethernet port supported speeds and protocols. 4486 * Access: RO 4487 */ 4488 MLXSW_ITEM32(reg, ptys, eth_proto_cap, 0x0C, 0, 32); 4489 4490 /* reg_ptys_ib_link_width_cap 4491 * IB port supported widths. 4492 * Access: RO 4493 */ 4494 MLXSW_ITEM32(reg, ptys, ib_link_width_cap, 0x10, 16, 16); 4495 4496 #define MLXSW_REG_PTYS_IB_SPEED_SDR BIT(0) 4497 #define MLXSW_REG_PTYS_IB_SPEED_DDR BIT(1) 4498 #define MLXSW_REG_PTYS_IB_SPEED_QDR BIT(2) 4499 #define MLXSW_REG_PTYS_IB_SPEED_FDR10 BIT(3) 4500 #define MLXSW_REG_PTYS_IB_SPEED_FDR BIT(4) 4501 #define MLXSW_REG_PTYS_IB_SPEED_EDR BIT(5) 4502 4503 /* reg_ptys_ib_proto_cap 4504 * IB port supported speeds and protocols. 4505 * Access: RO 4506 */ 4507 MLXSW_ITEM32(reg, ptys, ib_proto_cap, 0x10, 0, 16); 4508 4509 /* reg_ptys_ext_eth_proto_admin 4510 * Extended speed and protocol to set port to. 4511 * Access: RW 4512 */ 4513 MLXSW_ITEM32(reg, ptys, ext_eth_proto_admin, 0x14, 0, 32); 4514 4515 /* reg_ptys_eth_proto_admin 4516 * Speed and protocol to set port to. 4517 * Access: RW 4518 */ 4519 MLXSW_ITEM32(reg, ptys, eth_proto_admin, 0x18, 0, 32); 4520 4521 /* reg_ptys_ib_link_width_admin 4522 * IB width to set port to. 4523 * Access: RW 4524 */ 4525 MLXSW_ITEM32(reg, ptys, ib_link_width_admin, 0x1C, 16, 16); 4526 4527 /* reg_ptys_ib_proto_admin 4528 * IB speeds and protocols to set port to. 4529 * Access: RW 4530 */ 4531 MLXSW_ITEM32(reg, ptys, ib_proto_admin, 0x1C, 0, 16); 4532 4533 /* reg_ptys_ext_eth_proto_oper 4534 * The extended current speed and protocol configured for the port. 4535 * Access: RO 4536 */ 4537 MLXSW_ITEM32(reg, ptys, ext_eth_proto_oper, 0x20, 0, 32); 4538 4539 /* reg_ptys_eth_proto_oper 4540 * The current speed and protocol configured for the port. 4541 * Access: RO 4542 */ 4543 MLXSW_ITEM32(reg, ptys, eth_proto_oper, 0x24, 0, 32); 4544 4545 /* reg_ptys_ib_link_width_oper 4546 * The current IB width to set port to. 4547 * Access: RO 4548 */ 4549 MLXSW_ITEM32(reg, ptys, ib_link_width_oper, 0x28, 16, 16); 4550 4551 /* reg_ptys_ib_proto_oper 4552 * The current IB speed and protocol. 4553 * Access: RO 4554 */ 4555 MLXSW_ITEM32(reg, ptys, ib_proto_oper, 0x28, 0, 16); 4556 4557 enum mlxsw_reg_ptys_connector_type { 4558 MLXSW_REG_PTYS_CONNECTOR_TYPE_UNKNOWN_OR_NO_CONNECTOR, 4559 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_NONE, 4560 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_TP, 4561 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_AUI, 4562 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_BNC, 4563 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_MII, 4564 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_FIBRE, 4565 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_DA, 4566 MLXSW_REG_PTYS_CONNECTOR_TYPE_PORT_OTHER, 4567 }; 4568 4569 /* reg_ptys_connector_type 4570 * Connector type indication. 4571 * Access: RO 4572 */ 4573 MLXSW_ITEM32(reg, ptys, connector_type, 0x2C, 0, 4); 4574 4575 static inline void mlxsw_reg_ptys_eth_pack(char *payload, u8 local_port, 4576 u32 proto_admin, bool autoneg) 4577 { 4578 MLXSW_REG_ZERO(ptys, payload); 4579 mlxsw_reg_ptys_local_port_set(payload, local_port); 4580 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH); 4581 mlxsw_reg_ptys_eth_proto_admin_set(payload, proto_admin); 4582 mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg); 4583 } 4584 4585 static inline void mlxsw_reg_ptys_ext_eth_pack(char *payload, u8 local_port, 4586 u32 proto_admin, bool autoneg) 4587 { 4588 MLXSW_REG_ZERO(ptys, payload); 4589 mlxsw_reg_ptys_local_port_set(payload, local_port); 4590 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_ETH); 4591 mlxsw_reg_ptys_ext_eth_proto_admin_set(payload, proto_admin); 4592 mlxsw_reg_ptys_an_disable_admin_set(payload, !autoneg); 4593 } 4594 4595 static inline void mlxsw_reg_ptys_eth_unpack(char *payload, 4596 u32 *p_eth_proto_cap, 4597 u32 *p_eth_proto_admin, 4598 u32 *p_eth_proto_oper) 4599 { 4600 if (p_eth_proto_cap) 4601 *p_eth_proto_cap = 4602 mlxsw_reg_ptys_eth_proto_cap_get(payload); 4603 if (p_eth_proto_admin) 4604 *p_eth_proto_admin = 4605 mlxsw_reg_ptys_eth_proto_admin_get(payload); 4606 if (p_eth_proto_oper) 4607 *p_eth_proto_oper = 4608 mlxsw_reg_ptys_eth_proto_oper_get(payload); 4609 } 4610 4611 static inline void mlxsw_reg_ptys_ext_eth_unpack(char *payload, 4612 u32 *p_eth_proto_cap, 4613 u32 *p_eth_proto_admin, 4614 u32 *p_eth_proto_oper) 4615 { 4616 if (p_eth_proto_cap) 4617 *p_eth_proto_cap = 4618 mlxsw_reg_ptys_ext_eth_proto_cap_get(payload); 4619 if (p_eth_proto_admin) 4620 *p_eth_proto_admin = 4621 mlxsw_reg_ptys_ext_eth_proto_admin_get(payload); 4622 if (p_eth_proto_oper) 4623 *p_eth_proto_oper = 4624 mlxsw_reg_ptys_ext_eth_proto_oper_get(payload); 4625 } 4626 4627 static inline void mlxsw_reg_ptys_ib_pack(char *payload, u8 local_port, 4628 u16 proto_admin, u16 link_width) 4629 { 4630 MLXSW_REG_ZERO(ptys, payload); 4631 mlxsw_reg_ptys_local_port_set(payload, local_port); 4632 mlxsw_reg_ptys_proto_mask_set(payload, MLXSW_REG_PTYS_PROTO_MASK_IB); 4633 mlxsw_reg_ptys_ib_proto_admin_set(payload, proto_admin); 4634 mlxsw_reg_ptys_ib_link_width_admin_set(payload, link_width); 4635 } 4636 4637 static inline void mlxsw_reg_ptys_ib_unpack(char *payload, u16 *p_ib_proto_cap, 4638 u16 *p_ib_link_width_cap, 4639 u16 *p_ib_proto_oper, 4640 u16 *p_ib_link_width_oper) 4641 { 4642 if (p_ib_proto_cap) 4643 *p_ib_proto_cap = mlxsw_reg_ptys_ib_proto_cap_get(payload); 4644 if (p_ib_link_width_cap) 4645 *p_ib_link_width_cap = 4646 mlxsw_reg_ptys_ib_link_width_cap_get(payload); 4647 if (p_ib_proto_oper) 4648 *p_ib_proto_oper = mlxsw_reg_ptys_ib_proto_oper_get(payload); 4649 if (p_ib_link_width_oper) 4650 *p_ib_link_width_oper = 4651 mlxsw_reg_ptys_ib_link_width_oper_get(payload); 4652 } 4653 4654 /* PPAD - Port Physical Address Register 4655 * ------------------------------------- 4656 * The PPAD register configures the per port physical MAC address. 4657 */ 4658 #define MLXSW_REG_PPAD_ID 0x5005 4659 #define MLXSW_REG_PPAD_LEN 0x10 4660 4661 MLXSW_REG_DEFINE(ppad, MLXSW_REG_PPAD_ID, MLXSW_REG_PPAD_LEN); 4662 4663 /* reg_ppad_single_base_mac 4664 * 0: base_mac, local port should be 0 and mac[7:0] is 4665 * reserved. HW will set incremental 4666 * 1: single_mac - mac of the local_port 4667 * Access: RW 4668 */ 4669 MLXSW_ITEM32(reg, ppad, single_base_mac, 0x00, 28, 1); 4670 4671 /* reg_ppad_local_port 4672 * port number, if single_base_mac = 0 then local_port is reserved 4673 * Access: RW 4674 */ 4675 MLXSW_ITEM32(reg, ppad, local_port, 0x00, 16, 8); 4676 4677 /* reg_ppad_mac 4678 * If single_base_mac = 0 - base MAC address, mac[7:0] is reserved. 4679 * If single_base_mac = 1 - the per port MAC address 4680 * Access: RW 4681 */ 4682 MLXSW_ITEM_BUF(reg, ppad, mac, 0x02, 6); 4683 4684 static inline void mlxsw_reg_ppad_pack(char *payload, bool single_base_mac, 4685 u8 local_port) 4686 { 4687 MLXSW_REG_ZERO(ppad, payload); 4688 mlxsw_reg_ppad_single_base_mac_set(payload, !!single_base_mac); 4689 mlxsw_reg_ppad_local_port_set(payload, local_port); 4690 } 4691 4692 /* PAOS - Ports Administrative and Operational Status Register 4693 * ----------------------------------------------------------- 4694 * Configures and retrieves per port administrative and operational status. 4695 */ 4696 #define MLXSW_REG_PAOS_ID 0x5006 4697 #define MLXSW_REG_PAOS_LEN 0x10 4698 4699 MLXSW_REG_DEFINE(paos, MLXSW_REG_PAOS_ID, MLXSW_REG_PAOS_LEN); 4700 4701 /* reg_paos_swid 4702 * Switch partition ID with which to associate the port. 4703 * Note: while external ports uses unique local port numbers (and thus swid is 4704 * redundant), router ports use the same local port number where swid is the 4705 * only indication for the relevant port. 4706 * Access: Index 4707 */ 4708 MLXSW_ITEM32(reg, paos, swid, 0x00, 24, 8); 4709 4710 /* reg_paos_local_port 4711 * Local port number. 4712 * Access: Index 4713 */ 4714 MLXSW_ITEM32(reg, paos, local_port, 0x00, 16, 8); 4715 4716 /* reg_paos_admin_status 4717 * Port administrative state (the desired state of the port): 4718 * 1 - Up. 4719 * 2 - Down. 4720 * 3 - Up once. This means that in case of link failure, the port won't go 4721 * into polling mode, but will wait to be re-enabled by software. 4722 * 4 - Disabled by system. Can only be set by hardware. 4723 * Access: RW 4724 */ 4725 MLXSW_ITEM32(reg, paos, admin_status, 0x00, 8, 4); 4726 4727 /* reg_paos_oper_status 4728 * Port operational state (the current state): 4729 * 1 - Up. 4730 * 2 - Down. 4731 * 3 - Down by port failure. This means that the device will not let the 4732 * port up again until explicitly specified by software. 4733 * Access: RO 4734 */ 4735 MLXSW_ITEM32(reg, paos, oper_status, 0x00, 0, 4); 4736 4737 /* reg_paos_ase 4738 * Admin state update enabled. 4739 * Access: WO 4740 */ 4741 MLXSW_ITEM32(reg, paos, ase, 0x04, 31, 1); 4742 4743 /* reg_paos_ee 4744 * Event update enable. If this bit is set, event generation will be 4745 * updated based on the e field. 4746 * Access: WO 4747 */ 4748 MLXSW_ITEM32(reg, paos, ee, 0x04, 30, 1); 4749 4750 /* reg_paos_e 4751 * Event generation on operational state change: 4752 * 0 - Do not generate event. 4753 * 1 - Generate Event. 4754 * 2 - Generate Single Event. 4755 * Access: RW 4756 */ 4757 MLXSW_ITEM32(reg, paos, e, 0x04, 0, 2); 4758 4759 static inline void mlxsw_reg_paos_pack(char *payload, u8 local_port, 4760 enum mlxsw_port_admin_status status) 4761 { 4762 MLXSW_REG_ZERO(paos, payload); 4763 mlxsw_reg_paos_swid_set(payload, 0); 4764 mlxsw_reg_paos_local_port_set(payload, local_port); 4765 mlxsw_reg_paos_admin_status_set(payload, status); 4766 mlxsw_reg_paos_oper_status_set(payload, 0); 4767 mlxsw_reg_paos_ase_set(payload, 1); 4768 mlxsw_reg_paos_ee_set(payload, 1); 4769 mlxsw_reg_paos_e_set(payload, 1); 4770 } 4771 4772 /* PFCC - Ports Flow Control Configuration Register 4773 * ------------------------------------------------ 4774 * Configures and retrieves the per port flow control configuration. 4775 */ 4776 #define MLXSW_REG_PFCC_ID 0x5007 4777 #define MLXSW_REG_PFCC_LEN 0x20 4778 4779 MLXSW_REG_DEFINE(pfcc, MLXSW_REG_PFCC_ID, MLXSW_REG_PFCC_LEN); 4780 4781 /* reg_pfcc_local_port 4782 * Local port number. 4783 * Access: Index 4784 */ 4785 MLXSW_ITEM32(reg, pfcc, local_port, 0x00, 16, 8); 4786 4787 /* reg_pfcc_pnat 4788 * Port number access type. Determines the way local_port is interpreted: 4789 * 0 - Local port number. 4790 * 1 - IB / label port number. 4791 * Access: Index 4792 */ 4793 MLXSW_ITEM32(reg, pfcc, pnat, 0x00, 14, 2); 4794 4795 /* reg_pfcc_shl_cap 4796 * Send to higher layers capabilities: 4797 * 0 - No capability of sending Pause and PFC frames to higher layers. 4798 * 1 - Device has capability of sending Pause and PFC frames to higher 4799 * layers. 4800 * Access: RO 4801 */ 4802 MLXSW_ITEM32(reg, pfcc, shl_cap, 0x00, 1, 1); 4803 4804 /* reg_pfcc_shl_opr 4805 * Send to higher layers operation: 4806 * 0 - Pause and PFC frames are handled by the port (default). 4807 * 1 - Pause and PFC frames are handled by the port and also sent to 4808 * higher layers. Only valid if shl_cap = 1. 4809 * Access: RW 4810 */ 4811 MLXSW_ITEM32(reg, pfcc, shl_opr, 0x00, 0, 1); 4812 4813 /* reg_pfcc_ppan 4814 * Pause policy auto negotiation. 4815 * 0 - Disabled. Generate / ignore Pause frames based on pptx / pprtx. 4816 * 1 - Enabled. When auto-negotiation is performed, set the Pause policy 4817 * based on the auto-negotiation resolution. 4818 * Access: RW 4819 * 4820 * Note: The auto-negotiation advertisement is set according to pptx and 4821 * pprtx. When PFC is set on Tx / Rx, ppan must be set to 0. 4822 */ 4823 MLXSW_ITEM32(reg, pfcc, ppan, 0x04, 28, 4); 4824 4825 /* reg_pfcc_prio_mask_tx 4826 * Bit per priority indicating if Tx flow control policy should be 4827 * updated based on bit pfctx. 4828 * Access: WO 4829 */ 4830 MLXSW_ITEM32(reg, pfcc, prio_mask_tx, 0x04, 16, 8); 4831 4832 /* reg_pfcc_prio_mask_rx 4833 * Bit per priority indicating if Rx flow control policy should be 4834 * updated based on bit pfcrx. 4835 * Access: WO 4836 */ 4837 MLXSW_ITEM32(reg, pfcc, prio_mask_rx, 0x04, 0, 8); 4838 4839 /* reg_pfcc_pptx 4840 * Admin Pause policy on Tx. 4841 * 0 - Never generate Pause frames (default). 4842 * 1 - Generate Pause frames according to Rx buffer threshold. 4843 * Access: RW 4844 */ 4845 MLXSW_ITEM32(reg, pfcc, pptx, 0x08, 31, 1); 4846 4847 /* reg_pfcc_aptx 4848 * Active (operational) Pause policy on Tx. 4849 * 0 - Never generate Pause frames. 4850 * 1 - Generate Pause frames according to Rx buffer threshold. 4851 * Access: RO 4852 */ 4853 MLXSW_ITEM32(reg, pfcc, aptx, 0x08, 30, 1); 4854 4855 /* reg_pfcc_pfctx 4856 * Priority based flow control policy on Tx[7:0]. Per-priority bit mask: 4857 * 0 - Never generate priority Pause frames on the specified priority 4858 * (default). 4859 * 1 - Generate priority Pause frames according to Rx buffer threshold on 4860 * the specified priority. 4861 * Access: RW 4862 * 4863 * Note: pfctx and pptx must be mutually exclusive. 4864 */ 4865 MLXSW_ITEM32(reg, pfcc, pfctx, 0x08, 16, 8); 4866 4867 /* reg_pfcc_pprx 4868 * Admin Pause policy on Rx. 4869 * 0 - Ignore received Pause frames (default). 4870 * 1 - Respect received Pause frames. 4871 * Access: RW 4872 */ 4873 MLXSW_ITEM32(reg, pfcc, pprx, 0x0C, 31, 1); 4874 4875 /* reg_pfcc_aprx 4876 * Active (operational) Pause policy on Rx. 4877 * 0 - Ignore received Pause frames. 4878 * 1 - Respect received Pause frames. 4879 * Access: RO 4880 */ 4881 MLXSW_ITEM32(reg, pfcc, aprx, 0x0C, 30, 1); 4882 4883 /* reg_pfcc_pfcrx 4884 * Priority based flow control policy on Rx[7:0]. Per-priority bit mask: 4885 * 0 - Ignore incoming priority Pause frames on the specified priority 4886 * (default). 4887 * 1 - Respect incoming priority Pause frames on the specified priority. 4888 * Access: RW 4889 */ 4890 MLXSW_ITEM32(reg, pfcc, pfcrx, 0x0C, 16, 8); 4891 4892 #define MLXSW_REG_PFCC_ALL_PRIO 0xFF 4893 4894 static inline void mlxsw_reg_pfcc_prio_pack(char *payload, u8 pfc_en) 4895 { 4896 mlxsw_reg_pfcc_prio_mask_tx_set(payload, MLXSW_REG_PFCC_ALL_PRIO); 4897 mlxsw_reg_pfcc_prio_mask_rx_set(payload, MLXSW_REG_PFCC_ALL_PRIO); 4898 mlxsw_reg_pfcc_pfctx_set(payload, pfc_en); 4899 mlxsw_reg_pfcc_pfcrx_set(payload, pfc_en); 4900 } 4901 4902 static inline void mlxsw_reg_pfcc_pack(char *payload, u8 local_port) 4903 { 4904 MLXSW_REG_ZERO(pfcc, payload); 4905 mlxsw_reg_pfcc_local_port_set(payload, local_port); 4906 } 4907 4908 /* PPCNT - Ports Performance Counters Register 4909 * ------------------------------------------- 4910 * The PPCNT register retrieves per port performance counters. 4911 */ 4912 #define MLXSW_REG_PPCNT_ID 0x5008 4913 #define MLXSW_REG_PPCNT_LEN 0x100 4914 #define MLXSW_REG_PPCNT_COUNTERS_OFFSET 0x08 4915 4916 MLXSW_REG_DEFINE(ppcnt, MLXSW_REG_PPCNT_ID, MLXSW_REG_PPCNT_LEN); 4917 4918 /* reg_ppcnt_swid 4919 * For HCA: must be always 0. 4920 * Switch partition ID to associate port with. 4921 * Switch partitions are numbered from 0 to 7 inclusively. 4922 * Switch partition 254 indicates stacking ports. 4923 * Switch partition 255 indicates all switch partitions. 4924 * Only valid on Set() operation with local_port=255. 4925 * Access: Index 4926 */ 4927 MLXSW_ITEM32(reg, ppcnt, swid, 0x00, 24, 8); 4928 4929 /* reg_ppcnt_local_port 4930 * Local port number. 4931 * 255 indicates all ports on the device, and is only allowed 4932 * for Set() operation. 4933 * Access: Index 4934 */ 4935 MLXSW_ITEM32(reg, ppcnt, local_port, 0x00, 16, 8); 4936 4937 /* reg_ppcnt_pnat 4938 * Port number access type: 4939 * 0 - Local port number 4940 * 1 - IB port number 4941 * Access: Index 4942 */ 4943 MLXSW_ITEM32(reg, ppcnt, pnat, 0x00, 14, 2); 4944 4945 enum mlxsw_reg_ppcnt_grp { 4946 MLXSW_REG_PPCNT_IEEE_8023_CNT = 0x0, 4947 MLXSW_REG_PPCNT_RFC_2863_CNT = 0x1, 4948 MLXSW_REG_PPCNT_RFC_2819_CNT = 0x2, 4949 MLXSW_REG_PPCNT_RFC_3635_CNT = 0x3, 4950 MLXSW_REG_PPCNT_EXT_CNT = 0x5, 4951 MLXSW_REG_PPCNT_DISCARD_CNT = 0x6, 4952 MLXSW_REG_PPCNT_PRIO_CNT = 0x10, 4953 MLXSW_REG_PPCNT_TC_CNT = 0x11, 4954 MLXSW_REG_PPCNT_TC_CONG_CNT = 0x13, 4955 }; 4956 4957 /* reg_ppcnt_grp 4958 * Performance counter group. 4959 * Group 63 indicates all groups. Only valid on Set() operation with 4960 * clr bit set. 4961 * 0x0: IEEE 802.3 Counters 4962 * 0x1: RFC 2863 Counters 4963 * 0x2: RFC 2819 Counters 4964 * 0x3: RFC 3635 Counters 4965 * 0x5: Ethernet Extended Counters 4966 * 0x6: Ethernet Discard Counters 4967 * 0x8: Link Level Retransmission Counters 4968 * 0x10: Per Priority Counters 4969 * 0x11: Per Traffic Class Counters 4970 * 0x12: Physical Layer Counters 4971 * 0x13: Per Traffic Class Congestion Counters 4972 * Access: Index 4973 */ 4974 MLXSW_ITEM32(reg, ppcnt, grp, 0x00, 0, 6); 4975 4976 /* reg_ppcnt_clr 4977 * Clear counters. Setting the clr bit will reset the counter value 4978 * for all counters in the counter group. This bit can be set 4979 * for both Set() and Get() operation. 4980 * Access: OP 4981 */ 4982 MLXSW_ITEM32(reg, ppcnt, clr, 0x04, 31, 1); 4983 4984 /* reg_ppcnt_prio_tc 4985 * Priority for counter set that support per priority, valid values: 0-7. 4986 * Traffic class for counter set that support per traffic class, 4987 * valid values: 0- cap_max_tclass-1 . 4988 * For HCA: cap_max_tclass is always 8. 4989 * Otherwise must be 0. 4990 * Access: Index 4991 */ 4992 MLXSW_ITEM32(reg, ppcnt, prio_tc, 0x04, 0, 5); 4993 4994 /* Ethernet IEEE 802.3 Counter Group */ 4995 4996 /* reg_ppcnt_a_frames_transmitted_ok 4997 * Access: RO 4998 */ 4999 MLXSW_ITEM64(reg, ppcnt, a_frames_transmitted_ok, 5000 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 5001 5002 /* reg_ppcnt_a_frames_received_ok 5003 * Access: RO 5004 */ 5005 MLXSW_ITEM64(reg, ppcnt, a_frames_received_ok, 5006 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 5007 5008 /* reg_ppcnt_a_frame_check_sequence_errors 5009 * Access: RO 5010 */ 5011 MLXSW_ITEM64(reg, ppcnt, a_frame_check_sequence_errors, 5012 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64); 5013 5014 /* reg_ppcnt_a_alignment_errors 5015 * Access: RO 5016 */ 5017 MLXSW_ITEM64(reg, ppcnt, a_alignment_errors, 5018 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64); 5019 5020 /* reg_ppcnt_a_octets_transmitted_ok 5021 * Access: RO 5022 */ 5023 MLXSW_ITEM64(reg, ppcnt, a_octets_transmitted_ok, 5024 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64); 5025 5026 /* reg_ppcnt_a_octets_received_ok 5027 * Access: RO 5028 */ 5029 MLXSW_ITEM64(reg, ppcnt, a_octets_received_ok, 5030 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64); 5031 5032 /* reg_ppcnt_a_multicast_frames_xmitted_ok 5033 * Access: RO 5034 */ 5035 MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_xmitted_ok, 5036 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64); 5037 5038 /* reg_ppcnt_a_broadcast_frames_xmitted_ok 5039 * Access: RO 5040 */ 5041 MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_xmitted_ok, 5042 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64); 5043 5044 /* reg_ppcnt_a_multicast_frames_received_ok 5045 * Access: RO 5046 */ 5047 MLXSW_ITEM64(reg, ppcnt, a_multicast_frames_received_ok, 5048 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); 5049 5050 /* reg_ppcnt_a_broadcast_frames_received_ok 5051 * Access: RO 5052 */ 5053 MLXSW_ITEM64(reg, ppcnt, a_broadcast_frames_received_ok, 5054 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64); 5055 5056 /* reg_ppcnt_a_in_range_length_errors 5057 * Access: RO 5058 */ 5059 MLXSW_ITEM64(reg, ppcnt, a_in_range_length_errors, 5060 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64); 5061 5062 /* reg_ppcnt_a_out_of_range_length_field 5063 * Access: RO 5064 */ 5065 MLXSW_ITEM64(reg, ppcnt, a_out_of_range_length_field, 5066 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); 5067 5068 /* reg_ppcnt_a_frame_too_long_errors 5069 * Access: RO 5070 */ 5071 MLXSW_ITEM64(reg, ppcnt, a_frame_too_long_errors, 5072 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 5073 5074 /* reg_ppcnt_a_symbol_error_during_carrier 5075 * Access: RO 5076 */ 5077 MLXSW_ITEM64(reg, ppcnt, a_symbol_error_during_carrier, 5078 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); 5079 5080 /* reg_ppcnt_a_mac_control_frames_transmitted 5081 * Access: RO 5082 */ 5083 MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_transmitted, 5084 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 5085 5086 /* reg_ppcnt_a_mac_control_frames_received 5087 * Access: RO 5088 */ 5089 MLXSW_ITEM64(reg, ppcnt, a_mac_control_frames_received, 5090 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64); 5091 5092 /* reg_ppcnt_a_unsupported_opcodes_received 5093 * Access: RO 5094 */ 5095 MLXSW_ITEM64(reg, ppcnt, a_unsupported_opcodes_received, 5096 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64); 5097 5098 /* reg_ppcnt_a_pause_mac_ctrl_frames_received 5099 * Access: RO 5100 */ 5101 MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_received, 5102 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64); 5103 5104 /* reg_ppcnt_a_pause_mac_ctrl_frames_transmitted 5105 * Access: RO 5106 */ 5107 MLXSW_ITEM64(reg, ppcnt, a_pause_mac_ctrl_frames_transmitted, 5108 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64); 5109 5110 /* Ethernet RFC 2863 Counter Group */ 5111 5112 /* reg_ppcnt_if_in_discards 5113 * Access: RO 5114 */ 5115 MLXSW_ITEM64(reg, ppcnt, if_in_discards, 5116 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64); 5117 5118 /* reg_ppcnt_if_out_discards 5119 * Access: RO 5120 */ 5121 MLXSW_ITEM64(reg, ppcnt, if_out_discards, 5122 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64); 5123 5124 /* reg_ppcnt_if_out_errors 5125 * Access: RO 5126 */ 5127 MLXSW_ITEM64(reg, ppcnt, if_out_errors, 5128 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); 5129 5130 /* Ethernet RFC 2819 Counter Group */ 5131 5132 /* reg_ppcnt_ether_stats_undersize_pkts 5133 * Access: RO 5134 */ 5135 MLXSW_ITEM64(reg, ppcnt, ether_stats_undersize_pkts, 5136 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64); 5137 5138 /* reg_ppcnt_ether_stats_oversize_pkts 5139 * Access: RO 5140 */ 5141 MLXSW_ITEM64(reg, ppcnt, ether_stats_oversize_pkts, 5142 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x38, 0, 64); 5143 5144 /* reg_ppcnt_ether_stats_fragments 5145 * Access: RO 5146 */ 5147 MLXSW_ITEM64(reg, ppcnt, ether_stats_fragments, 5148 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); 5149 5150 /* reg_ppcnt_ether_stats_pkts64octets 5151 * Access: RO 5152 */ 5153 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts64octets, 5154 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); 5155 5156 /* reg_ppcnt_ether_stats_pkts65to127octets 5157 * Access: RO 5158 */ 5159 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts65to127octets, 5160 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 5161 5162 /* reg_ppcnt_ether_stats_pkts128to255octets 5163 * Access: RO 5164 */ 5165 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts128to255octets, 5166 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); 5167 5168 /* reg_ppcnt_ether_stats_pkts256to511octets 5169 * Access: RO 5170 */ 5171 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts256to511octets, 5172 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 5173 5174 /* reg_ppcnt_ether_stats_pkts512to1023octets 5175 * Access: RO 5176 */ 5177 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts512to1023octets, 5178 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x78, 0, 64); 5179 5180 /* reg_ppcnt_ether_stats_pkts1024to1518octets 5181 * Access: RO 5182 */ 5183 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1024to1518octets, 5184 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x80, 0, 64); 5185 5186 /* reg_ppcnt_ether_stats_pkts1519to2047octets 5187 * Access: RO 5188 */ 5189 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts1519to2047octets, 5190 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x88, 0, 64); 5191 5192 /* reg_ppcnt_ether_stats_pkts2048to4095octets 5193 * Access: RO 5194 */ 5195 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts2048to4095octets, 5196 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x90, 0, 64); 5197 5198 /* reg_ppcnt_ether_stats_pkts4096to8191octets 5199 * Access: RO 5200 */ 5201 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts4096to8191octets, 5202 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x98, 0, 64); 5203 5204 /* reg_ppcnt_ether_stats_pkts8192to10239octets 5205 * Access: RO 5206 */ 5207 MLXSW_ITEM64(reg, ppcnt, ether_stats_pkts8192to10239octets, 5208 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0xA0, 0, 64); 5209 5210 /* Ethernet RFC 3635 Counter Group */ 5211 5212 /* reg_ppcnt_dot3stats_fcs_errors 5213 * Access: RO 5214 */ 5215 MLXSW_ITEM64(reg, ppcnt, dot3stats_fcs_errors, 5216 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 5217 5218 /* reg_ppcnt_dot3stats_symbol_errors 5219 * Access: RO 5220 */ 5221 MLXSW_ITEM64(reg, ppcnt, dot3stats_symbol_errors, 5222 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 5223 5224 /* reg_ppcnt_dot3control_in_unknown_opcodes 5225 * Access: RO 5226 */ 5227 MLXSW_ITEM64(reg, ppcnt, dot3control_in_unknown_opcodes, 5228 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); 5229 5230 /* reg_ppcnt_dot3in_pause_frames 5231 * Access: RO 5232 */ 5233 MLXSW_ITEM64(reg, ppcnt, dot3in_pause_frames, 5234 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 5235 5236 /* Ethernet Extended Counter Group Counters */ 5237 5238 /* reg_ppcnt_ecn_marked 5239 * Access: RO 5240 */ 5241 MLXSW_ITEM64(reg, ppcnt, ecn_marked, 5242 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 5243 5244 /* Ethernet Discard Counter Group Counters */ 5245 5246 /* reg_ppcnt_ingress_general 5247 * Access: RO 5248 */ 5249 MLXSW_ITEM64(reg, ppcnt, ingress_general, 5250 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 5251 5252 /* reg_ppcnt_ingress_policy_engine 5253 * Access: RO 5254 */ 5255 MLXSW_ITEM64(reg, ppcnt, ingress_policy_engine, 5256 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 5257 5258 /* reg_ppcnt_ingress_vlan_membership 5259 * Access: RO 5260 */ 5261 MLXSW_ITEM64(reg, ppcnt, ingress_vlan_membership, 5262 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x10, 0, 64); 5263 5264 /* reg_ppcnt_ingress_tag_frame_type 5265 * Access: RO 5266 */ 5267 MLXSW_ITEM64(reg, ppcnt, ingress_tag_frame_type, 5268 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x18, 0, 64); 5269 5270 /* reg_ppcnt_egress_vlan_membership 5271 * Access: RO 5272 */ 5273 MLXSW_ITEM64(reg, ppcnt, egress_vlan_membership, 5274 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64); 5275 5276 /* reg_ppcnt_loopback_filter 5277 * Access: RO 5278 */ 5279 MLXSW_ITEM64(reg, ppcnt, loopback_filter, 5280 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64); 5281 5282 /* reg_ppcnt_egress_general 5283 * Access: RO 5284 */ 5285 MLXSW_ITEM64(reg, ppcnt, egress_general, 5286 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x30, 0, 64); 5287 5288 /* reg_ppcnt_egress_hoq 5289 * Access: RO 5290 */ 5291 MLXSW_ITEM64(reg, ppcnt, egress_hoq, 5292 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x40, 0, 64); 5293 5294 /* reg_ppcnt_egress_policy_engine 5295 * Access: RO 5296 */ 5297 MLXSW_ITEM64(reg, ppcnt, egress_policy_engine, 5298 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64); 5299 5300 /* reg_ppcnt_ingress_tx_link_down 5301 * Access: RO 5302 */ 5303 MLXSW_ITEM64(reg, ppcnt, ingress_tx_link_down, 5304 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); 5305 5306 /* reg_ppcnt_egress_stp_filter 5307 * Access: RO 5308 */ 5309 MLXSW_ITEM64(reg, ppcnt, egress_stp_filter, 5310 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 5311 5312 /* reg_ppcnt_egress_sll 5313 * Access: RO 5314 */ 5315 MLXSW_ITEM64(reg, ppcnt, egress_sll, 5316 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 5317 5318 /* Ethernet Per Priority Group Counters */ 5319 5320 /* reg_ppcnt_rx_octets 5321 * Access: RO 5322 */ 5323 MLXSW_ITEM64(reg, ppcnt, rx_octets, 5324 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 5325 5326 /* reg_ppcnt_rx_frames 5327 * Access: RO 5328 */ 5329 MLXSW_ITEM64(reg, ppcnt, rx_frames, 5330 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x20, 0, 64); 5331 5332 /* reg_ppcnt_tx_octets 5333 * Access: RO 5334 */ 5335 MLXSW_ITEM64(reg, ppcnt, tx_octets, 5336 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x28, 0, 64); 5337 5338 /* reg_ppcnt_tx_frames 5339 * Access: RO 5340 */ 5341 MLXSW_ITEM64(reg, ppcnt, tx_frames, 5342 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x48, 0, 64); 5343 5344 /* reg_ppcnt_rx_pause 5345 * Access: RO 5346 */ 5347 MLXSW_ITEM64(reg, ppcnt, rx_pause, 5348 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x50, 0, 64); 5349 5350 /* reg_ppcnt_rx_pause_duration 5351 * Access: RO 5352 */ 5353 MLXSW_ITEM64(reg, ppcnt, rx_pause_duration, 5354 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x58, 0, 64); 5355 5356 /* reg_ppcnt_tx_pause 5357 * Access: RO 5358 */ 5359 MLXSW_ITEM64(reg, ppcnt, tx_pause, 5360 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x60, 0, 64); 5361 5362 /* reg_ppcnt_tx_pause_duration 5363 * Access: RO 5364 */ 5365 MLXSW_ITEM64(reg, ppcnt, tx_pause_duration, 5366 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x68, 0, 64); 5367 5368 /* reg_ppcnt_rx_pause_transition 5369 * Access: RO 5370 */ 5371 MLXSW_ITEM64(reg, ppcnt, tx_pause_transition, 5372 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x70, 0, 64); 5373 5374 /* Ethernet Per Traffic Class Counters */ 5375 5376 /* reg_ppcnt_tc_transmit_queue 5377 * Contains the transmit queue depth in cells of traffic class 5378 * selected by prio_tc and the port selected by local_port. 5379 * The field cannot be cleared. 5380 * Access: RO 5381 */ 5382 MLXSW_ITEM64(reg, ppcnt, tc_transmit_queue, 5383 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 5384 5385 /* reg_ppcnt_tc_no_buffer_discard_uc 5386 * The number of unicast packets dropped due to lack of shared 5387 * buffer resources. 5388 * Access: RO 5389 */ 5390 MLXSW_ITEM64(reg, ppcnt, tc_no_buffer_discard_uc, 5391 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 5392 5393 /* Ethernet Per Traffic Class Congestion Group Counters */ 5394 5395 /* reg_ppcnt_wred_discard 5396 * Access: RO 5397 */ 5398 MLXSW_ITEM64(reg, ppcnt, wred_discard, 5399 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x00, 0, 64); 5400 5401 /* reg_ppcnt_ecn_marked_tc 5402 * Access: RO 5403 */ 5404 MLXSW_ITEM64(reg, ppcnt, ecn_marked_tc, 5405 MLXSW_REG_PPCNT_COUNTERS_OFFSET + 0x08, 0, 64); 5406 5407 static inline void mlxsw_reg_ppcnt_pack(char *payload, u8 local_port, 5408 enum mlxsw_reg_ppcnt_grp grp, 5409 u8 prio_tc) 5410 { 5411 MLXSW_REG_ZERO(ppcnt, payload); 5412 mlxsw_reg_ppcnt_swid_set(payload, 0); 5413 mlxsw_reg_ppcnt_local_port_set(payload, local_port); 5414 mlxsw_reg_ppcnt_pnat_set(payload, 0); 5415 mlxsw_reg_ppcnt_grp_set(payload, grp); 5416 mlxsw_reg_ppcnt_clr_set(payload, 0); 5417 mlxsw_reg_ppcnt_prio_tc_set(payload, prio_tc); 5418 } 5419 5420 /* PLIB - Port Local to InfiniBand Port 5421 * ------------------------------------ 5422 * The PLIB register performs mapping from Local Port into InfiniBand Port. 5423 */ 5424 #define MLXSW_REG_PLIB_ID 0x500A 5425 #define MLXSW_REG_PLIB_LEN 0x10 5426 5427 MLXSW_REG_DEFINE(plib, MLXSW_REG_PLIB_ID, MLXSW_REG_PLIB_LEN); 5428 5429 /* reg_plib_local_port 5430 * Local port number. 5431 * Access: Index 5432 */ 5433 MLXSW_ITEM32(reg, plib, local_port, 0x00, 16, 8); 5434 5435 /* reg_plib_ib_port 5436 * InfiniBand port remapping for local_port. 5437 * Access: RW 5438 */ 5439 MLXSW_ITEM32(reg, plib, ib_port, 0x00, 0, 8); 5440 5441 /* PPTB - Port Prio To Buffer Register 5442 * ----------------------------------- 5443 * Configures the switch priority to buffer table. 5444 */ 5445 #define MLXSW_REG_PPTB_ID 0x500B 5446 #define MLXSW_REG_PPTB_LEN 0x10 5447 5448 MLXSW_REG_DEFINE(pptb, MLXSW_REG_PPTB_ID, MLXSW_REG_PPTB_LEN); 5449 5450 enum { 5451 MLXSW_REG_PPTB_MM_UM, 5452 MLXSW_REG_PPTB_MM_UNICAST, 5453 MLXSW_REG_PPTB_MM_MULTICAST, 5454 }; 5455 5456 /* reg_pptb_mm 5457 * Mapping mode. 5458 * 0 - Map both unicast and multicast packets to the same buffer. 5459 * 1 - Map only unicast packets. 5460 * 2 - Map only multicast packets. 5461 * Access: Index 5462 * 5463 * Note: SwitchX-2 only supports the first option. 5464 */ 5465 MLXSW_ITEM32(reg, pptb, mm, 0x00, 28, 2); 5466 5467 /* reg_pptb_local_port 5468 * Local port number. 5469 * Access: Index 5470 */ 5471 MLXSW_ITEM32(reg, pptb, local_port, 0x00, 16, 8); 5472 5473 /* reg_pptb_um 5474 * Enables the update of the untagged_buf field. 5475 * Access: RW 5476 */ 5477 MLXSW_ITEM32(reg, pptb, um, 0x00, 8, 1); 5478 5479 /* reg_pptb_pm 5480 * Enables the update of the prio_to_buff field. 5481 * Bit <i> is a flag for updating the mapping for switch priority <i>. 5482 * Access: RW 5483 */ 5484 MLXSW_ITEM32(reg, pptb, pm, 0x00, 0, 8); 5485 5486 /* reg_pptb_prio_to_buff 5487 * Mapping of switch priority <i> to one of the allocated receive port 5488 * buffers. 5489 * Access: RW 5490 */ 5491 MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff, 0x04, 0x04, 4); 5492 5493 /* reg_pptb_pm_msb 5494 * Enables the update of the prio_to_buff field. 5495 * Bit <i> is a flag for updating the mapping for switch priority <i+8>. 5496 * Access: RW 5497 */ 5498 MLXSW_ITEM32(reg, pptb, pm_msb, 0x08, 24, 8); 5499 5500 /* reg_pptb_untagged_buff 5501 * Mapping of untagged frames to one of the allocated receive port buffers. 5502 * Access: RW 5503 * 5504 * Note: In SwitchX-2 this field must be mapped to buffer 8. Reserved for 5505 * Spectrum, as it maps untagged packets based on the default switch priority. 5506 */ 5507 MLXSW_ITEM32(reg, pptb, untagged_buff, 0x08, 0, 4); 5508 5509 /* reg_pptb_prio_to_buff_msb 5510 * Mapping of switch priority <i+8> to one of the allocated receive port 5511 * buffers. 