xref: /openbmc/linux/drivers/net/ethernet/mellanox/mlxsw/cmd.h (revision 0af5cb349a2c97fbabb3cede96efcde9d54b7940)
1 /* SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0 */
2 /* Copyright (c) 2015-2018 Mellanox Technologies. All rights reserved */
3 
4 #ifndef _MLXSW_CMD_H
5 #define _MLXSW_CMD_H
6 
7 #include "item.h"
8 
9 #define MLXSW_CMD_MBOX_SIZE	4096
10 
11 static inline char *mlxsw_cmd_mbox_alloc(void)
12 {
13 	return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL);
14 }
15 
16 static inline void mlxsw_cmd_mbox_free(char *mbox)
17 {
18 	kfree(mbox);
19 }
20 
21 static inline void mlxsw_cmd_mbox_zero(char *mbox)
22 {
23 	memset(mbox, 0, MLXSW_CMD_MBOX_SIZE);
24 }
25 
26 struct mlxsw_core;
27 
28 int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod,
29 		   u32 in_mod, bool out_mbox_direct, bool reset_ok,
30 		   char *in_mbox, size_t in_mbox_size,
31 		   char *out_mbox, size_t out_mbox_size);
32 
33 static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode,
34 				    u8 opcode_mod, u32 in_mod, char *in_mbox,
35 				    size_t in_mbox_size)
36 {
37 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
38 			      false, in_mbox, in_mbox_size, NULL, 0);
39 }
40 
41 static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode,
42 				     u8 opcode_mod, u32 in_mod,
43 				     bool out_mbox_direct,
44 				     char *out_mbox, size_t out_mbox_size)
45 {
46 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod,
47 			      out_mbox_direct, false, NULL, 0,
48 			      out_mbox, out_mbox_size);
49 }
50 
51 static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode,
52 				      u8 opcode_mod, u32 in_mod)
53 {
54 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
55 			      false, NULL, 0, NULL, 0);
56 }
57 
58 enum mlxsw_cmd_opcode {
59 	MLXSW_CMD_OPCODE_QUERY_FW		= 0x004,
60 	MLXSW_CMD_OPCODE_QUERY_BOARDINFO	= 0x006,
61 	MLXSW_CMD_OPCODE_QUERY_AQ_CAP		= 0x003,
62 	MLXSW_CMD_OPCODE_MAP_FA			= 0xFFF,
63 	MLXSW_CMD_OPCODE_UNMAP_FA		= 0xFFE,
64 	MLXSW_CMD_OPCODE_CONFIG_PROFILE		= 0x100,
65 	MLXSW_CMD_OPCODE_ACCESS_REG		= 0x040,
66 	MLXSW_CMD_OPCODE_SW2HW_DQ		= 0x201,
67 	MLXSW_CMD_OPCODE_HW2SW_DQ		= 0x202,
68 	MLXSW_CMD_OPCODE_2ERR_DQ		= 0x01E,
69 	MLXSW_CMD_OPCODE_QUERY_DQ		= 0x022,
70 	MLXSW_CMD_OPCODE_SW2HW_CQ		= 0x016,
71 	MLXSW_CMD_OPCODE_HW2SW_CQ		= 0x017,
72 	MLXSW_CMD_OPCODE_QUERY_CQ		= 0x018,
73 	MLXSW_CMD_OPCODE_SW2HW_EQ		= 0x013,
74 	MLXSW_CMD_OPCODE_HW2SW_EQ		= 0x014,
75 	MLXSW_CMD_OPCODE_QUERY_EQ		= 0x015,
76 	MLXSW_CMD_OPCODE_QUERY_RESOURCES	= 0x101,
77 };
78 
79 static inline const char *mlxsw_cmd_opcode_str(u16 opcode)
80 {
81 	switch (opcode) {
82 	case MLXSW_CMD_OPCODE_QUERY_FW:
83 		return "QUERY_FW";
84 	case MLXSW_CMD_OPCODE_QUERY_BOARDINFO:
85 		return "QUERY_BOARDINFO";
86 	case MLXSW_CMD_OPCODE_QUERY_AQ_CAP:
87 		return "QUERY_AQ_CAP";
88 	case MLXSW_CMD_OPCODE_MAP_FA:
89 		return "MAP_FA";
90 	case MLXSW_CMD_OPCODE_UNMAP_FA:
91 		return "UNMAP_FA";
92 	case MLXSW_CMD_OPCODE_CONFIG_PROFILE:
93 		return "CONFIG_PROFILE";
94 	case MLXSW_CMD_OPCODE_ACCESS_REG:
95 		return "ACCESS_REG";
96 	case MLXSW_CMD_OPCODE_SW2HW_DQ:
97 		return "SW2HW_DQ";
98 	case MLXSW_CMD_OPCODE_HW2SW_DQ:
99 		return "HW2SW_DQ";
100 	case MLXSW_CMD_OPCODE_2ERR_DQ:
101 		return "2ERR_DQ";
102 	case MLXSW_CMD_OPCODE_QUERY_DQ:
103 		return "QUERY_DQ";
104 	case MLXSW_CMD_OPCODE_SW2HW_CQ:
105 		return "SW2HW_CQ";
106 	case MLXSW_CMD_OPCODE_HW2SW_CQ:
107 		return "HW2SW_CQ";
108 	case MLXSW_CMD_OPCODE_QUERY_CQ:
109 		return "QUERY_CQ";
110 	case MLXSW_CMD_OPCODE_SW2HW_EQ:
111 		return "SW2HW_EQ";
112 	case MLXSW_CMD_OPCODE_HW2SW_EQ:
113 		return "HW2SW_EQ";
114 	case MLXSW_CMD_OPCODE_QUERY_EQ:
115 		return "QUERY_EQ";
116 	case MLXSW_CMD_OPCODE_QUERY_RESOURCES:
117 		return "QUERY_RESOURCES";
118 	default:
119 		return "*UNKNOWN*";
120 	}
121 }
122 
123 enum mlxsw_cmd_status {
124 	/* Command execution succeeded. */
125 	MLXSW_CMD_STATUS_OK		= 0x00,
126 	/* Internal error (e.g. bus error) occurred while processing command. */
127 	MLXSW_CMD_STATUS_INTERNAL_ERR	= 0x01,
128 	/* Operation/command not supported or opcode modifier not supported. */
129 	MLXSW_CMD_STATUS_BAD_OP		= 0x02,
130 	/* Parameter not supported, parameter out of range. */
131 	MLXSW_CMD_STATUS_BAD_PARAM	= 0x03,
132 	/* System was not enabled or bad system state. */
133 	MLXSW_CMD_STATUS_BAD_SYS_STATE	= 0x04,
134 	/* Attempt to access reserved or unallocated resource, or resource in
135 	 * inappropriate ownership.
