xref: /openbmc/linux/drivers/net/ethernet/mellanox/mlxsw/cmd.h (revision c9933d494c54f72290831191c09bb8488bfd5905)
1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
3 
4 #ifndef _MLXSW_CMD_H
5 #define _MLXSW_CMD_H
6 
7 #include "item.h"
8 
9 #define MLXSW_CMD_MBOX_SIZE	4096
10 
11 static inline char *mlxsw_cmd_mbox_alloc(void)
12 {
13 	return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL);
14 }
15 
16 static inline void mlxsw_cmd_mbox_free(char *mbox)
17 {
18 	kfree(mbox);
19 }
20 
21 static inline void mlxsw_cmd_mbox_zero(char *mbox)
22 {
23 	memset(mbox, 0, MLXSW_CMD_MBOX_SIZE);
24 }
25 
26 struct mlxsw_core;
27 
28 int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod,
29 		   u32 in_mod, bool out_mbox_direct, bool reset_ok,
30 		   char *in_mbox, size_t in_mbox_size,
31 		   char *out_mbox, size_t out_mbox_size);
32 
33 static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode,
34 				    u8 opcode_mod, u32 in_mod, char *in_mbox,
35 				    size_t in_mbox_size)
36 {
37 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
38 			      false, in_mbox, in_mbox_size, NULL, 0);
39 }
40 
41 static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode,
42 				     u8 opcode_mod, u32 in_mod,
43 				     bool out_mbox_direct,
44 				     char *out_mbox, size_t out_mbox_size)
45 {
46 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod,
47 			      out_mbox_direct, false, NULL, 0,
48 			      out_mbox, out_mbox_size);
49 }
50 
51 static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode,
52 				      u8 opcode_mod, u32 in_mod)
53 {
54 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
55 			      false, NULL, 0, NULL, 0);
56 }
57 
58 enum mlxsw_cmd_opcode {
59 	MLXSW_CMD_OPCODE_QUERY_FW		= 0x004,
60 	MLXSW_CMD_OPCODE_QUERY_BOARDINFO	= 0x006,
61 	MLXSW_CMD_OPCODE_QUERY_AQ_CAP		= 0x003,
62 	MLXSW_CMD_OPCODE_MAP_FA			= 0xFFF,
63 	MLXSW_CMD_OPCODE_UNMAP_FA		= 0xFFE,
64 	MLXSW_CMD_OPCODE_CONFIG_PROFILE		= 0x100,
65 	MLXSW_CMD_OPCODE_ACCESS_REG		= 0x040,
66 	MLXSW_CMD_OPCODE_SW2HW_DQ		= 0x201,
67 	MLXSW_CMD_OPCODE_HW2SW_DQ		= 0x202,
68 	MLXSW_CMD_OPCODE_2ERR_DQ		= 0x01E,
69 	MLXSW_CMD_OPCODE_QUERY_DQ		= 0x022,
70 	MLXSW_CMD_OPCODE_SW2HW_CQ		= 0x016,
71 	MLXSW_CMD_OPCODE_HW2SW_CQ		= 0x017,
72 	MLXSW_CMD_OPCODE_QUERY_CQ		= 0x018,
73 	MLXSW_CMD_OPCODE_SW2HW_EQ		= 0x013,
74 	MLXSW_CMD_OPCODE_HW2SW_EQ		= 0x014,
75 	MLXSW_CMD_OPCODE_QUERY_EQ		= 0x015,
76 	MLXSW_CMD_OPCODE_QUERY_RESOURCES	= 0x101,
77 };
78 
79 static inline const char *mlxsw_cmd_opcode_str(u16 opcode)
80 {
81 	switch (opcode) {
82 	case MLXSW_CMD_OPCODE_QUERY_FW:
83 		return "QUERY_FW";
84 	case MLXSW_CMD_OPCODE_QUERY_BOARDINFO:
85 		return "QUERY_BOARDINFO";
86 	case MLXSW_CMD_OPCODE_QUERY_AQ_CAP:
87 		return "QUERY_AQ_CAP";
88 	case MLXSW_CMD_OPCODE_MAP_FA:
89 		return "MAP_FA";
90 	case MLXSW_CMD_OPCODE_UNMAP_FA:
91 		return "UNMAP_FA";
92 	case MLXSW_CMD_OPCODE_CONFIG_PROFILE:
93 		return "CONFIG_PROFILE";
94 	case MLXSW_CMD_OPCODE_ACCESS_REG:
95 		return "ACCESS_REG";
96 	case MLXSW_CMD_OPCODE_SW2HW_DQ:
97 		return "SW2HW_DQ";
98 	case MLXSW_CMD_OPCODE_HW2SW_DQ:
99 		return "HW2SW_DQ";
100 	case MLXSW_CMD_OPCODE_2ERR_DQ:
101 		return "2ERR_DQ";
102 	case MLXSW_CMD_OPCODE_QUERY_DQ:
103 		return "QUERY_DQ";
104 	case MLXSW_CMD_OPCODE_SW2HW_CQ:
105 		return "SW2HW_CQ";
106 	case MLXSW_CMD_OPCODE_HW2SW_CQ:
107 		return "HW2SW_CQ";
108 	case MLXSW_CMD_OPCODE_QUERY_CQ:
109 		return "QUERY_CQ";
110 	case MLXSW_CMD_OPCODE_SW2HW_EQ:
111 		return "SW2HW_EQ";
112 	case MLXSW_CMD_OPCODE_HW2SW_EQ:
113 		return "HW2SW_EQ";
114 	case MLXSW_CMD_OPCODE_QUERY_EQ:
115 		return "QUERY_EQ";
116 	case MLXSW_CMD_OPCODE_QUERY_RESOURCES:
117 		return "QUERY_RESOURCES";
118 	default:
119 		return "*UNKNOWN*";
120 	}
121 }
122 
123 enum mlxsw_cmd_status {
124 	/* Command execution succeeded. */
125 	MLXSW_CMD_STATUS_OK		= 0x00,
126 	/* Internal error (e.g. bus error) occurred while processing command. */
127 	MLXSW_CMD_STATUS_INTERNAL_ERR	= 0x01,
128 	/* Operation/command not supported or opcode modifier not supported. */
129 	MLXSW_CMD_STATUS_BAD_OP		= 0x02,
130 	/* Parameter not supported, parameter out of range. */
131 	MLXSW_CMD_STATUS_BAD_PARAM	= 0x03,
132 	/* System was not enabled or bad system state. */
133 	MLXSW_CMD_STATUS_BAD_SYS_STATE	= 0x04,
134 	/* Attempt to access reserved or unallocated resource, or resource in
135 	 * inappropriate ownership.