5512 * Access: RW 5513 */ 5514 MLXSW_ITEM_BIT_ARRAY(reg, pptb, prio_to_buff_msb, 0x0C, 0x04, 4); 5515 5516 #define MLXSW_REG_PPTB_ALL_PRIO 0xFF 5517 5518 static inline void mlxsw_reg_pptb_pack(char *payload, u8 local_port) 5519 { 5520 MLXSW_REG_ZERO(pptb, payload); 5521 mlxsw_reg_pptb_mm_set(payload, MLXSW_REG_PPTB_MM_UM); 5522 mlxsw_reg_pptb_local_port_set(payload, local_port); 5523 mlxsw_reg_pptb_pm_set(payload, MLXSW_REG_PPTB_ALL_PRIO); 5524 mlxsw_reg_pptb_pm_msb_set(payload, MLXSW_REG_PPTB_ALL_PRIO); 5525 } 5526 5527 static inline void mlxsw_reg_pptb_prio_to_buff_pack(char *payload, u8 prio, 5528 u8 buff) 5529 { 5530 mlxsw_reg_pptb_prio_to_buff_set(payload, prio, buff); 5531 mlxsw_reg_pptb_prio_to_buff_msb_set(payload, prio, buff); 5532 } 5533 5534 /* PBMC - Port Buffer Management Control Register 5535 * ---------------------------------------------- 5536 * The PBMC register configures and retrieves the port packet buffer 5537 * allocation for different Prios, and the Pause threshold management. 5538 */ 5539 #define MLXSW_REG_PBMC_ID 0x500C 5540 #define MLXSW_REG_PBMC_LEN 0x6C 5541 5542 MLXSW_REG_DEFINE(pbmc, MLXSW_REG_PBMC_ID, MLXSW_REG_PBMC_LEN); 5543 5544 /* reg_pbmc_local_port 5545 * Local port number. 5546 * Access: Index 5547 */ 5548 MLXSW_ITEM32(reg, pbmc, local_port, 0x00, 16, 8); 5549 5550 /* reg_pbmc_xoff_timer_value 5551 * When device generates a pause frame, it uses this value as the pause 5552 * timer (time for the peer port to pause in quota-512 bit time). 5553 * Access: RW 5554 */ 5555 MLXSW_ITEM32(reg, pbmc, xoff_timer_value, 0x04, 16, 16); 5556 5557 /* reg_pbmc_xoff_refresh 5558 * The time before a new pause frame should be sent to refresh the pause RW 5559 * state. Using the same units as xoff_timer_value above (in quota-512 bit 5560 * time). 5561 * Access: RW 5562 */ 5563 MLXSW_ITEM32(reg, pbmc, xoff_refresh, 0x04, 0, 16); 5564 5565 #define MLXSW_REG_PBMC_PORT_SHARED_BUF_IDX 11 5566 5567 /* reg_pbmc_buf_lossy 5568 * The field indicates if the buffer is lossy. 5569 * 0 - Lossless 5570 * 1 - Lossy 5571 * Access: RW 5572 */ 5573 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_lossy, 0x0C, 25, 1, 0x08, 0x00, false); 5574 5575 /* reg_pbmc_buf_epsb 5576 * Eligible for Port Shared buffer. 5577 * If epsb is set, packets assigned to buffer are allowed to insert the port 5578 * shared buffer. 5579 * When buf_lossy is MLXSW_REG_PBMC_LOSSY_LOSSY this field is reserved. 5580 * Access: RW 5581 */ 5582 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_epsb, 0x0C, 24, 1, 0x08, 0x00, false); 5583 5584 /* reg_pbmc_buf_size 5585 * The part of the packet buffer array is allocated for the specific buffer. 5586 * Units are represented in cells. 5587 * Access: RW 5588 */ 5589 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_size, 0x0C, 0, 16, 0x08, 0x00, false); 5590 5591 /* reg_pbmc_buf_xoff_threshold 5592 * Once the amount of data in the buffer goes above this value, device 5593 * starts sending PFC frames for all priorities associated with the 5594 * buffer. Units are represented in cells. Reserved in case of lossy 5595 * buffer. 5596 * Access: RW 5597 * 5598 * Note: In Spectrum, reserved for buffer[9]. 5599 */ 5600 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xoff_threshold, 0x0C, 16, 16, 5601 0x08, 0x04, false); 5602 5603 /* reg_pbmc_buf_xon_threshold 5604 * When the amount of data in the buffer goes below this value, device 5605 * stops sending PFC frames for the priorities associated with the 5606 * buffer. Units are represented in cells. Reserved in case of lossy 5607 * buffer. 5608 * Access: RW 5609 * 5610 * Note: In Spectrum, reserved for buffer[9]. 5611 */ 5612 MLXSW_ITEM32_INDEXED(reg, pbmc, buf_xon_threshold, 0x0C, 0, 16, 5613 0x08, 0x04, false); 5614 5615 static inline void mlxsw_reg_pbmc_pack(char *payload, u8 local_port, 5616 u16 xoff_timer_value, u16 xoff_refresh) 5617 { 5618 MLXSW_REG_ZERO(pbmc, payload); 5619 mlxsw_reg_pbmc_local_port_set(payload, local_port); 5620 mlxsw_reg_pbmc_xoff_timer_value_set(payload, xoff_timer_value); 5621 mlxsw_reg_pbmc_xoff_refresh_set(payload, xoff_refresh); 5622 } 5623 5624 static inline void mlxsw_reg_pbmc_lossy_buffer_pack(char *payload, 5625 int buf_index, 5626 u16 size) 5627 { 5628 mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 1); 5629 mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0); 5630 mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size); 5631 } 5632 5633 static inline void mlxsw_reg_pbmc_lossless_buffer_pack(char *payload, 5634 int buf_index, u16 size, 5635 u16 threshold) 5636 { 5637 mlxsw_reg_pbmc_buf_lossy_set(payload, buf_index, 0); 5638 mlxsw_reg_pbmc_buf_epsb_set(payload, buf_index, 0); 5639 mlxsw_reg_pbmc_buf_size_set(payload, buf_index, size); 5640 mlxsw_reg_pbmc_buf_xoff_threshold_set(payload, buf_index, threshold); 5641 mlxsw_reg_pbmc_buf_xon_threshold_set(payload, buf_index, threshold); 5642 } 5643 5644 /* PSPA - Port Switch Partition Allocation 5645 * --------------------------------------- 5646 * Controls the association of a port with a switch partition and enables 5647 * configuring ports as stacking ports. 5648 */ 5649 #define MLXSW_REG_PSPA_ID 0x500D 5650 #define MLXSW_REG_PSPA_LEN 0x8 5651 5652 MLXSW_REG_DEFINE(pspa, MLXSW_REG_PSPA_ID, MLXSW_REG_PSPA_LEN); 5653 5654 /* reg_pspa_swid 5655 * Switch partition ID. 5656 * Access: RW 5657 */ 5658 MLXSW_ITEM32(reg, pspa, swid, 0x00, 24, 8); 5659 5660 /* reg_pspa_local_port 5661 * Local port number. 5662 * Access: Index 5663 */ 5664 MLXSW_ITEM32(reg, pspa, local_port, 0x00, 16, 8); 5665 5666 /* reg_pspa_sub_port 5667 * Virtual port within the local port. Set to 0 when virtual ports are 5668 * disabled on the local port. 5669 * Access: Index 5670 */ 5671 MLXSW_ITEM32(reg, pspa, sub_port, 0x00, 8, 8); 5672 5673 static inline void mlxsw_reg_pspa_pack(char *payload, u8 swid, u8 local_port) 5674 { 5675 MLXSW_REG_ZERO(pspa, payload); 5676 mlxsw_reg_pspa_swid_set(payload, swid); 5677 mlxsw_reg_pspa_local_port_set(payload, local_port); 5678 mlxsw_reg_pspa_sub_port_set(payload, 0); 5679 } 5680 5681 /* PMAOS - Ports Module Administrative and Operational Status 5682 * ---------------------------------------------------------- 5683 * This register configures and retrieves the per module status. 5684 */ 5685 #define MLXSW_REG_PMAOS_ID 0x5012 5686 #define MLXSW_REG_PMAOS_LEN 0x10 5687 5688 MLXSW_REG_DEFINE(pmaos, MLXSW_REG_PMAOS_ID, MLXSW_REG_PMAOS_LEN); 5689 5690 /* reg_pmaos_rst 5691 * Module reset toggle. 5692 * Note: Setting reset while module is plugged-in will result in transition to 5693 * "initializing" operational state. 5694 * Access: OP 5695 */ 5696 MLXSW_ITEM32(reg, pmaos, rst, 0x00, 31, 1); 5697 5698 /* reg_pmaos_slot_index 5699 * Slot index. 5700 * Access: Index 5701 */ 5702 MLXSW_ITEM32(reg, pmaos, slot_index, 0x00, 24, 4); 5703 5704 /* reg_pmaos_module 5705 * Module number. 5706 * Access: Index 5707 */ 5708 MLXSW_ITEM32(reg, pmaos, module, 0x00, 16, 8); 5709 5710 enum mlxsw_reg_pmaos_admin_status { 5711 MLXSW_REG_PMAOS_ADMIN_STATUS_ENABLED = 1, 5712 MLXSW_REG_PMAOS_ADMIN_STATUS_DISABLED = 2, 5713 /* If the module is active and then unplugged, or experienced an error 5714 * event, the operational status should go to "disabled" and can only 5715 * be enabled upon explicit enable command. 5716 */ 5717 MLXSW_REG_PMAOS_ADMIN_STATUS_ENABLED_ONCE = 3, 5718 }; 5719 5720 /* reg_pmaos_admin_status 5721 * Module administrative state (the desired state of the module). 5722 * Note: To disable a module, all ports associated with the port must be 5723 * administatively down first. 5724 * Access: RW 5725 */ 5726 MLXSW_ITEM32(reg, pmaos, admin_status, 0x00, 8, 4); 5727 5728 /* reg_pmaos_ase 5729 * Admin state update enable. 5730 * If this bit is set, admin state will be updated based on admin_state field. 5731 * Only relevant on Set() operations. 5732 * Access: WO 5733 */ 5734 MLXSW_ITEM32(reg, pmaos, ase, 0x04, 31, 1); 5735 5736 /* reg_pmaos_ee 5737 * Event update enable. 5738 * If this bit is set, event generation will be updated based on the e field. 5739 * Only relevant on Set operations. 5740 * Access: WO 5741 */ 5742 MLXSW_ITEM32(reg, pmaos, ee, 0x04, 30, 1); 5743 5744 enum mlxsw_reg_pmaos_e { 5745 MLXSW_REG_PMAOS_E_DO_NOT_GENERATE_EVENT, 5746 MLXSW_REG_PMAOS_E_GENERATE_EVENT, 5747 MLXSW_REG_PMAOS_E_GENERATE_SINGLE_EVENT, 5748 }; 5749 5750 /* reg_pmaos_e 5751 * Event Generation on operational state change. 5752 * Access: RW 5753 */ 5754 MLXSW_ITEM32(reg, pmaos, e, 0x04, 0, 2); 5755 5756 static inline void mlxsw_reg_pmaos_pack(char *payload, u8 module) 5757 { 5758 MLXSW_REG_ZERO(pmaos, payload); 5759 mlxsw_reg_pmaos_module_set(payload, module); 5760 } 5761 5762 /* PPLR - Port Physical Loopback Register 5763 * -------------------------------------- 5764 * This register allows configuration of the port's loopback mode. 5765 */ 5766 #define MLXSW_REG_PPLR_ID 0x5018 5767 #define MLXSW_REG_PPLR_LEN 0x8 5768 5769 MLXSW_REG_DEFINE(pplr, MLXSW_REG_PPLR_ID, MLXSW_REG_PPLR_LEN); 5770 5771 /* reg_pplr_local_port 5772 * Local port number. 5773 * Access: Index 5774 */ 5775 MLXSW_ITEM32(reg, pplr, local_port, 0x00, 16, 8); 5776 5777 /* Phy local loopback. When set the port's egress traffic is looped back 5778 * to the receiver and the port transmitter is disabled. 5779 */ 5780 #define MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL BIT(1) 5781 5782 /* reg_pplr_lb_en 5783 * Loopback enable. 5784 * Access: RW 5785 */ 5786 MLXSW_ITEM32(reg, pplr, lb_en, 0x04, 0, 8); 5787 5788 static inline void mlxsw_reg_pplr_pack(char *payload, u8 local_port, 5789 bool phy_local) 5790 { 5791 MLXSW_REG_ZERO(pplr, payload); 5792 mlxsw_reg_pplr_local_port_set(payload, local_port); 5793 mlxsw_reg_pplr_lb_en_set(payload, 5794 phy_local ? 5795 MLXSW_REG_PPLR_LB_TYPE_BIT_PHY_LOCAL : 0); 5796 } 5797 5798 /* PMTDB - Port Module To local DataBase Register 5799 * ---------------------------------------------- 5800 * The PMTDB register allows to query the possible module<->local port 5801 * mapping than can be used in PMLP. It does not represent the actual/current 5802 * mapping of the local to module. Actual mapping is only defined by PMLP. 5803 */ 5804 #define MLXSW_REG_PMTDB_ID 0x501A 5805 #define MLXSW_REG_PMTDB_LEN 0x40 5806 5807 MLXSW_REG_DEFINE(pmtdb, MLXSW_REG_PMTDB_ID, MLXSW_REG_PMTDB_LEN); 5808 5809 /* reg_pmtdb_slot_index 5810 * Slot index (0: Main board). 5811 * Access: Index 5812 */ 5813 MLXSW_ITEM32(reg, pmtdb, slot_index, 0x00, 24, 4); 5814 5815 /* reg_pmtdb_module 5816 * Module number. 5817 * Access: Index 5818 */ 5819 MLXSW_ITEM32(reg, pmtdb, module, 0x00, 16, 8); 5820 5821 /* reg_pmtdb_ports_width 5822 * Port's width 5823 * Access: Index 5824 */ 5825 MLXSW_ITEM32(reg, pmtdb, ports_width, 0x00, 12, 4); 5826 5827 /* reg_pmtdb_num_ports 5828 * Number of ports in a single module (split/breakout) 5829 * Access: Index 5830 */ 5831 MLXSW_ITEM32(reg, pmtdb, num_ports, 0x00, 8, 4); 5832 5833 enum mlxsw_reg_pmtdb_status { 5834 MLXSW_REG_PMTDB_STATUS_SUCCESS, 5835 }; 5836 5837 /* reg_pmtdb_status 5838 * Status 5839 * Access: RO 5840 */ 5841 MLXSW_ITEM32(reg, pmtdb, status, 0x00, 0, 4); 5842 5843 /* reg_pmtdb_port_num 5844 * The local_port value which can be assigned to the module. 5845 * In case of more than one port, port<x> represent the /<x> port of 5846 * the module. 5847 * Access: RO 5848 */ 5849 MLXSW_ITEM16_INDEXED(reg, pmtdb, port_num, 0x04, 0, 8, 0x02, 0x00, false); 5850 5851 static inline void mlxsw_reg_pmtdb_pack(char *payload, u8 slot_index, u8 module, 5852 u8 ports_width, u8 num_ports) 5853 { 5854 MLXSW_REG_ZERO(pmtdb, payload); 5855 mlxsw_reg_pmtdb_slot_index_set(payload, slot_index); 5856 mlxsw_reg_pmtdb_module_set(payload, module); 5857 mlxsw_reg_pmtdb_ports_width_set(payload, ports_width); 5858 mlxsw_reg_pmtdb_num_ports_set(payload, num_ports); 5859 } 5860 5861 /* PMPE - Port Module Plug/Unplug Event Register 5862 * --------------------------------------------- 5863 * This register reports any operational status change of a module. 5864 * A change in the module’s state will generate an event only if the change 5865 * happens after arming the event mechanism. Any changes to the module state 5866 * while the event mechanism is not armed will not be reported. Software can 5867 * query the PMPE register for module status. 5868 */ 5869 #define MLXSW_REG_PMPE_ID 0x5024 5870 #define MLXSW_REG_PMPE_LEN 0x10 5871 5872 MLXSW_REG_DEFINE(pmpe, MLXSW_REG_PMPE_ID, MLXSW_REG_PMPE_LEN); 5873 5874 /* reg_pmpe_slot_index 5875 * Slot index. 5876 * Access: Index 5877 */ 5878 MLXSW_ITEM32(reg, pmpe, slot_index, 0x00, 24, 4); 5879 5880 /* reg_pmpe_module 5881 * Module number. 5882 * Access: Index 5883 */ 5884 MLXSW_ITEM32(reg, pmpe, module, 0x00, 16, 8); 5885 5886 enum mlxsw_reg_pmpe_module_status { 5887 MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_ENABLED = 1, 5888 MLXSW_REG_PMPE_MODULE_STATUS_UNPLUGGED, 5889 MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_ERROR, 5890 MLXSW_REG_PMPE_MODULE_STATUS_PLUGGED_DISABLED, 5891 }; 5892 5893 /* reg_pmpe_module_status 5894 * Module status. 5895 * Access: RO 5896 */ 5897 MLXSW_ITEM32(reg, pmpe, module_status, 0x00, 0, 4); 5898 5899 /* reg_pmpe_error_type 5900 * Module error details. 5901 * Access: RO 5902 */ 5903 MLXSW_ITEM32(reg, pmpe, error_type, 0x04, 8, 4); 5904 5905 /* PDDR - Port Diagnostics Database Register 5906 * ----------------------------------------- 5907 * The PDDR enables to read the Phy debug database 5908 */ 5909 #define MLXSW_REG_PDDR_ID 0x5031 5910 #define MLXSW_REG_PDDR_LEN 0x100 5911 5912 MLXSW_REG_DEFINE(pddr, MLXSW_REG_PDDR_ID, MLXSW_REG_PDDR_LEN); 5913 5914 /* reg_pddr_local_port 5915 * Local port number. 5916 * Access: Index 5917 */ 5918 MLXSW_ITEM32(reg, pddr, local_port, 0x00, 16, 8); 5919 5920 enum mlxsw_reg_pddr_page_select { 5921 MLXSW_REG_PDDR_PAGE_SELECT_TROUBLESHOOTING_INFO = 1, 5922 }; 5923 5924 /* reg_pddr_page_select 5925 * Page select index. 5926 * Access: Index 5927 */ 5928 MLXSW_ITEM32(reg, pddr, page_select, 0x04, 0, 8); 5929 5930 enum mlxsw_reg_pddr_trblsh_group_opcode { 5931 /* Monitor opcodes */ 5932 MLXSW_REG_PDDR_TRBLSH_GROUP_OPCODE_MONITOR, 5933 }; 5934 5935 /* reg_pddr_group_opcode 5936 * Group selector. 5937 * Access: Index 5938 */ 5939 MLXSW_ITEM32(reg, pddr, trblsh_group_opcode, 0x08, 0, 16); 5940 5941 /* reg_pddr_status_opcode 5942 * Group selector. 5943 * Access: RO 5944 */ 5945 MLXSW_ITEM32(reg, pddr, trblsh_status_opcode, 0x0C, 0, 16); 5946 5947 static inline void mlxsw_reg_pddr_pack(char *payload, u8 local_port, 5948 u8 page_select) 5949 { 5950 MLXSW_REG_ZERO(pddr, payload); 5951 mlxsw_reg_pddr_local_port_set(payload, local_port); 5952 mlxsw_reg_pddr_page_select_set(payload, page_select); 5953 } 5954 5955 /* PMMP - Port Module Memory Map Properties Register 5956 * ------------------------------------------------- 5957 * The PMMP register allows to override the module memory map advertisement. 5958 * The register can only be set when the module is disabled by PMAOS register. 5959 */ 5960 #define MLXSW_REG_PMMP_ID 0x5044 5961 #define MLXSW_REG_PMMP_LEN 0x2C 5962 5963 MLXSW_REG_DEFINE(pmmp, MLXSW_REG_PMMP_ID, MLXSW_REG_PMMP_LEN); 5964 5965 /* reg_pmmp_module 5966 * Module number. 5967 * Access: Index 5968 */ 5969 MLXSW_ITEM32(reg, pmmp, module, 0x00, 16, 8); 5970 5971 /* reg_pmmp_sticky 5972 * When set, will keep eeprom_override values after plug-out event. 5973 * Access: OP 5974 */ 5975 MLXSW_ITEM32(reg, pmmp, sticky, 0x00, 0, 1); 5976 5977 /* reg_pmmp_eeprom_override_mask 5978 * Write mask bit (negative polarity). 5979 * 0 - Allow write 5980 * 1 - Ignore write 5981 * On write, indicates which of the bits from eeprom_override field are 5982 * updated. 5983 * Access: WO 5984 */ 5985 MLXSW_ITEM32(reg, pmmp, eeprom_override_mask, 0x04, 16, 16); 5986 5987 enum { 5988 /* Set module to low power mode */ 5989 MLXSW_REG_PMMP_EEPROM_OVERRIDE_LOW_POWER_MASK = BIT(8), 5990 }; 5991 5992 /* reg_pmmp_eeprom_override 5993 * Override / ignore EEPROM advertisement properties bitmask 5994 * Access: RW 5995 */ 5996 MLXSW_ITEM32(reg, pmmp, eeprom_override, 0x04, 0, 16); 5997 5998 static inline void mlxsw_reg_pmmp_pack(char *payload, u8 module) 5999 { 6000 MLXSW_REG_ZERO(pmmp, payload); 6001 mlxsw_reg_pmmp_module_set(payload, module); 6002 } 6003 6004 /* PLLP - Port Local port to Label Port mapping Register 6005 * ----------------------------------------------------- 6006 * The PLLP register returns the mapping from Local Port into Label Port. 6007 */ 6008 #define MLXSW_REG_PLLP_ID 0x504A 6009 #define MLXSW_REG_PLLP_LEN 0x10 6010 6011 MLXSW_REG_DEFINE(pllp, MLXSW_REG_PLLP_ID, MLXSW_REG_PLLP_LEN); 6012 6013 /* reg_pllp_local_port 6014 * Local port number. 6015 * Access: Index 6016 */ 6017 MLXSW_ITEM32(reg, pllp, local_port, 0x00, 16, 8); 6018 6019 /* reg_pllp_label_port 6020 * Front panel label of the port. 6021 * Access: RO 6022 */ 6023 MLXSW_ITEM32(reg, pllp, label_port, 0x00, 0, 8); 6024 6025 /* reg_pllp_split_num 6026 * Label split mapping for local_port. 6027 * Access: RO 6028 */ 6029 MLXSW_ITEM32(reg, pllp, split_num, 0x04, 0, 4); 6030 6031 /* reg_pllp_slot_index 6032 * Slot index (0: Main board). 6033 * Access: RO 6034 */ 6035 MLXSW_ITEM32(reg, pllp, slot_index, 0x08, 0, 4); 6036 6037 static inline void mlxsw_reg_pllp_pack(char *payload, u8 local_port) 6038 { 6039 MLXSW_REG_ZERO(pllp, payload); 6040 mlxsw_reg_pllp_local_port_set(payload, local_port); 6041 } 6042 6043 static inline void mlxsw_reg_pllp_unpack(char *payload, u8 *label_port, 6044 u8 *split_num, u8 *slot_index) 6045 { 6046 *label_port = mlxsw_reg_pllp_label_port_get(payload); 6047 *split_num = mlxsw_reg_pllp_split_num_get(payload); 6048 *slot_index = mlxsw_reg_pllp_slot_index_get(payload); 6049 } 6050 6051 /* HTGT - Host Trap Group Table 6052 * ---------------------------- 6053 * Configures the properties for forwarding to CPU. 6054 */ 6055 #define MLXSW_REG_HTGT_ID 0x7002 6056 #define MLXSW_REG_HTGT_LEN 0x20 6057 6058 MLXSW_REG_DEFINE(htgt, MLXSW_REG_HTGT_ID, MLXSW_REG_HTGT_LEN); 6059 6060 /* reg_htgt_swid 6061 * Switch partition ID. 6062 * Access: Index 6063 */ 6064 MLXSW_ITEM32(reg, htgt, swid, 0x00, 24, 8); 6065 6066 #define MLXSW_REG_HTGT_PATH_TYPE_LOCAL 0x0 /* For locally attached CPU */ 6067 6068 /* reg_htgt_type 6069 * CPU path type. 6070 * Access: RW 6071 */ 6072 MLXSW_ITEM32(reg, htgt, type, 0x00, 8, 4); 6073 6074 enum mlxsw_reg_htgt_trap_group { 6075 MLXSW_REG_HTGT_TRAP_GROUP_EMAD, 6076 MLXSW_REG_HTGT_TRAP_GROUP_MFDE, 6077 MLXSW_REG_HTGT_TRAP_GROUP_MTWE, 6078 MLXSW_REG_HTGT_TRAP_GROUP_PMPE, 6079 MLXSW_REG_HTGT_TRAP_GROUP_SP_STP, 6080 MLXSW_REG_HTGT_TRAP_GROUP_SP_LACP, 6081 MLXSW_REG_HTGT_TRAP_GROUP_SP_LLDP, 6082 MLXSW_REG_HTGT_TRAP_GROUP_SP_MC_SNOOPING, 6083 MLXSW_REG_HTGT_TRAP_GROUP_SP_BGP, 6084 MLXSW_REG_HTGT_TRAP_GROUP_SP_OSPF, 6085 MLXSW_REG_HTGT_TRAP_GROUP_SP_PIM, 6086 MLXSW_REG_HTGT_TRAP_GROUP_SP_MULTICAST, 6087 MLXSW_REG_HTGT_TRAP_GROUP_SP_NEIGH_DISCOVERY, 6088 MLXSW_REG_HTGT_TRAP_GROUP_SP_ROUTER_EXP, 6089 MLXSW_REG_HTGT_TRAP_GROUP_SP_EXTERNAL_ROUTE, 6090 MLXSW_REG_HTGT_TRAP_GROUP_SP_IP2ME, 6091 MLXSW_REG_HTGT_TRAP_GROUP_SP_DHCP, 6092 MLXSW_REG_HTGT_TRAP_GROUP_SP_EVENT, 6093 MLXSW_REG_HTGT_TRAP_GROUP_SP_IPV6, 6094 MLXSW_REG_HTGT_TRAP_GROUP_SP_LBERROR, 6095 MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP0, 6096 MLXSW_REG_HTGT_TRAP_GROUP_SP_PTP1, 6097 MLXSW_REG_HTGT_TRAP_GROUP_SP_VRRP, 6098 MLXSW_REG_HTGT_TRAP_GROUP_SP_PKT_SAMPLE, 6099 MLXSW_REG_HTGT_TRAP_GROUP_SP_FLOW_LOGGING, 6100 MLXSW_REG_HTGT_TRAP_GROUP_SP_FID_MISS, 6101 MLXSW_REG_HTGT_TRAP_GROUP_SP_BFD, 6102 MLXSW_REG_HTGT_TRAP_GROUP_SP_DUMMY, 6103 MLXSW_REG_HTGT_TRAP_GROUP_SP_L2_DISCARDS, 6104 MLXSW_REG_HTGT_TRAP_GROUP_SP_L3_DISCARDS, 6105 MLXSW_REG_HTGT_TRAP_GROUP_SP_L3_EXCEPTIONS, 6106 MLXSW_REG_HTGT_TRAP_GROUP_SP_TUNNEL_DISCARDS, 6107 MLXSW_REG_HTGT_TRAP_GROUP_SP_ACL_DISCARDS, 6108 MLXSW_REG_HTGT_TRAP_GROUP_SP_BUFFER_DISCARDS, 6109 6110 __MLXSW_REG_HTGT_TRAP_GROUP_MAX, 6111 MLXSW_REG_HTGT_TRAP_GROUP_MAX = __MLXSW_REG_HTGT_TRAP_GROUP_MAX - 1 6112 }; 6113 6114 /* reg_htgt_trap_group 6115 * Trap group number. User defined number specifying which trap groups 6116 * should be forwarded to the CPU. The mapping between trap IDs and trap 6117 * groups is configured using HPKT register. 6118 * Access: Index 6119 */ 6120 MLXSW_ITEM32(reg, htgt, trap_group, 0x00, 0, 8); 6121 6122 enum { 6123 MLXSW_REG_HTGT_POLICER_DISABLE, 6124 MLXSW_REG_HTGT_POLICER_ENABLE, 6125 }; 6126 6127 /* reg_htgt_pide 6128 * Enable policer ID specified using 'pid' field. 6129 * Access: RW 6130 */ 6131 MLXSW_ITEM32(reg, htgt, pide, 0x04, 15, 1); 6132 6133 #define MLXSW_REG_HTGT_INVALID_POLICER 0xff 6134 6135 /* reg_htgt_pid 6136 * Policer ID for the trap group. 6137 * Access: RW 6138 */ 6139 MLXSW_ITEM32(reg, htgt, pid, 0x04, 0, 8); 6140 6141 #define MLXSW_REG_HTGT_TRAP_TO_CPU 0x0 6142 6143 /* reg_htgt_mirror_action 6144 * Mirror action to use. 6145 * 0 - Trap to CPU. 6146 * 1 - Trap to CPU and mirror to a mirroring agent. 6147 * 2 - Mirror to a mirroring agent and do not trap to CPU. 6148 * Access: RW 6149 * 6150 * Note: Mirroring to a mirroring agent is only supported in Spectrum. 6151 */ 6152 MLXSW_ITEM32(reg, htgt, mirror_action, 0x08, 8, 2); 6153 6154 /* reg_htgt_mirroring_agent 6155 * Mirroring agent. 6156 * Access: RW 6157 */ 6158 MLXSW_ITEM32(reg, htgt, mirroring_agent, 0x08, 0, 3); 6159 6160 #define MLXSW_REG_HTGT_DEFAULT_PRIORITY 0 6161 6162 /* reg_htgt_priority 6163 * Trap group priority. 6164 * In case a packet matches multiple classification rules, the packet will 6165 * only be trapped once, based on the trap ID associated with the group (via 6166 * register HPKT) with the highest priority. 6167 * Supported values are 0-7, with 7 represnting the highest priority. 6168 * Access: RW 6169 * 6170 * Note: In SwitchX-2 this field is ignored and the priority value is replaced 6171 * by the 'trap_group' field. 6172 */ 6173 MLXSW_ITEM32(reg, htgt, priority, 0x0C, 0, 4); 6174 6175 #define MLXSW_REG_HTGT_DEFAULT_TC 7 6176 6177 /* reg_htgt_local_path_cpu_tclass 6178 * CPU ingress traffic class for the trap group. 6179 * Access: RW 6180 */ 6181 MLXSW_ITEM32(reg, htgt, local_path_cpu_tclass, 0x10, 16, 6); 6182 6183 enum mlxsw_reg_htgt_local_path_rdq { 6184 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_CTRL = 0x13, 6185 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_RX = 0x14, 6186 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SX2_EMAD = 0x15, 6187 MLXSW_REG_HTGT_LOCAL_PATH_RDQ_SIB_EMAD = 0x15, 6188 }; 6189 /* reg_htgt_local_path_rdq 6190 * Receive descriptor queue (RDQ) to use for the trap group. 6191 * Access: RW 6192 */ 6193 MLXSW_ITEM32(reg, htgt, local_path_rdq, 0x10, 0, 6); 6194 6195 static inline void mlxsw_reg_htgt_pack(char *payload, u8 group, u8 policer_id, 6196 u8 priority, u8 tc) 6197 { 6198 MLXSW_REG_ZERO(htgt, payload); 6199 6200 if (policer_id == MLXSW_REG_HTGT_INVALID_POLICER) { 6201 mlxsw_reg_htgt_pide_set(payload, 6202 MLXSW_REG_HTGT_POLICER_DISABLE); 6203 } else { 6204 mlxsw_reg_htgt_pide_set(payload, 6205 MLXSW_REG_HTGT_POLICER_ENABLE); 6206 mlxsw_reg_htgt_pid_set(payload, policer_id); 6207 } 6208 6209 mlxsw_reg_htgt_type_set(payload, MLXSW_REG_HTGT_PATH_TYPE_LOCAL); 6210 mlxsw_reg_htgt_trap_group_set(payload, group); 6211 mlxsw_reg_htgt_mirror_action_set(payload, MLXSW_REG_HTGT_TRAP_TO_CPU); 6212 mlxsw_reg_htgt_mirroring_agent_set(payload, 0); 6213 mlxsw_reg_htgt_priority_set(payload, priority); 6214 mlxsw_reg_htgt_local_path_cpu_tclass_set(payload, tc); 6215 mlxsw_reg_htgt_local_path_rdq_set(payload, group); 6216 } 6217 6218 /* HPKT - Host Packet Trap 6219 * ----------------------- 6220 * Configures trap IDs inside trap groups. 6221 */ 6222 #define MLXSW_REG_HPKT_ID 0x7003 6223 #define MLXSW_REG_HPKT_LEN 0x10 6224 6225 MLXSW_REG_DEFINE(hpkt, MLXSW_REG_HPKT_ID, MLXSW_REG_HPKT_LEN); 6226 6227 enum { 6228 MLXSW_REG_HPKT_ACK_NOT_REQUIRED, 6229 MLXSW_REG_HPKT_ACK_REQUIRED, 6230 }; 6231 6232 /* reg_hpkt_ack 6233 * Require acknowledgements from the host for events. 6234 * If set, then the device will wait for the event it sent to be acknowledged 6235 * by the host. This option is only relevant for event trap IDs. 6236 * Access: RW 6237 * 6238 * Note: Currently not supported by firmware. 6239 */ 6240 MLXSW_ITEM32(reg, hpkt, ack, 0x00, 24, 1); 6241 6242 enum mlxsw_reg_hpkt_action { 6243 MLXSW_REG_HPKT_ACTION_FORWARD, 6244 MLXSW_REG_HPKT_ACTION_TRAP_TO_CPU, 6245 MLXSW_REG_HPKT_ACTION_MIRROR_TO_CPU, 6246 MLXSW_REG_HPKT_ACTION_DISCARD, 6247 MLXSW_REG_HPKT_ACTION_SOFT_DISCARD, 6248 MLXSW_REG_HPKT_ACTION_TRAP_AND_SOFT_DISCARD, 6249 MLXSW_REG_HPKT_ACTION_TRAP_EXCEPTION_TO_CPU, 6250 MLXSW_REG_HPKT_ACTION_SET_FW_DEFAULT = 15, 6251 }; 6252 6253 /* reg_hpkt_action 6254 * Action to perform on packet when trapped. 6255 * 0 - No action. Forward to CPU based on switching rules. 6256 * 1 - Trap to CPU (CPU receives sole copy). 6257 * 2 - Mirror to CPU (CPU receives a replica of the packet). 6258 * 3 - Discard. 6259 * 4 - Soft discard (allow other traps to act on the packet). 6260 * 5 - Trap and soft discard (allow other traps to overwrite this trap). 6261 * 6 - Trap to CPU (CPU receives sole copy) and count it as error. 6262 * 15 - Restore the firmware's default action. 6263 * Access: RW 6264 * 6265 * Note: Must be set to 0 (forward) for event trap IDs, as they are already 6266 * addressed to the CPU. 6267 */ 6268 MLXSW_ITEM32(reg, hpkt, action, 0x00, 20, 3); 6269 6270 /* reg_hpkt_trap_group 6271 * Trap group to associate the trap with. 6272 * Access: RW 6273 */ 6274 MLXSW_ITEM32(reg, hpkt, trap_group, 0x00, 12, 6); 6275 6276 /* reg_hpkt_trap_id 6277 * Trap ID. 6278 * Access: Index 6279 * 6280 * Note: A trap ID can only be associated with a single trap group. The device 6281 * will associate the trap ID with the last trap group configured. 6282 */ 6283 MLXSW_ITEM32(reg, hpkt, trap_id, 0x00, 0, 10); 6284 6285 enum { 6286 MLXSW_REG_HPKT_CTRL_PACKET_DEFAULT, 6287 MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER, 6288 MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER, 6289 }; 6290 6291 /* reg_hpkt_ctrl 6292 * Configure dedicated buffer resources for control packets. 6293 * Ignored by SwitchX-2. 6294 * 0 - Keep factory defaults. 6295 * 1 - Do not use control buffer for this trap ID. 6296 * 2 - Use control buffer for this trap ID. 6297 * Access: RW 6298 */ 6299 MLXSW_ITEM32(reg, hpkt, ctrl, 0x04, 16, 2); 6300 6301 static inline void mlxsw_reg_hpkt_pack(char *payload, u8 action, u16 trap_id, 6302 enum mlxsw_reg_htgt_trap_group trap_group, 6303 bool is_ctrl) 6304 { 6305 MLXSW_REG_ZERO(hpkt, payload); 6306 mlxsw_reg_hpkt_ack_set(payload, MLXSW_REG_HPKT_ACK_NOT_REQUIRED); 6307 mlxsw_reg_hpkt_action_set(payload, action); 6308 mlxsw_reg_hpkt_trap_group_set(payload, trap_group); 6309 mlxsw_reg_hpkt_trap_id_set(payload, trap_id); 6310 mlxsw_reg_hpkt_ctrl_set(payload, is_ctrl ? 6311 MLXSW_REG_HPKT_CTRL_PACKET_USE_BUFFER : 6312 MLXSW_REG_HPKT_CTRL_PACKET_NO_BUFFER); 6313 } 6314 6315 /* RGCR - Router General Configuration Register 6316 * -------------------------------------------- 6317 * The register is used for setting up the router configuration. 6318 */ 6319 #define MLXSW_REG_RGCR_ID 0x8001 6320 #define MLXSW_REG_RGCR_LEN 0x28 6321 6322 MLXSW_REG_DEFINE(rgcr, MLXSW_REG_RGCR_ID, MLXSW_REG_RGCR_LEN); 6323 6324 /* reg_rgcr_ipv4_en 6325 * IPv4 router enable. 6326 * Access: RW 6327 */ 6328 MLXSW_ITEM32(reg, rgcr, ipv4_en, 0x00, 31, 1); 6329 6330 /* reg_rgcr_ipv6_en 6331 * IPv6 router enable. 6332 * Access: RW 6333 */ 6334 MLXSW_ITEM32(reg, rgcr, ipv6_en, 0x00, 30, 1); 6335 6336 /* reg_rgcr_max_router_interfaces 6337 * Defines the maximum number of active router interfaces for all virtual 6338 * routers. 6339 * Access: RW 6340 */ 6341 MLXSW_ITEM32(reg, rgcr, max_router_interfaces, 0x10, 0, 16); 6342 6343 /* reg_rgcr_usp 6344 * Update switch priority and packet color. 6345 * 0 - Preserve the value of Switch Priority and packet color. 6346 * 1 - Recalculate the value of Switch Priority and packet color. 6347 * Access: RW 6348 * 6349 * Note: Not supported by SwitchX and SwitchX-2. 6350 */ 6351 MLXSW_ITEM32(reg, rgcr, usp, 0x18, 20, 1); 6352 6353 /* reg_rgcr_pcp_rw 6354 * Indicates how to handle the pcp_rewrite_en value: 6355 * 0 - Preserve the value of pcp_rewrite_en. 6356 * 2 - Disable PCP rewrite. 6357 * 3 - Enable PCP rewrite. 6358 * Access: RW 6359 * 6360 * Note: Not supported by SwitchX and SwitchX-2. 6361 */ 6362 MLXSW_ITEM32(reg, rgcr, pcp_rw, 0x18, 16, 2); 6363 6364 /* reg_rgcr_activity_dis 6365 * Activity disable: 6366 * 0 - Activity will be set when an entry is hit (default). 6367 * 1 - Activity will not be set when an entry is hit. 6368 * 6369 * Bit 0 - Disable activity bit in Router Algorithmic LPM Unicast Entry 6370 * (RALUE). 6371 * Bit 1 - Disable activity bit in Router Algorithmic LPM Unicast Host 6372 * Entry (RAUHT). 6373 * Bits 2:7 are reserved. 6374 * Access: RW 6375 * 6376 * Note: Not supported by SwitchX, SwitchX-2 and Switch-IB. 6377 */ 6378 MLXSW_ITEM32(reg, rgcr, activity_dis, 0x20, 0, 8); 6379 6380 static inline void mlxsw_reg_rgcr_pack(char *payload, bool ipv4_en, 6381 bool ipv6_en) 6382 { 6383 MLXSW_REG_ZERO(rgcr, payload); 6384 mlxsw_reg_rgcr_ipv4_en_set(payload, ipv4_en); 6385 mlxsw_reg_rgcr_ipv6_en_set(payload, ipv6_en); 6386 } 6387 6388 /* RITR - Router Interface Table Register 6389 * -------------------------------------- 6390 * The register is used to configure the router interface table. 6391 */ 6392 #define MLXSW_REG_RITR_ID 0x8002 6393 #define MLXSW_REG_RITR_LEN 0x40 6394 6395 MLXSW_REG_DEFINE(ritr, MLXSW_REG_RITR_ID, MLXSW_REG_RITR_LEN); 6396 6397 /* reg_ritr_enable 6398 * Enables routing on the router interface. 6399 * Access: RW 6400 */ 6401 MLXSW_ITEM32(reg, ritr, enable, 0x00, 31, 1); 6402 6403 /* reg_ritr_ipv4 6404 * IPv4 routing enable. Enables routing of IPv4 traffic on the router 6405 * interface. 6406 * Access: RW 6407 */ 6408 MLXSW_ITEM32(reg, ritr, ipv4, 0x00, 29, 1); 6409 6410 /* reg_ritr_ipv6 6411 * IPv6 routing enable. Enables routing of IPv6 traffic on the router 6412 * interface. 6413 * Access: RW 6414 */ 6415 MLXSW_ITEM32(reg, ritr, ipv6, 0x00, 28, 1); 6416 6417 /* reg_ritr_ipv4_mc 6418 * IPv4 multicast routing enable. 6419 * Access: RW 6420 */ 6421 MLXSW_ITEM32(reg, ritr, ipv4_mc, 0x00, 27, 1); 6422 6423 /* reg_ritr_ipv6_mc 6424 * IPv6 multicast routing enable. 6425 * Access: RW 6426 */ 6427 MLXSW_ITEM32(reg, ritr, ipv6_mc, 0x00, 26, 1); 6428 6429 enum mlxsw_reg_ritr_if_type { 6430 /* VLAN interface. */ 6431 MLXSW_REG_RITR_VLAN_IF, 6432 /* FID interface. */ 6433 MLXSW_REG_RITR_FID_IF, 6434 /* Sub-port interface. */ 6435 MLXSW_REG_RITR_SP_IF, 6436 /* Loopback Interface. */ 6437 MLXSW_REG_RITR_LOOPBACK_IF, 6438 }; 6439 6440 /* reg_ritr_type 6441 * Router interface type as per enum mlxsw_reg_ritr_if_type. 6442 * Access: RW 6443 */ 6444 MLXSW_ITEM32(reg, ritr, type, 0x00, 23, 3); 6445 6446 enum { 6447 MLXSW_REG_RITR_RIF_CREATE, 6448 MLXSW_REG_RITR_RIF_DEL, 6449 }; 6450 6451 /* reg_ritr_op 6452 * Opcode: 6453 * 0 - Create or edit RIF. 6454 * 1 - Delete RIF. 6455 * Reserved for SwitchX-2. For Spectrum, editing of interface properties 6456 * is not supported. An interface must be deleted and re-created in order 6457 * to update properties. 6458 * Access: WO 6459 */ 6460 MLXSW_ITEM32(reg, ritr, op, 0x00, 20, 2); 6461 6462 /* reg_ritr_rif 6463 * Router interface index. A pointer to the Router Interface Table. 6464 * Access: Index 6465 */ 6466 MLXSW_ITEM32(reg, ritr, rif, 0x00, 0, 16); 6467 6468 /* reg_ritr_ipv4_fe 6469 * IPv4 Forwarding Enable. 6470 * Enables routing of IPv4 traffic on the router interface. When disabled, 6471 * forwarding is blocked but local traffic (traps and IP2ME) will be enabled. 6472 * Not supported in SwitchX-2. 6473 * Access: RW 6474 */ 6475 MLXSW_ITEM32(reg, ritr, ipv4_fe, 0x04, 29, 1); 6476 6477 /* reg_ritr_ipv6_fe 6478 * IPv6 Forwarding Enable. 6479 * Enables routing of IPv6 traffic on the router interface. When disabled, 6480 * forwarding is blocked but local traffic (traps and IP2ME) will be enabled. 6481 * Not supported in SwitchX-2. 6482 * Access: RW 6483 */ 6484 MLXSW_ITEM32(reg, ritr, ipv6_fe, 0x04, 28, 1); 6485 6486 /* reg_ritr_ipv4_mc_fe 6487 * IPv4 Multicast Forwarding Enable. 6488 * When disabled, forwarding is blocked but local traffic (traps and IP to me) 6489 * will be enabled. 6490 * Access: RW 6491 */ 6492 MLXSW_ITEM32(reg, ritr, ipv4_mc_fe, 0x04, 27, 1); 6493 6494 /* reg_ritr_ipv6_mc_fe 6495 * IPv6 Multicast Forwarding Enable. 6496 * When disabled, forwarding is blocked but local traffic (traps and IP to me) 6497 * will be enabled. 6498 * Access: RW 6499 */ 6500 MLXSW_ITEM32(reg, ritr, ipv6_mc_fe, 0x04, 26, 1); 6501 6502 /* reg_ritr_lb_en 6503 * Loop-back filter enable for unicast packets. 6504 * If the flag is set then loop-back filter for unicast packets is 6505 * implemented on the RIF. Multicast packets are always subject to 6506 * loop-back filtering. 6507 * Access: RW 6508 */ 6509 MLXSW_ITEM32(reg, ritr, lb_en, 0x04, 24, 1); 6510 6511 /* reg_ritr_virtual_router 6512 * Virtual router ID associated with the router interface. 6513 * Access: RW 6514 */ 6515 MLXSW_ITEM32(reg, ritr, virtual_router, 0x04, 0, 16); 6516 6517 /* reg_ritr_mtu 6518 * Router interface MTU. 6519 * Access: RW 6520 */ 6521 MLXSW_ITEM32(reg, ritr, mtu, 0x34, 0, 16); 6522 6523 /* reg_ritr_if_swid 6524 * Switch partition ID. 6525 * Access: RW 6526 */ 6527 MLXSW_ITEM32(reg, ritr, if_swid, 0x08, 24, 8); 6528 6529 /* reg_ritr_if_mac 6530 * Router interface MAC address. 6531 * In Spectrum, all MAC addresses must have the same 38 MSBits. 6532 * Access: RW 6533 */ 6534 MLXSW_ITEM_BUF(reg, ritr, if_mac, 0x12, 6); 6535 6536 /* reg_ritr_if_vrrp_id_ipv6 6537 * VRRP ID for IPv6 6538 * Note: Reserved for RIF types other than VLAN, FID and Sub-port. 6539 * Access: RW 6540 */ 6541 MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv6, 0x1C, 8, 8); 6542 6543 /* reg_ritr_if_vrrp_id_ipv4 6544 * VRRP ID for IPv4 6545 * Note: Reserved for RIF types other than VLAN, FID and Sub-port. 6546 * Access: RW 6547 */ 6548 MLXSW_ITEM32(reg, ritr, if_vrrp_id_ipv4, 0x1C, 0, 8); 6549 6550 /* VLAN Interface */ 6551 6552 /* reg_ritr_vlan_if_vid 6553 * VLAN ID. 6554 * Access: RW 6555 */ 6556 MLXSW_ITEM32(reg, ritr, vlan_if_vid, 0x08, 0, 12); 6557 6558 /* FID Interface */ 6559 6560 /* reg_ritr_fid_if_fid 6561 * Filtering ID. Used to connect a bridge to the router. Only FIDs from 6562 * the vFID range are supported. 