136 	 */
137 	MLXSW_CMD_STATUS_BAD_RESOURCE	= 0x05,
138 	/* Requested resource is currently executing a command. */
139 	MLXSW_CMD_STATUS_RESOURCE_BUSY	= 0x06,
140 	/* Required capability exceeds device limits. */
141 	MLXSW_CMD_STATUS_EXCEED_LIM	= 0x08,
142 	/* Resource is not in the appropriate state or ownership. */
143 	MLXSW_CMD_STATUS_BAD_RES_STATE	= 0x09,
144 	/* Index out of range (might be beyond table size or attempt to
145 	 * access a reserved resource).
146 	 */
147 	MLXSW_CMD_STATUS_BAD_INDEX	= 0x0A,
148 	/* NVMEM checksum/CRC failed. */
149 	MLXSW_CMD_STATUS_BAD_NVMEM	= 0x0B,
150 	/* Device is currently running reset */
151 	MLXSW_CMD_STATUS_RUNNING_RESET	= 0x26,
152 	/* Bad management packet (silently discarded). */
153 	MLXSW_CMD_STATUS_BAD_PKT	= 0x30,
154 };
155 
156 static inline const char *mlxsw_cmd_status_str(u8 status)
157 {
158 	switch (status) {
159 	case MLXSW_CMD_STATUS_OK:
160 		return "OK";
161 	case MLXSW_CMD_STATUS_INTERNAL_ERR:
162 		return "INTERNAL_ERR";
163 	case MLXSW_CMD_STATUS_BAD_OP:
164 		return "BAD_OP";
165 	case MLXSW_CMD_STATUS_BAD_PARAM:
166 		return "BAD_PARAM";
167 	case MLXSW_CMD_STATUS_BAD_SYS_STATE:
168 		return "BAD_SYS_STATE";
169 	case MLXSW_CMD_STATUS_BAD_RESOURCE:
170 		return "BAD_RESOURCE";
171 	case MLXSW_CMD_STATUS_RESOURCE_BUSY:
172 		return "RESOURCE_BUSY";
173 	case MLXSW_CMD_STATUS_EXCEED_LIM:
174 		return "EXCEED_LIM";
175 	case MLXSW_CMD_STATUS_BAD_RES_STATE:
176 		return "BAD_RES_STATE";
177 	case MLXSW_CMD_STATUS_BAD_INDEX:
178 		return "BAD_INDEX";
179 	case MLXSW_CMD_STATUS_BAD_NVMEM:
180 		return "BAD_NVMEM";
181 	case MLXSW_CMD_STATUS_RUNNING_RESET:
182 		return "RUNNING_RESET";
183 	case MLXSW_CMD_STATUS_BAD_PKT:
184 		return "BAD_PKT";
185 	default:
186 		return "*UNKNOWN*";
187 	}
188 }
189 
190 /* QUERY_FW - Query Firmware
191  * -------------------------
192  * OpMod == 0, INMmod == 0
193  * -----------------------
194  * The QUERY_FW command retrieves information related to firmware, command
195  * interface version and the amount of resources that should be allocated to
196  * the firmware.
197  */
198 
199 static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core,
200 				     char *out_mbox)
201 {
202 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW,
203 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
204 }
205 
206 /* cmd_mbox_query_fw_fw_pages
207  * Amount of physical memory to be allocatedfor firmware usage in 4KB pages.
208  */
209 MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16);
210 
211 /* cmd_mbox_query_fw_fw_rev_major
212  * Firmware Revision - Major
213  */
214 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16);
215 
216 /* cmd_mbox_query_fw_fw_rev_subminor
217  * Firmware Sub-minor version (Patch level)
218  */
219 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16);
220 
221 /* cmd_mbox_query_fw_fw_rev_minor
222  * Firmware Revision - Minor
223  */
224 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16);
225 
226 /* cmd_mbox_query_fw_core_clk
227  * Internal Clock Frequency (in MHz)
228  */
229 MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16);
230 
231 /* cmd_mbox_query_fw_cmd_interface_rev
232  * Command Interface Interpreter Revision ID. This number is bumped up
233  * every time a non-backward-compatible change is done for the command
234  * interface. The current cmd_interface_rev is 1.
235  */
236 MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16);
237 
238 /* cmd_mbox_query_fw_dt
239  * If set, Debug Trace is supported
240  */
241 MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1);
242 
243 /* cmd_mbox_query_fw_api_version
244  * Indicates the version of the API, to enable software querying
245  * for compatibility. The current api_version is 1.
246  */
247 MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16);
248 
249 /* cmd_mbox_query_fw_fw_hour
250  * Firmware timestamp - hour
251  */
252 MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8);
253 
254 /* cmd_mbox_query_fw_fw_minutes
255  * Firmware timestamp - minutes
256  */
257 MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8);
258 
259 /* cmd_mbox_query_fw_fw_seconds
260  * Firmware timestamp - seconds
261  */
262 MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8);
263 
264 /* cmd_mbox_query_fw_fw_year
265  * Firmware timestamp - year
266  */
267 MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16);
268 
269 /* cmd_mbox_query_fw_fw_month
270  * Firmware timestamp - month
271  */
272 MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8);
273 
274 /* cmd_mbox_query_fw_fw_day
275  * Firmware timestamp - day
276  */
277 MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8);
278 
279 /* cmd_mbox_query_fw_clr_int_base_offset
280  * Clear Interrupt register's offset from clr_int_bar register
281  * in PCI address space.
