1 /* 2 * Copyright (c) 2007 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 34 #include <asm/page.h> 35 #include <linux/mlx4/cq.h> 36 #include <linux/slab.h> 37 #include <linux/mlx4/qp.h> 38 #include <linux/skbuff.h> 39 #include <linux/if_vlan.h> 40 #include <linux/prefetch.h> 41 #include <linux/vmalloc.h> 42 #include <linux/tcp.h> 43 #include <linux/ip.h> 44 #include <linux/ipv6.h> 45 #include <linux/moduleparam.h> 46 47 #include "mlx4_en.h" 48 49 int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv, 50 struct mlx4_en_tx_ring **pring, u32 size, 51 u16 stride, int node, int queue_index) 52 { 53 struct mlx4_en_dev *mdev = priv->mdev; 54 struct mlx4_en_tx_ring *ring; 55 int tmp; 56 int err; 57 58 ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node); 59 if (!ring) { 60 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 61 if (!ring) { 62 en_err(priv, "Failed allocating TX ring\n"); 63 return -ENOMEM; 64 } 65 } 66 67 ring->size = size; 68 ring->size_mask = size - 1; 69 ring->sp_stride = stride; 70 ring->full_size = ring->size - HEADROOM - MAX_DESC_TXBBS; 71 72 tmp = size * sizeof(struct mlx4_en_tx_info); 73 ring->tx_info = kvmalloc_node(tmp, GFP_KERNEL, node); 74 if (!ring->tx_info) { 75 err = -ENOMEM; 76 goto err_ring; 77 } 78 79 en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n", 80 ring->tx_info, tmp); 81 82 ring->bounce_buf = kmalloc_node(MAX_DESC_SIZE, GFP_KERNEL, node); 83 if (!ring->bounce_buf) { 84 ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL); 85 if (!ring->bounce_buf) { 86 err = -ENOMEM; 87 goto err_info; 88 } 89 } 90 ring->buf_size = ALIGN(size * ring->sp_stride, MLX4_EN_PAGE_SIZE); 91 92 /* Allocate HW buffers on provided NUMA node */ 93 set_dev_node(&mdev->dev->persist->pdev->dev, node); 94 err = mlx4_alloc_hwq_res(mdev->dev, &ring->sp_wqres, ring->buf_size); 95 set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node); 96 if (err) { 97 en_err(priv, "Failed allocating hwq resources\n"); 98 goto err_bounce; 99 } 100 101 ring->buf = ring->sp_wqres.buf.direct.buf; 102 103 en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d buf_size:%d dma:%llx\n", 104 ring, ring->buf, ring->size, ring->buf_size, 105 (unsigned long long) ring->sp_wqres.buf.direct.map); 106 107 err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn, 108 MLX4_RESERVE_ETH_BF_QP, 109 MLX4_RES_USAGE_DRIVER); 110 if (err) { 111 en_err(priv, "failed reserving qp for TX ring\n"); 112 goto err_hwq_res; 113 } 114 115 err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->sp_qp); 116 if (err) { 117 en_err(priv, "Failed allocating qp %d\n", ring->qpn); 118 goto err_reserve; 119 } 120 ring->sp_qp.event = mlx4_en_sqp_event; 121 122 err = mlx4_bf_alloc(mdev->dev, &ring->bf, node); 123 if (err) { 124 en_dbg(DRV, priv, "working without blueflame (%d)\n", err); 125 ring->bf.uar = &mdev->priv_uar; 126 ring->bf.uar->map = mdev->uar_map; 127 ring->bf_enabled = false; 128 ring->bf_alloced = false; 129 priv->pflags &= ~MLX4_EN_PRIV_FLAGS_BLUEFLAME; 130 } else { 131 ring->bf_alloced = true; 132 ring->bf_enabled = !!(priv->pflags & 133 MLX4_EN_PRIV_FLAGS_BLUEFLAME); 134 } 135 136 ring->hwtstamp_tx_type = priv->hwtstamp_config.tx_type; 137 ring->queue_index = queue_index; 138 139 if (queue_index < priv->num_tx_rings_p_up) 140 cpumask_set_cpu(cpumask_local_spread(queue_index, 141 priv->mdev->dev->numa_node), 142 &ring->sp_affinity_mask); 143 144 *pring = ring; 145 return 0; 146 147 err_reserve: 148 mlx4_qp_release_range(mdev->dev, ring->qpn, 1); 149 err_hwq_res: 150 mlx4_free_hwq_res(mdev->dev, &ring->sp_wqres, ring->buf_size); 151 err_bounce: 152 kfree(ring->bounce_buf); 153 ring->bounce_buf = NULL; 154 err_info: 155 kvfree(ring->tx_info); 156 ring->tx_info = NULL; 157 err_ring: 158 kfree(ring); 159 *pring = NULL; 160 return err; 161 } 162 163 void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv, 164 struct mlx4_en_tx_ring **pring) 165 { 166 struct mlx4_en_dev *mdev = priv->mdev; 167 struct mlx4_en_tx_ring *ring = *pring; 168 en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn); 169 170 if (ring->bf_alloced) 171 mlx4_bf_free(mdev->dev, &ring->bf); 172 