1 /* 2 * Copyright (c) 2007 Mellanox Technologies. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 * 32 */ 33 34 #include <asm/page.h> 35 #include <linux/mlx4/cq.h> 36 #include <linux/slab.h> 37 #include <linux/mlx4/qp.h> 38 #include <linux/skbuff.h> 39 #include <linux/if_vlan.h> 40 #include <linux/prefetch.h> 41 #include <linux/vmalloc.h> 42 #include <linux/tcp.h> 43 #include <linux/ip.h> 44 #include <linux/ipv6.h> 45 #include <linux/moduleparam.h> 46 #include <linux/indirect_call_wrapper.h> 47 48 #include "mlx4_en.h" 49 50 int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv, 51 struct mlx4_en_tx_ring **pring, u32 size, 52 u16 stride, int node, int queue_index) 53 { 54 struct mlx4_en_dev *mdev = priv->mdev; 55 struct mlx4_en_tx_ring *ring; 56 int tmp; 57 int err; 58 59 ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node); 60 if (!ring) { 61 en_err(priv, "Failed allocating TX ring\n"); 62 return -ENOMEM; 63 } 64 65 ring->size = size; 66 ring->size_mask = size - 1; 67 ring->sp_stride = stride; 68 ring->full_size = ring->size - HEADROOM - MAX_DESC_TXBBS; 69 70 tmp = size * sizeof(struct mlx4_en_tx_info); 71 ring->tx_info = kvmalloc_node(tmp, GFP_KERNEL, node); 72 if (!ring->tx_info) { 73 err = -ENOMEM; 74 goto err_ring; 75 } 76 77 en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n", 78 ring->tx_info, tmp); 79 80 ring->bounce_buf = kmalloc_node(MAX_DESC_SIZE, GFP_KERNEL, node); 81 if (!ring->bounce_buf) { 82 ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL); 83 if (!ring->bounce_buf) { 84 err = -ENOMEM; 85 goto err_info; 86 } 87 } 88 ring->buf_size = ALIGN(size * ring->sp_stride, MLX4_EN_PAGE_SIZE); 89 90 /* Allocate HW buffers on provided NUMA node */ 91 set_dev_node(&mdev->dev->persist->pdev->dev, node); 92 err = mlx4_alloc_hwq_res(mdev->dev, &ring->sp_wqres, ring->buf_size); 93 set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node); 94 if (err) { 95 en_err(priv, "Failed allocating hwq resources\n"); 96 goto err_bounce; 97 } 98 99 ring->buf = ring->sp_wqres.buf.direct.buf; 100 101 en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d buf_size:%d dma:%llx\n", 102 ring, ring->buf, ring->size, ring->buf_size, 103 (unsigned long long) ring->sp_wqres.buf.direct.map); 104 105 err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &ring->qpn, 106 MLX4_RESERVE_ETH_BF_QP, 107 MLX4_RES_USAGE_DRIVER); 108 if (err) { 109 en_err(priv, "failed reserving qp for TX ring\n"); 110 goto err_hwq_res; 111 } 112 113 err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->sp_qp); 114 if (err) { 115 en_err(priv, "Failed allocating qp %d\n", ring->qpn); 116 goto err_reserve; 117 } 118 ring->sp_qp.event = mlx4_en_sqp_event; 119 120 err = mlx4_bf_alloc(mdev->dev, &ring->bf, node); 121 if (err) { 122 en_dbg(DRV, priv, "working without blueflame (%d)\n", err); 123 ring->bf.uar = &mdev->priv_uar; 124 ring->bf.uar->map = mdev->uar_map; 125 ring->bf_enabled = false; 126 ring->bf_alloced = false; 127 priv->pflags &= ~MLX4_EN_PRIV_FLAGS_BLUEFLAME; 128 } else { 129 ring->bf_alloced = true; 130 ring->bf_enabled = !!(priv->pflags & 131 MLX4_EN_PRIV_FLAGS_BLUEFLAME); 132 } 133 134 ring->hwtstamp_tx_type = priv->hwtstamp_config.tx_type; 135 ring->queue_index = queue_index; 136 137 if (queue_index < priv->num_tx_rings_p_up) 138 cpumask_set_cpu(cpumask_local_spread(queue_index, 139 priv->mdev->dev->numa_node), 140 &ring->sp_affinity_mask); 141 142 *pring = ring; 143 return 0; 144 145 err_reserve: 146 mlx4_qp_release_range(mdev->dev, ring->qpn, 1); 147 err_hwq_res: 148 mlx4_free_hwq_res(mdev->dev, &ring->sp_wqres, ring->buf_size); 149 err_bounce: 150 kfree(ring->bounce_buf); 151 ring->bounce_buf = NULL; 152 err_info: 153 kvfree(ring->tx_info); 154 ring->tx_info = NULL; 155 err_ring: 156 kfree(ring); 157 *pring = NULL; 158 return err; 159 } 160 161 void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv, 162 struct mlx4_en_tx_ring **pring) 163 { 164 struct mlx4_en_dev *mdev = priv->mdev; 165 struct mlx4_en_tx_ring *ring = *pring; 166 en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn); 167 168 if (ring->bf_alloced) 169 mlx4_bf_free(mdev->dev, &ring->bf); 170 