136 	 */
137 	MLXSW_CMD_STATUS_BAD_RESOURCE	= 0x05,
138 	/* Requested resource is currently executing a command. */
139 	MLXSW_CMD_STATUS_RESOURCE_BUSY	= 0x06,
140 	/* Required capability exceeds device limits. */
141 	MLXSW_CMD_STATUS_EXCEED_LIM	= 0x08,
142 	/* Resource is not in the appropriate state or ownership. */
143 	MLXSW_CMD_STATUS_BAD_RES_STATE	= 0x09,
144 	/* Index out of range (might be beyond table size or attempt to
145 	 * access a reserved resource).
146 	 */
147 	MLXSW_CMD_STATUS_BAD_INDEX	= 0x0A,
148 	/* NVMEM checksum/CRC failed. */
149 	MLXSW_CMD_STATUS_BAD_NVMEM	= 0x0B,
150 	/* Device is currently running reset */
151 	MLXSW_CMD_STATUS_RUNNING_RESET	= 0x26,
152 	/* Bad management packet (silently discarded). */
153 	MLXSW_CMD_STATUS_BAD_PKT	= 0x30,
154 };
155 
156 static inline const char *mlxsw_cmd_status_str(u8 status)
157 {
158 	switch (status) {
159 	case MLXSW_CMD_STATUS_OK:
160 		return "OK";
161 	case MLXSW_CMD_STATUS_INTERNAL_ERR:
162 		return "INTERNAL_ERR";
163 	case MLXSW_CMD_STATUS_BAD_OP:
164 		return "BAD_OP";
165 	case MLXSW_CMD_STATUS_BAD_PARAM:
166 		return "BAD_PARAM";
167 	case MLXSW_CMD_STATUS_BAD_SYS_STATE:
168 		return "BAD_SYS_STATE";
169 	case MLXSW_CMD_STATUS_BAD_RESOURCE:
170 		return "BAD_RESOURCE";
171 	case MLXSW_CMD_STATUS_RESOURCE_BUSY:
172 		return "RESOURCE_BUSY";
173 	case MLXSW_CMD_STATUS_EXCEED_LIM:
174 		return "EXCEED_LIM";
175 	case MLXSW_CMD_STATUS_BAD_RES_STATE:
176 		return "BAD_RES_STATE";
177 	case MLXSW_CMD_STATUS_BAD_INDEX:
178 		return "BAD_INDEX";
179 	case MLXSW_CMD_STATUS_BAD_NVMEM:
180 		return "BAD_NVMEM";
181 	case MLXSW_CMD_STATUS_RUNNING_RESET:
182 		return "RUNNING_RESET";
183 	case MLXSW_CMD_STATUS_BAD_PKT:
184 		return "BAD_PKT";
185 	default:
186 		return "*UNKNOWN*";
187 	}
188 }
189 
190 /* QUERY_FW - Query Firmware
191  * -------------------------
192  * OpMod == 0, INMmod == 0
193  * -----------------------
194  * The QUERY_FW command retrieves information related to firmware, command
195  * interface version and the amount of resources that should be allocated to
196  * the firmware.
197  */
198 
199 static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core,
200 				     char *out_mbox)
201 {
202 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW,
203 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
204 }
205 
206 /* cmd_mbox_query_fw_fw_pages
207  * Amount of physical memory to be allocatedfor firmware usage in 4KB pages.
208  */
209 MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16);
210 
211 /* cmd_mbox_query_fw_fw_rev_major
212  * Firmware Revision - Major
213  */
214 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16);
215 
216 /* cmd_mbox_query_fw_fw_rev_subminor
217  * Firmware Sub-minor version (Patch level)
218  */
219 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16);
220 
221 /* cmd_mbox_query_fw_fw_rev_minor
222  * Firmware Revision - Minor
223  */
224 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16);
225 
226 /* cmd_mbox_query_fw_core_clk
227  * Internal Clock Frequency (in MHz)
228  */
229 MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16);
230 
231 /* cmd_mbox_query_fw_cmd_interface_rev
232  * Command Interface Interpreter Revision ID. This number is bumped up
233  * every time a non-backward-compatible change is done for the command
234  * interface. The current cmd_interface_rev is 1.
235  */
236 MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16);
237 
238 /* cmd_mbox_query_fw_dt
239  * If set, Debug Trace is supported
240  */
241 MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1);
242 
243 /* cmd_mbox_query_fw_api_version
244  * Indicates the version of the API, to enable software querying
245  * for compatibility. The current api_version is 1.