mlx4_qp_remove(mdev->dev, &ring->sp_qp); 173 mlx4_qp_free(mdev->dev, &ring->sp_qp); 174 mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1); 175 mlx4_free_hwq_res(mdev->dev, &ring->sp_wqres, ring->buf_size); 176 kfree(ring->bounce_buf); 177 ring->bounce_buf = NULL; 178 kvfree(ring->tx_info); 179 ring->tx_info = NULL; 180 kfree(ring); 181 *pring = NULL; 182 } 183 184 int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv, 185 struct mlx4_en_tx_ring *ring, 186 int cq, int user_prio) 187 { 188 struct mlx4_en_dev *mdev = priv->mdev; 189 int err; 190 191 ring->sp_cqn = cq; 192 ring->prod = 0; 193 ring->cons = 0xffffffff; 194 ring->last_nr_txbb = 1; 195 memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info)); 196 memset(ring->buf, 0, ring->buf_size); 197 ring->free_tx_desc = mlx4_en_free_tx_desc; 198 199 ring->sp_qp_state = MLX4_QP_STATE_RST; 200 ring->doorbell_qpn = cpu_to_be32(ring->sp_qp.qpn << 8); 201 ring->mr_key = cpu_to_be32(mdev->mr.key); 202 203 mlx4_en_fill_qp_context(priv, ring->size, ring->sp_stride, 1, 0, ring->qpn, 204 ring->sp_cqn, user_prio, &ring->sp_context); 205 if (ring->bf_alloced) 206 ring->sp_context.usr_page = 207 cpu_to_be32(mlx4_to_hw_uar_index(mdev->dev, 208 ring->bf.uar->index)); 209 210 err = mlx4_qp_to_ready(mdev->dev, &ring->sp_wqres.mtt, &ring->sp_context, 211 &ring->sp_qp, &ring->sp_qp_state); 212 if (!cpumask_empty(&ring->sp_affinity_mask)) 213 netif_set_xps_queue(priv->dev, &ring->sp_affinity_mask, 214 ring->queue_index); 215 216 return err; 217 } 218 219 void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv, 220 struct mlx4_en_tx_ring *ring) 221 { 222 struct mlx4_en_dev *mdev = priv->mdev; 223 224 mlx4_qp_modify(mdev->dev, NULL, ring->sp_qp_state, 225 MLX4_QP_STATE_RST, NULL, 0, 0, &ring->sp_qp); 226 } 227 228 static inline bool mlx4_en_is_tx_ring_full(struct mlx4_en_tx_ring *ring) 229 { 230 return ring->prod - ring->cons > ring->full_size; 231 } 232 233 static void mlx4_en_stamp_wqe(struct mlx4_en_priv *priv, 234 struct mlx4_en_tx_ring *ring, int index, 235 u8 owner) 236 { 237 __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT)); 238 struct mlx4_en_tx_desc *tx_desc = ring->buf + (index << LOG_TXBB_SIZE); 239 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; 240 void *end = ring->buf + ring->buf_size; 241 __be32 *ptr = (__be32 *)tx_desc; 242 int i; 243 244 /* Optimize the common case when there are no wraparounds */ 245 if (likely((void *)tx_desc + 246 (tx_info->nr_txbb << LOG_TXBB_SIZE) <= end)) { 247 /* Stamp the freed descriptor */ 248 for (i = 0; i < tx_info->nr_txbb << LOG_TXBB_SIZE; 249 i += STAMP_STRIDE) { 250 *ptr = stamp; 251 ptr += STAMP_DWORDS; 252 } 253 } else { 254 /* Stamp the freed descriptor */ 255 for (i = 0; i < tx_info->nr_txbb << LOG_TXBB_SIZE; 256 i += STAMP_STRIDE) { 257 *ptr = stamp; 258 ptr += STAMP_DWORDS; 259 if ((void *)ptr >= end) { 260 ptr = ring->buf; 261 stamp ^= cpu_to_be32(0x80000000); 262 } 263 } 264 } 265 } 266 267 268 u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv, 269 struct mlx4_en_tx_ring *ring, 270 int index, u64 timestamp, 271 int napi_mode) 272 { 273 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; 274 struct mlx4_en_tx_desc *tx_desc = ring->buf + (index << LOG_TXBB_SIZE); 275 struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset; 276 void *end = ring->buf + ring->buf_size; 277 struct sk_buff *skb = tx_info->skb; 278 int nr_maps = tx_info->nr_maps; 279 int i; 280 281 /* We do not touch skb here, so prefetch skb->users location 282 * to speedup consume_skb() 283 */ 284 prefetchw(&skb->users); 285 286 if (unlikely(timestamp)) { 287 struct skb_shared_hwtstamps hwts; 288 289 mlx4_en_fill_hwtstamps(priv->mdev, &hwts, timestamp); 290 skb_tstamp_tx(skb, &hwts); 291 } 292 293 if (!tx_info->inl) { 294 if (tx_info->linear) 295 dma_unmap_single(priv->ddev, 296 tx_info->map0_dma, 297 tx_info->map0_byte_count, 298 PCI_DMA_TODEVICE); 299 else 300 dma_unmap_page(priv->ddev, 301 tx_info->map0_dma, 302 tx_info->map0_byte_count, 303 PCI_DMA_TODEVICE); 304 /* Optimize the common case when there are no wraparounds */ 305 if (likely((void *)tx_desc + 306 (tx_info->nr_txbb << LOG_TXBB_SIZE) <= end)) { 307 for (i = 1; i < nr_maps; i++) { 308 data++; 309 dma_unmap_page(priv->ddev, 310 (dma_addr_t)be64_to_cpu(data->addr), 311 be32_to_cpu(data->byte_count), 312 PCI_DMA_TODEVICE); 313 } 314 } else { 315 if ((void *)data >= end) 316 data = ring->buf + ((void *)data - end); 317 318 for (i = 1; i < nr_maps; i++) { 319 data++; 320 /* Check for wraparound before unmapping */ 321 if ((void *) data >= end) 322 data = ring->buf; 323 dma_unmap_page(priv->ddev, 324 (dma_addr_t)be64_to_cpu(data->addr), 325 be32_to_cpu(data->byte_count), 326 PCI_DMA_TODEVICE); 327 } 328 } 329 } 330 napi_consume_skb(skb, napi_mode); 331 332 return tx_info->nr_txbb; 333 } 334 335 u32 mlx4_en_recycle_tx_desc(struct mlx4_en_priv *priv, 336 struct mlx4_en_tx_ring *ring, 337 int index, u64 timestamp, 338 int napi_mode) 339 { 340 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; 341 struct mlx4_en_rx_alloc frame = { 342 .page = tx_info->page, 343 .dma = tx_info->map0_dma, 344 }; 345 346 if (!mlx4_en_rx_recycle(ring->recycle_ring, &frame)) { 347 dma_unmap_page(priv->ddev, tx_info->map0_dma, 348 PAGE_SIZE, priv->dma_dir); 349 put_page(tx_info->page); 350 } 351 352 return tx_info->nr_txbb; 353 } 354 355 int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring) 356 { 357 struct mlx4_en_priv *priv = netdev_priv(dev); 358 int cnt = 0; 359 360 /* Skip last polled descriptor */ 361 ring->cons += ring->last_nr_txbb; 362 en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n", 363 ring->cons, ring->prod); 364 365 if ((u32) (ring->prod - ring->cons) > ring->size) { 366 if (netif_msg_tx_err(priv)) 367 en_warn(priv, "Tx consumer passed producer!\n"); 368 return 0; 369 } 370 371 while (ring->cons != ring->prod) { 372 ring->last_nr_txbb = ring->free_tx_desc(priv, ring, 373 ring->cons & ring->size_mask, 374 0, 0 /* Non-NAPI caller */); 375 ring->cons += ring->last_nr_txbb; 376 cnt++; 377 } 378 379 if (ring->tx_queue) 380 netdev_tx_reset_queue(ring->tx_queue); 381 382 if (cnt) 383 en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt); 384 385 return cnt; 386 } 387 388 bool mlx4_en_process_tx_cq(struct net_device *dev, 389 struct mlx4_en_cq *cq, int napi_budget) 390 { 391 struct mlx4_en_priv *priv = netdev_priv(dev); 392 struct mlx4_cq *mcq = &cq->mcq; 393 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->type][cq->ring]; 394 struct mlx4_cqe *cqe; 395 u16 index, ring_index, stamp_index; 396 u32 txbbs_skipped = 0; 397 u32 txbbs_stamp = 0; 398 u32 cons_index = mcq->cons_index; 399 int size = cq->size; 400 u32 size_mask = ring->size_mask; 401 struct mlx4_cqe *buf = cq->buf; 402 u32 packets = 0; 403 u32 bytes = 0; 404 int factor = priv->cqe_factor; 405 int done = 0; 406 int budget = priv->tx_work_limit; 407 u32 last_nr_txbb; 408 u32 ring_cons; 409 410 if (unlikely(!priv->port_up)) 411 return true; 412 413 netdev_txq_bql_complete_prefetchw(ring->tx_queue); 414 415 index = cons_index & size_mask; 416 cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor; 417 last_nr_txbb = READ_ONCE(ring->last_nr_txbb); 418 ring_cons = READ_ONCE(ring->cons); 419 ring_index = ring_cons & size_mask; 420 stamp_index = ring_index; 421 422 /* Process all completed CQEs */ 423 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, 424 cons_index & size) && (done < budget)) { 425 u16 new_index; 426 427 /* 428 * make sure we read the CQE after we read the 429 * ownership bit 430 */ 431 dma_rmb(); 432 433 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == 434 MLX4_CQE_OPCODE_ERROR)) { 435 struct mlx4_err_cqe *cqe_err = (struct mlx4_err_cqe *)cqe; 436 437 en_err(priv, "CQE error - vendor syndrome: 0x%x syndrome: 0x%x\n", 438 cqe_err->vendor_err_syndrome, 439 cqe_err->syndrome); 440 } 441 442 /* Skip over last polled CQE */ 443 new_index = be16_to_cpu(cqe->wqe_index) & size_mask; 444 445 do { 446 u64 timestamp = 0; 447 448 txbbs_skipped += last_nr_txbb; 449 ring_index = (ring_index + last_nr_txbb) & size_mask; 450 451 if (unlikely(ring->tx_info[ring_index].ts_requested)) 452 timestamp = mlx4_en_get_cqe_ts(cqe); 453 454 /* free next descriptor */ 455 last_nr_txbb = ring->free_tx_desc( 456 priv, ring, ring_index, 457 timestamp, napi_budget); 458 459 mlx4_en_stamp_wqe(priv, ring, stamp_index, 460 !!