xref: /openbmc/linux/drivers/net/ethernet/mellanox/mlxsw/cmd.h (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * drivers/net/ethernet/mellanox/mlxsw/cmd.h
3  * Copyright (c) 2015 Mellanox Technologies. All rights reserved.
4  * Copyright (c) 2015 Jiri Pirko <jiri@mellanox.com>
5  * Copyright (c) 2015 Ido Schimmel <idosch@mellanox.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the names of the copyright holders nor the names of its
16  *    contributors may be used to endorse or promote products derived from
17  *    this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #ifndef _MLXSW_CMD_H
37 #define _MLXSW_CMD_H
38 
39 #include "item.h"
40 
41 #define MLXSW_CMD_MBOX_SIZE	4096
42 
43 static inline char *mlxsw_cmd_mbox_alloc(void)
44 {
45 	return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL);
46 }
47 
48 static inline void mlxsw_cmd_mbox_free(char *mbox)
49 {
50 	kfree(mbox);
51 }
52 
53 static inline void mlxsw_cmd_mbox_zero(char *mbox)
54 {
55 	memset(mbox, 0, MLXSW_CMD_MBOX_SIZE);
56 }
57 
58 struct mlxsw_core;
59 
60 int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod,
61 		   u32 in_mod, bool out_mbox_direct, bool reset_ok,
62 		   char *in_mbox, size_t in_mbox_size,
63 		   char *out_mbox, size_t out_mbox_size);
64 
65 static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode,
66 				    u8 opcode_mod, u32 in_mod, char *in_mbox,
67 				    size_t in_mbox_size)
68 {
69 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
70 			      false, in_mbox, in_mbox_size, NULL, 0);
71 }
72 
73 static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode,
74 				     u8 opcode_mod, u32 in_mod,
75 				     bool out_mbox_direct,
76 				     char *out_mbox, size_t out_mbox_size)
77 {
78 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod,
79 			      out_mbox_direct, false, NULL, 0,
80 			      out_mbox, out_mbox_size);
81 }
82 
83 static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode,
84 				      u8 opcode_mod, u32 in_mod)
85 {
86 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
87 			      false, NULL, 0, NULL, 0);
88 }
89 
90 enum mlxsw_cmd_opcode {
91 	MLXSW_CMD_OPCODE_QUERY_FW		= 0x004,
92 	MLXSW_CMD_OPCODE_QUERY_BOARDINFO	= 0x006,
93 	MLXSW_CMD_OPCODE_QUERY_AQ_CAP		= 0x003,
94 	MLXSW_CMD_OPCODE_MAP_FA			= 0xFFF,
95 	MLXSW_CMD_OPCODE_UNMAP_FA		= 0xFFE,
96 	MLXSW_CMD_OPCODE_CONFIG_PROFILE		= 0x100,
97 	MLXSW_CMD_OPCODE_ACCESS_REG		= 0x040,
98 	MLXSW_CMD_OPCODE_SW2HW_DQ		= 0x201,
99 	MLXSW_CMD_OPCODE_HW2SW_DQ		= 0x202,
100 	MLXSW_CMD_OPCODE_2ERR_DQ		= 0x01E,
101 	MLXSW_CMD_OPCODE_QUERY_DQ		= 0x022,
102 	MLXSW_CMD_OPCODE_SW2HW_CQ		= 0x016,
103 	MLXSW_CMD_OPCODE_HW2SW_CQ		= 0x017,
104 	MLXSW_CMD_OPCODE_QUERY_CQ		= 0x018,
105 	MLXSW_CMD_OPCODE_SW2HW_EQ		= 0x013,
106 	MLXSW_CMD_OPCODE_HW2SW_EQ		= 0x014,
107 	MLXSW_CMD_OPCODE_QUERY_EQ		= 0x015,
108 	MLXSW_CMD_OPCODE_QUERY_RESOURCES	= 0x101,
109 };
110 
111 static inline const char *mlxsw_cmd_opcode_str(u16 opcode)
112 {
113 	switch (opcode) {
114 	case MLXSW_CMD_OPCODE_QUERY_FW:
115 		return "QUERY_FW";
116 	case MLXSW_CMD_OPCODE_QUERY_BOARDINFO:
117 		return "QUERY_BOARDINFO";
118 	case MLXSW_CMD_OPCODE_QUERY_AQ_CAP:
119 		return "QUERY_AQ_CAP";
120 	case MLXSW_CMD_OPCODE_MAP_FA:
121 		return "MAP_FA";
122 	case MLXSW_CMD_OPCODE_UNMAP_FA:
123 		return "UNMAP_FA";
124 	case MLXSW_CMD_OPCODE_CONFIG_PROFILE:
125 		return "CONFIG_PROFILE";
126 	case MLXSW_CMD_OPCODE_ACCESS_REG:
127 		return "ACCESS_REG";
128 	case MLXSW_CMD_OPCODE_SW2HW_DQ:
129 		return "SW2HW_DQ";
130 	case MLXSW_CMD_OPCODE_HW2SW_DQ:
131 		return "HW2SW_DQ";
132 	case MLXSW_CMD_OPCODE_2ERR_DQ:
133 		return "2ERR_DQ";