246  */
247 MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16);
248 
249 /* cmd_mbox_query_fw_fw_hour
250  * Firmware timestamp - hour
251  */
252 MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8);
253 
254 /* cmd_mbox_query_fw_fw_minutes
255  * Firmware timestamp - minutes
256  */
257 MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8);
258 
259 /* cmd_mbox_query_fw_fw_seconds
260  * Firmware timestamp - seconds
261  */
262 MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8);
263 
264 /* cmd_mbox_query_fw_fw_year
265  * Firmware timestamp - year
266  */
267 MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16);
268 
269 /* cmd_mbox_query_fw_fw_month
270  * Firmware timestamp - month
271  */
272 MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8);
273 
274 /* cmd_mbox_query_fw_fw_day
275  * Firmware timestamp - day
276  */
277 MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8);
278 
279 /* cmd_mbox_query_fw_clr_int_base_offset
280  * Clear Interrupt register's offset from clr_int_bar register
281  * in PCI address space.
282  */
283 MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64);
284 
285 /* cmd_mbox_query_fw_clr_int_bar
286  * PCI base address register (BAR) where clr_int register is located.
287  * 00 - BAR 0-1 (64 bit BAR)
288  */
289 MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2);
290 
291 /* cmd_mbox_query_fw_error_buf_offset
292  * Read Only buffer for internal error reports of offset
293  * from error_buf_bar register in PCI address space).
294  */
295 MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64);
296 
297 /* cmd_mbox_query_fw_error_buf_size
298  * Internal error buffer size in DWORDs
299  */
300 MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32);
301 
302 /* cmd_mbox_query_fw_error_int_bar
303  * PCI base address register (BAR) where error buffer
304  * register is located.
305  * 00 - BAR 0-1 (64 bit BAR)
306  */
307 MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2);
308 
309 /* cmd_mbox_query_fw_doorbell_page_offset
310  * Offset of the doorbell page
311  */
312 MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64);
313 
314 /* cmd_mbox_query_fw_doorbell_page_bar
315  * PCI base address register (BAR) of the doorbell page
316  * 00 - BAR 0-1 (64 bit BAR)
317  */
318 MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2);
319 
320 /* cmd_mbox_query_fw_free_running_clock_offset
321  * The offset of the free running clock page
322  */
323 MLXSW_ITEM64(cmd_mbox, query_fw, free_running_clock_offset, 0x50, 0, 64);
324 
325 /* cmd_mbox_query_fw_fr_rn_clk_bar
326  * PCI base address register (BAR) of the free running clock page
327  * 0: BAR 0
328  * 1: 64 bit BAR
329  */
330 MLXSW_ITEM32(cmd_mbox, query_fw, fr_rn_clk_bar, 0x58, 30, 2);
331 
332 /* QUERY_BOARDINFO - Query Board Information
333  * -----------------------------------------
334  * OpMod == 0 (N/A), INMmod == 0 (N/A)
335  * -----------------------------------
336  * The QUERY_BOARDINFO command retrieves adapter specific parameters.
337  */
338 
339 static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core,
340 				      char *out_mbox)
341 {
342 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO,
343 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
344 }
345 
346 /* cmd_mbox_xm_num_local_ports
347  * Number of local_ports connected to the xm.
348  * Each local port is a 4x
349  * Spectrum-2/3: 25G
350  * Spectrum-4: 50G
351  */
352 MLXSW_ITEM32(cmd_mbox, boardinfo, xm_num_local_ports, 0x00, 4, 3);
353 
354 /* cmd_mbox_xm_exists
355  * An XM (eXtanded Mezanine, e.g. used for the XLT) is connected on the board.
356  */
357 MLXSW_ITEM32(cmd_mbox, boardinfo, xm_exists, 0x00, 0, 1);
358 
359 /* cmd_mbox_xm_local_port_entry
360  */
361 MLXSW_ITEM_BIT_ARRAY(cmd_mbox, boardinfo, xm_local_port_entry, 0x04, 4, 8);
362 
363 /* cmd_mbox_boardinfo_intapin
364  * When PCIe interrupt messages are being used, this value is used for clearing
365  * an interrupt. When using MSI-X, this register is not used.
366  */
367 MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8);
368 
369 /* cmd_mbox_boardinfo_vsd_vendor_id
370  * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor
371  * specifying/formatting the VSD. The vsd_vendor_id identifies the management
372  * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID
373  * format and encoding as long as they use their assigned vsd_vendor_id.
374  */
375 MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16);
376 
377 /* cmd_mbox_boardinfo_vsd
378  * Vendor Specific Data. The VSD string that is burnt to the Flash
379  * with the firmware.
380  */
381 #define MLXSW_CMD_BOARDINFO_VSD_LEN 208
382 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN);
383 
384 /* cmd_mbox_boardinfo_psid
385  * The PSID field is a 16-ascii (byte) character string which acts as
386  * the board ID. The PSID format is used in conjunction with
387  * Mellanox vsd_vendor_id (15B3h).
388  */
389 #define MLXSW_CMD_BOARDINFO_PSID_LEN 16
390 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN);
391 
392 /* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities
393  * -----------------------------------------------------
394  * OpMod == 0 (N/A), INMmod == 0 (N/A)
395  * -----------------------------------
396  * The QUERY_AQ_CAP command returns the device asynchronous queues
397  * capabilities supported.