((ring_cons + txbbs_stamp) & 461 ring->size)); 462 stamp_index = ring_index; 463 txbbs_stamp = txbbs_skipped; 464 packets++; 465 bytes += ring->tx_info[ring_index].nr_bytes; 466 } while ((++done < budget) && (ring_index != new_index)); 467 468 ++cons_index; 469 index = cons_index & size_mask; 470 cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor; 471 } 472 473 /* 474 * To prevent CQ overflow we first update CQ consumer and only then 475 * the ring consumer. 476 */ 477 mcq->cons_index = cons_index; 478 mlx4_cq_set_ci(mcq); 479 wmb(); 480 481 /* we want to dirty this cache line once */ 482 WRITE_ONCE(ring->last_nr_txbb, last_nr_txbb); 483 WRITE_ONCE(ring->cons, ring_cons + txbbs_skipped); 484 485 if (cq->type == TX_XDP) 486 return done < budget; 487 488 netdev_tx_completed_queue(ring->tx_queue, packets, bytes); 489 490 /* Wakeup Tx queue if this stopped, and ring is not full. 491 */ 492 if (netif_tx_queue_stopped(ring->tx_queue) && 493 !mlx4_en_is_tx_ring_full(ring)) { 494 netif_tx_wake_queue(ring->tx_queue); 495 ring->wake_queue++; 496 } 497 498 return done < budget; 499 } 500 501 void mlx4_en_tx_irq(struct mlx4_cq *mcq) 502 { 503 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); 504 struct mlx4_en_priv *priv = netdev_priv(cq->dev); 505 506 if (likely(priv->port_up)) 507 napi_schedule_irqoff(&cq->napi); 508 else 509 mlx4_en_arm_cq(priv, cq); 510 } 511 512 /* TX CQ polling - called by NAPI */ 513 int mlx4_en_poll_tx_cq(struct napi_struct *napi, int budget) 514 { 515 struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi); 516 struct net_device *dev = cq->dev; 517 struct mlx4_en_priv *priv = netdev_priv(dev); 518 bool clean_complete; 519 520 clean_complete = mlx4_en_process_tx_cq(dev, cq, budget); 521 if (!clean_complete) 522 return budget; 523 524 napi_complete(napi); 525 mlx4_en_arm_cq(priv, cq); 526 527 return 0; 528 } 529 530 static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv, 531 struct mlx4_en_tx_ring *ring, 532 u32 index, 533 unsigned int desc_size) 534 { 535 u32 copy = (ring->size - index) << LOG_TXBB_SIZE; 536 int i; 537 538 for (i = desc_size - copy - 4; i >= 0; i -= 4) { 539 if ((i & (TXBB_SIZE - 1)) == 0) 540 wmb(); 541 542 *((u32 *) (ring->buf + i)) = 543 *((u32 *) (ring->bounce_buf + copy + i)); 544 } 545 546 for (i = copy - 4; i >= 4 ; i -= 4) { 547 if ((i & (TXBB_SIZE - 1)) == 0) 548 wmb(); 549 550 *((u32 *)(ring->buf + (index << LOG_TXBB_SIZE) + i)) = 551 *((u32 *) (ring->bounce_buf + i)); 552 } 553 554 /* Return real descriptor location */ 555 return ring->buf + (index << LOG_TXBB_SIZE); 556 } 557 558 /* Decide if skb can be inlined in tx descriptor to avoid dma mapping 559 * 560 * It seems strange we do not simply use skb_copy_bits(). 561 * This would allow to inline all skbs iff skb->len <= inline_thold 562 * 563 * Note that caller already checked skb was not a gso packet 564 */ 565 static bool is_inline(int inline_thold, const struct sk_buff *skb, 566 const struct skb_shared_info *shinfo, 567 void **pfrag) 568 { 569 void *ptr; 570 571 if (skb->len > inline_thold || !inline_thold) 572 return false; 573 574 if (shinfo->nr_frags == 1) { 575 ptr = skb_frag_address_safe(&shinfo->frags[0]); 576 if (unlikely(!ptr)) 577 return false; 578 *pfrag = ptr; 579 return true; 580 } 581 if (shinfo->nr_frags) 582 return false; 583 return true; 584 } 585 586 static int inline_size(const struct sk_buff *skb) 587 { 588 if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg) 589 <= MLX4_INLINE_ALIGN) 590 return ALIGN(skb->len + CTRL_SIZE + 591 sizeof(struct mlx4_wqe_inline_seg), 16); 592 else 593 return ALIGN(skb->len + CTRL_SIZE + 2 * 594 sizeof(struct mlx4_wqe_inline_seg), 16); 595 } 596 597 static int get_real_size(const struct sk_buff *skb, 598 const struct skb_shared_info *shinfo, 599 struct net_device *dev, 600 int *lso_header_size, 601 bool *inline_ok, 602 void **pfrag) 603 { 604 struct mlx4_en_priv *priv = netdev_priv(dev); 605 int real_size; 606 607 if (shinfo->gso_size) { 608 *inline_ok = false; 609 if (skb->encapsulation) 