xref: /openbmc/linux/drivers/net/ethernet/marvell/skge.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4  * Ethernet adapters. Based on earlier sk98lin, e100 and
5  * FreeBSD if_sk drivers.
6  *
7  * This driver intentionally does not support all the features
8  * of the original driver such as link fail-over and link management because
9  * those should be done at higher levels.
10  *
11  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/in.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/pci.h>
24 #include <linux/if_vlan.h>
25 #include <linux/ip.h>
26 #include <linux/delay.h>
27 #include <linux/crc32.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/mii.h>
33 #include <linux/slab.h>
34 #include <linux/dmi.h>
35 #include <linux/prefetch.h>
36 #include <asm/irq.h>
37 
38 #include "skge.h"
39 
40 #define DRV_NAME		"skge"
41 #define DRV_VERSION		"1.14"
42 
43 #define DEFAULT_TX_RING_SIZE	128
44 #define DEFAULT_RX_RING_SIZE	512
45 #define MAX_TX_RING_SIZE	1024
46 #define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
47 #define MAX_RX_RING_SIZE	4096
48 #define RX_COPY_THRESHOLD	128
49 #define RX_BUF_SIZE		1536
50 #define PHY_RETRIES	        1000
51 #define ETH_JUMBO_MTU		9000
52 #define TX_WATCHDOG		(5 * HZ)
53 #define NAPI_WEIGHT		64
54 #define BLINK_MS		250
55 #define LINK_HZ			HZ
56 
57 #define SKGE_EEPROM_MAGIC	0x9933aabb
58 
59 
60 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
61 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
62 MODULE_LICENSE("GPL");
63 MODULE_VERSION(DRV_VERSION);
64 
65 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
66 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
67 				NETIF_MSG_IFDOWN);
68 
69 static int debug = -1;	/* defaults above */
70 module_param(debug, int, 0);
71 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
72 
73 static const struct pci_device_id skge_id_table[] = {
74 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
75 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
76 #ifdef CONFIG_SKGE_GENESIS
77 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
78 #endif
79 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
80 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
81 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
82 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
83 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
84 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
85 	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
86 	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
87 	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
88 	{ 0 }
89 };
90 MODULE_DEVICE_TABLE(pci, skge_id_table);
91 
92 static int skge_up(struct net_device *dev);
93 static int skge_down(struct net_device *dev);
94 static void skge_phy_reset(struct skge_port *skge);
95 static void skge_tx_clean(struct net_device *dev);
96 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
98 static void genesis_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_get_stats(struct skge_port *skge, u64 *data);
100 static void yukon_init(struct skge_hw *hw, int port);
101 static void genesis_mac_init(struct skge_hw *hw, int port);
102 static void genesis_link_up(struct skge_port *skge);
103 static void skge_set_multicast(struct net_device *dev);
104 static irqreturn_t skge_intr(int irq, void *dev_id);
105 
106 /* Avoid conditionals by using array */
107 static const int txqaddr[] = { Q_XA1, Q_XA2 };
108 static const int rxqaddr[] = { Q_R1, Q_R2 };
109 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
110 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
111 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
112 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
113 
114 static inline bool is_genesis(const struct skge_hw *hw)
115 {
116 #ifdef CONFIG_SKGE_GENESIS
117 	return hw->chip_id == CHIP_ID_GENESIS;
118 #else
119 	return false;
120 #endif
121 }
122 
123 static int skge_get_regs_len(struct net_device *dev)
124 {
125 	return 0x4000;
126 }
127 
128 /*
129  * Returns copy of whole control register region
130  * Note: skip RAM address register because accessing it will
131  * 	 cause bus hangs!
132  */
133 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
134 			  void *p)
135 {
136 	const struct skge_port *skge = netdev_priv(dev);
137 	const void __iomem *io = skge->hw->regs;
138 
139 	regs->version = 1;
140 	memset(p, 0, regs->len);
141 	memcpy_fromio(p, io, B3_RAM_ADDR);
142 
143 	if (regs->len > B3_RI_WTO_R1) {
144 		memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
145 			      regs->len - B3_RI_WTO_R1);
146 	}
147 }
148 
149 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
150 static u32 wol_supported(const struct skge_hw *hw)
151 {
152 	if (is_genesis(hw))
153 		return 0;
154 
155 	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
156 		return 0;
157 
158 	return WAKE_MAGIC | WAKE_PHY;
159 }
160 
161 static void skge_wol_init(struct skge_port *skge)
162 {
163 	struct skge_hw *hw = skge->hw;
164 	int port = skge->port;
165 	u16 ctrl;
166 
167 	skge_write16(hw, B0_CTST, CS_RST_CLR);
168 	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
169 
170 	/* Turn on Vaux */
171 	skge_write8(hw, B0_POWER_CTRL,
172 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
173 
174 	/* WA code for COMA mode -- clear PHY reset */
175 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
176 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
177 		u32 reg = skge_read32(hw, B2_GP_IO);
178 		reg |= GP_DIR_9;
179 		reg &= ~GP_IO_9;
180 		skge_write32(hw, B2_GP_IO, reg);
181 	}
182 
183 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
184 		     GPC_DIS_SLEEP |
185 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
186 		     GPC_ANEG_1 | GPC_RST_SET);
187 
188 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
189 		     GPC_DIS_SLEEP |
190 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
191 		     GPC_ANEG_1 | GPC_RST_CLR);
192 
193 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
194 
195 	/* Force to 10/100 skge_reset will re-enable on resume	 */
196 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
197 		     (PHY_AN_100FULL | PHY_AN_100HALF |
198 		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
199 	/* no 1000 HD/FD */
200 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
201 	gm_phy_write(hw, port, PHY_MARV_CTRL,
202 		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
203 		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
204 
205 
206 	/* Set GMAC to no flow control and auto update for speed/duplex */
207 	gma_write16(hw, port, GM_GP_CTRL,
208 		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
209 		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
210 
211 	/* Set WOL address */
212 	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
213 		    skge->netdev->dev_addr, ETH_ALEN);
214 
215 	/* Turn on appropriate WOL control bits */
216 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
217 	ctrl = 0;
218 	if (skge->wol & WAKE_PHY)
219 		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
220 	else
221 		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
222 
223 	if (skge->wol & WAKE_MAGIC)
224 		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
225 	else
226 		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
227 
228 	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
229 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
230 
231 	/* block receiver */
232 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
233 }
234 
235 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
236 {
237 	struct skge_port *skge = netdev_priv(dev);
238 
239 	wol->supported = wol_supported(skge->hw);
240 	wol->wolopts = skge->wol;
241 }
242 
243 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
244 {
245 	struct skge_port *skge = netdev_priv(dev);
246 	struct skge_hw *hw = skge->hw;
247 
248 	if ((wol->wolopts & ~wol_supported(hw)) ||
249 	    !device_can_wakeup(&hw->pdev->dev))
250 		return -EOPNOTSUPP;
251 
252 	skge->wol = wol->wolopts;
253 
254 	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
255 
256 	return 0;
257 }
258 
259 /* Determine supported/advertised modes based on hardware.
260  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
261  */
262 static u32 skge_supported_modes(const struct skge_hw *hw)
263 {
264 	u32 supported;
265 
266 	if (hw->copper) {
267 		supported = (SUPPORTED_10baseT_Half |
268 			     SUPPORTED_10baseT_Full |
269 			     SUPPORTED_100baseT_Half |
270 			     SUPPORTED_100baseT_Full |
271 			     SUPPORTED_1000baseT_Half |
272 			     SUPPORTED_1000baseT_Full |
273 			     SUPPORTED_Autoneg |
274 			     SUPPORTED_TP);
275 
276 		if (is_genesis(hw))
277 			supported &= ~(SUPPORTED_10baseT_Half |
278 				       SUPPORTED_10baseT_Full |
279 				       SUPPORTED_100baseT_Half |
280 				       SUPPORTED_100baseT_Full);
281 
282 		else if (hw->chip_id == CHIP_ID_YUKON)
283 			supported &= ~SUPPORTED_1000baseT_Half;
284 	} else
285 		supported = (SUPPORTED_1000baseT_Full |
286 			     SUPPORTED_1000baseT_Half |
287 			     SUPPORTED_FIBRE |
288 			     SUPPORTED_Autoneg);
289 
290 	return supported;
291 }
292 
293 static int skge_get_link_ksettings(struct net_device *dev,
294 				   struct ethtool_link_ksettings *cmd)
295 {
296 	struct skge_port *skge = netdev_priv(dev);
297 	struct skge_hw *hw = skge->hw;
298 	u32 supported, advertising;
299 
300 	supported = skge_supported_modes(hw);
301 
302 	if (hw->copper) {
303 		cmd->base.port = PORT_TP;
304 		cmd->base.phy_address = hw->phy_addr;
305 	} else
306 		cmd->base.port = PORT_FIBRE;
307 
308 	advertising = skge->advertising;
309 	cmd->base.autoneg = skge->autoneg;
310 	cmd->base.speed = skge->speed;
311 	cmd->base.duplex = skge->duplex;
312 
313 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
314 						supported);
315 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
316 						advertising);
317 
318 	return 0;
319 }
320 
321 static int skge_set_link_ksettings(struct net_device *dev,
322 				   const struct ethtool_link_ksettings *cmd)
323 {
324 	struct skge_port *skge = netdev_priv(dev);
325 	const struct skge_hw *hw = skge->hw;
326 	u32 supported = skge_supported_modes(hw);
327 	int err = 0;
328 	u32 advertising;
329 
330 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
331 						cmd->link_modes.advertising);
332 
333 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
334 		advertising = supported;
335 		skge->duplex = -1;
336 		skge->speed = -1;
337 	} else {
338 		u32 setting;
339 		u32 speed = cmd->base.speed;
340 
341 		switch (speed) {
342 		case SPEED_1000:
343 			if (cmd->base.duplex == DUPLEX_FULL)
344 				setting = SUPPORTED_1000baseT_Full;
345 			else if (cmd->base.duplex == DUPLEX_HALF)
346 				setting = SUPPORTED_1000baseT_Half;
347 			else
348 				return -EINVAL;
349 			break;
350 		case SPEED_100:
351 			if (cmd->base.duplex == DUPLEX_FULL)
352 				setting = SUPPORTED_100baseT_Full;
353 			else if (cmd->base.duplex == DUPLEX_HALF)
354 				setting = SUPPORTED_100baseT_Half;
355 			else
356 				return -EINVAL;
357 			break;
358 
359 		case SPEED_10:
360 			if (cmd->base.duplex == DUPLEX_FULL)
361 				setting = SUPPORTED_10baseT_Full;
362 			else if (cmd->base.duplex == DUPLEX_HALF)
363 				setting = SUPPORTED_10baseT_Half;
364 			else
365 				return -EINVAL;
366 			break;
367 		default:
368 			return -EINVAL;
369 		}
370 
371 		if ((setting & supported) == 0)
372 			return -EINVAL;
373 
374 		skge->speed = speed;
375 		skge->duplex = cmd->base.duplex;
376 	}
377 
378 	skge->autoneg = cmd->base.autoneg;
379 	skge->advertising = advertising;
380 
381 	if (netif_running(dev)) {
382 		skge_down(dev);
383 		err = skge_up(dev);
384 		if (err) {
385 			dev_close(dev);
386 			return err;
387 		}
388 	}
389 
390 	return 0;
391 }
392 
393 static void skge_get_drvinfo(struct net_device *dev,
394 			     struct ethtool_drvinfo *info)
395 {
396 	struct skge_port *skge = netdev_priv(dev);
397 
398 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
399 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
400 	strlcpy(info->bus_info, pci_name(skge->hw->pdev),
401 		sizeof(info->bus_info));
402 }
403 
404 static const struct skge_stat {
405 	char 	   name[ETH_GSTRING_LEN];
406 	u16	   xmac_offset;
407 	u16	   gma_offset;
408 } skge_stats[] = {
409 	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
410 	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
411 
412 	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
413 	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
414 	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
415 	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
416 	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
417 	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
418 	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
419 	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
420 
421 	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
422 	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
423 	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
424 	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
425 	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
426 	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
427 
428 	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
429 	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
430 	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
431 	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
432 	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
433 };
434 
435 static int skge_get_sset_count(struct net_device *dev, int sset)
436 {
437 	switch (sset) {
438 	case ETH_SS_STATS:
439 		return ARRAY_SIZE(skge_stats);
440 	default:
441 		return -EOPNOTSUPP;
442 	}
443 }
444 
445 static void skge_get_ethtool_stats(struct net_device *dev,
446 				   struct ethtool_stats *stats, u64 *data)
447 {
448 	struct skge_port *skge = netdev_priv(dev);
449 
450 	if (is_genesis(skge->hw))
451 		genesis_get_stats(skge, data);
452 	else
453 		yukon_get_stats(skge, data);
454 }
455 
456 /* Use hardware MIB variables for critical path statistics and
457  * transmit feedback not reported at interrupt.