134 	case MLXSW_CMD_OPCODE_QUERY_DQ:
135 		return "QUERY_DQ";
136 	case MLXSW_CMD_OPCODE_SW2HW_CQ:
137 		return "SW2HW_CQ";
138 	case MLXSW_CMD_OPCODE_HW2SW_CQ:
139 		return "HW2SW_CQ";
140 	case MLXSW_CMD_OPCODE_QUERY_CQ:
141 		return "QUERY_CQ";
142 	case MLXSW_CMD_OPCODE_SW2HW_EQ:
143 		return "SW2HW_EQ";
144 	case MLXSW_CMD_OPCODE_HW2SW_EQ:
145 		return "HW2SW_EQ";
146 	case MLXSW_CMD_OPCODE_QUERY_EQ:
147 		return "QUERY_EQ";
148 	case MLXSW_CMD_OPCODE_QUERY_RESOURCES:
149 		return "QUERY_RESOURCES";
150 	default:
151 		return "*UNKNOWN*";
152 	}
153 }
154 
155 enum mlxsw_cmd_status {
156 	/* Command execution succeeded. */
157 	MLXSW_CMD_STATUS_OK		= 0x00,
158 	/* Internal error (e.g. bus error) occurred while processing command. */
159 	MLXSW_CMD_STATUS_INTERNAL_ERR	= 0x01,
160 	/* Operation/command not supported or opcode modifier not supported. */
161 	MLXSW_CMD_STATUS_BAD_OP		= 0x02,
162 	/* Parameter not supported, parameter out of range. */
163 	MLXSW_CMD_STATUS_BAD_PARAM	= 0x03,
164 	/* System was not enabled or bad system state. */
165 	MLXSW_CMD_STATUS_BAD_SYS_STATE	= 0x04,
166 	/* Attempt to access reserved or unallocated resource, or resource in
167 	 * inappropriate ownership.
168 	 */
169 	MLXSW_CMD_STATUS_BAD_RESOURCE	= 0x05,
170 	/* Requested resource is currently executing a command. */
171 	MLXSW_CMD_STATUS_RESOURCE_BUSY	= 0x06,
172 	/* Required capability exceeds device limits. */
173 	MLXSW_CMD_STATUS_EXCEED_LIM	= 0x08,
174 	/* Resource is not in the appropriate state or ownership. */
175 	MLXSW_CMD_STATUS_BAD_RES_STATE	= 0x09,
176 	/* Index out of range (might be beyond table size or attempt to
177 	 * access a reserved resource).
178 	 */
179 	MLXSW_CMD_STATUS_BAD_INDEX	= 0x0A,
180 	/* NVMEM checksum/CRC failed. */
181 	MLXSW_CMD_STATUS_BAD_NVMEM	= 0x0B,
182 	/* Device is currently running reset */
183 	MLXSW_CMD_STATUS_RUNNING_RESET	= 0x26,
184 	/* Bad management packet (silently discarded). */
185 	MLXSW_CMD_STATUS_BAD_PKT	= 0x30,
186 };
187 
188 static inline const char *mlxsw_cmd_status_str(u8 status)
189 {
190 	switch (status) {
191 	case MLXSW_CMD_STATUS_OK:
192 		return "OK";
193 	case MLXSW_CMD_STATUS_INTERNAL_ERR:
194 		return "INTERNAL_ERR";
195 	case MLXSW_CMD_STATUS_BAD_OP:
196 		return "BAD_OP";
197 	case MLXSW_CMD_STATUS_BAD_PARAM:
198 		return "BAD_PARAM";
199 	case MLXSW_CMD_STATUS_BAD_SYS_STATE:
200 		return "BAD_SYS_STATE";
201 	case MLXSW_CMD_STATUS_BAD_RESOURCE:
202 		return "BAD_RESOURCE";
203 	case MLXSW_CMD_STATUS_RESOURCE_BUSY:
204 		return "RESOURCE_BUSY";
205 	case MLXSW_CMD_STATUS_EXCEED_LIM:
206 		return "EXCEED_LIM";
207 	case MLXSW_CMD_STATUS_BAD_RES_STATE:
208 		return "BAD_RES_STATE";
209 	case MLXSW_CMD_STATUS_BAD_INDEX:
210 		return "BAD_INDEX";
211 	case MLXSW_CMD_STATUS_BAD_NVMEM:
212 		return "BAD_NVMEM";
213 	case MLXSW_CMD_STATUS_RUNNING_RESET:
214 		return "RUNNING_RESET";
215 	case MLXSW_CMD_STATUS_BAD_PKT:
216 		return "BAD_PKT";
217 	default:
218 		return "*UNKNOWN*";
219 	}
220 }
221 
222 /* QUERY_FW - Query Firmware
223  * -------------------------
224  * OpMod == 0, INMmod == 0
225  * -----------------------
226  * The QUERY_FW command retrieves information related to firmware, command
227  * interface version and the amount of resources that should be allocated to
228  * the firmware.
229  */
230 
231 static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core,
232 				     char *out_mbox)
233 {
234 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW,
235 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
236 }
237 
238 /* cmd_mbox_query_fw_fw_pages
239  * Amount of physical memory to be allocatedfor firmware usage in 4KB pages.