282  */
283 MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64);
284 
285 /* cmd_mbox_query_fw_clr_int_bar
286  * PCI base address register (BAR) where clr_int register is located.
287  * 00 - BAR 0-1 (64 bit BAR)
288  */
289 MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2);
290 
291 /* cmd_mbox_query_fw_error_buf_offset
292  * Read Only buffer for internal error reports of offset
293  * from error_buf_bar register in PCI address space).
294  */
295 MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64);
296 
297 /* cmd_mbox_query_fw_error_buf_size
298  * Internal error buffer size in DWORDs
299  */
300 MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32);
301 
302 /* cmd_mbox_query_fw_error_int_bar
303  * PCI base address register (BAR) where error buffer
304  * register is located.
305  * 00 - BAR 0-1 (64 bit BAR)
306  */
307 MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2);
308 
309 /* cmd_mbox_query_fw_doorbell_page_offset
310  * Offset of the doorbell page
311  */
312 MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64);
313 
314 /* cmd_mbox_query_fw_doorbell_page_bar
315  * PCI base address register (BAR) of the doorbell page
316  * 00 - BAR 0-1 (64 bit BAR)
317  */
318 MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2);
319 
320 /* cmd_mbox_query_fw_free_running_clock_offset
321  * The offset of the free running clock page
322  */
323 MLXSW_ITEM64(cmd_mbox, query_fw, free_running_clock_offset, 0x50, 0, 64);
324 
325 /* cmd_mbox_query_fw_fr_rn_clk_bar
326  * PCI base address register (BAR) of the free running clock page
327  * 0: BAR 0
328  * 1: 64 bit BAR
329  */
330 MLXSW_ITEM32(cmd_mbox, query_fw, fr_rn_clk_bar, 0x58, 30, 2);
331 
332 /* cmd_mbox_query_fw_utc_sec_offset
333  * The offset of the UTC_Sec page
334  */
335 MLXSW_ITEM64(cmd_mbox, query_fw, utc_sec_offset, 0x70, 0, 64);
336 
337 /* cmd_mbox_query_fw_utc_sec_bar
338  * PCI base address register (BAR) of the UTC_Sec page
339  * 0: BAR 0
340  * 1: 64 bit BAR
341  * Reserved on SwitchX/-2, Switch-IB/2, Spectrum-1
342  */
343 MLXSW_ITEM32(cmd_mbox, query_fw, utc_sec_bar, 0x78, 30, 2);
344 
345 /* cmd_mbox_query_fw_utc_nsec_offset
346  * The offset of the UTC_nSec page
347  */
348 MLXSW_ITEM64(cmd_mbox, query_fw, utc_nsec_offset, 0x80, 0, 64);
349 
350 /* cmd_mbox_query_fw_utc_nsec_bar
351  * PCI base address register (BAR) of the UTC_nSec page
352  * 0: BAR 0
353  * 1: 64 bit BAR
354  * Reserved on SwitchX/-2, Switch-IB/2, Spectrum-1
355  */
356 MLXSW_ITEM32(cmd_mbox, query_fw, utc_nsec_bar, 0x88, 30, 2);
357 
358 /* QUERY_BOARDINFO - Query Board Information
359  * -----------------------------------------
360  * OpMod == 0 (N/A), INMmod == 0 (N/A)
361  * -----------------------------------
362  * The QUERY_BOARDINFO command retrieves adapter specific parameters.
363  */
364 
365 static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core,
366 				      char *out_mbox)
367 {
368 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO,
369 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
370 }
371 
372 /* cmd_mbox_boardinfo_intapin
373  * When PCIe interrupt messages are being used, this value is used for clearing
374  * an interrupt. When using MSI-X, this register is not used.
375  */
376 MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8);
377 
378 /* cmd_mbox_boardinfo_vsd_vendor_id
379  * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor
380  * specifying/formatting the VSD. The vsd_vendor_id identifies the management
381  * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID
382  * format and encoding as long as they use their assigned vsd_vendor_id.
383  */
384 MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16);
385 
386 /* cmd_mbox_boardinfo_vsd
387  * Vendor Specific Data. The VSD string that is burnt to the Flash
388  * with the firmware.
389  */
390 #define MLXSW_CMD_BOARDINFO_VSD_LEN 208
391 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN);
392 
393 /* cmd_mbox_boardinfo_psid
394  * The PSID field is a 16-ascii (byte) character string which acts as
395  * the board ID. The PSID format is used in conjunction with
396  * Mellanox vsd_vendor_id (15B3h).
397  */
398 #define MLXSW_CMD_BOARDINFO_PSID_LEN 16
399 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN);
400 
401 /* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities
402  * -----------------------------------------------------
403  * OpMod == 0 (N/A), INMmod == 0 (N/A)
404  * -----------------------------------
405  * The QUERY_AQ_CAP command returns the device asynchronous queues
406  * capabilities supported.
407  */
408 
409 static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core,
410 					 char *out_mbox)
411 {
412 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP,
413 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
414 }
415 
416 /* cmd_mbox_query_aq_cap_log_max_sdq_sz
417  * Log (base 2) of max WQEs allowed on SDQ.
418  */
419 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8);
420 
421 /* cmd_mbox_query_aq_cap_max_num_sdqs
422  * Maximum number of SDQs.
423  */
424 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8);
425 
426 /* cmd_mbox_query_aq_cap_log_max_rdq_sz
427  * Log (base 2) of max WQEs allowed on RDQ.
428  */
429 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8);
430 
431 /* cmd_mbox_query_aq_cap_max_num_rdqs
432  * Maximum number of RDQs.
433  */
434 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8);
435 
436 /* cmd_mbox_query_aq_cap_log_max_cq_sz
437  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv0 and CQEv1.
438  */
439 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8);
440 
441 /* cmd_mbox_query_aq_cap_log_max_cqv2_sz
442  * Log (base 2) of the Maximum CQEs allowed in a CQ for CQEv2.