398  */
399 
400 static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core,
401 					 char *out_mbox)
402 {
403 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP,
404 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
405 }
406 
407 /* cmd_mbox_query_aq_cap_log_max_sdq_sz
408  * Log (base 2) of max WQEs allowed on SDQ.
409  */
410 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8);
411 
412 /* cmd_mbox_query_aq_cap_max_num_sdqs
413  * Maximum number of SDQs.
414  */
415 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8);
416 
417 /* cmd_mbox_query_aq_cap_log_max_rdq_sz
418  * Log (base 2) of max WQEs allowed on RDQ.
419  */
420 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8);
421 
422 /* cmd_mbox_query_aq_cap_max_num_rdqs
423  * Maximum number of RDQs.
424  */
425 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8);
426 
427 /* cmd_mbox_query_aq_cap_log_max_cq_sz
428  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv0 and CQEv1.
429  */
430 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8);
431 
432 /* cmd_mbox_query_aq_cap_log_max_cqv2_sz
433  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv2.
434  */
435 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cqv2_sz, 0x08, 16, 8);
436 
437 /* cmd_mbox_query_aq_cap_max_num_cqs
438  * Maximum number of CQs.
439  */
440 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8);
441 
442 /* cmd_mbox_query_aq_cap_log_max_eq_sz
443  * Log (base 2) of max EQEs allowed on EQ.
444  */
445 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8);
446 
447 /* cmd_mbox_query_aq_cap_max_num_eqs
448  * Maximum number of EQs.
449  */
450 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8);
451 
452 /* cmd_mbox_query_aq_cap_max_sg_sq
453  * The maximum S/G list elements in an DSQ. DSQ must not contain
454  * more S/G entries than indicated here.
455  */
456 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8);
457 
458 /* cmd_mbox_query_aq_cap_
459  * The maximum S/G list elements in an DRQ. DRQ must not contain
460  * more S/G entries than indicated here.
461  */
462 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8);
463 
464 /* MAP_FA - Map Firmware Area
465  * --------------------------
466  * OpMod == 0 (N/A), INMmod == Number of VPM entries
467  * -------------------------------------------------
468  * The MAP_FA command passes physical pages to the switch. These pages
469  * are used to store the device firmware. MAP_FA can be executed multiple
470  * times until all the firmware area is mapped (the size that should be
471  * mapped is retrieved through the QUERY_FW command). All required pages
472  * must be mapped to finish the initialization phase. Physical memory
473  * passed in this command must be pinned.
474  */
475 
476 #define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32
477 
478 static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core,
479 				   char *in_mbox, u32 vpm_entries_count)
480 {
481 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA,
482 				 0, vpm_entries_count,
483 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
484 }
485 
486 /* cmd_mbox_map_fa_pa
487  * Physical Address.
488  */
489 MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true);
490 
491 /* cmd_mbox_map_fa_log2size
492  * Log (base 2) of the size in 4KB pages of the physical and contiguous memory
493  * that starts at PA_L/H.
494  */
495 MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false);
496 
497 /* UNMAP_FA - Unmap Firmware Area
498  * ------------------------------
499  * OpMod == 0 (N/A), INMmod == 0 (N/A)
500  * -----------------------------------
501  * The UNMAP_FA command unload the firmware and unmaps all the
502  * firmware area. After this command is completed the device will not access
503  * the pages that were mapped to the firmware area. After executing UNMAP_FA
504  * command, software reset must be done prior to execution of MAP_FW command.
505  */
506 
507 static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core)
508 {
509 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0);
510 }
511 
512 /* QUERY_RESOURCES - Query chip resources
513  * --------------------------------------
514  * OpMod == 0 (N/A) , INMmod is index
515  * ----------------------------------
516  * The QUERY_RESOURCES command retrieves information related to chip resources
517  * by resource ID. Every command returns 32 entries. INmod is being use as base.
518  * for example, index 1 will return entries 32-63. When the tables end and there
519  * are no more sources in the table, will return resource id 0xFFF to indicate
520  * it.
521  */
522 
523 #define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff
524 #define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100
525 #define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32
526 
527 static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core,
528 					    char *out_mbox, int index)
529 {
530 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES,
531 				  0, index, false, out_mbox,
532 				  MLXSW_CMD_MBOX_SIZE);
533 }
534 
535 /* cmd_mbox_query_resource_id
536  * The resource id. 0xFFFF indicates table's end.
537  */
538 MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false);
539 
540 /* cmd_mbox_query_resource_data
541  * The resource
542  */
543 MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data,
544 		     0x00, 0, 40, 0x8, 0, false);
545 
546 /* CONFIG_PROFILE (Set) - Configure Switch Profile
547  * ------------------------------
548  * OpMod == 1 (Set), INMmod == 0 (N/A)
549  * -----------------------------------
550  * The CONFIG_PROFILE command sets the switch profile. The command can be
551  * executed on the device only once at startup in order to allocate and
552  * configure all switch resources and prepare it for operational mode.
553  * It is not possible to change the device profile after the chip is
554  * in operational mode.
555  * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate
556  * state therefore it is required to perform software reset to the device
557  * following an unsuccessful completion of the command. It is required
558  * to perform software reset to the device to change an existing profile.
559  */
560 
561 static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core,
562 					       char *in_mbox)
563 {
564 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE,
565 				 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE);
566 }
567 
568 /* cmd_mbox_config_profile_set_max_vepa_channels
569  * Capability bit. Setting a bit to 1 configures the profile
570  * according to the mailbox contents.
571  */
572 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1);
573 
574 /* cmd_mbox_config_profile_set_max_lag
575  * Capability bit. Setting a bit to 1 configures the profile
576  * according to the mailbox contents.
