1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
3 
4 #ifndef _MLXSW_CMD_H
5 #define _MLXSW_CMD_H
6 
7 #include "item.h"
8 
9 #define MLXSW_CMD_MBOX_SIZE	4096
10 
11 static inline char *mlxsw_cmd_mbox_alloc(void)
12 {
13 	return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL);
14 }
15 
16 static inline void mlxsw_cmd_mbox_free(char *mbox)
17 {
18 	kfree(mbox);
19 }
20 
21 static inline void mlxsw_cmd_mbox_zero(char *mbox)
22 {
23 	memset(mbox, 0, MLXSW_CMD_MBOX_SIZE);
24 }
25 
26 struct mlxsw_core;
27 
28 int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod,
29 		   u32 in_mod, bool out_mbox_direct, bool reset_ok,
30 		   char *in_mbox, size_t in_mbox_size,
31 		   char *out_mbox, size_t out_mbox_size);
32 
33 static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode,
34 				    u8 opcode_mod, u32 in_mod, char *in_mbox,
35 				    size_t in_mbox_size)
36 {
37 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
38 			      false, in_mbox, in_mbox_size, NULL, 0);
39 }
40 
41 static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode,
42 				     u8 opcode_mod, u32 in_mod,
43 				     bool out_mbox_direct,
44 				     char *out_mbox, size_t out_mbox_size)
45 {
46 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod,
47 			      out_mbox_direct, false, NULL, 0,
48 			      out_mbox, out_mbox_size);
49 }
50 
51 static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode,
52 				      u8 opcode_mod, u32 in_mod)
53 {
54 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
55 			      false, NULL, 0, NULL, 0);
56 }
57 
58 enum mlxsw_cmd_opcode {
59 	MLXSW_CMD_OPCODE_QUERY_FW		= 0x004,
60 	MLXSW_CMD_OPCODE_QUERY_BOARDINFO	= 0x006,
61 	MLXSW_CMD_OPCODE_QUERY_AQ_CAP		= 0x003,
62 	MLXSW_CMD_OPCODE_MAP_FA			= 0xFFF,
63 	MLXSW_CMD_OPCODE_UNMAP_FA		= 0xFFE,
64 	MLXSW_CMD_OPCODE_CONFIG_PROFILE		= 0x100,
65 	MLXSW_CMD_OPCODE_ACCESS_REG		= 0x040,
66 	MLXSW_CMD_OPCODE_SW2HW_DQ		= 0x201,
67 	MLXSW_CMD_OPCODE_HW2SW_DQ		= 0x202,
68 	MLXSW_CMD_OPCODE_2ERR_DQ		= 0x01E,
69 	MLXSW_CMD_OPCODE_QUERY_DQ		= 0x022,
70 	MLXSW_CMD_OPCODE_SW2HW_CQ		= 0x016,
71 	MLXSW_CMD_OPCODE_HW2SW_CQ		= 0x017,
72 	MLXSW_CMD_OPCODE_QUERY_CQ		= 0x018,
73 	MLXSW_CMD_OPCODE_SW2HW_EQ		= 0x013,
74 	MLXSW_CMD_OPCODE_HW2SW_EQ		= 0x014,
75 	MLXSW_CMD_OPCODE_QUERY_EQ		= 0x015,
76 	MLXSW_CMD_OPCODE_QUERY_RESOURCES	= 0x101,
77 };
78 
79 static inline const char *mlxsw_cmd_opcode_str(u16 opcode)
80 {
81 	switch (opcode) {
82 	case MLXSW_CMD_OPCODE_QUERY_FW:
83 		return "QUERY_FW";
84 	case MLXSW_CMD_OPCODE_QUERY_BOARDINFO:
85 		return "QUERY_BOARDINFO";
86 	case MLXSW_CMD_OPCODE_QUERY_AQ_CAP:
87 		return "QUERY_AQ_CAP";
88 	case MLXSW_CMD_OPCODE_MAP_FA:
89 		return "MAP_FA";
90 	case MLXSW_CMD_OPCODE_UNMAP_FA:
91 		return "UNMAP_FA";
92 	case MLXSW_CMD_OPCODE_CONFIG_PROFILE:
93 		return "CONFIG_PROFILE";
94 	case MLXSW_CMD_OPCODE_ACCESS_REG:
95 		return "ACCESS_REG";
96 	case MLXSW_CMD_OPCODE_SW2HW_DQ:
97 		return "SW2HW_DQ";
98 	case MLXSW_CMD_OPCODE_HW2SW_DQ:
99 		return "HW2SW_DQ";
100 	case MLXSW_CMD_OPCODE_2ERR_DQ:
101 		return "2ERR_DQ";
102 	case MLXSW_CMD_OPCODE_QUERY_DQ:
103 		return "QUERY_DQ";
104 	case MLXSW_CMD_OPCODE_SW2HW_CQ:
105 		return "SW2HW_CQ";
106 	case MLXSW_CMD_OPCODE_HW2SW_CQ:
107 		return "HW2SW_CQ";
108 	case MLXSW_CMD_OPCODE_QUERY_CQ:
109 		return "QUERY_CQ";
110 	case MLXSW_CMD_OPCODE_SW2HW_EQ:
111 		return "SW2HW_EQ";
112 	case MLXSW_CMD_OPCODE_HW2SW_EQ:
113 		return "HW2SW_EQ";
114 	case MLXSW_CMD_OPCODE_QUERY_EQ:
115 		return "QUERY_EQ";
116 	case MLXSW_CMD_OPCODE_QUERY_RESOURCES:
117 		return "QUERY_RESOURCES";
118 	default:
119 		return "*UNKNOWN*";
120 	}
121 }
122 
123 enum mlxsw_cmd_status {
124 	/* Command execution succeeded. */
125 	MLXSW_CMD_STATUS_OK		= 0x00,
126 	/* Internal error (e.g. bus error) occurred while processing command. */
127 	MLXSW_CMD_STATUS_INTERNAL_ERR	= 0x01,
128 	/* Operation/command not supported or opcode modifier not supported. */
129 	MLXSW_CMD_STATUS_BAD_OP		= 0x02,
130 	/* Parameter not supported, parameter out of range. */
131 	MLXSW_CMD_STATUS_BAD_PARAM	= 0x03,
132 	/* System was not enabled or bad system state. */
133 	MLXSW_CMD_STATUS_BAD_SYS_STATE	= 0x04,
134 	/* Attempt to access reserved or unallocated resource, or resource in
135 	 * inappropriate ownership.