443  */
444 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cqv2_sz, 0x08, 16, 8);
445 
446 /* cmd_mbox_query_aq_cap_max_num_cqs
447  * Maximum number of CQs.
448  */
449 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8);
450 
451 /* cmd_mbox_query_aq_cap_log_max_eq_sz
452  * Log (base 2) of max EQEs allowed on EQ.
453  */
454 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8);
455 
456 /* cmd_mbox_query_aq_cap_max_num_eqs
457  * Maximum number of EQs.
458  */
459 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8);
460 
461 /* cmd_mbox_query_aq_cap_max_sg_sq
462  * The maximum S/G list elements in an DSQ. DSQ must not contain
463  * more S/G entries than indicated here.
464  */
465 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8);
466 
467 /* cmd_mbox_query_aq_cap_
468  * The maximum S/G list elements in an DRQ. DRQ must not contain
469  * more S/G entries than indicated here.
470  */
471 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8);
472 
473 /* MAP_FA - Map Firmware Area
474  * --------------------------
475  * OpMod == 0 (N/A), INMmod == Number of VPM entries
476  * -------------------------------------------------
477  * The MAP_FA command passes physical pages to the switch. These pages
478  * are used to store the device firmware. MAP_FA can be executed multiple
479  * times until all the firmware area is mapped (the size that should be
480  * mapped is retrieved through the QUERY_FW command). All required pages
481  * must be mapped to finish the initialization phase. Physical memory
482  * passed in this command must be pinned.
483  */
484 
485 #define MLXSW_CMD_MAP_FA_VPM_ENTRIES_MAX 32
486 
487 static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core,
488 				   char *in_mbox, u32 vpm_entries_count)
489 {
490 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA,
491 				 0, vpm_entries_count,
492 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
493 }
494 
495 /* cmd_mbox_map_fa_pa
496  * Physical Address.
497  */
498 MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true);
499 
500 /* cmd_mbox_map_fa_log2size
501  * Log (base 2) of the size in 4KB pages of the physical and contiguous memory
502  * that starts at PA_L/H.
503  */
504 MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false);
505 
506 /* UNMAP_FA - Unmap Firmware Area
507  * ------------------------------
508  * OpMod == 0 (N/A), INMmod == 0 (N/A)
509  * -----------------------------------
510  * The UNMAP_FA command unload the firmware and unmaps all the
511  * firmware area. After this command is completed the device will not access
512  * the pages that were mapped to the firmware area. After executing UNMAP_FA
513  * command, software reset must be done prior to execution of MAP_FW command.
514  */
515 
516 static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core)
517 {
518 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0);
519 }
520 
521 /* QUERY_RESOURCES - Query chip resources
522  * --------------------------------------
523  * OpMod == 0 (N/A) , INMmod is index
524  * ----------------------------------
525  * The QUERY_RESOURCES command retrieves information related to chip resources
526  * by resource ID. Every command returns 32 entries. INmod is being use as base.
527  * for example, index 1 will return entries 32-63. When the tables end and there
528  * are no more sources in the table, will return resource id 0xFFF to indicate
529  * it.
530  */
531 
532 #define MLXSW_CMD_QUERY_RESOURCES_TABLE_END_ID 0xffff
533 #define MLXSW_CMD_QUERY_RESOURCES_MAX_QUERIES 100
534 #define MLXSW_CMD_QUERY_RESOURCES_PER_QUERY 32
535 
536 static inline int mlxsw_cmd_query_resources(struct mlxsw_core *mlxsw_core,
537 					    char *out_mbox, int index)
538 {
539 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_RESOURCES,
540 				  0, index, false, out_mbox,
541 				  MLXSW_CMD_MBOX_SIZE);
542 }
543 
544 /* cmd_mbox_query_resource_id
545  * The resource id. 0xFFFF indicates table's end.
546  */
547 MLXSW_ITEM32_INDEXED(cmd_mbox, query_resource, id, 0x00, 16, 16, 0x8, 0, false);
548 
549 /* cmd_mbox_query_resource_data
550  * The resource
551  */
552 MLXSW_ITEM64_INDEXED(cmd_mbox, query_resource, data,
553 		     0x00, 0, 40, 0x8, 0, false);
554 
555 /* CONFIG_PROFILE (Set) - Configure Switch Profile
556  * ------------------------------
557  * OpMod == 1 (Set), INMmod == 0 (N/A)
558  * -----------------------------------
559  * The CONFIG_PROFILE command sets the switch profile. The command can be
560  * executed on the device only once at startup in order to allocate and
561  * configure all switch resources and prepare it for operational mode.
562  * It is not possible to change the device profile after the chip is
563  * in operational mode.
564  * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate
565  * state therefore it is required to perform software reset to the device
566  * following an unsuccessful completion of the command. It is required
567  * to perform software reset to the device to change an existing profile.
568  */
569 
570 static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core,
571 					       char *in_mbox)
572 {
573 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE,
574 				 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE);
575 }
576 
577 /* cmd_mbox_config_profile_set_max_vepa_channels
578  * Capability bit. Setting a bit to 1 configures the profile
579  * according to the mailbox contents.
580  */
581 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1);
582 
583 /* cmd_mbox_config_profile_set_max_lag
584  * Capability bit. Setting a bit to 1 configures the profile
585  * according to the mailbox contents.
586  */
587 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1);
588 
589 /* cmd_mbox_config_profile_set_max_port_per_lag
590  * Capability bit. Setting a bit to 1 configures the profile
591  * according to the mailbox contents.
592  */
593 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1);
594 
595 /* cmd_mbox_config_profile_set_max_mid
596  * Capability bit. Setting a bit to 1 configures the profile
597  * according to the mailbox contents.
598  */
599 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1);
600 
601 /* cmd_mbox_config_profile_set_max_pgt
602  * Capability bit. Setting a bit to 1 configures the profile
603  * according to the mailbox contents.
604  */
605 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1);
606 
607 /* cmd_mbox_config_profile_set_max_system_port
608  * Capability bit. Setting a bit to 1 configures the profile
609  * according to the mailbox contents.