577  */
578 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1);
579 
580 /* cmd_mbox_config_profile_set_max_port_per_lag
581  * Capability bit. Setting a bit to 1 configures the profile
582  * according to the mailbox contents.
583  */
584 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1);
585 
586 /* cmd_mbox_config_profile_set_max_mid
587  * Capability bit. Setting a bit to 1 configures the profile
588  * according to the mailbox contents.
589  */
590 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1);
591 
592 /* cmd_mbox_config_profile_set_max_pgt
593  * Capability bit. Setting a bit to 1 configures the profile
594  * according to the mailbox contents.
595  */
596 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1);
597 
598 /* cmd_mbox_config_profile_set_max_system_port
599  * Capability bit. Setting a bit to 1 configures the profile
600  * according to the mailbox contents.
601  */
602 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1);
603 
604 /* cmd_mbox_config_profile_set_max_vlan_groups
605  * Capability bit. Setting a bit to 1 configures the profile
606  * according to the mailbox contents.
607  */
608 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1);
609 
610 /* cmd_mbox_config_profile_set_max_regions
611  * Capability bit. Setting a bit to 1 configures the profile
612  * according to the mailbox contents.
613  */
614 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1);
615 
616 /* cmd_mbox_config_profile_set_flood_mode
617  * Capability bit. Setting a bit to 1 configures the profile
618  * according to the mailbox contents.
619  */
620 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1);
621 
622 /* cmd_mbox_config_profile_set_max_flood_tables
623  * Capability bit. Setting a bit to 1 configures the profile
624  * according to the mailbox contents.
625  */
626 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1);
627 
628 /* cmd_mbox_config_profile_set_max_ib_mc
629  * Capability bit. Setting a bit to 1 configures the profile
630  * according to the mailbox contents.
631  */
632 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1);
633 
634 /* cmd_mbox_config_profile_set_max_pkey
635  * Capability bit. Setting a bit to 1 configures the profile
636  * according to the mailbox contents.
637  */
638 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1);
639 
640 /* cmd_mbox_config_profile_set_adaptive_routing_group_cap
641  * Capability bit. Setting a bit to 1 configures the profile
642  * according to the mailbox contents.
643  */
644 MLXSW_ITEM32(cmd_mbox, config_profile,
645 	     set_adaptive_routing_group_cap, 0x0C, 14, 1);
646 
647 /* cmd_mbox_config_profile_set_ar_sec
648  * Capability bit. Setting a bit to 1 configures the profile
649  * according to the mailbox contents.
650  */
651 MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1);
652 
653 /* cmd_mbox_config_set_kvd_linear_size
654  * Capability bit. Setting a bit to 1 configures the profile
655  * according to the mailbox contents.
656  */
657 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1);
658 
659 /* cmd_mbox_config_set_kvd_hash_single_size
660  * Capability bit. Setting a bit to 1 configures the profile
661  * according to the mailbox contents.
662  */
663 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1);
664 
665 /* cmd_mbox_config_set_kvd_hash_double_size
666  * Capability bit. Setting a bit to 1 configures the profile
667  * according to the mailbox contents.
668  */
669 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1);
670 
671 /* cmd_mbox_config_set_cqe_version
672  * Capability bit. Setting a bit to 1 configures the profile
673  * according to the mailbox contents.
674  */
675 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_version, 0x08, 0, 1);
676 
677 /* cmd_mbox_config_set_kvh_xlt_cache_mode
678  * Capability bit. Setting a bit to 1 configures the profile
679  * according to the mailbox contents.
680  */
681 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvh_xlt_cache_mode, 0x08, 3, 1);
682 
683 /* cmd_mbox_config_profile_max_vepa_channels
684  * Maximum number of VEPA channels per port (0 through 16)
685  * 0 - multi-channel VEPA is disabled
686  */
687 MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8);
688 
689 /* cmd_mbox_config_profile_max_lag
690  * Maximum number of LAG IDs requested.
691  */
692 MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16);
693 
694 /* cmd_mbox_config_profile_max_port_per_lag
695  * Maximum number of ports per LAG requested.
696  */
697 MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16);
698 
699 /* cmd_mbox_config_profile_max_mid
700  * Maximum Multicast IDs.
701  * Multicast IDs are allocated from 0 to max_mid-1
702  */
703 MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16);
704 
705 /* cmd_mbox_config_profile_max_pgt
706  * Maximum records in the Port Group Table per Switch Partition.
707  * Port Group Table indexes are from 0 to max_pgt-1
708  */
709 MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16);
710 
711 /* cmd_mbox_config_profile_max_system_port
712  * The maximum number of system ports that can be allocated.
713  */
714 MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16);
715 
716 /* cmd_mbox_config_profile_max_vlan_groups
717  * Maximum number VLAN Groups for VLAN binding.
718  */
719 MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12);
720 
721 /* cmd_mbox_config_profile_max_regions
722  * Maximum number of TCAM Regions.
723  */
724 MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16);
725 
726 /* cmd_mbox_config_profile_max_flood_tables
727  * Maximum number of single-entry flooding tables. Different flooding tables
728  * can be associated with different packet types.
729  */
730 MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4);
731 
732 /* cmd_mbox_config_profile_max_vid_flood_tables
733  * Maximum number of per-vid flooding tables. Flooding tables are associated
734  * to the different packet types for the different switch partitions.
735  * Table size is 4K entries covering all VID space.
736  */
737 MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4);
738 
739 /* cmd_mbox_config_profile_flood_mode
740  * Flooding mode to use.