136 	 */
137 	MLXSW_CMD_STATUS_BAD_RESOURCE	= 0x05,
138 	/* Requested resource is currently executing a command. */
139 	MLXSW_CMD_STATUS_RESOURCE_BUSY	= 0x06,
140 	/* Required capability exceeds device limits. */
141 	MLXSW_CMD_STATUS_EXCEED_LIM	= 0x08,
142 	/* Resource is not in the appropriate state or ownership. */
143 	MLXSW_CMD_STATUS_BAD_RES_STATE	= 0x09,
144 	/* Index out of range (might be beyond table size or attempt to
145 	 * access a reserved resource).
146 	 */
147 	MLXSW_CMD_STATUS_BAD_INDEX	= 0x0A,
148 	/* NVMEM checksum/CRC failed. */
149 	MLXSW_CMD_STATUS_BAD_NVMEM	= 0x0B,
150 	/* Device is currently running reset */
151 	MLXSW_CMD_STATUS_RUNNING_RESET	= 0x26,
152 	/* Bad management packet (silently discarded). */
153 	MLXSW_CMD_STATUS_BAD_PKT	= 0x30,
154 };
155 
156 static inline const char *mlxsw_cmd_status_str(u8 status)
157 {
158 	switch (status) {
159 	case MLXSW_CMD_STATUS_OK:
160 		return "OK";
161 	case MLXSW_CMD_STATUS_INTERNAL_ERR:
162 		return "INTERNAL_ERR";
163 	case MLXSW_CMD_STATUS_BAD_OP:
164 		return "BAD_OP";
165 	case MLXSW_CMD_STATUS_BAD_PARAM:
166 		return "BAD_PARAM";
167 	case MLXSW_CMD_STATUS_BAD_SYS_STATE:
168 		return "BAD_SYS_STATE";
169 	case MLXSW_CMD_STATUS_BAD_RESOURCE:
170 		return "BAD_RESOURCE";
171 	case MLXSW_CMD_STATUS_RESOURCE_BUSY:
172 		return "RESOURCE_BUSY";
173 	case MLXSW_CMD_STATUS_EXCEED_LIM:
174 		return "EXCEED_LIM";
175 	case MLXSW_CMD_STATUS_BAD_RES_STATE:
176 		return "BAD_RES_STATE";
177 	case MLXSW_CMD_STATUS_BAD_INDEX:
178 		return "BAD_INDEX";
179 	case MLXSW_CMD_STATUS_BAD_NVMEM:
180 		return "BAD_NVMEM";
181 	case MLXSW_CMD_STATUS_RUNNING_RESET:
182 		return "RUNNING_RESET";
183 	case MLXSW_CMD_STATUS_BAD_PKT:
184 		return "BAD_PKT";
185 	default:
186 		return "*UNKNOWN*";
187 	}
188 }
189 
190 /* QUERY_FW - Query Firmware
191  * -------------------------
192  * OpMod == 0, INMmod == 0
193  * -----------------------
194  * The QUERY_FW command retrieves information related to firmware, command
195  * interface version and the amount of resources that should be allocated to
196  * the firmware.
197  */
198 
199 static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core,
200 				     char *out_mbox)
201 {
202 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW,
203 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
204 }
205 
206 /* cmd_mbox_query_fw_fw_pages
207  * Amount of physical memory to be allocatedfor firmware usage in 4KB pages.
208  */
209 MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16);
210 
211 /* cmd_mbox_query_fw_fw_rev_major
212  * Firmware Revision - Major
213  */
214 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16);
215 
216 /* cmd_mbox_query_fw_fw_rev_subminor
217  * Firmware Sub-minor version (Patch level)
218  */
219 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16);
220 
221 /* cmd_mbox_query_fw_fw_rev_minor
222  * Firmware Revision - Minor
223  */
224 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16);
225 
226 /* cmd_mbox_query_fw_core_clk
227  * Internal Clock Frequency (in MHz)
228  */
229 MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16);
230 
231 /* cmd_mbox_query_fw_cmd_interface_rev
232  * Command Interface Interpreter Revision ID. This number is bumped up
233  * every time a non-backward-compatible change is done for the command
234  * interface. The current cmd_interface_rev is 1.