458  * Other errors are accounted for in interrupt handler.
459  */
460 static struct net_device_stats *skge_get_stats(struct net_device *dev)
461 {
462 	struct skge_port *skge = netdev_priv(dev);
463 	u64 data[ARRAY_SIZE(skge_stats)];
464 
465 	if (is_genesis(skge->hw))
466 		genesis_get_stats(skge, data);
467 	else
468 		yukon_get_stats(skge, data);
469 
470 	dev->stats.tx_bytes = data[0];
471 	dev->stats.rx_bytes = data[1];
472 	dev->stats.tx_packets = data[2] + data[4] + data[6];
473 	dev->stats.rx_packets = data[3] + data[5] + data[7];
474 	dev->stats.multicast = data[3] + data[5];
475 	dev->stats.collisions = data[10];
476 	dev->stats.tx_aborted_errors = data[12];
477 
478 	return &dev->stats;
479 }
480 
481 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
482 {
483 	int i;
484 
485 	switch (stringset) {
486 	case ETH_SS_STATS:
487 		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
488 			memcpy(data + i * ETH_GSTRING_LEN,
489 			       skge_stats[i].name, ETH_GSTRING_LEN);
490 		break;
491 	}
492 }
493 
494 static void skge_get_ring_param(struct net_device *dev,
495 				struct ethtool_ringparam *p)
496 {
497 	struct skge_port *skge = netdev_priv(dev);
498 
499 	p->rx_max_pending = MAX_RX_RING_SIZE;
500 	p->tx_max_pending = MAX_TX_RING_SIZE;
501 
502 	p->rx_pending = skge->rx_ring.count;
503 	p->tx_pending = skge->tx_ring.count;
504 }
505 
506 static int skge_set_ring_param(struct net_device *dev,
507 			       struct ethtool_ringparam *p)
508 {
509 	struct skge_port *skge = netdev_priv(dev);
510 	int err = 0;
511 
512 	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
513 	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
514 		return -EINVAL;
515 
516 	skge->rx_ring.count = p->rx_pending;
517 	skge->tx_ring.count = p->tx_pending;
518 
519 	if (netif_running(dev)) {
520 		skge_down(dev);
521 		err = skge_up(dev);
522 		if (err)
523 			dev_close(dev);
524 	}
525 
526 	return err;
527 }
528 
529 static u32 skge_get_msglevel(struct net_device *netdev)
530 {
531 	struct skge_port *skge = netdev_priv(netdev);
532 	return skge->msg_enable;
533 }
534 
535 static void skge_set_msglevel(struct net_device *netdev, u32 value)
536 {
537 	struct skge_port *skge = netdev_priv(netdev);
538 	skge->msg_enable = value;
539 }
540 
541 static int skge_nway_reset(struct net_device *dev)
542 {
543 	struct skge_port *skge = netdev_priv(dev);
544 
545 	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
546 		return -EINVAL;
547 
548 	skge_phy_reset(skge);
549 	return 0;
550 }
551 
552 static void skge_get_pauseparam(struct net_device *dev,
553 				struct ethtool_pauseparam *ecmd)
554 {
555 	struct skge_port *skge = netdev_priv(dev);
556 
557 	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
558 			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
559 	ecmd->tx_pause = (ecmd->rx_pause ||
560 			  (skge->flow_control == FLOW_MODE_LOC_SEND));
561 
562 	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
563 }
564 
565 static int skge_set_pauseparam(struct net_device *dev,
566 			       struct ethtool_pauseparam *ecmd)
567 {
568 	struct skge_port *skge = netdev_priv(dev);
569 	struct ethtool_pauseparam old;
570 	int err = 0;
571 
572 	skge_get_pauseparam(dev, &old);
573 
574 	if (ecmd->autoneg != old.autoneg)
575 		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
576 	else {
577 		if (ecmd->rx_pause && ecmd->tx_pause)
578 			skge->flow_control = FLOW_MODE_SYMMETRIC;
579 		else if (ecmd->rx_pause && !ecmd->tx_pause)
580 			skge->flow_control = FLOW_MODE_SYM_OR_REM;
581 		else if (!ecmd->rx_pause && ecmd->tx_pause)
582 			skge->flow_control = FLOW_MODE_LOC_SEND;
583 		else
584 			skge->flow_control = FLOW_MODE_NONE;
585 	}
586 
587 	if (netif_running(dev)) {
588 		skge_down(dev);
589 		err = skge_up(dev);
590 		if (err) {
591 			dev_close(dev);
592 			return err;
593 		}
594 	}
595 
596 	return 0;
597 }
598 
599 /* Chip internal frequency for clock calculations */
600 static inline u32 hwkhz(const struct skge_hw *hw)
601 {
602 	return is_genesis(hw) ? 53125 : 78125;
603 }
604 
605 /* Chip HZ to microseconds */
606 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
607 {
608 	return (ticks * 1000) / hwkhz(hw);
609 }
610 
611 /* Microseconds to chip HZ */
612 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
613 {
614 	return hwkhz(hw) * usec / 1000;
615 }
616 
617 static int skge_get_coalesce(struct net_device *dev,
618 			     struct ethtool_coalesce *ecmd)
619 {
620 	struct skge_port *skge = netdev_priv(dev);
621 	struct skge_hw *hw = skge->hw;
622 	int port = skge->port;
623 
624 	ecmd->rx_coalesce_usecs = 0;
625 	ecmd->tx_coalesce_usecs = 0;
626 
627 	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
628 		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
629 		u32 msk = skge_read32(hw, B2_IRQM_MSK);
630 
631 		if (msk & rxirqmask[port])
632 			ecmd->rx_coalesce_usecs = delay;
633 		if (msk & txirqmask[port])
634 			ecmd->tx_coalesce_usecs = delay;
635 	}
636 
637 	return 0;
638 }
639 
640 /* Note: interrupt timer is per board, but can turn on/off per port */
641 static int skge_set_coalesce(struct net_device *dev,
642 			     struct ethtool_coalesce *ecmd)
643 {
644 	struct skge_port *skge = netdev_priv(dev);
645 	struct skge_hw *hw = skge->hw;
646 	int port = skge->port;
647 	u32 msk = skge_read32(hw, B2_IRQM_MSK);
648 	u32 delay = 25;
649 
650 	if (ecmd->rx_coalesce_usecs == 0)
651 		msk &= ~rxirqmask[port];
652 	else if (ecmd->rx_coalesce_usecs < 25 ||
653 		 ecmd->rx_coalesce_usecs > 33333)
654 		return -EINVAL;
655 	else {
656 		msk |= rxirqmask[port];
657 		delay = ecmd->rx_coalesce_usecs;
658 	}
659 
660 	if (ecmd->tx_coalesce_usecs == 0)
661 		msk &= ~txirqmask[port];
662 	else if (ecmd->tx_coalesce_usecs < 25 ||
663 		 ecmd->tx_coalesce_usecs > 33333)
664 		return -EINVAL;
665 	else {
666 		msk |= txirqmask[port];
667 		delay = min(delay, ecmd->rx_coalesce_usecs);
668 	}
669 
670 	skge_write32(hw, B2_IRQM_MSK, msk);
671 	if (msk == 0)
672 		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
673 	else {
674 		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
675 		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
676 	}
677 	return 0;
678 }
679 
680 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
681 static void skge_led(struct skge_port *skge, enum led_mode mode)
682 {
683 	struct skge_hw *hw = skge->hw;
684 	int port = skge->port;
685 
686 	spin_lock_bh(&hw->phy_lock);
687 	if (is_genesis(hw)) {
688 		switch (mode) {
689 		case LED_MODE_OFF:
690 			if (hw->phy_type == SK_PHY_BCOM)
691 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
692 			else {
693 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
694 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
695 			}
696 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
697 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
698 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
699 			break;
700 
701 		case LED_MODE_ON:
702 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
703 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
704 
705 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
706 			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
707 
708 			break;
709 
710 		case LED_MODE_TST:
711 			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
712 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
713 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
714 
715 			if (hw->phy_type == SK_PHY_BCOM)
716 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
717 			else {
718 				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
719 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
720 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
721 			}
722 
723 		}
724 	} else {
725 		switch (mode) {
726 		case LED_MODE_OFF:
727 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
728 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
729 				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
730 				     PHY_M_LED_MO_10(MO_LED_OFF)   |
731 				     PHY_M_LED_MO_100(MO_LED_OFF)  |
732 				     PHY_M_LED_MO_1000(MO_LED_OFF) |
733 				     PHY_M_LED_MO_RX(MO_LED_OFF));
734 			break;
735 		case LED_MODE_ON:
736 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
737 				     PHY_M_LED_PULS_DUR(PULS_170MS) |
738 				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
739 				     PHY_M_LEDC_TX_CTRL |
740 				     PHY_M_LEDC_DP_CTRL);
741 
742 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
743 				     PHY_M_LED_MO_RX(MO_LED_OFF) |
744 				     (skge->speed == SPEED_100 ?