mlx4_qp_remove(mdev->dev, &ring->sp_qp); 171 mlx4_qp_free(mdev->dev, &ring->sp_qp); 172 mlx4_qp_release_range(priv->mdev->dev, ring->qpn, 1); 173 mlx4_free_hwq_res(mdev->dev, &ring->sp_wqres, ring->buf_size); 174 kfree(ring->bounce_buf); 175 ring->bounce_buf = NULL; 176 kvfree(ring->tx_info); 177 ring->tx_info = NULL; 178 kfree(ring); 179 *pring = NULL; 180 } 181 182 int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv, 183 struct mlx4_en_tx_ring *ring, 184 int cq, int user_prio) 185 { 186 struct mlx4_en_dev *mdev = priv->mdev; 187 int err; 188 189 ring->sp_cqn = cq; 190 ring->prod = 0; 191 ring->cons = 0xffffffff; 192 ring->last_nr_txbb = 1; 193 memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info)); 194 memset(ring->buf, 0, ring->buf_size); 195 ring->free_tx_desc = mlx4_en_free_tx_desc; 196 197 ring->sp_qp_state = MLX4_QP_STATE_RST; 198 ring->doorbell_qpn = cpu_to_be32(ring->sp_qp.qpn << 8); 199 ring->mr_key = cpu_to_be32(mdev->mr.key); 200 201 mlx4_en_fill_qp_context(priv, ring->size, ring->sp_stride, 1, 0, ring->qpn, 202 ring->sp_cqn, user_prio, &ring->sp_context); 203 if (ring->bf_alloced) 204 ring->sp_context.usr_page = 205 cpu_to_be32(mlx4_to_hw_uar_index(mdev->dev, 206 ring->bf.uar->index)); 207 208 err = mlx4_qp_to_ready(mdev->dev, &ring->sp_wqres.mtt, &ring->sp_context, 209 &ring->sp_qp, &ring->sp_qp_state); 210 if (!cpumask_empty(&ring->sp_affinity_mask)) 211 netif_set_xps_queue(priv->dev, &ring->sp_affinity_mask, 212 ring->queue_index); 213 214 return err; 215 } 216 217 void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv, 218 struct mlx4_en_tx_ring *ring) 219 { 220 struct mlx4_en_dev *mdev = priv->mdev; 221 222 mlx4_qp_modify(mdev->dev, NULL, ring->sp_qp_state, 223 MLX4_QP_STATE_RST, NULL, 0, 0, &ring->sp_qp); 224 } 225 226 static inline bool mlx4_en_is_tx_ring_full(struct mlx4_en_tx_ring *ring) 227 { 228 return ring->prod - ring->cons > ring->full_size; 229 } 230 231 static void mlx4_en_stamp_wqe(struct mlx4_en_priv *priv, 232 struct mlx4_en_tx_ring *ring, int index, 233 u8 owner) 234 { 235 __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT)); 236 struct mlx4_en_tx_desc *tx_desc = ring->buf + (index << LOG_TXBB_SIZE); 237 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; 238 void *end = ring->buf + ring->buf_size; 239 __be32 *ptr = (__be32 *)tx_desc; 240 int i; 241 242 /* Optimize the common case when there are no wraparounds */ 243 if (likely((void *)tx_desc + 244 (tx_info->nr_txbb << LOG_TXBB_SIZE) <= end)) { 245 /* Stamp the freed descriptor */ 246 for (i = 0; i < tx_info->nr_txbb << LOG_TXBB_SIZE; 247 i += STAMP_STRIDE) { 248 *ptr = stamp; 249 ptr += STAMP_DWORDS; 250 } 251 } else { 252 /* Stamp the freed descriptor */ 253 for (i = 0; i < tx_info->nr_txbb << LOG_TXBB_SIZE; 254 i += STAMP_STRIDE) { 255 *ptr = stamp; 256 ptr += STAMP_DWORDS; 257 if ((void *)ptr >= end) { 258 ptr = ring->buf; 259 stamp ^= cpu_to_be32(0x80000000); 260 } 261 } 262 } 263 } 264 265 INDIRECT_CALLABLE_DECLARE(u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv, 266 struct mlx4_en_tx_ring *ring, 267 int index, u64 timestamp, 268 int napi_mode)); 269 270 u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv, 271 struct mlx4_en_tx_ring *ring, 272 int index, u64 timestamp, 273 int napi_mode) 274 { 275 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; 276 struct mlx4_en_tx_desc *tx_desc = ring->buf + (index << LOG_TXBB_SIZE); 277 struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset; 278 void *end = ring->buf + ring->buf_size; 279 struct sk_buff *skb = tx_info->skb; 280 int nr_maps = tx_info->nr_maps; 281 int i; 282 283 /* We do not touch skb here, so prefetch skb->users location 284 * to speedup consume_skb() 285 */ 286 prefetchw(&skb->users); 287 288 if (unlikely(timestamp)) { 289 struct skb_shared_hwtstamps hwts; 290 291 mlx4_en_fill_hwtstamps(priv->mdev, &hwts, timestamp); 292 skb_tstamp_tx(skb, &hwts); 293 } 294 295 if (!tx_info->inl) { 296 if (tx_info->linear) 297 dma_unmap_single(priv->ddev, 298 tx_info->map0_dma, 299 tx_info->map0_byte_count, 300 PCI_DMA_TODEVICE); 301 else 302 dma_unmap_page(priv->ddev, 303 tx_info->map0_dma, 304 tx_info->map0_byte_count, 