240  */
241 MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16);
242 
243 /* cmd_mbox_query_fw_fw_rev_major
244  * Firmware Revision - Major
245  */
246 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16);
247 
248 /* cmd_mbox_query_fw_fw_rev_subminor
249  * Firmware Sub-minor version (Patch level)
250  */
251 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16);
252 
253 /* cmd_mbox_query_fw_fw_rev_minor
254  * Firmware Revision - Minor
255  */
256 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16);
257 
258 /* cmd_mbox_query_fw_core_clk
259  * Internal Clock Frequency (in MHz)
260  */
261 MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16);
262 
263 /* cmd_mbox_query_fw_cmd_interface_rev
264  * Command Interface Interpreter Revision ID. This number is bumped up
265  * every time a non-backward-compatible change is done for the command
266  * interface. The current cmd_interface_rev is 1.
267  */
268 MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16);
269 
270 /* cmd_mbox_query_fw_dt
271  * If set, Debug Trace is supported
272  */
273 MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1);
274 
275 /* cmd_mbox_query_fw_api_version
276  * Indicates the version of the API, to enable software querying
277  * for compatibility. The current api_version is 1.
278  */
279 MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16);
280 
281 /* cmd_mbox_query_fw_fw_hour
282  * Firmware timestamp - hour
283  */
284 MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8);
285 
286 /* cmd_mbox_query_fw_fw_minutes
287  * Firmware timestamp - minutes
288  */
289 MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8);
290 
291 /* cmd_mbox_query_fw_fw_seconds
292  * Firmware timestamp - seconds
293  */
294 MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8);
295 
296 /* cmd_mbox_query_fw_fw_year
297  * Firmware timestamp - year
298  */
299 MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16);
300 
301 /* cmd_mbox_query_fw_fw_month
302  * Firmware timestamp - month
303  */
304 MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8);
305 
306 /* cmd_mbox_query_fw_fw_day
307  * Firmware timestamp - day
308  */
309 MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8);
310 
311 /* cmd_mbox_query_fw_clr_int_base_offset
312  * Clear Interrupt register's offset from clr_int_bar register
313  * in PCI address space.
314  */
315 MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64);
316 
317 /* cmd_mbox_query_fw_clr_int_bar
318  * PCI base address register (BAR) where clr_int register is located.
319  * 00 - BAR 0-1 (64 bit BAR)
320  */
321 MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2);
322 
323 /* cmd_mbox_query_fw_error_buf_offset
324  * Read Only buffer for internal error reports of offset
325  * from error_buf_bar register in PCI address space).
326  */
327 MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64);
328 
329 /* cmd_mbox_query_fw_error_buf_size
330  * Internal error buffer size in DWORDs
331  */
332 MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32);
333 
334 /* cmd_mbox_query_fw_error_int_bar
335  * PCI base address register (BAR) where error buffer
336  * register is located.
337  * 00 - BAR 0-1 (64 bit BAR)
338  */
339 MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2);
340 
341 /* cmd_mbox_query_fw_doorbell_page_offset
342  * Offset of the doorbell page
343  */
344 MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64);
345 
346 /* cmd_mbox_query_fw_doorbell_page_bar
347  * PCI base address register (BAR) of the doorbell page
348  * 00 - BAR 0-1 (64 bit BAR)
349  */
350 MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2);
351 
352 /* QUERY_BOARDINFO - Query Board Information
353  * -----------------------------------------
354  * OpMod == 0 (N/A), INMmod == 0 (N/A)
355  * -----------------------------------
356  * The QUERY_BOARDINFO command retrieves adapter specific parameters.
357  */
358 
359 static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core,
360 				      char *out_mbox)
361 {
362 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO,
363 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
364 }
365 
366 /* cmd_mbox_boardinfo_intapin
367  * When PCIe interrupt messages are being used, this value is used for clearing
368  * an interrupt. When using MSI-X, this register is not used.
369  */
370 MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8);
371 
372 /* cmd_mbox_boardinfo_vsd_vendor_id
373  * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor
374  * specifying/formatting the VSD. The vsd_vendor_id identifies the management
375  * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID
376  * format and encoding as long as they use their assigned vsd_vendor_id.
377  */
378 MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16);
379 
380 /* cmd_mbox_boardinfo_vsd
381  * Vendor Specific Data. The VSD string that is burnt to the Flash
382  * with the firmware.
383  */
384 #define MLXSW_CMD_BOARDINFO_VSD_LEN 208
385 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN);
386 
387 /* cmd_mbox_boardinfo_psid
388  * The PSID field is a 16-ascii (byte) character string which acts as
389  * the board ID. The PSID format is used in conjunction with
390  * Mellanox vsd_vendor_id (15B3h).
391  */
392 #define MLXSW_CMD_BOARDINFO_PSID_LEN 16
393 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN);
394 
395 /* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities
396  * -----------------------------------------------------
397  * OpMod == 0 (N/A), INMmod == 0 (N/A)
398  * -----------------------------------
399  * The QUERY_AQ_CAP command returns the device asynchronous queues
400  * capabilities supported.
401  */
402 
403 static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core,
404 					 char *out_mbox)
405 {
406 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP,
407 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
408 }
409 
410 /* cmd_mbox_query_aq_cap_log_max_sdq_sz
411  * Log (base 2) of max WQEs allowed on SDQ.
412  */
413 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8);
414 
415 /* cmd_mbox_query_aq_cap_max_num_sdqs
416  * Maximum number of SDQs.