6563 * Access: RW 6564 */ 6565 MLXSW_ITEM32(reg, ritr, fid_if_fid, 0x08, 0, 16); 6566 6567 static inline void mlxsw_reg_ritr_fid_set(char *payload, 6568 enum mlxsw_reg_ritr_if_type rif_type, 6569 u16 fid) 6570 { 6571 if (rif_type == MLXSW_REG_RITR_FID_IF) 6572 mlxsw_reg_ritr_fid_if_fid_set(payload, fid); 6573 else 6574 mlxsw_reg_ritr_vlan_if_vid_set(payload, fid); 6575 } 6576 6577 /* Sub-port Interface */ 6578 6579 /* reg_ritr_sp_if_lag 6580 * LAG indication. When this bit is set the system_port field holds the 6581 * LAG identifier. 6582 * Access: RW 6583 */ 6584 MLXSW_ITEM32(reg, ritr, sp_if_lag, 0x08, 24, 1); 6585 6586 /* reg_ritr_sp_system_port 6587 * Port unique indentifier. When lag bit is set, this field holds the 6588 * lag_id in bits 0:9. 6589 * Access: RW 6590 */ 6591 MLXSW_ITEM32(reg, ritr, sp_if_system_port, 0x08, 0, 16); 6592 6593 /* reg_ritr_sp_if_vid 6594 * VLAN ID. 6595 * Access: RW 6596 */ 6597 MLXSW_ITEM32(reg, ritr, sp_if_vid, 0x18, 0, 12); 6598 6599 /* Loopback Interface */ 6600 6601 enum mlxsw_reg_ritr_loopback_protocol { 6602 /* IPinIP IPv4 underlay Unicast */ 6603 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4, 6604 /* IPinIP IPv6 underlay Unicast */ 6605 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV6, 6606 /* IPinIP generic - used for Spectrum-2 underlay RIF */ 6607 MLXSW_REG_RITR_LOOPBACK_GENERIC, 6608 }; 6609 6610 /* reg_ritr_loopback_protocol 6611 * Access: RW 6612 */ 6613 MLXSW_ITEM32(reg, ritr, loopback_protocol, 0x08, 28, 4); 6614 6615 enum mlxsw_reg_ritr_loopback_ipip_type { 6616 /* Tunnel is IPinIP. */ 6617 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_IP, 6618 /* Tunnel is GRE, no key. */ 6619 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_IN_IP, 6620 /* Tunnel is GRE, with a key. */ 6621 MLXSW_REG_RITR_LOOPBACK_IPIP_TYPE_IP_IN_GRE_KEY_IN_IP, 6622 }; 6623 6624 /* reg_ritr_loopback_ipip_type 6625 * Encapsulation type. 6626 * Access: RW 6627 */ 6628 MLXSW_ITEM32(reg, ritr, loopback_ipip_type, 0x10, 24, 4); 6629 6630 enum mlxsw_reg_ritr_loopback_ipip_options { 6631 /* The key is defined by gre_key. */ 6632 MLXSW_REG_RITR_LOOPBACK_IPIP_OPTIONS_GRE_KEY_PRESET, 6633 }; 6634 6635 /* reg_ritr_loopback_ipip_options 6636 * Access: RW 6637 */ 6638 MLXSW_ITEM32(reg, ritr, loopback_ipip_options, 0x10, 20, 4); 6639 6640 /* reg_ritr_loopback_ipip_uvr 6641 * Underlay Virtual Router ID. 6642 * Range is 0..cap_max_virtual_routers-1. 6643 * Reserved for Spectrum-2. 6644 * Access: RW 6645 */ 6646 MLXSW_ITEM32(reg, ritr, loopback_ipip_uvr, 0x10, 0, 16); 6647 6648 /* reg_ritr_loopback_ipip_underlay_rif 6649 * Underlay ingress router interface. 6650 * Reserved for Spectrum. 6651 * Access: RW 6652 */ 6653 MLXSW_ITEM32(reg, ritr, loopback_ipip_underlay_rif, 0x14, 0, 16); 6654 6655 /* reg_ritr_loopback_ipip_usip* 6656 * Encapsulation Underlay source IP. 6657 * Access: RW 6658 */ 6659 MLXSW_ITEM_BUF(reg, ritr, loopback_ipip_usip6, 0x18, 16); 6660 MLXSW_ITEM32(reg, ritr, loopback_ipip_usip4, 0x24, 0, 32); 6661 6662 /* reg_ritr_loopback_ipip_gre_key 6663 * GRE Key. 6664 * Reserved when ipip_type is not IP_IN_GRE_KEY_IN_IP. 6665 * Access: RW 6666 */ 6667 MLXSW_ITEM32(reg, ritr, loopback_ipip_gre_key, 0x28, 0, 32); 6668 6669 /* Shared between ingress/egress */ 6670 enum mlxsw_reg_ritr_counter_set_type { 6671 /* No Count. */ 6672 MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT = 0x0, 6673 /* Basic. Used for router interfaces, counting the following: 6674 * - Error and Discard counters. 6675 * - Unicast, Multicast and Broadcast counters. Sharing the 6676 * same set of counters for the different type of traffic 6677 * (IPv4, IPv6 and mpls). 6678 */ 6679 MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC = 0x9, 6680 }; 6681 6682 /* reg_ritr_ingress_counter_index 6683 * Counter Index for flow counter. 6684 * Access: RW 6685 */ 6686 MLXSW_ITEM32(reg, ritr, ingress_counter_index, 0x38, 0, 24); 6687 6688 /* reg_ritr_ingress_counter_set_type 6689 * Igress Counter Set Type for router interface counter. 6690 * Access: RW 6691 */ 6692 MLXSW_ITEM32(reg, ritr, ingress_counter_set_type, 0x38, 24, 8); 6693 6694 /* reg_ritr_egress_counter_index 6695 * Counter Index for flow counter. 6696 * Access: RW 6697 */ 6698 MLXSW_ITEM32(reg, ritr, egress_counter_index, 0x3C, 0, 24); 6699 6700 /* reg_ritr_egress_counter_set_type 6701 * Egress Counter Set Type for router interface counter. 6702 * Access: RW 6703 */ 6704 MLXSW_ITEM32(reg, ritr, egress_counter_set_type, 0x3C, 24, 8); 6705 6706 static inline void mlxsw_reg_ritr_counter_pack(char *payload, u32 index, 6707 bool enable, bool egress) 6708 { 6709 enum mlxsw_reg_ritr_counter_set_type set_type; 6710 6711 if (enable) 6712 set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_BASIC; 6713 else 6714 set_type = MLXSW_REG_RITR_COUNTER_SET_TYPE_NO_COUNT; 6715 mlxsw_reg_ritr_egress_counter_set_type_set(payload, set_type); 6716 6717 if (egress) 6718 mlxsw_reg_ritr_egress_counter_index_set(payload, index); 6719 else 6720 mlxsw_reg_ritr_ingress_counter_index_set(payload, index); 6721 } 6722 6723 static inline void mlxsw_reg_ritr_rif_pack(char *payload, u16 rif) 6724 { 6725 MLXSW_REG_ZERO(ritr, payload); 6726 mlxsw_reg_ritr_rif_set(payload, rif); 6727 } 6728 6729 static inline void mlxsw_reg_ritr_sp_if_pack(char *payload, bool lag, 6730 u16 system_port, u16 vid) 6731 { 6732 mlxsw_reg_ritr_sp_if_lag_set(payload, lag); 6733 mlxsw_reg_ritr_sp_if_system_port_set(payload, system_port); 6734 mlxsw_reg_ritr_sp_if_vid_set(payload, vid); 6735 } 6736 6737 static inline void mlxsw_reg_ritr_pack(char *payload, bool enable, 6738 enum mlxsw_reg_ritr_if_type type, 6739 u16 rif, u16 vr_id, u16 mtu) 6740 { 6741 bool op = enable ? MLXSW_REG_RITR_RIF_CREATE : MLXSW_REG_RITR_RIF_DEL; 6742 6743 MLXSW_REG_ZERO(ritr, payload); 6744 mlxsw_reg_ritr_enable_set(payload, enable); 6745 mlxsw_reg_ritr_ipv4_set(payload, 1); 6746 mlxsw_reg_ritr_ipv6_set(payload, 1); 6747 mlxsw_reg_ritr_ipv4_mc_set(payload, 1); 6748 mlxsw_reg_ritr_ipv6_mc_set(payload, 1); 6749 mlxsw_reg_ritr_type_set(payload, type); 6750 mlxsw_reg_ritr_op_set(payload, op); 6751 mlxsw_reg_ritr_rif_set(payload, rif); 6752 mlxsw_reg_ritr_ipv4_fe_set(payload, 1); 6753 mlxsw_reg_ritr_ipv6_fe_set(payload, 1); 6754 mlxsw_reg_ritr_ipv4_mc_fe_set(payload, 1); 6755 mlxsw_reg_ritr_ipv6_mc_fe_set(payload, 1); 6756 mlxsw_reg_ritr_lb_en_set(payload, 1); 6757 mlxsw_reg_ritr_virtual_router_set(payload, vr_id); 6758 mlxsw_reg_ritr_mtu_set(payload, mtu); 6759 } 6760 6761 static inline void mlxsw_reg_ritr_mac_pack(char *payload, const char *mac) 6762 { 6763 mlxsw_reg_ritr_if_mac_memcpy_to(payload, mac); 6764 } 6765 6766 static inline void 6767 mlxsw_reg_ritr_loopback_ipip_common_pack(char *payload, 6768 enum mlxsw_reg_ritr_loopback_ipip_type ipip_type, 6769 enum mlxsw_reg_ritr_loopback_ipip_options options, 6770 u16 uvr_id, u16 underlay_rif, u32 gre_key) 6771 { 6772 mlxsw_reg_ritr_loopback_ipip_type_set(payload, ipip_type); 6773 mlxsw_reg_ritr_loopback_ipip_options_set(payload, options); 6774 mlxsw_reg_ritr_loopback_ipip_uvr_set(payload, uvr_id); 6775 mlxsw_reg_ritr_loopback_ipip_underlay_rif_set(payload, underlay_rif); 6776 mlxsw_reg_ritr_loopback_ipip_gre_key_set(payload, gre_key); 6777 } 6778 6779 static inline void 6780 mlxsw_reg_ritr_loopback_ipip4_pack(char *payload, 6781 enum mlxsw_reg_ritr_loopback_ipip_type ipip_type, 6782 enum mlxsw_reg_ritr_loopback_ipip_options options, 6783 u16 uvr_id, u16 underlay_rif, u32 usip, u32 gre_key) 6784 { 6785 mlxsw_reg_ritr_loopback_protocol_set(payload, 6786 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV4); 6787 mlxsw_reg_ritr_loopback_ipip_common_pack(payload, ipip_type, options, 6788 uvr_id, underlay_rif, gre_key); 6789 mlxsw_reg_ritr_loopback_ipip_usip4_set(payload, usip); 6790 } 6791 6792 static inline void 6793 mlxsw_reg_ritr_loopback_ipip6_pack(char *payload, 6794 enum mlxsw_reg_ritr_loopback_ipip_type ipip_type, 6795 enum mlxsw_reg_ritr_loopback_ipip_options options, 6796 u16 uvr_id, u16 underlay_rif, 6797 const struct in6_addr *usip, u32 gre_key) 6798 { 6799 enum mlxsw_reg_ritr_loopback_protocol protocol = 6800 MLXSW_REG_RITR_LOOPBACK_PROTOCOL_IPIP_IPV6; 6801 6802 mlxsw_reg_ritr_loopback_protocol_set(payload, protocol); 6803 mlxsw_reg_ritr_loopback_ipip_common_pack(payload, ipip_type, options, 6804 uvr_id, underlay_rif, gre_key); 6805 mlxsw_reg_ritr_loopback_ipip_usip6_memcpy_to(payload, 6806 (const char *)usip); 6807 } 6808 6809 /* RTAR - Router TCAM Allocation Register 6810 * -------------------------------------- 6811 * This register is used for allocation of regions in the TCAM table. 6812 */ 6813 #define MLXSW_REG_RTAR_ID 0x8004 6814 #define MLXSW_REG_RTAR_LEN 0x20 6815 6816 MLXSW_REG_DEFINE(rtar, MLXSW_REG_RTAR_ID, MLXSW_REG_RTAR_LEN); 6817 6818 enum mlxsw_reg_rtar_op { 6819 MLXSW_REG_RTAR_OP_ALLOCATE, 6820 MLXSW_REG_RTAR_OP_RESIZE, 6821 MLXSW_REG_RTAR_OP_DEALLOCATE, 6822 }; 6823 6824 /* reg_rtar_op 6825 * Access: WO 6826 */ 6827 MLXSW_ITEM32(reg, rtar, op, 0x00, 28, 4); 6828 6829 enum mlxsw_reg_rtar_key_type { 6830 MLXSW_REG_RTAR_KEY_TYPE_IPV4_MULTICAST = 1, 6831 MLXSW_REG_RTAR_KEY_TYPE_IPV6_MULTICAST = 3 6832 }; 6833 6834 /* reg_rtar_key_type 6835 * TCAM key type for the region. 6836 * Access: WO 6837 */ 6838 MLXSW_ITEM32(reg, rtar, key_type, 0x00, 0, 8); 6839 6840 /* reg_rtar_region_size 6841 * TCAM region size. When allocating/resizing this is the requested 6842 * size, the response is the actual size. 6843 * Note: Actual size may be larger than requested. 6844 * Reserved for op = Deallocate 6845 * Access: WO 6846 */ 6847 MLXSW_ITEM32(reg, rtar, region_size, 0x04, 0, 16); 6848 6849 static inline void mlxsw_reg_rtar_pack(char *payload, 6850 enum mlxsw_reg_rtar_op op, 6851 enum mlxsw_reg_rtar_key_type key_type, 6852 u16 region_size) 6853 { 6854 MLXSW_REG_ZERO(rtar, payload); 6855 mlxsw_reg_rtar_op_set(payload, op); 6856 mlxsw_reg_rtar_key_type_set(payload, key_type); 6857 mlxsw_reg_rtar_region_size_set(payload, region_size); 6858 } 6859 6860 /* RATR - Router Adjacency Table Register 6861 * -------------------------------------- 6862 * The RATR register is used to configure the Router Adjacency (next-hop) 6863 * Table. 6864 */ 6865 #define MLXSW_REG_RATR_ID 0x8008 6866 #define MLXSW_REG_RATR_LEN 0x2C 6867 6868 MLXSW_REG_DEFINE(ratr, MLXSW_REG_RATR_ID, MLXSW_REG_RATR_LEN); 6869 6870 enum mlxsw_reg_ratr_op { 6871 /* Read */ 6872 MLXSW_REG_RATR_OP_QUERY_READ = 0, 6873 /* Read and clear activity */ 6874 MLXSW_REG_RATR_OP_QUERY_READ_CLEAR = 2, 6875 /* Write Adjacency entry */ 6876 MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY = 1, 6877 /* Write Adjacency entry only if the activity is cleared. 6878 * The write may not succeed if the activity is set. There is not 6879 * direct feedback if the write has succeeded or not, however 6880 * the get will reveal the actual entry (SW can compare the get 6881 * response to the set command). 6882 */ 6883 MLXSW_REG_RATR_OP_WRITE_WRITE_ENTRY_ON_ACTIVITY = 3, 6884 }; 6885 6886 /* reg_ratr_op 6887 * Note that Write operation may also be used for updating 6888 * counter_set_type and counter_index. In this case all other 6889 * fields must not be updated. 6890 * Access: OP 6891 */ 6892 MLXSW_ITEM32(reg, ratr, op, 0x00, 28, 4); 6893 6894 /* reg_ratr_v 6895 * Valid bit. Indicates if the adjacency entry is valid. 6896 * Note: the device may need some time before reusing an invalidated 6897 * entry. During this time the entry can not be reused. It is 6898 * recommended to use another entry before reusing an invalidated 6899 * entry (e.g. software can put it at the end of the list for 6900 * reusing). Trying to access an invalidated entry not yet cleared 6901 * by the device results with failure indicating "Try Again" status. 6902 * When valid is '0' then egress_router_interface,trap_action, 6903 * adjacency_parameters and counters are reserved 6904 * Access: RW 6905 */ 6906 MLXSW_ITEM32(reg, ratr, v, 0x00, 24, 1); 6907 6908 /* reg_ratr_a 6909 * Activity. Set for new entries. Set if a packet lookup has hit on 6910 * the specific entry. To clear the a bit, use "clear activity". 6911 * Access: RO 6912 */ 6913 MLXSW_ITEM32(reg, ratr, a, 0x00, 16, 1); 6914 6915 enum mlxsw_reg_ratr_type { 6916 /* Ethernet */ 6917 MLXSW_REG_RATR_TYPE_ETHERNET, 6918 /* IPoIB Unicast without GRH. 6919 * Reserved for Spectrum. 6920 */ 6921 MLXSW_REG_RATR_TYPE_IPOIB_UC, 6922 /* IPoIB Unicast with GRH. Supported only in table 0 (Ethernet unicast 6923 * adjacency). 6924 * Reserved for Spectrum. 6925 */ 6926 MLXSW_REG_RATR_TYPE_IPOIB_UC_W_GRH, 6927 /* IPoIB Multicast. 6928 * Reserved for Spectrum. 6929 */ 6930 MLXSW_REG_RATR_TYPE_IPOIB_MC, 6931 /* MPLS. 6932 * Reserved for SwitchX/-2. 6933 */ 6934 MLXSW_REG_RATR_TYPE_MPLS, 6935 /* IPinIP Encap. 6936 * Reserved for SwitchX/-2. 6937 */ 6938 MLXSW_REG_RATR_TYPE_IPIP, 6939 }; 6940 6941 /* reg_ratr_type 6942 * Adjacency entry type. 6943 * Access: RW 6944 */ 6945 MLXSW_ITEM32(reg, ratr, type, 0x04, 28, 4); 6946 6947 /* reg_ratr_adjacency_index_low 6948 * Bits 15:0 of index into the adjacency table. 6949 * For SwitchX and SwitchX-2, the adjacency table is linear and 6950 * used for adjacency entries only. 6951 * For Spectrum, the index is to the KVD linear. 6952 * Access: Index 6953 */ 6954 MLXSW_ITEM32(reg, ratr, adjacency_index_low, 0x04, 0, 16); 6955 6956 /* reg_ratr_egress_router_interface 6957 * Range is 0 .. cap_max_router_interfaces - 1 6958 * Access: RW 6959 */ 6960 MLXSW_ITEM32(reg, ratr, egress_router_interface, 0x08, 0, 16); 6961 6962 enum mlxsw_reg_ratr_trap_action { 6963 MLXSW_REG_RATR_TRAP_ACTION_NOP, 6964 MLXSW_REG_RATR_TRAP_ACTION_TRAP, 6965 MLXSW_REG_RATR_TRAP_ACTION_MIRROR_TO_CPU, 6966 MLXSW_REG_RATR_TRAP_ACTION_MIRROR, 6967 MLXSW_REG_RATR_TRAP_ACTION_DISCARD_ERRORS, 6968 }; 6969 6970 /* reg_ratr_trap_action 6971 * see mlxsw_reg_ratr_trap_action 6972 * Access: RW 6973 */ 6974 MLXSW_ITEM32(reg, ratr, trap_action, 0x0C, 28, 4); 6975 6976 /* reg_ratr_adjacency_index_high 6977 * Bits 23:16 of the adjacency_index. 6978 * Access: Index 6979 */ 6980 MLXSW_ITEM32(reg, ratr, adjacency_index_high, 0x0C, 16, 8); 6981 6982 enum mlxsw_reg_ratr_trap_id { 6983 MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS0, 6984 MLXSW_REG_RATR_TRAP_ID_RTR_EGRESS1, 6985 }; 6986 6987 /* reg_ratr_trap_id 6988 * Trap ID to be reported to CPU. 6989 * Trap-ID is RTR_EGRESS0 or RTR_EGRESS1. 6990 * For trap_action of NOP, MIRROR and DISCARD_ERROR 6991 * Access: RW 6992 */ 6993 MLXSW_ITEM32(reg, ratr, trap_id, 0x0C, 0, 8); 6994 6995 /* reg_ratr_eth_destination_mac 6996 * MAC address of the destination next-hop. 6997 * Access: RW 6998 */ 6999 MLXSW_ITEM_BUF(reg, ratr, eth_destination_mac, 0x12, 6); 7000 7001 enum mlxsw_reg_ratr_ipip_type { 7002 /* IPv4, address set by mlxsw_reg_ratr_ipip_ipv4_udip. */ 7003 MLXSW_REG_RATR_IPIP_TYPE_IPV4, 7004 /* IPv6, address set by mlxsw_reg_ratr_ipip_ipv6_ptr. */ 7005 MLXSW_REG_RATR_IPIP_TYPE_IPV6, 7006 }; 7007 7008 /* reg_ratr_ipip_type 7009 * Underlay destination ip type. 7010 * Note: the type field must match the protocol of the router interface. 7011 * Access: RW 7012 */ 7013 MLXSW_ITEM32(reg, ratr, ipip_type, 0x10, 16, 4); 7014 7015 /* reg_ratr_ipip_ipv4_udip 7016 * Underlay ipv4 dip. 7017 * Reserved when ipip_type is IPv6. 7018 * Access: RW 7019 */ 7020 MLXSW_ITEM32(reg, ratr, ipip_ipv4_udip, 0x18, 0, 32); 7021 7022 /* reg_ratr_ipip_ipv6_ptr 7023 * Pointer to IPv6 underlay destination ip address. 7024 * For Spectrum: Pointer to KVD linear space. 7025 * Access: RW 7026 */ 7027 MLXSW_ITEM32(reg, ratr, ipip_ipv6_ptr, 0x1C, 0, 24); 7028 7029 enum mlxsw_reg_flow_counter_set_type { 7030 /* No count */ 7031 MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT = 0x00, 7032 /* Count packets and bytes */ 7033 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES = 0x03, 7034 /* Count only packets */ 7035 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS = 0x05, 7036 }; 7037 7038 /* reg_ratr_counter_set_type 7039 * Counter set type for flow counters 7040 * Access: RW 7041 */ 7042 MLXSW_ITEM32(reg, ratr, counter_set_type, 0x28, 24, 8); 7043 7044 /* reg_ratr_counter_index 7045 * Counter index for flow counters 7046 * Access: RW 7047 */ 7048 MLXSW_ITEM32(reg, ratr, counter_index, 0x28, 0, 24); 7049 7050 static inline void 7051 mlxsw_reg_ratr_pack(char *payload, 7052 enum mlxsw_reg_ratr_op op, bool valid, 7053 enum mlxsw_reg_ratr_type type, 7054 u32 adjacency_index, u16 egress_rif) 7055 { 7056 MLXSW_REG_ZERO(ratr, payload); 7057 mlxsw_reg_ratr_op_set(payload, op); 7058 mlxsw_reg_ratr_v_set(payload, valid); 7059 mlxsw_reg_ratr_type_set(payload, type); 7060 mlxsw_reg_ratr_adjacency_index_low_set(payload, adjacency_index); 7061 mlxsw_reg_ratr_adjacency_index_high_set(payload, adjacency_index >> 16); 7062 mlxsw_reg_ratr_egress_router_interface_set(payload, egress_rif); 7063 } 7064 7065 static inline void mlxsw_reg_ratr_eth_entry_pack(char *payload, 7066 const char *dest_mac) 7067 { 7068 mlxsw_reg_ratr_eth_destination_mac_memcpy_to(payload, dest_mac); 7069 } 7070 7071 static inline void mlxsw_reg_ratr_ipip4_entry_pack(char *payload, u32 ipv4_udip) 7072 { 7073 mlxsw_reg_ratr_ipip_type_set(payload, MLXSW_REG_RATR_IPIP_TYPE_IPV4); 7074 mlxsw_reg_ratr_ipip_ipv4_udip_set(payload, ipv4_udip); 7075 } 7076 7077 static inline void mlxsw_reg_ratr_ipip6_entry_pack(char *payload, u32 ipv6_ptr) 7078 { 7079 mlxsw_reg_ratr_ipip_type_set(payload, MLXSW_REG_RATR_IPIP_TYPE_IPV6); 7080 mlxsw_reg_ratr_ipip_ipv6_ptr_set(payload, ipv6_ptr); 7081 } 7082 7083 static inline void mlxsw_reg_ratr_counter_pack(char *payload, u64 counter_index, 7084 bool counter_enable) 7085 { 7086 enum mlxsw_reg_flow_counter_set_type set_type; 7087 7088 if (counter_enable) 7089 set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES; 7090 else 7091 set_type = MLXSW_REG_FLOW_COUNTER_SET_TYPE_NO_COUNT; 7092 7093 mlxsw_reg_ratr_counter_index_set(payload, counter_index); 7094 mlxsw_reg_ratr_counter_set_type_set(payload, set_type); 7095 } 7096 7097 /* RDPM - Router DSCP to Priority Mapping 7098 * -------------------------------------- 7099 * Controls the mapping from DSCP field to switch priority on routed packets 7100 */ 7101 #define MLXSW_REG_RDPM_ID 0x8009 7102 #define MLXSW_REG_RDPM_BASE_LEN 0x00 7103 #define MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN 0x01 7104 #define MLXSW_REG_RDPM_DSCP_ENTRY_REC_MAX_COUNT 64 7105 #define MLXSW_REG_RDPM_LEN 0x40 7106 #define MLXSW_REG_RDPM_LAST_ENTRY (MLXSW_REG_RDPM_BASE_LEN + \ 7107 MLXSW_REG_RDPM_LEN - \ 7108 MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN) 7109 7110 MLXSW_REG_DEFINE(rdpm, MLXSW_REG_RDPM_ID, MLXSW_REG_RDPM_LEN); 7111 7112 /* reg_dscp_entry_e 7113 * Enable update of the specific entry 7114 * Access: Index 7115 */ 7116 MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_e, MLXSW_REG_RDPM_LAST_ENTRY, 7, 1, 7117 -MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false); 7118 7119 /* reg_dscp_entry_prio 7120 * Switch Priority 7121 * Access: RW 7122 */ 7123 MLXSW_ITEM8_INDEXED(reg, rdpm, dscp_entry_prio, MLXSW_REG_RDPM_LAST_ENTRY, 0, 4, 7124 -MLXSW_REG_RDPM_DSCP_ENTRY_REC_LEN, 0x00, false); 7125 7126 static inline void mlxsw_reg_rdpm_pack(char *payload, unsigned short index, 7127 u8 prio) 7128 { 7129 mlxsw_reg_rdpm_dscp_entry_e_set(payload, index, 1); 7130 mlxsw_reg_rdpm_dscp_entry_prio_set(payload, index, prio); 7131 } 7132 7133 /* RICNT - Router Interface Counter Register 7134 * ----------------------------------------- 7135 * The RICNT register retrieves per port performance counters 7136 */ 7137 #define MLXSW_REG_RICNT_ID 0x800B 7138 #define MLXSW_REG_RICNT_LEN 0x100 7139 7140 MLXSW_REG_DEFINE(ricnt, MLXSW_REG_RICNT_ID, MLXSW_REG_RICNT_LEN); 7141 7142 /* reg_ricnt_counter_index 7143 * Counter index 7144 * Access: RW 7145 */ 7146 MLXSW_ITEM32(reg, ricnt, counter_index, 0x04, 0, 24); 7147 7148 enum mlxsw_reg_ricnt_counter_set_type { 7149 /* No Count. */ 7150 MLXSW_REG_RICNT_COUNTER_SET_TYPE_NO_COUNT = 0x00, 7151 /* Basic. Used for router interfaces, counting the following: 7152 * - Error and Discard counters. 7153 * - Unicast, Multicast and Broadcast counters. Sharing the 7154 * same set of counters for the different type of traffic 7155 * (IPv4, IPv6 and mpls). 7156 */ 7157 MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC = 0x09, 7158 }; 7159 7160 /* reg_ricnt_counter_set_type 7161 * Counter Set Type for router interface counter 7162 * Access: RW 7163 */ 7164 MLXSW_ITEM32(reg, ricnt, counter_set_type, 0x04, 24, 8); 7165 7166 enum mlxsw_reg_ricnt_opcode { 7167 /* Nop. Supported only for read access*/ 7168 MLXSW_REG_RICNT_OPCODE_NOP = 0x00, 7169 /* Clear. Setting the clr bit will reset the counter value for 7170 * all counters of the specified Router Interface. 7171 */ 7172 MLXSW_REG_RICNT_OPCODE_CLEAR = 0x08, 7173 }; 7174 7175 /* reg_ricnt_opcode 7176 * Opcode 7177 * Access: RW 7178 */ 7179 MLXSW_ITEM32(reg, ricnt, op, 0x00, 28, 4); 7180 7181 /* reg_ricnt_good_unicast_packets 7182 * good unicast packets. 7183 * Access: RW 7184 */ 7185 MLXSW_ITEM64(reg, ricnt, good_unicast_packets, 0x08, 0, 64); 7186 7187 /* reg_ricnt_good_multicast_packets 7188 * good multicast packets. 7189 * Access: RW 7190 */ 7191 MLXSW_ITEM64(reg, ricnt, good_multicast_packets, 0x10, 0, 64); 7192 7193 /* reg_ricnt_good_broadcast_packets 7194 * good broadcast packets 7195 * Access: RW 7196 */ 7197 MLXSW_ITEM64(reg, ricnt, good_broadcast_packets, 0x18, 0, 64); 7198 7199 /* reg_ricnt_good_unicast_bytes 7200 * A count of L3 data and padding octets not including L2 headers 7201 * for good unicast frames. 7202 * Access: RW 7203 */ 7204 MLXSW_ITEM64(reg, ricnt, good_unicast_bytes, 0x20, 0, 64); 7205 7206 /* reg_ricnt_good_multicast_bytes 7207 * A count of L3 data and padding octets not including L2 headers 7208 * for good multicast frames. 7209 * Access: RW 7210 */ 7211 MLXSW_ITEM64(reg, ricnt, good_multicast_bytes, 0x28, 0, 64); 7212 7213 /* reg_ritr_good_broadcast_bytes 7214 * A count of L3 data and padding octets not including L2 headers 7215 * for good broadcast frames. 7216 * Access: RW 7217 */ 7218 MLXSW_ITEM64(reg, ricnt, good_broadcast_bytes, 0x30, 0, 64); 7219 7220 /* reg_ricnt_error_packets 7221 * A count of errored frames that do not pass the router checks. 7222 * Access: RW 7223 */ 7224 MLXSW_ITEM64(reg, ricnt, error_packets, 0x38, 0, 64); 7225 7226 /* reg_ricnt_discrad_packets 7227 * A count of non-errored frames that do not pass the router checks. 7228 * Access: RW 7229 */ 7230 MLXSW_ITEM64(reg, ricnt, discard_packets, 0x40, 0, 64); 7231 7232 /* reg_ricnt_error_bytes 7233 * A count of L3 data and padding octets not including L2 headers 7234 * for errored frames. 7235 * Access: RW 7236 */ 7237 MLXSW_ITEM64(reg, ricnt, error_bytes, 0x48, 0, 64); 7238 7239 /* reg_ricnt_discard_bytes 7240 * A count of L3 data and padding octets not including L2 headers 7241 * for non-errored frames that do not pass the router checks. 7242 * Access: RW 7243 */ 7244 MLXSW_ITEM64(reg, ricnt, discard_bytes, 0x50, 0, 64); 7245 7246 static inline void mlxsw_reg_ricnt_pack(char *payload, u32 index, 7247 enum mlxsw_reg_ricnt_opcode op) 7248 { 7249 MLXSW_REG_ZERO(ricnt, payload); 7250 mlxsw_reg_ricnt_op_set(payload, op); 7251 mlxsw_reg_ricnt_counter_index_set(payload, index); 7252 mlxsw_reg_ricnt_counter_set_type_set(payload, 7253 MLXSW_REG_RICNT_COUNTER_SET_TYPE_BASIC); 7254 } 7255 7256 /* RRCR - Router Rules Copy Register Layout 7257 * ---------------------------------------- 7258 * This register is used for moving and copying route entry rules. 7259 */ 7260 #define MLXSW_REG_RRCR_ID 0x800F 7261 #define MLXSW_REG_RRCR_LEN 0x24 7262 7263 MLXSW_REG_DEFINE(rrcr, MLXSW_REG_RRCR_ID, MLXSW_REG_RRCR_LEN); 7264 7265 enum mlxsw_reg_rrcr_op { 7266 /* Move rules */ 7267 MLXSW_REG_RRCR_OP_MOVE, 7268 /* Copy rules */ 7269 MLXSW_REG_RRCR_OP_COPY, 7270 }; 7271 7272 /* reg_rrcr_op 7273 * Access: WO 7274 */ 7275 MLXSW_ITEM32(reg, rrcr, op, 0x00, 28, 4); 7276 7277 /* reg_rrcr_offset 7278 * Offset within the region from which to copy/move. 7279 * Access: Index 7280 */ 7281 MLXSW_ITEM32(reg, rrcr, offset, 0x00, 0, 16); 7282 7283 /* reg_rrcr_size 7284 * The number of rules to copy/move. 7285 * Access: WO 7286 */ 7287 MLXSW_ITEM32(reg, rrcr, size, 0x04, 0, 16); 7288 7289 /* reg_rrcr_table_id 7290 * Identifier of the table on which to perform the operation. Encoding is the 7291 * same as in RTAR.key_type 7292 * Access: Index 7293 */ 7294 MLXSW_ITEM32(reg, rrcr, table_id, 0x10, 0, 4); 7295 7296 /* reg_rrcr_dest_offset 7297 * Offset within the region to which to copy/move 7298 * Access: Index 7299 */ 7300 MLXSW_ITEM32(reg, rrcr, dest_offset, 0x20, 0, 16); 7301 7302 static inline void mlxsw_reg_rrcr_pack(char *payload, enum mlxsw_reg_rrcr_op op, 7303 u16 offset, u16 size, 7304 enum mlxsw_reg_rtar_key_type table_id, 7305 u16 dest_offset) 7306 { 7307 MLXSW_REG_ZERO(rrcr, payload); 7308 mlxsw_reg_rrcr_op_set(payload, op); 7309 mlxsw_reg_rrcr_offset_set(payload, offset); 7310 mlxsw_reg_rrcr_size_set(payload, size); 7311 mlxsw_reg_rrcr_table_id_set(payload, table_id); 7312 mlxsw_reg_rrcr_dest_offset_set(payload, dest_offset); 7313 } 7314 7315 /* RALTA - Router Algorithmic LPM Tree Allocation Register 7316 * ------------------------------------------------------- 7317 * RALTA is used to allocate the LPM trees of the SHSPM method. 7318 */ 7319 #define MLXSW_REG_RALTA_ID 0x8010 7320 #define MLXSW_REG_RALTA_LEN 0x04 7321 7322 MLXSW_REG_DEFINE(ralta, MLXSW_REG_RALTA_ID, MLXSW_REG_RALTA_LEN); 7323 7324 /* reg_ralta_op 7325 * opcode (valid for Write, must be 0 on Read) 7326 * 0 - allocate a tree 7327 * 1 - deallocate a tree 7328 * Access: OP 7329 */ 7330 MLXSW_ITEM32(reg, ralta, op, 0x00, 28, 2); 7331 7332 enum mlxsw_reg_ralxx_protocol { 7333 MLXSW_REG_RALXX_PROTOCOL_IPV4, 7334 MLXSW_REG_RALXX_PROTOCOL_IPV6, 7335 }; 7336 7337 /* reg_ralta_protocol 7338 * Protocol. 7339 * Deallocation opcode: Reserved. 7340 * Access: RW 7341 */ 7342 MLXSW_ITEM32(reg, ralta, protocol, 0x00, 24, 4); 7343 7344 /* reg_ralta_tree_id 7345 * An identifier (numbered from 1..cap_shspm_max_trees-1) representing 7346 * the tree identifier (managed by software). 7347 * Note that tree_id 0 is allocated for a default-route tree. 7348 * Access: Index 7349 */ 7350 MLXSW_ITEM32(reg, ralta, tree_id, 0x00, 0, 8); 7351 7352 static inline void mlxsw_reg_ralta_pack(char *payload, bool alloc, 7353 enum mlxsw_reg_ralxx_protocol protocol, 7354 u8 tree_id) 7355 { 7356 MLXSW_REG_ZERO(ralta, payload); 7357 mlxsw_reg_ralta_op_set(payload, !alloc); 7358 mlxsw_reg_ralta_protocol_set(payload, protocol); 7359 mlxsw_reg_ralta_tree_id_set(payload, tree_id); 7360 } 7361 7362 /* RALST - Router Algorithmic LPM Structure Tree Register 7363 * ------------------------------------------------------ 7364 * RALST is used to set and query the structure of an LPM tree. 7365 * The structure of the tree must be sorted as a sorted binary tree, while 7366 * each node is a bin that is tagged as the length of the prefixes the lookup 7367 * will refer to. Therefore, bin X refers to a set of entries with prefixes 7368 * of X bits to match with the destination address. The bin 0 indicates 7369 * the default action, when there is no match of any prefix. 7370 */ 7371 #define MLXSW_REG_RALST_ID 0x8011 7372 #define MLXSW_REG_RALST_LEN 0x104 7373 7374 MLXSW_REG_DEFINE(ralst, MLXSW_REG_RALST_ID, MLXSW_REG_RALST_LEN); 7375 7376 /* reg_ralst_root_bin 7377 * The bin number of the root bin. 7378 * 0<root_bin=<(length of IP address) 7379 * For a default-route tree configure 0xff 7380 * Access: RW 7381 */ 7382 MLXSW_ITEM32(reg, ralst, root_bin, 0x00, 16, 8); 7383 7384 /* reg_ralst_tree_id 7385 * Tree identifier numbered from 1..(cap_shspm_max_trees-1). 7386 * Access: Index 7387 */ 7388 MLXSW_ITEM32(reg, ralst, tree_id, 0x00, 0, 8); 7389 7390 #define MLXSW_REG_RALST_BIN_NO_CHILD 0xff 7391 #define MLXSW_REG_RALST_BIN_OFFSET 0x04 7392 #define MLXSW_REG_RALST_BIN_COUNT 128 7393 7394 /* reg_ralst_left_child_bin 7395 * Holding the children of the bin according to the stored tree's structure. 7396 * For trees composed of less than 4 blocks, the bins in excess are reserved. 7397 * Note that tree_id 0 is allocated for a default-route tree, bins are 0xff 7398 * Access: RW 7399 */ 7400 MLXSW_ITEM16_INDEXED(reg, ralst, left_child_bin, 0x04, 8, 8, 0x02, 0x00, false); 7401 7402 /* reg_ralst_right_child_bin 7403 * Holding the children of the bin according to the stored tree's structure. 7404 * For trees composed of less than 4 blocks, the bins in excess are reserved. 7405 * Note that tree_id 0 is allocated for a default-route tree, bins are 0xff 7406 * Access: RW 7407 */ 7408 MLXSW_ITEM16_INDEXED(reg, ralst, right_child_bin, 0x04, 0, 8, 0x02, 0x00, 7409 false); 7410 7411 static inline void mlxsw_reg_ralst_pack(char *payload, u8 root_bin, u8 tree_id) 7412 { 7413 MLXSW_REG_ZERO(ralst, payload); 7414 7415 /* Initialize all bins to have no left or right child */ 7416 memset(payload + MLXSW_REG_RALST_BIN_OFFSET, 7417 MLXSW_REG_RALST_BIN_NO_CHILD, MLXSW_REG_RALST_BIN_COUNT * 2); 7418 7419 mlxsw_reg_ralst_root_bin_set(payload, root_bin); 7420 mlxsw_reg_ralst_tree_id_set(payload, tree_id); 7421 } 7422 7423 static inline void mlxsw_reg_ralst_bin_pack(char *payload, u8 bin_number, 7424 u8 left_child_bin, 7425 u8 right_child_bin) 7426 { 7427 int bin_index = bin_number - 1; 7428 7429 mlxsw_reg_ralst_left_child_bin_set(payload, bin_index, left_child_bin); 7430 mlxsw_reg_ralst_right_child_bin_set(payload, bin_index, 7431 right_child_bin); 7432 } 7433 7434 /* RALTB - Router Algorithmic LPM Tree Binding Register 7435 * ---------------------------------------------------- 7436 * RALTB is used to bind virtual router and protocol to an allocated LPM tree. 7437 */ 7438 #define MLXSW_REG_RALTB_ID 0x8012 7439 #define MLXSW_REG_RALTB_LEN 0x04 7440 7441 MLXSW_REG_DEFINE(raltb, MLXSW_REG_RALTB_ID, MLXSW_REG_RALTB_LEN); 7442 7443 /* reg_raltb_virtual_router 7444 * Virtual Router ID 7445 * Range is 0..cap_max_virtual_routers-1 7446 * Access: Index 7447 */ 7448 MLXSW_ITEM32(reg, raltb, virtual_router, 0x00, 16, 16); 7449 7450 /* reg_raltb_protocol 7451 * Protocol. 7452 * Access: Index 7453 */ 7454 MLXSW_ITEM32(reg, raltb, protocol, 0x00, 12, 4); 7455 7456 /* reg_raltb_tree_id 7457 * Tree to be used for the {virtual_router, protocol} 7458 * Tree identifier numbered from 1..(cap_shspm_max_trees-1). 7459 * By default, all Unicast IPv4 and IPv6 are bound to tree_id 0. 7460 * Access: RW 7461 */ 7462 MLXSW_ITEM32(reg, raltb, tree_id, 0x00, 0, 8); 7463 7464 static inline void mlxsw_reg_raltb_pack(char *payload, u16 virtual_router, 7465 enum mlxsw_reg_ralxx_protocol protocol, 7466 u8 tree_id) 7467 { 7468 MLXSW_REG_ZERO(raltb, payload); 7469 mlxsw_reg_raltb_virtual_router_set(payload, virtual_router); 7470 mlxsw_reg_raltb_protocol_set(payload, protocol); 7471 mlxsw_reg_raltb_tree_id_set(payload, tree_id); 7472 } 7473 7474 /* RALUE - Router Algorithmic LPM Unicast Entry Register 7475 * ----------------------------------------------------- 7476 * RALUE is used to configure and query LPM entries that serve 7477 * the Unicast protocols. 7478 */ 7479 #define MLXSW_REG_RALUE_ID 0x8013 7480 #define MLXSW_REG_RALUE_LEN 0x38 7481 7482 MLXSW_REG_DEFINE(ralue, MLXSW_REG_RALUE_ID, MLXSW_REG_RALUE_LEN); 7483 7484 /* reg_ralue_protocol 7485 * Protocol. 7486 * Access: Index 7487 */ 7488 MLXSW_ITEM32(reg, ralue, protocol, 0x00, 24, 4); 7489 7490 enum mlxsw_reg_ralue_op { 7491 /* Read operation. If entry doesn't exist, the operation fails. */ 7492 MLXSW_REG_RALUE_OP_QUERY_READ = 0, 7493 /* Clear on read operation. Used to read entry and 7494 * clear Activity bit. 7495 */ 7496 MLXSW_REG_RALUE_OP_QUERY_CLEAR = 1, 7497 /* Write operation. Used to write a new entry to the table. All RW 7498 * fields are written for new entry. Activity bit is set 7499 * for new entries. 7500 */ 7501 MLXSW_REG_RALUE_OP_WRITE_WRITE = 0, 7502 /* Update operation. Used to update an existing route entry and 7503 * only update the RW fields that are detailed in the field 7504 * op_u_mask. If entry doesn't exist, the operation fails. 7505 */ 7506 MLXSW_REG_RALUE_OP_WRITE_UPDATE = 1, 7507 /* Clear activity. The Activity bit (the field a) is cleared 7508 * for the entry. 7509 */ 7510 MLXSW_REG_RALUE_OP_WRITE_CLEAR = 2, 7511 /* Delete operation. Used to delete an existing entry. If entry 7512 * doesn't exist, the operation fails. 7513 */ 7514 MLXSW_REG_RALUE_OP_WRITE_DELETE = 3, 7515 }; 7516 7517 /* reg_ralue_op 7518 * Operation. 7519 * Access: OP 7520 */ 7521 MLXSW_ITEM32(reg, ralue, op, 0x00, 20, 3); 7522 7523 /* reg_ralue_a 7524 * Activity. Set for new entries. Set if a packet lookup has hit on the 7525 * specific entry, only if the entry is a route. To clear the a bit, use 7526 * "clear activity" op. 7527 * Enabled by activity_dis in RGCR 7528 * Access: RO 7529 */ 7530 MLXSW_ITEM32(reg, ralue, a, 0x00, 16, 1); 7531 7532 /* reg_ralue_virtual_router 7533 * Virtual Router ID 7534 * Range is 0..cap_max_virtual_routers-1 7535 * Access: Index 7536 */ 7537 MLXSW_ITEM32(reg, ralue, virtual_router, 0x04, 16, 16); 7538 7539 #define MLXSW_REG_RALUE_OP_U_MASK_ENTRY_TYPE BIT(0) 7540 #define MLXSW_REG_RALUE_OP_U_MASK_BMP_LEN BIT(1) 7541 #define MLXSW_REG_RALUE_OP_U_MASK_ACTION BIT(2) 7542 7543 /* reg_ralue_op_u_mask 7544 * opcode update mask. 7545 * On read operation, this field is reserved. 7546 * This field is valid for update opcode, otherwise - reserved. 7547 * This field is a bitmask of the fields that should be updated. 7548 * Access: WO 7549 */ 7550 MLXSW_ITEM32(reg, ralue, op_u_mask, 0x04, 8, 3); 7551 7552 /* reg_ralue_prefix_len 7553 * Number of bits in the prefix of the LPM route. 7554 * Note that for IPv6 prefixes, if prefix_len>64 the entry consumes 7555 * two entries in the physical HW table. 7556 * Access: Index 7557 */ 7558 MLXSW_ITEM32(reg, ralue, prefix_len, 0x08, 0, 8); 7559 7560 /* reg_ralue_dip* 7561 * The prefix of the route or of the marker that the object of the LPM 7562 * is compared with. The most significant bits of the dip are the prefix. 