745 				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
746 			break;
747 		case LED_MODE_TST:
748 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
749 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
750 				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
751 				     PHY_M_LED_MO_10(MO_LED_ON)   |
752 				     PHY_M_LED_MO_100(MO_LED_ON)  |
753 				     PHY_M_LED_MO_1000(MO_LED_ON) |
754 				     PHY_M_LED_MO_RX(MO_LED_ON));
755 		}
756 	}
757 	spin_unlock_bh(&hw->phy_lock);
758 }
759 
760 /* blink LED's for finding board */
761 static int skge_set_phys_id(struct net_device *dev,
762 			    enum ethtool_phys_id_state state)
763 {
764 	struct skge_port *skge = netdev_priv(dev);
765 
766 	switch (state) {
767 	case ETHTOOL_ID_ACTIVE:
768 		return 2;	/* cycle on/off twice per second */
769 
770 	case ETHTOOL_ID_ON:
771 		skge_led(skge, LED_MODE_TST);
772 		break;
773 
774 	case ETHTOOL_ID_OFF:
775 		skge_led(skge, LED_MODE_OFF);
776 		break;
777 
778 	case ETHTOOL_ID_INACTIVE:
779 		/* back to regular LED state */
780 		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
781 	}
782 
783 	return 0;
784 }
785 
786 static int skge_get_eeprom_len(struct net_device *dev)
787 {
788 	struct skge_port *skge = netdev_priv(dev);
789 	u32 reg2;
790 
791 	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
792 	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
793 }
794 
795 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
796 {
797 	u32 val;
798 
799 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
800 
801 	do {
802 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
803 	} while (!(offset & PCI_VPD_ADDR_F));
804 
805 	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
806 	return val;
807 }
808 
809 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
810 {
811 	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
812 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
813 			      offset | PCI_VPD_ADDR_F);
814 
815 	do {
816 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
817 	} while (offset & PCI_VPD_ADDR_F);
818 }
819 
820 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
821 			   u8 *data)
822 {
823 	struct skge_port *skge = netdev_priv(dev);
824 	struct pci_dev *pdev = skge->hw->pdev;
825 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
826 	int length = eeprom->len;
827 	u16 offset = eeprom->offset;
828 
829 	if (!cap)
830 		return -EINVAL;
831 
832 	eeprom->magic = SKGE_EEPROM_MAGIC;
833 
834 	while (length > 0) {
835 		u32 val = skge_vpd_read(pdev, cap, offset);
836 		int n = min_t(int, length, sizeof(val));
837 
838 		memcpy(data, &val, n);
839 		length -= n;
840 		data += n;
841 		offset += n;
842 	}
843 	return 0;
844 }
845 
846 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
847 			   u8 *data)
848 {
849 	struct skge_port *skge = netdev_priv(dev);
850 	struct pci_dev *pdev = skge->hw->pdev;
851 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
852 	int length = eeprom->len;
853 	u16 offset = eeprom->offset;
854 
855 	if (!cap)
856 		return -EINVAL;
857 
858 	if (eeprom->magic != SKGE_EEPROM_MAGIC)
859 		return -EINVAL;
860 
861 	while (length > 0) {
862 		u32 val;
863 		int n = min_t(int, length, sizeof(val));
864 
865 		if (n < sizeof(val))
866 			val = skge_vpd_read(pdev, cap, offset);
867 		memcpy(&val, data, n);
868 
869 		skge_vpd_write(pdev, cap, offset, val);
870 
871 		length -= n;
872 		data += n;
873 		offset += n;
874 	}
875 	return 0;
876 }
877 
878 static const struct ethtool_ops skge_ethtool_ops = {
879 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
880 	.get_drvinfo	= skge_get_drvinfo,
881 	.get_regs_len	= skge_get_regs_len,
882 	.get_regs	= skge_get_regs,
883 	.get_wol	= skge_get_wol,
884 	.set_wol	= skge_set_wol,
885 	.get_msglevel	= skge_get_msglevel,
886 	.set_msglevel	= skge_set_msglevel,
887 	.nway_reset	= skge_nway_reset,
888 	.get_link	= ethtool_op_get_link,
889 	.get_eeprom_len	= skge_get_eeprom_len,
890 	.get_eeprom	= skge_get_eeprom,
891 	.set_eeprom	= skge_set_eeprom,
892 	.get_ringparam	= skge_get_ring_param,
893 	.set_ringparam	= skge_set_ring_param,
894 	.get_pauseparam = skge_get_pauseparam,
895 	.set_pauseparam = skge_set_pauseparam,
896 	.get_coalesce	= skge_get_coalesce,
897 	.set_coalesce	= skge_set_coalesce,
898 	.get_strings	= skge_get_strings,
899 	.set_phys_id	= skge_set_phys_id,
900 	.get_sset_count = skge_get_sset_count,
901 	.get_ethtool_stats = skge_get_ethtool_stats,
902 	.get_link_ksettings = skge_get_link_ksettings,
903 	.set_link_ksettings = skge_set_link_ksettings,
904 };
905 
906 /*
907  * Allocate ring elements and chain them together
908  * One-to-one association of board descriptors with ring elements
909  */
910 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
911 {
912 	struct skge_tx_desc *d;
913 	struct skge_element *e;
914 	int i;
915 
916 	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
917 	if (!ring->start)
918 		return -ENOMEM;
919 
920 	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
921 		e->desc = d;
922 		if (i == ring->count - 1) {
923 			e->next = ring->start;
924 			d->next_offset = base;
925 		} else {
926 			e->next = e + 1;
927 			d->next_offset = base + (i+1) * sizeof(*d);
928 		}
929 	}
930 	ring->to_use = ring->to_clean = ring->start;
931 
932 	return 0;
933 }
934 
935 /* Allocate and setup a new buffer for receiving */
936 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
937 			 struct sk_buff *skb, unsigned int bufsize)
938 {
939 	struct skge_rx_desc *rd = e->desc;
940 	dma_addr_t map;
941 
942 	map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
943 			     DMA_FROM_DEVICE);
944 
945 	if (dma_mapping_error(&skge->hw->pdev->dev, map))
946 		return -1;
947 
948 	rd->dma_lo = lower_32_bits(map);
949 	rd->dma_hi = upper_32_bits(map);
950 	e->skb = skb;
951 	rd->csum1_start = ETH_HLEN;
952 	rd->csum2_start = ETH_HLEN;
953 	rd->csum1 = 0;
954 	rd->csum2 = 0;
955 
956 	wmb();
957 
958 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
959 	dma_unmap_addr_set(e, mapaddr, map);
960 	dma_unmap_len_set(e, maplen, bufsize);
961 	return 0;
962 }
963 
964 /* Resume receiving using existing skb,
965  * Note: DMA address is not changed by chip.
966  * 	 MTU not changed while receiver active.
967  */
968 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
969 {
970 	struct skge_rx_desc *rd = e->desc;
971 
972 	rd->csum2 = 0;
973 	rd->csum2_start = ETH_HLEN;
974 
975 	wmb();
976 
977 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
978 }
979 
980 
981 /* Free all  buffers in receive ring, assumes receiver stopped */
982 static void skge_rx_clean(struct skge_port *skge)
983 {
984 	struct skge_hw *hw = skge->hw;
985 	struct skge_ring *ring = &skge->rx_ring;
986 	struct skge_element *e;
987 
988 	e = ring->start;
989 	do {
990 		struct skge_rx_desc *rd = e->desc;
991 		rd->control = 0;
992 		if (e->skb) {
993 			dma_unmap_single(&hw->pdev->dev,
994 					 dma_unmap_addr(e, mapaddr),
995 					 dma_unmap_len(e, maplen),
996 					 DMA_FROM_DEVICE);
997 			dev_kfree_skb(e->skb);
998 			e->skb = NULL;
999 		}
1000 	} while ((e = e->next) != ring->start);
1001 }
1002 
1003 
1004 /* Allocate buffers for receive ring
1005  * For receive:  to_clean is next received frame.
1006  */
1007 static int skge_rx_fill(struct net_device *dev)
1008 {
1009 	struct skge_port *skge = netdev_priv(dev);
1010 	struct skge_ring *ring = &skge->rx_ring;
1011 	struct skge_element *e;
1012 
1013 	e = ring->start;
1014 	do {
1015 		struct sk_buff *skb;
1016 
1017 		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1018 					 GFP_KERNEL);
1019 		if (!skb)
1020 			return -ENOMEM;
1021 
1022 		skb_reserve(skb, NET_IP_ALIGN);
1023 		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1024 			dev_kfree_skb(skb);
1025 			return -EIO;
1026 		}
1027 	} while ((e = e->next) != ring->start);
1028 
1029 	ring->to_clean = ring->start;
1030 	return 0;
1031 }
1032 
1033 static const char *skge_pause(enum pause_status status)
1034 {
1035 	switch (status) {
1036 	case FLOW_STAT_NONE:
1037 		return "none";
1038 	case FLOW_STAT_REM_SEND:
1039 		return "rx only";
1040 	case FLOW_STAT_LOC_SEND:
1041 		return "tx_only";
1042 	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1043 		return "both";
1044 	default:
1045 		return "indeterminated";
1046 	}
1047 }
1048 
1049 
1050 static void skge_link_up(struct skge_port *skge)
1051 {
1052 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1053 		    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1054 
1055 	netif_carrier_on(skge->netdev);
1056 	netif_wake_queue(skge->netdev);
1057 
1058 	netif_info(skge, link, skge->netdev,
1059 		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1060 		   skge->speed,
1061 		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1062 		   skge_pause(skge->flow_status));
1063 }
1064 
1065 static void skge_link_down(struct skge_port *skge)
1066 {
1067 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1068 	netif_carrier_off(skge->netdev);
1069 	netif_stop_queue(skge->netdev);
1070 
1071 	netif_info(skge, link, skge->netdev, "Link is down\n");
1072 }
1073 
1074 static void xm_link_down(struct skge_hw *hw, int port)
1075 {
1076 	struct net_device *dev = hw->dev[port];
1077 	struct skge_port *skge = netdev_priv(dev);
1078 
1079 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1080 
1081 	if (netif_carrier_ok(dev))
1082 		skge_link_down(skge);
1083 }
1084 
1085 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1086 {
1087 	int i;
1088 
1089 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1090 	*val = xm_read16(hw, port, XM_PHY_DATA);
1091 
1092 	if (hw->phy_type == SK_PHY_XMAC)
1093 		goto ready;
1094 
1095 	for (i = 0; i < PHY_RETRIES; i++) {
1096 		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1097 			goto ready;
1098 		udelay(1);
1099 	}
1100 
1101 	return -ETIMEDOUT;
1102  ready:
1103 	*val = xm_read16(hw, port, XM_PHY_DATA);
1104 
1105 	return 0;
1106 }
1107 
1108 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1109 {
1110 	u16 v = 0;
1111 	if (__xm_phy_read(hw, port, reg, &v))
1112 		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1113 	return v;
1114 }
1115 
1116 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1117 {
1118 	int i;
1119 
1120 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1121 	for (i = 0; i < PHY_RETRIES; i++) {
1122 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1123 			goto ready;
1124 		udelay(1);
1125 	}
1126 	return -EIO;
1127 
1128  ready:
1129 	xm_write16(hw, port, XM_PHY_DATA, val);
1130 	for (i = 0; i < PHY_RETRIES; i++) {
1131 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1132 			return 0;
1133 		udelay(1);
1134 	}
1135 	return -ETIMEDOUT;
1136 }
1137 
1138 static void genesis_init(struct skge_hw *hw)
1139 {
1140 	/* set blink source counter */
1141 	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1142 	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1143 
1144 	/* configure mac arbiter */
1145 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1146 
1147 	/* configure mac arbiter timeout values */
1148 	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1149 	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1150 	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1151 	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1152 
1153 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1154 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1155 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1156 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1157 
1158 	/* configure packet arbiter timeout */
1159 	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1160 	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1161 	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1162 	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1163 	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1164 }
1165 
1166 static void genesis_reset(struct skge_hw *hw, int port)
1167 {
1168 	static const u8 zero[8]  = { 0 };
1169 	u32 reg;
1170 
1171 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1172 
1173 	/* reset the statistics module */
1174 	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1175 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1176 	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1177 	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1178 	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1179 
1180 	/* disable Broadcom PHY IRQ */
1181 	if (hw->phy_type == SK_PHY_BCOM)
1182 		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1183 
1184 	xm_outhash(hw, port, XM_HSM, zero);
1185 
1186 	/* Flush TX and RX fifo */
1187 	reg = xm_read32(hw, port, XM_MODE);
1188 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1189 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1190 }
1191 
1192 /* Convert mode to MII values  */
1193 static const u16 phy_pause_map[] = {
1194 	[FLOW_MODE_NONE] =	0,
1195 	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1196 	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1197 	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1198 };
1199 
1200 /* special defines for FIBER (88E1011S only) */
1201 static const u16 fiber_pause_map[] = {
1202 	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1203 	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1204 	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1205 	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1206 };
1207 
1208 
1209 /* Check status of Broadcom phy link */
1210 static void bcom_check_link(struct skge_hw *hw, int port)
1211 {
1212 	struct net_device *dev = hw->dev[port];
1213 	struct skge_port *skge = netdev_priv(dev);
1214 	u16 status;
1215 
1216 	/* read twice because of latch */
1217 	xm_phy_read(hw, port, PHY_BCOM_STAT);
1218 	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1219 
1220 	if ((status & PHY_ST_LSYNC) == 0) {
1221 		xm_link_down(hw, port);
1222 		return;
1223 	}
1224 
1225 	if (skge->autoneg == AUTONEG_ENABLE) {
1226 		u16 lpa, aux;
1227 
1228 		if (!(status & PHY_ST_AN_OVER))
1229 			return;
1230 
1231 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1232 		if (lpa & PHY_B_AN_RF) {
1233 			netdev_notice(dev, "remote fault\n");
1234 			return;
1235 		}
1236 
1237 		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1238 
1239 		/* Check Duplex mismatch */
1240 		switch (aux & PHY_B_AS_AN_RES_MSK) {
1241 		case PHY_B_RES_1000FD:
1242 			skge->duplex = DUPLEX_FULL;
1243 			break;
1244 		case PHY_B_RES_1000HD:
1245 			skge->duplex = DUPLEX_HALF;
1246 			break;
1247 		default:
1248 			netdev_notice(dev, "duplex mismatch\n");
1249 			return;
1250 		}
1251 
1252 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1253 		switch (aux & PHY_B_AS_PAUSE_MSK) {
1254 		case PHY_B_AS_PAUSE_MSK:
1255 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1256 			break;
1257 		case PHY_B_AS_PRR:
1258 			skge->flow_status = FLOW_STAT_REM_SEND;
1259 			break;
1260 		case PHY_B_AS_PRT:
1261 			skge->flow_status = FLOW_STAT_LOC_SEND;
1262 			break;
1263 		default:
1264 			skge->flow_status = FLOW_STAT_NONE;
1265 		}
1266 		skge->speed = SPEED_1000;
1267 	}
1268 
1269 	if (!netif_carrier_ok(dev))
1270 		genesis_link_up(skge);
1271 }
1272 
1273 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1274  * Phy on for 100 or 10Mbit operation
1275  */
1276 static void bcom_phy_init(struct skge_port *skge)
1277 {
1278 	struct skge_hw *hw = skge->hw;
1279 	int port = skge->port;
1280 	int i;
1281 	u16 id1, r, ext, ctl;
1282 
1283 	/* magic workaround patterns for Broadcom */
1284 	static const struct {
1285 		u16 reg;
1286 		u16 val;
1287 	} A1hack[] = {
1288 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1289 		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1290 		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1291 		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1292 	}, C0hack[] = {
1293 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1294 		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1295 	};
1296 
1297 	/* read Id from external PHY (all have the same address) */
1298 	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1299 
1300 	/* Optimize MDIO transfer by suppressing preamble. */
1301 	r = xm_read16(hw, port, XM_MMU_CMD);
1302 	r |=  XM_MMU_NO_PRE;
1303 	xm_write16(hw, port, XM_MMU_CMD, r);
1304 
1305 	switch (id1) {
1306 	case PHY_BCOM_ID1_C0:
1307 		/*
1308 		 * Workaround BCOM Errata for the C0 type.