235  */
236 MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16);
237 
238 /* cmd_mbox_query_fw_dt
239  * If set, Debug Trace is supported
240  */
241 MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1);
242 
243 /* cmd_mbox_query_fw_api_version
244  * Indicates the version of the API, to enable software querying
245  * for compatibility. The current api_version is 1.
246  */
247 MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16);
248 
249 /* cmd_mbox_query_fw_fw_hour
250  * Firmware timestamp - hour
251  */
252 MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8);
253 
254 /* cmd_mbox_query_fw_fw_minutes
255  * Firmware timestamp - minutes
256  */
257 MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8);
258 
259 /* cmd_mbox_query_fw_fw_seconds
260  * Firmware timestamp - seconds
261  */
262 MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8);
263 
264 /* cmd_mbox_query_fw_fw_year
265  * Firmware timestamp - year
266  */
267 MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16);
268 
269 /* cmd_mbox_query_fw_fw_month
270  * Firmware timestamp - month
271  */
272 MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8);
273 
274 /* cmd_mbox_query_fw_fw_day
275  * Firmware timestamp - day
276  */
277 MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8);
278 
279 /* cmd_mbox_query_fw_clr_int_base_offset
280  * Clear Interrupt register's offset from clr_int_bar register
281  * in PCI address space.
282  */
283 MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64);
284 
285 /* cmd_mbox_query_fw_clr_int_bar
286  * PCI base address register (BAR) where clr_int register is located.
287  * 00 - BAR 0-1 (64 bit BAR)
288  */
289 MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2);
290 
291 /* cmd_mbox_query_fw_error_buf_offset
292  * Read Only buffer for internal error reports of offset
293  * from error_buf_bar register in PCI address space).
294  */
295 MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64);
296 
297 /* cmd_mbox_query_fw_error_buf_size
298  * Internal error buffer size in DWORDs
299  */
300 MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32);
301 
302 /* cmd_mbox_query_fw_error_int_bar
303  * PCI base address register (BAR) where error buffer
304  * register is located.
305  * 00 - BAR 0-1 (64 bit BAR)
306  */
307 MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2);
308 
309 /* cmd_mbox_query_fw_doorbell_page_offset
310  * Offset of the doorbell page
311  */
312 MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64);
313 
314 /* cmd_mbox_query_fw_doorbell_page_bar
315  * PCI base address register (BAR) of the doorbell page
316  * 00 - BAR 0-1 (64 bit BAR)
317  */
318 MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2);
319 
320 /* QUERY_BOARDINFO - Query Board Information
321  * -----------------------------------------
322  * OpMod == 0 (N/A), INMmod == 0 (N/A)
323  * -----------------------------------
324  * The QUERY_BOARDINFO command retrieves adapter specific parameters.
325  */
326 
327 static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core,
328 				      char *out_mbox)
329 {
330 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO,
331 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
332 }
333 
334 /* cmd_mbox_boardinfo_intapin
335  * When PCIe interrupt messages are being used, this value is used for clearing
336  * an interrupt. When using MSI-X, this register is not used.
337  */
338 MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8);
339 
340 /* cmd_mbox_boardinfo_vsd_vendor_id
341  * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor
342  * specifying/formatting the VSD. The vsd_vendor_id identifies the management
343  * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID
344  * format and encoding as long as they use their assigned vsd_vendor_id.
345  */
346 MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16);
347 
348 /* cmd_mbox_boardinfo_vsd
349  * Vendor Specific Data. The VSD string that is burnt to the Flash
350  * with the firmware.
351  */
352 #define MLXSW_CMD_BOARDINFO_VSD_LEN 208
353 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN);
354 
355 /* cmd_mbox_boardinfo_psid
356  * The PSID field is a 16-ascii (byte) character string which acts as
357  * the board ID. The PSID format is used in conjunction with
358  * Mellanox vsd_vendor_id (15B3h).
359  */
360 #define MLXSW_CMD_BOARDINFO_PSID_LEN 16
361 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN);
362 
363 /* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities
364  * -----------------------------------------------------
365  * OpMod == 0 (N/A), INMmod == 0 (N/A)
366  * -----------------------------------
367  * The QUERY_AQ_CAP command returns the device asynchronous queues
368  * capabilities supported.
369  */
370 
371 static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core,
372 					 char *out_mbox)
373 {
374 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP,
375 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
376 }
377 
378 /* cmd_mbox_query_aq_cap_log_max_sdq_sz
379  * Log (base 2) of max WQEs allowed on SDQ.
380  */
381 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8);
382 
383 /* cmd_mbox_query_aq_cap_max_num_sdqs
384  * Maximum number of SDQs.
385  */
386 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8);
387 
388 /* cmd_mbox_query_aq_cap_log_max_rdq_sz
389  * Log (base 2) of max WQEs allowed on RDQ.