417  */
418 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8);
419 
420 /* cmd_mbox_query_aq_cap_log_max_rdq_sz
421  * Log (base 2) of max WQEs allowed on RDQ.
422  */
423 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8);
424 
425 /* cmd_mbox_query_aq_cap_max_num_rdqs
426  * Maximum number of RDQs.
427  */
428 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8);
429 
430 /* cmd_mbox_query_aq_cap_log_max_cq_sz
431  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv0 and CQEv1.
432  */
433 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8);
434 
435 /* cmd_mbox_query_aq_cap_log_max_cqv2_sz
436  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv2.
437  */
438 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cqv2_sz, 0x08, 16, 8);
439 
440 /* cmd_mbox_query_aq_cap_max_num_cqs
441  * Maximum number of CQs.
442  */
443 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8);
444 
445 /* cmd_mbox_query_aq_cap_log_max_eq_sz
446  * Log (base 2) of max EQEs allowed on EQ.
447  */
448 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8);
449 
450 /* cmd_mbox_query_aq_cap_max_num_eqs
451  * Maximum number of EQs.
452  */
453 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8);
454 
455 /* cmd_mbox_query_aq_cap_max_sg_sq
456  * The maximum S/G list elements in an DSQ. DSQ must not contain
457  * more S/G entries than indicated here.
458  */
459 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8);
460 
461 /* cmd_mbox_query_aq_cap_
462  * The maximum S/G list elements in an DRQ. DRQ must not contain
463  * more S/G entries than indicated here.
464  */
465 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8);
466 
467 /* MAP_FA - Map Firmware Area
468  * --------------------------
469  * OpMod == 0 (N/A), INMmod == Number of VPM entries
470  * -------------------------------------------------
471  * The MAP_FA command passes physical pages to the switch. These pages
472  * are used to store the device firmware. MAP_FA can be executed multiple
473  * times until all the firmware area is mapped (the size that should be
474  * mapped is retrieved through the QUERY_FW command). All required pages
475  * must be mapped to finish the initialization phase. Physical memory
476  * passed in this command must be pinned.
477  */
478 
479 #define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32
480 
481 static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core,
482 				   char *in_mbox, u32 vpm_entries_count)
483 {
484 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA,
485 				 0, vpm_entries_count,
486 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
487 }
488 
489 /* cmd_mbox_map_fa_pa
490  * Physical Address.
491  */
492 MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true);
493 
494 /* cmd_mbox_map_fa_log2size
495  * Log (base 2) of the size in 4KB pages of the physical and contiguous memory
496  * that starts at PA_L/H.
497  */
498 MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false);
499 
500 /* UNMAP_FA - Unmap Firmware Area
501  * ------------------------------
502  * OpMod == 0 (N/A), INMmod == 0 (N/A)
503  * -----------------------------------
504  * The UNMAP_FA command unload the firmware and unmaps all the
505  * firmware area. After this command is completed the device will not access
506  * the pages that were mapped to the firmware area. After executing UNMAP_FA
507  * command, software reset must be done prior to execution of MAP_FW command.
508  */
509 
510 static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core)
511 {
512 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0);
513 }
514 
515 /* QUERY_RESOURCES - Query chip resources
516  * --------------------------------------
517  * OpMod == 0 (N/A) , INMmod is index
518  * ----------------------------------
519  * The QUERY_RESOURCES command retrieves information related to chip resources
520  * by resource ID. Every command returns 32 entries. INmod is being use as base.
521  * for example, index 1 will return entries 32-63. When the tables end and there
522  * are no more sources in the table, will return resource id 0xFFF to indicate
523  * it.
524  */
525 
526 #define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff
527 #define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100
528 #define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32
529 
530 static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core,
531 					    char *out_mbox, int index)
532 {
533 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES,
534 				  0, index, false, out_mbox,
535 				  MLXSW_CMD_MBOX_SIZE);
536 }
537 
538 /* cmd_mbox_query_resource_id
539  * The resource id. 0xFFFF indicates table's end.
540  */
541 MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false);
542 
543 /* cmd_mbox_query_resource_data
544  * The resource
545  */
546 MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data,
547 		     0x00, 0, 40, 0x8, 0, false);
548 
549 /* CONFIG_PROFILE (Set) - Configure Switch Profile
550  * ------------------------------
551  * OpMod == 1 (Set), INMmod == 0 (N/A)
552  * -----------------------------------
553  * The CONFIG_PROFILE command sets the switch profile. The command can be
554  * executed on the device only once at startup in order to allocate and
555  * configure all switch resources and prepare it for operational mode.
556  * It is not possible to change the device profile after the chip is
557  * in operational mode.
558  * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate
559  * state therefore it is required to perform software reset to the device
560  * following an unsuccessful completion of the command. It is required
561  * to perform software reset to the device to change an existing profile.
562  */
563 
564 static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core,
565 					       char *in_mbox)
566 {
567 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE,
568 				 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE);
569 }
570 
571 /* cmd_mbox_config_profile_set_max_vepa_channels
572  * Capability bit. Setting a bit to 1 configures the profile
573  * according to the mailbox contents.
574  */
575 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1);
576 
577 /* cmd_mbox_config_profile_set_max_lag
578  * Capability bit. Setting a bit to 1 configures the profile
579  * according to the mailbox contents.