305 PCI_DMA_TODEVICE); 306 /* Optimize the common case when there are no wraparounds */ 307 if (likely((void *)tx_desc + 308 (tx_info->nr_txbb << LOG_TXBB_SIZE) <= end)) { 309 for (i = 1; i < nr_maps; i++) { 310 data++; 311 dma_unmap_page(priv->ddev, 312 (dma_addr_t)be64_to_cpu(data->addr), 313 be32_to_cpu(data->byte_count), 314 PCI_DMA_TODEVICE); 315 } 316 } else { 317 if ((void *)data >= end) 318 data = ring->buf + ((void *)data - end); 319 320 for (i = 1; i < nr_maps; i++) { 321 data++; 322 /* Check for wraparound before unmapping */ 323 if ((void *) data >= end) 324 data = ring->buf; 325 dma_unmap_page(priv->ddev, 326 (dma_addr_t)be64_to_cpu(data->addr), 327 be32_to_cpu(data->byte_count), 328 PCI_DMA_TODEVICE); 329 } 330 } 331 } 332 napi_consume_skb(skb, napi_mode); 333 334 return tx_info->nr_txbb; 335 } 336 337 INDIRECT_CALLABLE_DECLARE(u32 mlx4_en_recycle_tx_desc(struct mlx4_en_priv *priv, 338 struct mlx4_en_tx_ring *ring, 339 int index, u64 timestamp, 340 int napi_mode)); 341 342 u32 mlx4_en_recycle_tx_desc(struct mlx4_en_priv *priv, 343 struct mlx4_en_tx_ring *ring, 344 int index, u64 timestamp, 345 int napi_mode) 346 { 347 struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; 348 struct mlx4_en_rx_alloc frame = { 349 .page = tx_info->page, 350 .dma = tx_info->map0_dma, 351 }; 352 353 if (!napi_mode || !mlx4_en_rx_recycle(ring->recycle_ring, &frame)) { 354 dma_unmap_page(priv->ddev, tx_info->map0_dma, 355 PAGE_SIZE, priv->dma_dir); 356 put_page(tx_info->page); 357 } 358 359 return tx_info->nr_txbb; 360 } 361 362 int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring) 363 { 364 struct mlx4_en_priv *priv = netdev_priv(dev); 365 int cnt = 0; 366 367 /* Skip last polled descriptor */ 368 ring->cons += ring->last_nr_txbb; 369 en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n", 370 ring->cons, ring->prod); 371 372 if ((u32) (ring->prod - ring->cons) > ring->size) { 373 if (netif_msg_tx_err(priv)) 374 en_warn(priv, "Tx consumer passed producer!\n"); 375 return 0; 376 } 377 378 while (ring->cons != ring->prod) { 379 ring->last_nr_txbb = ring->free_tx_desc(priv, ring, 380 ring->cons & ring->size_mask, 381 0, 0 /* Non-NAPI caller */); 382 ring->cons += ring->last_nr_txbb; 383 cnt++; 384 } 385 386 if (ring->tx_queue) 387 netdev_tx_reset_queue(ring->tx_queue); 388 389 if (cnt) 390 en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt); 391 392 return cnt; 393 } 394 395 int mlx4_en_process_tx_cq(struct net_device *dev, 396 struct mlx4_en_cq *cq, int napi_budget) 397 { 398 struct mlx4_en_priv *priv = netdev_priv(dev); 399 struct mlx4_cq *mcq = &cq->mcq; 400 struct mlx4_en_tx_ring *ring = priv->tx_ring[cq->type][cq->ring]; 401 struct mlx4_cqe *cqe; 402 u16 index, ring_index, stamp_index; 403 u32 txbbs_skipped = 0; 404 u32 txbbs_stamp = 0; 405 u32 cons_index = mcq->cons_index; 406 int size = cq->size; 407 u32 size_mask = ring->size_mask; 408 struct mlx4_cqe *buf = cq->buf; 409 u32 packets = 0; 410 u32 bytes = 0; 411 int factor = priv->cqe_factor; 412 int done = 0; 413 int budget = priv->tx_work_limit; 414 u32 last_nr_txbb; 415 u32 ring_cons; 416 417 if (unlikely(!priv->port_up)) 418 return 0; 419 420 netdev_txq_bql_complete_prefetchw(ring->tx_queue); 421 422 index = cons_index & size_mask; 423 cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor; 424 last_nr_txbb = READ_ONCE(ring->last_nr_txbb); 425 ring_cons = READ_ONCE(ring->cons); 426 ring_index = ring_cons & size_mask; 427 stamp_index = ring_index; 428 429 /* Process all completed CQEs */ 430 while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, 431 cons_index & size) && (done < budget)) { 432 u16 new_index; 433 434 /* 435 * make sure we read the CQE after we read the 436 * ownership bit 437 */ 438 dma_rmb(); 439 440 if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == 441 MLX4_CQE_OPCODE_ERROR)) { 442 struct mlx4_err_cqe *cqe_err = (struct mlx4_err_cqe *)cqe; 443 444 en_err(priv, "CQE error - vendor syndrome: 0x%x syndrome: 0x%x\n", 445 cqe_err->vendor_err_syndrome, 446 cqe_err->syndrome); 447 } 448 449 /* Skip over last polled CQE */ 450 new_index = be16_to_cpu(cqe->wqe_index) & size_mask; 451 452 do { 453 u64 timestamp = 0; 454 455 txbbs_skipped += last_nr_txbb; 456 ring_index = (ring_index + last_nr_txbb) & size_mask; 457 458 if (unlikely(ring->tx_info[ring_index].ts_requested)) 459 timestamp = mlx4_en_get_cqe_ts(cqe); 460 461 /* free next descriptor */ 462 last_nr_txbb = INDIRECT_CALL_2(ring->free_tx_desc, 463 mlx4_en_free_tx_desc, 464 mlx4_en_recycle_tx_desc, 465 priv, ring, ring_index, 466 timestamp, napi_budget); 467 468 mlx4_en_stamp_wqe(priv, ring, stamp_index, 469 !!