7563 * The least significant bits must be '0' if the prefix_len is smaller 7564 * than 128 for IPv6 or smaller than 32 for IPv4. 7565 * IPv4 address uses bits dip[31:0] and bits dip[127:32] are reserved. 7566 * Access: Index 7567 */ 7568 MLXSW_ITEM32(reg, ralue, dip4, 0x18, 0, 32); 7569 MLXSW_ITEM_BUF(reg, ralue, dip6, 0x0C, 16); 7570 7571 enum mlxsw_reg_ralue_entry_type { 7572 MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_ENTRY = 1, 7573 MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY = 2, 7574 MLXSW_REG_RALUE_ENTRY_TYPE_MARKER_AND_ROUTE_ENTRY = 3, 7575 }; 7576 7577 /* reg_ralue_entry_type 7578 * Entry type. 7579 * Note - for Marker entries, the action_type and action fields are reserved. 7580 * Access: RW 7581 */ 7582 MLXSW_ITEM32(reg, ralue, entry_type, 0x1C, 30, 2); 7583 7584 /* reg_ralue_bmp_len 7585 * The best match prefix length in the case that there is no match for 7586 * longer prefixes. 7587 * If (entry_type != MARKER_ENTRY), bmp_len must be equal to prefix_len 7588 * Note for any update operation with entry_type modification this 7589 * field must be set. 7590 * Access: RW 7591 */ 7592 MLXSW_ITEM32(reg, ralue, bmp_len, 0x1C, 16, 8); 7593 7594 enum mlxsw_reg_ralue_action_type { 7595 MLXSW_REG_RALUE_ACTION_TYPE_REMOTE, 7596 MLXSW_REG_RALUE_ACTION_TYPE_LOCAL, 7597 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME, 7598 }; 7599 7600 /* reg_ralue_action_type 7601 * Action Type 7602 * Indicates how the IP address is connected. 7603 * It can be connected to a local subnet through local_erif or can be 7604 * on a remote subnet connected through a next-hop router, 7605 * or transmitted to the CPU. 7606 * Reserved when entry_type = MARKER_ENTRY 7607 * Access: RW 7608 */ 7609 MLXSW_ITEM32(reg, ralue, action_type, 0x1C, 0, 2); 7610 7611 enum mlxsw_reg_ralue_trap_action { 7612 MLXSW_REG_RALUE_TRAP_ACTION_NOP, 7613 MLXSW_REG_RALUE_TRAP_ACTION_TRAP, 7614 MLXSW_REG_RALUE_TRAP_ACTION_MIRROR_TO_CPU, 7615 MLXSW_REG_RALUE_TRAP_ACTION_MIRROR, 7616 MLXSW_REG_RALUE_TRAP_ACTION_DISCARD_ERROR, 7617 }; 7618 7619 /* reg_ralue_trap_action 7620 * Trap action. 7621 * For IP2ME action, only NOP and MIRROR are possible. 7622 * Access: RW 7623 */ 7624 MLXSW_ITEM32(reg, ralue, trap_action, 0x20, 28, 4); 7625 7626 /* reg_ralue_trap_id 7627 * Trap ID to be reported to CPU. 7628 * Trap ID is RTR_INGRESS0 or RTR_INGRESS1. 7629 * For trap_action of NOP, MIRROR and DISCARD_ERROR, trap_id is reserved. 7630 * Access: RW 7631 */ 7632 MLXSW_ITEM32(reg, ralue, trap_id, 0x20, 0, 9); 7633 7634 /* reg_ralue_adjacency_index 7635 * Points to the first entry of the group-based ECMP. 7636 * Only relevant in case of REMOTE action. 7637 * Access: RW 7638 */ 7639 MLXSW_ITEM32(reg, ralue, adjacency_index, 0x24, 0, 24); 7640 7641 /* reg_ralue_ecmp_size 7642 * Amount of sequential entries starting 7643 * from the adjacency_index (the number of ECMPs). 7644 * The valid range is 1-64, 512, 1024, 2048 and 4096. 7645 * Reserved when trap_action is TRAP or DISCARD_ERROR. 7646 * Only relevant in case of REMOTE action. 7647 * Access: RW 7648 */ 7649 MLXSW_ITEM32(reg, ralue, ecmp_size, 0x28, 0, 13); 7650 7651 /* reg_ralue_local_erif 7652 * Egress Router Interface. 7653 * Only relevant in case of LOCAL action. 7654 * Access: RW 7655 */ 7656 MLXSW_ITEM32(reg, ralue, local_erif, 0x24, 0, 16); 7657 7658 /* reg_ralue_ip2me_v 7659 * Valid bit for the tunnel_ptr field. 7660 * If valid = 0 then trap to CPU as IP2ME trap ID. 7661 * If valid = 1 and the packet format allows NVE or IPinIP tunnel 7662 * decapsulation then tunnel decapsulation is done. 7663 * If valid = 1 and packet format does not allow NVE or IPinIP tunnel 7664 * decapsulation then trap as IP2ME trap ID. 7665 * Only relevant in case of IP2ME action. 7666 * Access: RW 7667 */ 7668 MLXSW_ITEM32(reg, ralue, ip2me_v, 0x24, 31, 1); 7669 7670 /* reg_ralue_ip2me_tunnel_ptr 7671 * Tunnel Pointer for NVE or IPinIP tunnel decapsulation. 7672 * For Spectrum, pointer to KVD Linear. 7673 * Only relevant in case of IP2ME action. 7674 * Access: RW 7675 */ 7676 MLXSW_ITEM32(reg, ralue, ip2me_tunnel_ptr, 0x24, 0, 24); 7677 7678 static inline void mlxsw_reg_ralue_pack(char *payload, 7679 enum mlxsw_reg_ralxx_protocol protocol, 7680 enum mlxsw_reg_ralue_op op, 7681 u16 virtual_router, u8 prefix_len) 7682 { 7683 MLXSW_REG_ZERO(ralue, payload); 7684 mlxsw_reg_ralue_protocol_set(payload, protocol); 7685 mlxsw_reg_ralue_op_set(payload, op); 7686 mlxsw_reg_ralue_virtual_router_set(payload, virtual_router); 7687 mlxsw_reg_ralue_prefix_len_set(payload, prefix_len); 7688 mlxsw_reg_ralue_entry_type_set(payload, 7689 MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY); 7690 mlxsw_reg_ralue_bmp_len_set(payload, prefix_len); 7691 } 7692 7693 static inline void mlxsw_reg_ralue_pack4(char *payload, 7694 enum mlxsw_reg_ralxx_protocol protocol, 7695 enum mlxsw_reg_ralue_op op, 7696 u16 virtual_router, u8 prefix_len, 7697 u32 *dip) 7698 { 7699 mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len); 7700 if (dip) 7701 mlxsw_reg_ralue_dip4_set(payload, *dip); 7702 } 7703 7704 static inline void mlxsw_reg_ralue_pack6(char *payload, 7705 enum mlxsw_reg_ralxx_protocol protocol, 7706 enum mlxsw_reg_ralue_op op, 7707 u16 virtual_router, u8 prefix_len, 7708 const void *dip) 7709 { 7710 mlxsw_reg_ralue_pack(payload, protocol, op, virtual_router, prefix_len); 7711 if (dip) 7712 mlxsw_reg_ralue_dip6_memcpy_to(payload, dip); 7713 } 7714 7715 static inline void 7716 mlxsw_reg_ralue_act_remote_pack(char *payload, 7717 enum mlxsw_reg_ralue_trap_action trap_action, 7718 u16 trap_id, u32 adjacency_index, u16 ecmp_size) 7719 { 7720 mlxsw_reg_ralue_action_type_set(payload, 7721 MLXSW_REG_RALUE_ACTION_TYPE_REMOTE); 7722 mlxsw_reg_ralue_trap_action_set(payload, trap_action); 7723 mlxsw_reg_ralue_trap_id_set(payload, trap_id); 7724 mlxsw_reg_ralue_adjacency_index_set(payload, adjacency_index); 7725 mlxsw_reg_ralue_ecmp_size_set(payload, ecmp_size); 7726 } 7727 7728 static inline void 7729 mlxsw_reg_ralue_act_local_pack(char *payload, 7730 enum mlxsw_reg_ralue_trap_action trap_action, 7731 u16 trap_id, u16 local_erif) 7732 { 7733 mlxsw_reg_ralue_action_type_set(payload, 7734 MLXSW_REG_RALUE_ACTION_TYPE_LOCAL); 7735 mlxsw_reg_ralue_trap_action_set(payload, trap_action); 7736 mlxsw_reg_ralue_trap_id_set(payload, trap_id); 7737 mlxsw_reg_ralue_local_erif_set(payload, local_erif); 7738 } 7739 7740 static inline void 7741 mlxsw_reg_ralue_act_ip2me_pack(char *payload) 7742 { 7743 mlxsw_reg_ralue_action_type_set(payload, 7744 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME); 7745 } 7746 7747 static inline void 7748 mlxsw_reg_ralue_act_ip2me_tun_pack(char *payload, u32 tunnel_ptr) 7749 { 7750 mlxsw_reg_ralue_action_type_set(payload, 7751 MLXSW_REG_RALUE_ACTION_TYPE_IP2ME); 7752 mlxsw_reg_ralue_ip2me_v_set(payload, 1); 7753 mlxsw_reg_ralue_ip2me_tunnel_ptr_set(payload, tunnel_ptr); 7754 } 7755 7756 /* RAUHT - Router Algorithmic LPM Unicast Host Table Register 7757 * ---------------------------------------------------------- 7758 * The RAUHT register is used to configure and query the Unicast Host table in 7759 * devices that implement the Algorithmic LPM. 7760 */ 7761 #define MLXSW_REG_RAUHT_ID 0x8014 7762 #define MLXSW_REG_RAUHT_LEN 0x74 7763 7764 MLXSW_REG_DEFINE(rauht, MLXSW_REG_RAUHT_ID, MLXSW_REG_RAUHT_LEN); 7765 7766 enum mlxsw_reg_rauht_type { 7767 MLXSW_REG_RAUHT_TYPE_IPV4, 7768 MLXSW_REG_RAUHT_TYPE_IPV6, 7769 }; 7770 7771 /* reg_rauht_type 7772 * Access: Index 7773 */ 7774 MLXSW_ITEM32(reg, rauht, type, 0x00, 24, 2); 7775 7776 enum mlxsw_reg_rauht_op { 7777 MLXSW_REG_RAUHT_OP_QUERY_READ = 0, 7778 /* Read operation */ 7779 MLXSW_REG_RAUHT_OP_QUERY_CLEAR_ON_READ = 1, 7780 /* Clear on read operation. Used to read entry and clear 7781 * activity bit. 7782 */ 7783 MLXSW_REG_RAUHT_OP_WRITE_ADD = 0, 7784 /* Add. Used to write a new entry to the table. All R/W fields are 7785 * relevant for new entry. Activity bit is set for new entries. 7786 */ 7787 MLXSW_REG_RAUHT_OP_WRITE_UPDATE = 1, 7788 /* Update action. Used to update an existing route entry and 7789 * only update the following fields: 7790 * trap_action, trap_id, mac, counter_set_type, counter_index 7791 */ 7792 MLXSW_REG_RAUHT_OP_WRITE_CLEAR_ACTIVITY = 2, 7793 /* Clear activity. A bit is cleared for the entry. */ 7794 MLXSW_REG_RAUHT_OP_WRITE_DELETE = 3, 7795 /* Delete entry */ 7796 MLXSW_REG_RAUHT_OP_WRITE_DELETE_ALL = 4, 7797 /* Delete all host entries on a RIF. In this command, dip 7798 * field is reserved. 7799 */ 7800 }; 7801 7802 /* reg_rauht_op 7803 * Access: OP 7804 */ 7805 MLXSW_ITEM32(reg, rauht, op, 0x00, 20, 3); 7806 7807 /* reg_rauht_a 7808 * Activity. Set for new entries. Set if a packet lookup has hit on 7809 * the specific entry. 7810 * To clear the a bit, use "clear activity" op. 7811 * Enabled by activity_dis in RGCR 7812 * Access: RO 7813 */ 7814 MLXSW_ITEM32(reg, rauht, a, 0x00, 16, 1); 7815 7816 /* reg_rauht_rif 7817 * Router Interface 7818 * Access: Index 7819 */ 7820 MLXSW_ITEM32(reg, rauht, rif, 0x00, 0, 16); 7821 7822 /* reg_rauht_dip* 7823 * Destination address. 7824 * Access: Index 7825 */ 7826 MLXSW_ITEM32(reg, rauht, dip4, 0x1C, 0x0, 32); 7827 MLXSW_ITEM_BUF(reg, rauht, dip6, 0x10, 16); 7828 7829 enum mlxsw_reg_rauht_trap_action { 7830 MLXSW_REG_RAUHT_TRAP_ACTION_NOP, 7831 MLXSW_REG_RAUHT_TRAP_ACTION_TRAP, 7832 MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR_TO_CPU, 7833 MLXSW_REG_RAUHT_TRAP_ACTION_MIRROR, 7834 MLXSW_REG_RAUHT_TRAP_ACTION_DISCARD_ERRORS, 7835 }; 7836 7837 /* reg_rauht_trap_action 7838 * Access: RW 7839 */ 7840 MLXSW_ITEM32(reg, rauht, trap_action, 0x60, 28, 4); 7841 7842 enum mlxsw_reg_rauht_trap_id { 7843 MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS0, 7844 MLXSW_REG_RAUHT_TRAP_ID_RTR_EGRESS1, 7845 }; 7846 7847 /* reg_rauht_trap_id 7848 * Trap ID to be reported to CPU. 7849 * Trap-ID is RTR_EGRESS0 or RTR_EGRESS1. 7850 * For trap_action of NOP, MIRROR and DISCARD_ERROR, 7851 * trap_id is reserved. 7852 * Access: RW 7853 */ 7854 MLXSW_ITEM32(reg, rauht, trap_id, 0x60, 0, 9); 7855 7856 /* reg_rauht_counter_set_type 7857 * Counter set type for flow counters 7858 * Access: RW 7859 */ 7860 MLXSW_ITEM32(reg, rauht, counter_set_type, 0x68, 24, 8); 7861 7862 /* reg_rauht_counter_index 7863 * Counter index for flow counters 7864 * Access: RW 7865 */ 7866 MLXSW_ITEM32(reg, rauht, counter_index, 0x68, 0, 24); 7867 7868 /* reg_rauht_mac 7869 * MAC address. 7870 * Access: RW 7871 */ 7872 MLXSW_ITEM_BUF(reg, rauht, mac, 0x6E, 6); 7873 7874 static inline void mlxsw_reg_rauht_pack(char *payload, 7875 enum mlxsw_reg_rauht_op op, u16 rif, 7876 const char *mac) 7877 { 7878 MLXSW_REG_ZERO(rauht, payload); 7879 mlxsw_reg_rauht_op_set(payload, op); 7880 mlxsw_reg_rauht_rif_set(payload, rif); 7881 mlxsw_reg_rauht_mac_memcpy_to(payload, mac); 7882 } 7883 7884 static inline void mlxsw_reg_rauht_pack4(char *payload, 7885 enum mlxsw_reg_rauht_op op, u16 rif, 7886 const char *mac, u32 dip) 7887 { 7888 mlxsw_reg_rauht_pack(payload, op, rif, mac); 7889 mlxsw_reg_rauht_dip4_set(payload, dip); 7890 } 7891 7892 static inline void mlxsw_reg_rauht_pack6(char *payload, 7893 enum mlxsw_reg_rauht_op op, u16 rif, 7894 const char *mac, const char *dip) 7895 { 7896 mlxsw_reg_rauht_pack(payload, op, rif, mac); 7897 mlxsw_reg_rauht_type_set(payload, MLXSW_REG_RAUHT_TYPE_IPV6); 7898 mlxsw_reg_rauht_dip6_memcpy_to(payload, dip); 7899 } 7900 7901 static inline void mlxsw_reg_rauht_pack_counter(char *payload, 7902 u64 counter_index) 7903 { 7904 mlxsw_reg_rauht_counter_index_set(payload, counter_index); 7905 mlxsw_reg_rauht_counter_set_type_set(payload, 7906 MLXSW_REG_FLOW_COUNTER_SET_TYPE_PACKETS_BYTES); 7907 } 7908 7909 /* RALEU - Router Algorithmic LPM ECMP Update Register 7910 * --------------------------------------------------- 7911 * The register enables updating the ECMP section in the action for multiple 7912 * LPM Unicast entries in a single operation. The update is executed to 7913 * all entries of a {virtual router, protocol} tuple using the same ECMP group. 7914 */ 7915 #define MLXSW_REG_RALEU_ID 0x8015 7916 #define MLXSW_REG_RALEU_LEN 0x28 7917 7918 MLXSW_REG_DEFINE(raleu, MLXSW_REG_RALEU_ID, MLXSW_REG_RALEU_LEN); 7919 7920 /* reg_raleu_protocol 7921 * Protocol. 7922 * Access: Index 7923 */ 7924 MLXSW_ITEM32(reg, raleu, protocol, 0x00, 24, 4); 7925 7926 /* reg_raleu_virtual_router 7927 * Virtual Router ID 7928 * Range is 0..cap_max_virtual_routers-1 7929 * Access: Index 7930 */ 7931 MLXSW_ITEM32(reg, raleu, virtual_router, 0x00, 0, 16); 7932 7933 /* reg_raleu_adjacency_index 7934 * Adjacency Index used for matching on the existing entries. 7935 * Access: Index 7936 */ 7937 MLXSW_ITEM32(reg, raleu, adjacency_index, 0x10, 0, 24); 7938 7939 /* reg_raleu_ecmp_size 7940 * ECMP Size used for matching on the existing entries. 7941 * Access: Index 7942 */ 7943 MLXSW_ITEM32(reg, raleu, ecmp_size, 0x14, 0, 13); 7944 7945 /* reg_raleu_new_adjacency_index 7946 * New Adjacency Index. 7947 * Access: WO 7948 */ 7949 MLXSW_ITEM32(reg, raleu, new_adjacency_index, 0x20, 0, 24); 7950 7951 /* reg_raleu_new_ecmp_size 7952 * New ECMP Size. 7953 * Access: WO 7954 */ 7955 MLXSW_ITEM32(reg, raleu, new_ecmp_size, 0x24, 0, 13); 7956 7957 static inline void mlxsw_reg_raleu_pack(char *payload, 7958 enum mlxsw_reg_ralxx_protocol protocol, 7959 u16 virtual_router, 7960 u32 adjacency_index, u16 ecmp_size, 7961 u32 new_adjacency_index, 7962 u16 new_ecmp_size) 7963 { 7964 MLXSW_REG_ZERO(raleu, payload); 7965 mlxsw_reg_raleu_protocol_set(payload, protocol); 7966 mlxsw_reg_raleu_virtual_router_set(payload, virtual_router); 7967 mlxsw_reg_raleu_adjacency_index_set(payload, adjacency_index); 7968 mlxsw_reg_raleu_ecmp_size_set(payload, ecmp_size); 7969 mlxsw_reg_raleu_new_adjacency_index_set(payload, new_adjacency_index); 7970 mlxsw_reg_raleu_new_ecmp_size_set(payload, new_ecmp_size); 7971 } 7972 7973 /* RAUHTD - Router Algorithmic LPM Unicast Host Table Dump Register 7974 * ---------------------------------------------------------------- 7975 * The RAUHTD register allows dumping entries from the Router Unicast Host 7976 * Table. For a given session an entry is dumped no more than one time. The 7977 * first RAUHTD access after reset is a new session. A session ends when the 7978 * num_rec response is smaller than num_rec request or for IPv4 when the 7979 * num_entries is smaller than 4. The clear activity affect the current session 7980 * or the last session if a new session has not started. 7981 */ 7982 #define MLXSW_REG_RAUHTD_ID 0x8018 7983 #define MLXSW_REG_RAUHTD_BASE_LEN 0x20 7984 #define MLXSW_REG_RAUHTD_REC_LEN 0x20 7985 #define MLXSW_REG_RAUHTD_REC_MAX_NUM 32 7986 #define MLXSW_REG_RAUHTD_LEN (MLXSW_REG_RAUHTD_BASE_LEN + \ 7987 MLXSW_REG_RAUHTD_REC_MAX_NUM * MLXSW_REG_RAUHTD_REC_LEN) 7988 #define MLXSW_REG_RAUHTD_IPV4_ENT_PER_REC 4 7989 7990 MLXSW_REG_DEFINE(rauhtd, MLXSW_REG_RAUHTD_ID, MLXSW_REG_RAUHTD_LEN); 7991 7992 #define MLXSW_REG_RAUHTD_FILTER_A BIT(0) 7993 #define MLXSW_REG_RAUHTD_FILTER_RIF BIT(3) 7994 7995 /* reg_rauhtd_filter_fields 7996 * if a bit is '0' then the relevant field is ignored and dump is done 7997 * regardless of the field value 7998 * Bit0 - filter by activity: entry_a 7999 * Bit3 - filter by entry rip: entry_rif 8000 * Access: Index 8001 */ 8002 MLXSW_ITEM32(reg, rauhtd, filter_fields, 0x00, 0, 8); 8003 8004 enum mlxsw_reg_rauhtd_op { 8005 MLXSW_REG_RAUHTD_OP_DUMP, 8006 MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR, 8007 }; 8008 8009 /* reg_rauhtd_op 8010 * Access: OP 8011 */ 8012 MLXSW_ITEM32(reg, rauhtd, op, 0x04, 24, 2); 8013 8014 /* reg_rauhtd_num_rec 8015 * At request: number of records requested 8016 * At response: number of records dumped 8017 * For IPv4, each record has 4 entries at request and up to 4 entries 8018 * at response 8019 * Range is 0..MLXSW_REG_RAUHTD_REC_MAX_NUM 8020 * Access: Index 8021 */ 8022 MLXSW_ITEM32(reg, rauhtd, num_rec, 0x04, 0, 8); 8023 8024 /* reg_rauhtd_entry_a 8025 * Dump only if activity has value of entry_a 8026 * Reserved if filter_fields bit0 is '0' 8027 * Access: Index 8028 */ 8029 MLXSW_ITEM32(reg, rauhtd, entry_a, 0x08, 16, 1); 8030 8031 enum mlxsw_reg_rauhtd_type { 8032 MLXSW_REG_RAUHTD_TYPE_IPV4, 8033 MLXSW_REG_RAUHTD_TYPE_IPV6, 8034 }; 8035 8036 /* reg_rauhtd_type 8037 * Dump only if record type is: 8038 * 0 - IPv4 8039 * 1 - IPv6 8040 * Access: Index 8041 */ 8042 MLXSW_ITEM32(reg, rauhtd, type, 0x08, 0, 4); 8043 8044 /* reg_rauhtd_entry_rif 8045 * Dump only if RIF has value of entry_rif 8046 * Reserved if filter_fields bit3 is '0' 8047 * Access: Index 8048 */ 8049 MLXSW_ITEM32(reg, rauhtd, entry_rif, 0x0C, 0, 16); 8050 8051 static inline void mlxsw_reg_rauhtd_pack(char *payload, 8052 enum mlxsw_reg_rauhtd_type type) 8053 { 8054 MLXSW_REG_ZERO(rauhtd, payload); 8055 mlxsw_reg_rauhtd_filter_fields_set(payload, MLXSW_REG_RAUHTD_FILTER_A); 8056 mlxsw_reg_rauhtd_op_set(payload, MLXSW_REG_RAUHTD_OP_DUMP_AND_CLEAR); 8057 mlxsw_reg_rauhtd_num_rec_set(payload, MLXSW_REG_RAUHTD_REC_MAX_NUM); 8058 mlxsw_reg_rauhtd_entry_a_set(payload, 1); 8059 mlxsw_reg_rauhtd_type_set(payload, type); 8060 } 8061 8062 /* reg_rauhtd_ipv4_rec_num_entries 8063 * Number of valid entries in this record: 8064 * 0 - 1 valid entry 8065 * 1 - 2 valid entries 8066 * 2 - 3 valid entries 8067 * 3 - 4 valid entries 8068 * Access: RO 8069 */ 8070 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_rec_num_entries, 8071 MLXSW_REG_RAUHTD_BASE_LEN, 28, 2, 8072 MLXSW_REG_RAUHTD_REC_LEN, 0x00, false); 8073 8074 /* reg_rauhtd_rec_type 8075 * Record type. 8076 * 0 - IPv4 8077 * 1 - IPv6 8078 * Access: RO 8079 */ 8080 MLXSW_ITEM32_INDEXED(reg, rauhtd, rec_type, MLXSW_REG_RAUHTD_BASE_LEN, 24, 2, 8081 MLXSW_REG_RAUHTD_REC_LEN, 0x00, false); 8082 8083 #define MLXSW_REG_RAUHTD_IPV4_ENT_LEN 0x8 8084 8085 /* reg_rauhtd_ipv4_ent_a 8086 * Activity. Set for new entries. Set if a packet lookup has hit on the 8087 * specific entry. 8088 * Access: RO 8089 */ 8090 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1, 8091 MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false); 8092 8093 /* reg_rauhtd_ipv4_ent_rif 8094 * Router interface. 8095 * Access: RO 8096 */ 8097 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0, 8098 16, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x00, false); 8099 8100 /* reg_rauhtd_ipv4_ent_dip 8101 * Destination IPv4 address. 8102 * Access: RO 8103 */ 8104 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv4_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN, 0, 8105 32, MLXSW_REG_RAUHTD_IPV4_ENT_LEN, 0x04, false); 8106 8107 #define MLXSW_REG_RAUHTD_IPV6_ENT_LEN 0x20 8108 8109 /* reg_rauhtd_ipv6_ent_a 8110 * Activity. Set for new entries. Set if a packet lookup has hit on the 8111 * specific entry. 8112 * Access: RO 8113 */ 8114 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_a, MLXSW_REG_RAUHTD_BASE_LEN, 16, 1, 8115 MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false); 8116 8117 /* reg_rauhtd_ipv6_ent_rif 8118 * Router interface. 8119 * Access: RO 8120 */ 8121 MLXSW_ITEM32_INDEXED(reg, rauhtd, ipv6_ent_rif, MLXSW_REG_RAUHTD_BASE_LEN, 0, 8122 16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x00, false); 8123 8124 /* reg_rauhtd_ipv6_ent_dip 8125 * Destination IPv6 address. 8126 * Access: RO 8127 */ 8128 MLXSW_ITEM_BUF_INDEXED(reg, rauhtd, ipv6_ent_dip, MLXSW_REG_RAUHTD_BASE_LEN, 8129 16, MLXSW_REG_RAUHTD_IPV6_ENT_LEN, 0x10); 8130 8131 static inline void mlxsw_reg_rauhtd_ent_ipv4_unpack(char *payload, 8132 int ent_index, u16 *p_rif, 8133 u32 *p_dip) 8134 { 8135 *p_rif = mlxsw_reg_rauhtd_ipv4_ent_rif_get(payload, ent_index); 8136 *p_dip = mlxsw_reg_rauhtd_ipv4_ent_dip_get(payload, ent_index); 8137 } 8138 8139 static inline void mlxsw_reg_rauhtd_ent_ipv6_unpack(char *payload, 8140 int rec_index, u16 *p_rif, 8141 char *p_dip) 8142 { 8143 *p_rif = mlxsw_reg_rauhtd_ipv6_ent_rif_get(payload, rec_index); 8144 mlxsw_reg_rauhtd_ipv6_ent_dip_memcpy_from(payload, rec_index, p_dip); 8145 } 8146 8147 /* RTDP - Routing Tunnel Decap Properties Register 8148 * ----------------------------------------------- 8149 * The RTDP register is used for configuring the tunnel decap properties of NVE 8150 * and IPinIP. 8151 */ 8152 #define MLXSW_REG_RTDP_ID 0x8020 8153 #define MLXSW_REG_RTDP_LEN 0x44 8154 8155 MLXSW_REG_DEFINE(rtdp, MLXSW_REG_RTDP_ID, MLXSW_REG_RTDP_LEN); 8156 8157 enum mlxsw_reg_rtdp_type { 8158 MLXSW_REG_RTDP_TYPE_NVE, 8159 MLXSW_REG_RTDP_TYPE_IPIP, 8160 }; 8161 8162 /* reg_rtdp_type 8163 * Type of the RTDP entry as per enum mlxsw_reg_rtdp_type. 8164 * Access: RW 8165 */ 8166 MLXSW_ITEM32(reg, rtdp, type, 0x00, 28, 4); 8167 8168 /* reg_rtdp_tunnel_index 8169 * Index to the Decap entry. 8170 * For Spectrum, Index to KVD Linear. 8171 * Access: Index 8172 */ 8173 MLXSW_ITEM32(reg, rtdp, tunnel_index, 0x00, 0, 24); 8174 8175 /* reg_rtdp_egress_router_interface 8176 * Underlay egress router interface. 8177 * Valid range is from 0 to cap_max_router_interfaces - 1 8178 * Access: RW 8179 */ 8180 MLXSW_ITEM32(reg, rtdp, egress_router_interface, 0x40, 0, 16); 8181 8182 /* IPinIP */ 8183 8184 /* reg_rtdp_ipip_irif 8185 * Ingress Router Interface for the overlay router 8186 * Access: RW 8187 */ 8188 MLXSW_ITEM32(reg, rtdp, ipip_irif, 0x04, 16, 16); 8189 8190 enum mlxsw_reg_rtdp_ipip_sip_check { 8191 /* No sip checks. */ 8192 MLXSW_REG_RTDP_IPIP_SIP_CHECK_NO, 8193 /* Filter packet if underlay is not IPv4 or if underlay SIP does not 8194 * equal ipv4_usip. 8195 */ 8196 MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV4, 8197 /* Filter packet if underlay is not IPv6 or if underlay SIP does not 8198 * equal ipv6_usip. 8199 */ 8200 MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6 = 3, 8201 }; 8202 8203 /* reg_rtdp_ipip_sip_check 8204 * SIP check to perform. If decapsulation failed due to these configurations 8205 * then trap_id is IPIP_DECAP_ERROR. 8206 * Access: RW 8207 */ 8208 MLXSW_ITEM32(reg, rtdp, ipip_sip_check, 0x04, 0, 3); 8209 8210 /* If set, allow decapsulation of IPinIP (without GRE). */ 8211 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_IPIP BIT(0) 8212 /* If set, allow decapsulation of IPinGREinIP without a key. */ 8213 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE BIT(1) 8214 /* If set, allow decapsulation of IPinGREinIP with a key. */ 8215 #define MLXSW_REG_RTDP_IPIP_TYPE_CHECK_ALLOW_GRE_KEY BIT(2) 8216 8217 /* reg_rtdp_ipip_type_check 8218 * Flags as per MLXSW_REG_RTDP_IPIP_TYPE_CHECK_*. If decapsulation failed due to 8219 * these configurations then trap_id is IPIP_DECAP_ERROR. 8220 * Access: RW 8221 */ 8222 MLXSW_ITEM32(reg, rtdp, ipip_type_check, 0x08, 24, 3); 8223 8224 /* reg_rtdp_ipip_gre_key_check 8225 * Whether GRE key should be checked. When check is enabled: 8226 * - A packet received as IPinIP (without GRE) will always pass. 8227 * - A packet received as IPinGREinIP without a key will not pass the check. 8228 * - A packet received as IPinGREinIP with a key will pass the check only if the 8229 * key in the packet is equal to expected_gre_key. 8230 * If decapsulation failed due to GRE key then trap_id is IPIP_DECAP_ERROR. 8231 * Access: RW 8232 */ 8233 MLXSW_ITEM32(reg, rtdp, ipip_gre_key_check, 0x08, 23, 1); 8234 8235 /* reg_rtdp_ipip_ipv4_usip 8236 * Underlay IPv4 address for ipv4 source address check. 8237 * Reserved when sip_check is not '1'. 8238 * Access: RW 8239 */ 8240 MLXSW_ITEM32(reg, rtdp, ipip_ipv4_usip, 0x0C, 0, 32); 8241 8242 /* reg_rtdp_ipip_ipv6_usip_ptr 8243 * This field is valid when sip_check is "sipv6 check explicitly". This is a 8244 * pointer to the IPv6 DIP which is configured by RIPS. For Spectrum, the index 8245 * is to the KVD linear. 8246 * Reserved when sip_check is not MLXSW_REG_RTDP_IPIP_SIP_CHECK_FILTER_IPV6. 8247 * Access: RW 8248 */ 8249 MLXSW_ITEM32(reg, rtdp, ipip_ipv6_usip_ptr, 0x10, 0, 24); 8250 8251 /* reg_rtdp_ipip_expected_gre_key 8252 * GRE key for checking. 8253 * Reserved when gre_key_check is '0'. 8254 * Access: RW 8255 */ 8256 MLXSW_ITEM32(reg, rtdp, ipip_expected_gre_key, 0x14, 0, 32); 8257 8258 static inline void mlxsw_reg_rtdp_pack(char *payload, 8259 enum mlxsw_reg_rtdp_type type, 8260 u32 tunnel_index) 8261 { 8262 MLXSW_REG_ZERO(rtdp, payload); 8263 mlxsw_reg_rtdp_type_set(payload, type); 8264 mlxsw_reg_rtdp_tunnel_index_set(payload, tunnel_index); 8265 } 8266 8267 static inline void 8268 mlxsw_reg_rtdp_ipip_pack(char *payload, u16 irif, 8269 enum mlxsw_reg_rtdp_ipip_sip_check sip_check, 8270 unsigned int type_check, bool gre_key_check, 8271 u32 expected_gre_key) 8272 { 8273 mlxsw_reg_rtdp_ipip_irif_set(payload, irif); 8274 mlxsw_reg_rtdp_ipip_sip_check_set(payload, sip_check); 8275 mlxsw_reg_rtdp_ipip_type_check_set(payload, type_check); 8276 mlxsw_reg_rtdp_ipip_gre_key_check_set(payload, gre_key_check); 8277 mlxsw_reg_rtdp_ipip_expected_gre_key_set(payload, expected_gre_key); 8278 } 8279 8280 static inline void 8281 mlxsw_reg_rtdp_ipip4_pack(char *payload, u16 irif, 8282 enum mlxsw_reg_rtdp_ipip_sip_check sip_check, 8283 unsigned int type_check, bool gre_key_check, 8284 u32 ipv4_usip, u32 expected_gre_key) 8285 { 8286 mlxsw_reg_rtdp_ipip_pack(payload, irif, sip_check, type_check, 8287 gre_key_check, expected_gre_key); 8288 mlxsw_reg_rtdp_ipip_ipv4_usip_set(payload, ipv4_usip); 8289 } 8290 8291 static inline void 8292 mlxsw_reg_rtdp_ipip6_pack(char *payload, u16 irif, 8293 enum mlxsw_reg_rtdp_ipip_sip_check sip_check, 8294 unsigned int type_check, bool gre_key_check, 8295 u32 ipv6_usip_ptr, u32 expected_gre_key) 8296 { 8297 mlxsw_reg_rtdp_ipip_pack(payload, irif, sip_check, type_check, 8298 gre_key_check, expected_gre_key); 8299 mlxsw_reg_rtdp_ipip_ipv6_usip_ptr_set(payload, ipv6_usip_ptr); 8300 } 8301 8302 /* RIPS - Router IP version Six Register 8303 * ------------------------------------- 8304 * The RIPS register is used to store IPv6 addresses for use by the NVE and 8305 * IPinIP 8306 */ 8307 #define MLXSW_REG_RIPS_ID 0x8021 8308 #define MLXSW_REG_RIPS_LEN 0x14 8309 8310 MLXSW_REG_DEFINE(rips, MLXSW_REG_RIPS_ID, MLXSW_REG_RIPS_LEN); 8311 8312 /* reg_rips_index 8313 * Index to IPv6 address. 8314 * For Spectrum, the index is to the KVD linear. 8315 * Access: Index 8316 */ 8317 MLXSW_ITEM32(reg, rips, index, 0x00, 0, 24); 8318 8319 /* reg_rips_ipv6 8320 * IPv6 address 8321 * Access: RW 8322 */ 8323 MLXSW_ITEM_BUF(reg, rips, ipv6, 0x04, 16); 8324 8325 static inline void mlxsw_reg_rips_pack(char *payload, u32 index, 8326 const struct in6_addr *ipv6) 8327 { 8328 MLXSW_REG_ZERO(rips, payload); 8329 mlxsw_reg_rips_index_set(payload, index); 8330 mlxsw_reg_rips_ipv6_memcpy_to(payload, (const char *)ipv6); 8331 } 8332 8333 /* RATRAD - Router Adjacency Table Activity Dump Register 8334 * ------------------------------------------------------ 8335 * The RATRAD register is used to dump and optionally clear activity bits of 8336 * router adjacency table entries. 8337 */ 8338 #define MLXSW_REG_RATRAD_ID 0x8022 8339 #define MLXSW_REG_RATRAD_LEN 0x210 8340 8341 MLXSW_REG_DEFINE(ratrad, MLXSW_REG_RATRAD_ID, MLXSW_REG_RATRAD_LEN); 8342 8343 enum { 8344 /* Read activity */ 8345 MLXSW_REG_RATRAD_OP_READ_ACTIVITY, 8346 /* Read and clear activity */ 8347 MLXSW_REG_RATRAD_OP_READ_CLEAR_ACTIVITY, 8348 }; 8349 8350 /* reg_ratrad_op 8351 * Access: Operation 8352 */ 8353 MLXSW_ITEM32(reg, ratrad, op, 0x00, 30, 2); 8354 8355 /* reg_ratrad_ecmp_size 8356 * ecmp_size is the amount of sequential entries from adjacency_index. Valid 8357 * ranges: 8358 * Spectrum-1: 32-64, 512, 1024, 2048, 4096 8359 * Spectrum-2/3: 32-128, 256, 512, 1024, 2048, 4096 8360 * Access: Index 8361 */ 8362 MLXSW_ITEM32(reg, ratrad, ecmp_size, 0x00, 0, 13); 8363 8364 /* reg_ratrad_adjacency_index 8365 * Index into the adjacency table. 8366 * Access: Index 8367 */ 8368 MLXSW_ITEM32(reg, ratrad, adjacency_index, 0x04, 0, 24); 8369 8370 /* reg_ratrad_activity_vector 8371 * Activity bit per adjacency index. 8372 * Bits higher than ecmp_size are reserved. 8373 * Access: RO 8374 */ 8375 MLXSW_ITEM_BIT_ARRAY(reg, ratrad, activity_vector, 0x10, 0x200, 1); 8376 8377 static inline void mlxsw_reg_ratrad_pack(char *payload, u32 adjacency_index, 8378 u16 ecmp_size) 8379 { 8380 MLXSW_REG_ZERO(ratrad, payload); 8381 mlxsw_reg_ratrad_op_set(payload, 8382 MLXSW_REG_RATRAD_OP_READ_CLEAR_ACTIVITY); 8383 mlxsw_reg_ratrad_ecmp_size_set(payload, ecmp_size); 8384 mlxsw_reg_ratrad_adjacency_index_set(payload, adjacency_index); 8385 } 8386 8387 /* RIGR-V2 - Router Interface Group Register Version 2 8388 * --------------------------------------------------- 8389 * The RIGR_V2 register is used to add, remove and query egress interface list 8390 * of a multicast forwarding entry. 8391 */ 8392 #define MLXSW_REG_RIGR2_ID 0x8023 8393 #define MLXSW_REG_RIGR2_LEN 0xB0 8394 8395 #define MLXSW_REG_RIGR2_MAX_ERIFS 32 8396 8397 MLXSW_REG_DEFINE(rigr2, MLXSW_REG_RIGR2_ID, MLXSW_REG_RIGR2_LEN); 8398 8399 /* reg_rigr2_rigr_index 8400 * KVD Linear index. 8401 * Access: Index 8402 */ 8403 MLXSW_ITEM32(reg, rigr2, rigr_index, 0x04, 0, 24); 8404 8405 /* reg_rigr2_vnext 8406 * Next RIGR Index is valid. 8407 * Access: RW 8408 */ 8409 MLXSW_ITEM32(reg, rigr2, vnext, 0x08, 31, 1); 8410 8411 /* reg_rigr2_next_rigr_index 8412 * Next RIGR Index. The index is to the KVD linear. 8413 * Reserved when vnxet = '0'. 8414 * Access: RW 8415 */ 8416 MLXSW_ITEM32(reg, rigr2, next_rigr_index, 0x08, 0, 24); 8417 8418 /* reg_rigr2_vrmid 8419 * RMID Index is valid. 8420 * Access: RW 8421 */ 8422 MLXSW_ITEM32(reg, rigr2, vrmid, 0x20, 31, 1); 8423 8424 /* reg_rigr2_rmid_index 8425 * RMID Index. 8426 * Range 0 .. max_mid - 1 8427 * Reserved when vrmid = '0'. 8428 * The index is to the Port Group Table (PGT) 8429 * Access: RW 8430 */ 8431 MLXSW_ITEM32(reg, rigr2, rmid_index, 0x20, 0, 16); 8432 8433 /* reg_rigr2_erif_entry_v 8434 * Egress Router Interface is valid. 8435 * Note that low-entries must be set if high-entries are set. For 8436 * example: if erif_entry[2].v is set then erif_entry[1].v and 8437 * erif_entry[0].v must be set. 8438 * Index can be from 0 to cap_mc_erif_list_entries-1 8439 * Access: RW 8440 */ 8441 MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_v, 0x24, 31, 1, 4, 0, false); 8442 8443 /* reg_rigr2_erif_entry_erif 8444 * Egress Router Interface. 8445 * Valid range is from 0 to cap_max_router_interfaces - 1 8446 * Index can be from 0 to MLXSW_REG_RIGR2_MAX_ERIFS - 1 8447 * Access: RW 8448 */ 8449 MLXSW_ITEM32_INDEXED(reg, rigr2, erif_entry_erif, 0x24, 0, 16, 4, 0, false); 8450 8451 static inline void mlxsw_reg_rigr2_pack(char *payload, u32 rigr_index, 8452 bool vnext, u32 next_rigr_index) 8453 { 8454 MLXSW_REG_ZERO(rigr2, payload); 8455 mlxsw_reg_rigr2_rigr_index_set(payload, rigr_index); 8456 mlxsw_reg_rigr2_vnext_set(payload, vnext); 8457 mlxsw_reg_rigr2_next_rigr_index_set(payload, next_rigr_index); 8458 mlxsw_reg_rigr2_vrmid_set(payload, 0); 8459 mlxsw_reg_rigr2_rmid_index_set(payload, 0); 8460 } 8461 8462 static inline void mlxsw_reg_rigr2_erif_entry_pack(char *payload, int index, 8463 bool v, u16 erif) 8464 { 8465 mlxsw_reg_rigr2_erif_entry_v_set(payload, index, v); 8466 mlxsw_reg_rigr2_erif_entry_erif_set(payload, index, erif); 8467 } 8468 8469 /* RECR-V2 - Router ECMP Configuration Version 2 Register 8470 * ------------------------------------------------------ 8471 */ 8472 #define MLXSW_REG_RECR2_ID 0x8025 8473 #define MLXSW_REG_RECR2_LEN 0x38 8474 8475 MLXSW_REG_DEFINE(recr2, MLXSW_REG_RECR2_ID, MLXSW_REG_RECR2_LEN); 8476 8477 /* reg_recr2_pp 8478 * Per-port configuration 8479 * Access: Index 8480 */ 8481 MLXSW_ITEM32(reg, recr2, pp, 0x00, 24, 1); 8482 8483 /* reg_recr2_sh 8484 * Symmetric hash 8485 * Access: RW 8486 */ 8487 MLXSW_ITEM32(reg, recr2, sh, 0x00, 8, 1); 8488 8489 /* reg_recr2_seed 8490 * Seed 8491 * Access: RW 8492 */ 8493 MLXSW_ITEM32(reg, recr2, seed, 0x08, 0, 32); 8494 8495 enum { 8496 /* Enable IPv4 fields if packet is not TCP and not UDP */ 8497 MLXSW_REG_RECR2_IPV4_EN_NOT_TCP_NOT_UDP = 3, 8498 /* Enable IPv4 fields if packet is TCP or UDP */ 8499 MLXSW_REG_RECR2_IPV4_EN_TCP_UDP = 4, 8500 /* Enable IPv6 fields if packet is not TCP and not UDP */ 8501 MLXSW_REG_RECR2_IPV6_EN_NOT_TCP_NOT_UDP = 5, 8502 /* Enable IPv6 fields if packet is TCP or UDP */ 8503 MLXSW_REG_RECR2_IPV6_EN_TCP_UDP = 6, 8504 /* Enable TCP/UDP header fields if packet is IPv4 */ 8505 MLXSW_REG_RECR2_TCP_UDP_EN_IPV4 = 7, 8506 /* Enable TCP/UDP header fields if packet is IPv6 */ 8507 MLXSW_REG_RECR2_TCP_UDP_EN_IPV6 = 8, 8508 8509 __MLXSW_REG_RECR2_HEADER_CNT, 8510 }; 8511 8512 /* reg_recr2_outer_header_enables 8513 * Bit mask where each bit enables a specific layer to be included in 8514 * the hash calculation. 8515 * Access: RW 8516 */ 8517 MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_enables, 0x10, 0x04, 1); 8518 8519 enum { 8520 /* IPv4 Source IP */ 8521 MLXSW_REG_RECR2_IPV4_SIP0 = 9, 8522 MLXSW_REG_RECR2_IPV4_SIP3 = 12, 8523 /* IPv4 Destination IP */ 8524 MLXSW_REG_RECR2_IPV4_DIP0 = 13, 8525 MLXSW_REG_RECR2_IPV4_DIP3 = 16, 8526 /* IP Protocol */ 8527 MLXSW_REG_RECR2_IPV4_PROTOCOL = 17, 8528 /* IPv6 Source IP */ 8529 MLXSW_REG_RECR2_IPV6_SIP0_7 = 21, 8530 MLXSW_REG_RECR2_IPV6_SIP8 = 29, 8531 MLXSW_REG_RECR2_IPV6_SIP15 = 36, 8532 /* IPv6 Destination IP */ 8533 MLXSW_REG_RECR2_IPV6_DIP0_7 = 37, 8534 MLXSW_REG_RECR2_IPV6_DIP8 = 45, 8535 MLXSW_REG_RECR2_IPV6_DIP15 = 52, 8536 /* IPv6 Next Header */ 8537 MLXSW_REG_RECR2_IPV6_NEXT_HEADER = 53, 8538 /* IPv6 Flow Label */ 8539 MLXSW_REG_RECR2_IPV6_FLOW_LABEL = 57, 8540 /* TCP/UDP Source Port */ 8541 MLXSW_REG_RECR2_TCP_UDP_SPORT = 74, 8542 /* TCP/UDP Destination Port */ 8543 MLXSW_REG_RECR2_TCP_UDP_DPORT = 75, 8544 8545 __MLXSW_REG_RECR2_FIELD_CNT, 8546 }; 8547 8548 /* reg_recr2_outer_header_fields_enable 8549 * Packet fields to enable for ECMP hash subject to outer_header_enable. 8550 * Access: RW 8551 */ 8552 MLXSW_ITEM_BIT_ARRAY(reg, recr2, outer_header_fields_enable, 0x14, 0x14, 1); 8553 8554 /* reg_recr2_inner_header_enables 8555 * Bit mask where each bit enables a specific inner layer to be included in the 8556 * hash calculation. Same values as reg_recr2_outer_header_enables. 