390  */
391 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8);
392 
393 /* cmd_mbox_query_aq_cap_max_num_rdqs
394  * Maximum number of RDQs.
395  */
396 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8);
397 
398 /* cmd_mbox_query_aq_cap_log_max_cq_sz
399  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv0 and CQEv1.
400  */
401 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8);
402 
403 /* cmd_mbox_query_aq_cap_log_max_cqv2_sz
404  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv2.
405  */
406 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cqv2_sz, 0x08, 16, 8);
407 
408 /* cmd_mbox_query_aq_cap_max_num_cqs
409  * Maximum number of CQs.
410  */
411 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8);
412 
413 /* cmd_mbox_query_aq_cap_log_max_eq_sz
414  * Log (base 2) of max EQEs allowed on EQ.
415  */
416 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8);
417 
418 /* cmd_mbox_query_aq_cap_max_num_eqs
419  * Maximum number of EQs.
420  */
421 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8);
422 
423 /* cmd_mbox_query_aq_cap_max_sg_sq
424  * The maximum S/G list elements in an DSQ. DSQ must not contain
425  * more S/G entries than indicated here.
426  */
427 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8);
428 
429 /* cmd_mbox_query_aq_cap_
430  * The maximum S/G list elements in an DRQ. DRQ must not contain
431  * more S/G entries than indicated here.
432  */
433 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8);
434 
435 /* MAP_FA - Map Firmware Area
436  * --------------------------
437  * OpMod == 0 (N/A), INMmod == Number of VPM entries
438  * -------------------------------------------------
439  * The MAP_FA command passes physical pages to the switch. These pages
440  * are used to store the device firmware. MAP_FA can be executed multiple
441  * times until all the firmware area is mapped (the size that should be
442  * mapped is retrieved through the QUERY_FW command). All required pages
443  * must be mapped to finish the initialization phase. Physical memory
444  * passed in this command must be pinned.
445  */
446 
447 #define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32
448 
449 static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core,
450 				   char *in_mbox, u32 vpm_entries_count)
451 {
452 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA,
453 				 0, vpm_entries_count,
454 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
455 }
456 
457 /* cmd_mbox_map_fa_pa
458  * Physical Address.
459  */
460 MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true);
461 
462 /* cmd_mbox_map_fa_log2size
463  * Log (base 2) of the size in 4KB pages of the physical and contiguous memory
464  * that starts at PA_L/H.
465  */
466 MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false);
467 
468 /* UNMAP_FA - Unmap Firmware Area
469  * ------------------------------
470  * OpMod == 0 (N/A), INMmod == 0 (N/A)
471  * -----------------------------------
472  * The UNMAP_FA command unload the firmware and unmaps all the
473  * firmware area. After this command is completed the device will not access
474  * the pages that were mapped to the firmware area. After executing UNMAP_FA
475  * command, software reset must be done prior to execution of MAP_FW command.
476  */
477 
478 static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core)
479 {
480 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0);
481 }
482 
483 /* QUERY_RESOURCES - Query chip resources
484  * --------------------------------------
485  * OpMod == 0 (N/A) , INMmod is index
486  * ----------------------------------
487  * The QUERY_RESOURCES command retrieves information related to chip resources
488  * by resource ID. Every command returns 32 entries. INmod is being use as base.
489  * for example, index 1 will return entries 32-63. When the tables end and there
490  * are no more sources in the table, will return resource id 0xFFF to indicate
491  * it.
492  */
493 
494 #define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff
495 #define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100
496 #define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32
497 
498 static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core,
499 					    char *out_mbox, int index)
500 {
501 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES,
502 				  0, index, false, out_mbox,
503 				  MLXSW_CMD_MBOX_SIZE);
504 }
505 
506 /* cmd_mbox_query_resource_id
507  * The resource id. 0xFFFF indicates table's end.
508  */
509 MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false);
510 
511 /* cmd_mbox_query_resource_data
512  * The resource
513  */
514 MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data,
515 		     0x00, 0, 40, 0x8, 0, false);
516 
517 /* CONFIG_PROFILE (Set) - Configure Switch Profile
518  * ------------------------------
519  * OpMod == 1 (Set), INMmod == 0 (N/A)
520  * -----------------------------------
521  * The CONFIG_PROFILE command sets the switch profile. The command can be
522  * executed on the device only once at startup in order to allocate and
523  * configure all switch resources and prepare it for operational mode.
524  * It is not possible to change the device profile after the chip is
525  * in operational mode.
526  * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate
527  * state therefore it is required to perform software reset to the device
528  * following an unsuccessful completion of the command. It is required
529  * to perform software reset to the device to change an existing profile.
530  */
531 
532 static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core,
533 					       char *in_mbox)
534 {
535 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE,
536 				 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE);
537 }
538 
539 /* cmd_mbox_config_profile_set_max_vepa_channels
540  * Capability bit. Setting a bit to 1 configures the profile
541  * according to the mailbox contents.
542  */
543 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1);
544 
545 /* cmd_mbox_config_profile_set_max_lag
546  * Capability bit. Setting a bit to 1 configures the profile
547  * according to the mailbox contents.
548  */
549 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1);
550 
551 /* cmd_mbox_config_profile_set_max_port_per_lag
552  * Capability bit. Setting a bit to 1 configures the profile
553  * according to the mailbox contents.