610 *lso_header_size = (skb_inner_transport_header(skb) - skb->data) + inner_tcp_hdrlen(skb); 611 else 612 *lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb); 613 real_size = CTRL_SIZE + shinfo->nr_frags * DS_SIZE + 614 ALIGN(*lso_header_size + 4, DS_SIZE); 615 if (unlikely(*lso_header_size != skb_headlen(skb))) { 616 /* We add a segment for the skb linear buffer only if 617 * it contains data */ 618 if (*lso_header_size < skb_headlen(skb)) 619 real_size += DS_SIZE; 620 else { 621 if (netif_msg_tx_err(priv)) 622 en_warn(priv, "Non-linear headers\n"); 623 return 0; 624 } 625 } 626 } else { 627 *lso_header_size = 0; 628 *inline_ok = is_inline(priv->prof->inline_thold, skb, 629 shinfo, pfrag); 630 631 if (*inline_ok) 632 real_size = inline_size(skb); 633 else 634 real_size = CTRL_SIZE + 635 (shinfo->nr_frags + 1) * DS_SIZE; 636 } 637 638 return real_size; 639 } 640 641 static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc, 642 const struct sk_buff *skb, 643 const struct skb_shared_info *shinfo, 644 void *fragptr) 645 { 646 struct mlx4_wqe_inline_seg *inl = &tx_desc->inl; 647 int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof(*inl); 648 unsigned int hlen = skb_headlen(skb); 649 650 if (skb->len <= spc) { 651 if (likely(skb->len >= MIN_PKT_LEN)) { 652 inl->byte_count = cpu_to_be32(1 << 31 | skb->len); 653 } else { 654 inl->byte_count = cpu_to_be32(1 << 31 | MIN_PKT_LEN); 655 memset(((void *)(inl + 1)) + skb->len, 0, 656 MIN_PKT_LEN - skb->len); 657 } 658 skb_copy_from_linear_data(skb, inl + 1, hlen); 659 if (shinfo->nr_frags) 660 memcpy(((void *)(inl + 1)) + hlen, fragptr, 661 skb_frag_size(&shinfo->frags[0])); 662 663 } else { 664 inl->byte_count = cpu_to_be32(1 << 31 | spc); 665 if (hlen <= spc) { 666 skb_copy_from_linear_data(skb, inl + 1, hlen); 667 if (hlen < spc) { 668 memcpy(((void *)(inl + 1)) + hlen, 669 fragptr, spc - hlen); 670 fragptr += spc - hlen; 671 } 672 inl = (void *) (inl + 1) + spc; 673 memcpy(((void *)(inl + 1)), fragptr, skb->len - spc); 674 } else { 675 skb_copy_from_linear_data(skb, inl + 1, spc); 676 inl = (void *) (inl + 1) + spc; 677 skb_copy_from_linear_data_offset(skb, spc, inl + 1, 678 hlen - spc); 679 if (shinfo->nr_frags) 680 memcpy(((void *)(inl + 1)) + hlen - spc, 681 fragptr, 682 skb_frag_size(&shinfo->frags[0])); 683 } 684 685 dma_wmb(); 686 inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc)); 687 } 688 } 689 690 u16 mlx4_en_select_queue(struct net_device *dev, struct sk_buff *skb, 691 void *accel_priv, select_queue_fallback_t fallback) 692 { 693 struct mlx4_en_priv *priv = netdev_priv(dev); 694 u16 rings_p_up = priv->num_tx_rings_p_up; 695 696 if (netdev_get_num_tc(dev)) 697 return skb_tx_hash(dev, skb); 698 699 return fallback(dev, skb) % rings_p_up; 700 } 701 702 static void mlx4_bf_copy(void __iomem *dst, const void *src, 703 unsigned int bytecnt) 704 { 705 __iowrite64_copy(dst, src, bytecnt / 8); 706 } 707 708 void mlx4_en_xmit_doorbell(struct mlx4_en_tx_ring *ring) 709 { 710 wmb(); 711 /* Since there is no iowrite*_native() that writes the 712 * value as is, without byteswapping - using the one 713 * the doesn't do byteswapping in the relevant arch 714 * endianness. 715 */ 716 #if defined(__LITTLE_ENDIAN) 717 iowrite32( 718 #else 719 iowrite32be( 720 #endif 721 ring->doorbell_qpn, 722 ring->bf.uar->map + MLX4_SEND_DOORBELL); 723 } 724 725 static void mlx4_en_tx_write_desc(struct mlx4_en_tx_ring *ring, 726 struct mlx4_en_tx_desc *tx_desc, 727 union mlx4_wqe_qpn_vlan qpn_vlan, 728 int desc_size, int bf_index, 729 __be32 op_own, bool bf_ok, 730 bool send_doorbell) 731 { 732 tx_desc->ctrl.qpn_vlan = qpn_vlan; 733 734 if (bf_ok) { 735 op_own |= htonl((bf_index & 0xffff) << 8); 736 /* Ensure new descriptor hits memory 737 * before setting ownership of this descriptor to HW 738 */ 739 dma_wmb(); 740 tx_desc->ctrl.owner_opcode = op_own; 741 742 wmb(); 743 744 mlx4_bf_copy(ring->bf.reg + ring->bf.offset, &tx_desc->ctrl, 745 desc_size); 746 747 wmb(); 748 749 ring->bf.offset ^= ring->bf.buf_size; 750 } else { 751 /* Ensure new descriptor hits memory 752 * before setting ownership of this descriptor to HW 753 */ 754 dma_wmb(); 755 tx_desc->ctrl.owner_opcode = op_own; 756 if (send_doorbell) 757 mlx4_en_xmit_doorbell(ring); 758 else 759 ring->xmit_more++; 760 } 761 } 762 763 static bool mlx4_en_build_dma_wqe(struct mlx4_en_priv *priv, 764 struct skb_shared_info *shinfo, 765 struct mlx4_wqe_data_seg *data, 766 struct sk_buff *skb, 767 int lso_header_size, 768 __be32 mr_key, 769 struct mlx4_en_tx_info *tx_info) 770 { 771 struct device *ddev = priv->ddev; 772 dma_addr_t dma = 0; 773 u32 byte_count = 0; 774 int i_frag; 775 776 /* Map fragments if any */ 777 for (i_frag = shinfo->nr_frags - 1; i_frag >= 0; i_frag--) { 778 const struct skb_frag_struct *frag; 779 780 frag = &shinfo->frags[i_frag]; 781 byte_count = skb_frag_size(frag); 782 dma = skb_frag_dma_map(ddev, frag, 783 0, byte_count, 784 DMA_TO_DEVICE); 785 if (dma_mapping_error(ddev, dma)) 786 goto tx_drop_unmap; 787 788 data->addr = cpu_to_be64(dma); 789 data->lkey = mr_key; 790 dma_wmb(); 791 data->byte_count = cpu_to_be32(byte_count); 792 --data; 793 } 794 795 /* Map linear part if needed */ 796 if (tx_info->linear) { 797 byte_count = skb_headlen(skb) - lso_header_size; 798 799 dma = dma_map_single(ddev, skb->data + 800 lso_header_size, byte_count, 801 PCI_DMA_TODEVICE); 802 if (dma_mapping_error(ddev, dma)) 803 goto tx_drop_unmap; 804 805 data->addr = cpu_to_be64(dma); 806 data->lkey = mr_key; 807 dma_wmb(); 808 data->byte_count = cpu_to_be32(byte_count); 809 } 810 /* tx completion can avoid cache line miss for common cases */ 811 tx_info->map0_dma = dma; 812 tx_info->map0_byte_count = byte_count; 813 814 return true; 815 816 tx_drop_unmap: 817 en_err(priv, "DMA mapping error\n"); 818 819 while (++i_frag < shinfo->nr_frags) { 820 ++data; 821 dma_unmap_page(ddev, (dma_addr_t)be64_to_cpu(data->addr), 822 be32_to_cpu(data->byte_count), 823 PCI_DMA_TODEVICE); 824 } 825 826 return false; 827 } 828 829 netdev_tx_t mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev) 830 { 831 struct skb_shared_info *shinfo = skb_shinfo(skb); 832 struct mlx4_en_priv *priv = netdev_priv(dev); 833 union mlx4_wqe_qpn_vlan qpn_vlan = {}; 834 struct mlx4_en_tx_ring *ring; 835 struct mlx4_en_tx_desc *tx_desc; 836 struct mlx4_wqe_data_seg *data; 837 struct mlx4_en_tx_info *tx_info; 838 int tx_ind; 839 int nr_txbb; 840 int desc_size; 841 int real_size; 842 u32 index, bf_index; 843 __be32 op_own; 844 int lso_header_size; 845 void *fragptr = NULL; 846 bool bounce = false; 847 bool send_doorbell; 848 bool stop_queue; 849 bool inline_ok; 850 u8 data_offset; 851 u32 ring_cons; 852 bool bf_ok; 853 854 tx_ind = skb_get_queue_mapping(skb); 855 ring = priv->tx_ring[TX][tx_ind]; 856 857 if (unlikely(!priv->port_up)) 858 goto tx_drop; 859 860 /* fetch ring->cons far ahead before needing it to avoid stall */ 861 ring_cons = READ_ONCE(ring->cons); 862 863 real_size = get_real_size(skb, shinfo, dev, &lso_header_size, 864 &inline_ok, &fragptr); 865 if (unlikely(!real_size)) 866 goto tx_drop_count; 867 868 /* Align descriptor to TXBB size */ 869 desc_size = ALIGN(real_size, TXBB_SIZE); 870 nr_txbb = desc_size >> LOG_TXBB_SIZE; 871 if (unlikely(nr_txbb > MAX_DESC_TXBBS)) { 872 if (netif_msg_tx_err(priv)) 873 en_warn(priv, "Oversized header or SG list\n"); 874 goto tx_drop_count; 875 } 876 877 bf_ok = ring->bf_enabled; 878 if (skb_vlan_tag_present(skb)) { 879 u16 vlan_proto; 880 881 qpn_vlan.vlan_tag = cpu_to_be16(skb_vlan_tag_get(skb)); 882 vlan_proto = be16_to_cpu(skb->vlan_proto); 883 if (vlan_proto == ETH_P_8021AD) 884 qpn_vlan.ins_vlan = MLX4_WQE_CTRL_INS_SVLAN; 885 else if (vlan_proto == ETH_P_8021Q) 886 qpn_vlan.ins_vlan = MLX4_WQE_CTRL_INS_CVLAN; 887 else 888 qpn_vlan.ins_vlan = 0; 889 bf_ok = false; 890 } 891 892 netdev_txq_bql_enqueue_prefetchw(ring->tx_queue); 893 894 /* Track current inflight packets for performance analysis */ 895 AVG_PERF_COUNTER(priv->pstats.inflight_avg, 896 (u32)(ring->prod - ring_cons - 1)); 897 898 /* Packet is good - grab an index and transmit it */ 899 index = ring->prod & ring->size_mask; 900 bf_index = ring->prod; 901 902 /* See if we have enough space for whole descriptor TXBB for setting 903 * SW ownership on next