580  */
581 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1);
582 
583 /* cmd_mbox_config_profile_set_max_port_per_lag
584  * Capability bit. Setting a bit to 1 configures the profile
585  * according to the mailbox contents.
586  */
587 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1);
588 
589 /* cmd_mbox_config_profile_set_max_mid
590  * Capability bit. Setting a bit to 1 configures the profile
591  * according to the mailbox contents.
592  */
593 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1);
594 
595 /* cmd_mbox_config_profile_set_max_pgt
596  * Capability bit. Setting a bit to 1 configures the profile
597  * according to the mailbox contents.
598  */
599 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1);
600 
601 /* cmd_mbox_config_profile_set_max_system_port
602  * Capability bit. Setting a bit to 1 configures the profile
603  * according to the mailbox contents.
604  */
605 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1);
606 
607 /* cmd_mbox_config_profile_set_max_vlan_groups
608  * Capability bit. Setting a bit to 1 configures the profile
609  * according to the mailbox contents.
610  */
611 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1);
612 
613 /* cmd_mbox_config_profile_set_max_regions
614  * Capability bit. Setting a bit to 1 configures the profile
615  * according to the mailbox contents.
616  */
617 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1);
618 
619 /* cmd_mbox_config_profile_set_flood_mode
620  * Capability bit. Setting a bit to 1 configures the profile
621  * according to the mailbox contents.
622  */
623 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1);
624 
625 /* cmd_mbox_config_profile_set_max_flood_tables
626  * Capability bit. Setting a bit to 1 configures the profile
627  * according to the mailbox contents.
628  */
629 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1);
630 
631 /* cmd_mbox_config_profile_set_max_ib_mc
632  * Capability bit. Setting a bit to 1 configures the profile
633  * according to the mailbox contents.
634  */
635 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1);
636 
637 /* cmd_mbox_config_profile_set_max_pkey
638  * Capability bit. Setting a bit to 1 configures the profile
639  * according to the mailbox contents.
640  */
641 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1);
642 
643 /* cmd_mbox_config_profile_set_adaptive_routing_group_cap
644  * Capability bit. Setting a bit to 1 configures the profile
645  * according to the mailbox contents.
646  */
647 MLXSW_ITEM32(cmd_mbox, config_profile,
648 	     set_adaptive_routing_group_cap, 0x0C, 14, 1);
649 
650 /* cmd_mbox_config_profile_set_ar_sec
651  * Capability bit. Setting a bit to 1 configures the profile
652  * according to the mailbox contents.
653  */
654 MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1);
655 
656 /* cmd_mbox_config_set_kvd_linear_size
657  * Capability bit. Setting a bit to 1 configures the profile
658  * according to the mailbox contents.
659  */
660 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1);
661 
662 /* cmd_mbox_config_set_kvd_hash_single_size
663  * Capability bit. Setting a bit to 1 configures the profile
664  * according to the mailbox contents.
665  */
666 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1);
667 
668 /* cmd_mbox_config_set_kvd_hash_double_size
669  * Capability bit. Setting a bit to 1 configures the profile
670  * according to the mailbox contents.
671  */
672 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1);
673 
674 /* cmd_mbox_config_set_cqe_version
675  * Capability bit. Setting a bit to 1 configures the profile
676  * according to the mailbox contents.
677  */
678 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_version, 0x08, 0, 1);
679 
680 /* cmd_mbox_config_profile_max_vepa_channels
681  * Maximum number of VEPA channels per port (0 through 16)
682  * 0 - multi-channel VEPA is disabled
683  */
684 MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8);
685 
686 /* cmd_mbox_config_profile_max_lag
687  * Maximum number of LAG IDs requested.
688  */
689 MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16);
690 
691 /* cmd_mbox_config_profile_max_port_per_lag
692  * Maximum number of ports per LAG requested.
693  */
694 MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16);
695 
696 /* cmd_mbox_config_profile_max_mid
697  * Maximum Multicast IDs.
698  * Multicast IDs are allocated from 0 to max_mid-1
699  */
700 MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16);
701 
702 /* cmd_mbox_config_profile_max_pgt
703  * Maximum records in the Port Group Table per Switch Partition.
704  * Port Group Table indexes are from 0 to max_pgt-1
705  */
706 MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16);
707 
708 /* cmd_mbox_config_profile_max_system_port
709  * The maximum number of system ports that can be allocated.
710  */
711 MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16);
712 
713 /* cmd_mbox_config_profile_max_vlan_groups
714  * Maximum number VLAN Groups for VLAN binding.
715  */
716 MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12);
717 
718 /* cmd_mbox_config_profile_max_regions
719  * Maximum number of TCAM Regions.
720  */
721 MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16);
722 
723 /* cmd_mbox_config_profile_max_flood_tables
724  * Maximum number of single-entry flooding tables. Different flooding tables
725  * can be associated with different packet types.
726  */
727 MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4);
728 
729 /* cmd_mbox_config_profile_max_vid_flood_tables
730  * Maximum number of per-vid flooding tables. Flooding tables are associated
731  * to the different packet types for the different switch partitions.
732  * Table size is 4K entries covering all VID space.