1309 		 * Write magic patterns to reserved registers.
1310 		 */
1311 		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1312 			xm_phy_write(hw, port,
1313 				     C0hack[i].reg, C0hack[i].val);
1314 
1315 		break;
1316 	case PHY_BCOM_ID1_A1:
1317 		/*
1318 		 * Workaround BCOM Errata for the A1 type.
1319 		 * Write magic patterns to reserved registers.
1320 		 */
1321 		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1322 			xm_phy_write(hw, port,
1323 				     A1hack[i].reg, A1hack[i].val);
1324 		break;
1325 	}
1326 
1327 	/*
1328 	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1329 	 * Disable Power Management after reset.
1330 	 */
1331 	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1332 	r |= PHY_B_AC_DIS_PM;
1333 	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1334 
1335 	/* Dummy read */
1336 	xm_read16(hw, port, XM_ISRC);
1337 
1338 	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1339 	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1340 
1341 	if (skge->autoneg == AUTONEG_ENABLE) {
1342 		/*
1343 		 * Workaround BCOM Errata #1 for the C5 type.
1344 		 * 1000Base-T Link Acquisition Failure in Slave Mode
1345 		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1346 		 */
1347 		u16 adv = PHY_B_1000C_RD;
1348 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1349 			adv |= PHY_B_1000C_AHD;
1350 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1351 			adv |= PHY_B_1000C_AFD;
1352 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1353 
1354 		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1355 	} else {
1356 		if (skge->duplex == DUPLEX_FULL)
1357 			ctl |= PHY_CT_DUP_MD;
1358 		/* Force to slave */
1359 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1360 	}
1361 
1362 	/* Set autonegotiation pause parameters */
1363 	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1364 		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1365 
1366 	/* Handle Jumbo frames */
1367 	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1368 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1369 			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1370 
1371 		ext |= PHY_B_PEC_HIGH_LA;
1372 
1373 	}
1374 
1375 	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1376 	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1377 
1378 	/* Use link status change interrupt */
1379 	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1380 }
1381 
1382 static void xm_phy_init(struct skge_port *skge)
1383 {
1384 	struct skge_hw *hw = skge->hw;
1385 	int port = skge->port;
1386 	u16 ctrl = 0;
1387 
1388 	if (skge->autoneg == AUTONEG_ENABLE) {
1389 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1390 			ctrl |= PHY_X_AN_HD;
1391 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1392 			ctrl |= PHY_X_AN_FD;
1393 
1394 		ctrl |= fiber_pause_map[skge->flow_control];
1395 
1396 		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1397 
1398 		/* Restart Auto-negotiation */
1399 		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1400 	} else {
1401 		/* Set DuplexMode in Config register */
1402 		if (skge->duplex == DUPLEX_FULL)
1403 			ctrl |= PHY_CT_DUP_MD;
1404 		/*
1405 		 * Do NOT enable Auto-negotiation here. This would hold
1406 		 * the link down because no IDLEs are transmitted
1407 		 */
1408 	}
1409 
1410 	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1411 
1412 	/* Poll PHY for status changes */
1413 	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1414 }
1415 
1416 static int xm_check_link(struct net_device *dev)
1417 {
1418 	struct skge_port *skge = netdev_priv(dev);
1419 	struct skge_hw *hw = skge->hw;
1420 	int port = skge->port;
1421 	u16 status;
1422 
1423 	/* read twice because of latch */
1424 	xm_phy_read(hw, port, PHY_XMAC_STAT);
1425 	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1426 
1427 	if ((status & PHY_ST_LSYNC) == 0) {
1428 		xm_link_down(hw, port);
1429 		return 0;
1430 	}
1431 
1432 	if (skge->autoneg == AUTONEG_ENABLE) {
1433 		u16 lpa, res;
1434 
1435 		if (!(status & PHY_ST_AN_OVER))
1436 			return 0;
1437 
1438 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1439 		if (lpa & PHY_B_AN_RF) {
1440 			netdev_notice(dev, "remote fault\n");
1441 			return 0;
1442 		}
1443 
1444 		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1445 
1446 		/* Check Duplex mismatch */
1447 		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1448 		case PHY_X_RS_FD:
1449 			skge->duplex = DUPLEX_FULL;
1450 			break;
1451 		case PHY_X_RS_HD:
1452 			skge->duplex = DUPLEX_HALF;
1453 			break;
1454 		default:
1455 			netdev_notice(dev, "duplex mismatch\n");
1456 			return 0;
1457 		}
1458 
1459 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1460 		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1461 		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1462 		    (lpa & PHY_X_P_SYM_MD))
1463 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1464 		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1465 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1466 			/* Enable PAUSE receive, disable PAUSE transmit */
1467 			skge->flow_status  = FLOW_STAT_REM_SEND;
1468 		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1469 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1470 			/* Disable PAUSE receive, enable PAUSE transmit */
1471 			skge->flow_status = FLOW_STAT_LOC_SEND;
1472 		else
1473 			skge->flow_status = FLOW_STAT_NONE;
1474 
1475 		skge->speed = SPEED_1000;
1476 	}
1477 
1478 	if (!netif_carrier_ok(dev))
1479 		genesis_link_up(skge);
1480 	return 1;
1481 }
1482 
1483 /* Poll to check for link coming up.
1484  *
1485  * Since internal PHY is wired to a level triggered pin, can't
1486  * get an interrupt when carrier is detected, need to poll for
1487  * link coming up.
1488  */
1489 static void xm_link_timer(struct timer_list *t)
1490 {
1491 	struct skge_port *skge = from_timer(skge, t, link_timer);
1492 	struct net_device *dev = skge->netdev;
1493 	struct skge_hw *hw = skge->hw;
1494 	int port = skge->port;
1495 	int i;
1496 	unsigned long flags;
1497 
1498 	if (!netif_running(dev))
1499 		return;
1500 
1501 	spin_lock_irqsave(&hw->phy_lock, flags);
1502 
1503 	/*
1504 	 * Verify that the link by checking GPIO register three times.
1505 	 * This pin has the signal from the link_sync pin connected to it.
1506 	 */
1507 	for (i = 0; i < 3; i++) {
1508 		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1509 			goto link_down;
1510 	}
1511 
1512 	/* Re-enable interrupt to detect link down */
1513 	if (xm_check_link(dev)) {
1514 		u16 msk = xm_read16(hw, port, XM_IMSK);
1515 		msk &= ~XM_IS_INP_ASS;
1516 		xm_write16(hw, port, XM_IMSK, msk);
1517 		xm_read16(hw, port, XM_ISRC);
1518 	} else {
1519 link_down:
1520 		mod_timer(&skge->link_timer,
1521 			  round_jiffies(jiffies + LINK_HZ));
1522 	}
1523 	spin_unlock_irqrestore(&hw->phy_lock, flags);
1524 }
1525 
1526 static void genesis_mac_init(struct skge_hw *hw, int port)
1527 {
1528 	struct net_device *dev = hw->dev[port];
1529 	struct skge_port *skge = netdev_priv(dev);
1530 	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1531 	int i;
1532 	u32 r;
1533 	static const u8 zero[6]  = { 0 };
1534 
1535 	for (i = 0; i < 10; i++) {
1536 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1537 			     MFF_SET_MAC_RST);
1538 		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1539 			goto reset_ok;
1540 		udelay(1);
1541 	}
1542 
1543 	netdev_warn(dev, "genesis reset failed\n");
1544 
1545  reset_ok:
1546 	/* Unreset the XMAC. */
1547 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1548 
1549 	/*
1550 	 * Perform additional initialization for external PHYs,
1551 	 * namely for the 1000baseTX cards that use the XMAC's
1552 	 * GMII mode.
1553 	 */
1554 	if (hw->phy_type != SK_PHY_XMAC) {
1555 		/* Take external Phy out of reset */
1556 		r = skge_read32(hw, B2_GP_IO);
1557 		if (port == 0)
1558 			r |= GP_DIR_0|GP_IO_0;
1559 		else
1560 			r |= GP_DIR_2|GP_IO_2;
1561 
1562 		skge_write32(hw, B2_GP_IO, r);
1563 
1564 		/* Enable GMII interface */
1565 		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1566 	}
1567 
1568 
1569 	switch (hw->phy_type) {
1570 	case SK_PHY_XMAC:
1571 		xm_phy_init(skge);
1572 		break;
1573 	case SK_PHY_BCOM:
1574 		bcom_phy_init(skge);
1575 		bcom_check_link(hw, port);
1576 	}
1577 
1578 	/* Set Station Address */
1579 	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1580 
1581 	/* We don't use match addresses so clear */
1582 	for (i = 1; i < 16; i++)
1583 		xm_outaddr(hw, port, XM_EXM(i), zero);
1584 
1585 	/* Clear MIB counters */
1586 	xm_write16(hw, port, XM_STAT_CMD,
1587 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1588 	/* Clear two times according to Errata #3 */
1589 	xm_write16(hw, port, XM_STAT_CMD,
1590 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1591 
1592 	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1593 	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1594 
1595 	/* We don't need the FCS appended to the packet. */
1596 	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1597 	if (jumbo)
1598 		r |= XM_RX_BIG_PK_OK;
1599 
1600 	if (skge->duplex == DUPLEX_HALF) {
1601 		/*
1602 		 * If in manual half duplex mode the other side might be in
1603 		 * full duplex mode, so ignore if a carrier extension is not seen
1604 		 * on frames received
1605 		 */
1606 		r |= XM_RX_DIS_CEXT;
1607 	}
1608 	xm_write16(hw, port, XM_RX_CMD, r);
1609 
1610 	/* We want short frames padded to 60 bytes. */
1611 	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1612 
1613 	/* Increase threshold for jumbo frames on dual port */
1614 	if (hw->ports > 1 && jumbo)
1615 		xm_write16(hw, port, XM_TX_THR, 1020);
1616 	else
1617 		xm_write16(hw, port, XM_TX_THR, 512);
1618 
1619 	/*
1620 	 * Enable the reception of all error frames. This is is
1621 	 * a necessary evil due to the design of the XMAC. The
1622 	 * XMAC's receive FIFO is only 8K in size, however jumbo
1623 	 * frames can be up to 9000 bytes in length. When bad
1624 	 * frame filtering is enabled, the XMAC's RX FIFO operates
1625 	 * in 'store and forward' mode. For this to work, the
1626 	 * entire frame has to fit into the FIFO, but that means
1627 	 * that jumbo frames larger than 8192 bytes will be
1628 	 * truncated. Disabling all bad frame filtering causes
1629 	 * the RX FIFO to operate in streaming mode, in which
1630 	 * case the XMAC will start transferring frames out of the
1631 	 * RX FIFO as soon as the FIFO threshold is reached.