descriptor; if not, use a bounce buffer. */ 904 if (likely(index + nr_txbb <= ring->size)) 905 tx_desc = ring->buf + (index << LOG_TXBB_SIZE); 906 else { 907 tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf; 908 bounce = true; 909 bf_ok = false; 910 } 911 912 /* Save skb in tx_info ring */ 913 tx_info = &ring->tx_info[index]; 914 tx_info->skb = skb; 915 tx_info->nr_txbb = nr_txbb; 916 917 if (!lso_header_size) { 918 data = &tx_desc->data; 919 data_offset = offsetof(struct mlx4_en_tx_desc, data); 920 } else { 921 int lso_align = ALIGN(lso_header_size + 4, DS_SIZE); 922 923 data = (void *)&tx_desc->lso + lso_align; 924 data_offset = offsetof(struct mlx4_en_tx_desc, lso) + lso_align; 925 } 926 927 /* valid only for none inline segments */ 928 tx_info->data_offset = data_offset; 929 930 tx_info->inl = inline_ok; 931 932 tx_info->linear = lso_header_size < skb_headlen(skb) && !inline_ok; 933 934 tx_info->nr_maps = shinfo->nr_frags + tx_info->linear; 935 data += tx_info->nr_maps - 1; 936 937 if (!tx_info->inl) 938 if (!mlx4_en_build_dma_wqe(priv, shinfo, data, skb, 939 lso_header_size, ring->mr_key, 940 tx_info)) 941 goto tx_drop_count; 942 943 /* 944 * For timestamping add flag to skb_shinfo and 945 * set flag for further reference 946 */ 947 tx_info->ts_requested = 0; 948 if (unlikely(ring->hwtstamp_tx_type == HWTSTAMP_TX_ON && 949 shinfo->tx_flags & SKBTX_HW_TSTAMP)) { 950 shinfo->tx_flags |= SKBTX_IN_PROGRESS; 951 tx_info->ts_requested = 1; 952 } 953 954 /* Prepare ctrl segement apart opcode+ownership, which depends on 955 * whether LSO is used */ 956 tx_desc->ctrl.srcrb_flags = priv->ctrl_flags; 957 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { 958 if (!skb->encapsulation) 959 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM | 960 MLX4_WQE_CTRL_TCP_UDP_CSUM); 961 else 962 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM); 963 ring->tx_csum++; 964 } 965 966 if (priv->flags & MLX4_EN_FLAG_ENABLE_HW_LOOPBACK) { 967 struct ethhdr *ethh; 968 969 /* Copy dst mac address to wqe. This allows loopback in eSwitch, 970 * so that VFs and PF can communicate with each other 971 */ 972 ethh = (struct ethhdr *)skb->data; 973 tx_desc->ctrl.srcrb_flags16[0] = get_unaligned((__be16 *)ethh->h_dest); 974 tx_desc->ctrl.imm = get_unaligned((__be32 *)(ethh->h_dest + 2)); 975 } 976 977 /* Handle LSO (TSO) packets */ 978 if (lso_header_size) { 979 int i; 980 981 /* Mark opcode as LSO */ 982 op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) | 983 ((ring->prod & ring->size) ? 984 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); 985 986 /* Fill in the LSO prefix */ 987 tx_desc->lso.mss_hdr_size = cpu_to_be32( 988 shinfo->gso_size << 16 | lso_header_size); 989 990 /* Copy headers; 991 * note that we already verified that it is linear */ 992 memcpy(tx_desc->lso.header, skb->data, lso_header_size); 993 994 ring->tso_packets++; 995 996 i = shinfo->gso_segs; 997 tx_info->nr_bytes = skb->len + (i - 1) * lso_header_size; 998 ring->packets += i; 999 } else { 1000 /* Normal (Non LSO) packet */ 1001 op_own = cpu_to_be32(MLX4_OPCODE_SEND) | 1002 ((ring->prod & ring->size) ? 1003 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); 1004 tx_info->nr_bytes = max_t(unsigned int, skb->len, ETH_ZLEN); 1005 ring->packets++; 1006 } 1007 ring->bytes += tx_info->nr_bytes; 1008 netdev_tx_sent_queue(ring->tx_queue, tx_info->nr_bytes); 1009 AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, skb->len); 1010 1011 if (tx_info->inl) 1012 build_inline_wqe(tx_desc, skb, shinfo, fragptr); 1013 1014 if (skb->encapsulation) { 1015 union { 1016 struct iphdr *v4; 1017 struct ipv6hdr *v6; 1018 unsigned char *hdr; 1019 } ip; 1020 u8 proto; 1021 1022 ip.hdr = skb_inner_network_header(skb); 1023 proto = (ip.v4->version == 4) ? ip.v4->protocol : 1024 ip.v6->nexthdr; 1025 1026 if (proto == IPPROTO_TCP || proto == IPPROTO_UDP) 1027 op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP | MLX4_WQE_CTRL_ILP); 1028 else 1029 op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP); 1030 } 1031 1032 ring->prod += nr_txbb; 1033 1034 /* If we used a bounce buffer then copy descriptor back