741  * 0-2 - Backward compatible modes for SwitchX devices.
742  * 3 - Mixed mode, where:
743  * max_flood_tables indicates the number of single-entry tables.
744  * max_vid_flood_tables indicates the number of per-VID tables.
745  * max_fid_offset_flood_tables indicates the number of FID-offset tables.
746  * max_fid_flood_tables indicates the number of per-FID tables.
747  */
748 MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 2);
749 
750 /* cmd_mbox_config_profile_max_fid_offset_flood_tables
751  * Maximum number of FID-offset flooding tables.
752  */
753 MLXSW_ITEM32(cmd_mbox, config_profile,
754 	     max_fid_offset_flood_tables, 0x34, 24, 4);
755 
756 /* cmd_mbox_config_profile_fid_offset_flood_table_size
757  * The size (number of entries) of each FID-offset flood table.
758  */
759 MLXSW_ITEM32(cmd_mbox, config_profile,
760 	     fid_offset_flood_table_size, 0x34, 0, 16);
761 
762 /* cmd_mbox_config_profile_max_fid_flood_tables
763  * Maximum number of per-FID flooding tables.
764  *
765  * Note: This flooding tables cover special FIDs only (vFIDs), starting at
766  * FID value 4K and higher.
767  */
768 MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4);
769 
770 /* cmd_mbox_config_profile_fid_flood_table_size
771  * The size (number of entries) of each per-FID table.
772  */
773 MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16);
774 
775 /* cmd_mbox_config_profile_max_ib_mc
776  * Maximum number of multicast FDB records for InfiniBand
777  * FDB (in 512 chunks) per InfiniBand switch partition.
778  */
779 MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15);
780 
781 /* cmd_mbox_config_profile_max_pkey
782  * Maximum per port PKEY table size (for PKEY enforcement)
783  */
784 MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15);
785 
786 /* cmd_mbox_config_profile_ar_sec
787  * Primary/secondary capability
788  * Describes the number of adaptive routing sub-groups
789  * 0 - disable primary/secondary (single group)
790  * 1 - enable primary/secondary (2 sub-groups)
791  * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2
792  * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2
793  */
794 MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2);
795 
796 /* cmd_mbox_config_profile_adaptive_routing_group_cap
797  * Adaptive Routing Group Capability. Indicates the number of AR groups
798  * supported. Note that when Primary/secondary is enabled, each
799  * primary/secondary couple consumes 2 adaptive routing entries.
800  */
801 MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16);
802 
803 /* cmd_mbox_config_profile_arn
804  * Adaptive Routing Notification Enable
805  * Not supported in SwitchX, SwitchX-2
806  */
807 MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1);
808 
809 /* cmd_mbox_config_profile_kvh_xlt_cache_mode
810  * KVH XLT cache mode:
811  * 0 - XLT can use all KVH as best-effort
812  * 1 - XLT cache uses 1/2 KVH
813  */
814 MLXSW_ITEM32(cmd_mbox, config_profile, kvh_xlt_cache_mode, 0x50, 8, 4);
815 
816 /* cmd_mbox_config_kvd_linear_size
817  * KVD Linear Size
818  * Valid for Spectrum only
819  * Allowed values are 128*N where N=0 or higher
820  */
821 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24);
822 
823 /* cmd_mbox_config_kvd_hash_single_size
824  * KVD Hash single-entries size
825  * Valid for Spectrum only
826  * Allowed values are 128*N where N=0 or higher
827  * Must be greater or equal to cap_min_kvd_hash_single_size
828  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
829  */
830 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24);
831 
832 /* cmd_mbox_config_kvd_hash_double_size
833  * KVD Hash double-entries size (units of single-size entries)
834  * Valid for Spectrum only
835  * Allowed values are 128*N where N=0 or higher
836  * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size
837  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
838  */
839 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24);
840 
841 /* cmd_mbox_config_profile_swid_config_mask
842  * Modify Switch Partition Configuration mask. When set, the configu-
843  * ration value for the Switch Partition are taken from the mailbox.
844  * When clear, the current configuration values are used.
845  * Bit 0 - set type
846  * Bit 1 - properties
847  * Other - reserved
848  */
849 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask,
850 		     0x60, 24, 8, 0x08, 0x00, false);
851 
852 /* cmd_mbox_config_profile_swid_config_type
853  * Switch Partition type.
854  * 0000 - disabled (Switch Partition does not exist)
855  * 0001 - InfiniBand
856  * 0010 - Ethernet
857  * 1000 - router port (SwitchX-2 only)
858  * Other - reserved
859  */
860 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type,
861 		     0x60, 20, 4, 0x08, 0x00, false);
862 
863 /* cmd_mbox_config_profile_swid_config_properties
864  * Switch Partition properties.
865  */
866 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties,
867 		     0x60, 0, 8, 0x08, 0x00, false);
868 
869 /* cmd_mbox_config_profile_cqe_version
870  * CQE version:
871  * 0: CQE version is 0
872  * 1: CQE version is either 1 or 2
873  * CQE ver 1 or 2 is configured by Completion Queue Context field cqe_ver.
874  */
875 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_version, 0xB0, 0, 8);
876 
877 /* ACCESS_REG - Access EMAD Supported Register
878  * ----------------------------------
879  * OpMod == 0 (N/A), INMmod == 0 (N/A)
880  * -------------------------------------
881  * The ACCESS_REG command supports accessing device registers. This access
882  * is mainly used for bootstrapping.