((ring_cons + txbbs_stamp) & 470 ring->size)); 471 stamp_index = ring_index; 472 txbbs_stamp = txbbs_skipped; 473 packets++; 474 bytes += ring->tx_info[ring_index].nr_bytes; 475 } while ((++done < budget) && (ring_index != new_index)); 476 477 ++cons_index; 478 index = cons_index & size_mask; 479 cqe = mlx4_en_get_cqe(buf, index, priv->cqe_size) + factor; 480 } 481 482 /* 483 * To prevent CQ overflow we first update CQ consumer and only then 484 * the ring consumer. 485 */ 486 mcq->cons_index = cons_index; 487 mlx4_cq_set_ci(mcq); 488 wmb(); 489 490 /* we want to dirty this cache line once */ 491 WRITE_ONCE(ring->last_nr_txbb, last_nr_txbb); 492 WRITE_ONCE(ring->cons, ring_cons + txbbs_skipped); 493 494 if (cq->type == TX_XDP) 495 return done; 496 497 netdev_tx_completed_queue(ring->tx_queue, packets, bytes); 498 499 /* Wakeup Tx queue if this stopped, and ring is not full. 500 */ 501 if (netif_tx_queue_stopped(ring->tx_queue) && 502 !mlx4_en_is_tx_ring_full(ring)) { 503 netif_tx_wake_queue(ring->tx_queue); 504 ring->wake_queue++; 505 } 506 507 return done; 508 } 509 510 void mlx4_en_tx_irq(struct mlx4_cq *mcq) 511 { 512 struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); 513 struct mlx4_en_priv *priv = netdev_priv(cq->dev); 514 515 if (likely(priv->port_up)) 516 napi_schedule_irqoff(&cq->napi); 517 else 518 mlx4_en_arm_cq(priv, cq); 519 } 520 521 /* TX CQ polling - called by NAPI */ 522 int mlx4_en_poll_tx_cq(struct napi_struct *napi, int budget) 523 { 524 struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi); 525 struct net_device *dev = cq->dev; 526 struct mlx4_en_priv *priv = netdev_priv(dev); 527 int work_done; 528 529 work_done = mlx4_en_process_tx_cq(dev, cq, budget); 530 if (work_done >= budget) 531 return budget; 532 533 if (napi_complete_done(napi, work_done)) 534 mlx4_en_arm_cq(priv, cq); 535 536 return 0; 537 } 538 539 static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv, 540 struct mlx4_en_tx_ring *ring, 541 u32 index, 542 unsigned int desc_size) 543 { 544 u32 copy = (ring->size - index) << LOG_TXBB_SIZE; 545 int i; 546 547 for (i = desc_size - copy - 4; i >= 0; i -= 4) { 548 if ((i & (TXBB_SIZE - 1)) == 0) 549 wmb(); 550 551 *((u32 *) (ring->buf + i)) = 552 *((u32 *) (ring->bounce_buf + copy + i)); 553 } 554 555 for (i = copy - 4; i >= 4 ; i -= 4) { 556 if ((i & (TXBB_SIZE - 1)) == 0) 557 wmb(); 558 559 *((u32 *)(ring->buf + (index << LOG_TXBB_SIZE) + i)) = 560 *((u32 *) (ring->bounce_buf + i)); 561 } 562 563 /* Return real descriptor location */ 564 return ring->buf + (index << LOG_TXBB_SIZE); 565 } 566 567 /* Decide if skb can be inlined in tx descriptor to avoid dma mapping 568 * 569 * It seems strange we do not simply use skb_copy_bits(). 570 * This would allow to inline all skbs iff skb->len <= inline_thold 571 * 572 * Note that caller already checked skb was not a gso packet 573 */ 574 static bool is_inline(int inline_thold, const struct sk_buff *skb, 575 const struct skb_shared_info *shinfo, 576 void **pfrag) 577 { 578 void *ptr; 579 580 if (skb->len > inline_thold || !inline_thold) 581 return false; 582 583 if (shinfo->nr_frags == 1) { 584 ptr = skb_frag_address_safe(&shinfo->frags[0]); 585 if (unlikely(!ptr)) 586 return false; 587 *pfrag = ptr; 588 return true; 589 } 590 if (shinfo->nr_frags) 591 return false; 592 return true; 593 } 594 595 static int inline_size(const struct sk_buff *skb) 596 { 597 if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg) 598 <= MLX4_INLINE_ALIGN) 599 return ALIGN(skb->len + CTRL_SIZE + 600 sizeof(struct mlx4_wqe_inline_seg), 16); 601 else 602 return ALIGN(skb->len + CTRL_SIZE + 2 * 603 sizeof(struct mlx4_wqe_inline_seg), 