610  */
611 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1);
612 
613 /* cmd_mbox_config_profile_set_max_vlan_groups
614  * Capability bit. Setting a bit to 1 configures the profile
615  * according to the mailbox contents.
616  */
617 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1);
618 
619 /* cmd_mbox_config_profile_set_max_regions
620  * Capability bit. Setting a bit to 1 configures the profile
621  * according to the mailbox contents.
622  */
623 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1);
624 
625 /* cmd_mbox_config_profile_set_flood_mode
626  * Capability bit. Setting a bit to 1 configures the profile
627  * according to the mailbox contents.
628  */
629 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1);
630 
631 /* cmd_mbox_config_profile_set_max_flood_tables
632  * Capability bit. Setting a bit to 1 configures the profile
633  * according to the mailbox contents.
634  */
635 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1);
636 
637 /* cmd_mbox_config_profile_set_max_ib_mc
638  * Capability bit. Setting a bit to 1 configures the profile
639  * according to the mailbox contents.
640  */
641 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1);
642 
643 /* cmd_mbox_config_profile_set_max_pkey
644  * Capability bit. Setting a bit to 1 configures the profile
645  * according to the mailbox contents.
646  */
647 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1);
648 
649 /* cmd_mbox_config_profile_set_adaptive_routing_group_cap
650  * Capability bit. Setting a bit to 1 configures the profile
651  * according to the mailbox contents.
652  */
653 MLXSW_ITEM32(cmd_mbox, config_profile,
654 	     set_adaptive_routing_group_cap, 0x0C, 14, 1);
655 
656 /* cmd_mbox_config_profile_set_ar_sec
657  * Capability bit. Setting a bit to 1 configures the profile
658  * according to the mailbox contents.
659  */
660 MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1);
661 
662 /* cmd_mbox_config_set_ubridge
663  * Capability bit. Setting a bit to 1 configures the profile
664  * according to the mailbox contents.
665  */
666 MLXSW_ITEM32(cmd_mbox, config_profile, set_ubridge, 0x0C, 22, 1);
667 
668 /* cmd_mbox_config_set_kvd_linear_size
669  * Capability bit. Setting a bit to 1 configures the profile
670  * according to the mailbox contents.
671  */
672 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_linear_size, 0x0C, 24, 1);
673 
674 /* cmd_mbox_config_set_kvd_hash_single_size
675  * Capability bit. Setting a bit to 1 configures the profile
676  * according to the mailbox contents.
677  */
678 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_single_size, 0x0C, 25, 1);
679 
680 /* cmd_mbox_config_set_kvd_hash_double_size
681  * Capability bit. Setting a bit to 1 configures the profile
682  * according to the mailbox contents.
683  */
684 MLXSW_ITEM32(cmd_mbox, config_profile, set_kvd_hash_double_size, 0x0C, 26, 1);
685 
686 /* cmd_mbox_config_set_cqe_version
687  * Capability bit. Setting a bit to 1 configures the profile
688  * according to the mailbox contents.
689  */
690 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_version, 0x08, 0, 1);
691 
692 /* cmd_mbox_config_set_cqe_time_stamp_type
693  * Capability bit. Setting a bit to 1 configures the profile
694  * according to the mailbox contents.
695  */
696 MLXSW_ITEM32(cmd_mbox, config_profile, set_cqe_time_stamp_type, 0x08, 2, 1);
697 
698 /* cmd_mbox_config_profile_max_vepa_channels
699  * Maximum number of VEPA channels per port (0 through 16)
700  * 0 - multi-channel VEPA is disabled
701  */
702 MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8);
703 
704 /* cmd_mbox_config_profile_max_lag
705  * Maximum number of LAG IDs requested.
706  */
707 MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16);
708 
709 /* cmd_mbox_config_profile_max_port_per_lag
710  * Maximum number of ports per LAG requested.
711  */
712 MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16);
713 
714 /* cmd_mbox_config_profile_max_mid
715  * Maximum Multicast IDs.
716  * Multicast IDs are allocated from 0 to max_mid-1
717  */
718 MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16);
719 
720 /* cmd_mbox_config_profile_max_pgt
721  * Maximum records in the Port Group Table per Switch Partition.
722  * Port Group Table indexes are from 0 to max_pgt-1
723  */
724 MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16);
725 
726 /* cmd_mbox_config_profile_max_system_port
727  * The maximum number of system ports that can be allocated.
728  */
729 MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16);
730 
731 /* cmd_mbox_config_profile_max_vlan_groups
732  * Maximum number VLAN Groups for VLAN binding.
733  */
734 MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12);
735 
736 /* cmd_mbox_config_profile_max_regions
737  * Maximum number of TCAM Regions.
738  */
739 MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16);
740 
741 /* cmd_mbox_config_profile_max_flood_tables
742  * Maximum number of single-entry flooding tables. Different flooding tables
743  * can be associated with different packet types.
744  */
745 MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4);
746 
747 /* cmd_mbox_config_profile_max_vid_flood_tables
748  * Maximum number of per-vid flooding tables. Flooding tables are associated
749  * to the different packet types for the different switch partitions.
750  * Table size is 4K entries covering all VID space.
751  */
752 MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4);
753 
754 enum mlxsw_cmd_mbox_config_profile_flood_mode {
755 	/* Mixed mode, where:
756 	 * max_flood_tables indicates the number of single-entry tables.
757 	 * max_vid_flood_tables indicates the number of per-VID tables.
758 	 * max_fid_offset_flood_tables indicates the number of FID-offset
759 	 * tables. max_fid_flood_tables indicates the number of per-FID tables.
760 	 * Reserved when unified bridge model is used.
761 	 */
762 	MLXSW_CMD_MBOX_CONFIG_PROFILE_FLOOD_MODE_MIXED = 3,
763 	/* Controlled flood tables. Reserved when legacy bridge model is
764 	 * used.
765 	 */
766 	MLXSW_CMD_MBOX_CONFIG_PROFILE_FLOOD_MODE_CONTROLLED = 4,
767 };
768 
769 /* cmd_mbox_config_profile_flood_mode
770  * Flooding mode to use.