8557 * Access: RW 8558 */ 8559 MLXSW_ITEM_BIT_ARRAY(reg, recr2, inner_header_enables, 0x2C, 0x04, 1); 8560 8561 enum { 8562 /* Inner IPv4 Source IP */ 8563 MLXSW_REG_RECR2_INNER_IPV4_SIP0 = 3, 8564 MLXSW_REG_RECR2_INNER_IPV4_SIP3 = 6, 8565 /* Inner IPv4 Destination IP */ 8566 MLXSW_REG_RECR2_INNER_IPV4_DIP0 = 7, 8567 MLXSW_REG_RECR2_INNER_IPV4_DIP3 = 10, 8568 /* Inner IP Protocol */ 8569 MLXSW_REG_RECR2_INNER_IPV4_PROTOCOL = 11, 8570 /* Inner IPv6 Source IP */ 8571 MLXSW_REG_RECR2_INNER_IPV6_SIP0_7 = 12, 8572 MLXSW_REG_RECR2_INNER_IPV6_SIP8 = 20, 8573 MLXSW_REG_RECR2_INNER_IPV6_SIP15 = 27, 8574 /* Inner IPv6 Destination IP */ 8575 MLXSW_REG_RECR2_INNER_IPV6_DIP0_7 = 28, 8576 MLXSW_REG_RECR2_INNER_IPV6_DIP8 = 36, 8577 MLXSW_REG_RECR2_INNER_IPV6_DIP15 = 43, 8578 /* Inner IPv6 Next Header */ 8579 MLXSW_REG_RECR2_INNER_IPV6_NEXT_HEADER = 44, 8580 /* Inner IPv6 Flow Label */ 8581 MLXSW_REG_RECR2_INNER_IPV6_FLOW_LABEL = 45, 8582 /* Inner TCP/UDP Source Port */ 8583 MLXSW_REG_RECR2_INNER_TCP_UDP_SPORT = 46, 8584 /* Inner TCP/UDP Destination Port */ 8585 MLXSW_REG_RECR2_INNER_TCP_UDP_DPORT = 47, 8586 8587 __MLXSW_REG_RECR2_INNER_FIELD_CNT, 8588 }; 8589 8590 /* reg_recr2_inner_header_fields_enable 8591 * Inner packet fields to enable for ECMP hash subject to inner_header_enables. 8592 * Access: RW 8593 */ 8594 MLXSW_ITEM_BIT_ARRAY(reg, recr2, inner_header_fields_enable, 0x30, 0x08, 1); 8595 8596 static inline void mlxsw_reg_recr2_pack(char *payload, u32 seed) 8597 { 8598 MLXSW_REG_ZERO(recr2, payload); 8599 mlxsw_reg_recr2_pp_set(payload, false); 8600 mlxsw_reg_recr2_sh_set(payload, true); 8601 mlxsw_reg_recr2_seed_set(payload, seed); 8602 } 8603 8604 /* RMFT-V2 - Router Multicast Forwarding Table Version 2 Register 8605 * -------------------------------------------------------------- 8606 * The RMFT_V2 register is used to configure and query the multicast table. 8607 */ 8608 #define MLXSW_REG_RMFT2_ID 0x8027 8609 #define MLXSW_REG_RMFT2_LEN 0x174 8610 8611 MLXSW_REG_DEFINE(rmft2, MLXSW_REG_RMFT2_ID, MLXSW_REG_RMFT2_LEN); 8612 8613 /* reg_rmft2_v 8614 * Valid 8615 * Access: RW 8616 */ 8617 MLXSW_ITEM32(reg, rmft2, v, 0x00, 31, 1); 8618 8619 enum mlxsw_reg_rmft2_type { 8620 MLXSW_REG_RMFT2_TYPE_IPV4, 8621 MLXSW_REG_RMFT2_TYPE_IPV6 8622 }; 8623 8624 /* reg_rmft2_type 8625 * Access: Index 8626 */ 8627 MLXSW_ITEM32(reg, rmft2, type, 0x00, 28, 2); 8628 8629 enum mlxsw_sp_reg_rmft2_op { 8630 /* For Write: 8631 * Write operation. Used to write a new entry to the table. All RW 8632 * fields are relevant for new entry. Activity bit is set for new 8633 * entries - Note write with v (Valid) 0 will delete the entry. 8634 * For Query: 8635 * Read operation 8636 */ 8637 MLXSW_REG_RMFT2_OP_READ_WRITE, 8638 }; 8639 8640 /* reg_rmft2_op 8641 * Operation. 8642 * Access: OP 8643 */ 8644 MLXSW_ITEM32(reg, rmft2, op, 0x00, 20, 2); 8645 8646 /* reg_rmft2_a 8647 * Activity. Set for new entries. Set if a packet lookup has hit on the specific 8648 * entry. 8649 * Access: RO 8650 */ 8651 MLXSW_ITEM32(reg, rmft2, a, 0x00, 16, 1); 8652 8653 /* reg_rmft2_offset 8654 * Offset within the multicast forwarding table to write to. 8655 * Access: Index 8656 */ 8657 MLXSW_ITEM32(reg, rmft2, offset, 0x00, 0, 16); 8658 8659 /* reg_rmft2_virtual_router 8660 * Virtual Router ID. Range from 0..cap_max_virtual_routers-1 8661 * Access: RW 8662 */ 8663 MLXSW_ITEM32(reg, rmft2, virtual_router, 0x04, 0, 16); 8664 8665 enum mlxsw_reg_rmft2_irif_mask { 8666 MLXSW_REG_RMFT2_IRIF_MASK_IGNORE, 8667 MLXSW_REG_RMFT2_IRIF_MASK_COMPARE 8668 }; 8669 8670 /* reg_rmft2_irif_mask 8671 * Ingress RIF mask. 8672 * Access: RW 8673 */ 8674 MLXSW_ITEM32(reg, rmft2, irif_mask, 0x08, 24, 1); 8675 8676 /* reg_rmft2_irif 8677 * Ingress RIF index. 8678 * Access: RW 8679 */ 8680 MLXSW_ITEM32(reg, rmft2, irif, 0x08, 0, 16); 8681 8682 /* reg_rmft2_dip{4,6} 8683 * Destination IPv4/6 address 8684 * Access: RW 8685 */ 8686 MLXSW_ITEM_BUF(reg, rmft2, dip6, 0x10, 16); 8687 MLXSW_ITEM32(reg, rmft2, dip4, 0x1C, 0, 32); 8688 8689 /* reg_rmft2_dip{4,6}_mask 8690 * A bit that is set directs the TCAM to compare the corresponding bit in key. A 8691 * bit that is clear directs the TCAM to ignore the corresponding bit in key. 8692 * Access: RW 8693 */ 8694 MLXSW_ITEM_BUF(reg, rmft2, dip6_mask, 0x20, 16); 8695 MLXSW_ITEM32(reg, rmft2, dip4_mask, 0x2C, 0, 32); 8696 8697 /* reg_rmft2_sip{4,6} 8698 * Source IPv4/6 address 8699 * Access: RW 8700 */ 8701 MLXSW_ITEM_BUF(reg, rmft2, sip6, 0x30, 16); 8702 MLXSW_ITEM32(reg, rmft2, sip4, 0x3C, 0, 32); 8703 8704 /* reg_rmft2_sip{4,6}_mask 8705 * A bit that is set directs the TCAM to compare the corresponding bit in key. A 8706 * bit that is clear directs the TCAM to ignore the corresponding bit in key. 8707 * Access: RW 8708 */ 8709 MLXSW_ITEM_BUF(reg, rmft2, sip6_mask, 0x40, 16); 8710 MLXSW_ITEM32(reg, rmft2, sip4_mask, 0x4C, 0, 32); 8711 8712 /* reg_rmft2_flexible_action_set 8713 * ACL action set. The only supported action types in this field and in any 8714 * action-set pointed from here are as follows: 8715 * 00h: ACTION_NULL 8716 * 01h: ACTION_MAC_TTL, only TTL configuration is supported. 8717 * 03h: ACTION_TRAP 8718 * 06h: ACTION_QOS 8719 * 08h: ACTION_POLICING_MONITORING 8720 * 10h: ACTION_ROUTER_MC 8721 * Access: RW 8722 */ 8723 MLXSW_ITEM_BUF(reg, rmft2, flexible_action_set, 0x80, 8724 MLXSW_REG_FLEX_ACTION_SET_LEN); 8725 8726 static inline void 8727 mlxsw_reg_rmft2_common_pack(char *payload, bool v, u16 offset, 8728 u16 virtual_router, 8729 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif, 8730 const char *flex_action_set) 8731 { 8732 MLXSW_REG_ZERO(rmft2, payload); 8733 mlxsw_reg_rmft2_v_set(payload, v); 8734 mlxsw_reg_rmft2_op_set(payload, MLXSW_REG_RMFT2_OP_READ_WRITE); 8735 mlxsw_reg_rmft2_offset_set(payload, offset); 8736 mlxsw_reg_rmft2_virtual_router_set(payload, virtual_router); 8737 mlxsw_reg_rmft2_irif_mask_set(payload, irif_mask); 8738 mlxsw_reg_rmft2_irif_set(payload, irif); 8739 if (flex_action_set) 8740 mlxsw_reg_rmft2_flexible_action_set_memcpy_to(payload, 8741 flex_action_set); 8742 } 8743 8744 static inline void 8745 mlxsw_reg_rmft2_ipv4_pack(char *payload, bool v, u16 offset, u16 virtual_router, 8746 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif, 8747 u32 dip4, u32 dip4_mask, u32 sip4, u32 sip4_mask, 8748 const char *flexible_action_set) 8749 { 8750 mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router, 8751 irif_mask, irif, flexible_action_set); 8752 mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV4); 8753 mlxsw_reg_rmft2_dip4_set(payload, dip4); 8754 mlxsw_reg_rmft2_dip4_mask_set(payload, dip4_mask); 8755 mlxsw_reg_rmft2_sip4_set(payload, sip4); 8756 mlxsw_reg_rmft2_sip4_mask_set(payload, sip4_mask); 8757 } 8758 8759 static inline void 8760 mlxsw_reg_rmft2_ipv6_pack(char *payload, bool v, u16 offset, u16 virtual_router, 8761 enum mlxsw_reg_rmft2_irif_mask irif_mask, u16 irif, 8762 struct in6_addr dip6, struct in6_addr dip6_mask, 8763 struct in6_addr sip6, struct in6_addr sip6_mask, 8764 const char *flexible_action_set) 8765 { 8766 mlxsw_reg_rmft2_common_pack(payload, v, offset, virtual_router, 8767 irif_mask, irif, flexible_action_set); 8768 mlxsw_reg_rmft2_type_set(payload, MLXSW_REG_RMFT2_TYPE_IPV6); 8769 mlxsw_reg_rmft2_dip6_memcpy_to(payload, (void *)&dip6); 8770 mlxsw_reg_rmft2_dip6_mask_memcpy_to(payload, (void *)&dip6_mask); 8771 mlxsw_reg_rmft2_sip6_memcpy_to(payload, (void *)&sip6); 8772 mlxsw_reg_rmft2_sip6_mask_memcpy_to(payload, (void *)&sip6_mask); 8773 } 8774 8775 /* RXLTE - Router XLT Enable Register 8776 * ---------------------------------- 8777 * The RXLTE enables XLT (eXtended Lookup Table) LPM lookups if a capable 8778 * XM is present on the system. 8779 */ 8780 8781 #define MLXSW_REG_RXLTE_ID 0x8050 8782 #define MLXSW_REG_RXLTE_LEN 0x0C 8783 8784 MLXSW_REG_DEFINE(rxlte, MLXSW_REG_RXLTE_ID, MLXSW_REG_RXLTE_LEN); 8785 8786 /* reg_rxlte_virtual_router 8787 * Virtual router ID associated with the router interface. 8788 * Range is 0..cap_max_virtual_routers-1 8789 * Access: Index 8790 */ 8791 MLXSW_ITEM32(reg, rxlte, virtual_router, 0x00, 0, 16); 8792 8793 enum mlxsw_reg_rxlte_protocol { 8794 MLXSW_REG_RXLTE_PROTOCOL_IPV4, 8795 MLXSW_REG_RXLTE_PROTOCOL_IPV6, 8796 }; 8797 8798 /* reg_rxlte_protocol 8799 * Access: Index 8800 */ 8801 MLXSW_ITEM32(reg, rxlte, protocol, 0x04, 0, 4); 8802 8803 /* reg_rxlte_lpm_xlt_en 8804 * Access: RW 8805 */ 8806 MLXSW_ITEM32(reg, rxlte, lpm_xlt_en, 0x08, 0, 1); 8807 8808 static inline void mlxsw_reg_rxlte_pack(char *payload, u16 virtual_router, 8809 enum mlxsw_reg_rxlte_protocol protocol, 8810 bool lpm_xlt_en) 8811 { 8812 MLXSW_REG_ZERO(rxlte, payload); 8813 mlxsw_reg_rxlte_virtual_router_set(payload, virtual_router); 8814 mlxsw_reg_rxlte_protocol_set(payload, protocol); 8815 mlxsw_reg_rxlte_lpm_xlt_en_set(payload, lpm_xlt_en); 8816 } 8817 8818 /* RXLTM - Router XLT M select Register 8819 * ------------------------------------ 8820 * The RXLTM configures and selects the M for the XM lookups. 8821 */ 8822 8823 #define MLXSW_REG_RXLTM_ID 0x8051 8824 #define MLXSW_REG_RXLTM_LEN 0x14 8825 8826 MLXSW_REG_DEFINE(rxltm, MLXSW_REG_RXLTM_ID, MLXSW_REG_RXLTM_LEN); 8827 8828 /* reg_rxltm_m0_val_v6 8829 * Global M0 value For IPv6. 8830 * Range 0..128 8831 * Access: RW 8832 */ 8833 MLXSW_ITEM32(reg, rxltm, m0_val_v6, 0x10, 16, 8); 8834 8835 /* reg_rxltm_m0_val_v4 8836 * Global M0 value For IPv4. 8837 * Range 0..32 8838 * Access: RW 8839 */ 8840 MLXSW_ITEM32(reg, rxltm, m0_val_v4, 0x10, 0, 6); 8841 8842 static inline void mlxsw_reg_rxltm_pack(char *payload, u8 m0_val_v4, u8 m0_val_v6) 8843 { 8844 MLXSW_REG_ZERO(rxltm, payload); 8845 mlxsw_reg_rxltm_m0_val_v6_set(payload, m0_val_v6); 8846 mlxsw_reg_rxltm_m0_val_v4_set(payload, m0_val_v4); 8847 } 8848 8849 /* RLCMLD - Router LPM Cache ML Delete Register 8850 * -------------------------------------------- 8851 * The RLCMLD register is used to bulk delete the XLT-LPM cache ML entries. 8852 * This can be used by SW when L is increased or decreased, thus need to 8853 * remove entries with old ML values. 8854 */ 8855 8856 #define MLXSW_REG_RLCMLD_ID 0x8055 8857 #define MLXSW_REG_RLCMLD_LEN 0x30 8858 8859 MLXSW_REG_DEFINE(rlcmld, MLXSW_REG_RLCMLD_ID, MLXSW_REG_RLCMLD_LEN); 8860 8861 enum mlxsw_reg_rlcmld_select { 8862 MLXSW_REG_RLCMLD_SELECT_ML_ENTRIES, 8863 MLXSW_REG_RLCMLD_SELECT_M_ENTRIES, 8864 MLXSW_REG_RLCMLD_SELECT_M_AND_ML_ENTRIES, 8865 }; 8866 8867 /* reg_rlcmld_select 8868 * Which entries to delete. 8869 * Access: Index 8870 */ 8871 MLXSW_ITEM32(reg, rlcmld, select, 0x00, 16, 2); 8872 8873 enum mlxsw_reg_rlcmld_filter_fields { 8874 MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_PROTOCOL = 0x04, 8875 MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_VIRTUAL_ROUTER = 0x08, 8876 MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_DIP = 0x10, 8877 }; 8878 8879 /* reg_rlcmld_filter_fields 8880 * If a bit is '0' then the relevant field is ignored. 8881 * Access: Index 8882 */ 8883 MLXSW_ITEM32(reg, rlcmld, filter_fields, 0x00, 0, 8); 8884 8885 enum mlxsw_reg_rlcmld_protocol { 8886 MLXSW_REG_RLCMLD_PROTOCOL_UC_IPV4, 8887 MLXSW_REG_RLCMLD_PROTOCOL_UC_IPV6, 8888 }; 8889 8890 /* reg_rlcmld_protocol 8891 * Access: Index 8892 */ 8893 MLXSW_ITEM32(reg, rlcmld, protocol, 0x08, 0, 4); 8894 8895 /* reg_rlcmld_virtual_router 8896 * Virtual router ID. 8897 * Range is 0..cap_max_virtual_routers-1 8898 * Access: Index 8899 */ 8900 MLXSW_ITEM32(reg, rlcmld, virtual_router, 0x0C, 0, 16); 8901 8902 /* reg_rlcmld_dip 8903 * The prefix of the route or of the marker that the object of the LPM 8904 * is compared with. The most significant bits of the dip are the prefix. 8905 * Access: Index 8906 */ 8907 MLXSW_ITEM32(reg, rlcmld, dip4, 0x1C, 0, 32); 8908 MLXSW_ITEM_BUF(reg, rlcmld, dip6, 0x10, 16); 8909 8910 /* reg_rlcmld_dip_mask 8911 * per bit: 8912 * 0: no match 8913 * 1: match 8914 * Access: Index 8915 */ 8916 MLXSW_ITEM32(reg, rlcmld, dip_mask4, 0x2C, 0, 32); 8917 MLXSW_ITEM_BUF(reg, rlcmld, dip_mask6, 0x20, 16); 8918 8919 static inline void __mlxsw_reg_rlcmld_pack(char *payload, 8920 enum mlxsw_reg_rlcmld_select select, 8921 enum mlxsw_reg_rlcmld_protocol protocol, 8922 u16 virtual_router) 8923 { 8924 u8 filter_fields = MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_PROTOCOL | 8925 MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_VIRTUAL_ROUTER | 8926 MLXSW_REG_RLCMLD_FILTER_FIELDS_BY_DIP; 8927 8928 MLXSW_REG_ZERO(rlcmld, payload); 8929 mlxsw_reg_rlcmld_select_set(payload, select); 8930 mlxsw_reg_rlcmld_filter_fields_set(payload, filter_fields); 8931 mlxsw_reg_rlcmld_protocol_set(payload, protocol); 8932 mlxsw_reg_rlcmld_virtual_router_set(payload, virtual_router); 8933 } 8934 8935 static inline void mlxsw_reg_rlcmld_pack4(char *payload, 8936 enum mlxsw_reg_rlcmld_select select, 8937 u16 virtual_router, 8938 u32 dip, u32 dip_mask) 8939 { 8940 __mlxsw_reg_rlcmld_pack(payload, select, 8941 MLXSW_REG_RLCMLD_PROTOCOL_UC_IPV4, 8942 virtual_router); 8943 mlxsw_reg_rlcmld_dip4_set(payload, dip); 8944 mlxsw_reg_rlcmld_dip_mask4_set(payload, dip_mask); 8945 } 8946 8947 static inline void mlxsw_reg_rlcmld_pack6(char *payload, 8948 enum mlxsw_reg_rlcmld_select select, 8949 u16 virtual_router, 8950 const void *dip, const void *dip_mask) 8951 { 8952 __mlxsw_reg_rlcmld_pack(payload, select, 8953 MLXSW_REG_RLCMLD_PROTOCOL_UC_IPV6, 8954 virtual_router); 8955 mlxsw_reg_rlcmld_dip6_memcpy_to(payload, dip); 8956 mlxsw_reg_rlcmld_dip_mask6_memcpy_to(payload, dip_mask); 8957 } 8958 8959 /* RLPMCE - Router LPM Cache Enable Register 8960 * ----------------------------------------- 8961 * Allows disabling the LPM cache. Can be changed on the fly. 8962 */ 8963 8964 #define MLXSW_REG_RLPMCE_ID 0x8056 8965 #define MLXSW_REG_RLPMCE_LEN 0x4 8966 8967 MLXSW_REG_DEFINE(rlpmce, MLXSW_REG_RLPMCE_ID, MLXSW_REG_RLPMCE_LEN); 8968 8969 /* reg_rlpmce_flush 8970 * Flush: 8971 * 0: do not flush the cache (default) 8972 * 1: flush (clear) the cache 8973 * Access: WO 8974 */ 8975 MLXSW_ITEM32(reg, rlpmce, flush, 0x00, 4, 1); 8976 8977 /* reg_rlpmce_disable 8978 * LPM cache: 8979 * 0: enabled (default) 8980 * 1: disabled 8981 * Access: RW 8982 */ 8983 MLXSW_ITEM32(reg, rlpmce, disable, 0x00, 0, 1); 8984 8985 static inline void mlxsw_reg_rlpmce_pack(char *payload, bool flush, 8986 bool disable) 8987 { 8988 MLXSW_REG_ZERO(rlpmce, payload); 8989 mlxsw_reg_rlpmce_flush_set(payload, flush); 8990 mlxsw_reg_rlpmce_disable_set(payload, disable); 8991 } 8992 8993 /* Note that XLTQ, XMDR, XRMT and XRALXX register positions violate the rule 8994 * of ordering register definitions by the ID. However, XRALXX pack helpers are 8995 * using RALXX pack helpers, RALXX registers have higher IDs. 8996 * Also XMDR is using RALUE enums. XLRQ and XRMT are just put alongside with the 8997 * related registers. 8998 */ 8999 9000 /* XLTQ - XM Lookup Table Query Register 9001 * ------------------------------------- 9002 */ 9003 #define MLXSW_REG_XLTQ_ID 0x7802 9004 #define MLXSW_REG_XLTQ_LEN 0x2C 9005 9006 MLXSW_REG_DEFINE(xltq, MLXSW_REG_XLTQ_ID, MLXSW_REG_XLTQ_LEN); 9007 9008 enum mlxsw_reg_xltq_xm_device_id { 9009 MLXSW_REG_XLTQ_XM_DEVICE_ID_UNKNOWN, 9010 MLXSW_REG_XLTQ_XM_DEVICE_ID_XLT = 0xCF71, 9011 }; 9012 9013 /* reg_xltq_xm_device_id 9014 * XM device ID. 9015 * Access: RO 9016 */ 9017 MLXSW_ITEM32(reg, xltq, xm_device_id, 0x04, 0, 16); 9018 9019 /* reg_xltq_xlt_cap_ipv4_lpm 9020 * Access: RO 9021 */ 9022 MLXSW_ITEM32(reg, xltq, xlt_cap_ipv4_lpm, 0x10, 0, 1); 9023 9024 /* reg_xltq_xlt_cap_ipv6_lpm 9025 * Access: RO 9026 */ 9027 MLXSW_ITEM32(reg, xltq, xlt_cap_ipv6_lpm, 0x10, 1, 1); 9028 9029 /* reg_xltq_cap_xlt_entries 9030 * Number of XLT entries 9031 * Note: SW must not fill more than 80% in order to avoid overflow 9032 * Access: RO 9033 */ 9034 MLXSW_ITEM32(reg, xltq, cap_xlt_entries, 0x20, 0, 32); 9035 9036 /* reg_xltq_cap_xlt_mtable 9037 * XLT M-Table max size 9038 * Access: RO 9039 */ 9040 MLXSW_ITEM32(reg, xltq, cap_xlt_mtable, 0x24, 0, 32); 9041 9042 static inline void mlxsw_reg_xltq_pack(char *payload) 9043 { 9044 MLXSW_REG_ZERO(xltq, payload); 9045 } 9046 9047 static inline void mlxsw_reg_xltq_unpack(char *payload, u16 *xm_device_id, bool *xlt_cap_ipv4_lpm, 9048 bool *xlt_cap_ipv6_lpm, u32 *cap_xlt_entries, 9049 u32 *cap_xlt_mtable) 9050 { 9051 *xm_device_id = mlxsw_reg_xltq_xm_device_id_get(payload); 9052 *xlt_cap_ipv4_lpm = mlxsw_reg_xltq_xlt_cap_ipv4_lpm_get(payload); 9053 *xlt_cap_ipv6_lpm = mlxsw_reg_xltq_xlt_cap_ipv6_lpm_get(payload); 9054 *cap_xlt_entries = mlxsw_reg_xltq_cap_xlt_entries_get(payload); 9055 *cap_xlt_mtable = mlxsw_reg_xltq_cap_xlt_mtable_get(payload); 9056 } 9057 9058 /* XMDR - XM Direct Register 9059 * ------------------------- 9060 * The XMDR allows direct access to the XM device via the switch. 9061 * Working in synchronous mode. FW waits for response from the XLT 9062 * for each command. FW acks the XMDR accordingly. 9063 */ 9064 #define MLXSW_REG_XMDR_ID 0x7803 9065 #define MLXSW_REG_XMDR_BASE_LEN 0x20 9066 #define MLXSW_REG_XMDR_TRANS_LEN 0x80 9067 #define MLXSW_REG_XMDR_LEN (MLXSW_REG_XMDR_BASE_LEN + \ 9068 MLXSW_REG_XMDR_TRANS_LEN) 9069 9070 MLXSW_REG_DEFINE(xmdr, MLXSW_REG_XMDR_ID, MLXSW_REG_XMDR_LEN); 9071 9072 /* reg_xmdr_bulk_entry 9073 * Bulk_entry 9074 * 0: Last entry - immediate flush of XRT-cache 9075 * 1: Bulk entry - do not flush the XRT-cache 9076 * Access: OP 9077 */ 9078 MLXSW_ITEM32(reg, xmdr, bulk_entry, 0x04, 8, 1); 9079 9080 /* reg_xmdr_num_rec 9081 * Number of records for Direct access to XM 9082 * Supported: 0..4 commands (except NOP which is a filler) 9083 * 0 commands is reserved when bulk_entry = 1. 9084 * 0 commands is allowed when bulk_entry = 0 for immediate XRT-cache flush. 9085 * Access: OP 9086 */ 9087 MLXSW_ITEM32(reg, xmdr, num_rec, 0x04, 0, 4); 9088 9089 /* reg_xmdr_reply_vect 9090 * Reply Vector 9091 * Bit i for command index i+1 9092 * values per bit: 9093 * 0: failed 9094 * 1: succeeded 9095 * e.g. if commands 1, 2, 4 succeeded and command 3 failed then binary 9096 * value will be 0b1011 9097 * Access: RO 9098 */ 9099 MLXSW_ITEM_BIT_ARRAY(reg, xmdr, reply_vect, 0x08, 4, 1); 9100 9101 static inline void mlxsw_reg_xmdr_pack(char *payload, bool bulk_entry) 9102 { 9103 MLXSW_REG_ZERO(xmdr, payload); 9104 mlxsw_reg_xmdr_bulk_entry_set(payload, bulk_entry); 9105 } 9106 9107 enum mlxsw_reg_xmdr_c_cmd_id { 9108 MLXSW_REG_XMDR_C_CMD_ID_LT_ROUTE_V4 = 0x30, 9109 MLXSW_REG_XMDR_C_CMD_ID_LT_ROUTE_V6 = 0x31, 9110 }; 9111 9112 #define MLXSW_REG_XMDR_C_LT_ROUTE_V4_LEN 32 9113 #define MLXSW_REG_XMDR_C_LT_ROUTE_V6_LEN 48 9114 9115 /* reg_xmdr_c_cmd_id 9116 */ 9117 MLXSW_ITEM32(reg, xmdr_c, cmd_id, 0x00, 24, 8); 9118 9119 /* reg_xmdr_c_seq_number 9120 */ 9121 MLXSW_ITEM32(reg, xmdr_c, seq_number, 0x00, 12, 12); 9122 9123 enum mlxsw_reg_xmdr_c_ltr_op { 9124 /* Activity is set */ 9125 MLXSW_REG_XMDR_C_LTR_OP_WRITE = 0, 9126 /* There is no update mask. All fields are updated. */ 9127 MLXSW_REG_XMDR_C_LTR_OP_UPDATE = 1, 9128 MLXSW_REG_XMDR_C_LTR_OP_DELETE = 2, 9129 }; 9130 9131 /* reg_xmdr_c_ltr_op 9132 * Operation. 9133 */ 9134 MLXSW_ITEM32(reg, xmdr_c, ltr_op, 0x04, 24, 8); 9135 9136 /* reg_xmdr_c_ltr_trap_action 9137 * Trap action. 9138 * Values are defined in enum mlxsw_reg_ralue_trap_action. 9139 */ 9140 MLXSW_ITEM32(reg, xmdr_c, ltr_trap_action, 0x04, 20, 4); 9141 9142 enum mlxsw_reg_xmdr_c_ltr_trap_id_num { 9143 MLXSW_REG_XMDR_C_LTR_TRAP_ID_NUM_RTR_INGRESS0, 9144 MLXSW_REG_XMDR_C_LTR_TRAP_ID_NUM_RTR_INGRESS1, 9145 MLXSW_REG_XMDR_C_LTR_TRAP_ID_NUM_RTR_INGRESS2, 9146 MLXSW_REG_XMDR_C_LTR_TRAP_ID_NUM_RTR_INGRESS3, 9147 }; 9148 9149 /* reg_xmdr_c_ltr_trap_id_num 9150 * Trap-ID number. 9151 */ 9152 MLXSW_ITEM32(reg, xmdr_c, ltr_trap_id_num, 0x04, 16, 4); 9153 9154 /* reg_xmdr_c_ltr_virtual_router 9155 * Virtual Router ID. 9156 * Range is 0..cap_max_virtual_routers-1 9157 */ 9158 MLXSW_ITEM32(reg, xmdr_c, ltr_virtual_router, 0x04, 0, 16); 9159 9160 /* reg_xmdr_c_ltr_prefix_len 9161 * Number of bits in the prefix of the LPM route. 9162 */ 9163 MLXSW_ITEM32(reg, xmdr_c, ltr_prefix_len, 0x08, 24, 8); 9164 9165 /* reg_xmdr_c_ltr_bmp_len 9166 * The best match prefix length in the case that there is no match for 9167 * longer prefixes. 9168 * If (entry_type != MARKER_ENTRY), bmp_len must be equal to prefix_len 9169 */ 9170 MLXSW_ITEM32(reg, xmdr_c, ltr_bmp_len, 0x08, 16, 8); 9171 9172 /* reg_xmdr_c_ltr_entry_type 9173 * Entry type. 9174 * Values are defined in enum mlxsw_reg_ralue_entry_type. 9175 */ 9176 MLXSW_ITEM32(reg, xmdr_c, ltr_entry_type, 0x08, 4, 4); 9177 9178 enum mlxsw_reg_xmdr_c_ltr_action_type { 9179 MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_LOCAL, 9180 MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_REMOTE, 9181 MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_IP2ME, 9182 }; 9183 9184 /* reg_xmdr_c_ltr_action_type 9185 * Action Type. 9186 */ 9187 MLXSW_ITEM32(reg, xmdr_c, ltr_action_type, 0x08, 0, 4); 9188 9189 /* reg_xmdr_c_ltr_erif 9190 * Egress Router Interface. 9191 * Only relevant in case of LOCAL action. 9192 */ 9193 MLXSW_ITEM32(reg, xmdr_c, ltr_erif, 0x10, 0, 16); 9194 9195 /* reg_xmdr_c_ltr_adjacency_index 9196 * Points to the first entry of the group-based ECMP. 9197 * Only relevant in case of REMOTE action. 9198 */ 9199 MLXSW_ITEM32(reg, xmdr_c, ltr_adjacency_index, 0x10, 0, 24); 9200 9201 #define MLXSW_REG_XMDR_C_LTR_POINTER_TO_TUNNEL_DISABLED_MAGIC 0xFFFFFF 9202 9203 /* reg_xmdr_c_ltr_pointer_to_tunnel 9204 * Only relevant in case of IP2ME action. 9205 */ 9206 MLXSW_ITEM32(reg, xmdr_c, ltr_pointer_to_tunnel, 0x10, 0, 24); 9207 9208 /* reg_xmdr_c_ltr_ecmp_size 9209 * Amount of sequential entries starting 9210 * from the adjacency_index (the number of ECMPs). 9211 * The valid range is 1-64, 512, 1024, 2048 and 4096. 9212 * Only relevant in case of REMOTE action. 9213 */ 9214 MLXSW_ITEM32(reg, xmdr_c, ltr_ecmp_size, 0x14, 0, 32); 9215 9216 /* reg_xmdr_c_ltr_dip* 9217 * The prefix of the route or of the marker that the object of the LPM 9218 * is compared with. The most significant bits of the dip are the prefix. 9219 * The least significant bits must be '0' if the prefix_len is smaller 9220 * than 128 for IPv6 or smaller than 32 for IPv4. 9221 */ 9222 MLXSW_ITEM32(reg, xmdr_c, ltr_dip4, 0x1C, 0, 32); 9223 MLXSW_ITEM_BUF(reg, xmdr_c, ltr_dip6, 0x1C, 16); 9224 9225 static inline void 9226 mlxsw_reg_xmdr_c_ltr_pack(char *xmdr_payload, unsigned int trans_offset, 9227 enum mlxsw_reg_xmdr_c_cmd_id cmd_id, u16 seq_number, 9228 enum mlxsw_reg_xmdr_c_ltr_op op, u16 virtual_router, 9229 u8 prefix_len) 9230 { 9231 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset; 9232 u8 num_rec = mlxsw_reg_xmdr_num_rec_get(xmdr_payload); 9233 9234 mlxsw_reg_xmdr_num_rec_set(xmdr_payload, num_rec + 1); 9235 9236 mlxsw_reg_xmdr_c_cmd_id_set(payload, cmd_id); 9237 mlxsw_reg_xmdr_c_seq_number_set(payload, seq_number); 9238 mlxsw_reg_xmdr_c_ltr_op_set(payload, op); 9239 mlxsw_reg_xmdr_c_ltr_virtual_router_set(payload, virtual_router); 9240 mlxsw_reg_xmdr_c_ltr_prefix_len_set(payload, prefix_len); 9241 mlxsw_reg_xmdr_c_ltr_entry_type_set(payload, 9242 MLXSW_REG_RALUE_ENTRY_TYPE_ROUTE_ENTRY); 9243 mlxsw_reg_xmdr_c_ltr_bmp_len_set(payload, prefix_len); 9244 } 9245 9246 static inline unsigned int 9247 mlxsw_reg_xmdr_c_ltr_pack4(char *xmdr_payload, unsigned int trans_offset, 9248 u16 seq_number, enum mlxsw_reg_xmdr_c_ltr_op op, 9249 u16 virtual_router, u8 prefix_len, u32 *dip) 9250 { 9251 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset; 9252 9253 mlxsw_reg_xmdr_c_ltr_pack(xmdr_payload, trans_offset, 9254 MLXSW_REG_XMDR_C_CMD_ID_LT_ROUTE_V4, 9255 seq_number, op, virtual_router, prefix_len); 9256 if (dip) 9257 mlxsw_reg_xmdr_c_ltr_dip4_set(payload, *dip); 9258 return MLXSW_REG_XMDR_C_LT_ROUTE_V4_LEN; 9259 } 9260 9261 static inline unsigned int 9262 mlxsw_reg_xmdr_c_ltr_pack6(char *xmdr_payload, unsigned int trans_offset, 9263 u16 seq_number, enum mlxsw_reg_xmdr_c_ltr_op op, 9264 u16 virtual_router, u8 prefix_len, const void *dip) 9265 { 9266 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset; 9267 9268 mlxsw_reg_xmdr_c_ltr_pack(xmdr_payload, trans_offset, 9269 MLXSW_REG_XMDR_C_CMD_ID_LT_ROUTE_V6, 9270 seq_number, op, virtual_router, prefix_len); 9271 if (dip) 9272 mlxsw_reg_xmdr_c_ltr_dip6_memcpy_to(payload, dip); 9273 return MLXSW_REG_XMDR_C_LT_ROUTE_V6_LEN; 9274 } 9275 9276 static inline void 9277 mlxsw_reg_xmdr_c_ltr_act_remote_pack(char *xmdr_payload, unsigned int trans_offset, 9278 enum mlxsw_reg_ralue_trap_action trap_action, 9279 enum mlxsw_reg_xmdr_c_ltr_trap_id_num trap_id_num, 9280 u32 adjacency_index, u16 ecmp_size) 9281 { 9282 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset; 9283 9284 mlxsw_reg_xmdr_c_ltr_action_type_set(payload, MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_REMOTE); 9285 mlxsw_reg_xmdr_c_ltr_trap_action_set(payload, trap_action); 9286 mlxsw_reg_xmdr_c_ltr_trap_id_num_set(payload, trap_id_num); 9287 mlxsw_reg_xmdr_c_ltr_adjacency_index_set(payload, adjacency_index); 9288 mlxsw_reg_xmdr_c_ltr_ecmp_size_set(payload, ecmp_size); 9289 } 9290 9291 static inline void 9292 mlxsw_reg_xmdr_c_ltr_act_local_pack(char *xmdr_payload, unsigned int trans_offset, 9293 enum mlxsw_reg_ralue_trap_action trap_action, 9294 enum mlxsw_reg_xmdr_c_ltr_trap_id_num trap_id_num, u16 erif) 9295 { 9296 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset; 9297 9298 mlxsw_reg_xmdr_c_ltr_action_type_set(payload, MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_LOCAL); 9299 mlxsw_reg_xmdr_c_ltr_trap_action_set(payload, trap_action); 9300 mlxsw_reg_xmdr_c_ltr_trap_id_num_set(payload, trap_id_num); 9301 mlxsw_reg_xmdr_c_ltr_erif_set(payload, erif); 9302 } 9303 9304 static inline void mlxsw_reg_xmdr_c_ltr_act_ip2me_pack(char *xmdr_payload, 9305 unsigned int trans_offset) 9306 { 9307 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset; 9308 9309 mlxsw_reg_xmdr_c_ltr_action_type_set(payload, MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_IP2ME); 9310 mlxsw_reg_xmdr_c_ltr_pointer_to_tunnel_set(payload, 9311 MLXSW_REG_XMDR_C_LTR_POINTER_TO_TUNNEL_DISABLED_MAGIC); 9312 } 9313 9314 static inline void mlxsw_reg_xmdr_c_ltr_act_ip2me_tun_pack(char *xmdr_payload, 9315 unsigned int trans_offset, 9316 u32 pointer_to_tunnel) 9317 { 9318 char *payload = xmdr_payload + MLXSW_REG_XMDR_BASE_LEN + trans_offset; 9319 9320 mlxsw_reg_xmdr_c_ltr_action_type_set(payload, MLXSW_REG_XMDR_C_LTR_ACTION_TYPE_IP2ME); 9321 mlxsw_reg_xmdr_c_ltr_pointer_to_tunnel_set(payload, pointer_to_tunnel); 9322 } 9323 9324 /* XRMT - XM Router M Table Register 9325 * --------------------------------- 9326 * The XRMT configures the M-Table for the XLT-LPM. 9327 */ 9328 #define MLXSW_REG_XRMT_ID 0x7810 9329 #define MLXSW_REG_XRMT_LEN 0x14 9330 9331 MLXSW_REG_DEFINE(xrmt, MLXSW_REG_XRMT_ID, MLXSW_REG_XRMT_LEN); 9332 9333 /* reg_xrmt_index 9334 * Index in M-Table. 9335 * Range 0..cap_xlt_mtable-1 9336 * Access: Index 9337 */ 9338 MLXSW_ITEM32(reg, xrmt, index, 0x04, 0, 20); 9339 9340 /* reg_xrmt_l0_val 9341 * Access: RW 9342 */ 9343 MLXSW_ITEM32(reg, xrmt, l0_val, 0x10, 24, 8); 9344 9345 static inline void mlxsw_reg_xrmt_pack(char *payload, u32 index, u8 l0_val) 9346 { 9347 MLXSW_REG_ZERO(xrmt, payload); 9348 mlxsw_reg_xrmt_index_set(payload, index); 9349 mlxsw_reg_xrmt_l0_val_set(payload, l0_val); 9350 } 9351 9352 /* XRALTA - XM Router Algorithmic LPM Tree Allocation Register 9353 * ----------------------------------------------------------- 9354 * The XRALTA is used to allocate the XLT LPM trees. 9355 * 9356 * This register embeds original RALTA register. 9357 */ 9358 #define MLXSW_REG_XRALTA_ID 0x7811 9359 #define MLXSW_REG_XRALTA_LEN 0x08 9360 #define MLXSW_REG_XRALTA_RALTA_OFFSET 0x04 9361 9362 MLXSW_REG_DEFINE(xralta, MLXSW_REG_XRALTA_ID, MLXSW_REG_XRALTA_LEN); 9363 9364 static inline void mlxsw_reg_xralta_pack(char *payload, bool alloc, 9365 enum mlxsw_reg_ralxx_protocol protocol, 9366 u8 tree_id) 9367 { 9368 char *ralta_payload = payload + MLXSW_REG_XRALTA_RALTA_OFFSET; 9369 9370 MLXSW_REG_ZERO(xralta, payload); 9371 mlxsw_reg_ralta_pack(ralta_payload, alloc, protocol, tree_id); 9372 } 9373 9374 /* XRALST - XM Router Algorithmic LPM Structure Tree Register 9375 * ---------------------------------------------------------- 9376 * The XRALST is used to set and query the structure of an XLT LPM tree. 9377 * 9378 * This register embeds original RALST register. 9379 */ 9380 #define MLXSW_REG_XRALST_ID 0x7812 9381 #define MLXSW_REG_XRALST_LEN 0x108 9382 #define MLXSW_REG_XRALST_RALST_OFFSET 0x04 9383 9384 MLXSW_REG_DEFINE(xralst, MLXSW_REG_XRALST_ID, MLXSW_REG_XRALST_LEN); 9385 9386 static inline void mlxsw_reg_xralst_pack(char *payload, u8 root_bin, u8 tree_id) 9387 { 9388 char *ralst_payload = payload + MLXSW_REG_XRALST_RALST_OFFSET; 9389 9390 MLXSW_REG_ZERO(xralst, payload); 9391 mlxsw_reg_ralst_pack(ralst_payload, root_bin, tree_id); 9392 } 9393 9394 static inline void mlxsw_reg_xralst_bin_pack(char *payload, u8 bin_number, 9395 u8 left_child_bin, 9396 u8 right_child_bin) 9397 { 9398 char *ralst_payload = payload + MLXSW_REG_XRALST_RALST_OFFSET; 9399 9400 mlxsw_reg_ralst_bin_pack(ralst_payload, bin_number, left_child_bin, 9401 right_child_bin); 9402 } 9403 9404 /* XRALTB - XM Router Algorithmic LPM Tree Binding Register 9405 * -------------------------------------------------------- 9406 * The XRALTB register is used to bind virtual router and protocol 9407 * to an allocated LPM tree. 9408 * 9409 * This register embeds original RALTB register. 9410 */ 9411 #define MLXSW_REG_XRALTB_ID 0x7813 9412 #define MLXSW_REG_XRALTB_LEN 0x08 9413 #define MLXSW_REG_XRALTB_RALTB_OFFSET 0x04 9414 9415 MLXSW_REG_DEFINE(xraltb, MLXSW_REG_XRALTB_ID, MLXSW_REG_XRALTB_LEN); 9416 9417 static inline void mlxsw_reg_xraltb_pack(char *payload, u16 virtual_router, 9418 enum mlxsw_reg_ralxx_protocol protocol, 9419 u8 tree_id) 9420 { 9421 char *raltb_payload = payload + MLXSW_REG_XRALTB_RALTB_OFFSET; 9422 9423 MLXSW_REG_ZERO(xraltb, payload); 9424 mlxsw_reg_raltb_pack(raltb_payload, virtual_router, protocol, tree_id); 9425 } 9426 9427 /* MFCR - Management Fan Control Register 9428 * -------------------------------------- 9429 * This register controls the settings of the Fan Speed PWM mechanism. 9430 */ 9431 #define MLXSW_REG_MFCR_ID 0x9001 9432 #define MLXSW_REG_MFCR_LEN 0x08 9433 9434 MLXSW_REG_DEFINE(mfcr, MLXSW_REG_MFCR_ID, MLXSW_REG_MFCR_LEN); 9435 9436 enum mlxsw_reg_mfcr_pwm_frequency { 9437 MLXSW_REG_MFCR_PWM_FEQ_11HZ = 0x00, 9438 MLXSW_REG_MFCR_PWM_FEQ_14_7HZ = 0x01, 9439 MLXSW_REG_MFCR_PWM_FEQ_22_1HZ = 0x02, 9440 MLXSW_REG_MFCR_PWM_FEQ_1_4KHZ = 0x40, 9441 MLXSW_REG_MFCR_PWM_FEQ_5KHZ = 0x41, 9442 MLXSW_REG_MFCR_PWM_FEQ_20KHZ = 0x42, 9443 MLXSW_REG_MFCR_PWM_FEQ_22_5KHZ = 0x43, 9444 MLXSW_REG_MFCR_PWM_FEQ_25KHZ = 0x44, 9445 }; 9446 9447 /* reg_mfcr_pwm_frequency 9448 * Controls the frequency of the PWM signal. 9449 * Access: RW 9450 */ 9451 MLXSW_ITEM32(reg, mfcr, pwm_frequency, 0x00, 0, 7); 9452 9453 #define MLXSW_MFCR_TACHOS_MAX 10 9454 9455 /* reg_mfcr_tacho_active 9456 * Indicates which of the tachometer is active (bit per tachometer). 9457 * Access: RO 9458 */ 9459 MLXSW_ITEM32(reg, mfcr, tacho_active, 0x04, 16, MLXSW_MFCR_TACHOS_MAX); 9460 9461 #define MLXSW_MFCR_PWMS_MAX 5 9462 9463 /* reg_mfcr_pwm_active 9464 * Indicates which of the PWM control is active (bit per PWM). 9465 * Access: RO 9466 */ 9467 MLXSW_ITEM32(reg, mfcr, pwm_active, 0x04, 0, MLXSW_MFCR_PWMS_MAX); 9468 9469 static inline void 9470 mlxsw_reg_mfcr_pack(char *payload, 9471 enum mlxsw_reg_mfcr_pwm_frequency pwm_frequency) 9472 { 9473 MLXSW_REG_ZERO(mfcr, payload); 9474 mlxsw_reg_mfcr_pwm_frequency_set(payload, pwm_frequency); 9475 } 9476 9477 static inline void 9478 mlxsw_reg_mfcr_unpack(char *payload, 9479 enum mlxsw_reg_mfcr_pwm_frequency *p_pwm_frequency, 9480 u16 *p_tacho_active, u8 *p_pwm_active) 9481 { 9482 *p_pwm_frequency = mlxsw_reg_mfcr_pwm_frequency_get(payload); 9483 *p_tacho_active = mlxsw_reg_mfcr_tacho_active_get(payload); 9484 *p_pwm_active = mlxsw_reg_mfcr_pwm_active_get(payload); 9485 } 9486 9487 /* MFSC - Management Fan Speed Control Register 9488 * -------------------------------------------- 9489 * This register controls the settings of the Fan Speed PWM mechanism. 9490 */ 9491 #define MLXSW_REG_MFSC_ID 0x9002 9492 #define MLXSW_REG_MFSC_LEN 0x08 9493 9494 MLXSW_REG_DEFINE(mfsc, MLXSW_REG_MFSC_ID, MLXSW_REG_MFSC_LEN); 9495 9496 /* reg_mfsc_pwm 9497 * Fan pwm to control / monitor. 9498 * Access: Index 9499 */ 9500 MLXSW_ITEM32(reg, mfsc, pwm, 0x00, 24, 3); 9501 9502 /* reg_mfsc_pwm_duty_cycle 9503 * Controls the duty cycle of the PWM. Value range from 0..255 to 9504 * represent duty cycle of 0%...100%. 9505 * Access: RW 9506 */ 9507 MLXSW_ITEM32(reg, mfsc, pwm_duty_cycle, 0x04, 0, 8); 9508 9509 static inline void mlxsw_reg_mfsc_pack(char *payload, u8 pwm, 9510 u8 pwm_duty_cycle) 9511 { 9512 MLXSW_REG_ZERO(mfsc, payload); 9513 mlxsw_reg_mfsc_pwm_set(payload, pwm); 9514 mlxsw_reg_mfsc_pwm_duty_cycle_set(payload, pwm_duty_cycle); 9515 } 9516 9517 /* MFSM - Management Fan Speed Measurement 9518 * --------------------------------------- 9519 * This register controls the settings of the Tacho measurements and 9520 * enables reading the Tachometer measurements. 9521 */ 9522 #define MLXSW_REG_MFSM_ID 0x9003 9523 #define MLXSW_REG_MFSM_LEN 0x08 9524 9525 MLXSW_REG_DEFINE(mfsm, MLXSW_REG_MFSM_ID, MLXSW_REG_MFSM_LEN); 9526 9527 /* reg_mfsm_tacho 9528 * Fan tachometer index. 9529 * Access: Index 9530 */ 9531 MLXSW_ITEM32(reg, mfsm, tacho, 0x00, 24, 4); 9532 9533 /* reg_mfsm_rpm 9534 * Fan speed (round per minute). 9535 * Access: RO 9536 */ 9537 MLXSW_ITEM32(reg, mfsm, rpm, 0x04, 0, 16); 9538 9539 static inline void mlxsw_reg_mfsm_pack(char *payload, u8 tacho) 9540 { 9541 MLXSW_REG_ZERO(mfsm, payload); 9542 mlxsw_reg_mfsm_tacho_set(payload, tacho); 9543 } 9544 9545 /* MFSL - Management Fan Speed Limit Register 9546 * ------------------------------------------ 9547 * The Fan Speed Limit register is used to configure the fan speed 9548 * event / interrupt notification mechanism. Fan speed threshold are 9549 * defined for both under-speed and over-speed. 