16); 604 } 605 606 static int get_real_size(const struct sk_buff *skb, 607 const struct skb_shared_info *shinfo, 608 struct net_device *dev, 609 int *lso_header_size, 610 bool *inline_ok, 611 void **pfrag) 612 { 613 struct mlx4_en_priv *priv = netdev_priv(dev); 614 int real_size; 615 616 if (shinfo->gso_size) { 617 *inline_ok = false; 618 if (skb->encapsulation) 619 *lso_header_size = (skb_inner_transport_header(skb) - skb->data) + inner_tcp_hdrlen(skb); 620 else 621 *lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb); 622 real_size = CTRL_SIZE + shinfo->nr_frags * DS_SIZE + 623 ALIGN(*lso_header_size + 4, DS_SIZE); 624 if (unlikely(*lso_header_size != skb_headlen(skb))) { 625 /* We add a segment for the skb linear buffer only if 626 * it contains data */ 627 if (*lso_header_size < skb_headlen(skb)) 628 real_size += DS_SIZE; 629 else { 630 if (netif_msg_tx_err(priv)) 631 en_warn(priv, "Non-linear headers\n"); 632 return 0; 633 } 634 } 635 } else { 636 *lso_header_size = 0; 637 *inline_ok = is_inline(priv->prof->inline_thold, skb, 638 shinfo, pfrag); 639 640 if (*inline_ok) 641 real_size = inline_size(skb); 642 else 643 real_size = CTRL_SIZE + 644 (shinfo->nr_frags + 1) * DS_SIZE; 645 } 646 647 return real_size; 648 } 649 650 static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc, 651 const struct sk_buff *skb, 652 const struct skb_shared_info *shinfo, 653 void *fragptr) 654 { 655 struct mlx4_wqe_inline_seg *inl = &tx_desc->inl; 656 int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof(*inl); 657 unsigned int hlen = skb_headlen(skb); 658 659 if (skb->len <= spc) { 660 if (likely(skb->len >= MIN_PKT_LEN)) { 661 inl->byte_count = cpu_to_be32(1 << 31 | skb->len); 662 } else { 663 inl->byte_count = cpu_to_be32(1 << 31 | MIN_PKT_LEN); 664 memset(((void *)(inl + 1)) + skb->len, 0, 665 MIN_PKT_LEN - skb->len); 666 } 667 skb_copy_from_linear_data(skb, inl + 1, hlen); 668 if (shinfo->nr_frags) 669 memcpy(((void *)(inl + 1)) + hlen, fragptr, 670 skb_frag_size(&shinfo->frags[0])); 671 672 } else { 673 inl->byte_count = cpu_to_be32(1 << 31 | spc); 674 if (hlen <= spc) { 675 skb_copy_from_linear_data(skb, inl + 1, hlen); 676 if (hlen < spc) { 677 memcpy(((void *)(inl + 1)) + hlen, 678 fragptr, spc - hlen); 679 fragptr += spc - hlen; 680 } 681 inl = (void *) (inl + 1) + spc; 682 memcpy(((void *)(inl + 1)), fragptr, skb->len - spc); 683 } else { 684 skb_copy_from_linear_data(skb, inl + 1, spc); 685 inl = (void *) (inl + 1) + spc; 686 skb_copy_from_linear_data_offset(skb, spc, inl + 1, 687 hlen - spc); 688 if (shinfo->nr_frags) 689 memcpy(((void *)(inl + 1)) + hlen - spc, 690 fragptr, 691 skb_frag_size(&shinfo->frags[0])); 692 } 693 694 dma_wmb(); 695 inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc)); 696 } 697 } 698 699 u16 mlx4_en_select_queue(struct net_device *dev, struct sk_buff *skb, 700 struct net_device *sb_dev) 701 { 702 struct mlx4_en_priv *priv = netdev_priv(dev); 703 u16 rings_p_up = priv->num_tx_rings_p_up; 704 705 if (netdev_get_num_tc(dev)) 706 return netdev_pick_tx(dev, skb, NULL); 707 708 return netdev_pick_tx(dev, skb, NULL) % rings_p_up; 709 } 710 711 static void mlx4_bf_copy(void __iomem *dst, const void *src, 712 unsigned int bytecnt) 713 { 714 __iowrite64_copy(dst, src, bytecnt / 8); 715 } 716 717 void mlx4_en_xmit_doorbell(struct mlx4_en_tx_ring *ring) 718 { 719 wmb(); 720 /* Since there is no iowrite*_native() that writes the 721 * value as is, without byteswapping - using the one 722 * the doesn't do byteswapping in the relevant arch 723 * endianness. 