883  */
884 
885 static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core,
886 				       bool reset_ok,
887 				       char *in_mbox, char *out_mbox)
888 {
889 	return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG,
890 			      0, 0, false, reset_ok,
891 			      in_mbox, MLXSW_CMD_MBOX_SIZE,
892 			      out_mbox, MLXSW_CMD_MBOX_SIZE);
893 }
894 
895 /* SW2HW_DQ - Software to Hardware DQ
896  * ----------------------------------
897  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
898  * INMmod == DQ number
899  * ----------------------------------------------
900  * The SW2HW_DQ command transitions a descriptor queue from software to
901  * hardware ownership. The command enables posting WQEs and ringing DoorBells
902  * on the descriptor queue.
903  */
904 
905 static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core,
906 				       char *in_mbox, u32 dq_number,
907 				       u8 opcode_mod)
908 {
909 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ,
910 				 opcode_mod, dq_number,
911 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
912 }
913 
914 enum {
915 	MLXSW_CMD_OPCODE_MOD_SDQ = 0,
916 	MLXSW_CMD_OPCODE_MOD_RDQ = 1,
917 };
918 
919 static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core,
920 				      char *in_mbox, u32 dq_number)
921 {
922 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
923 				    MLXSW_CMD_OPCODE_MOD_SDQ);
924 }
925 
926 static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core,
927 				      char *in_mbox, u32 dq_number)
928 {
929 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
930 				    MLXSW_CMD_OPCODE_MOD_RDQ);
931 }
932 
933 /* cmd_mbox_sw2hw_dq_cq
934  * Number of the CQ that this Descriptor Queue reports completions to.
935  */
936 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8);
937 
938 enum mlxsw_cmd_mbox_sw2hw_dq_sdq_lp {
939 	MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_WQE,
940 	MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_IGNORE_WQE,
941 };
942 
943 /* cmd_mbox_sw2hw_dq_sdq_lp
944  * SDQ local Processing
945  * 0: local processing by wqe.lp
946  * 1: local processing (ignoring wqe.lp)
947  */
948 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_lp, 0x00, 23, 1);
949 
950 /* cmd_mbox_sw2hw_dq_sdq_tclass
951  * SDQ: CPU Egress TClass
952  * RDQ: Reserved
953  */
954 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6);
955 
956 /* cmd_mbox_sw2hw_dq_log2_dq_sz
957  * Log (base 2) of the Descriptor Queue size in 4KB pages.
958  */
959 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6);
960 
961 /* cmd_mbox_sw2hw_dq_pa
962  * Physical Address.
963  */
964 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true);
965 
966 /* HW2SW_DQ - Hardware to Software DQ
967  * ----------------------------------
968  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
969  * INMmod == DQ number
970  * ----------------------------------------------
971  * The HW2SW_DQ command transitions a descriptor queue from hardware to
972  * software ownership. Incoming packets on the DQ are silently discarded,
973  * SW should not post descriptors on nonoperational DQs.
974  */
975 
976 static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core,
977 				       u32 dq_number, u8 opcode_mod)
978 {
979 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ,
980 				   opcode_mod, dq_number);
981 }
982 
983 static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core,
984 				      u32 dq_number)
985 {
986 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
987 				    MLXSW_CMD_OPCODE_MOD_SDQ);
988 }
989 
990 static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core,
991 				      u32 dq_number)
992 {
993 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
994 				    MLXSW_CMD_OPCODE_MOD_RDQ);
995 }
996 
997 /* 2ERR_DQ - To Error DQ
998  * ---------------------
999  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1000  * INMmod == DQ number
1001  * ----------------------------------------------
1002  * The 2ERR_DQ command transitions the DQ into the error state from the state
1003  * in which it has been. While the command is executed, some in-process
1004  * descriptors may complete. Once the DQ transitions into the error state,
1005  * if there are posted descriptors on the RDQ/SDQ, the hardware writes
1006  * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ.
1007  * When the command is completed successfully, the DQ is already in
1008  * the error state.
1009  */
1010 
1011 static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core,
1012 				      u32 dq_number, u8 opcode_mod)
1013 {
1014 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1015 				   opcode_mod, dq_number);
1016 }
1017 
1018 static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core,
1019 				     u32 dq_number)
1020 {
1021 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1022 				   MLXSW_CMD_OPCODE_MOD_SDQ);
1023 }
1024 
1025 static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core,
1026 				     u32 dq_number)
1027 {
1028 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1029 				   MLXSW_CMD_OPCODE_MOD_RDQ);
1030 }
1031 
1032 /* QUERY_DQ - Query DQ
1033  * ---------------------
1034  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1035  * INMmod == DQ number
1036  * ----------------------------------------------
1037  * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware.
1038  *
1039  * Note: Output mailbox has the same format as SW2HW_DQ.
1040  */
1041 
1042 static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core,
1043 				       char *out_mbox, u32 dq_number,
1044 				       u8 opcode_mod)
1045 {
1046 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1047 				  opcode_mod, dq_number, false,
1048 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1049 }
1050 
1051 static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core,
1052 				      char *out_mbox, u32 dq_number)
1053 {
1054 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1055 				    MLXSW_CMD_OPCODE_MOD_SDQ);
1056 }
1057 
1058 static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core,
1059 				      char *out_mbox, u32 dq_number)
1060 {
1061 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1062 				    MLXSW_CMD_OPCODE_MOD_RDQ);
1063 }
1064 
1065 /* SW2HW_CQ - Software to Hardware CQ
1066  * ----------------------------------
1067  * OpMod == 0 (N/A), INMmod == CQ number
1068  * -------------------------------------
1069  * The SW2HW_CQ command transfers ownership of a CQ context entry from software
1070  * to hardware. The command takes the CQ context entry from the input mailbox
1071  * and stores it in the CQC in the ownership of the hardware. The command fails
1072  * if the requested CQC entry is already in the ownership of the hardware.