1632 	 */
1633 	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1634 
1635 
1636 	/*
1637 	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1638 	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1639 	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1640 	 */
1641 	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1642 
1643 	/*
1644 	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1645 	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1646 	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1647 	 */
1648 	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1649 
1650 	/* Configure MAC arbiter */
1651 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1652 
1653 	/* configure timeout values */
1654 	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1655 	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1656 	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1657 	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1658 
1659 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1660 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1661 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1662 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1663 
1664 	/* Configure Rx MAC FIFO */
1665 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1666 	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1667 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1668 
1669 	/* Configure Tx MAC FIFO */
1670 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1671 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1672 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1673 
1674 	if (jumbo) {
1675 		/* Enable frame flushing if jumbo frames used */
1676 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1677 	} else {
1678 		/* enable timeout timers if normal frames */
1679 		skge_write16(hw, B3_PA_CTRL,
1680 			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1681 	}
1682 }
1683 
1684 static void genesis_stop(struct skge_port *skge)
1685 {
1686 	struct skge_hw *hw = skge->hw;
1687 	int port = skge->port;
1688 	unsigned retries = 1000;
1689 	u16 cmd;
1690 
1691 	/* Disable Tx and Rx */
1692 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1693 	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1694 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1695 
1696 	genesis_reset(hw, port);
1697 
1698 	/* Clear Tx packet arbiter timeout IRQ */
1699 	skge_write16(hw, B3_PA_CTRL,
1700 		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1701 
1702 	/* Reset the MAC */
1703 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1704 	do {
1705 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1706 		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1707 			break;
1708 	} while (--retries > 0);
1709 
1710 	/* For external PHYs there must be special handling */
1711 	if (hw->phy_type != SK_PHY_XMAC) {
1712 		u32 reg = skge_read32(hw, B2_GP_IO);
1713 		if (port == 0) {
1714 			reg |= GP_DIR_0;
1715 			reg &= ~GP_IO_0;
1716 		} else {
1717 			reg |= GP_DIR_2;
1718 			reg &= ~GP_IO_2;
1719 		}
1720 		skge_write32(hw, B2_GP_IO, reg);
1721 		skge_read32(hw, B2_GP_IO);
1722 	}
1723 
1724 	xm_write16(hw, port, XM_MMU_CMD,
1725 			xm_read16(hw, port, XM_MMU_CMD)
1726 			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1727 
1728 	xm_read16(hw, port, XM_MMU_CMD);
1729 }
1730 
1731 
1732 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1733 {
1734 	struct skge_hw *hw = skge->hw;
1735 	int port = skge->port;
1736 	int i;
1737 	unsigned long timeout = jiffies + HZ;
1738 
1739 	xm_write16(hw, port,
1740 			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1741 
1742 	/* wait for update to complete */
1743 	while (xm_read16(hw, port, XM_STAT_CMD)
1744 	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1745 		if (time_after(jiffies, timeout))
1746 			break;
1747 		udelay(10);
1748 	}
1749 
1750 	/* special case for 64 bit octet counter */
1751 	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1752 		| xm_read32(hw, port, XM_TXO_OK_LO);
1753 	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1754 		| xm_read32(hw, port, XM_RXO_OK_LO);
1755 
1756 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1757 		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1758 }
1759 
1760 static void genesis_mac_intr(struct skge_hw *hw, int port)
1761 {
1762 	struct net_device *dev = hw->dev[port];
1763 	struct skge_port *skge = netdev_priv(dev);
1764 	u16 status = xm_read16(hw, port, XM_ISRC);
1765 
1766 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1767 		     "mac interrupt status 0x%x\n", status);
1768 
1769 	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1770 		xm_link_down(hw, port);
1771 		mod_timer(&skge->link_timer, jiffies + 1);
1772 	}
1773 
1774 	if (status & XM_IS_TXF_UR) {
1775 		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1776 		++dev->stats.tx_fifo_errors;
1777 	}
1778 }
1779 
1780 static void genesis_link_up(struct skge_port *skge)
1781 {
1782 	struct skge_hw *hw = skge->hw;
1783 	int port = skge->port;
1784 	u16 cmd, msk;
1785 	u32 mode;
1786 
1787 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1788 
1789 	/*
1790 	 * enabling pause frame reception is required for 1000BT
1791 	 * because the XMAC is not reset if the link is going down
1792 	 */
1793 	if (skge->flow_status == FLOW_STAT_NONE ||
1794 	    skge->flow_status == FLOW_STAT_LOC_SEND)
1795 		/* Disable Pause Frame Reception */
1796 		cmd |= XM_MMU_IGN_PF;
1797 	else
1798 		/* Enable Pause Frame Reception */
1799 		cmd &= ~XM_MMU_IGN_PF;
1800 
1801 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1802 
1803 	mode = xm_read32(hw, port, XM_MODE);
1804 	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1805 	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1806 		/*
1807 		 * Configure Pause Frame Generation
1808 		 * Use internal and external Pause Frame Generation.
1809 		 * Sending pause frames is edge triggered.
1810 		 * Send a Pause frame with the maximum pause time if
1811 		 * internal oder external FIFO full condition occurs.
1812 		 * Send a zero pause time frame to re-start transmission.
1813 		 */
1814 		/* XM_PAUSE_DA = '010000C28001' (default) */
1815 		/* XM_MAC_PTIME = 0xffff (maximum) */
1816 		/* remember this value is defined in big endian (!) */
1817 		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1818 
1819 		mode |= XM_PAUSE_MODE;
1820 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1821 	} else {
1822 		/*
1823 		 * disable pause frame generation is required for 1000BT
1824 		 * because the XMAC is not reset if the link is going down
1825 		 */
1826 		/* Disable Pause Mode in Mode Register */
1827 		mode &= ~XM_PAUSE_MODE;
1828 
1829 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1830 	}
1831 
1832 	xm_write32(hw, port, XM_MODE, mode);
1833 
1834 	/* Turn on detection of Tx underrun */
1835 	msk = xm_read16(hw, port, XM_IMSK);
1836 	msk &= ~XM_IS_TXF_UR;
1837 	xm_write16(hw, port, XM_IMSK, msk);
1838 
1839 	xm_read16(hw, port, XM_ISRC);
1840 
1841 	/* get MMU Command Reg. */
1842 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1843 	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1844 		cmd |= XM_MMU_GMII_FD;
1845 
1846 	/*
1847 	 * Workaround BCOM Errata (#10523) for all BCom Phys
1848 	 * Enable Power Management after link up
1849 	 */
1850 	if (hw->phy_type == SK_PHY_BCOM) {
1851 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1852 			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1853 			     & ~PHY_B_AC_DIS_PM);
1854 		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1855 	}
1856 
1857 	/* enable Rx/Tx */
1858 	xm_write16(hw, port, XM_MMU_CMD,
1859 			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1860 	skge_link_up(skge);
1861 }
1862 
1863 
1864 static inline void bcom_phy_intr(struct skge_port *skge)
1865 {
1866 	struct skge_hw *hw = skge->hw;
1867 	int port = skge->port;
1868 	u16 isrc;
1869 
1870 	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1871 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1872 		     "phy interrupt status 0x%x\n", isrc);
1873 
1874 	if (isrc & PHY_B_IS_PSE)
1875 		pr_err("%s: uncorrectable pair swap error\n",
1876 		       hw->dev[port]->name);
1877 
1878 	/* Workaround BCom Errata:
1879 	 *	enable and disable loopback mode if "NO HCD" occurs.
1880 	 */
1881 	if (isrc & PHY_B_IS_NO_HDCL) {
1882 		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1883 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1884 				  ctrl | PHY_CT_LOOP);
1885 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1886 				  ctrl & ~PHY_CT_LOOP);
1887 	}
1888 
1889 	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1890 		bcom_check_link(hw, port);
1891 
1892 }
1893 
1894 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1895 {
1896 	int i;
1897 
1898 	gma_write16(hw, port, GM_SMI_DATA, val);
1899 	gma_write16(hw, port, GM_SMI_CTRL,
1900 			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1901 	for (i = 0; i < PHY_RETRIES; i++) {
1902 		udelay(1);
1903 
1904 		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1905 			return 0;
1906 	}
1907 
1908 	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1909 	return -EIO;
1910 }
1911 
1912 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1913 {
1914 	int i;
1915 
1916 	gma_write16(hw, port, GM_SMI_CTRL,
1917 			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1918 			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1919 
1920 	for (i = 0; i < PHY_RETRIES; i++) {
1921 		udelay(1);
1922 		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1923 			goto ready;
1924 	}
1925 
1926 	return -ETIMEDOUT;
1927  ready:
1928 	*val = gma_read16(hw, port, GM_SMI_DATA);
1929 	return 0;
1930 }
1931 
1932 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1933 {
1934 	u16 v = 0;
1935 	if (__gm_phy_read(hw, port, reg, &v))
1936 		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1937 	return v;
1938 }
1939 
1940 /* Marvell Phy Initialization */
1941 static void yukon_init(struct skge_hw *hw, int port)
1942 {
1943 	struct skge_port *skge = netdev_priv(hw->dev[port]);
1944 	u16 ctrl, ct1000, adv;
1945 
1946 	if (skge->autoneg == AUTONEG_ENABLE) {
1947 		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1948 
1949 		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1950 			  PHY_M_EC_MAC_S_MSK);
1951 		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1952 
1953 		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1954 
1955 		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1956 	}
1957 
1958 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1959 	if (skge->autoneg == AUTONEG_DISABLE)
1960 		ctrl &= ~PHY_CT_ANE;
1961 
1962 	ctrl |= PHY_CT_RESET;
1963 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1964 
1965 	ctrl = 0;
1966 	ct1000 = 0;
1967 	adv = PHY_AN_CSMA;
1968 
1969 	if (skge->autoneg == AUTONEG_ENABLE) {
1970 		if (hw->copper) {
1971 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1972 				ct1000 |= PHY_M_1000C_AFD;
1973 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1974 				ct1000 |= PHY_M_1000C_AHD;
1975 			if (skge->advertising & ADVERTISED_100baseT_Full)
1976 				adv |= PHY_M_AN_100_FD;
1977 			if (skge->advertising & ADVERTISED_100baseT_Half)
1978 				adv |= PHY_M_AN_100_HD;
1979 			if (skge->advertising & ADVERTISED_10baseT_Full)
1980 				adv |= PHY_M_AN_10_FD;
1981 			if (skge->advertising & ADVERTISED_10baseT_Half)
1982 				adv |= PHY_M_AN_10_HD;
1983 
1984 			/* Set Flow-control capabilities */
1985 			adv |= phy_pause_map[skge->flow_control];
1986 		} else {
1987 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1988 				adv |= PHY_M_AN_1000X_AFD;
1989 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1990 				adv |= PHY_M_AN_1000X_AHD;
1991 
1992 			adv |= fiber_pause_map[skge->flow_control];
1993 		}
1994 
1995 		/* Restart Auto-negotiation */
1996 		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1997 	} else {
1998 		/* forced speed/duplex settings */
1999 		ct1000 = PHY_M_1000C_MSE;
2000 
2001 		if (skge->duplex == DUPLEX_FULL)
2002 			ctrl |= PHY_CT_DUP_MD;
2003 
2004 		switch (skge->speed) {
2005 		case SPEED_1000:
2006 			ctrl |= PHY_CT_SP1000;
2007 			break;
2008 		case SPEED_100:
2009 			ctrl |= PHY_CT_SP100;
2010 			break;
2011 		}
2012 
2013 		ctrl |= PHY_CT_RESET;
2014 	}
2015 
2016 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2017 
2018 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2019 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2020 
2021 	/* Enable phy interrupt on autonegotiation complete (or link up) */
2022 	if (skge->autoneg == AUTONEG_ENABLE)
2023 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2024 	else
2025 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2026 }
2027 
2028 static void yukon_reset(struct skge_hw *hw, int port)
2029 {