724 */ 725 #if defined(__LITTLE_ENDIAN) 726 iowrite32( 727 #else 728 iowrite32be( 729 #endif 730 (__force u32)ring->doorbell_qpn, 731 ring->bf.uar->map + MLX4_SEND_DOORBELL); 732 } 733 734 static void mlx4_en_tx_write_desc(struct mlx4_en_tx_ring *ring, 735 struct mlx4_en_tx_desc *tx_desc, 736 union mlx4_wqe_qpn_vlan qpn_vlan, 737 int desc_size, int bf_index, 738 __be32 op_own, bool bf_ok, 739 bool send_doorbell) 740 { 741 tx_desc->ctrl.qpn_vlan = qpn_vlan; 742 743 if (bf_ok) { 744 op_own |= htonl((bf_index & 0xffff) << 8); 745 /* Ensure new descriptor hits memory 746 * before setting ownership of this descriptor to HW 747 */ 748 dma_wmb(); 749 tx_desc->ctrl.owner_opcode = op_own; 750 751 wmb(); 752 753 mlx4_bf_copy(ring->bf.reg + ring->bf.offset, &tx_desc->ctrl, 754 desc_size); 755 756 wmb(); 757 758 ring->bf.offset ^= ring->bf.buf_size; 759 } else { 760 /* Ensure new descriptor hits memory 761 * before setting ownership of this descriptor to HW 762 */ 763 dma_wmb(); 764 tx_desc->ctrl.owner_opcode = op_own; 765 if (send_doorbell) 766 mlx4_en_xmit_doorbell(ring); 767 else 768 ring->xmit_more++; 769 } 770 } 771 772 static bool mlx4_en_build_dma_wqe(struct mlx4_en_priv *priv, 773 struct skb_shared_info *shinfo, 774 struct mlx4_wqe_data_seg *data, 775 struct sk_buff *skb, 776 int lso_header_size, 777 __be32 mr_key, 778 struct mlx4_en_tx_info *tx_info) 779 { 780 struct device *ddev = priv->ddev; 781 dma_addr_t dma = 0; 782 u32 byte_count = 0; 783 int i_frag; 784 785 /* Map fragments if any */ 786 for (i_frag = shinfo->nr_frags - 1; i_frag >= 0; i_frag--) { 787 const skb_frag_t *frag = &shinfo->frags[i_frag]; 788 byte_count = skb_frag_size(frag); 789 dma = skb_frag_dma_map(ddev, frag, 790 0, byte_count, 791 DMA_TO_DEVICE); 792 if (dma_mapping_error(ddev, dma)) 793 goto tx_drop_unmap; 794 795 data->addr = cpu_to_be64(dma); 796 data->lkey = mr_key; 797 dma_wmb(); 798 data->byte_count = cpu_to_be32(byte_count); 799 --data; 800 } 801 802 /* Map linear part if needed */ 803 if (tx_info->linear) { 804 byte_count = skb_headlen(skb) - lso_header_size; 805 806 dma = dma_map_single(ddev, skb->data + 807 lso_header_size, byte_count, 808 PCI_DMA_TODEVICE); 809 if (dma_mapping_error(ddev, dma)) 810 goto tx_drop_unmap; 811 812 data->addr = cpu_to_be64(dma); 813 data->lkey = mr_key; 814 dma_wmb(); 815 data->byte_count = cpu_to_be32(byte_count); 816 } 817 /* tx completion can avoid cache line miss for common cases */ 818 tx_info->map0_dma = dma; 819 tx_info->map0_byte_count = byte_count; 820 821 return true; 822 823 tx_drop_unmap: 824 en_err(priv, "DMA mapping error\n"); 825 826 while (++i_frag < shinfo->nr_frags) { 827 ++data; 828 dma_unmap_page(ddev, (dma_addr_t)be64_to_cpu(data->addr), 829 be32_to_cpu(data->byte_count), 830 PCI_DMA_TODEVICE); 831 } 832 833 return false; 834 } 835 836 netdev_tx_t mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev) 837 { 838 struct skb_shared_info *shinfo = skb_shinfo(skb); 839 struct mlx4_en_priv *priv = netdev_priv(dev); 840 union mlx4_wqe_qpn_vlan qpn_vlan = {}; 841 struct mlx4_en_tx_ring *ring; 842 struct mlx4_en_tx_desc *tx_desc; 843 struct mlx4_wqe_data_seg *data; 844 struct mlx4_en_tx_info *tx_info; 845 u32 __maybe_unused ring_cons; 846 int tx_ind; 847 int nr_txbb; 848 int desc_size; 849 int real_size; 850 u32 index, bf_index; 851 __be32 op_own; 852 int lso_header_size; 853 void *fragptr = NULL; 854 bool bounce = false; 855 bool send_doorbell; 856 bool stop_queue; 857 bool inline_ok; 858 u8 data_offset; 859 bool bf_ok; 860 861 tx_ind = skb_get_queue_mapping(skb); 862 ring = priv->tx_ring[TX][tx_ind]; 863 864 if (unlikely(!priv->port_up)) 865 goto tx_drop; 866 867 real_size = get_real_size(skb, shinfo, dev, &lso_header_size, 868 &inline_ok, &fragptr); 869 if (unlikely(!real_size)) 870 goto tx_drop_count; 871 872 /* Align descriptor to TXBB size */ 873 desc_size = ALIGN(real_size, TXBB_SIZE); 874 nr_txbb = desc_size >> LOG_TXBB_SIZE; 875 if (unlikely(nr_txbb > MAX_DESC_TXBBS)) { 876 if (netif_msg_tx_err(priv)) 877 en_warn(priv, "Oversized header or SG list\n"); 878 goto tx_drop_count; 879 } 880 881 bf_ok = ring->bf_enabled; 882 if (skb_vlan_tag_present(skb)) { 883 u16 vlan_proto; 884 885 qpn_vlan.vlan_tag = cpu_to_be16(skb_vlan_tag_get(skb)); 886 vlan_proto = be16_to_cpu(skb->vlan_proto); 887 if (vlan_proto == ETH_P_8021AD) 888 qpn_vlan.ins_vlan = MLX4_WQE_CTRL_INS_SVLAN; 889 else if (vlan_proto == ETH_P_8021Q) 890 qpn_vlan.ins_vlan = MLX4_WQE_CTRL_INS_CVLAN; 891 else 892 qpn_vlan.ins_vlan = 0; 893 bf_ok = false; 894 } 895 896 netdev_txq_bql_enqueue_prefetchw(ring->tx_queue); 897 898 /* Packet is good - grab an index and transmit it */ 899 index = ring->prod & ring->size_mask; 900 bf_index = ring->prod; 901 902 /* See if we have enough space