9550 */ 9551 #define MLXSW_REG_MFSL_ID 0x9004 9552 #define MLXSW_REG_MFSL_LEN 0x0C 9553 9554 MLXSW_REG_DEFINE(mfsl, MLXSW_REG_MFSL_ID, MLXSW_REG_MFSL_LEN); 9555 9556 /* reg_mfsl_tacho 9557 * Fan tachometer index. 9558 * Access: Index 9559 */ 9560 MLXSW_ITEM32(reg, mfsl, tacho, 0x00, 24, 4); 9561 9562 /* reg_mfsl_tach_min 9563 * Tachometer minimum value (minimum RPM). 9564 * Access: RW 9565 */ 9566 MLXSW_ITEM32(reg, mfsl, tach_min, 0x04, 0, 16); 9567 9568 /* reg_mfsl_tach_max 9569 * Tachometer maximum value (maximum RPM). 9570 * Access: RW 9571 */ 9572 MLXSW_ITEM32(reg, mfsl, tach_max, 0x08, 0, 16); 9573 9574 static inline void mlxsw_reg_mfsl_pack(char *payload, u8 tacho, 9575 u16 tach_min, u16 tach_max) 9576 { 9577 MLXSW_REG_ZERO(mfsl, payload); 9578 mlxsw_reg_mfsl_tacho_set(payload, tacho); 9579 mlxsw_reg_mfsl_tach_min_set(payload, tach_min); 9580 mlxsw_reg_mfsl_tach_max_set(payload, tach_max); 9581 } 9582 9583 static inline void mlxsw_reg_mfsl_unpack(char *payload, u8 tacho, 9584 u16 *p_tach_min, u16 *p_tach_max) 9585 { 9586 if (p_tach_min) 9587 *p_tach_min = mlxsw_reg_mfsl_tach_min_get(payload); 9588 9589 if (p_tach_max) 9590 *p_tach_max = mlxsw_reg_mfsl_tach_max_get(payload); 9591 } 9592 9593 /* FORE - Fan Out of Range Event Register 9594 * -------------------------------------- 9595 * This register reports the status of the controlled fans compared to the 9596 * range defined by the MFSL register. 9597 */ 9598 #define MLXSW_REG_FORE_ID 0x9007 9599 #define MLXSW_REG_FORE_LEN 0x0C 9600 9601 MLXSW_REG_DEFINE(fore, MLXSW_REG_FORE_ID, MLXSW_REG_FORE_LEN); 9602 9603 /* fan_under_limit 9604 * Fan speed is below the low limit defined in MFSL register. Each bit relates 9605 * to a single tachometer and indicates the specific tachometer reading is 9606 * below the threshold. 9607 * Access: RO 9608 */ 9609 MLXSW_ITEM32(reg, fore, fan_under_limit, 0x00, 16, 10); 9610 9611 static inline void mlxsw_reg_fore_unpack(char *payload, u8 tacho, 9612 bool *fault) 9613 { 9614 u16 limit; 9615 9616 if (fault) { 9617 limit = mlxsw_reg_fore_fan_under_limit_get(payload); 9618 *fault = limit & BIT(tacho); 9619 } 9620 } 9621 9622 /* MTCAP - Management Temperature Capabilities 9623 * ------------------------------------------- 9624 * This register exposes the capabilities of the device and 9625 * system temperature sensing. 9626 */ 9627 #define MLXSW_REG_MTCAP_ID 0x9009 9628 #define MLXSW_REG_MTCAP_LEN 0x08 9629 9630 MLXSW_REG_DEFINE(mtcap, MLXSW_REG_MTCAP_ID, MLXSW_REG_MTCAP_LEN); 9631 9632 /* reg_mtcap_sensor_count 9633 * Number of sensors supported by the device. 9634 * This includes the QSFP module sensors (if exists in the QSFP module). 9635 * Access: RO 9636 */ 9637 MLXSW_ITEM32(reg, mtcap, sensor_count, 0x00, 0, 7); 9638 9639 /* MTMP - Management Temperature 9640 * ----------------------------- 9641 * This register controls the settings of the temperature measurements 9642 * and enables reading the temperature measurements. Note that temperature 9643 * is in 0.125 degrees Celsius. 9644 */ 9645 #define MLXSW_REG_MTMP_ID 0x900A 9646 #define MLXSW_REG_MTMP_LEN 0x20 9647 9648 MLXSW_REG_DEFINE(mtmp, MLXSW_REG_MTMP_ID, MLXSW_REG_MTMP_LEN); 9649 9650 #define MLXSW_REG_MTMP_MODULE_INDEX_MIN 64 9651 #define MLXSW_REG_MTMP_GBOX_INDEX_MIN 256 9652 /* reg_mtmp_sensor_index 9653 * Sensors index to access. 9654 * 64-127 of sensor_index are mapped to the SFP+/QSFP modules sequentially 9655 * (module 0 is mapped to sensor_index 64). 9656 * Access: Index 9657 */ 9658 MLXSW_ITEM32(reg, mtmp, sensor_index, 0x00, 0, 12); 9659 9660 /* Convert to milli degrees Celsius */ 9661 #define MLXSW_REG_MTMP_TEMP_TO_MC(val) ({ typeof(val) v_ = (val); \ 9662 ((v_) >= 0) ? ((v_) * 125) : \ 9663 ((s16)((GENMASK(15, 0) + (v_) + 1) \ 9664 * 125)); }) 9665 9666 /* reg_mtmp_max_operational_temperature 9667 * The highest temperature in the nominal operational range. Reading is in 9668 * 0.125 Celsius degrees units. 9669 * In case of module this is SFF critical temperature threshold. 9670 * Access: RO 9671 */ 9672 MLXSW_ITEM32(reg, mtmp, max_operational_temperature, 0x04, 16, 16); 9673 9674 /* reg_mtmp_temperature 9675 * Temperature reading from the sensor. Reading is in 0.125 Celsius 9676 * degrees units. 9677 * Access: RO 9678 */ 9679 MLXSW_ITEM32(reg, mtmp, temperature, 0x04, 0, 16); 9680 9681 /* reg_mtmp_mte 9682 * Max Temperature Enable - enables measuring the max temperature on a sensor. 9683 * Access: RW 9684 */ 9685 MLXSW_ITEM32(reg, mtmp, mte, 0x08, 31, 1); 9686 9687 /* reg_mtmp_mtr 9688 * Max Temperature Reset - clears the value of the max temperature register. 9689 * Access: WO 9690 */ 9691 MLXSW_ITEM32(reg, mtmp, mtr, 0x08, 30, 1); 9692 9693 /* reg_mtmp_max_temperature 9694 * The highest measured temperature from the sensor. 9695 * When the bit mte is cleared, the field max_temperature is reserved. 9696 * Access: RO 9697 */ 9698 MLXSW_ITEM32(reg, mtmp, max_temperature, 0x08, 0, 16); 9699 9700 /* reg_mtmp_tee 9701 * Temperature Event Enable. 9702 * 0 - Do not generate event 9703 * 1 - Generate event 9704 * 2 - Generate single event 9705 * Access: RW 9706 */ 9707 9708 enum mlxsw_reg_mtmp_tee { 9709 MLXSW_REG_MTMP_TEE_NO_EVENT, 9710 MLXSW_REG_MTMP_TEE_GENERATE_EVENT, 9711 MLXSW_REG_MTMP_TEE_GENERATE_SINGLE_EVENT, 9712 }; 9713 9714 MLXSW_ITEM32(reg, mtmp, tee, 0x0C, 30, 2); 9715 9716 #define MLXSW_REG_MTMP_THRESH_HI 0x348 /* 105 Celsius */ 9717 9718 /* reg_mtmp_temperature_threshold_hi 9719 * High threshold for Temperature Warning Event. In 0.125 Celsius. 9720 * Access: RW 9721 */ 9722 MLXSW_ITEM32(reg, mtmp, temperature_threshold_hi, 0x0C, 0, 16); 9723 9724 #define MLXSW_REG_MTMP_HYSTERESIS_TEMP 0x28 /* 5 Celsius */ 9725 /* reg_mtmp_temperature_threshold_lo 9726 * Low threshold for Temperature Warning Event. In 0.125 Celsius. 9727 * Access: RW 9728 */ 9729 MLXSW_ITEM32(reg, mtmp, temperature_threshold_lo, 0x10, 0, 16); 9730 9731 #define MLXSW_REG_MTMP_SENSOR_NAME_SIZE 8 9732 9733 /* reg_mtmp_sensor_name 9734 * Sensor Name 9735 * Access: RO 9736 */ 9737 MLXSW_ITEM_BUF(reg, mtmp, sensor_name, 0x18, MLXSW_REG_MTMP_SENSOR_NAME_SIZE); 9738 9739 static inline void mlxsw_reg_mtmp_pack(char *payload, u16 sensor_index, 9740 bool max_temp_enable, 9741 bool max_temp_reset) 9742 { 9743 MLXSW_REG_ZERO(mtmp, payload); 9744 mlxsw_reg_mtmp_sensor_index_set(payload, sensor_index); 9745 mlxsw_reg_mtmp_mte_set(payload, max_temp_enable); 9746 mlxsw_reg_mtmp_mtr_set(payload, max_temp_reset); 9747 mlxsw_reg_mtmp_temperature_threshold_hi_set(payload, 9748 MLXSW_REG_MTMP_THRESH_HI); 9749 } 9750 9751 static inline void mlxsw_reg_mtmp_unpack(char *payload, int *p_temp, 9752 int *p_max_temp, int *p_temp_hi, 9753 int *p_max_oper_temp, 9754 char *sensor_name) 9755 { 9756 s16 temp; 9757 9758 if (p_temp) { 9759 temp = mlxsw_reg_mtmp_temperature_get(payload); 9760 *p_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp); 9761 } 9762 if (p_max_temp) { 9763 temp = mlxsw_reg_mtmp_max_temperature_get(payload); 9764 *p_max_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp); 9765 } 9766 if (p_temp_hi) { 9767 temp = mlxsw_reg_mtmp_temperature_threshold_hi_get(payload); 9768 *p_temp_hi = MLXSW_REG_MTMP_TEMP_TO_MC(temp); 9769 } 9770 if (p_max_oper_temp) { 9771 temp = mlxsw_reg_mtmp_max_operational_temperature_get(payload); 9772 *p_max_oper_temp = MLXSW_REG_MTMP_TEMP_TO_MC(temp); 9773 } 9774 if (sensor_name) 9775 mlxsw_reg_mtmp_sensor_name_memcpy_from(payload, sensor_name); 9776 } 9777 9778 /* MTWE - Management Temperature Warning Event 9779 * ------------------------------------------- 9780 * This register is used for over temperature warning. 9781 */ 9782 #define MLXSW_REG_MTWE_ID 0x900B 9783 #define MLXSW_REG_MTWE_LEN 0x10 9784 9785 MLXSW_REG_DEFINE(mtwe, MLXSW_REG_MTWE_ID, MLXSW_REG_MTWE_LEN); 9786 9787 /* reg_mtwe_sensor_warning 9788 * Bit vector indicating which of the sensor reading is above threshold. 9789 * Address 00h bit31 is sensor_warning[127]. 9790 * Address 0Ch bit0 is sensor_warning[0]. 9791 * Access: RO 9792 */ 9793 MLXSW_ITEM_BIT_ARRAY(reg, mtwe, sensor_warning, 0x0, 0x10, 1); 9794 9795 /* MTBR - Management Temperature Bulk Register 9796 * ------------------------------------------- 9797 * This register is used for bulk temperature reading. 9798 */ 9799 #define MLXSW_REG_MTBR_ID 0x900F 9800 #define MLXSW_REG_MTBR_BASE_LEN 0x10 /* base length, without records */ 9801 #define MLXSW_REG_MTBR_REC_LEN 0x04 /* record length */ 9802 #define MLXSW_REG_MTBR_REC_MAX_COUNT 47 /* firmware limitation */ 9803 #define MLXSW_REG_MTBR_LEN (MLXSW_REG_MTBR_BASE_LEN + \ 9804 MLXSW_REG_MTBR_REC_LEN * \ 9805 MLXSW_REG_MTBR_REC_MAX_COUNT) 9806 9807 MLXSW_REG_DEFINE(mtbr, MLXSW_REG_MTBR_ID, MLXSW_REG_MTBR_LEN); 9808 9809 /* reg_mtbr_base_sensor_index 9810 * Base sensors index to access (0 - ASIC sensor, 1-63 - ambient sensors, 9811 * 64-127 are mapped to the SFP+/QSFP modules sequentially). 9812 * Access: Index 9813 */ 9814 MLXSW_ITEM32(reg, mtbr, base_sensor_index, 0x00, 0, 12); 9815 9816 /* reg_mtbr_num_rec 9817 * Request: Number of records to read 9818 * Response: Number of records read 9819 * See above description for more details. 9820 * Range 1..255 9821 * Access: RW 9822 */ 9823 MLXSW_ITEM32(reg, mtbr, num_rec, 0x04, 0, 8); 9824 9825 /* reg_mtbr_rec_max_temp 9826 * The highest measured temperature from the sensor. 9827 * When the bit mte is cleared, the field max_temperature is reserved. 9828 * Access: RO 9829 */ 9830 MLXSW_ITEM32_INDEXED(reg, mtbr, rec_max_temp, MLXSW_REG_MTBR_BASE_LEN, 16, 9831 16, MLXSW_REG_MTBR_REC_LEN, 0x00, false); 9832 9833 /* reg_mtbr_rec_temp 9834 * Temperature reading from the sensor. Reading is in 0..125 Celsius 9835 * degrees units. 9836 * Access: RO 9837 */ 9838 MLXSW_ITEM32_INDEXED(reg, mtbr, rec_temp, MLXSW_REG_MTBR_BASE_LEN, 0, 16, 9839 MLXSW_REG_MTBR_REC_LEN, 0x00, false); 9840 9841 static inline void mlxsw_reg_mtbr_pack(char *payload, u16 base_sensor_index, 9842 u8 num_rec) 9843 { 9844 MLXSW_REG_ZERO(mtbr, payload); 9845 mlxsw_reg_mtbr_base_sensor_index_set(payload, base_sensor_index); 9846 mlxsw_reg_mtbr_num_rec_set(payload, num_rec); 9847 } 9848 9849 /* Error codes from temperatute reading */ 9850 enum mlxsw_reg_mtbr_temp_status { 9851 MLXSW_REG_MTBR_NO_CONN = 0x8000, 9852 MLXSW_REG_MTBR_NO_TEMP_SENS = 0x8001, 9853 MLXSW_REG_MTBR_INDEX_NA = 0x8002, 9854 MLXSW_REG_MTBR_BAD_SENS_INFO = 0x8003, 9855 }; 9856 9857 /* Base index for reading modules temperature */ 9858 #define MLXSW_REG_MTBR_BASE_MODULE_INDEX 64 9859 9860 static inline void mlxsw_reg_mtbr_temp_unpack(char *payload, int rec_ind, 9861 u16 *p_temp, u16 *p_max_temp) 9862 { 9863 if (p_temp) 9864 *p_temp = mlxsw_reg_mtbr_rec_temp_get(payload, rec_ind); 9865 if (p_max_temp) 9866 *p_max_temp = mlxsw_reg_mtbr_rec_max_temp_get(payload, rec_ind); 9867 } 9868 9869 /* MCIA - Management Cable Info Access 9870 * ----------------------------------- 9871 * MCIA register is used to access the SFP+ and QSFP connector's EPROM. 9872 */ 9873 9874 #define MLXSW_REG_MCIA_ID 0x9014 9875 #define MLXSW_REG_MCIA_LEN 0x40 9876 9877 MLXSW_REG_DEFINE(mcia, MLXSW_REG_MCIA_ID, MLXSW_REG_MCIA_LEN); 9878 9879 /* reg_mcia_l 9880 * Lock bit. Setting this bit will lock the access to the specific 9881 * cable. Used for updating a full page in a cable EPROM. Any access 9882 * other then subsequence writes will fail while the port is locked. 9883 * Access: RW 9884 */ 9885 MLXSW_ITEM32(reg, mcia, l, 0x00, 31, 1); 9886 9887 /* reg_mcia_module 9888 * Module number. 9889 * Access: Index 9890 */ 9891 MLXSW_ITEM32(reg, mcia, module, 0x00, 16, 8); 9892 9893 enum { 9894 MLXSW_REG_MCIA_STATUS_GOOD = 0, 9895 /* No response from module's EEPROM. */ 9896 MLXSW_REG_MCIA_STATUS_NO_EEPROM_MODULE = 1, 9897 /* Module type not supported by the device. */ 9898 MLXSW_REG_MCIA_STATUS_MODULE_NOT_SUPPORTED = 2, 9899 /* No module present indication. */ 9900 MLXSW_REG_MCIA_STATUS_MODULE_NOT_CONNECTED = 3, 9901 /* Error occurred while trying to access module's EEPROM using I2C. */ 9902 MLXSW_REG_MCIA_STATUS_I2C_ERROR = 9, 9903 /* Module is disabled. */ 9904 MLXSW_REG_MCIA_STATUS_MODULE_DISABLED = 16, 9905 }; 9906 9907 /* reg_mcia_status 9908 * Module status. 9909 * Access: RO 9910 */ 9911 MLXSW_ITEM32(reg, mcia, status, 0x00, 0, 8); 9912 9913 /* reg_mcia_i2c_device_address 9914 * I2C device address. 9915 * Access: RW 9916 */ 9917 MLXSW_ITEM32(reg, mcia, i2c_device_address, 0x04, 24, 8); 9918 9919 /* reg_mcia_page_number 9920 * Page number. 9921 * Access: RW 9922 */ 9923 MLXSW_ITEM32(reg, mcia, page_number, 0x04, 16, 8); 9924 9925 /* reg_mcia_device_address 9926 * Device address. 9927 * Access: RW 9928 */ 9929 MLXSW_ITEM32(reg, mcia, device_address, 0x04, 0, 16); 9930 9931 /* reg_mcia_bank_number 9932 * Bank number. 9933 * Access: Index 9934 */ 9935 MLXSW_ITEM32(reg, mcia, bank_number, 0x08, 16, 8); 9936 9937 /* reg_mcia_size 9938 * Number of bytes to read/write (up to 48 bytes). 9939 * Access: RW 9940 */ 9941 MLXSW_ITEM32(reg, mcia, size, 0x08, 0, 16); 9942 9943 #define MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH 256 9944 #define MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH 128 9945 #define MLXSW_REG_MCIA_EEPROM_SIZE 48 9946 #define MLXSW_REG_MCIA_I2C_ADDR_LOW 0x50 9947 #define MLXSW_REG_MCIA_I2C_ADDR_HIGH 0x51 9948 #define MLXSW_REG_MCIA_PAGE0_LO_OFF 0xa0 9949 #define MLXSW_REG_MCIA_TH_ITEM_SIZE 2 9950 #define MLXSW_REG_MCIA_TH_PAGE_NUM 3 9951 #define MLXSW_REG_MCIA_TH_PAGE_CMIS_NUM 2 9952 #define MLXSW_REG_MCIA_PAGE0_LO 0 9953 #define MLXSW_REG_MCIA_TH_PAGE_OFF 0x80 9954 #define MLXSW_REG_MCIA_EEPROM_CMIS_FLAT_MEMORY BIT(7) 9955 9956 enum mlxsw_reg_mcia_eeprom_module_info_rev_id { 9957 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_UNSPC = 0x00, 9958 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8436 = 0x01, 9959 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID_8636 = 0x03, 9960 }; 9961 9962 enum mlxsw_reg_mcia_eeprom_module_info_id { 9963 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_SFP = 0x03, 9964 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP = 0x0C, 9965 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_PLUS = 0x0D, 9966 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP28 = 0x11, 9967 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID_QSFP_DD = 0x18, 9968 }; 9969 9970 enum mlxsw_reg_mcia_eeprom_module_info { 9971 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_ID, 9972 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_REV_ID, 9973 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_TYPE_ID, 9974 MLXSW_REG_MCIA_EEPROM_MODULE_INFO_SIZE, 9975 }; 9976 9977 /* reg_mcia_eeprom 9978 * Bytes to read/write. 9979 * Access: RW 9980 */ 9981 MLXSW_ITEM_BUF(reg, mcia, eeprom, 0x10, MLXSW_REG_MCIA_EEPROM_SIZE); 9982 9983 /* This is used to access the optional upper pages (1-3) in the QSFP+ 9984 * memory map. Page 1 is available on offset 256 through 383, page 2 - 9985 * on offset 384 through 511, page 3 - on offset 512 through 639. 9986 */ 9987 #define MLXSW_REG_MCIA_PAGE_GET(off) (((off) - \ 9988 MLXSW_REG_MCIA_EEPROM_PAGE_LENGTH) / \ 9989 MLXSW_REG_MCIA_EEPROM_UP_PAGE_LENGTH + 1) 9990 9991 static inline void mlxsw_reg_mcia_pack(char *payload, u8 module, u8 lock, 9992 u8 page_number, u16 device_addr, 9993 u8 size, u8 i2c_device_addr) 9994 { 9995 MLXSW_REG_ZERO(mcia, payload); 9996 mlxsw_reg_mcia_module_set(payload, module); 9997 mlxsw_reg_mcia_l_set(payload, lock); 9998 mlxsw_reg_mcia_page_number_set(payload, page_number); 9999 mlxsw_reg_mcia_device_address_set(payload, device_addr); 10000 mlxsw_reg_mcia_size_set(payload, size); 10001 mlxsw_reg_mcia_i2c_device_address_set(payload, i2c_device_addr); 10002 } 10003 10004 /* MPAT - Monitoring Port Analyzer Table 10005 * ------------------------------------- 10006 * MPAT Register is used to query and configure the Switch PortAnalyzer Table. 10007 * For an enabled analyzer, all fields except e (enable) cannot be modified. 10008 */ 10009 #define MLXSW_REG_MPAT_ID 0x901A 10010 #define MLXSW_REG_MPAT_LEN 0x78 10011 10012 MLXSW_REG_DEFINE(mpat, MLXSW_REG_MPAT_ID, MLXSW_REG_MPAT_LEN); 10013 10014 /* reg_mpat_pa_id 10015 * Port Analyzer ID. 10016 * Access: Index 10017 */ 10018 MLXSW_ITEM32(reg, mpat, pa_id, 0x00, 28, 4); 10019 10020 /* reg_mpat_session_id 10021 * Mirror Session ID. 10022 * Used for MIRROR_SESSION<i> trap. 10023 * Access: RW 10024 */ 10025 MLXSW_ITEM32(reg, mpat, session_id, 0x00, 24, 4); 10026 10027 /* reg_mpat_system_port 10028 * A unique port identifier for the final destination of the packet. 10029 * Access: RW 10030 */ 10031 MLXSW_ITEM32(reg, mpat, system_port, 0x00, 0, 16); 10032 10033 /* reg_mpat_e 10034 * Enable. Indicating the Port Analyzer is enabled. 10035 * Access: RW 10036 */ 10037 MLXSW_ITEM32(reg, mpat, e, 0x04, 31, 1); 10038 10039 /* reg_mpat_qos 10040 * Quality Of Service Mode. 10041 * 0: CONFIGURED - QoS parameters (Switch Priority, and encapsulation 10042 * PCP, DEI, DSCP or VL) are configured. 10043 * 1: MAINTAIN - QoS parameters (Switch Priority, Color) are the 10044 * same as in the original packet that has triggered the mirroring. For 10045 * SPAN also the pcp,dei are maintained. 10046 * Access: RW 10047 */ 10048 MLXSW_ITEM32(reg, mpat, qos, 0x04, 26, 1); 10049 10050 /* reg_mpat_be 10051 * Best effort mode. Indicates mirroring traffic should not cause packet 10052 * drop or back pressure, but will discard the mirrored packets. Mirrored 10053 * packets will be forwarded on a best effort manner. 10054 * 0: Do not discard mirrored packets 10055 * 1: Discard mirrored packets if causing congestion 10056 * Access: RW 10057 */ 10058 MLXSW_ITEM32(reg, mpat, be, 0x04, 25, 1); 10059 10060 enum mlxsw_reg_mpat_span_type { 10061 /* Local SPAN Ethernet. 10062 * The original packet is not encapsulated. 10063 */ 10064 MLXSW_REG_MPAT_SPAN_TYPE_LOCAL_ETH = 0x0, 10065 10066 /* Remote SPAN Ethernet VLAN. 10067 * The packet is forwarded to the monitoring port on the monitoring 10068 * VLAN. 10069 */ 10070 MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH = 0x1, 10071 10072 /* Encapsulated Remote SPAN Ethernet L3 GRE. 10073 * The packet is encapsulated with GRE header. 10074 */ 10075 MLXSW_REG_MPAT_SPAN_TYPE_REMOTE_ETH_L3 = 0x3, 10076 }; 10077 10078 /* reg_mpat_span_type 10079 * SPAN type. 10080 * Access: RW 10081 */ 10082 MLXSW_ITEM32(reg, mpat, span_type, 0x04, 0, 4); 10083 10084 /* reg_mpat_pide 10085 * Policer enable. 10086 * Access: RW 10087 */ 10088 MLXSW_ITEM32(reg, mpat, pide, 0x0C, 15, 1); 10089 10090 /* reg_mpat_pid 10091 * Policer ID. 10092 * Access: RW 10093 */ 10094 MLXSW_ITEM32(reg, mpat, pid, 0x0C, 0, 14); 10095 10096 /* Remote SPAN - Ethernet VLAN 10097 * - - - - - - - - - - - - - - 10098 */ 10099 10100 /* reg_mpat_eth_rspan_vid 10101 * Encapsulation header VLAN ID. 10102 * Access: RW 10103 */ 10104 MLXSW_ITEM32(reg, mpat, eth_rspan_vid, 0x18, 0, 12); 10105 10106 /* Encapsulated Remote SPAN - Ethernet L2 10107 * - - - - - - - - - - - - - - - - - - - 10108 */ 10109 10110 enum mlxsw_reg_mpat_eth_rspan_version { 10111 MLXSW_REG_MPAT_ETH_RSPAN_VERSION_NO_HEADER = 15, 10112 }; 10113 10114 /* reg_mpat_eth_rspan_version 10115 * RSPAN mirror header version. 10116 * Access: RW 10117 */ 10118 MLXSW_ITEM32(reg, mpat, eth_rspan_version, 0x10, 18, 4); 10119 10120 /* reg_mpat_eth_rspan_mac 10121 * Destination MAC address. 10122 * Access: RW 10123 */ 10124 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_mac, 0x12, 6); 10125 10126 /* reg_mpat_eth_rspan_tp 10127 * Tag Packet. Indicates whether the mirroring header should be VLAN tagged. 10128 * Access: RW 10129 */ 10130 MLXSW_ITEM32(reg, mpat, eth_rspan_tp, 0x18, 16, 1); 10131 10132 /* Encapsulated Remote SPAN - Ethernet L3 10133 * - - - - - - - - - - - - - - - - - - - 10134 */ 10135 10136 enum mlxsw_reg_mpat_eth_rspan_protocol { 10137 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4, 10138 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6, 10139 }; 10140 10141 /* reg_mpat_eth_rspan_protocol 10142 * SPAN encapsulation protocol. 10143 * Access: RW 10144 */ 10145 MLXSW_ITEM32(reg, mpat, eth_rspan_protocol, 0x18, 24, 4); 10146 10147 /* reg_mpat_eth_rspan_ttl 10148 * Encapsulation header Time-to-Live/HopLimit. 10149 * Access: RW 10150 */ 10151 MLXSW_ITEM32(reg, mpat, eth_rspan_ttl, 0x1C, 4, 8); 10152 10153 /* reg_mpat_eth_rspan_smac 10154 * Source MAC address 10155 * Access: RW 10156 */ 10157 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_smac, 0x22, 6); 10158 10159 /* reg_mpat_eth_rspan_dip* 10160 * Destination IP address. The IP version is configured by protocol. 10161 * Access: RW 10162 */ 10163 MLXSW_ITEM32(reg, mpat, eth_rspan_dip4, 0x4C, 0, 32); 10164 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_dip6, 0x40, 16); 10165 10166 /* reg_mpat_eth_rspan_sip* 10167 * Source IP address. The IP version is configured by protocol. 10168 * Access: RW 10169 */ 10170 MLXSW_ITEM32(reg, mpat, eth_rspan_sip4, 0x5C, 0, 32); 10171 MLXSW_ITEM_BUF(reg, mpat, eth_rspan_sip6, 0x50, 16); 10172 10173 static inline void mlxsw_reg_mpat_pack(char *payload, u8 pa_id, 10174 u16 system_port, bool e, 10175 enum mlxsw_reg_mpat_span_type span_type) 10176 { 10177 MLXSW_REG_ZERO(mpat, payload); 10178 mlxsw_reg_mpat_pa_id_set(payload, pa_id); 10179 mlxsw_reg_mpat_system_port_set(payload, system_port); 10180 mlxsw_reg_mpat_e_set(payload, e); 10181 mlxsw_reg_mpat_qos_set(payload, 1); 10182 mlxsw_reg_mpat_be_set(payload, 1); 10183 mlxsw_reg_mpat_span_type_set(payload, span_type); 10184 } 10185 10186 static inline void mlxsw_reg_mpat_eth_rspan_pack(char *payload, u16 vid) 10187 { 10188 mlxsw_reg_mpat_eth_rspan_vid_set(payload, vid); 10189 } 10190 10191 static inline void 10192 mlxsw_reg_mpat_eth_rspan_l2_pack(char *payload, 10193 enum mlxsw_reg_mpat_eth_rspan_version version, 10194 const char *mac, 10195 bool tp) 10196 { 10197 mlxsw_reg_mpat_eth_rspan_version_set(payload, version); 10198 mlxsw_reg_mpat_eth_rspan_mac_memcpy_to(payload, mac); 10199 mlxsw_reg_mpat_eth_rspan_tp_set(payload, tp); 10200 } 10201 10202 static inline void 10203 mlxsw_reg_mpat_eth_rspan_l3_ipv4_pack(char *payload, u8 ttl, 10204 const char *smac, 10205 u32 sip, u32 dip) 10206 { 10207 mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl); 10208 mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac); 10209 mlxsw_reg_mpat_eth_rspan_protocol_set(payload, 10210 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV4); 10211 mlxsw_reg_mpat_eth_rspan_sip4_set(payload, sip); 10212 mlxsw_reg_mpat_eth_rspan_dip4_set(payload, dip); 10213 } 10214 10215 static inline void 10216 mlxsw_reg_mpat_eth_rspan_l3_ipv6_pack(char *payload, u8 ttl, 10217 const char *smac, 10218 struct in6_addr sip, struct in6_addr dip) 10219 { 10220 mlxsw_reg_mpat_eth_rspan_ttl_set(payload, ttl); 10221 mlxsw_reg_mpat_eth_rspan_smac_memcpy_to(payload, smac); 10222 mlxsw_reg_mpat_eth_rspan_protocol_set(payload, 10223 MLXSW_REG_MPAT_ETH_RSPAN_PROTOCOL_IPV6); 10224 mlxsw_reg_mpat_eth_rspan_sip6_memcpy_to(payload, (void *)&sip); 10225 mlxsw_reg_mpat_eth_rspan_dip6_memcpy_to(payload, (void *)&dip); 10226 } 10227 10228 /* MPAR - Monitoring Port Analyzer Register 10229 * ---------------------------------------- 10230 * MPAR register is used to query and configure the port analyzer port mirroring 10231 * properties. 10232 */ 10233 #define MLXSW_REG_MPAR_ID 0x901B 10234 #define MLXSW_REG_MPAR_LEN 0x0C 10235 10236 MLXSW_REG_DEFINE(mpar, MLXSW_REG_MPAR_ID, MLXSW_REG_MPAR_LEN); 10237 10238 /* reg_mpar_local_port 10239 * The local port to mirror the packets from. 10240 * Access: Index 10241 */ 10242 MLXSW_ITEM32(reg, mpar, local_port, 0x00, 16, 8); 10243 10244 enum mlxsw_reg_mpar_i_e { 10245 MLXSW_REG_MPAR_TYPE_EGRESS, 10246 MLXSW_REG_MPAR_TYPE_INGRESS, 10247 }; 10248 10249 /* reg_mpar_i_e 10250 * Ingress/Egress 10251 * Access: Index 10252 */ 10253 MLXSW_ITEM32(reg, mpar, i_e, 0x00, 0, 4); 10254 10255 /* reg_mpar_enable 10256 * Enable mirroring 10257 * By default, port mirroring is disabled for all ports. 10258 * Access: RW 10259 */ 10260 MLXSW_ITEM32(reg, mpar, enable, 0x04, 31, 1); 10261 10262 /* reg_mpar_pa_id 10263 * Port Analyzer ID. 10264 * Access: RW 10265 */ 10266 MLXSW_ITEM32(reg, mpar, pa_id, 0x04, 0, 4); 10267 10268 #define MLXSW_REG_MPAR_RATE_MAX 3500000000UL 10269 10270 /* reg_mpar_probability_rate 10271 * Sampling rate. 10272 * Valid values are: 1 to 3.5*10^9 10273 * Value of 1 means "sample all". Default is 1. 10274 * Reserved when Spectrum-1. 10275 * Access: RW 10276 */ 10277 MLXSW_ITEM32(reg, mpar, probability_rate, 0x08, 0, 32); 10278 10279 static inline void mlxsw_reg_mpar_pack(char *payload, u8 local_port, 10280 enum mlxsw_reg_mpar_i_e i_e, 10281 bool enable, u8 pa_id, 10282 u32 probability_rate) 10283 { 10284 MLXSW_REG_ZERO(mpar, payload); 10285 mlxsw_reg_mpar_local_port_set(payload, local_port); 10286 mlxsw_reg_mpar_enable_set(payload, enable); 10287 mlxsw_reg_mpar_i_e_set(payload, i_e); 10288 mlxsw_reg_mpar_pa_id_set(payload, pa_id); 10289 mlxsw_reg_mpar_probability_rate_set(payload, probability_rate); 10290 } 10291 10292 /* MGIR - Management General Information Register 10293 * ---------------------------------------------- 10294 * MGIR register allows software to query the hardware and firmware general 10295 * information. 10296 */ 10297 #define MLXSW_REG_MGIR_ID 0x9020 10298 #define MLXSW_REG_MGIR_LEN 0x9C 10299 10300 MLXSW_REG_DEFINE(mgir, MLXSW_REG_MGIR_ID, MLXSW_REG_MGIR_LEN); 10301 10302 /* reg_mgir_hw_info_device_hw_revision 10303 * Access: RO 10304 */ 10305 MLXSW_ITEM32(reg, mgir, hw_info_device_hw_revision, 0x0, 16, 16); 10306 10307 #define MLXSW_REG_MGIR_FW_INFO_PSID_SIZE 16 10308 10309 /* reg_mgir_fw_info_psid 10310 * PSID (ASCII string). 10311 * Access: RO 10312 */ 10313 MLXSW_ITEM_BUF(reg, mgir, fw_info_psid, 0x30, MLXSW_REG_MGIR_FW_INFO_PSID_SIZE); 10314 10315 /* reg_mgir_fw_info_extended_major 10316 * Access: RO 10317 */ 10318 MLXSW_ITEM32(reg, mgir, fw_info_extended_major, 0x44, 0, 32); 10319 10320 /* reg_mgir_fw_info_extended_minor 10321 * Access: RO 10322 */ 10323 MLXSW_ITEM32(reg, mgir, fw_info_extended_minor, 0x48, 0, 32); 10324 10325 /* reg_mgir_fw_info_extended_sub_minor 10326 * Access: RO 10327 */ 10328 MLXSW_ITEM32(reg, mgir, fw_info_extended_sub_minor, 0x4C, 0, 32); 10329 10330 static inline void mlxsw_reg_mgir_pack(char *payload) 10331 { 10332 MLXSW_REG_ZERO(mgir, payload); 10333 } 10334 10335 static inline void 10336 mlxsw_reg_mgir_unpack(char *payload, u32 *hw_rev, char *fw_info_psid, 10337 u32 *fw_major, u32 *fw_minor, u32 *fw_sub_minor) 10338 { 10339 *hw_rev = mlxsw_reg_mgir_hw_info_device_hw_revision_get(payload); 10340 mlxsw_reg_mgir_fw_info_psid_memcpy_from(payload, fw_info_psid); 10341 *fw_major = mlxsw_reg_mgir_fw_info_extended_major_get(payload); 10342 *fw_minor = mlxsw_reg_mgir_fw_info_extended_minor_get(payload); 10343 *fw_sub_minor = mlxsw_reg_mgir_fw_info_extended_sub_minor_get(payload); 10344 } 10345 10346 /* MRSR - Management Reset and Shutdown Register 10347 * --------------------------------------------- 10348 * MRSR register is used to reset or shutdown the switch or 10349 * the entire system (when applicable). 10350 */ 10351 #define MLXSW_REG_MRSR_ID 0x9023 10352 #define MLXSW_REG_MRSR_LEN 0x08 10353 10354 MLXSW_REG_DEFINE(mrsr, MLXSW_REG_MRSR_ID, MLXSW_REG_MRSR_LEN); 10355 10356 /* reg_mrsr_command 10357 * Reset/shutdown command 10358 * 0 - do nothing 10359 * 1 - software reset 10360 * Access: WO 10361 */ 10362 MLXSW_ITEM32(reg, mrsr, command, 0x00, 0, 4); 10363 10364 static inline void mlxsw_reg_mrsr_pack(char *payload) 10365 { 10366 MLXSW_REG_ZERO(mrsr, payload); 10367 mlxsw_reg_mrsr_command_set(payload, 1); 10368 } 10369 10370 /* MLCR - Management LED Control Register 10371 * -------------------------------------- 10372 * Controls the system LEDs. 10373 */ 10374 #define MLXSW_REG_MLCR_ID 0x902B 10375 #define MLXSW_REG_MLCR_LEN 0x0C 10376 10377 MLXSW_REG_DEFINE(mlcr, MLXSW_REG_MLCR_ID, MLXSW_REG_MLCR_LEN); 10378 10379 /* reg_mlcr_local_port 10380 * Local port number. 10381 * Access: RW 10382 */ 10383 MLXSW_ITEM32(reg, mlcr, local_port, 0x00, 16, 8); 10384 10385 #define MLXSW_REG_MLCR_DURATION_MAX 0xFFFF 10386 10387 /* reg_mlcr_beacon_duration 10388 * Duration of the beacon to be active, in seconds. 10389 * 0x0 - Will turn off the beacon. 10390 * 0xFFFF - Will turn on the beacon until explicitly turned off. 10391 * Access: RW 10392 */ 10393 MLXSW_ITEM32(reg, mlcr, beacon_duration, 0x04, 0, 16); 10394 10395 /* reg_mlcr_beacon_remain 10396 * Remaining duration of the beacon, in seconds. 10397 * 0xFFFF indicates an infinite amount of time. 10398 * Access: RO 10399 */ 10400 MLXSW_ITEM32(reg, mlcr, beacon_remain, 0x08, 0, 16); 10401 10402 static inline void mlxsw_reg_mlcr_pack(char *payload, u8 local_port, 10403 bool active) 10404 { 10405 MLXSW_REG_ZERO(mlcr, payload); 10406 mlxsw_reg_mlcr_local_port_set(payload, local_port); 10407 mlxsw_reg_mlcr_beacon_duration_set(payload, active ? 10408 MLXSW_REG_MLCR_DURATION_MAX : 0); 10409 } 10410 10411 /* MCION - Management Cable IO and Notifications Register 10412 * ------------------------------------------------------ 10413 * The MCION register is used to query transceiver modules' IO pins and other 10414 * notifications. 10415 */ 10416 #define MLXSW_REG_MCION_ID 0x9052 10417 #define MLXSW_REG_MCION_LEN 0x18 10418 10419 MLXSW_REG_DEFINE(mcion, MLXSW_REG_MCION_ID, MLXSW_REG_MCION_LEN); 10420 10421 /* reg_mcion_module 10422 * Module number. 10423 * Access: Index 10424 */ 10425 MLXSW_ITEM32(reg, mcion, module, 0x00, 16, 8); 10426 10427 enum { 10428 MLXSW_REG_MCION_MODULE_STATUS_BITS_PRESENT_MASK = BIT(0), 10429 MLXSW_REG_MCION_MODULE_STATUS_BITS_LOW_POWER_MASK = BIT(8), 10430 }; 10431 10432 /* reg_mcion_module_status_bits 10433 * Module IO status as defined by SFF. 10434 * Access: RO 10435 */ 10436 MLXSW_ITEM32(reg, mcion, module_status_bits, 0x04, 0, 16); 10437 10438 static inline void mlxsw_reg_mcion_pack(char *payload, u8 module) 10439 { 10440 MLXSW_REG_ZERO(mcion, payload); 10441 mlxsw_reg_mcion_module_set(payload, module); 10442 } 10443 10444 /* MTPPS - Management Pulse Per Second Register 10445 * -------------------------------------------- 10446 * This register provides the device PPS capabilities, configure the PPS in and 10447 * out modules and holds the PPS in time stamp. 10448 */ 10449 #define MLXSW_REG_MTPPS_ID 0x9053 10450 #define MLXSW_REG_MTPPS_LEN 0x3C 10451 10452 MLXSW_REG_DEFINE(mtpps, MLXSW_REG_MTPPS_ID, MLXSW_REG_MTPPS_LEN); 10453 10454 /* reg_mtpps_enable 10455 * Enables the PPS functionality the specific pin. 10456 * A boolean variable. 10457 * Access: RW 10458 */ 10459 MLXSW_ITEM32(reg, mtpps, enable, 0x20, 31, 1); 10460 10461 enum mlxsw_reg_mtpps_pin_mode { 10462 MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN = 0x2, 10463 }; 10464 10465 /* reg_mtpps_pin_mode 10466 * Pin mode to be used. The mode must comply with the supported modes of the 10467 * requested pin. 10468 * Access: RW 10469 */ 10470 MLXSW_ITEM32(reg, mtpps, pin_mode, 0x20, 8, 4); 10471 10472 #define MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN 7 10473 10474 /* reg_mtpps_pin 10475 * Pin to be configured or queried out of the supported pins. 10476 * Access: Index 10477 */ 10478 MLXSW_ITEM32(reg, mtpps, pin, 0x20, 0, 8); 10479 10480 /* reg_mtpps_time_stamp 10481 * When pin_mode = pps_in, the latched device time when it was triggered from 10482 * the external GPIO pin. 10483 * When pin_mode = pps_out or virtual_pin or pps_out_and_virtual_pin, the target 10484 * time to generate next output signal. 10485 * Time is in units of device clock. 10486 * Access: RW 10487 */ 10488 MLXSW_ITEM64(reg, mtpps, time_stamp, 0x28, 0, 64); 10489 10490 static inline void 10491 mlxsw_reg_mtpps_vpin_pack(char *payload, u64 time_stamp) 10492 { 10493 MLXSW_REG_ZERO(mtpps, payload); 10494 mlxsw_reg_mtpps_pin_set(payload, MLXSW_REG_MTPPS_PIN_SP_VIRTUAL_PIN); 10495 mlxsw_reg_mtpps_pin_mode_set(payload, 10496 MLXSW_REG_MTPPS_PIN_MODE_VIRTUAL_PIN); 10497 mlxsw_reg_mtpps_enable_set(payload, true); 10498 mlxsw_reg_mtpps_time_stamp_set(payload, time_stamp); 10499 } 10500 10501 /* MTUTC - Management UTC Register 10502 * ------------------------------- 10503 * Configures the HW UTC counter. 10504 */ 10505 #define MLXSW_REG_MTUTC_ID 0x9055 10506 #define MLXSW_REG_MTUTC_LEN 0x1C 10507 10508 MLXSW_REG_DEFINE(mtutc, MLXSW_REG_MTUTC_ID, MLXSW_REG_MTUTC_LEN); 10509 10510 enum mlxsw_reg_mtutc_operation { 10511 MLXSW_REG_MTUTC_OPERATION_SET_TIME_AT_NEXT_SEC = 0, 10512 MLXSW_REG_MTUTC_OPERATION_ADJUST_FREQ = 3, 10513 }; 10514 10515 /* reg_mtutc_operation 10516 * Operation. 10517 * Access: OP 10518 */ 10519 MLXSW_ITEM32(reg, mtutc, operation, 0x00, 0, 4); 10520 10521 /* reg_mtutc_freq_adjustment 10522 * Frequency adjustment: Every PPS the HW frequency will be 10523 * adjusted by this value. Units of HW clock, where HW counts 10524 * 10^9 HW clocks for 1 HW second. 10525 * Access: RW 10526 */ 10527 MLXSW_ITEM32(reg, mtutc, freq_adjustment, 0x04, 0, 32); 10528 10529 /* reg_mtutc_utc_sec 10530 * UTC seconds. 10531 * Access: WO 10532 */ 10533 MLXSW_ITEM32(reg, mtutc, utc_sec, 0x10, 0, 32); 10534 10535 static inline void 10536 mlxsw_reg_mtutc_pack(char *payload, enum mlxsw_reg_mtutc_operation oper, 10537 u32 freq_adj, u32 utc_sec) 10538 { 10539 MLXSW_REG_ZERO(mtutc, payload); 10540 mlxsw_reg_mtutc_operation_set(payload, oper); 10541 mlxsw_reg_mtutc_freq_adjustment_set(payload, freq_adj); 10542 mlxsw_reg_mtutc_utc_sec_set(payload, utc_sec); 10543 } 10544 10545 /* MCQI - Management Component Query Information 10546 * --------------------------------------------- 10547 * This register allows querying information about firmware components. 10548 */ 10549 #define MLXSW_REG_MCQI_ID 0x9061 10550 #define MLXSW_REG_MCQI_BASE_LEN 0x18 10551 #define MLXSW_REG_MCQI_CAP_LEN 0x14 10552 #define MLXSW_REG_MCQI_LEN (MLXSW_REG_MCQI_BASE_LEN + MLXSW_REG_MCQI_CAP_LEN) 10553 10554 MLXSW_REG_DEFINE(mcqi, MLXSW_REG_MCQI_ID, MLXSW_REG_MCQI_LEN); 10555 10556 /* reg_mcqi_component_index 10557 * Index of the accessed component. 