2030 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2031 	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2032 	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2033 	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2034 	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2035 
2036 	gma_write16(hw, port, GM_RX_CTRL,
2037 			 gma_read16(hw, port, GM_RX_CTRL)
2038 			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2039 }
2040 
2041 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2042 static int is_yukon_lite_a0(struct skge_hw *hw)
2043 {
2044 	u32 reg;
2045 	int ret;
2046 
2047 	if (hw->chip_id != CHIP_ID_YUKON)
2048 		return 0;
2049 
2050 	reg = skge_read32(hw, B2_FAR);
2051 	skge_write8(hw, B2_FAR + 3, 0xff);
2052 	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2053 	skge_write32(hw, B2_FAR, reg);
2054 	return ret;
2055 }
2056 
2057 static void yukon_mac_init(struct skge_hw *hw, int port)
2058 {
2059 	struct skge_port *skge = netdev_priv(hw->dev[port]);
2060 	int i;
2061 	u32 reg;
2062 	const u8 *addr = hw->dev[port]->dev_addr;
2063 
2064 	/* WA code for COMA mode -- set PHY reset */
2065 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2066 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2067 		reg = skge_read32(hw, B2_GP_IO);
2068 		reg |= GP_DIR_9 | GP_IO_9;
2069 		skge_write32(hw, B2_GP_IO, reg);
2070 	}
2071 
2072 	/* hard reset */
2073 	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2074 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2075 
2076 	/* WA code for COMA mode -- clear PHY reset */
2077 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2078 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2079 		reg = skge_read32(hw, B2_GP_IO);
2080 		reg |= GP_DIR_9;
2081 		reg &= ~GP_IO_9;
2082 		skge_write32(hw, B2_GP_IO, reg);
2083 	}
2084 
2085 	/* Set hardware config mode */
2086 	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2087 		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2088 	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2089 
2090 	/* Clear GMC reset */
2091 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2092 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2093 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2094 
2095 	if (skge->autoneg == AUTONEG_DISABLE) {
2096 		reg = GM_GPCR_AU_ALL_DIS;
2097 		gma_write16(hw, port, GM_GP_CTRL,
2098 				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2099 
2100 		switch (skge->speed) {
2101 		case SPEED_1000:
2102 			reg &= ~GM_GPCR_SPEED_100;
2103 			reg |= GM_GPCR_SPEED_1000;
2104 			break;
2105 		case SPEED_100:
2106 			reg &= ~GM_GPCR_SPEED_1000;
2107 			reg |= GM_GPCR_SPEED_100;
2108 			break;
2109 		case SPEED_10:
2110 			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2111 			break;
2112 		}
2113 
2114 		if (skge->duplex == DUPLEX_FULL)
2115 			reg |= GM_GPCR_DUP_FULL;
2116 	} else
2117 		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2118 
2119 	switch (skge->flow_control) {
2120 	case FLOW_MODE_NONE:
2121 		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2122 		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2123 		break;
2124 	case FLOW_MODE_LOC_SEND:
2125 		/* disable Rx flow-control */
2126 		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2127 		break;
2128 	case FLOW_MODE_SYMMETRIC:
2129 	case FLOW_MODE_SYM_OR_REM:
2130 		/* enable Tx & Rx flow-control */
2131 		break;
2132 	}
2133 
2134 	gma_write16(hw, port, GM_GP_CTRL, reg);
2135 	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2136 
2137 	yukon_init(hw, port);
2138 
2139 	/* MIB clear */
2140 	reg = gma_read16(hw, port, GM_PHY_ADDR);
2141 	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2142 
2143 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2144 		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2145 	gma_write16(hw, port, GM_PHY_ADDR, reg);
2146 
2147 	/* transmit control */
2148 	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2149 
2150 	/* receive control reg: unicast + multicast + no FCS  */
2151 	gma_write16(hw, port, GM_RX_CTRL,
2152 			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2153 
2154 	/* transmit flow control */
2155 	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2156 
2157 	/* transmit parameter */
2158 	gma_write16(hw, port, GM_TX_PARAM,
2159 			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2160 			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2161 			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2162 
2163 	/* configure the Serial Mode Register */
2164 	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2165 		| GM_SMOD_VLAN_ENA
2166 		| IPG_DATA_VAL(IPG_DATA_DEF);
2167 
2168 	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2169 		reg |= GM_SMOD_JUMBO_ENA;
2170 
2171 	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2172 
2173 	/* physical address: used for pause frames */
2174 	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2175 	/* virtual address for data */
2176 	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2177 
2178 	/* enable interrupt mask for counter overflows */
2179 	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2180 	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2181 	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2182 
2183 	/* Initialize Mac Fifo */
2184 
2185 	/* Configure Rx MAC FIFO */
2186 	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2187 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2188 
2189 	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2190 	if (is_yukon_lite_a0(hw))
2191 		reg &= ~GMF_RX_F_FL_ON;
2192 
2193 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2194 	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2195 	/*
2196 	 * because Pause Packet Truncation in GMAC is not working
2197 	 * we have to increase the Flush Threshold to 64 bytes
2198 	 * in order to flush pause packets in Rx FIFO on Yukon-1
2199 	 */
2200 	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2201 
2202 	/* Configure Tx MAC FIFO */
2203 	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2204 	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2205 }
2206 
2207 /* Go into power down mode */
2208 static void yukon_suspend(struct skge_hw *hw, int port)
2209 {
2210 	u16 ctrl;
2211 
2212 	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2213 	ctrl |= PHY_M_PC_POL_R_DIS;
2214 	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2215 
2216 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2217 	ctrl |= PHY_CT_RESET;
2218 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2219 
2220 	/* switch IEEE compatible power down mode on */
2221 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2222 	ctrl |= PHY_CT_PDOWN;
2223 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2224 }
2225 
2226 static void yukon_stop(struct skge_port *skge)
2227 {
2228 	struct skge_hw *hw = skge->hw;
2229 	int port = skge->port;
2230 
2231 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2232 	yukon_reset(hw, port);
2233 
2234 	gma_write16(hw, port, GM_GP_CTRL,
2235 			 gma_read16(hw, port, GM_GP_CTRL)
2236 			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2237 	gma_read16(hw, port, GM_GP_CTRL);
2238 
2239 	yukon_suspend(hw, port);
2240 
2241 	/* set GPHY Control reset */
2242 	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2243 	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2244 }
2245 
2246 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2247 {
2248 	struct skge_hw *hw = skge->hw;
2249 	int port = skge->port;
2250 	int i;
2251 
2252 	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2253 		| gma_read32(hw, port, GM_TXO_OK_LO);
2254 	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2255 		| gma_read32(hw, port, GM_RXO_OK_LO);
2256 
2257 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2258 		data[i] = gma_read32(hw, port,
2259 					  skge_stats[i].gma_offset);
2260 }
2261 
2262 static void yukon_mac_intr(struct skge_hw *hw, int port)
2263 {
2264 	struct net_device *dev = hw->dev[port];
2265 	struct skge_port *skge = netdev_priv(dev);
2266 	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2267 
2268 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2269 		     "mac interrupt status 0x%x\n", status);
2270 
2271 	if (status & GM_IS_RX_FF_OR) {
2272 		++dev->stats.rx_fifo_errors;
2273 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2274 	}
2275 
2276 	if (status & GM_IS_TX_FF_UR) {
2277 		++dev->stats.tx_fifo_errors;
2278 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2279 	}
2280 
2281 }
2282 
2283 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2284 {
2285 	switch (aux & PHY_M_PS_SPEED_MSK) {
2286 	case PHY_M_PS_SPEED_1000:
2287 		return SPEED_1000;
2288 	case PHY_M_PS_SPEED_100:
2289 		return SPEED_100;
2290 	default:
2291 		return SPEED_10;
2292 	}
2293 }
2294 
2295 static void yukon_link_up(struct skge_port *skge)
2296 {
2297 	struct skge_hw *hw = skge->hw;
2298 	int port = skge->port;
2299 	u16 reg;
2300 
2301 	/* Enable Transmit FIFO Underrun */
2302 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2303 
2304 	reg = gma_read16(hw, port, GM_GP_CTRL);
2305 	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2306 		reg |= GM_GPCR_DUP_FULL;
2307 
2308 	/* enable Rx/Tx */
2309 	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2310 	gma_write16(hw, port, GM_GP_CTRL, reg);
2311 
2312 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2313 	skge_link_up(skge);
2314 }
2315 
2316 static void yukon_link_down(struct skge_port *skge)
2317 {
2318 	struct skge_hw *hw = skge->hw;
2319 	int port = skge->port;
2320 	u16 ctrl;
2321 
2322 	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2323 	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2324 	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2325 
2326 	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2327 		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2328 		ctrl |= PHY_M_AN_ASP;
2329 		/* restore Asymmetric Pause bit */
2330 		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2331 	}
2332 
2333 	skge_link_down(skge);
2334 
2335 	yukon_init(hw, port);
2336 }
2337 
2338 static void yukon_phy_intr(struct skge_port *skge)
2339 {
2340 	struct skge_hw *hw = skge->hw;
2341 	int port = skge->port;
2342 	const char *reason = NULL;
2343 	u16 istatus, phystat;
2344 
2345 	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2346 	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2347 
2348 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2349 		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2350 
2351 	if (istatus & PHY_M_IS_AN_COMPL) {
2352 		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2353 		    & PHY_M_AN_RF) {
2354 			reason = "remote fault";
2355 			goto failed;
2356 		}
2357 
2358 		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2359 			reason = "master/slave fault";
2360 			goto failed;
2361 		}
2362 
2363 		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2364 			reason = "speed/duplex";
2365 			goto failed;
2366 		}
2367 
2368 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2369 			? DUPLEX_FULL : DUPLEX_HALF;
2370 		skge->speed = yukon_speed(hw, phystat);
2371 
2372 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2373 		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2374 		case PHY_M_PS_PAUSE_MSK:
2375 			skge->flow_status = FLOW_STAT_SYMMETRIC;
2376 			break;
2377 		case PHY_M_PS_RX_P_EN:
2378 			skge->flow_status = FLOW_STAT_REM_SEND;
2379 			break;
2380 		case PHY_M_PS_TX_P_EN:
2381 			skge->flow_status = FLOW_STAT_LOC_SEND;
2382 			break;
2383 		default:
2384 			skge->flow_status = FLOW_STAT_NONE;
2385 		}
2386 
2387 		if (skge->flow_status == FLOW_STAT_NONE ||
2388 		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2389 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2390 		else
2391 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2392 		yukon_link_up(skge);
2393 		return;
2394 	}
2395 
2396 	if (istatus & PHY_M_IS_LSP_CHANGE)
2397 		skge->speed = yukon_speed(hw, phystat);
2398 
2399 	if (istatus & PHY_M_IS_DUP_CHANGE)
2400 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2401 	if (istatus & PHY_M_IS_LST_CHANGE) {
2402 		if (phystat & PHY_M_PS_LINK_UP)
2403 			yukon_link_up(skge);
2404 		else
2405 			yukon_link_down(skge);
2406 	}
2407 	return;
2408  failed:
2409 	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2410 
2411 	/* XXX restart autonegotiation? */
2412 }
2413 
2414 static void skge_phy_reset(struct skge_port *skge)
2415 {
2416 	struct skge_hw *hw = skge->hw;
2417 	int port = skge->port;
2418 	struct net_device *dev = hw->dev[port];
2419 
2420 	netif_stop_queue(skge->netdev);
2421 	netif_carrier_off(skge->netdev);
2422 
2423 	spin_lock_bh(&hw->phy_lock);
2424 	if (is_genesis(hw)) {
2425 		genesis_reset(hw, port);
2426 		genesis_mac_init(hw, port);
2427 	} else {