for whole descriptor TXBB for setting 903 * SW ownership on next descriptor; if not, use a bounce buffer. */ 904 if (likely(index + nr_txbb <= ring->size)) 905 tx_desc = ring->buf + (index << LOG_TXBB_SIZE); 906 else { 907 tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf; 908 bounce = true; 909 bf_ok = false; 910 } 911 912 /* Save skb in tx_info ring */ 913 tx_info = &ring->tx_info[index]; 914 tx_info->skb = skb; 915 tx_info->nr_txbb = nr_txbb; 916 917 if (!lso_header_size) { 918 data = &tx_desc->data; 919 data_offset = offsetof(struct mlx4_en_tx_desc, data); 920 } else { 921 int lso_align = ALIGN(lso_header_size + 4, DS_SIZE); 922 923 data = (void *)&tx_desc->lso + lso_align; 924 data_offset = offsetof(struct mlx4_en_tx_desc, lso) + lso_align; 925 } 926 927 /* valid only for none inline segments */ 928 tx_info->data_offset = data_offset; 929 930 tx_info->inl = inline_ok; 931 932 tx_info->linear = lso_header_size < skb_headlen(skb) && !inline_ok; 933 934 tx_info->nr_maps = shinfo->nr_frags + tx_info->linear; 935 data += tx_info->nr_maps - 1; 936 937 if (!tx_info->inl) 938 if (!mlx4_en_build_dma_wqe(priv, shinfo, data, skb, 939 lso_header_size, ring->mr_key, 940 tx_info)) 941 goto tx_drop_count; 942 943 /* 944 * For timestamping add flag to skb_shinfo and 945 * set flag for further reference 946 */ 947 tx_info->ts_requested = 0; 948 if (unlikely(ring->hwtstamp_tx_type == HWTSTAMP_TX_ON && 949 shinfo->tx_flags & SKBTX_HW_TSTAMP)) { 950 shinfo->tx_flags |= SKBTX_IN_PROGRESS; 951 tx_info->ts_requested = 1; 952 } 953 954 /* Prepare ctrl segement apart opcode+ownership, which depends on 955 * whether LSO is used */ 956 tx_desc->ctrl.srcrb_flags = priv->ctrl_flags; 957 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { 958 if (!skb->encapsulation) 959 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM | 960 MLX4_WQE_CTRL_TCP_UDP_CSUM); 961 else 962 tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM); 963 ring->tx_csum++; 964 } 965 966 if (priv->flags & MLX4_EN_FLAG_ENABLE_HW_LOOPBACK) { 967 struct ethhdr *ethh; 968 969 /* Copy dst mac address to wqe. This allows loopback in eSwitch, 970 * so that VFs and PF can communicate with each other 971 */ 972 ethh = (struct ethhdr *)skb->data; 973 tx_desc->ctrl.srcrb_flags16[0] = get_unaligned((__be16 *)ethh->h_dest); 974 tx_desc->ctrl.imm = get_unaligned((__be32 *)(ethh->h_dest + 2)); 975 } 976 977 /* Handle LSO (TSO) packets */ 978 if (lso_header_size) { 979 int i; 980 981 /* Mark opcode as LSO */ 982 op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) | 983 ((ring->prod & ring->size) ? 984 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); 985 986 /* Fill in the LSO prefix */ 987 tx_desc->lso.mss_hdr_size = cpu_to_be32( 988 shinfo->gso_size << 16 | lso_header_size); 989 990 /* Copy headers; 991 * note that we already verified that it is linear */ 992 memcpy(tx_desc->lso.header, skb->data, lso_header_size); 993 994 ring->tso_packets++; 995 996 i = shinfo->gso_segs; 997 tx_info->nr_bytes = skb->len + (i - 1) * lso_header_size; 998 ring->packets += i; 999 } else { 1000 /* Normal (Non LSO) packet */ 1001 op_own = cpu_to_be32(MLX4_OPCODE_SEND) | 1002 ((ring->prod & ring->size) ? 1003 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); 1004 tx_info->nr_bytes = max_t(unsigned int, skb->len, ETH_ZLEN); 1005 ring->packets++; 1006 } 1007 ring->bytes += tx_info->nr_bytes; 1008 1009 if (tx_info->inl) 1010 build_inline_wqe(tx_desc, skb, shinfo, fragptr); 1011 1012 if (skb->encapsulation) { 1013 union { 1014 struct iphdr *v4; 1015 struct ipv6hdr *v6; 1016 unsigned char *hdr; 1017 } ip; 1018 u8 proto; 1019 1020 ip.hdr = skb_inner_network_header(skb); 1021 proto = (ip.v4->version == 4) ? ip.v4->protocol : 1022 ip.v6->nexthdr; 1023 1024 if (proto == IPPROTO_TCP || proto == IPPROTO_UDP) 1025 op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP | MLX4_WQE_CTRL_ILP); 1026 else 1027 op_own |= cpu_to_be32(MLX4_WQE_CTRL_IIP); 1028 } 1029 1030 ring->prod += nr_txbb; 1031 1032 /* If we used a bounce buffer then copy descriptor back into place */ 1033 if (unlikely(bounce)) 1034 tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size); 