554  */
555 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1);
556 
557 /* cmd_mbox_config_profile_set_max_mid
558  * Capability bit. Setting a bit to 1 configures the profile
559  * according to the mailbox contents.
560  */
561 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1);
562 
563 /* cmd_mbox_config_profile_set_max_pgt
564  * Capability bit. Setting a bit to 1 configures the profile
565  * according to the mailbox contents.
566  */
567 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1);
568 
569 /* cmd_mbox_config_profile_set_max_system_port
570  * Capability bit. Setting a bit to 1 configures the profile
571  * according to the mailbox contents.
572  */
573 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1);
574 
575 /* cmd_mbox_config_profile_set_max_vlan_groups
576  * Capability bit. Setting a bit to 1 configures the profile
577  * according to the mailbox contents.
578  */
579 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1);
580 
581 /* cmd_mbox_config_profile_set_max_regions
582  * Capability bit. Setting a bit to 1 configures the profile
583  * according to the mailbox contents.
584  */
585 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1);
586 
587 /* cmd_mbox_config_profile_set_flood_mode
588  * Capability bit. Setting a bit to 1 configures the profile
589  * according to the mailbox contents.
590  */
591 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1);
592 
593 /* cmd_mbox_config_profile_set_max_flood_tables
594  * Capability bit. Setting a bit to 1 configures the profile
595  * according to the mailbox contents.
596  */
597 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1);
598 
599 /* cmd_mbox_config_profile_set_max_ib_mc
600  * Capability bit. Setting a bit to 1 configures the profile
601  * according to the mailbox contents.
602  */
603 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1);
604 
605 /* cmd_mbox_config_profile_set_max_pkey
606  * Capability bit. Setting a bit to 1 configures the profile
607  * according to the mailbox contents.
608  */
609 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1);
610 
611 /* cmd_mbox_config_profile_set_adaptive_routing_group_cap
612  * Capability bit. Setting a bit to 1 configures the profile
613  * according to the mailbox contents.
614  */
615 MLXSW_ITEM32(cmd_mbox, config_profile,
616 	     set_adaptive_routing_group_cap, 0x0C, 14, 1);
617 
618 /* cmd_mbox_config_profile_set_ar_sec
619  * Capability bit. Setting a bit to 1 configures the profile
620  * according to the mailbox contents.
621  */
622 MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1);
623 
624 /* cmd_mbox_config_set_kvd_linear_size
625  * Capability bit. Setting a bit to 1 configures the profile
626  * according to the mailbox contents.
627  */
628 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1);
629 
630 /* cmd_mbox_config_set_kvd_hash_single_size
631  * Capability bit. Setting a bit to 1 configures the profile
632  * according to the mailbox contents.
633  */
634 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1);
635 
636 /* cmd_mbox_config_set_kvd_hash_double_size
637  * Capability bit. Setting a bit to 1 configures the profile
638  * according to the mailbox contents.
639  */
640 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1);
641 
642 /* cmd_mbox_config_set_cqe_version
643  * Capability bit. Setting a bit to 1 configures the profile
644  * according to the mailbox contents.
645  */
646 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_version, 0x08, 0, 1);
647 
648 /* cmd_mbox_config_profile_max_vepa_channels
649  * Maximum number of VEPA channels per port (0 through 16)
650  * 0 - multi-channel VEPA is disabled
651  */
652 MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8);
653 
654 /* cmd_mbox_config_profile_max_lag
655  * Maximum number of LAG IDs requested.
656  */
657 MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16);
658 
659 /* cmd_mbox_config_profile_max_port_per_lag
660  * Maximum number of ports per LAG requested.
661  */
662 MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16);
663 
664 /* cmd_mbox_config_profile_max_mid
665  * Maximum Multicast IDs.
666  * Multicast IDs are allocated from 0 to max_mid-1
667  */
668 MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16);
669 
670 /* cmd_mbox_config_profile_max_pgt
671  * Maximum records in the Port Group Table per Switch Partition.
672  * Port Group Table indexes are from 0 to max_pgt-1
673  */
674 MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16);
675 
676 /* cmd_mbox_config_profile_max_system_port
677  * The maximum number of system ports that can be allocated.
678  */
679 MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16);
680 
681 /* cmd_mbox_config_profile_max_vlan_groups
682  * Maximum number VLAN Groups for VLAN binding.
683  */
684 MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12);
685 
686 /* cmd_mbox_config_profile_max_regions
687  * Maximum number of TCAM Regions.
688  */
689 MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16);
690 
691 /* cmd_mbox_config_profile_max_flood_tables
692  * Maximum number of single-entry flooding tables. Different flooding tables
693  * can be associated with different packet types.
694  */
695 MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4);
696 
697 /* cmd_mbox_config_profile_max_vid_flood_tables
698  * Maximum number of per-vid flooding tables. Flooding tables are associated
699  * to the different packet types for the different switch partitions.
700  * Table size is 4K entries covering all VID space.
701  */
702 MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4);
703 
704 /* cmd_mbox_config_profile_flood_mode
705  * Flooding mode to use.
706  * 0-2 - Backward compatible modes for SwitchX devices.