771  */
772 MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 3);
773 
774 /* cmd_mbox_config_profile_max_fid_offset_flood_tables
775  * Maximum number of FID-offset flooding tables.
776  */
777 MLXSW_ITEM32(cmd_mbox, config_profile,
778 	     max_fid_offset_flood_tables, 0x34, 24, 4);
779 
780 /* cmd_mbox_config_profile_fid_offset_flood_table_size
781  * The size (number of entries) of each FID-offset flood table.
782  */
783 MLXSW_ITEM32(cmd_mbox, config_profile,
784 	     fid_offset_flood_table_size, 0x34, 0, 16);
785 
786 /* cmd_mbox_config_profile_max_fid_flood_tables
787  * Maximum number of per-FID flooding tables.
788  *
789  * Note: This flooding tables cover special FIDs only (vFIDs), starting at
790  * FID value 4K and higher.
791  */
792 MLXSW_ITEM32(cmd_mbox, config_profile, max_fid_flood_tables, 0x38, 24, 4);
793 
794 /* cmd_mbox_config_profile_fid_flood_table_size
795  * The size (number of entries) of each per-FID table.
796  */
797 MLXSW_ITEM32(cmd_mbox, config_profile, fid_flood_table_size, 0x38, 0, 16);
798 
799 /* cmd_mbox_config_profile_max_ib_mc
800  * Maximum number of multicast FDB records for InfiniBand
801  * FDB (in 512 chunks) per InfiniBand switch partition.
802  */
803 MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15);
804 
805 /* cmd_mbox_config_profile_max_pkey
806  * Maximum per port PKEY table size (for PKEY enforcement)
807  */
808 MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15);
809 
810 /* cmd_mbox_config_profile_ar_sec
811  * Primary/secondary capability
812  * Describes the number of adaptive routing sub-groups
813  * 0 - disable primary/secondary (single group)
814  * 1 - enable primary/secondary (2 sub-groups)
815  * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2
816  * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2
817  */
818 MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2);
819 
820 /* cmd_mbox_config_profile_adaptive_routing_group_cap
821  * Adaptive Routing Group Capability. Indicates the number of AR groups
822  * supported. Note that when Primary/secondary is enabled, each
823  * primary/secondary couple consumes 2 adaptive routing entries.
824  */
825 MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16);
826 
827 /* cmd_mbox_config_profile_arn
828  * Adaptive Routing Notification Enable
829  * Not supported in SwitchX, SwitchX-2
830  */
831 MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1);
832 
833 /* cmd_mbox_config_profile_ubridge
834  * Unified Bridge
835  * 0 - non unified bridge
836  * 1 - unified bridge
837  */
838 MLXSW_ITEM32(cmd_mbox, config_profile, ubridge, 0x50, 4, 1);
839 
840 /* cmd_mbox_config_kvd_linear_size
841  * KVD Linear Size
842  * Valid for Spectrum only
843  * Allowed values are 128*N where N=0 or higher
844  */
845 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_linear_size, 0x54, 0, 24);
846 
847 /* cmd_mbox_config_kvd_hash_single_size
848  * KVD Hash single-entries size
849  * Valid for Spectrum only
850  * Allowed values are 128*N where N=0 or higher
851  * Must be greater or equal to cap_min_kvd_hash_single_size
852  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
853  */
854 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_single_size, 0x58, 0, 24);
855 
856 /* cmd_mbox_config_kvd_hash_double_size
857  * KVD Hash double-entries size (units of single-size entries)
858  * Valid for Spectrum only
859  * Allowed values are 128*N where N=0 or higher
860  * Must be either 0 or greater or equal to cap_min_kvd_hash_double_size
861  * Must be smaller or equal to cap_kvd_size - kvd_linear_size
862  */
863 MLXSW_ITEM32(cmd_mbox, config_profile, kvd_hash_double_size, 0x5C, 0, 24);
864 
865 /* cmd_mbox_config_profile_swid_config_mask
866  * Modify Switch Partition Configuration mask. When set, the configu-
867  * ration value for the Switch Partition are taken from the mailbox.
868  * When clear, the current configuration values are used.
869  * Bit 0 - set type
870  * Bit 1 - properties
871  * Other - reserved
872  */
873 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask,
874 		     0x60, 24, 8, 0x08, 0x00, false);
875 
876 /* cmd_mbox_config_profile_swid_config_type
877  * Switch Partition type.
878  * 0000 - disabled (Switch Partition does not exist)
879  * 0001 - InfiniBand
880  * 0010 - Ethernet
881  * 1000 - router port (SwitchX-2 only)
882  * Other - reserved
883  */
884 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type,
885 		     0x60, 20, 4, 0x08, 0x00, false);
886 
887 /* cmd_mbox_config_profile_swid_config_properties
888  * Switch Partition properties.
889  */
890 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties,
891 		     0x60, 0, 8, 0x08, 0x00, false);
892 
893 enum mlxsw_cmd_mbox_config_profile_cqe_time_stamp_type {
894 	/* uSec - 1.024uSec (default). Only bits 15:0 are valid. */
895 	MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_USEC,
896 	/* FRC - Free Running Clock, units of 1nSec.
897 	 * Reserved when SwitchX/-2, Switch-IB/2 and Spectrum-1.
898 	 */
899 	MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_FRC,
900 	/* UTC. time_stamp[37:30] = Sec, time_stamp[29:0] = nSec.
901 	 * Reserved when SwitchX/2, Switch-IB/2 and Spectrum-1.
902 	 */
903 	MLXSW_CMD_MBOX_CONFIG_PROFILE_CQE_TIME_STAMP_TYPE_UTC,
904 };
905 
906 /* cmd_mbox_config_profile_cqe_time_stamp_type
907  * CQE time_stamp_type for non-mirror-packets.
908  * Configured if set_cqe_time_stamp_type is set.
909  * Reserved when SwitchX/-2, Switch-IB/2 and Spectrum-1.