2428 		yukon_reset(hw, port);
2429 		yukon_init(hw, port);
2430 	}
2431 	spin_unlock_bh(&hw->phy_lock);
2432 
2433 	skge_set_multicast(dev);
2434 }
2435 
2436 /* Basic MII support */
2437 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2438 {
2439 	struct mii_ioctl_data *data = if_mii(ifr);
2440 	struct skge_port *skge = netdev_priv(dev);
2441 	struct skge_hw *hw = skge->hw;
2442 	int err = -EOPNOTSUPP;
2443 
2444 	if (!netif_running(dev))
2445 		return -ENODEV;	/* Phy still in reset */
2446 
2447 	switch (cmd) {
2448 	case SIOCGMIIPHY:
2449 		data->phy_id = hw->phy_addr;
2450 
2451 		fallthrough;
2452 	case SIOCGMIIREG: {
2453 		u16 val = 0;
2454 		spin_lock_bh(&hw->phy_lock);
2455 
2456 		if (is_genesis(hw))
2457 			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2458 		else
2459 			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2460 		spin_unlock_bh(&hw->phy_lock);
2461 		data->val_out = val;
2462 		break;
2463 	}
2464 
2465 	case SIOCSMIIREG:
2466 		spin_lock_bh(&hw->phy_lock);
2467 		if (is_genesis(hw))
2468 			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2469 				   data->val_in);
2470 		else
2471 			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2472 				   data->val_in);
2473 		spin_unlock_bh(&hw->phy_lock);
2474 		break;
2475 	}
2476 	return err;
2477 }
2478 
2479 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2480 {
2481 	u32 end;
2482 
2483 	start /= 8;
2484 	len /= 8;
2485 	end = start + len - 1;
2486 
2487 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2488 	skge_write32(hw, RB_ADDR(q, RB_START), start);
2489 	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2490 	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2491 	skge_write32(hw, RB_ADDR(q, RB_END), end);
2492 
2493 	if (q == Q_R1 || q == Q_R2) {
2494 		/* Set thresholds on receive queue's */
2495 		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2496 			     start + (2*len)/3);
2497 		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2498 			     start + (len/3));
2499 	} else {
2500 		/* Enable store & forward on Tx queue's because
2501 		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2502 		 */
2503 		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2504 	}
2505 
2506 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2507 }
2508 
2509 /* Setup Bus Memory Interface */
2510 static void skge_qset(struct skge_port *skge, u16 q,
2511 		      const struct skge_element *e)
2512 {
2513 	struct skge_hw *hw = skge->hw;
2514 	u32 watermark = 0x600;
2515 	u64 base = skge->dma + (e->desc - skge->mem);
2516 
2517 	/* optimization to reduce window on 32bit/33mhz */
2518 	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2519 		watermark /= 2;
2520 
2521 	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2522 	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2523 	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2524 	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2525 }
2526 
2527 static int skge_up(struct net_device *dev)
2528 {
2529 	struct skge_port *skge = netdev_priv(dev);
2530 	struct skge_hw *hw = skge->hw;
2531 	int port = skge->port;
2532 	u32 chunk, ram_addr;
2533 	size_t rx_size, tx_size;
2534 	int err;
2535 
2536 	if (!is_valid_ether_addr(dev->dev_addr))
2537 		return -EINVAL;
2538 
2539 	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2540 
2541 	if (dev->mtu > RX_BUF_SIZE)
2542 		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2543 	else
2544 		skge->rx_buf_size = RX_BUF_SIZE;
2545 
2546 
2547 	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2548 	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2549 	skge->mem_size = tx_size + rx_size;
2550 	skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2551 				       &skge->dma, GFP_KERNEL);
2552 	if (!skge->mem)
2553 		return -ENOMEM;
2554 
2555 	BUG_ON(skge->dma & 7);
2556 
2557 	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2558 		dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2559 		err = -EINVAL;
2560 		goto free_pci_mem;
2561 	}
2562 
2563 	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2564 	if (err)
2565 		goto free_pci_mem;
2566 
2567 	err = skge_rx_fill(dev);
2568 	if (err)
2569 		goto free_rx_ring;
2570 
2571 	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2572 			      skge->dma + rx_size);
2573 	if (err)
2574 		goto free_rx_ring;
2575 
2576 	if (hw->ports == 1) {
2577 		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2578 				  dev->name, hw);
2579 		if (err) {
2580 			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2581 				   hw->pdev->irq, err);
2582 			goto free_tx_ring;
2583 		}
2584 	}
2585 
2586 	/* Initialize MAC */
2587 	netif_carrier_off(dev);
2588 	spin_lock_bh(&hw->phy_lock);
2589 	if (is_genesis(hw))
2590 		genesis_mac_init(hw, port);
2591 	else
2592 		yukon_mac_init(hw, port);
2593 	spin_unlock_bh(&hw->phy_lock);
2594 
2595 	/* Configure RAMbuffers - equally between ports and tx/rx */
2596 	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2597 	ram_addr = hw->ram_offset + 2 * chunk * port;
2598 
2599 	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2600 	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2601 
2602 	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2603 	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2604 	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2605 
2606 	/* Start receiver BMU */
2607 	wmb();
2608 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2609 	skge_led(skge, LED_MODE_ON);
2610 
2611 	spin_lock_irq(&hw->hw_lock);
2612 	hw->intr_mask |= portmask[port];
2613 	skge_write32(hw, B0_IMSK, hw->intr_mask);
2614 	skge_read32(hw, B0_IMSK);
2615 	spin_unlock_irq(&hw->hw_lock);
2616 
2617 	napi_enable(&skge->napi);
2618 
2619 	skge_set_multicast(dev);
2620 
2621 	return 0;
2622 
2623  free_tx_ring:
2624 	kfree(skge->tx_ring.start);
2625  free_rx_ring:
2626 	skge_rx_clean(skge);
2627 	kfree(skge->rx_ring.start);
2628  free_pci_mem:
2629 	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2630 			  skge->dma);
2631 	skge->mem = NULL;
2632 
2633 	return err;
2634 }
2635 
2636 /* stop receiver */
2637 static void skge_rx_stop(struct skge_hw *hw, int port)
2638 {
2639 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2640 	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2641 		     RB_RST_SET|RB_DIS_OP_MD);
2642 	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2643 }
2644 
2645 static int skge_down(struct net_device *dev)
2646 {
2647 	struct skge_port *skge = netdev_priv(dev);
2648 	struct skge_hw *hw = skge->hw;
2649 	int port = skge->port;
2650 
2651 	if (!skge->mem)
2652 		return 0;
2653 
2654 	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2655 
2656 	netif_tx_disable(dev);
2657 
2658 	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2659 		del_timer_sync(&skge->link_timer);
2660 
2661 	napi_disable(&skge->napi);
2662 	netif_carrier_off(dev);
2663 
2664 	spin_lock_irq(&hw->hw_lock);
2665 	hw->intr_mask &= ~portmask[port];
2666 	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2667 	skge_read32(hw, B0_IMSK);
2668 	spin_unlock_irq(&hw->hw_lock);
2669 
2670 	if (hw->ports == 1)
2671 		free_irq(hw->pdev->irq, hw);
2672 
2673 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2674 	if (is_genesis(hw))
2675 		genesis_stop(skge);
2676 	else
2677 		yukon_stop(skge);
2678 
2679 	/* Stop transmitter */
2680 	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2681 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2682 		     RB_RST_SET|RB_DIS_OP_MD);
2683 
2684 
2685 	/* Disable Force Sync bit and Enable Alloc bit */
2686 	skge_write8(hw, SK_REG(port, TXA_CTRL),
2687 		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2688 
2689 	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2690 	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2691 	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2692 
2693 	/* Reset PCI FIFO */
2694 	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2695 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2696 
2697 	/* Reset the RAM Buffer async Tx queue */
2698 	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2699 
2700 	skge_rx_stop(hw, port);
2701 
2702 	if (is_genesis(hw)) {
2703 		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2704 		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2705 	} else {
2706 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2707 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2708 	}
2709 
2710 	skge_led(skge, LED_MODE_OFF);
2711 
2712 	netif_tx_lock_bh(dev);
2713 	skge_tx_clean(dev);
2714 	netif_tx_unlock_bh(dev);
2715 
2716 	skge_rx_clean(skge);
2717 
2718 	kfree(skge->rx_ring.start);
2719 	kfree(skge->tx_ring.start);
2720 	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2721 			  skge->dma);
2722 	skge->mem = NULL;
2723 	return 0;
2724 }
2725 
2726 static inline int skge_avail(const struct skge_ring *ring)
2727 {
2728 	smp_mb();
2729 	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2730 		+ (ring->to_clean - ring->to_use) - 1;
2731 }
2732 
2733 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2734 				   struct net_device *dev)
2735 {
2736 	struct skge_port *skge = netdev_priv(dev);
2737 	struct skge_hw *hw = skge->hw;
2738 	struct skge_element *e;
2739 	struct skge_tx_desc *td;
2740 	int i;
2741 	u32 control, len;
2742 	dma_addr_t map;
2743 
2744 	if (skb_padto(skb, ETH_ZLEN))
2745 		return NETDEV_TX_OK;
2746 
2747 	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2748 		return NETDEV_TX_BUSY;
2749 
2750 	e = skge->tx_ring.to_use;
2751 	td = e->desc;
2752 	BUG_ON(td->control & BMU_OWN);
2753 	e->skb = skb;
2754 	len = skb_headlen(skb);
2755 	map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2756 	if (dma_mapping_error(&hw->pdev->dev, map))
2757 		goto mapping_error;
2758 
2759 	dma_unmap_addr_set(e, mapaddr, map);
2760 	dma_unmap_len_set(e, maplen, len);
2761 
2762 	td->dma_lo = lower_32_bits(map);
2763 	td->dma_hi = upper_32_bits(map);
2764 
2765 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2766 		const int offset = skb_checksum_start_offset(skb);
2767 
2768 		/* This seems backwards, but it is what the sk98lin
2769 		 * does.  Looks like hardware is wrong?
2770 		 */
2771 		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2772 		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2773 			control = BMU_TCP_CHECK;
2774 		else
2775 			control = BMU_UDP_CHECK;
2776 
2777 		td->csum_offs = 0;
2778 		td->csum_start = offset;
2779 		td->csum_write = offset + skb->csum_offset;
2780 	} else
2781 		control = BMU_CHECK;
2782 
2783 	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2784 		control |= BMU_EOF | BMU_IRQ_EOF;
2785 	else {
2786 		struct skge_tx_desc *tf = td;
2787 
2788 		control |= BMU_STFWD;
2789 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2790 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2791 
2792 			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2793 					       skb_frag_size(frag), DMA_TO_DEVICE);
2794 			if (dma_mapping_error(&hw->pdev->dev, map))
2795 				goto mapping_unwind;
2796 
2797 			e = e->next;
2798 			e->skb = skb;
2799 			tf = e->desc;
2800 			BUG_ON(tf->control & BMU_OWN);
2801 
2802 			tf->dma_lo = lower_32_bits(map);
2803 			tf->dma_hi = upper_32_bits(map);
2804 			dma_unmap_addr_set(e, mapaddr, map);
2805 			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2806 
2807 			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2808 		}
2809 		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2810 	}
2811 	/* Make sure all the descriptors written */
2812 	wmb();
2813 	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2814 	wmb();
2815 
2816 	netdev_sent_queue(dev, skb->len);
2817 
2818 	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2819 
2820 	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2821 		     "tx queued, slot %td, len %d\n",
2822 		     e - skge->tx_ring.start, skb->len);
2823 
2824 	skge->tx_ring.to_use = e->next;
2825 	smp_wmb();
2826 
2827 	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2828 		netdev_dbg(dev, "transmit queue full\n");
2829 		netif_stop_queue(dev);
2830 	}
2831 
2832 	return NETDEV_TX_OK;
2833 
2834 mapping_unwind:
2835 	e = skge->tx_ring.to_use;
2836 	dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2837 			 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2838 	while (i-- > 0) {
2839 		e = e->next;
2840 		dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2841 			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2842 	}
2843 
2844 mapping_error:
2845 	if (net_ratelimit())
2846 		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2847 	dev_kfree_skb_any(skb);
2848 	return NETDEV_TX_OK;
2849 }
2850 
2851 
2852 /* Free resources associated with this reing element */
2853 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2854 				 u32 control)
2855 {