707  * 3 - Mixed mode, where:
708  * max_flood_tables indicates the number of single-entry tables.
709  * max_vid_flood_tables indicates the number of per-VID tables.
710  * max_fid_offset_flood_tables indicates the number of FID-offset tables.
711  * max_fid_flood_tables indicates the number of per-FID tables.
712  */
713 MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 2);
714 
715 /* cmd_mbox_config_profile_max_fid_offset_flood_tables
716  * Maximum number of FID-offset flooding tables.
717  */
718 MLXSW_ITEM32(cmd_mbox, config_profile,
719 	     max_fid_offset_flood_tables, 0x34, 24, 4);
720 
721 /* cmd_mbox_config_profile_fid_offset_flood_table_size
722  * The size (number of entries) of each FID-offset flood table.
723  */
724 MLXSW_ITEM32(cmd_mbox, config_profile,
725 	     fid_offset_flood_table_size, 0x34, 0, 16);
726 
727 /* cmd_mbox_config_profile_max_fid_flood_tables
728  * Maximum number of per-FID flooding tables.
729  *
730  * Note: This flooding tables cover special FIDs only (vFIDs), starting at
731  * FID value 4K and higher.
732  */
733 MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4);
734 
735 /* cmd_mbox_config_profile_fid_flood_table_size
736  * The size (number of entries) of each per-FID table.
737  */
738 MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16);
739 
740 /* cmd_mbox_config_profile_max_ib_mc
741  * Maximum number of multicast FDB records for InfiniBand
742  * FDB (in 512 chunks) per InfiniBand switch partition.
743  */
744 MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15);
745 
746 /* cmd_mbox_config_profile_max_pkey
747  * Maximum per port PKEY table size (for PKEY enforcement)
748  */
749 MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15);
750 
751 /* cmd_mbox_config_profile_ar_sec
752  * Primary/secondary capability
753  * Describes the number of adaptive routing sub-groups
754  * 0 - disable primary/secondary (single group)
755  * 1 - enable primary/secondary (2 sub-groups)
756  * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2
757  * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2
758  */
759 MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2);
760 
761 /* cmd_mbox_config_profile_adaptive_routing_group_cap
762  * Adaptive Routing Group Capability. Indicates the number of AR groups
763  * supported. Note that when Primary/secondary is enabled, each
764  * primary/secondary couple consumes 2 adaptive routing entries.
765  */
766 MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16);
767 
768 /* cmd_mbox_config_profile_arn
769  * Adaptive Routing Notification Enable
770  * Not supported in SwitchX, SwitchX-2
771  */
772 MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1);
773 
774 /* cmd_mbox_config_kvd_linear_size
775  * KVD Linear Size
776  * Valid for Spectrum only
777  * Allowed values are 128*N where N=0 or higher
778  */
779 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24);
780 
781 /* cmd_mbox_config_kvd_hash_single_size
782  * KVD Hash single-entries size
783  * Valid for Spectrum only
784  * Allowed values are 128*N where N=0 or higher
785  * Must be greater or equal to cap_min_kvd_hash_single_size
786  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
787  */
788 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24);
789 
790 /* cmd_mbox_config_kvd_hash_double_size
791  * KVD Hash double-entries size (units of single-size entries)
792  * Valid for Spectrum only
793  * Allowed values are 128*N where N=0 or higher
794  * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size
795  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
796  */
797 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24);
798 
799 /* cmd_mbox_config_profile_swid_config_mask
800  * Modify Switch Partition Configuration mask. When set, the configu-
801  * ration value for the Switch Partition are taken from the mailbox.
802  * When clear, the current configuration values are used.
803  * Bit 0 - set type
804  * Bit 1 - properties
805  * Other - reserved
806  */
807 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask,
808 		     0x60, 24, 8, 0x08, 0x00, false);
809 
810 /* cmd_mbox_config_profile_swid_config_type
811  * Switch Partition type.
812  * 0000 - disabled (Switch Partition does not exist)
813  * 0001 - InfiniBand
814  * 0010 - Ethernet
815  * 1000 - router port (SwitchX-2 only)
816  * Other - reserved
817  */
818 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type,
819 		     0x60, 20, 4, 0x08, 0x00, false);
820 
821 /* cmd_mbox_config_profile_swid_config_properties
822  * Switch Partition properties.
823  */
824 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties,
825 		     0x60, 0, 8, 0x08, 0x00, false);
826 
827 /* cmd_mbox_config_profile_cqe_version
828  * CQE version:
829  * 0: CQE version is 0
830  * 1: CQE version is either 1 or 2
831  * CQE ver 1 or 2 is configured by Completion Queue Context field cqe_ver.
832  */
833 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_version, 0xB0, 0, 8);
834 
835 /* ACCESS_REG - Access EMAD Supported Register
836  * ----------------------------------
837  * OpMod == 0 (N/A), INMmod == 0 (N/A)
838  * -------------------------------------
839  * The ACCESS_REG command supports accessing device registers. This access
840  * is mainly used for bootstrapping.