910  */
911 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_time_stamp_type, 0xB0, 8, 2);
912 
913 /* cmd_mbox_config_profile_cqe_version
914  * CQE version:
915  * 0: CQE version is 0
916  * 1: CQE version is either 1 or 2
917  * CQE ver 1 or 2 is configured by Completion Queue Context field cqe_ver.
918  */
919 MLXSW_ITEM32(cmd_mbox, config_profile, cqe_version, 0xB0, 0, 8);
920 
921 /* ACCESS_REG - Access EMAD Supported Register
922  * ----------------------------------
923  * OpMod == 0 (N/A), INMmod == 0 (N/A)
924  * -------------------------------------
925  * The ACCESS_REG command supports accessing device registers. This access
926  * is mainly used for bootstrapping.
927  */
928 
929 static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core,
930 				       bool reset_ok,
931 				       char *in_mbox, char *out_mbox)
932 {
933 	return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG,
934 			      0, 0, false, reset_ok,
935 			      in_mbox, MLXSW_CMD_MBOX_SIZE,
936 			      out_mbox, MLXSW_CMD_MBOX_SIZE);
937 }
938 
939 /* SW2HW_DQ - Software to Hardware DQ
940  * ----------------------------------
941  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
942  * INMmod == DQ number
943  * ----------------------------------------------
944  * The SW2HW_DQ command transitions a descriptor queue from software to
945  * hardware ownership. The command enables posting WQEs and ringing DoorBells
946  * on the descriptor queue.
947  */
948 
949 static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core,
950 				       char *in_mbox, u32 dq_number,
951 				       u8 opcode_mod)
952 {
953 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ,
954 				 opcode_mod, dq_number,
955 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
956 }
957 
958 enum {
959 	MLXSW_CMD_OPCODE_MOD_SDQ = 0,
960 	MLXSW_CMD_OPCODE_MOD_RDQ = 1,
961 };
962 
963 static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core,
964 				      char *in_mbox, u32 dq_number)
965 {
966 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
967 				    MLXSW_CMD_OPCODE_MOD_SDQ);
968 }
969 
970 static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core,
971 				      char *in_mbox, u32 dq_number)
972 {
973 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
974 				    MLXSW_CMD_OPCODE_MOD_RDQ);
975 }
976 
977 /* cmd_mbox_sw2hw_dq_cq
978  * Number of the CQ that this Descriptor Queue reports completions to.
979  */
980 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8);
981 
982 enum mlxsw_cmd_mbox_sw2hw_dq_sdq_lp {
983 	MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_WQE,
984 	MLXSW_CMD_MBOX_SW2HW_DQ_SDQ_LP_IGNORE_WQE,
985 };
986 
987 /* cmd_mbox_sw2hw_dq_sdq_lp
988  * SDQ local Processing
989  * 0: local processing by wqe.lp
990  * 1: local processing (ignoring wqe.lp)
991  */
992 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_lp, 0x00, 23, 1);
993 
994 /* cmd_mbox_sw2hw_dq_sdq_tclass
995  * SDQ: CPU Egress TClass
996  * RDQ: Reserved
997  */
998 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6);
999 
1000 /* cmd_mbox_sw2hw_dq_log2_dq_sz
1001  * Log (base 2) of the Descriptor Queue size in 4KB pages.
1002  */
1003 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6);
1004 
1005 /* cmd_mbox_sw2hw_dq_pa
1006  * Physical Address.
1007  */
1008 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true);
1009 
1010 /* HW2SW_DQ - Hardware to Software DQ
1011  * ----------------------------------
1012  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1013  * INMmod == DQ number
1014  * ----------------------------------------------
1015  * The HW2SW_DQ command transitions a descriptor queue from hardware to
1016  * software ownership. Incoming packets on the DQ are silently discarded,
1017  * SW should not post descriptors on nonoperational DQs.
1018  */
1019 
1020 static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core,
1021 				       u32 dq_number, u8 opcode_mod)
1022 {
1023 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ,
1024 				   opcode_mod, dq_number);
1025 }
1026 
1027 static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core,
1028 				      u32 dq_number)
1029 {
1030 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
1031 				    MLXSW_CMD_OPCODE_MOD_SDQ);
1032 }
1033 
1034 static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core,
1035 				      u32 dq_number)
1036 {
1037 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
1038 				    MLXSW_CMD_OPCODE_MOD_RDQ);
1039 }
1040 
1041 /* 2ERR_DQ - To Error DQ
1042  * ---------------------
1043  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1044  * INMmod == DQ number
1045  * ----------------------------------------------
1046  * The 2ERR_DQ command transitions the DQ into the error state from the state
1047  * in which it has been. While the command is executed, some in-process
1048  * descriptors may complete. Once the DQ transitions into the error state,
1049  * if there are posted descriptors on the RDQ/SDQ, the hardware writes
1050  * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ.
1051  * When the command is completed successfully, the DQ is already in
1052  * the error state.
1053  */
1054 
1055 static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core,
1056 				      u32 dq_number, u8 opcode_mod)
1057 {
1058 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1059 				   opcode_mod, dq_number);
1060 }
1061 
1062 static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core,
1063 				     u32 dq_number)
1064 {
1065 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1066 				   MLXSW_CMD_OPCODE_MOD_SDQ);
1067 }
1068 
1069 static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core,
1070 				     u32 dq_number)
1071 {
1072 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
1073 				   MLXSW_CMD_OPCODE_MOD_RDQ);
1074 }
1075 
1076 /* QUERY_DQ - Query DQ
1077  * ---------------------
1078  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
1079  * INMmod == DQ number
1080  * ----------------------------------------------
1081  * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware.
1082  *
1083  * Note: Output mailbox has the same format as SW2HW_DQ.