1035 1036 skb_tx_timestamp(skb); 1037 1038 /* Check available TXBBs And 2K spare for prefetch */ 1039 stop_queue = mlx4_en_is_tx_ring_full(ring); 1040 if (unlikely(stop_queue)) { 1041 netif_tx_stop_queue(ring->tx_queue); 1042 ring->queue_stopped++; 1043 } 1044 1045 send_doorbell = __netdev_tx_sent_queue(ring->tx_queue, 1046 tx_info->nr_bytes, 1047 netdev_xmit_more()); 1048 1049 real_size = (real_size / 16) & 0x3f; 1050 1051 bf_ok &= desc_size <= MAX_BF && send_doorbell; 1052 1053 if (bf_ok) 1054 qpn_vlan.bf_qpn = ring->doorbell_qpn | cpu_to_be32(real_size); 1055 else 1056 qpn_vlan.fence_size = real_size; 1057 1058 mlx4_en_tx_write_desc(ring, tx_desc, qpn_vlan, desc_size, bf_index, 1059 op_own, bf_ok, send_doorbell); 1060 1061 if (unlikely(stop_queue)) { 1062 /* If queue was emptied after the if (stop_queue) , and before 1063 * the netif_tx_stop_queue() - need to wake the queue, 1064 * or else it will remain stopped forever. 1065 * Need a memory barrier to make sure ring->cons was not 1066 * updated before queue was stopped. 1067 */ 1068 smp_rmb(); 1069 1070 if (unlikely(!mlx4_en_is_tx_ring_full(ring))) { 1071 netif_tx_wake_queue(ring->tx_queue); 1072 ring->wake_queue++; 1073 } 1074 } 1075 return NETDEV_TX_OK; 1076 1077 tx_drop_count: 1078 ring->tx_dropped++; 1079 tx_drop: 1080 dev_kfree_skb_any(skb); 1081 return NETDEV_TX_OK; 1082 } 1083 1084 #define MLX4_EN_XDP_TX_NRTXBB 1 1085 #define MLX4_EN_XDP_TX_REAL_SZ (((CTRL_SIZE + MLX4_EN_XDP_TX_NRTXBB * DS_SIZE) \ 1086 / 16) & 0x3f) 1087 1088 void mlx4_en_init_tx_xdp_ring_descs(struct mlx4_en_priv *priv, 1089 struct mlx4_en_tx_ring *ring) 1090 { 1091 int i; 1092 1093 for (i = 0; i < ring->size; i++) { 1094 struct mlx4_en_tx_info *tx_info = &ring->tx_info[i]; 1095 struct mlx4_en_tx_desc *tx_desc = ring->buf + 1096 (i << LOG_TXBB_SIZE); 1097 1098 tx_info->map0_byte_count = PAGE_SIZE; 1099 tx_info->nr_txbb = MLX4_EN_XDP_TX_NRTXBB; 1100 tx_info->data_offset = offsetof(struct mlx4_en_tx_desc, data); 1101 tx_info->ts_requested = 0; 1102 tx_info->nr_maps = 1; 1103 tx_info->linear = 1; 1104 tx_info->inl = 0; 1105 1106 tx_desc->data.lkey = ring->mr_key; 1107 tx_desc->ctrl.qpn_vlan.fence_size = MLX4_EN_XDP_TX_REAL_SZ; 1108 tx_desc->ctrl.srcrb_flags = priv->ctrl_flags; 1109 } 1110 } 1111 1112 netdev_tx_t mlx4_en_xmit_frame(struct mlx4_en_rx_ring *rx_ring, 1113 struct mlx4_en_rx_alloc *frame, 1114 struct mlx4_en_priv *priv, unsigned int length, 1115 int tx_ind, bool *doorbell_pending) 1116 { 1117 struct mlx4_en_tx_desc *tx_desc; 1118 struct mlx4_en_tx_info *tx_info; 1119 struct mlx4_wqe_data_seg *data; 1120 struct mlx4_en_tx_ring *ring; 1121 dma_addr_t dma; 1122 __be32 op_own; 1123 int index; 1124 1125 if (unlikely(!priv->port_up)) 1126 goto tx_drop; 1127 1128 ring = priv->tx_ring[TX_XDP][tx_ind]; 1129 1130 if (unlikely(mlx4_en_is_tx_ring_full(ring))) 1131 goto tx_drop_count; 1132 1133 index = ring->prod & ring->size_mask; 1134 tx_info = &ring->tx_info[index]; 1135 1136 tx_desc = ring->buf + (index << LOG_TXBB_SIZE); 1137 data = &tx_desc->data; 1138 1139 dma = frame->dma; 1140 1141 tx_info->page = frame->page; 1142 frame->page = NULL; 1143 tx_info->map0_dma = dma; 1144 tx_info->nr_bytes = max_t(unsigned int, length, ETH_ZLEN); 1145 1146 dma_sync_single_range_for_device(priv->ddev, dma, frame->page_offset, 1147 length, PCI_DMA_TODEVICE); 1148 1149 data->addr = cpu_to_be64(dma + frame->page_offset); 1150 dma_wmb(); 1151 data->byte_count = cpu_to_be32(length); 1152 1153 /* tx completion can avoid cache line miss for common cases */ 1154 1155 op_own = cpu_to_be32(MLX4_OPCODE_SEND) | 1156 ((ring->prod & ring->size) ? 1157 cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); 1158 1159 rx_ring->xdp_tx++; 1160 1161 ring->prod += MLX4_EN_XDP_TX_NRTXBB; 1162 1163 /* Ensure new descriptor hits memory 1164 * before setting ownership of this descriptor to HW 1165 */ 1166 dma_wmb(); 1167 tx_desc->ctrl.owner_opcode = op_own; 1168 ring->xmit_more++; 1169 1170 *doorbell_pending = true; 1171 1172 return NETDEV_TX_OK; 1173 1174 tx_drop_count: 1175 rx_ring->xdp_tx_full++; 1176 *doorbell_pending = true; 1177 tx_drop: 1178 return NETDEV_TX_BUSY; 1179 } 1180