841  */
842 
843 static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core,
844 				       bool reset_ok,
845 				       char *in_mbox, char *out_mbox)
846 {
847 	return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG,
848 			      0, 0, false, reset_ok,
849 			      in_mbox, MLXSW_CMD_MBOX_SIZE,
850 			      out_mbox, MLXSW_CMD_MBOX_SIZE);
851 }
852 
853 /* SW2HW_DQ - Software to Hardware DQ
854  * ----------------------------------
855  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
856  * INMmod == DQ number
857  * ----------------------------------------------
858  * The SW2HW_DQ command transitions a descriptor queue from software to
859  * hardware ownership. The command enables posting WQEs and ringing DoorBells
860  * on the descriptor queue.
861  */
862 
863 static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core,
864 				       char *in_mbox, u32 dq_number,
865 				       u8 opcode_mod)
866 {
867 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ,
868 				 opcode_mod, dq_number,
869 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
870 }
871 
872 enum {
873 	MLXSW_CMD_OPCODE_MOD_SDQ = 0,
874 	MLXSW_CMD_OPCODE_MOD_RDQ = 1,
875 };
876 
877 static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core,
878 				      char *in_mbox, u32 dq_number)
879 {
880 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
881 				    MLXSW_CMD_OPCODE_MOD_SDQ);
882 }
883 
884 static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core,
885 				      char *in_mbox, u32 dq_number)
886 {
887 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
888 				    MLXSW_CMD_OPCODE_MOD_RDQ);
889 }
890 
891 /* cmd_mbox_sw2hw_dq_cq
892  * Number of the CQ that this Descriptor Queue reports completions to.
893  */
894 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8);
895 
896 /* cmd_mbox_sw2hw_dq_sdq_tclass
897  * SDQ: CPU Egress TClass
898  * RDQ: Reserved
899  */
900 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6);
901 
902 /* cmd_mbox_sw2hw_dq_log2_dq_sz
903  * Log (base 2) of the Descriptor Queue size in 4KB pages.
904  */
905 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6);
906 
907 /* cmd_mbox_sw2hw_dq_pa
908  * Physical Address.
909  */
910 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true);
911 
912 /* HW2SW_DQ - Hardware to Software DQ
913  * ----------------------------------
914  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
915  * INMmod == DQ number
916  * ----------------------------------------------
917  * The HW2SW_DQ command transitions a descriptor queue from hardware to
918  * software ownership. Incoming packets on the DQ are silently discarded,
919  * SW should not post descriptors on nonoperational DQs.
920  */
921 
922 static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core,
923 				       u32 dq_number, u8 opcode_mod)
924 {
925 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ,
926 				   opcode_mod, dq_number);
927 }
928 
929 static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core,
930 				      u32 dq_number)
931 {
932 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
933 				    MLXSW_CMD_OPCODE_MOD_SDQ);
934 }
935 
936 static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core,
937 				      u32 dq_number)
938 {
939 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
940 				    MLXSW_CMD_OPCODE_MOD_RDQ);
941 }
942 
943 /* 2ERR_DQ - To Error DQ
944  * ---------------------
945  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
946  * INMmod == DQ number
947  * ----------------------------------------------
948  * The 2ERR_DQ command transitions the DQ into the error state from the state
949  * in which it has been. While the command is executed, some in-process
950  * descriptors may complete. Once the DQ transitions into the error state,
951  * if there are posted descriptors on the RDQ/SDQ, the hardware writes
952  * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ.
953  * When the command is completed successfully, the DQ is already in
954  * the error state.
955  */
956 
957 static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core,
958 				      u32 dq_number, u8 opcode_mod)
959 {
960 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
961 				   opcode_mod, dq_number);
962 }
963 
964 static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core,
965 				     u32 dq_number)
966 {
967 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
968 				   MLXSW_CMD_OPCODE_MOD_SDQ);
969 }
970 
971 static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core,
972 				     u32 dq_number)
973 {
974 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
975 				   MLXSW_CMD_OPCODE_MOD_RDQ);
976 }
977 
978 /* QUERY_DQ - Query DQ
979  * ---------------------
980  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
981  * INMmod == DQ number
982  * ----------------------------------------------
983  * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware.
984  *
985  * Note: Output mailbox has the same format as SW2HW_DQ.
986  */
987 
988 static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core,
989 				       char *out_mbox, u32 dq_number,
990 				       u8 opcode_mod)
991 {
992 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
993 				  opcode_mod, dq_number, false,
994 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
995 }
996 
997 static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core,
998 				      char *out_mbox, u32 dq_number)
999 {
1000 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1001 				    MLXSW_CMD_OPCODE_MOD_SDQ);
1002 }
1003 
1004 static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core,
1005 				      char *out_mbox, u32 dq_number)
1006 {
1007 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1008 				    MLXSW_CMD_OPCODE_MOD_RDQ);
1009 }
1010 
1011 /* SW2HW_CQ - Software to Hardware CQ
1012  * ----------------------------------
1013  * OpMod == 0 (N/A), INMmod == CQ number
1014  * -------------------------------------
1015  * The SW2HW_CQ command transfers ownership of a CQ context entry from software
1016  * to hardware. The command takes the CQ context entry from the input mailbox
1017  * and stores it in the CQC in the ownership of the hardware. The command fails
1018  * if the requested CQC entry is already in the ownership of the hardware.