into place */ 1035 if (unlikely(bounce)) 1036 tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size); 1037 1038 skb_tx_timestamp(skb); 1039 1040 /* Check available TXBBs And 2K spare for prefetch */ 1041 stop_queue = mlx4_en_is_tx_ring_full(ring); 1042 if (unlikely(stop_queue)) { 1043 netif_tx_stop_queue(ring->tx_queue); 1044 ring->queue_stopped++; 1045 } 1046 send_doorbell = !skb->xmit_more || netif_xmit_stopped(ring->tx_queue); 1047 1048 real_size = (real_size / 16) & 0x3f; 1049 1050 bf_ok &= desc_size <= MAX_BF && send_doorbell; 1051 1052 if (bf_ok) 1053 qpn_vlan.bf_qpn = ring->doorbell_qpn | cpu_to_be32(real_size); 1054 else 1055 qpn_vlan.fence_size = real_size; 1056 1057 mlx4_en_tx_write_desc(ring, tx_desc, qpn_vlan, desc_size, bf_index, 1058 op_own, bf_ok, send_doorbell); 1059 1060 if (unlikely(stop_queue)) { 1061 /* If queue was emptied after the if (stop_queue) , and before 1062 * the netif_tx_stop_queue() - need to wake the queue, 1063 * or else it will remain stopped forever. 1064 * Need a memory barrier to make sure ring->cons was not 1065 * updated before queue was stopped. 1066 */ 1067 smp_rmb(); 1068 1069 ring_cons = READ_ONCE(ring->cons); 1070 if (unlikely(!mlx4_en_is_tx_ring_full(ring))) { 1071 netif_tx_wake_queue(ring->tx_queue); 1072 ring->wake_queue++; 1073 } 1074 } 1075 return NETDEV_TX_OK; 1076 1077 tx_drop_count: 1078 ring->tx_dropped++; 1079 tx_drop: 1080 dev_kfree_skb_any(skb); 1081 return NETDEV_TX_OK; 1082 } 1083 1084 #define MLX4_EN_XDP_TX_NRTXBB 1 1085 #define MLX4_EN_XDP_TX_REAL_SZ (((CTRL_SIZE + MLX4_EN_XDP_TX_NRTXBB * DS_SIZE) \ 1086 / 16) & 0x3f) 1087 1088 netdev_tx_t mlx4_en_xmit_frame(struct mlx4_en_rx_ring *rx_ring, 1089 struct mlx4_en_rx_alloc *frame, 1090 struct net_device *dev, unsigned int length, 1091 int tx_ind, bool *doorbell_pending) 1092 { 1093 struct mlx4_en_priv *priv = netdev_priv(dev); 1094 union mlx4_wqe_qpn_vlan qpn_vlan = {}; 1095 struct mlx4_en_tx_desc *tx_desc; 1096 struct mlx4_en_tx_info *tx_info; 1097 struct mlx4_wqe_data_seg *data; 1098 struct mlx4_en_tx_ring *ring; 1099 dma_addr_t dma; 1100 __be32 op_own; 1101 int index; 1102 1103 if (unlikely(!priv->port_up)) 1104 goto tx_drop; 1105 1106 ring = priv->tx_ring[TX_XDP][tx_ind]; 1107 1108 if (unlikely(mlx4_en_is_tx_ring_full(ring))) 1109 goto tx_drop_count; 1110 1111 index = ring->prod & ring->size_mask; 1112 tx_info = &ring->tx_info[index]; 1113 1114 /* Track current inflight packets for performance analysis */ 1115 AVG_PERF_COUNTER(priv->pstats.inflight_avg, 1116 (u32)(ring->prod - READ_ONCE(ring->cons) - 1)); 1117 1118 tx_desc = ring->buf + (index << LOG_TXBB_SIZE); 1119 data = &tx_desc->data; 1120 1121 dma = frame->dma; 1122 1123 tx_info->page = frame->page; 1124 frame->page = NULL; 1125 tx_info->map0_dma = dma; 1126 tx_info->map0_byte_count = PAGE_SIZE; 1127 tx_info->nr_txbb = MLX4_EN_XDP_TX_NRTXBB; 1128 tx_info->nr_bytes = max_t(unsigned int, length, ETH_ZLEN); 1129 tx_info->data_offset = offsetof(struct mlx4_en_tx_desc, data); 1130 tx_info->ts_requested = 0; 1131 tx_info->nr_maps = 1; 1132 tx_info->linear = 1; 1133 tx_info->inl = 0; 1134 1135 dma_sync_single_range_for_device(priv->ddev, dma, frame->page_offset, 1136 length, PCI_DMA_TODEVICE); 1137 1138 data->addr = cpu_to_be64(dma + frame->page_offset); 1139 data->lkey = ring->mr_key; 1140 dma_wmb(); 1141 data->byte_count = cpu_to_be32(length); 1142 1143 /* tx completion can avoid cache line miss for common cases */ 1144 tx_desc->ctrl.srcrb_flags = priv->ctrl_flags; 1145 1146 op_own = cpu_to_be32(MLX4_OPCODE_SEND) | 1147 ((ring->prod & ring->size) ? 1148 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); 1149 1150 rx_ring->xdp_tx++; 1151 AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, length); 1152 1153 ring->prod += MLX4_EN_XDP_TX_NRTXBB; 1154 1155 qpn_vlan.fence_size = MLX4_EN_XDP_TX_REAL_SZ; 1156 1157 mlx4_en_tx_write_desc(ring, tx_desc, qpn_vlan, TXBB_SIZE, 0, 1158 op_own, false, false); 1159 *doorbell_pending = true; 1160 1161 return NETDEV_TX_OK; 1162 1163 tx_drop_count: 1164 rx_ring->xdp_tx_full++; 1165 *doorbell_pending = true; 1166 tx_drop: 1167 return NETDEV_TX_BUSY; 1168 } 1169