1073  */
1074 
1075 static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core,
1076 				     char *in_mbox, u32 cq_number)
1077 {
1078 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ,
1079 				 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1080 }
1081 
1082 enum mlxsw_cmd_mbox_sw2hw_cq_cqe_ver {
1083 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_1,
1084 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_2,
1085 };
1086 
1087 /* cmd_mbox_sw2hw_cq_cqe_ver
1088  * CQE Version.
1089  */
1090 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cqe_ver, 0x00, 28, 4);
1091 
1092 /* cmd_mbox_sw2hw_cq_c_eqn
1093  * Event Queue this CQ reports completion events to.
1094  */
1095 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1);
1096 
1097 /* cmd_mbox_sw2hw_cq_st
1098  * Event delivery state machine
1099  * 0x0 - FIRED
1100  * 0x1 - ARMED (Request for Notification)
1101  */
1102 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1);
1103 
1104 /* cmd_mbox_sw2hw_cq_log_cq_size
1105  * Log (base 2) of the CQ size (in entries).
1106  */
1107 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4);
1108 
1109 /* cmd_mbox_sw2hw_cq_producer_counter
1110  * Producer Counter. The counter is incremented for each CQE that is
1111  * written by the HW to the CQ.
1112  * Maintained by HW (valid for the QUERY_CQ command only)
1113  */
1114 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16);
1115 
1116 /* cmd_mbox_sw2hw_cq_pa
1117  * Physical Address.
1118  */
1119 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1120 
1121 /* HW2SW_CQ - Hardware to Software CQ
1122  * ----------------------------------
1123  * OpMod == 0 (N/A), INMmod == CQ number
1124  * -------------------------------------
1125  * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware
1126  * to software. The CQC entry is invalidated as a result of this command.
1127  */
1128 
1129 static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core,
1130 				     u32 cq_number)
1131 {
1132 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ,
1133 				   0, cq_number);
1134 }
1135 
1136 /* QUERY_CQ - Query CQ
1137  * ----------------------------------
1138  * OpMod == 0 (N/A), INMmod == CQ number
1139  * -------------------------------------
1140  * The QUERY_CQ command retrieves a snapshot of the current CQ context entry.
1141  * The command stores the snapshot in the output mailbox in the software format.
1142  * Note that the CQ context state and values are not affected by the QUERY_CQ
1143  * command. The QUERY_CQ command is for debug purposes only.
1144  *
1145  * Note: Output mailbox has the same format as SW2HW_CQ.
1146  */
1147 
1148 static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core,
1149 				     char *out_mbox, u32 cq_number)
1150 {
1151 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ,
1152 				  0, cq_number, false,
1153 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1154 }
1155 
1156 /* SW2HW_EQ - Software to Hardware EQ
1157  * ----------------------------------
1158  * OpMod == 0 (N/A), INMmod == EQ number
1159  * -------------------------------------
1160  * The SW2HW_EQ command transfers ownership of an EQ context entry from software
1161  * to hardware. The command takes the EQ context entry from the input mailbox
1162  * and stores it in the EQC in the ownership of the hardware. The command fails
1163  * if the requested EQC entry is already in the ownership of the hardware.
1164  */
1165 
1166 static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core,
1167 				     char *in_mbox, u32 eq_number)
1168 {
1169 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ,
1170 				 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1171 }
1172 
1173 /* cmd_mbox_sw2hw_eq_int_msix
1174  * When set, MSI-X cycles will be generated by this EQ.
1175  * When cleared, an interrupt will be generated by this EQ.
1176  */
1177 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1);
1178 
1179 /* cmd_mbox_sw2hw_eq_st
1180  * Event delivery state machine
1181  * 0x0 - FIRED
1182  * 0x1 - ARMED (Request for Notification)
1183  * 0x11 - Always ARMED
1184  * other - reserved
1185  */
1186 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2);
1187 
1188 /* cmd_mbox_sw2hw_eq_log_eq_size
1189  * Log (base 2) of the EQ size (in entries).
1190  */
1191 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4);
1192 
1193 /* cmd_mbox_sw2hw_eq_producer_counter
1194  * Producer Counter. The counter is incremented for each EQE that is written
1195  * by the HW to the EQ.
1196  * Maintained by HW (valid for the QUERY_EQ command only)
1197  */
1198 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16);
1199 
1200 /* cmd_mbox_sw2hw_eq_pa
1201  * Physical Address.
1202  */
1203 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1204 
1205 /* HW2SW_EQ - Hardware to Software EQ
1206  * ----------------------------------
1207  * OpMod == 0 (N/A), INMmod == EQ number
1208  * -------------------------------------
1209  */
1210 
1211 static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core,
1212 				     u32 eq_number)
1213 {
1214 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ,
1215 				   0, eq_number);
1216 }
1217 
1218 /* QUERY_EQ - Query EQ
1219  * ----------------------------------
1220  * OpMod == 0 (N/A), INMmod == EQ number
1221  * -------------------------------------
1222  *
1223  * Note: Output mailbox has the same format as SW2HW_EQ.
1224  */
1225 
1226 static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core,
1227 				     char *out_mbox, u32 eq_number)
1228 {
1229 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ,
1230 				  0, eq_number, false,
1231 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1232 }
1233 
1234 #endif
1235