733  */
734 MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4);
735 
736 /* cmd_mbox_config_profile_flood_mode
737  * Flooding mode to use.
738  * 0-2 - Backward compatible modes for SwitchX devices.
739  * 3 - Mixed mode, where:
740  * max_flood_tables indicates the number of single-entry tables.
741  * max_vid_flood_tables indicates the number of per-VID tables.
742  * max_fid_offset_flood_tables indicates the number of FID-offset tables.
743  * max_fid_flood_tables indicates the number of per-FID tables.
744  */
745 MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 2);
746 
747 /* cmd_mbox_config_profile_max_fid_offset_flood_tables
748  * Maximum number of FID-offset flooding tables.
749  */
750 MLXSW_ITEM32(cmd_mbox, config_profile,
751 	     max_fid_offset_flood_tables, 0x34, 24, 4);
752 
753 /* cmd_mbox_config_profile_fid_offset_flood_table_size
754  * The size (number of entries) of each FID-offset flood table.
755  */
756 MLXSW_ITEM32(cmd_mbox, config_profile,
757 	     fid_offset_flood_table_size, 0x34, 0, 16);
758 
759 /* cmd_mbox_config_profile_max_fid_flood_tables
760  * Maximum number of per-FID flooding tables.
761  *
762  * Note: This flooding tables cover special FIDs only (vFIDs), starting at
763  * FID value 4K and higher.
764  */
765 MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4);
766 
767 /* cmd_mbox_config_profile_fid_flood_table_size
768  * The size (number of entries) of each per-FID table.
769  */
770 MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16);
771 
772 /* cmd_mbox_config_profile_max_ib_mc
773  * Maximum number of multicast FDB records for InfiniBand
774  * FDB (in 512 chunks) per InfiniBand switch partition.
775  */
776 MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15);
777 
778 /* cmd_mbox_config_profile_max_pkey
779  * Maximum per port PKEY table size (for PKEY enforcement)
780  */
781 MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15);
782 
783 /* cmd_mbox_config_profile_ar_sec
784  * Primary/secondary capability
785  * Describes the number of adaptive routing sub-groups
786  * 0 - disable primary/secondary (single group)
787  * 1 - enable primary/secondary (2 sub-groups)
788  * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2
789  * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2
790  */
791 MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2);
792 
793 /* cmd_mbox_config_profile_adaptive_routing_group_cap
794  * Adaptive Routing Group Capability. Indicates the number of AR groups
795  * supported. Note that when Primary/secondary is enabled, each
796  * primary/secondary couple consumes 2 adaptive routing entries.
797  */
798 MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16);
799 
800 /* cmd_mbox_config_profile_arn
801  * Adaptive Routing Notification Enable
802  * Not supported in SwitchX, SwitchX-2
803  */
804 MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1);
805 
806 /* cmd_mbox_config_kvd_linear_size
807  * KVD Linear Size
808  * Valid for Spectrum only
809  * Allowed values are 128*N where N=0 or higher
810  */
811 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24);
812 
813 /* cmd_mbox_config_kvd_hash_single_size
814  * KVD Hash single-entries size
815  * Valid for Spectrum only
816  * Allowed values are 128*N where N=0 or higher
817  * Must be greater or equal to cap_min_kvd_hash_single_size
818  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
819  */
820 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24);
821 
822 /* cmd_mbox_config_kvd_hash_double_size
823  * KVD Hash double-entries size (units of single-size entries)
824  * Valid for Spectrum only
825  * Allowed values are 128*N where N=0 or higher
826  * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size
827  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
828  */
829 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24);
830 
831 /* cmd_mbox_config_profile_swid_config_mask
832  * Modify Switch Partition Configuration mask. When set, the configu-
833  * ration value for the Switch Partition are taken from the mailbox.
834  * When clear, the current configuration values are used.
835  * Bit 0 - set type
836  * Bit 1 - properties
837  * Other - reserved
838  */
839 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask,
840 		     0x60, 24, 8, 0x08, 0x00, false);
841 
842 /* cmd_mbox_config_profile_swid_config_type
843  * Switch Partition type.
844  * 0000 - disabled (Switch Partition does not exist)
845  * 0001 - InfiniBand
846  * 0010 - Ethernet
847  * 1000 - router port (SwitchX-2 only)
848  * Other - reserved
849  */
850 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type,
851 		     0x60, 20, 4, 0x08, 0x00, false);
852 
853 /* cmd_mbox_config_profile_swid_config_properties
854  * Switch Partition properties.
855  */
856 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties,
857 		     0x60, 0, 8, 0x08, 0x00, false);
858 
859 /* cmd_mbox_config_profile_cqe_version
860  * CQE version:
861  * 0: CQE version is 0
862  * 1: CQE version is either 1 or 2
863  * CQE ver 1 or 2 is configured by Completion Queue Context field cqe_ver.
864  */
865 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_version, 0xB0, 0, 8);
866 
867 /* ACCESS_REG - Access EMAD Supported Register
868  * ----------------------------------
869  * OpMod == 0 (N/A), INMmod == 0 (N/A)
870  * -------------------------------------
871  * The ACCESS_REG command supports accessing device registers. This access
872  * is mainly used for bootstrapping.