1019  */
1020 
1021 static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core,
1022 				     char *in_mbox, u32 cq_number)
1023 {
1024 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ,
1025 				 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1026 }
1027 
1028 enum mlxsw_cmd_mbox_sw2hw_cq_cqe_ver {
1029 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_1,
1030 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_2,
1031 };
1032 
1033 /* cmd_mbox_sw2hw_cq_cqe_ver
1034  * CQE Version.
1035  */
1036 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cqe_ver, 0x00, 28, 4);
1037 
1038 /* cmd_mbox_sw2hw_cq_c_eqn
1039  * Event Queue this CQ reports completion events to.
1040  */
1041 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1);
1042 
1043 /* cmd_mbox_sw2hw_cq_st
1044  * Event delivery state machine
1045  * 0x0 - FIRED
1046  * 0x1 - ARMED (Request for Notification)
1047  */
1048 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1);
1049 
1050 /* cmd_mbox_sw2hw_cq_log_cq_size
1051  * Log (base 2) of the CQ size (in entries).
1052  */
1053 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4);
1054 
1055 /* cmd_mbox_sw2hw_cq_producer_counter
1056  * Producer Counter. The counter is incremented for each CQE that is
1057  * written by the HW to the CQ.
1058  * Maintained by HW (valid for the QUERY_CQ command only)
1059  */
1060 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16);
1061 
1062 /* cmd_mbox_sw2hw_cq_pa
1063  * Physical Address.
1064  */
1065 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1066 
1067 /* HW2SW_CQ - Hardware to Software CQ
1068  * ----------------------------------
1069  * OpMod == 0 (N/A), INMmod == CQ number
1070  * -------------------------------------
1071  * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware
1072  * to software. The CQC entry is invalidated as a result of this command.
1073  */
1074 
1075 static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core,
1076 				     u32 cq_number)
1077 {
1078 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ,
1079 				   0, cq_number);
1080 }
1081 
1082 /* QUERY_CQ - Query CQ
1083  * ----------------------------------
1084  * OpMod == 0 (N/A), INMmod == CQ number
1085  * -------------------------------------
1086  * The QUERY_CQ command retrieves a snapshot of the current CQ context entry.
1087  * The command stores the snapshot in the output mailbox in the software format.
1088  * Note that the CQ context state and values are not affected by the QUERY_CQ
1089  * command. The QUERY_CQ command is for debug purposes only.
1090  *
1091  * Note: Output mailbox has the same format as SW2HW_CQ.
1092  */
1093 
1094 static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core,
1095 				     char *out_mbox, u32 cq_number)
1096 {
1097 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ,
1098 				  0, cq_number, false,
1099 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1100 }
1101 
1102 /* SW2HW_EQ - Software to Hardware EQ
1103  * ----------------------------------
1104  * OpMod == 0 (N/A), INMmod == EQ number
1105  * -------------------------------------
1106  * The SW2HW_EQ command transfers ownership of an EQ context entry from software
1107  * to hardware. The command takes the EQ context entry from the input mailbox
1108  * and stores it in the EQC in the ownership of the hardware. The command fails
1109  * if the requested EQC entry is already in the ownership of the hardware.
1110  */
1111 
1112 static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core,
1113 				     char *in_mbox, u32 eq_number)
1114 {
1115 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ,
1116 				 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1117 }
1118 
1119 /* cmd_mbox_sw2hw_eq_int_msix
1120  * When set, MSI-X cycles will be generated by this EQ.
1121  * When cleared, an interrupt will be generated by this EQ.
1122  */
1123 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1);
1124 
1125 /* cmd_mbox_sw2hw_eq_st
1126  * Event delivery state machine
1127  * 0x0 - FIRED
1128  * 0x1 - ARMED (Request for Notification)
1129  * 0x11 - Always ARMED
1130  * other - reserved
1131  */
1132 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2);
1133 
1134 /* cmd_mbox_sw2hw_eq_log_eq_size
1135  * Log (base 2) of the EQ size (in entries).
1136  */
1137 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4);
1138 
1139 /* cmd_mbox_sw2hw_eq_producer_counter
1140  * Producer Counter. The counter is incremented for each EQE that is written
1141  * by the HW to the EQ.
1142  * Maintained by HW (valid for the QUERY_EQ command only)
1143  */
1144 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16);
1145 
1146 /* cmd_mbox_sw2hw_eq_pa
1147  * Physical Address.
1148  */
1149 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1150 
1151 /* HW2SW_EQ - Hardware to Software EQ
1152  * ----------------------------------
1153  * OpMod == 0 (N/A), INMmod == EQ number
1154  * -------------------------------------
1155  */
1156 
1157 static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core,
1158 				     u32 eq_number)
1159 {
1160 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ,
1161 				   0, eq_number);
1162 }
1163 
1164 /* QUERY_EQ - Query EQ
1165  * ----------------------------------
1166  * OpMod == 0 (N/A), INMmod == EQ number
1167  * -------------------------------------
1168  *
1169  * Note: Output mailbox has the same format as SW2HW_EQ.
1170  */
1171 
1172 static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core,
1173 				     char *out_mbox, u32 eq_number)
1174 {
1175 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ,
1176 				  0, eq_number, false,
1177 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1178 }
1179 
1180 #endif
1181