10558 * Access: Index 10559 */ 10560 MLXSW_ITEM32(reg, mcqi, component_index, 0x00, 0, 16); 10561 10562 enum mlxfw_reg_mcqi_info_type { 10563 MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES, 10564 }; 10565 10566 /* reg_mcqi_info_type 10567 * Component properties set. 10568 * Access: RW 10569 */ 10570 MLXSW_ITEM32(reg, mcqi, info_type, 0x08, 0, 5); 10571 10572 /* reg_mcqi_offset 10573 * The requested/returned data offset from the section start, given in bytes. 10574 * Must be DWORD aligned. 10575 * Access: RW 10576 */ 10577 MLXSW_ITEM32(reg, mcqi, offset, 0x10, 0, 32); 10578 10579 /* reg_mcqi_data_size 10580 * The requested/returned data size, given in bytes. If data_size is not DWORD 10581 * aligned, the last bytes are zero padded. 10582 * Access: RW 10583 */ 10584 MLXSW_ITEM32(reg, mcqi, data_size, 0x14, 0, 16); 10585 10586 /* reg_mcqi_cap_max_component_size 10587 * Maximum size for this component, given in bytes. 10588 * Access: RO 10589 */ 10590 MLXSW_ITEM32(reg, mcqi, cap_max_component_size, 0x20, 0, 32); 10591 10592 /* reg_mcqi_cap_log_mcda_word_size 10593 * Log 2 of the access word size in bytes. Read and write access must be aligned 10594 * to the word size. Write access must be done for an integer number of words. 10595 * Access: RO 10596 */ 10597 MLXSW_ITEM32(reg, mcqi, cap_log_mcda_word_size, 0x24, 28, 4); 10598 10599 /* reg_mcqi_cap_mcda_max_write_size 10600 * Maximal write size for MCDA register 10601 * Access: RO 10602 */ 10603 MLXSW_ITEM32(reg, mcqi, cap_mcda_max_write_size, 0x24, 0, 16); 10604 10605 static inline void mlxsw_reg_mcqi_pack(char *payload, u16 component_index) 10606 { 10607 MLXSW_REG_ZERO(mcqi, payload); 10608 mlxsw_reg_mcqi_component_index_set(payload, component_index); 10609 mlxsw_reg_mcqi_info_type_set(payload, 10610 MLXSW_REG_MCQI_INFO_TYPE_CAPABILITIES); 10611 mlxsw_reg_mcqi_offset_set(payload, 0); 10612 mlxsw_reg_mcqi_data_size_set(payload, MLXSW_REG_MCQI_CAP_LEN); 10613 } 10614 10615 static inline void mlxsw_reg_mcqi_unpack(char *payload, 10616 u32 *p_cap_max_component_size, 10617 u8 *p_cap_log_mcda_word_size, 10618 u16 *p_cap_mcda_max_write_size) 10619 { 10620 *p_cap_max_component_size = 10621 mlxsw_reg_mcqi_cap_max_component_size_get(payload); 10622 *p_cap_log_mcda_word_size = 10623 mlxsw_reg_mcqi_cap_log_mcda_word_size_get(payload); 10624 *p_cap_mcda_max_write_size = 10625 mlxsw_reg_mcqi_cap_mcda_max_write_size_get(payload); 10626 } 10627 10628 /* MCC - Management Component Control 10629 * ---------------------------------- 10630 * Controls the firmware component and updates the FSM. 10631 */ 10632 #define MLXSW_REG_MCC_ID 0x9062 10633 #define MLXSW_REG_MCC_LEN 0x1C 10634 10635 MLXSW_REG_DEFINE(mcc, MLXSW_REG_MCC_ID, MLXSW_REG_MCC_LEN); 10636 10637 enum mlxsw_reg_mcc_instruction { 10638 MLXSW_REG_MCC_INSTRUCTION_LOCK_UPDATE_HANDLE = 0x01, 10639 MLXSW_REG_MCC_INSTRUCTION_RELEASE_UPDATE_HANDLE = 0x02, 10640 MLXSW_REG_MCC_INSTRUCTION_UPDATE_COMPONENT = 0x03, 10641 MLXSW_REG_MCC_INSTRUCTION_VERIFY_COMPONENT = 0x04, 10642 MLXSW_REG_MCC_INSTRUCTION_ACTIVATE = 0x06, 10643 MLXSW_REG_MCC_INSTRUCTION_CANCEL = 0x08, 10644 }; 10645 10646 /* reg_mcc_instruction 10647 * Command to be executed by the FSM. 10648 * Applicable for write operation only. 10649 * Access: RW 10650 */ 10651 MLXSW_ITEM32(reg, mcc, instruction, 0x00, 0, 8); 10652 10653 /* reg_mcc_component_index 10654 * Index of the accessed component. Applicable only for commands that 10655 * refer to components. Otherwise, this field is reserved. 10656 * Access: Index 10657 */ 10658 MLXSW_ITEM32(reg, mcc, component_index, 0x04, 0, 16); 10659 10660 /* reg_mcc_update_handle 10661 * Token representing the current flow executed by the FSM. 10662 * Access: WO 10663 */ 10664 MLXSW_ITEM32(reg, mcc, update_handle, 0x08, 0, 24); 10665 10666 /* reg_mcc_error_code 10667 * Indicates the successful completion of the instruction, or the reason it 10668 * failed 10669 * Access: RO 10670 */ 10671 MLXSW_ITEM32(reg, mcc, error_code, 0x0C, 8, 8); 10672 10673 /* reg_mcc_control_state 10674 * Current FSM state 10675 * Access: RO 10676 */ 10677 MLXSW_ITEM32(reg, mcc, control_state, 0x0C, 0, 4); 10678 10679 /* reg_mcc_component_size 10680 * Component size in bytes. Valid for UPDATE_COMPONENT instruction. Specifying 10681 * the size may shorten the update time. Value 0x0 means that size is 10682 * unspecified. 10683 * Access: WO 10684 */ 10685 MLXSW_ITEM32(reg, mcc, component_size, 0x10, 0, 32); 10686 10687 static inline void mlxsw_reg_mcc_pack(char *payload, 10688 enum mlxsw_reg_mcc_instruction instr, 10689 u16 component_index, u32 update_handle, 10690 u32 component_size) 10691 { 10692 MLXSW_REG_ZERO(mcc, payload); 10693 mlxsw_reg_mcc_instruction_set(payload, instr); 10694 mlxsw_reg_mcc_component_index_set(payload, component_index); 10695 mlxsw_reg_mcc_update_handle_set(payload, update_handle); 10696 mlxsw_reg_mcc_component_size_set(payload, component_size); 10697 } 10698 10699 static inline void mlxsw_reg_mcc_unpack(char *payload, u32 *p_update_handle, 10700 u8 *p_error_code, u8 *p_control_state) 10701 { 10702 if (p_update_handle) 10703 *p_update_handle = mlxsw_reg_mcc_update_handle_get(payload); 10704 if (p_error_code) 10705 *p_error_code = mlxsw_reg_mcc_error_code_get(payload); 10706 if (p_control_state) 10707 *p_control_state = mlxsw_reg_mcc_control_state_get(payload); 10708 } 10709 10710 /* MCDA - Management Component Data Access 10711 * --------------------------------------- 10712 * This register allows reading and writing a firmware component. 10713 */ 10714 #define MLXSW_REG_MCDA_ID 0x9063 10715 #define MLXSW_REG_MCDA_BASE_LEN 0x10 10716 #define MLXSW_REG_MCDA_MAX_DATA_LEN 0x80 10717 #define MLXSW_REG_MCDA_LEN \ 10718 (MLXSW_REG_MCDA_BASE_LEN + MLXSW_REG_MCDA_MAX_DATA_LEN) 10719 10720 MLXSW_REG_DEFINE(mcda, MLXSW_REG_MCDA_ID, MLXSW_REG_MCDA_LEN); 10721 10722 /* reg_mcda_update_handle 10723 * Token representing the current flow executed by the FSM. 10724 * Access: RW 10725 */ 10726 MLXSW_ITEM32(reg, mcda, update_handle, 0x00, 0, 24); 10727 10728 /* reg_mcda_offset 10729 * Offset of accessed address relative to component start. Accesses must be in 10730 * accordance to log_mcda_word_size in MCQI reg. 10731 * Access: RW 10732 */ 10733 MLXSW_ITEM32(reg, mcda, offset, 0x04, 0, 32); 10734 10735 /* reg_mcda_size 10736 * Size of the data accessed, given in bytes. 10737 * Access: RW 10738 */ 10739 MLXSW_ITEM32(reg, mcda, size, 0x08, 0, 16); 10740 10741 /* reg_mcda_data 10742 * Data block accessed. 10743 * Access: RW 10744 */ 10745 MLXSW_ITEM32_INDEXED(reg, mcda, data, 0x10, 0, 32, 4, 0, false); 10746 10747 static inline void mlxsw_reg_mcda_pack(char *payload, u32 update_handle, 10748 u32 offset, u16 size, u8 *data) 10749 { 10750 int i; 10751 10752 MLXSW_REG_ZERO(mcda, payload); 10753 mlxsw_reg_mcda_update_handle_set(payload, update_handle); 10754 mlxsw_reg_mcda_offset_set(payload, offset); 10755 mlxsw_reg_mcda_size_set(payload, size); 10756 10757 for (i = 0; i < size / 4; i++) 10758 mlxsw_reg_mcda_data_set(payload, i, *(u32 *) &data[i * 4]); 10759 } 10760 10761 /* MPSC - Monitoring Packet Sampling Configuration Register 10762 * -------------------------------------------------------- 10763 * MPSC Register is used to configure the Packet Sampling mechanism. 10764 */ 10765 #define MLXSW_REG_MPSC_ID 0x9080 10766 #define MLXSW_REG_MPSC_LEN 0x1C 10767 10768 MLXSW_REG_DEFINE(mpsc, MLXSW_REG_MPSC_ID, MLXSW_REG_MPSC_LEN); 10769 10770 /* reg_mpsc_local_port 10771 * Local port number 10772 * Not supported for CPU port 10773 * Access: Index 10774 */ 10775 MLXSW_ITEM32(reg, mpsc, local_port, 0x00, 16, 8); 10776 10777 /* reg_mpsc_e 10778 * Enable sampling on port local_port 10779 * Access: RW 10780 */ 10781 MLXSW_ITEM32(reg, mpsc, e, 0x04, 30, 1); 10782 10783 #define MLXSW_REG_MPSC_RATE_MAX 3500000000UL 10784 10785 /* reg_mpsc_rate 10786 * Sampling rate = 1 out of rate packets (with randomization around 10787 * the point). Valid values are: 1 to MLXSW_REG_MPSC_RATE_MAX 10788 * Access: RW 10789 */ 10790 MLXSW_ITEM32(reg, mpsc, rate, 0x08, 0, 32); 10791 10792 static inline void mlxsw_reg_mpsc_pack(char *payload, u8 local_port, bool e, 10793 u32 rate) 10794 { 10795 MLXSW_REG_ZERO(mpsc, payload); 10796 mlxsw_reg_mpsc_local_port_set(payload, local_port); 10797 mlxsw_reg_mpsc_e_set(payload, e); 10798 mlxsw_reg_mpsc_rate_set(payload, rate); 10799 } 10800 10801 /* MGPC - Monitoring General Purpose Counter Set Register 10802 * The MGPC register retrieves and sets the General Purpose Counter Set. 10803 */ 10804 #define MLXSW_REG_MGPC_ID 0x9081 10805 #define MLXSW_REG_MGPC_LEN 0x18 10806 10807 MLXSW_REG_DEFINE(mgpc, MLXSW_REG_MGPC_ID, MLXSW_REG_MGPC_LEN); 10808 10809 /* reg_mgpc_counter_set_type 10810 * Counter set type. 10811 * Access: OP 10812 */ 10813 MLXSW_ITEM32(reg, mgpc, counter_set_type, 0x00, 24, 8); 10814 10815 /* reg_mgpc_counter_index 10816 * Counter index. 10817 * Access: Index 10818 */ 10819 MLXSW_ITEM32(reg, mgpc, counter_index, 0x00, 0, 24); 10820 10821 enum mlxsw_reg_mgpc_opcode { 10822 /* Nop */ 10823 MLXSW_REG_MGPC_OPCODE_NOP = 0x00, 10824 /* Clear counters */ 10825 MLXSW_REG_MGPC_OPCODE_CLEAR = 0x08, 10826 }; 10827 10828 /* reg_mgpc_opcode 10829 * Opcode. 10830 * Access: OP 10831 */ 10832 MLXSW_ITEM32(reg, mgpc, opcode, 0x04, 28, 4); 10833 10834 /* reg_mgpc_byte_counter 10835 * Byte counter value. 10836 * Access: RW 10837 */ 10838 MLXSW_ITEM64(reg, mgpc, byte_counter, 0x08, 0, 64); 10839 10840 /* reg_mgpc_packet_counter 10841 * Packet counter value. 10842 * Access: RW 10843 */ 10844 MLXSW_ITEM64(reg, mgpc, packet_counter, 0x10, 0, 64); 10845 10846 static inline void mlxsw_reg_mgpc_pack(char *payload, u32 counter_index, 10847 enum mlxsw_reg_mgpc_opcode opcode, 10848 enum mlxsw_reg_flow_counter_set_type set_type) 10849 { 10850 MLXSW_REG_ZERO(mgpc, payload); 10851 mlxsw_reg_mgpc_counter_index_set(payload, counter_index); 10852 mlxsw_reg_mgpc_counter_set_type_set(payload, set_type); 10853 mlxsw_reg_mgpc_opcode_set(payload, opcode); 10854 } 10855 10856 /* MPRS - Monitoring Parsing State Register 10857 * ---------------------------------------- 10858 * The MPRS register is used for setting up the parsing for hash, 10859 * policy-engine and routing. 10860 */ 10861 #define MLXSW_REG_MPRS_ID 0x9083 10862 #define MLXSW_REG_MPRS_LEN 0x14 10863 10864 MLXSW_REG_DEFINE(mprs, MLXSW_REG_MPRS_ID, MLXSW_REG_MPRS_LEN); 10865 10866 /* reg_mprs_parsing_depth 10867 * Minimum parsing depth. 10868 * Need to enlarge parsing depth according to L3, MPLS, tunnels, ACL 10869 * rules, traps, hash, etc. Default is 96 bytes. Reserved when SwitchX-2. 10870 * Access: RW 10871 */ 10872 MLXSW_ITEM32(reg, mprs, parsing_depth, 0x00, 0, 16); 10873 10874 /* reg_mprs_parsing_en 10875 * Parsing enable. 10876 * Bit 0 - Enable parsing of NVE of types VxLAN, VxLAN-GPE, GENEVE and 10877 * NVGRE. Default is enabled. Reserved when SwitchX-2. 10878 * Access: RW 10879 */ 10880 MLXSW_ITEM32(reg, mprs, parsing_en, 0x04, 0, 16); 10881 10882 /* reg_mprs_vxlan_udp_dport 10883 * VxLAN UDP destination port. 10884 * Used for identifying VxLAN packets and for dport field in 10885 * encapsulation. Default is 4789. 10886 * Access: RW 10887 */ 10888 MLXSW_ITEM32(reg, mprs, vxlan_udp_dport, 0x10, 0, 16); 10889 10890 static inline void mlxsw_reg_mprs_pack(char *payload, u16 parsing_depth, 10891 u16 vxlan_udp_dport) 10892 { 10893 MLXSW_REG_ZERO(mprs, payload); 10894 mlxsw_reg_mprs_parsing_depth_set(payload, parsing_depth); 10895 mlxsw_reg_mprs_parsing_en_set(payload, true); 10896 mlxsw_reg_mprs_vxlan_udp_dport_set(payload, vxlan_udp_dport); 10897 } 10898 10899 /* MOGCR - Monitoring Global Configuration Register 10900 * ------------------------------------------------ 10901 */ 10902 #define MLXSW_REG_MOGCR_ID 0x9086 10903 #define MLXSW_REG_MOGCR_LEN 0x20 10904 10905 MLXSW_REG_DEFINE(mogcr, MLXSW_REG_MOGCR_ID, MLXSW_REG_MOGCR_LEN); 10906 10907 /* reg_mogcr_ptp_iftc 10908 * PTP Ingress FIFO Trap Clear 10909 * The PTP_ING_FIFO trap provides MTPPTR with clr according 10910 * to this value. Default 0. 10911 * Reserved when IB switches and when SwitchX/-2, Spectrum-2 10912 * Access: RW 10913 */ 10914 MLXSW_ITEM32(reg, mogcr, ptp_iftc, 0x00, 1, 1); 10915 10916 /* reg_mogcr_ptp_eftc 10917 * PTP Egress FIFO Trap Clear 10918 * The PTP_EGR_FIFO trap provides MTPPTR with clr according 10919 * to this value. Default 0. 10920 * Reserved when IB switches and when SwitchX/-2, Spectrum-2 10921 * Access: RW 10922 */ 10923 MLXSW_ITEM32(reg, mogcr, ptp_eftc, 0x00, 0, 1); 10924 10925 /* reg_mogcr_mirroring_pid_base 10926 * Base policer id for mirroring policers. 10927 * Must have an even value (e.g. 1000, not 1001). 10928 * Reserved when SwitchX/-2, Switch-IB/2, Spectrum-1 and Quantum. 10929 * Access: RW 10930 */ 10931 MLXSW_ITEM32(reg, mogcr, mirroring_pid_base, 0x0C, 0, 14); 10932 10933 /* MPAGR - Monitoring Port Analyzer Global Register 10934 * ------------------------------------------------ 10935 * This register is used for global port analyzer configurations. 10936 * Note: This register is not supported by current FW versions for Spectrum-1. 10937 */ 10938 #define MLXSW_REG_MPAGR_ID 0x9089 10939 #define MLXSW_REG_MPAGR_LEN 0x0C 10940 10941 MLXSW_REG_DEFINE(mpagr, MLXSW_REG_MPAGR_ID, MLXSW_REG_MPAGR_LEN); 10942 10943 enum mlxsw_reg_mpagr_trigger { 10944 MLXSW_REG_MPAGR_TRIGGER_EGRESS, 10945 MLXSW_REG_MPAGR_TRIGGER_INGRESS, 10946 MLXSW_REG_MPAGR_TRIGGER_INGRESS_WRED, 10947 MLXSW_REG_MPAGR_TRIGGER_INGRESS_SHARED_BUFFER, 10948 MLXSW_REG_MPAGR_TRIGGER_INGRESS_ING_CONG, 10949 MLXSW_REG_MPAGR_TRIGGER_INGRESS_EGR_CONG, 10950 MLXSW_REG_MPAGR_TRIGGER_EGRESS_ECN, 10951 MLXSW_REG_MPAGR_TRIGGER_EGRESS_HIGH_LATENCY, 10952 }; 10953 10954 /* reg_mpagr_trigger 10955 * Mirror trigger. 10956 * Access: Index 10957 */ 10958 MLXSW_ITEM32(reg, mpagr, trigger, 0x00, 0, 4); 10959 10960 /* reg_mpagr_pa_id 10961 * Port analyzer ID. 10962 * Access: RW 10963 */ 10964 MLXSW_ITEM32(reg, mpagr, pa_id, 0x04, 0, 4); 10965 10966 #define MLXSW_REG_MPAGR_RATE_MAX 3500000000UL 10967 10968 /* reg_mpagr_probability_rate 10969 * Sampling rate. 10970 * Valid values are: 1 to 3.5*10^9 10971 * Value of 1 means "sample all". Default is 1. 10972 * Access: RW 10973 */ 10974 MLXSW_ITEM32(reg, mpagr, probability_rate, 0x08, 0, 32); 10975 10976 static inline void mlxsw_reg_mpagr_pack(char *payload, 10977 enum mlxsw_reg_mpagr_trigger trigger, 10978 u8 pa_id, u32 probability_rate) 10979 { 10980 MLXSW_REG_ZERO(mpagr, payload); 10981 mlxsw_reg_mpagr_trigger_set(payload, trigger); 10982 mlxsw_reg_mpagr_pa_id_set(payload, pa_id); 10983 mlxsw_reg_mpagr_probability_rate_set(payload, probability_rate); 10984 } 10985 10986 /* MOMTE - Monitoring Mirror Trigger Enable Register 10987 * ------------------------------------------------- 10988 * This register is used to configure the mirror enable for different mirror 10989 * reasons. 10990 */ 10991 #define MLXSW_REG_MOMTE_ID 0x908D 10992 #define MLXSW_REG_MOMTE_LEN 0x10 10993 10994 MLXSW_REG_DEFINE(momte, MLXSW_REG_MOMTE_ID, MLXSW_REG_MOMTE_LEN); 10995 10996 /* reg_momte_local_port 10997 * Local port number. 10998 * Access: Index 10999 */ 11000 MLXSW_ITEM32(reg, momte, local_port, 0x00, 16, 8); 11001 11002 enum mlxsw_reg_momte_type { 11003 MLXSW_REG_MOMTE_TYPE_WRED = 0x20, 11004 MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_TCLASS = 0x31, 11005 MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_TCLASS_DESCRIPTORS = 0x32, 11006 MLXSW_REG_MOMTE_TYPE_SHARED_BUFFER_EGRESS_PORT = 0x33, 11007 MLXSW_REG_MOMTE_TYPE_ING_CONG = 0x40, 11008 MLXSW_REG_MOMTE_TYPE_EGR_CONG = 0x50, 11009 MLXSW_REG_MOMTE_TYPE_ECN = 0x60, 11010 MLXSW_REG_MOMTE_TYPE_HIGH_LATENCY = 0x70, 11011 }; 11012 11013 /* reg_momte_type 11014 * Type of mirroring. 11015 * Access: Index 11016 */ 11017 MLXSW_ITEM32(reg, momte, type, 0x04, 0, 8); 11018 11019 /* reg_momte_tclass_en 11020 * TClass/PG mirror enable. Each bit represents corresponding tclass. 11021 * 0: disable (default) 11022 * 1: enable 11023 * Access: RW 11024 */ 11025 MLXSW_ITEM_BIT_ARRAY(reg, momte, tclass_en, 0x08, 0x08, 1); 11026 11027 static inline void mlxsw_reg_momte_pack(char *payload, u8 local_port, 11028 enum mlxsw_reg_momte_type type) 11029 { 11030 MLXSW_REG_ZERO(momte, payload); 11031 mlxsw_reg_momte_local_port_set(payload, local_port); 11032 mlxsw_reg_momte_type_set(payload, type); 11033 } 11034 11035 /* MTPPPC - Time Precision Packet Port Configuration 11036 * ------------------------------------------------- 11037 * This register serves for configuration of which PTP messages should be 11038 * timestamped. This is a global configuration, despite the register name. 11039 * 11040 * Reserved when Spectrum-2. 11041 */ 11042 #define MLXSW_REG_MTPPPC_ID 0x9090 11043 #define MLXSW_REG_MTPPPC_LEN 0x28 11044 11045 MLXSW_REG_DEFINE(mtpppc, MLXSW_REG_MTPPPC_ID, MLXSW_REG_MTPPPC_LEN); 11046 11047 /* reg_mtpppc_ing_timestamp_message_type 11048 * Bitwise vector of PTP message types to timestamp at ingress. 11049 * MessageType field as defined by IEEE 1588 11050 * Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req) 11051 * Default all 0 11052 * Access: RW 11053 */ 11054 MLXSW_ITEM32(reg, mtpppc, ing_timestamp_message_type, 0x08, 0, 16); 11055 11056 /* reg_mtpppc_egr_timestamp_message_type 11057 * Bitwise vector of PTP message types to timestamp at egress. 11058 * MessageType field as defined by IEEE 1588 11059 * Each bit corresponds to a value (e.g. Bit0: Sync, Bit1: Delay_Req) 11060 * Default all 0 11061 * Access: RW 11062 */ 11063 MLXSW_ITEM32(reg, mtpppc, egr_timestamp_message_type, 0x0C, 0, 16); 11064 11065 static inline void mlxsw_reg_mtpppc_pack(char *payload, u16 ing, u16 egr) 11066 { 11067 MLXSW_REG_ZERO(mtpppc, payload); 11068 mlxsw_reg_mtpppc_ing_timestamp_message_type_set(payload, ing); 11069 mlxsw_reg_mtpppc_egr_timestamp_message_type_set(payload, egr); 11070 } 11071 11072 /* MTPPTR - Time Precision Packet Timestamping Reading 11073 * --------------------------------------------------- 11074 * The MTPPTR is used for reading the per port PTP timestamp FIFO. 11075 * There is a trap for packets which are latched to the timestamp FIFO, thus the 11076 * SW knows which FIFO to read. Note that packets enter the FIFO before been 11077 * trapped. The sequence number is used to synchronize the timestamp FIFO 11078 * entries and the trapped packets. 11079 * Reserved when Spectrum-2. 11080 */ 11081 11082 #define MLXSW_REG_MTPPTR_ID 0x9091 11083 #define MLXSW_REG_MTPPTR_BASE_LEN 0x10 /* base length, without records */ 11084 #define MLXSW_REG_MTPPTR_REC_LEN 0x10 /* record length */ 11085 #define MLXSW_REG_MTPPTR_REC_MAX_COUNT 4 11086 #define MLXSW_REG_MTPPTR_LEN (MLXSW_REG_MTPPTR_BASE_LEN + \ 11087 MLXSW_REG_MTPPTR_REC_LEN * MLXSW_REG_MTPPTR_REC_MAX_COUNT) 11088 11089 MLXSW_REG_DEFINE(mtpptr, MLXSW_REG_MTPPTR_ID, MLXSW_REG_MTPPTR_LEN); 11090 11091 /* reg_mtpptr_local_port 11092 * Not supported for CPU port. 11093 * Access: Index 11094 */ 11095 MLXSW_ITEM32(reg, mtpptr, local_port, 0x00, 16, 8); 11096 11097 enum mlxsw_reg_mtpptr_dir { 11098 MLXSW_REG_MTPPTR_DIR_INGRESS, 11099 MLXSW_REG_MTPPTR_DIR_EGRESS, 11100 }; 11101 11102 /* reg_mtpptr_dir 11103 * Direction. 11104 * Access: Index 11105 */ 11106 MLXSW_ITEM32(reg, mtpptr, dir, 0x00, 0, 1); 11107 11108 /* reg_mtpptr_clr 11109 * Clear the records. 11110 * Access: OP 11111 */ 11112 MLXSW_ITEM32(reg, mtpptr, clr, 0x04, 31, 1); 11113 11114 /* reg_mtpptr_num_rec 11115 * Number of valid records in the response 11116 * Range 0.. cap_ptp_timestamp_fifo 11117 * Access: RO 11118 */ 11119 MLXSW_ITEM32(reg, mtpptr, num_rec, 0x08, 0, 4); 11120 11121 /* reg_mtpptr_rec_message_type 11122 * MessageType field as defined by IEEE 1588 Each bit corresponds to a value 11123 * (e.g. Bit0: Sync, Bit1: Delay_Req) 11124 * Access: RO 11125 */ 11126 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_message_type, 11127 MLXSW_REG_MTPPTR_BASE_LEN, 8, 4, 11128 MLXSW_REG_MTPPTR_REC_LEN, 0, false); 11129 11130 /* reg_mtpptr_rec_domain_number 11131 * DomainNumber field as defined by IEEE 1588 11132 * Access: RO 11133 */ 11134 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_domain_number, 11135 MLXSW_REG_MTPPTR_BASE_LEN, 0, 8, 11136 MLXSW_REG_MTPPTR_REC_LEN, 0, false); 11137 11138 /* reg_mtpptr_rec_sequence_id 11139 * SequenceId field as defined by IEEE 1588 11140 * Access: RO 11141 */ 11142 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_sequence_id, 11143 MLXSW_REG_MTPPTR_BASE_LEN, 0, 16, 11144 MLXSW_REG_MTPPTR_REC_LEN, 0x4, false); 11145 11146 /* reg_mtpptr_rec_timestamp_high 11147 * Timestamp of when the PTP packet has passed through the port Units of PLL 11148 * clock time. 11149 * For Spectrum-1 the PLL clock is 156.25Mhz and PLL clock time is 6.4nSec. 11150 * Access: RO 11151 */ 11152 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_high, 11153 MLXSW_REG_MTPPTR_BASE_LEN, 0, 32, 11154 MLXSW_REG_MTPPTR_REC_LEN, 0x8, false); 11155 11156 /* reg_mtpptr_rec_timestamp_low 11157 * See rec_timestamp_high. 11158 * Access: RO 11159 */ 11160 MLXSW_ITEM32_INDEXED(reg, mtpptr, rec_timestamp_low, 11161 MLXSW_REG_MTPPTR_BASE_LEN, 0, 32, 11162 MLXSW_REG_MTPPTR_REC_LEN, 0xC, false); 11163 11164 static inline void mlxsw_reg_mtpptr_unpack(const char *payload, 11165 unsigned int rec, 11166 u8 *p_message_type, 11167 u8 *p_domain_number, 11168 u16 *p_sequence_id, 11169 u64 *p_timestamp) 11170 { 11171 u32 timestamp_high, timestamp_low; 11172 11173 *p_message_type = mlxsw_reg_mtpptr_rec_message_type_get(payload, rec); 11174 *p_domain_number = mlxsw_reg_mtpptr_rec_domain_number_get(payload, rec); 11175 *p_sequence_id = mlxsw_reg_mtpptr_rec_sequence_id_get(payload, rec); 11176 timestamp_high = mlxsw_reg_mtpptr_rec_timestamp_high_get(payload, rec); 11177 timestamp_low = mlxsw_reg_mtpptr_rec_timestamp_low_get(payload, rec); 11178 *p_timestamp = (u64)timestamp_high << 32 | timestamp_low; 11179 } 11180 11181 /* MTPTPT - Monitoring Precision Time Protocol Trap Register 11182 * --------------------------------------------------------- 11183 * This register is used for configuring under which trap to deliver PTP 11184 * packets depending on type of the packet. 11185 */ 11186 #define MLXSW_REG_MTPTPT_ID 0x9092 11187 #define MLXSW_REG_MTPTPT_LEN 0x08 11188 11189 MLXSW_REG_DEFINE(mtptpt, MLXSW_REG_MTPTPT_ID, MLXSW_REG_MTPTPT_LEN); 11190 11191 enum mlxsw_reg_mtptpt_trap_id { 11192 MLXSW_REG_MTPTPT_TRAP_ID_PTP0, 11193 MLXSW_REG_MTPTPT_TRAP_ID_PTP1, 11194 }; 11195 11196 /* reg_mtptpt_trap_id 11197 * Trap id. 11198 * Access: Index 11199 */ 11200 MLXSW_ITEM32(reg, mtptpt, trap_id, 0x00, 0, 4); 11201 11202 /* reg_mtptpt_message_type 11203 * Bitwise vector of PTP message types to trap. This is a necessary but 11204 * non-sufficient condition since need to enable also per port. See MTPPPC. 11205 * Message types are defined by IEEE 1588 Each bit corresponds to a value (e.g. 11206 * Bit0: Sync, Bit1: Delay_Req) 11207 */ 11208 MLXSW_ITEM32(reg, mtptpt, message_type, 0x04, 0, 16); 11209 11210 static inline void mlxsw_reg_mtptptp_pack(char *payload, 11211 enum mlxsw_reg_mtptpt_trap_id trap_id, 11212 u16 message_type) 11213 { 11214 MLXSW_REG_ZERO(mtptpt, payload); 11215 mlxsw_reg_mtptpt_trap_id_set(payload, trap_id); 11216 mlxsw_reg_mtptpt_message_type_set(payload, message_type); 11217 } 11218 11219 /* MFGD - Monitoring FW General Debug Register 11220 * ------------------------------------------- 11221 */ 11222 #define MLXSW_REG_MFGD_ID 0x90F0 11223 #define MLXSW_REG_MFGD_LEN 0x0C 11224 11225 MLXSW_REG_DEFINE(mfgd, MLXSW_REG_MFGD_ID, MLXSW_REG_MFGD_LEN); 11226 11227 /* reg_mfgd_fw_fatal_event_mode 11228 * 0 - don't check FW fatal (default) 11229 * 1 - check FW fatal - enable MFDE trap 11230 * Access: RW 11231 */ 11232 MLXSW_ITEM32(reg, mfgd, fatal_event_mode, 0x00, 9, 2); 11233 11234 /* reg_mfgd_trigger_test 11235 * Access: WO 11236 */ 11237 MLXSW_ITEM32(reg, mfgd, trigger_test, 0x00, 11, 1); 11238 11239 /* MGPIR - Management General Peripheral Information Register 11240 * ---------------------------------------------------------- 11241 * MGPIR register allows software to query the hardware and 11242 * firmware general information of peripheral entities. 11243 */ 11244 #define MLXSW_REG_MGPIR_ID 0x9100 11245 #define MLXSW_REG_MGPIR_LEN 0xA0 11246 11247 MLXSW_REG_DEFINE(mgpir, MLXSW_REG_MGPIR_ID, MLXSW_REG_MGPIR_LEN); 11248 11249 enum mlxsw_reg_mgpir_device_type { 11250 MLXSW_REG_MGPIR_DEVICE_TYPE_NONE, 11251 MLXSW_REG_MGPIR_DEVICE_TYPE_GEARBOX_DIE, 11252 }; 11253 11254 /* device_type 11255 * Access: RO 11256 */ 11257 MLXSW_ITEM32(reg, mgpir, device_type, 0x00, 24, 4); 11258 11259 /* devices_per_flash 11260 * Number of devices of device_type per flash (can be shared by few devices). 11261 * Access: RO 11262 */ 11263 MLXSW_ITEM32(reg, mgpir, devices_per_flash, 0x00, 16, 8); 11264 11265 /* num_of_devices 11266 * Number of devices of device_type. 11267 * Access: RO 11268 */ 11269 MLXSW_ITEM32(reg, mgpir, num_of_devices, 0x00, 0, 8); 11270 11271 /* num_of_modules 11272 * Number of modules. 11273 * Access: RO 11274 */ 11275 MLXSW_ITEM32(reg, mgpir, num_of_modules, 0x04, 0, 8); 11276 11277 static inline void mlxsw_reg_mgpir_pack(char *payload) 11278 { 11279 MLXSW_REG_ZERO(mgpir, payload); 11280 } 11281 11282 static inline void 11283 mlxsw_reg_mgpir_unpack(char *payload, u8 *num_of_devices, 11284 enum mlxsw_reg_mgpir_device_type *device_type, 11285 u8 *devices_per_flash, u8 *num_of_modules) 11286 { 11287 if (num_of_devices) 11288 *num_of_devices = mlxsw_reg_mgpir_num_of_devices_get(payload); 11289 if (device_type) 11290 *device_type = mlxsw_reg_mgpir_device_type_get(payload); 11291 if (devices_per_flash) 11292 *devices_per_flash = 11293 mlxsw_reg_mgpir_devices_per_flash_get(payload); 11294 if (num_of_modules) 11295 *num_of_modules = mlxsw_reg_mgpir_num_of_modules_get(payload); 11296 } 11297 11298 /* MFDE - Monitoring FW Debug Register 11299 * ----------------------------------- 11300 */ 11301 #define MLXSW_REG_MFDE_ID 0x9200 11302 #define MLXSW_REG_MFDE_LEN 0x18 11303 11304 MLXSW_REG_DEFINE(mfde, MLXSW_REG_MFDE_ID, MLXSW_REG_MFDE_LEN); 11305 11306 /* reg_mfde_irisc_id 11307 * Which irisc triggered the event 11308 * Access: RO 11309 */ 11310 MLXSW_ITEM32(reg, mfde, irisc_id, 0x00, 24, 8); 11311 11312 enum mlxsw_reg_mfde_event_id { 11313 MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO = 1, 11314 /* KVD insertion machine stopped */ 11315 MLXSW_REG_MFDE_EVENT_ID_KVD_IM_STOP, 11316 }; 11317 11318 /* reg_mfde_event_id 11319 * Access: RO 11320 */ 11321 MLXSW_ITEM32(reg, mfde, event_id, 0x00, 0, 16); 11322 11323 enum mlxsw_reg_mfde_method { 11324 MLXSW_REG_MFDE_METHOD_QUERY, 11325 MLXSW_REG_MFDE_METHOD_WRITE, 11326 }; 11327 11328 /* reg_mfde_method 11329 * Access: RO 11330 */ 11331 MLXSW_ITEM32(reg, mfde, method, 0x04, 29, 1); 11332 11333 /* reg_mfde_long_process 11334 * Indicates if the command is in long_process mode. 11335 * Access: RO 11336 */ 11337 MLXSW_ITEM32(reg, mfde, long_process, 0x04, 28, 1); 11338 11339 enum mlxsw_reg_mfde_command_type { 11340 MLXSW_REG_MFDE_COMMAND_TYPE_MAD, 11341 MLXSW_REG_MFDE_COMMAND_TYPE_EMAD, 11342 MLXSW_REG_MFDE_COMMAND_TYPE_CMDIF, 11343 }; 11344 11345 /* reg_mfde_command_type 11346 * Access: RO 11347 */ 11348 MLXSW_ITEM32(reg, mfde, command_type, 0x04, 24, 2); 11349 11350 /* reg_mfde_reg_attr_id 11351 * EMAD - register id, MAD - attibute id 11352 * Access: RO 11353 */ 11354 MLXSW_ITEM32(reg, mfde, reg_attr_id, 0x04, 0, 16); 11355 11356 /* reg_mfde_log_address 11357 * crspace address accessed, which resulted in timeout. 11358 * Valid in case event_id == MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO 11359 * Access: RO 11360 */ 11361 MLXSW_ITEM32(reg, mfde, log_address, 0x10, 0, 32); 11362 11363 /* reg_mfde_log_id 11364 * Which irisc triggered the timeout. 11365 * Valid in case event_id == MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO 11366 * Access: RO 11367 */ 11368 MLXSW_ITEM32(reg, mfde, log_id, 0x14, 0, 4); 11369 11370 /* reg_mfde_log_ip 11371 * IP (instruction pointer) that triggered the timeout. 11372 * Valid in case event_id == MLXSW_REG_MFDE_EVENT_ID_CRSPACE_TO 11373 * Access: RO 11374 */ 11375 MLXSW_ITEM64(reg, mfde, log_ip, 0x18, 0, 64); 11376 11377 /* reg_mfde_pipes_mask 11378 * Bit per kvh pipe. 11379 * Access: RO 11380 */ 11381 MLXSW_ITEM32(reg, mfde, pipes_mask, 0x10, 0, 16); 11382 11383 /* TNGCR - Tunneling NVE General Configuration Register 11384 * ---------------------------------------------------- 11385 * The TNGCR register is used for setting up the NVE Tunneling configuration. 11386 */ 11387 #define MLXSW_REG_TNGCR_ID 0xA001 11388 #define MLXSW_REG_TNGCR_LEN 0x44 11389 11390 MLXSW_REG_DEFINE(tngcr, MLXSW_REG_TNGCR_ID, MLXSW_REG_TNGCR_LEN); 11391 11392 enum mlxsw_reg_tngcr_type { 11393 MLXSW_REG_TNGCR_TYPE_VXLAN, 11394 MLXSW_REG_TNGCR_TYPE_VXLAN_GPE, 11395 MLXSW_REG_TNGCR_TYPE_GENEVE, 11396 MLXSW_REG_TNGCR_TYPE_NVGRE, 11397 }; 11398 11399 /* reg_tngcr_type 11400 * Tunnel type for encapsulation and decapsulation. The types are mutually 11401 * exclusive. 11402 * Note: For Spectrum the NVE parsing must be enabled in MPRS. 11403 * Access: RW 11404 */ 11405 MLXSW_ITEM32(reg, tngcr, type, 0x00, 0, 4); 11406 11407 /* reg_tngcr_nve_valid 11408 * The VTEP is valid. Allows adding FDB entries for tunnel encapsulation. 11409 * Access: RW 11410 */ 11411 MLXSW_ITEM32(reg, tngcr, nve_valid, 0x04, 31, 1); 11412 11413 /* reg_tngcr_nve_ttl_uc 11414 * The TTL for NVE tunnel encapsulation underlay unicast packets. 11415 * Access: RW 11416 */ 11417 MLXSW_ITEM32(reg, tngcr, nve_ttl_uc, 0x04, 0, 8); 11418 11419 /* reg_tngcr_nve_ttl_mc 11420 * The TTL for NVE tunnel encapsulation underlay multicast packets. 11421 * Access: RW 11422 */ 11423 MLXSW_ITEM32(reg, tngcr, nve_ttl_mc, 0x08, 0, 8); 11424 11425 enum { 11426 /* Do not copy flow label. Calculate flow label using nve_flh. */ 11427 MLXSW_REG_TNGCR_FL_NO_COPY, 11428 /* Copy flow label from inner packet if packet is IPv6 and 11429 * encapsulation is by IPv6. Otherwise, calculate flow label using 11430 * nve_flh. 11431 */ 11432 MLXSW_REG_TNGCR_FL_COPY, 11433 }; 11434 11435 /* reg_tngcr_nve_flc 11436 * For NVE tunnel encapsulation: Flow label copy from inner packet. 11437 * Access: RW 11438 */ 11439 MLXSW_ITEM32(reg, tngcr, nve_flc, 0x0C, 25, 1); 11440 11441 enum { 11442 /* Flow label is static. In Spectrum this means '0'. Spectrum-2 11443 * uses {nve_fl_prefix, nve_fl_suffix}. 11444 */ 11445 MLXSW_REG_TNGCR_FL_NO_HASH, 11446 /* 8 LSBs of the flow label are calculated from ECMP hash of the 11447 * inner packet. 12 MSBs are configured by nve_fl_prefix. 11448 */ 11449 MLXSW_REG_TNGCR_FL_HASH, 11450 }; 11451 11452 /* reg_tngcr_nve_flh 11453 * NVE flow label hash. 11454 * Access: RW 11455 */ 11456 MLXSW_ITEM32(reg, tngcr, nve_flh, 0x0C, 24, 1); 11457 11458 /* reg_tngcr_nve_fl_prefix 11459 * NVE flow label prefix. Constant 12 MSBs of the flow label. 11460 * Access: RW 11461 */ 11462 MLXSW_ITEM32(reg, tngcr, nve_fl_prefix, 0x0C, 8, 12); 11463 11464 /* reg_tngcr_nve_fl_suffix 11465 * NVE flow label suffix. Constant 8 LSBs of the flow label. 11466 * Reserved when nve_flh=1 and for Spectrum. 11467 * Access: RW 11468 */ 11469 MLXSW_ITEM32(reg, tngcr, nve_fl_suffix, 0x0C, 0, 8); 11470 11471 enum { 11472 /* Source UDP port is fixed (default '0') */ 11473 MLXSW_REG_TNGCR_UDP_SPORT_NO_HASH, 11474 /* Source UDP port is calculated based on hash */ 11475 MLXSW_REG_TNGCR_UDP_SPORT_HASH, 11476 }; 11477 11478 /* reg_tngcr_nve_udp_sport_type 11479 * NVE UDP source port type. 11480 * Spectrum uses LAG hash (SLCRv2). Spectrum-2 uses ECMP hash (RECRv2). 11481 * When the source UDP port is calculated based on hash, then the 8 LSBs 11482 * are calculated from hash the 8 MSBs are configured by 11483 * nve_udp_sport_prefix. 11484 * Access: RW 11485 */ 11486 MLXSW_ITEM32(reg, tngcr, nve_udp_sport_type, 0x10, 24, 1); 11487 11488 /* reg_tngcr_nve_udp_sport_prefix 11489 * NVE UDP source port prefix. Constant 8 MSBs of the UDP source port. 11490 * Reserved when NVE type is NVGRE. 11491 * Access: RW 11492 */ 11493 MLXSW_ITEM32(reg, tngcr, nve_udp_sport_prefix, 0x10, 8, 8); 11494 11495 /* reg_tngcr_nve_group_size_mc 11496 * The amount of sequential linked lists of MC entries. The first linked 11497 * list is configured by SFD.underlay_mc_ptr. 11498 * Valid values: 1, 2, 4, 8, 16, 32, 64 11499 * The linked list are configured by TNUMT. 11500 * The hash is set by LAG hash. 11501 * Access: RW 11502 */ 11503 MLXSW_ITEM32(reg, tngcr, nve_group_size_mc, 0x18, 0, 8); 11504 11505 /* reg_tngcr_nve_group_size_flood 11506 * The amount of sequential linked lists of flooding entries. The first 11507 * linked list is configured by SFMR.nve_tunnel_flood_ptr 11508 * Valid values: 1, 2, 4, 8, 16, 32, 64 11509 * The linked list are configured by TNUMT. 11510 * The hash is set by LAG hash. 11511 * Access: RW 11512 */ 11513 MLXSW_ITEM32(reg, tngcr, nve_group_size_flood, 0x1C, 0, 8); 11514 11515 /* reg_tngcr_learn_enable 11516 * During decapsulation, whether to learn from NVE port. 11517 * Reserved when Spectrum-2. See TNPC. 11518 * Access: RW 11519 */ 11520 MLXSW_ITEM32(reg, tngcr, learn_enable, 0x20, 31, 1); 11521 11522 /* reg_tngcr_underlay_virtual_router 11523 * Underlay virtual router. 11524 * Reserved when Spectrum-2. 11525 * Access: RW 11526 */ 11527 MLXSW_ITEM32(reg, tngcr, underlay_virtual_router, 0x20, 0, 16); 11528 11529 /* reg_tngcr_underlay_rif 11530 * Underlay ingress router interface. RIF type should be loopback generic. 11531 * Reserved when Spectrum. 11532 * Access: RW 11533 */ 11534 MLXSW_ITEM32(reg, tngcr, underlay_rif, 0x24, 0, 16); 11535 11536 /* reg_tngcr_usipv4 11537 * Underlay source IPv4 address of the NVE. 11538 * Access: RW 11539 */ 11540 MLXSW_ITEM32(reg, tngcr, usipv4, 0x28, 0, 32); 11541 11542 /* reg_tngcr_usipv6 11543 * Underlay source IPv6 address of the NVE. For Spectrum, must not be 11544 * modified under traffic of NVE tunneling encapsulation. 