873  */
874 
875 static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core,
876 				       bool reset_ok,
877 				       char *in_mbox, char *out_mbox)
878 {
879 	return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG,
880 			      0, 0, false, reset_ok,
881 			      in_mbox, MLXSW_CMD_MBOX_SIZE,
882 			      out_mbox, MLXSW_CMD_MBOX_SIZE);
883 }
884 
885 /* SW2HW_DQ - Software to Hardware DQ
886  * ----------------------------------
887  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
888  * INMmod == DQ number
889  * ----------------------------------------------
890  * The SW2HW_DQ command transitions a descriptor queue from software to
891  * hardware ownership. The command enables posting WQEs and ringing DoorBells
892  * on the descriptor queue.
893  */
894 
895 static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core,
896 				       char *in_mbox, u32 dq_number,
897 				       u8 opcode_mod)
898 {
899 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ,
900 				 opcode_mod, dq_number,
901 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
902 }
903 
904 enum {
905 	MLXSW_CMD_OPCODE_MOD_SDQ = 0,
906 	MLXSW_CMD_OPCODE_MOD_RDQ = 1,
907 };
908 
909 static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core,
910 				      char *in_mbox, u32 dq_number)
911 {
912 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
913 				    MLXSW_CMD_OPCODE_MOD_SDQ);
914 }
915 
916 static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core,
917 				      char *in_mbox, u32 dq_number)
918 {
919 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
920 				    MLXSW_CMD_OPCODE_MOD_RDQ);
921 }
922 
923 /* cmd_mbox_sw2hw_dq_cq
924  * Number of the CQ that this Descriptor Queue reports completions to.
925  */
926 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8);
927 
928 /* cmd_mbox_sw2hw_dq_sdq_tclass
929  * SDQ: CPU Egress TClass
930  * RDQ: Reserved
931  */
932 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6);
933 
934 /* cmd_mbox_sw2hw_dq_log2_dq_sz
935  * Log (base 2) of the Descriptor Queue size in 4KB pages.
936  */
937 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6);
938 
939 /* cmd_mbox_sw2hw_dq_pa
940  * Physical Address.
941  */
942 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true);
943 
944 /* HW2SW_DQ - Hardware to Software DQ
945  * ----------------------------------
946  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
947  * INMmod == DQ number
948  * ----------------------------------------------
949  * The HW2SW_DQ command transitions a descriptor queue from hardware to
950  * software ownership. Incoming packets on the DQ are silently discarded,
951  * SW should not post descriptors on nonoperational DQs.
952  */
953 
954 static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core,
955 				       u32 dq_number, u8 opcode_mod)
956 {
957 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ,
958 				   opcode_mod, dq_number);
959 }
960 
961 static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core,
962 				      u32 dq_number)
963 {
964 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
965 				    MLXSW_CMD_OPCODE_MOD_SDQ);
966 }
967 
968 static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core,
969 				      u32 dq_number)
970 {
971 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
972 				    MLXSW_CMD_OPCODE_MOD_RDQ);
973 }
974 
975 /* 2ERR_DQ - To Error DQ
976  * ---------------------
977  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
978  * INMmod == DQ number
979  * ----------------------------------------------
980  * The 2ERR_DQ command transitions the DQ into the error state from the state
981  * in which it has been. While the command is executed, some in-process
982  * descriptors may complete. Once the DQ transitions into the error state,
983  * if there are posted descriptors on the RDQ/SDQ, the hardware writes
984  * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ.
985  * When the command is completed successfully, the DQ is already in
986  * the error state.
987  */
988 
989 static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core,
990 				      u32 dq_number, u8 opcode_mod)
991 {
992 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
993 				   opcode_mod, dq_number);
994 }
995 
996 static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core,
997 				     u32 dq_number)
998 {
999 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1000 				   MLXSW_CMD_OPCODE_MOD_SDQ);
1001 }
1002 
1003 static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core,
1004 				     u32 dq_number)
1005 {
1006 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1007 				   MLXSW_CMD_OPCODE_MOD_RDQ);
1008 }
1009 
1010 /* QUERY_DQ - Query DQ
1011  * ---------------------
1012  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1013  * INMmod == DQ number
1014  * ----------------------------------------------
1015  * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware.
1016  *
1017  * Note: Output mailbox has the same format as SW2HW_DQ.
1018  */
1019 
1020 static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core,
1021 				       char *out_mbox, u32 dq_number,
1022 				       u8 opcode_mod)
1023 {
1024 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1025 				  opcode_mod, dq_number, false,
1026 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1027 }
1028 
1029 static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core,
1030 				      char *out_mbox, u32 dq_number)
1031 {
1032 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1033 				    MLXSW_CMD_OPCODE_MOD_SDQ);
1034 }
1035 
1036 static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core,
1037 				      char *out_mbox, u32 dq_number)
1038 {
1039 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1040 				    MLXSW_CMD_OPCODE_MOD_RDQ);
1041 }
1042 
1043 /* SW2HW_CQ - Software to Hardware CQ
1044  * ----------------------------------
1045  * OpMod == 0 (N/A), INMmod == CQ number
1046  * -------------------------------------
1047  * The SW2HW_CQ command transfers ownership of a CQ context entry from software
1048  * to hardware. The command takes the CQ context entry from the input mailbox
1049  * and stores it in the CQC in the ownership of the hardware. The command fails
1050  * if the requested CQC entry is already in the ownership of the hardware.