1084  */
1085 
1086 static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core,
1087 				       char *out_mbox, u32 dq_number,
1088 				       u8 opcode_mod)
1089 {
1090 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
1091 				  opcode_mod, dq_number, false,
1092 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1093 }
1094 
1095 static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core,
1096 				      char *out_mbox, u32 dq_number)
1097 {
1098 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1099 				    MLXSW_CMD_OPCODE_MOD_SDQ);
1100 }
1101 
1102 static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core,
1103 				      char *out_mbox, u32 dq_number)
1104 {
1105 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
1106 				    MLXSW_CMD_OPCODE_MOD_RDQ);
1107 }
1108 
1109 /* SW2HW_CQ - Software to Hardware CQ
1110  * ----------------------------------
1111  * OpMod == 0 (N/A), INMmod == CQ number
1112  * -------------------------------------
1113  * The SW2HW_CQ command transfers ownership of a CQ context entry from software
1114  * to hardware. The command takes the CQ context entry from the input mailbox
1115  * and stores it in the CQC in the ownership of the hardware. The command fails
1116  * if the requested CQC entry is already in the ownership of the hardware.
1117  */
1118 
1119 static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core,
1120 				     char *in_mbox, u32 cq_number)
1121 {
1122 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ,
1123 				 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1124 }
1125 
1126 enum mlxsw_cmd_mbox_sw2hw_cq_cqe_ver {
1127 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_1,
1128 	MLXSW_CMD_MBOX_SW2HW_CQ_CQE_VER_2,
1129 };
1130 
1131 /* cmd_mbox_sw2hw_cq_cqe_ver
1132  * CQE Version.
1133  */
1134 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cqe_ver, 0x00, 28, 4);
1135 
1136 /* cmd_mbox_sw2hw_cq_c_eqn
1137  * Event Queue this CQ reports completion events to.
1138  */
1139 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1);
1140 
1141 /* cmd_mbox_sw2hw_cq_st
1142  * Event delivery state machine
1143  * 0x0 - FIRED
1144  * 0x1 - ARMED (Request for Notification)
1145  */
1146 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1);
1147 
1148 /* cmd_mbox_sw2hw_cq_log_cq_size
1149  * Log (base 2) of the CQ size (in entries).
1150  */
1151 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4);
1152 
1153 /* cmd_mbox_sw2hw_cq_producer_counter
1154  * Producer Counter. The counter is incremented for each CQE that is
1155  * written by the HW to the CQ.
1156  * Maintained by HW (valid for the QUERY_CQ command only)
1157  */
1158 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16);
1159 
1160 /* cmd_mbox_sw2hw_cq_pa
1161  * Physical Address.
1162  */
1163 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1164 
1165 /* HW2SW_CQ - Hardware to Software CQ
1166  * ----------------------------------
1167  * OpMod == 0 (N/A), INMmod == CQ number
1168  * -------------------------------------
1169  * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware
1170  * to software. The CQC entry is invalidated as a result of this command.
1171  */
1172 
1173 static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core,
1174 				     u32 cq_number)
1175 {
1176 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ,
1177 				   0, cq_number);
1178 }
1179 
1180 /* QUERY_CQ - Query CQ
1181  * ----------------------------------
1182  * OpMod == 0 (N/A), INMmod == CQ number
1183  * -------------------------------------
1184  * The QUERY_CQ command retrieves a snapshot of the current CQ context entry.
1185  * The command stores the snapshot in the output mailbox in the software format.
1186  * Note that the CQ context state and values are not affected by the QUERY_CQ
1187  * command. The QUERY_CQ command is for debug purposes only.
1188  *
1189  * Note: Output mailbox has the same format as SW2HW_CQ.
1190  */
1191 
1192 static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core,
1193 				     char *out_mbox, u32 cq_number)
1194 {
1195 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ,
1196 				  0, cq_number, false,
1197 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1198 }
1199 
1200 /* SW2HW_EQ - Software to Hardware EQ
1201  * ----------------------------------
1202  * OpMod == 0 (N/A), INMmod == EQ number
1203  * -------------------------------------
1204  * The SW2HW_EQ command transfers ownership of an EQ context entry from software
1205  * to hardware. The command takes the EQ context entry from the input mailbox
1206  * and stores it in the EQC in the ownership of the hardware. The command fails
1207  * if the requested EQC entry is already in the ownership of the hardware.
1208  */
1209 
1210 static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core,
1211 				     char *in_mbox, u32 eq_number)
1212 {
1213 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ,
1214 				 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1215 }
1216 
1217 /* cmd_mbox_sw2hw_eq_int_msix
1218  * When set, MSI-X cycles will be generated by this EQ.
1219  * When cleared, an interrupt will be generated by this EQ.
1220  */
1221 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1);
1222 
1223 /* cmd_mbox_sw2hw_eq_st
1224  * Event delivery state machine
1225  * 0x0 - FIRED
1226  * 0x1 - ARMED (Request for Notification)
1227  * 0x11 - Always ARMED
1228  * other - reserved
1229  */
1230 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2);
1231 
1232 /* cmd_mbox_sw2hw_eq_log_eq_size
1233  * Log (base 2) of the EQ size (in entries).
1234  */
1235 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4);
1236 
1237 /* cmd_mbox_sw2hw_eq_producer_counter
1238  * Producer Counter. The counter is incremented for each EQE that is written
1239  * by the HW to the EQ.
1240  * Maintained by HW (valid for the QUERY_EQ command only)
1241  */
1242 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16);
1243 
1244 /* cmd_mbox_sw2hw_eq_pa
1245  * Physical Address.
1246  */
1247 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1248 
1249 /* HW2SW_EQ - Hardware to Software EQ
1250  * ----------------------------------
1251  * OpMod == 0 (N/A), INMmod == EQ number
1252  * -------------------------------------
1253  */
1254 
1255 static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core,
1256 				     u32 eq_number)
1257 {
1258 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ,
1259 				   0, eq_number);
1260 }
1261 
1262 /* QUERY_EQ - Query EQ
1263  * ----------------------------------
1264  * OpMod == 0 (N/A), INMmod == EQ number
1265  * -------------------------------------
1266  *
1267  * Note: Output mailbox has the same format as SW2HW_EQ.
1268  */
1269 
1270 static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core,
1271 				     char *out_mbox, u32 eq_number)
1272 {
1273 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ,
1274 				  0, eq_number, false,
1275 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1276 }
1277 
1278 #endif
1279