11545 * Access: RW 11546 */ 11547 MLXSW_ITEM_BUF(reg, tngcr, usipv6, 0x30, 16); 11548 11549 static inline void mlxsw_reg_tngcr_pack(char *payload, 11550 enum mlxsw_reg_tngcr_type type, 11551 bool valid, u8 ttl) 11552 { 11553 MLXSW_REG_ZERO(tngcr, payload); 11554 mlxsw_reg_tngcr_type_set(payload, type); 11555 mlxsw_reg_tngcr_nve_valid_set(payload, valid); 11556 mlxsw_reg_tngcr_nve_ttl_uc_set(payload, ttl); 11557 mlxsw_reg_tngcr_nve_ttl_mc_set(payload, ttl); 11558 mlxsw_reg_tngcr_nve_flc_set(payload, MLXSW_REG_TNGCR_FL_NO_COPY); 11559 mlxsw_reg_tngcr_nve_flh_set(payload, 0); 11560 mlxsw_reg_tngcr_nve_udp_sport_type_set(payload, 11561 MLXSW_REG_TNGCR_UDP_SPORT_HASH); 11562 mlxsw_reg_tngcr_nve_udp_sport_prefix_set(payload, 0); 11563 mlxsw_reg_tngcr_nve_group_size_mc_set(payload, 1); 11564 mlxsw_reg_tngcr_nve_group_size_flood_set(payload, 1); 11565 } 11566 11567 /* TNUMT - Tunneling NVE Underlay Multicast Table Register 11568 * ------------------------------------------------------- 11569 * The TNUMT register is for building the underlay MC table. It is used 11570 * for MC, flooding and BC traffic into the NVE tunnel. 11571 */ 11572 #define MLXSW_REG_TNUMT_ID 0xA003 11573 #define MLXSW_REG_TNUMT_LEN 0x20 11574 11575 MLXSW_REG_DEFINE(tnumt, MLXSW_REG_TNUMT_ID, MLXSW_REG_TNUMT_LEN); 11576 11577 enum mlxsw_reg_tnumt_record_type { 11578 MLXSW_REG_TNUMT_RECORD_TYPE_IPV4, 11579 MLXSW_REG_TNUMT_RECORD_TYPE_IPV6, 11580 MLXSW_REG_TNUMT_RECORD_TYPE_LABEL, 11581 }; 11582 11583 /* reg_tnumt_record_type 11584 * Record type. 11585 * Access: RW 11586 */ 11587 MLXSW_ITEM32(reg, tnumt, record_type, 0x00, 28, 4); 11588 11589 /* reg_tnumt_tunnel_port 11590 * Tunnel port. 11591 * Access: RW 11592 */ 11593 MLXSW_ITEM32(reg, tnumt, tunnel_port, 0x00, 24, 4); 11594 11595 /* reg_tnumt_underlay_mc_ptr 11596 * Index to the underlay multicast table. 11597 * For Spectrum the index is to the KVD linear. 11598 * Access: Index 11599 */ 11600 MLXSW_ITEM32(reg, tnumt, underlay_mc_ptr, 0x00, 0, 24); 11601 11602 /* reg_tnumt_vnext 11603 * The next_underlay_mc_ptr is valid. 11604 * Access: RW 11605 */ 11606 MLXSW_ITEM32(reg, tnumt, vnext, 0x04, 31, 1); 11607 11608 /* reg_tnumt_next_underlay_mc_ptr 11609 * The next index to the underlay multicast table. 11610 * Access: RW 11611 */ 11612 MLXSW_ITEM32(reg, tnumt, next_underlay_mc_ptr, 0x04, 0, 24); 11613 11614 /* reg_tnumt_record_size 11615 * Number of IP addresses in the record. 11616 * Range is 1..cap_max_nve_mc_entries_ipv{4,6} 11617 * Access: RW 11618 */ 11619 MLXSW_ITEM32(reg, tnumt, record_size, 0x08, 0, 3); 11620 11621 /* reg_tnumt_udip 11622 * The underlay IPv4 addresses. udip[i] is reserved if i >= size 11623 * Access: RW 11624 */ 11625 MLXSW_ITEM32_INDEXED(reg, tnumt, udip, 0x0C, 0, 32, 0x04, 0x00, false); 11626 11627 /* reg_tnumt_udip_ptr 11628 * The pointer to the underlay IPv6 addresses. udip_ptr[i] is reserved if 11629 * i >= size. The IPv6 addresses are configured by RIPS. 11630 * Access: RW 11631 */ 11632 MLXSW_ITEM32_INDEXED(reg, tnumt, udip_ptr, 0x0C, 0, 24, 0x04, 0x00, false); 11633 11634 static inline void mlxsw_reg_tnumt_pack(char *payload, 11635 enum mlxsw_reg_tnumt_record_type type, 11636 enum mlxsw_reg_tunnel_port tport, 11637 u32 underlay_mc_ptr, bool vnext, 11638 u32 next_underlay_mc_ptr, 11639 u8 record_size) 11640 { 11641 MLXSW_REG_ZERO(tnumt, payload); 11642 mlxsw_reg_tnumt_record_type_set(payload, type); 11643 mlxsw_reg_tnumt_tunnel_port_set(payload, tport); 11644 mlxsw_reg_tnumt_underlay_mc_ptr_set(payload, underlay_mc_ptr); 11645 mlxsw_reg_tnumt_vnext_set(payload, vnext); 11646 mlxsw_reg_tnumt_next_underlay_mc_ptr_set(payload, next_underlay_mc_ptr); 11647 mlxsw_reg_tnumt_record_size_set(payload, record_size); 11648 } 11649 11650 /* TNQCR - Tunneling NVE QoS Configuration Register 11651 * ------------------------------------------------ 11652 * The TNQCR register configures how QoS is set in encapsulation into the 11653 * underlay network. 11654 */ 11655 #define MLXSW_REG_TNQCR_ID 0xA010 11656 #define MLXSW_REG_TNQCR_LEN 0x0C 11657 11658 MLXSW_REG_DEFINE(tnqcr, MLXSW_REG_TNQCR_ID, MLXSW_REG_TNQCR_LEN); 11659 11660 /* reg_tnqcr_enc_set_dscp 11661 * For encapsulation: How to set DSCP field: 11662 * 0 - Copy the DSCP from the overlay (inner) IP header to the underlay 11663 * (outer) IP header. If there is no IP header, use TNQDR.dscp 11664 * 1 - Set the DSCP field as TNQDR.dscp 11665 * Access: RW 11666 */ 11667 MLXSW_ITEM32(reg, tnqcr, enc_set_dscp, 0x04, 28, 1); 11668 11669 static inline void mlxsw_reg_tnqcr_pack(char *payload) 11670 { 11671 MLXSW_REG_ZERO(tnqcr, payload); 11672 mlxsw_reg_tnqcr_enc_set_dscp_set(payload, 0); 11673 } 11674 11675 /* TNQDR - Tunneling NVE QoS Default Register 11676 * ------------------------------------------ 11677 * The TNQDR register configures the default QoS settings for NVE 11678 * encapsulation. 11679 */ 11680 #define MLXSW_REG_TNQDR_ID 0xA011 11681 #define MLXSW_REG_TNQDR_LEN 0x08 11682 11683 MLXSW_REG_DEFINE(tnqdr, MLXSW_REG_TNQDR_ID, MLXSW_REG_TNQDR_LEN); 11684 11685 /* reg_tnqdr_local_port 11686 * Local port number (receive port). CPU port is supported. 11687 * Access: Index 11688 */ 11689 MLXSW_ITEM32(reg, tnqdr, local_port, 0x00, 16, 8); 11690 11691 /* reg_tnqdr_dscp 11692 * For encapsulation, the default DSCP. 11693 * Access: RW 11694 */ 11695 MLXSW_ITEM32(reg, tnqdr, dscp, 0x04, 0, 6); 11696 11697 static inline void mlxsw_reg_tnqdr_pack(char *payload, u8 local_port) 11698 { 11699 MLXSW_REG_ZERO(tnqdr, payload); 11700 mlxsw_reg_tnqdr_local_port_set(payload, local_port); 11701 mlxsw_reg_tnqdr_dscp_set(payload, 0); 11702 } 11703 11704 /* TNEEM - Tunneling NVE Encapsulation ECN Mapping Register 11705 * -------------------------------------------------------- 11706 * The TNEEM register maps ECN of the IP header at the ingress to the 11707 * encapsulation to the ECN of the underlay network. 11708 */ 11709 #define MLXSW_REG_TNEEM_ID 0xA012 11710 #define MLXSW_REG_TNEEM_LEN 0x0C 11711 11712 MLXSW_REG_DEFINE(tneem, MLXSW_REG_TNEEM_ID, MLXSW_REG_TNEEM_LEN); 11713 11714 /* reg_tneem_overlay_ecn 11715 * ECN of the IP header in the overlay network. 11716 * Access: Index 11717 */ 11718 MLXSW_ITEM32(reg, tneem, overlay_ecn, 0x04, 24, 2); 11719 11720 /* reg_tneem_underlay_ecn 11721 * ECN of the IP header in the underlay network. 11722 * Access: RW 11723 */ 11724 MLXSW_ITEM32(reg, tneem, underlay_ecn, 0x04, 16, 2); 11725 11726 static inline void mlxsw_reg_tneem_pack(char *payload, u8 overlay_ecn, 11727 u8 underlay_ecn) 11728 { 11729 MLXSW_REG_ZERO(tneem, payload); 11730 mlxsw_reg_tneem_overlay_ecn_set(payload, overlay_ecn); 11731 mlxsw_reg_tneem_underlay_ecn_set(payload, underlay_ecn); 11732 } 11733 11734 /* TNDEM - Tunneling NVE Decapsulation ECN Mapping Register 11735 * -------------------------------------------------------- 11736 * The TNDEM register configures the actions that are done in the 11737 * decapsulation. 11738 */ 11739 #define MLXSW_REG_TNDEM_ID 0xA013 11740 #define MLXSW_REG_TNDEM_LEN 0x0C 11741 11742 MLXSW_REG_DEFINE(tndem, MLXSW_REG_TNDEM_ID, MLXSW_REG_TNDEM_LEN); 11743 11744 /* reg_tndem_underlay_ecn 11745 * ECN field of the IP header in the underlay network. 11746 * Access: Index 11747 */ 11748 MLXSW_ITEM32(reg, tndem, underlay_ecn, 0x04, 24, 2); 11749 11750 /* reg_tndem_overlay_ecn 11751 * ECN field of the IP header in the overlay network. 11752 * Access: Index 11753 */ 11754 MLXSW_ITEM32(reg, tndem, overlay_ecn, 0x04, 16, 2); 11755 11756 /* reg_tndem_eip_ecn 11757 * Egress IP ECN. ECN field of the IP header of the packet which goes out 11758 * from the decapsulation. 11759 * Access: RW 11760 */ 11761 MLXSW_ITEM32(reg, tndem, eip_ecn, 0x04, 8, 2); 11762 11763 /* reg_tndem_trap_en 11764 * Trap enable: 11765 * 0 - No trap due to decap ECN 11766 * 1 - Trap enable with trap_id 11767 * Access: RW 11768 */ 11769 MLXSW_ITEM32(reg, tndem, trap_en, 0x08, 28, 4); 11770 11771 /* reg_tndem_trap_id 11772 * Trap ID. Either DECAP_ECN0 or DECAP_ECN1. 11773 * Reserved when trap_en is '0'. 11774 * Access: RW 11775 */ 11776 MLXSW_ITEM32(reg, tndem, trap_id, 0x08, 0, 9); 11777 11778 static inline void mlxsw_reg_tndem_pack(char *payload, u8 underlay_ecn, 11779 u8 overlay_ecn, u8 ecn, bool trap_en, 11780 u16 trap_id) 11781 { 11782 MLXSW_REG_ZERO(tndem, payload); 11783 mlxsw_reg_tndem_underlay_ecn_set(payload, underlay_ecn); 11784 mlxsw_reg_tndem_overlay_ecn_set(payload, overlay_ecn); 11785 mlxsw_reg_tndem_eip_ecn_set(payload, ecn); 11786 mlxsw_reg_tndem_trap_en_set(payload, trap_en); 11787 mlxsw_reg_tndem_trap_id_set(payload, trap_id); 11788 } 11789 11790 /* TNPC - Tunnel Port Configuration Register 11791 * ----------------------------------------- 11792 * The TNPC register is used for tunnel port configuration. 11793 * Reserved when Spectrum. 11794 */ 11795 #define MLXSW_REG_TNPC_ID 0xA020 11796 #define MLXSW_REG_TNPC_LEN 0x18 11797 11798 MLXSW_REG_DEFINE(tnpc, MLXSW_REG_TNPC_ID, MLXSW_REG_TNPC_LEN); 11799 11800 /* reg_tnpc_tunnel_port 11801 * Tunnel port. 11802 * Access: Index 11803 */ 11804 MLXSW_ITEM32(reg, tnpc, tunnel_port, 0x00, 0, 4); 11805 11806 /* reg_tnpc_learn_enable_v6 11807 * During IPv6 underlay decapsulation, whether to learn from tunnel port. 11808 * Access: RW 11809 */ 11810 MLXSW_ITEM32(reg, tnpc, learn_enable_v6, 0x04, 1, 1); 11811 11812 /* reg_tnpc_learn_enable_v4 11813 * During IPv4 underlay decapsulation, whether to learn from tunnel port. 11814 * Access: RW 11815 */ 11816 MLXSW_ITEM32(reg, tnpc, learn_enable_v4, 0x04, 0, 1); 11817 11818 static inline void mlxsw_reg_tnpc_pack(char *payload, 11819 enum mlxsw_reg_tunnel_port tport, 11820 bool learn_enable) 11821 { 11822 MLXSW_REG_ZERO(tnpc, payload); 11823 mlxsw_reg_tnpc_tunnel_port_set(payload, tport); 11824 mlxsw_reg_tnpc_learn_enable_v4_set(payload, learn_enable); 11825 mlxsw_reg_tnpc_learn_enable_v6_set(payload, learn_enable); 11826 } 11827 11828 /* TIGCR - Tunneling IPinIP General Configuration Register 11829 * ------------------------------------------------------- 11830 * The TIGCR register is used for setting up the IPinIP Tunnel configuration. 11831 */ 11832 #define MLXSW_REG_TIGCR_ID 0xA801 11833 #define MLXSW_REG_TIGCR_LEN 0x10 11834 11835 MLXSW_REG_DEFINE(tigcr, MLXSW_REG_TIGCR_ID, MLXSW_REG_TIGCR_LEN); 11836 11837 /* reg_tigcr_ipip_ttlc 11838 * For IPinIP Tunnel encapsulation: whether to copy the ttl from the packet 11839 * header. 11840 * Access: RW 11841 */ 11842 MLXSW_ITEM32(reg, tigcr, ttlc, 0x04, 8, 1); 11843 11844 /* reg_tigcr_ipip_ttl_uc 11845 * The TTL for IPinIP Tunnel encapsulation of unicast packets if 11846 * reg_tigcr_ipip_ttlc is unset. 11847 * Access: RW 11848 */ 11849 MLXSW_ITEM32(reg, tigcr, ttl_uc, 0x04, 0, 8); 11850 11851 static inline void mlxsw_reg_tigcr_pack(char *payload, bool ttlc, u8 ttl_uc) 11852 { 11853 MLXSW_REG_ZERO(tigcr, payload); 11854 mlxsw_reg_tigcr_ttlc_set(payload, ttlc); 11855 mlxsw_reg_tigcr_ttl_uc_set(payload, ttl_uc); 11856 } 11857 11858 /* TIEEM - Tunneling IPinIP Encapsulation ECN Mapping Register 11859 * ----------------------------------------------------------- 11860 * The TIEEM register maps ECN of the IP header at the ingress to the 11861 * encapsulation to the ECN of the underlay network. 11862 */ 11863 #define MLXSW_REG_TIEEM_ID 0xA812 11864 #define MLXSW_REG_TIEEM_LEN 0x0C 11865 11866 MLXSW_REG_DEFINE(tieem, MLXSW_REG_TIEEM_ID, MLXSW_REG_TIEEM_LEN); 11867 11868 /* reg_tieem_overlay_ecn 11869 * ECN of the IP header in the overlay network. 11870 * Access: Index 11871 */ 11872 MLXSW_ITEM32(reg, tieem, overlay_ecn, 0x04, 24, 2); 11873 11874 /* reg_tineem_underlay_ecn 11875 * ECN of the IP header in the underlay network. 11876 * Access: RW 11877 */ 11878 MLXSW_ITEM32(reg, tieem, underlay_ecn, 0x04, 16, 2); 11879 11880 static inline void mlxsw_reg_tieem_pack(char *payload, u8 overlay_ecn, 11881 u8 underlay_ecn) 11882 { 11883 MLXSW_REG_ZERO(tieem, payload); 11884 mlxsw_reg_tieem_overlay_ecn_set(payload, overlay_ecn); 11885 mlxsw_reg_tieem_underlay_ecn_set(payload, underlay_ecn); 11886 } 11887 11888 /* TIDEM - Tunneling IPinIP Decapsulation ECN Mapping Register 11889 * ----------------------------------------------------------- 11890 * The TIDEM register configures the actions that are done in the 11891 * decapsulation. 11892 */ 11893 #define MLXSW_REG_TIDEM_ID 0xA813 11894 #define MLXSW_REG_TIDEM_LEN 0x0C 11895 11896 MLXSW_REG_DEFINE(tidem, MLXSW_REG_TIDEM_ID, MLXSW_REG_TIDEM_LEN); 11897 11898 /* reg_tidem_underlay_ecn 11899 * ECN field of the IP header in the underlay network. 11900 * Access: Index 11901 */ 11902 MLXSW_ITEM32(reg, tidem, underlay_ecn, 0x04, 24, 2); 11903 11904 /* reg_tidem_overlay_ecn 11905 * ECN field of the IP header in the overlay network. 11906 * Access: Index 11907 */ 11908 MLXSW_ITEM32(reg, tidem, overlay_ecn, 0x04, 16, 2); 11909 11910 /* reg_tidem_eip_ecn 11911 * Egress IP ECN. ECN field of the IP header of the packet which goes out 11912 * from the decapsulation. 11913 * Access: RW 11914 */ 11915 MLXSW_ITEM32(reg, tidem, eip_ecn, 0x04, 8, 2); 11916 11917 /* reg_tidem_trap_en 11918 * Trap enable: 11919 * 0 - No trap due to decap ECN 11920 * 1 - Trap enable with trap_id 11921 * Access: RW 11922 */ 11923 MLXSW_ITEM32(reg, tidem, trap_en, 0x08, 28, 4); 11924 11925 /* reg_tidem_trap_id 11926 * Trap ID. Either DECAP_ECN0 or DECAP_ECN1. 11927 * Reserved when trap_en is '0'. 11928 * Access: RW 11929 */ 11930 MLXSW_ITEM32(reg, tidem, trap_id, 0x08, 0, 9); 11931 11932 static inline void mlxsw_reg_tidem_pack(char *payload, u8 underlay_ecn, 11933 u8 overlay_ecn, u8 eip_ecn, 11934 bool trap_en, u16 trap_id) 11935 { 11936 MLXSW_REG_ZERO(tidem, payload); 11937 mlxsw_reg_tidem_underlay_ecn_set(payload, underlay_ecn); 11938 mlxsw_reg_tidem_overlay_ecn_set(payload, overlay_ecn); 11939 mlxsw_reg_tidem_eip_ecn_set(payload, eip_ecn); 11940 mlxsw_reg_tidem_trap_en_set(payload, trap_en); 11941 mlxsw_reg_tidem_trap_id_set(payload, trap_id); 11942 } 11943 11944 /* SBPR - Shared Buffer Pools Register 11945 * ----------------------------------- 11946 * The SBPR configures and retrieves the shared buffer pools and configuration. 11947 */ 11948 #define MLXSW_REG_SBPR_ID 0xB001 11949 #define MLXSW_REG_SBPR_LEN 0x14 11950 11951 MLXSW_REG_DEFINE(sbpr, MLXSW_REG_SBPR_ID, MLXSW_REG_SBPR_LEN); 11952 11953 /* shared direstion enum for SBPR, SBCM, SBPM */ 11954 enum mlxsw_reg_sbxx_dir { 11955 MLXSW_REG_SBXX_DIR_INGRESS, 11956 MLXSW_REG_SBXX_DIR_EGRESS, 11957 }; 11958 11959 /* reg_sbpr_dir 11960 * Direction. 11961 * Access: Index 11962 */ 11963 MLXSW_ITEM32(reg, sbpr, dir, 0x00, 24, 2); 11964 11965 /* reg_sbpr_pool 11966 * Pool index. 11967 * Access: Index 11968 */ 11969 MLXSW_ITEM32(reg, sbpr, pool, 0x00, 0, 4); 11970 11971 /* reg_sbpr_infi_size 11972 * Size is infinite. 11973 * Access: RW 11974 */ 11975 MLXSW_ITEM32(reg, sbpr, infi_size, 0x04, 31, 1); 11976 11977 /* reg_sbpr_size 11978 * Pool size in buffer cells. 11979 * Reserved when infi_size = 1. 11980 * Access: RW 11981 */ 11982 MLXSW_ITEM32(reg, sbpr, size, 0x04, 0, 24); 11983 11984 enum mlxsw_reg_sbpr_mode { 11985 MLXSW_REG_SBPR_MODE_STATIC, 11986 MLXSW_REG_SBPR_MODE_DYNAMIC, 11987 }; 11988 11989 /* reg_sbpr_mode 11990 * Pool quota calculation mode. 11991 * Access: RW 11992 */ 11993 MLXSW_ITEM32(reg, sbpr, mode, 0x08, 0, 4); 11994 11995 static inline void mlxsw_reg_sbpr_pack(char *payload, u8 pool, 11996 enum mlxsw_reg_sbxx_dir dir, 11997 enum mlxsw_reg_sbpr_mode mode, u32 size, 11998 bool infi_size) 11999 { 12000 MLXSW_REG_ZERO(sbpr, payload); 12001 mlxsw_reg_sbpr_pool_set(payload, pool); 12002 mlxsw_reg_sbpr_dir_set(payload, dir); 12003 mlxsw_reg_sbpr_mode_set(payload, mode); 12004 mlxsw_reg_sbpr_size_set(payload, size); 12005 mlxsw_reg_sbpr_infi_size_set(payload, infi_size); 12006 } 12007 12008 /* SBCM - Shared Buffer Class Management Register 12009 * ---------------------------------------------- 12010 * The SBCM register configures and retrieves the shared buffer allocation 12011 * and configuration according to Port-PG, including the binding to pool 12012 * and definition of the associated quota. 12013 */ 12014 #define MLXSW_REG_SBCM_ID 0xB002 12015 #define MLXSW_REG_SBCM_LEN 0x28 12016 12017 MLXSW_REG_DEFINE(sbcm, MLXSW_REG_SBCM_ID, MLXSW_REG_SBCM_LEN); 12018 12019 /* reg_sbcm_local_port 12020 * Local port number. 12021 * For Ingress: excludes CPU port and Router port 12022 * For Egress: excludes IP Router 12023 * Access: Index 12024 */ 12025 MLXSW_ITEM32(reg, sbcm, local_port, 0x00, 16, 8); 12026 12027 /* reg_sbcm_pg_buff 12028 * PG buffer - Port PG (dir=ingress) / traffic class (dir=egress) 12029 * For PG buffer: range is 0..cap_max_pg_buffers - 1 12030 * For traffic class: range is 0..cap_max_tclass - 1 12031 * Note that when traffic class is in MC aware mode then the traffic 12032 * classes which are MC aware cannot be configured. 12033 * Access: Index 12034 */ 12035 MLXSW_ITEM32(reg, sbcm, pg_buff, 0x00, 8, 6); 12036 12037 /* reg_sbcm_dir 12038 * Direction. 12039 * Access: Index 12040 */ 12041 MLXSW_ITEM32(reg, sbcm, dir, 0x00, 0, 2); 12042 12043 /* reg_sbcm_min_buff 12044 * Minimum buffer size for the limiter, in cells. 12045 * Access: RW 12046 */ 12047 MLXSW_ITEM32(reg, sbcm, min_buff, 0x18, 0, 24); 12048 12049 /* shared max_buff limits for dynamic threshold for SBCM, SBPM */ 12050 #define MLXSW_REG_SBXX_DYN_MAX_BUFF_MIN 1 12051 #define MLXSW_REG_SBXX_DYN_MAX_BUFF_MAX 14 12052 12053 /* reg_sbcm_infi_max 12054 * Max buffer is infinite. 12055 * Access: RW 12056 */ 12057 MLXSW_ITEM32(reg, sbcm, infi_max, 0x1C, 31, 1); 12058 12059 /* reg_sbcm_max_buff 12060 * When the pool associated to the port-pg/tclass is configured to 12061 * static, Maximum buffer size for the limiter configured in cells. 12062 * When the pool associated to the port-pg/tclass is configured to 12063 * dynamic, the max_buff holds the "alpha" parameter, supporting 12064 * the following values: 12065 * 0: 0 12066 * i: (1/128)*2^(i-1), for i=1..14 12067 * 0xFF: Infinity 12068 * Reserved when infi_max = 1. 12069 * Access: RW 12070 */ 12071 MLXSW_ITEM32(reg, sbcm, max_buff, 0x1C, 0, 24); 12072 12073 /* reg_sbcm_pool 12074 * Association of the port-priority to a pool. 12075 * Access: RW 12076 */ 12077 MLXSW_ITEM32(reg, sbcm, pool, 0x24, 0, 4); 12078 12079 static inline void mlxsw_reg_sbcm_pack(char *payload, u8 local_port, u8 pg_buff, 12080 enum mlxsw_reg_sbxx_dir dir, 12081 u32 min_buff, u32 max_buff, 12082 bool infi_max, u8 pool) 12083 { 12084 MLXSW_REG_ZERO(sbcm, payload); 12085 mlxsw_reg_sbcm_local_port_set(payload, local_port); 12086 mlxsw_reg_sbcm_pg_buff_set(payload, pg_buff); 12087 mlxsw_reg_sbcm_dir_set(payload, dir); 12088 mlxsw_reg_sbcm_min_buff_set(payload, min_buff); 12089 mlxsw_reg_sbcm_max_buff_set(payload, max_buff); 12090 mlxsw_reg_sbcm_infi_max_set(payload, infi_max); 12091 mlxsw_reg_sbcm_pool_set(payload, pool); 12092 } 12093 12094 /* SBPM - Shared Buffer Port Management Register 12095 * --------------------------------------------- 12096 * The SBPM register configures and retrieves the shared buffer allocation 12097 * and configuration according to Port-Pool, including the definition 12098 * of the associated quota. 12099 */ 12100 #define MLXSW_REG_SBPM_ID 0xB003 12101 #define MLXSW_REG_SBPM_LEN 0x28 12102 12103 MLXSW_REG_DEFINE(sbpm, MLXSW_REG_SBPM_ID, MLXSW_REG_SBPM_LEN); 12104 12105 /* reg_sbpm_local_port 12106 * Local port number. 12107 * For Ingress: excludes CPU port and Router port 12108 * For Egress: excludes IP Router 12109 * Access: Index 12110 */ 12111 MLXSW_ITEM32(reg, sbpm, local_port, 0x00, 16, 8); 12112 12113 /* reg_sbpm_pool 12114 * The pool associated to quota counting on the local_port. 12115 * Access: Index 12116 */ 12117 MLXSW_ITEM32(reg, sbpm, pool, 0x00, 8, 4); 12118 12119 /* reg_sbpm_dir 12120 * Direction. 12121 * Access: Index 12122 */ 12123 MLXSW_ITEM32(reg, sbpm, dir, 0x00, 0, 2); 12124 12125 /* reg_sbpm_buff_occupancy 12126 * Current buffer occupancy in cells. 12127 * Access: RO 12128 */ 12129 MLXSW_ITEM32(reg, sbpm, buff_occupancy, 0x10, 0, 24); 12130 12131 /* reg_sbpm_clr 12132 * Clear Max Buffer Occupancy 12133 * When this bit is set, max_buff_occupancy field is cleared (and a 12134 * new max value is tracked from the time the clear was performed). 12135 * Access: OP 12136 */ 12137 MLXSW_ITEM32(reg, sbpm, clr, 0x14, 31, 1); 12138 12139 /* reg_sbpm_max_buff_occupancy 12140 * Maximum value of buffer occupancy in cells monitored. Cleared by 12141 * writing to the clr field. 12142 * Access: RO 12143 */ 12144 MLXSW_ITEM32(reg, sbpm, max_buff_occupancy, 0x14, 0, 24); 12145 12146 /* reg_sbpm_min_buff 12147 * Minimum buffer size for the limiter, in cells. 12148 * Access: RW 12149 */ 12150 MLXSW_ITEM32(reg, sbpm, min_buff, 0x18, 0, 24); 12151 12152 /* reg_sbpm_max_buff 12153 * When the pool associated to the port-pg/tclass is configured to 12154 * static, Maximum buffer size for the limiter configured in cells. 12155 * When the pool associated to the port-pg/tclass is configured to 12156 * dynamic, the max_buff holds the "alpha" parameter, supporting 12157 * the following values: 12158 * 0: 0 12159 * i: (1/128)*2^(i-1), for i=1..14 12160 * 0xFF: Infinity 12161 * Access: RW 12162 */ 12163 MLXSW_ITEM32(reg, sbpm, max_buff, 0x1C, 0, 24); 12164 12165 static inline void mlxsw_reg_sbpm_pack(char *payload, u8 local_port, u8 pool, 12166 enum mlxsw_reg_sbxx_dir dir, bool clr, 12167 u32 min_buff, u32 max_buff) 12168 { 12169 MLXSW_REG_ZERO(sbpm, payload); 12170 mlxsw_reg_sbpm_local_port_set(payload, local_port); 12171 mlxsw_reg_sbpm_pool_set(payload, pool); 12172 mlxsw_reg_sbpm_dir_set(payload, dir); 12173 mlxsw_reg_sbpm_clr_set(payload, clr); 12174 mlxsw_reg_sbpm_min_buff_set(payload, min_buff); 12175 mlxsw_reg_sbpm_max_buff_set(payload, max_buff); 12176 } 12177 12178 static inline void mlxsw_reg_sbpm_unpack(char *payload, u32 *p_buff_occupancy, 12179 u32 *p_max_buff_occupancy) 12180 { 12181 *p_buff_occupancy = mlxsw_reg_sbpm_buff_occupancy_get(payload); 12182 *p_max_buff_occupancy = mlxsw_reg_sbpm_max_buff_occupancy_get(payload); 12183 } 12184 12185 /* SBMM - Shared Buffer Multicast Management Register 12186 * -------------------------------------------------- 12187 * The SBMM register configures and retrieves the shared buffer allocation 12188 * and configuration for MC packets according to Switch-Priority, including 12189 * the binding to pool and definition of the associated quota. 12190 */ 12191 #define MLXSW_REG_SBMM_ID 0xB004 12192 #define MLXSW_REG_SBMM_LEN 0x28 12193 12194 MLXSW_REG_DEFINE(sbmm, MLXSW_REG_SBMM_ID, MLXSW_REG_SBMM_LEN); 12195 12196 /* reg_sbmm_prio 12197 * Switch Priority. 12198 * Access: Index 12199 */ 12200 MLXSW_ITEM32(reg, sbmm, prio, 0x00, 8, 4); 12201 12202 /* reg_sbmm_min_buff 12203 * Minimum buffer size for the limiter, in cells. 12204 * Access: RW 12205 */ 12206 MLXSW_ITEM32(reg, sbmm, min_buff, 0x18, 0, 24); 12207 12208 /* reg_sbmm_max_buff 12209 * When the pool associated to the port-pg/tclass is configured to 12210 * static, Maximum buffer size for the limiter configured in cells. 12211 * When the pool associated to the port-pg/tclass is configured to 12212 * dynamic, the max_buff holds the "alpha" parameter, supporting 12213 * the following values: 12214 * 0: 0 12215 * i: (1/128)*2^(i-1), for i=1..14 12216 * 0xFF: Infinity 12217 * Access: RW 12218 */ 12219 MLXSW_ITEM32(reg, sbmm, max_buff, 0x1C, 0, 24); 12220 12221 /* reg_sbmm_pool 12222 * Association of the port-priority to a pool. 12223 * Access: RW 12224 */ 12225 MLXSW_ITEM32(reg, sbmm, pool, 0x24, 0, 4); 12226 12227 static inline void mlxsw_reg_sbmm_pack(char *payload, u8 prio, u32 min_buff, 12228 u32 max_buff, u8 pool) 12229 { 12230 MLXSW_REG_ZERO(sbmm, payload); 12231 mlxsw_reg_sbmm_prio_set(payload, prio); 12232 mlxsw_reg_sbmm_min_buff_set(payload, min_buff); 12233 mlxsw_reg_sbmm_max_buff_set(payload, max_buff); 12234 mlxsw_reg_sbmm_pool_set(payload, pool); 12235 } 12236 12237 /* SBSR - Shared Buffer Status Register 12238 * ------------------------------------ 12239 * The SBSR register retrieves the shared buffer occupancy according to 12240 * Port-Pool. Note that this register enables reading a large amount of data. 12241 * It is the user's responsibility to limit the amount of data to ensure the 12242 * response can match the maximum transfer unit. In case the response exceeds 12243 * the maximum transport unit, it will be truncated with no special notice. 12244 */ 12245 #define MLXSW_REG_SBSR_ID 0xB005 12246 #define MLXSW_REG_SBSR_BASE_LEN 0x5C /* base length, without records */ 12247 #define MLXSW_REG_SBSR_REC_LEN 0x8 /* record length */ 12248 #define MLXSW_REG_SBSR_REC_MAX_COUNT 120 12249 #define MLXSW_REG_SBSR_LEN (MLXSW_REG_SBSR_BASE_LEN + \ 12250 MLXSW_REG_SBSR_REC_LEN * \ 12251 MLXSW_REG_SBSR_REC_MAX_COUNT) 12252 12253 MLXSW_REG_DEFINE(sbsr, MLXSW_REG_SBSR_ID, MLXSW_REG_SBSR_LEN); 12254 12255 /* reg_sbsr_clr 12256 * Clear Max Buffer Occupancy. When this bit is set, the max_buff_occupancy 12257 * field is cleared (and a new max value is tracked from the time the clear 12258 * was performed). 12259 * Access: OP 12260 */ 12261 MLXSW_ITEM32(reg, sbsr, clr, 0x00, 31, 1); 12262 12263 /* reg_sbsr_ingress_port_mask 12264 * Bit vector for all ingress network ports. 12265 * Indicates which of the ports (for which the relevant bit is set) 12266 * are affected by the set operation. Configuration of any other port 12267 * does not change. 12268 * Access: Index 12269 */ 12270 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, ingress_port_mask, 0x10, 0x20, 1); 12271 12272 /* reg_sbsr_pg_buff_mask 12273 * Bit vector for all switch priority groups. 12274 * Indicates which of the priorities (for which the relevant bit is set) 12275 * are affected by the set operation. Configuration of any other priority 12276 * does not change. 12277 * Range is 0..cap_max_pg_buffers - 1 12278 * Access: Index 12279 */ 12280 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, pg_buff_mask, 0x30, 0x4, 1); 12281 12282 /* reg_sbsr_egress_port_mask 12283 * Bit vector for all egress network ports. 12284 * Indicates which of the ports (for which the relevant bit is set) 12285 * are affected by the set operation. Configuration of any other port 12286 * does not change. 12287 * Access: Index 12288 */ 12289 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, egress_port_mask, 0x34, 0x20, 1); 12290 12291 /* reg_sbsr_tclass_mask 12292 * Bit vector for all traffic classes. 12293 * Indicates which of the traffic classes (for which the relevant bit is 12294 * set) are affected by the set operation. Configuration of any other 12295 * traffic class does not change. 12296 * Range is 0..cap_max_tclass - 1 12297 * Access: Index 12298 */ 12299 MLXSW_ITEM_BIT_ARRAY(reg, sbsr, tclass_mask, 0x54, 0x8, 1); 12300 12301 static inline void mlxsw_reg_sbsr_pack(char *payload, bool clr) 12302 { 12303 MLXSW_REG_ZERO(sbsr, payload); 12304 mlxsw_reg_sbsr_clr_set(payload, clr); 12305 } 12306 12307 /* reg_sbsr_rec_buff_occupancy 12308 * Current buffer occupancy in cells. 12309 * Access: RO 12310 */ 12311 MLXSW_ITEM32_INDEXED(reg, sbsr, rec_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN, 12312 0, 24, MLXSW_REG_SBSR_REC_LEN, 0x00, false); 12313 12314 /* reg_sbsr_rec_max_buff_occupancy 12315 * Maximum value of buffer occupancy in cells monitored. Cleared by 12316 * writing to the clr field. 12317 * Access: RO 12318 */ 12319 MLXSW_ITEM32_INDEXED(reg, sbsr, rec_max_buff_occupancy, MLXSW_REG_SBSR_BASE_LEN, 12320 0, 24, MLXSW_REG_SBSR_REC_LEN, 0x04, false); 12321 12322 static inline void mlxsw_reg_sbsr_rec_unpack(char *payload, int rec_index, 12323 u32 *p_buff_occupancy, 12324 u32 *p_max_buff_occupancy) 12325 { 12326 *p_buff_occupancy = 12327 mlxsw_reg_sbsr_rec_buff_occupancy_get(payload, rec_index); 12328 *p_max_buff_occupancy = 12329 mlxsw_reg_sbsr_rec_max_buff_occupancy_get(payload, rec_index); 12330 } 12331 12332 /* SBIB - Shared Buffer Internal Buffer Register 12333 * --------------------------------------------- 12334 * The SBIB register configures per port buffers for internal use. The internal 12335 * buffers consume memory on the port buffers (note that the port buffers are 12336 * used also by PBMC). 12337 * 12338 * For Spectrum this is used for egress mirroring. 12339 */ 12340 #define MLXSW_REG_SBIB_ID 0xB006 12341 #define MLXSW_REG_SBIB_LEN 0x10 12342 12343 MLXSW_REG_DEFINE(sbib, MLXSW_REG_SBIB_ID, MLXSW_REG_SBIB_LEN); 12344 12345 /* reg_sbib_local_port 12346 * Local port number 12347 * Not supported for CPU port and router port 12348 * Access: Index 12349 */ 12350 MLXSW_ITEM32(reg, sbib, local_port, 0x00, 16, 8); 12351 12352 /* reg_sbib_buff_size 12353 * Units represented in cells 12354 * Allowed range is 0 to (cap_max_headroom_size - 1) 12355 * Default is 0 12356 * Access: RW 12357 */ 12358 MLXSW_ITEM32(reg, sbib, buff_size, 0x08, 0, 24); 12359 12360 static inline void mlxsw_reg_sbib_pack(char *payload, u8 local_port, 12361 u32 buff_size) 12362 { 12363 MLXSW_REG_ZERO(sbib, payload); 12364 mlxsw_reg_sbib_local_port_set(payload, local_port); 12365 mlxsw_reg_sbib_buff_size_set(payload, buff_size); 12366 } 12367 12368 static const struct mlxsw_reg_info *mlxsw_reg_infos[] = { 12369 MLXSW_REG(sgcr), 12370 MLXSW_REG(spad), 12371 MLXSW_REG(smid), 12372 MLXSW_REG(sspr), 12373 MLXSW_REG(sfdat), 12374 MLXSW_REG(sfd), 12375 MLXSW_REG(sfn), 12376 MLXSW_REG(spms), 12377 MLXSW_REG(spvid), 12378 MLXSW_REG(spvm), 12379 MLXSW_REG(spaft), 12380 MLXSW_REG(sfgc), 12381 MLXSW_REG(sftr), 12382 MLXSW_REG(sfdf), 12383 MLXSW_REG(sldr), 12384 MLXSW_REG(slcr), 12385 MLXSW_REG(slcor), 12386 MLXSW_REG(spmlr), 12387 MLXSW_REG(svfa), 12388 MLXSW_REG(spvtr), 12389 MLXSW_REG(svpe), 12390 MLXSW_REG(sfmr), 12391 MLXSW_REG(spvmlr), 12392 MLXSW_REG(spvc), 12393 MLXSW_REG(spevet), 12394 MLXSW_REG(cwtp), 12395 MLXSW_REG(cwtpm), 12396 MLXSW_REG(pgcr), 12397 MLXSW_REG(ppbt), 12398 MLXSW_REG(pacl), 12399 MLXSW_REG(pagt), 12400 MLXSW_REG(ptar), 12401 MLXSW_REG(ppbs), 12402 MLXSW_REG(prcr), 12403 MLXSW_REG(pefa), 12404 MLXSW_REG(pemrbt), 12405 MLXSW_REG(ptce2), 12406 MLXSW_REG(perpt), 12407 MLXSW_REG(peabfe), 12408 MLXSW_REG(perar), 12409 MLXSW_REG(ptce3), 12410 MLXSW_REG(percr), 12411 MLXSW_REG(pererp), 12412 MLXSW_REG(iedr), 12413 MLXSW_REG(qpts), 12414 MLXSW_REG(qpcr), 12415 MLXSW_REG(qtct), 12416 MLXSW_REG(qeec), 12417 MLXSW_REG(qrwe), 12418 MLXSW_REG(qpdsm), 12419 MLXSW_REG(qpdp), 12420 MLXSW_REG(qpdpm), 12421 MLXSW_REG(qtctm), 12422 MLXSW_REG(qpsc), 12423 MLXSW_REG(pmlp), 12424 MLXSW_REG(pmtu), 12425 MLXSW_REG(ptys), 12426 MLXSW_REG(ppad), 12427 MLXSW_REG(paos), 12428 MLXSW_REG(pfcc), 12429 MLXSW_REG(ppcnt), 12430 MLXSW_REG(plib), 12431 MLXSW_REG(pptb), 12432 MLXSW_REG(pbmc), 12433 MLXSW_REG(pspa), 12434 MLXSW_REG(pmaos), 12435 MLXSW_REG(pplr), 12436 MLXSW_REG(pmtdb), 12437 MLXSW_REG(pmpe), 12438 MLXSW_REG(pddr), 12439 MLXSW_REG(pmmp), 12440 MLXSW_REG(pllp), 12441 MLXSW_REG(htgt), 12442 MLXSW_REG(hpkt), 12443 MLXSW_REG(rgcr), 12444 MLXSW_REG(ritr), 12445 MLXSW_REG(rtar), 12446 MLXSW_REG(ratr), 12447 MLXSW_REG(rtdp), 12448 MLXSW_REG(rips), 12449 MLXSW_REG(ratrad), 12450 MLXSW_REG(rdpm), 12451 MLXSW_REG(ricnt), 12452 MLXSW_REG(rrcr), 12453 MLXSW_REG(ralta), 12454 MLXSW_REG(ralst), 12455 MLXSW_REG(raltb), 12456 MLXSW_REG(ralue), 12457 MLXSW_REG(rauht), 12458 MLXSW_REG(raleu), 12459 MLXSW_REG(rauhtd), 12460 MLXSW_REG(rigr2), 12461 MLXSW_REG(recr2), 12462 MLXSW_REG(rmft2), 12463 MLXSW_REG(rxlte), 12464 MLXSW_REG(rxltm), 12465 MLXSW_REG(rlcmld), 12466 MLXSW_REG(rlpmce), 12467 MLXSW_REG(xltq), 12468 MLXSW_REG(xmdr), 12469 MLXSW_REG(xrmt), 12470 MLXSW_REG(xralta), 12471 MLXSW_REG(xralst), 12472 MLXSW_REG(xraltb), 12473 MLXSW_REG(mfcr), 12474 MLXSW_REG(mfsc), 12475 MLXSW_REG(mfsm), 12476 MLXSW_REG(mfsl), 12477 MLXSW_REG(fore), 12478 MLXSW_REG(mtcap), 12479 MLXSW_REG(mtmp), 12480 MLXSW_REG(mtwe), 12481 MLXSW_REG(mtbr), 12482 MLXSW_REG(mcia), 12483 MLXSW_REG(mpat), 12484 MLXSW_REG(mpar), 12485 MLXSW_REG(mgir), 12486 MLXSW_REG(mrsr), 12487 MLXSW_REG(mlcr), 12488 MLXSW_REG(mcion), 12489 MLXSW_REG(mtpps), 12490 MLXSW_REG(mtutc), 12491 MLXSW_REG(mpsc), 12492 MLXSW_REG(mcqi), 12493 MLXSW_REG(mcc), 12494 MLXSW_REG(mcda), 12495 MLXSW_REG(mgpc), 12496 MLXSW_REG(mprs), 12497 MLXSW_REG(mogcr), 12498 MLXSW_REG(mpagr), 12499 MLXSW_REG(momte), 12500 MLXSW_REG(mtpppc), 12501 MLXSW_REG(mtpptr), 12502 MLXSW_REG(mtptpt), 12503 MLXSW_REG(mfgd), 12504 MLXSW_REG(mgpir), 12505 MLXSW_REG(mfde), 12506 MLXSW_REG(tngcr), 12507 MLXSW_REG(tnumt), 12508 MLXSW_REG(tnqcr), 12509 MLXSW_REG(tnqdr), 12510 MLXSW_REG(tneem), 12511 MLXSW_REG(tndem), 12512 MLXSW_REG(tnpc), 12513 MLXSW_REG(tigcr), 12514 MLXSW_REG(tieem), 12515 MLXSW_REG(tidem), 12516 MLXSW_REG(sbpr), 12517 MLXSW_REG(sbcm), 12518 MLXSW_REG(sbpm), 12519 MLXSW_REG(sbmm), 12520 MLXSW_REG(sbsr), 12521 MLXSW_REG(sbib), 12522 }; 12523 12524 static inline const char *mlxsw_reg_id_str(u16 reg_id) 12525 { 12526 const struct mlxsw_reg_info *reg_info; 12527 int i; 12528 12529 for (i = 0; i < ARRAY_SIZE(mlxsw_reg_infos); i++) { 12530 reg_info = mlxsw_reg_infos[i]; 12531 if (reg_info->id == reg_id) 12532 return reg_info->name; 12533 } 12534 return "*UNKNOWN*"; 12535 } 12536 12537 /* PUDE - Port Up / Down Event 12538 * --------------------------- 12539 * Reports the operational state change of a port. 12540 */ 12541 #define MLXSW_REG_PUDE_LEN 0x10 12542 12543 /* reg_pude_swid 12544 * Switch partition ID with which to associate the port. 12545 * Access: Index 12546 */ 12547 MLXSW_ITEM32(reg, pude, swid, 0x00, 24, 8); 12548 12549 /* reg_pude_local_port 12550 * Local port number. 12551 * Access: Index 12552 */ 12553 MLXSW_ITEM32(reg, pude, local_port, 0x00, 16, 8); 12554 12555 /* reg_pude_admin_status 12556 * Port administrative state (the desired state). 12557 * 1 - Up. 12558 * 2 - Down. 12559 * 3 - Up once. This means that in case of link failure, the port won't go 12560 * into polling mode, but will wait to be re-enabled by software. 12561 * 4 - Disabled by system. Can only be set by hardware. 12562 * Access: RO 12563 */ 12564 MLXSW_ITEM32(reg, pude, admin_status, 0x00, 8, 4); 12565 12566 /* reg_pude_oper_status 12567 * Port operatioanl state. 12568 * 1 - Up. 12569 * 2 - Down. 12570 * 3 - Down by port failure. This means that the device will not let the 12571 * port up again until explicitly specified by software. 12572 * Access: RO 12573 */ 12574 MLXSW_ITEM32(reg, pude, oper_status, 0x00, 0, 4); 12575 12576 #endif 12577