1051  */
1052 
1053 static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core,
1054 				     char *in_mbox, u32 cq_number)
1055 {
1056 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ,
1057 				 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1058 }
1059 
1060 enum mlxsw_cmd_mbox_sw2hw_cq_cqe_ver {
1061 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_1,
1062 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_2,
1063 };
1064 
1065 /* cmd_mbox_sw2hw_cq_cqe_ver
1066  * CQE Version.
1067  */
1068 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cqe_ver, 0x00, 28, 4);
1069 
1070 /* cmd_mbox_sw2hw_cq_c_eqn
1071  * Event Queue this CQ reports completion events to.
1072  */
1073 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1);
1074 
1075 /* cmd_mbox_sw2hw_cq_st
1076  * Event delivery state machine
1077  * 0x0 - FIRED
1078  * 0x1 - ARMED (Request for Notification)
1079  */
1080 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1);
1081 
1082 /* cmd_mbox_sw2hw_cq_log_cq_size
1083  * Log (base 2) of the CQ size (in entries).
1084  */
1085 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4);
1086 
1087 /* cmd_mbox_sw2hw_cq_producer_counter
1088  * Producer Counter. The counter is incremented for each CQE that is
1089  * written by the HW to the CQ.
1090  * Maintained by HW (valid for the QUERY_CQ command only)
1091  */
1092 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16);
1093 
1094 /* cmd_mbox_sw2hw_cq_pa
1095  * Physical Address.
1096  */
1097 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1098 
1099 /* HW2SW_CQ - Hardware to Software CQ
1100  * ----------------------------------
1101  * OpMod == 0 (N/A), INMmod == CQ number
1102  * -------------------------------------
1103  * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware
1104  * to software. The CQC entry is invalidated as a result of this command.
1105  */
1106 
1107 static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core,
1108 				     u32 cq_number)
1109 {
1110 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ,
1111 				   0, cq_number);
1112 }
1113 
1114 /* QUERY_CQ - Query CQ
1115  * ----------------------------------
1116  * OpMod == 0 (N/A), INMmod == CQ number
1117  * -------------------------------------
1118  * The QUERY_CQ command retrieves a snapshot of the current CQ context entry.
1119  * The command stores the snapshot in the output mailbox in the software format.
1120  * Note that the CQ context state and values are not affected by the QUERY_CQ
1121  * command. The QUERY_CQ command is for debug purposes only.
1122  *
1123  * Note: Output mailbox has the same format as SW2HW_CQ.
1124  */
1125 
1126 static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core,
1127 				     char *out_mbox, u32 cq_number)
1128 {
1129 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ,
1130 				  0, cq_number, false,
1131 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1132 }
1133 
1134 /* SW2HW_EQ - Software to Hardware EQ
1135  * ----------------------------------
1136  * OpMod == 0 (N/A), INMmod == EQ number
1137  * -------------------------------------
1138  * The SW2HW_EQ command transfers ownership of an EQ context entry from software
1139  * to hardware. The command takes the EQ context entry from the input mailbox
1140  * and stores it in the EQC in the ownership of the hardware. The command fails
1141  * if the requested EQC entry is already in the ownership of the hardware.
1142  */
1143 
1144 static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core,
1145 				     char *in_mbox, u32 eq_number)
1146 {
1147 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ,
1148 				 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1149 }
1150 
1151 /* cmd_mbox_sw2hw_eq_int_msix
1152  * When set, MSI-X cycles will be generated by this EQ.
1153  * When cleared, an interrupt will be generated by this EQ.
1154  */
1155 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1);
1156 
1157 /* cmd_mbox_sw2hw_eq_st
1158  * Event delivery state machine
1159  * 0x0 - FIRED
1160  * 0x1 - ARMED (Request for Notification)
1161  * 0x11 - Always ARMED
1162  * other - reserved
1163  */
1164 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2);
1165 
1166 /* cmd_mbox_sw2hw_eq_log_eq_size
1167  * Log (base 2) of the EQ size (in entries).
1168  */
1169 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4);
1170 
1171 /* cmd_mbox_sw2hw_eq_producer_counter
1172  * Producer Counter. The counter is incremented for each EQE that is written
1173  * by the HW to the EQ.
1174  * Maintained by HW (valid for the QUERY_EQ command only)
1175  */
1176 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16);
1177 
1178 /* cmd_mbox_sw2hw_eq_pa
1179  * Physical Address.
1180  */
1181 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1182 
1183 /* HW2SW_EQ - Hardware to Software EQ
1184  * ----------------------------------
1185  * OpMod == 0 (N/A), INMmod == EQ number
1186  * -------------------------------------
1187  */
1188 
1189 static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core,
1190 				     u32 eq_number)
1191 {
1192 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ,
1193 				   0, eq_number);
1194 }
1195 
1196 /* QUERY_EQ - Query EQ
1197  * ----------------------------------
1198  * OpMod == 0 (N/A), INMmod == EQ number
1199  * -------------------------------------
1200  *
1201  * Note: Output mailbox has the same format as SW2HW_EQ.
1202  */
1203 
1204 static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core,
1205 				     char *out_mbox, u32 eq_number)
1206 {
1207 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ,
1208 				  0, eq_number, false,
1209 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1210 }
1211 
1212 #endif
1213