2856 	/* skb header vs. fragment */
2857 	if (control & BMU_STF)
2858 		dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2859 				 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2860 	else
2861 		dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2862 			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2863 }
2864 
2865 /* Free all buffers in transmit ring */
2866 static void skge_tx_clean(struct net_device *dev)
2867 {
2868 	struct skge_port *skge = netdev_priv(dev);
2869 	struct skge_element *e;
2870 
2871 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2872 		struct skge_tx_desc *td = e->desc;
2873 
2874 		skge_tx_unmap(skge->hw->pdev, e, td->control);
2875 
2876 		if (td->control & BMU_EOF)
2877 			dev_kfree_skb(e->skb);
2878 		td->control = 0;
2879 	}
2880 
2881 	netdev_reset_queue(dev);
2882 	skge->tx_ring.to_clean = e;
2883 }
2884 
2885 static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2886 {
2887 	struct skge_port *skge = netdev_priv(dev);
2888 
2889 	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2890 
2891 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2892 	skge_tx_clean(dev);
2893 	netif_wake_queue(dev);
2894 }
2895 
2896 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2897 {
2898 	int err;
2899 
2900 	if (!netif_running(dev)) {
2901 		dev->mtu = new_mtu;
2902 		return 0;
2903 	}
2904 
2905 	skge_down(dev);
2906 
2907 	dev->mtu = new_mtu;
2908 
2909 	err = skge_up(dev);
2910 	if (err)
2911 		dev_close(dev);
2912 
2913 	return err;
2914 }
2915 
2916 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2917 
2918 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2919 {
2920 	u32 crc, bit;
2921 
2922 	crc = ether_crc_le(ETH_ALEN, addr);
2923 	bit = ~crc & 0x3f;
2924 	filter[bit/8] |= 1 << (bit%8);
2925 }
2926 
2927 static void genesis_set_multicast(struct net_device *dev)
2928 {
2929 	struct skge_port *skge = netdev_priv(dev);
2930 	struct skge_hw *hw = skge->hw;
2931 	int port = skge->port;
2932 	struct netdev_hw_addr *ha;
2933 	u32 mode;
2934 	u8 filter[8];
2935 
2936 	mode = xm_read32(hw, port, XM_MODE);
2937 	mode |= XM_MD_ENA_HASH;
2938 	if (dev->flags & IFF_PROMISC)
2939 		mode |= XM_MD_ENA_PROM;
2940 	else
2941 		mode &= ~XM_MD_ENA_PROM;
2942 
2943 	if (dev->flags & IFF_ALLMULTI)
2944 		memset(filter, 0xff, sizeof(filter));
2945 	else {
2946 		memset(filter, 0, sizeof(filter));
2947 
2948 		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2949 		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2950 			genesis_add_filter(filter, pause_mc_addr);
2951 
2952 		netdev_for_each_mc_addr(ha, dev)
2953 			genesis_add_filter(filter, ha->addr);
2954 	}
2955 
2956 	xm_write32(hw, port, XM_MODE, mode);
2957 	xm_outhash(hw, port, XM_HSM, filter);
2958 }
2959 
2960 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2961 {
2962 	 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2963 	 filter[bit/8] |= 1 << (bit%8);
2964 }
2965 
2966 static void yukon_set_multicast(struct net_device *dev)
2967 {
2968 	struct skge_port *skge = netdev_priv(dev);
2969 	struct skge_hw *hw = skge->hw;
2970 	int port = skge->port;
2971 	struct netdev_hw_addr *ha;
2972 	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2973 			skge->flow_status == FLOW_STAT_SYMMETRIC);
2974 	u16 reg;
2975 	u8 filter[8];
2976 
2977 	memset(filter, 0, sizeof(filter));
2978 
2979 	reg = gma_read16(hw, port, GM_RX_CTRL);
2980 	reg |= GM_RXCR_UCF_ENA;
2981 
2982 	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2983 		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2984 	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2985 		memset(filter, 0xff, sizeof(filter));
2986 	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2987 		reg &= ~GM_RXCR_MCF_ENA;
2988 	else {
2989 		reg |= GM_RXCR_MCF_ENA;
2990 
2991 		if (rx_pause)
2992 			yukon_add_filter(filter, pause_mc_addr);
2993 
2994 		netdev_for_each_mc_addr(ha, dev)
2995 			yukon_add_filter(filter, ha->addr);
2996 	}
2997 
2998 
2999 	gma_write16(hw, port, GM_MC_ADDR_H1,
3000 			 (u16)filter[0] | ((u16)filter[1] << 8));
3001 	gma_write16(hw, port, GM_MC_ADDR_H2,
3002 			 (u16)filter[2] | ((u16)filter[3] << 8));
3003 	gma_write16(hw, port, GM_MC_ADDR_H3,
3004 			 (u16)filter[4] | ((u16)filter[5] << 8));
3005 	gma_write16(hw, port, GM_MC_ADDR_H4,
3006 			 (u16)filter[6] | ((u16)filter[7] << 8));
3007 
3008 	gma_write16(hw, port, GM_RX_CTRL, reg);
3009 }
3010 
3011 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3012 {
3013 	if (is_genesis(hw))
3014 		return status >> XMR_FS_LEN_SHIFT;
3015 	else
3016 		return status >> GMR_FS_LEN_SHIFT;
3017 }
3018 
3019 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3020 {
3021 	if (is_genesis(hw))
3022 		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3023 	else
3024 		return (status & GMR_FS_ANY_ERR) ||
3025 			(status & GMR_FS_RX_OK) == 0;
3026 }
3027 
3028 static void skge_set_multicast(struct net_device *dev)
3029 {
3030 	struct skge_port *skge = netdev_priv(dev);
3031 
3032 	if (is_genesis(skge->hw))
3033 		genesis_set_multicast(dev);
3034 	else
3035 		yukon_set_multicast(dev);
3036 
3037 }
3038 
3039 
3040 /* Get receive buffer from descriptor.
3041  * Handles copy of small buffers and reallocation failures
3042  */
3043 static struct sk_buff *skge_rx_get(struct net_device *dev,
3044 				   struct skge_element *e,
3045 				   u32 control, u32 status, u16 csum)
3046 {
3047 	struct skge_port *skge = netdev_priv(dev);
3048 	struct sk_buff *skb;
3049 	u16 len = control & BMU_BBC;
3050 
3051 	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3052 		     "rx slot %td status 0x%x len %d\n",
3053 		     e - skge->rx_ring.start, status, len);
3054 
3055 	if (len > skge->rx_buf_size)
3056 		goto error;
3057 
3058 	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3059 		goto error;
3060 
3061 	if (bad_phy_status(skge->hw, status))
3062 		goto error;
3063 
3064 	if (phy_length(skge->hw, status) != len)
3065 		goto error;
3066 
3067 	if (len < RX_COPY_THRESHOLD) {
3068 		skb = netdev_alloc_skb_ip_align(dev, len);
3069 		if (!skb)
3070 			goto resubmit;
3071 
3072 		dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3073 					dma_unmap_addr(e, mapaddr),
3074 					dma_unmap_len(e, maplen),
3075 					DMA_FROM_DEVICE);
3076 		skb_copy_from_linear_data(e->skb, skb->data, len);
3077 		dma_sync_single_for_device(&skge->hw->pdev->dev,
3078 					   dma_unmap_addr(e, mapaddr),
3079 					   dma_unmap_len(e, maplen),
3080 					   DMA_FROM_DEVICE);
3081 		skge_rx_reuse(e, skge->rx_buf_size);
3082 	} else {
3083 		struct skge_element ee;
3084 		struct sk_buff *nskb;
3085 
3086 		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3087 		if (!nskb)
3088 			goto resubmit;
3089 
3090 		ee = *e;
3091 
3092 		skb = ee.skb;
3093 		prefetch(skb->data);
3094 
3095 		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3096 			dev_kfree_skb(nskb);
3097 			goto resubmit;
3098 		}
3099 
3100 		dma_unmap_single(&skge->hw->pdev->dev,
3101 				 dma_unmap_addr(&ee, mapaddr),
3102 				 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
3103 	}
3104 
3105 	skb_put(skb, len);
3106 
3107 	if (dev->features & NETIF_F_RXCSUM) {
3108 		skb->csum = le16_to_cpu(csum);
3109 		skb->ip_summed = CHECKSUM_COMPLETE;
3110 	}
3111 
3112 	skb->protocol = eth_type_trans(skb, dev);
3113 
3114 	return skb;
3115 error:
3116 
3117 	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3118 		     "rx err, slot %td control 0x%x status 0x%x\n",
3119 		     e - skge->rx_ring.start, control, status);
3120 
3121 	if (is_genesis(skge->hw)) {
3122 		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3123 			dev->stats.rx_length_errors++;
3124 		if (status & XMR_FS_FRA_ERR)
3125 			dev->stats.rx_frame_errors++;
3126 		if (status & XMR_FS_FCS_ERR)
3127 			dev->stats.rx_crc_errors++;
3128 	} else {
3129 		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3130 			dev->stats.rx_length_errors++;
3131 		if (status & GMR_FS_FRAGMENT)
3132 			dev->stats.rx_frame_errors++;
3133 		if (status & GMR_FS_CRC_ERR)
3134 			dev->stats.rx_crc_errors++;
3135 	}
3136 
3137 resubmit:
3138 	skge_rx_reuse(e, skge->rx_buf_size);
3139 	return NULL;
3140 }
3141 
3142 /* Free all buffers in Tx ring which are no longer owned by device */
3143 static void skge_tx_done(struct net_device *dev)
3144 {
3145 	struct skge_port *skge = netdev_priv(dev);
3146 	struct skge_ring *ring = &skge->tx_ring;
3147 	struct skge_element *e;
3148 	unsigned int bytes_compl = 0, pkts_compl = 0;
3149 
3150 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3151 
3152 	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3153 		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3154 
3155 		if (control & BMU_OWN)
3156 			break;
3157 
3158 		skge_tx_unmap(skge->hw->pdev, e, control);
3159 
3160 		if (control & BMU_EOF) {
3161 			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3162 				     "tx done slot %td\n",
3163 				     e - skge->tx_ring.start);
3164 
3165 			pkts_compl++;
3166 			bytes_compl += e->skb->len;
3167 
3168 			dev_consume_skb_any(e->skb);
3169 		}
3170 	}
3171 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3172 	skge->tx_ring.to_clean = e;
3173 
3174 	/* Can run lockless until we need to synchronize to restart queue. */
3175 	smp_mb();
3176 
3177 	if (unlikely(netif_queue_stopped(dev) &&
3178 		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3179 		netif_tx_lock(dev);
3180 		if (unlikely(netif_queue_stopped(dev) &&
3181 			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3182 			netif_wake_queue(dev);
3183 
3184 		}
3185 		netif_tx_unlock(dev);
3186 	}
3187 }
3188 
3189 static int skge_poll(struct napi_struct *napi, int budget)
3190 {
3191 	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3192 	struct net_device *dev = skge->netdev;
3193 	struct skge_hw *hw = skge->hw;
3194 	struct skge_ring *ring = &skge->rx_ring;
3195 	struct skge_element *e;
3196 	int work_done = 0;
3197 
3198 	skge_tx_done(dev);
3199 
3200 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3201 
3202 	for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3203 		struct skge_rx_desc *rd = e->desc;
3204 		struct sk_buff *skb;
3205 		u32 control;
3206 
3207 		rmb();
3208 		control = rd->control;
3209 		if (control & BMU_OWN)
3210 			break;
3211 
3212 		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3213 		if (likely(skb)) {
3214 			napi_gro_receive(napi, skb);
3215 			++work_done;
3216 		}
3217 	}
3218 	ring->to_clean = e;
3219 
3220 	/* restart receiver */
3221 	wmb();
3222 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3223 
3224 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3225 		unsigned long flags;
3226 
3227 		spin_lock_irqsave(&hw->hw_lock, flags);
3228 		hw->intr_mask |= napimask[skge->port];
3229 		skge_write32(hw, B0_IMSK, hw->intr_mask);
3230 		skge_read32(hw, B0_IMSK);
3231 		spin_unlock_irqrestore(&hw->hw_lock, flags);
3232 	}
3233 
3234 	return work_done;
3235 }
3236 
3237 /* Parity errors seem to happen when Genesis is connected to a switch
3238  * with no other ports present. Heartbeat error??
3239  */
3240 static void skge_mac_parity(struct skge_hw *hw, int port)
3241 {
3242 	struct net_device *dev = hw->dev[port];
3243 
3244 	++dev->stats.tx_heartbeat_errors;
3245 
3246 	if (is_genesis(hw))
3247 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3248 			     MFF_CLR_PERR);
3249 	else
3250 		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3251 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3252 			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3253 			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3254 }
3255 
3256 static void skge_mac_intr(struct skge_hw *hw, int port)
3257 {
3258 	if (is_genesis(hw))
3259 		genesis_mac_intr(hw, port);
3260 	else
3261 		yukon_mac_intr(hw, port);
3262 }
3263 
3264 /* Handle device specific framing and timeout interrupts */
3265 static void skge_error_irq(struct skge_hw *hw)
3266 {
3267 	struct pci_dev *pdev = hw->pdev;
3268 	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3269 
3270 	if (is_genesis(hw)) {
3271 		/* clear xmac errors */
3272 		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3273 			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3274 		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3275 			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3276 	} else {
3277 		/* Timestamp (unused) overflow */
3278 		if (hwstatus & IS_IRQ_TIST_OV)
3279 			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3280 	}
3281 
3282 	if (hwstatus & IS_RAM_RD_PAR) {
3283 		dev_err(&pdev->dev, "Ram read data parity error\n");
3284 		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3285 	}
3286 
3287 	if (hwstatus & IS_RAM_WR_PAR) {
3288 		dev_err(&pdev->dev, "Ram write data parity error\n");
3289 		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3290 	}
3291 
3292 	if (hwstatus & IS_M1_PAR_ERR)
3293 		skge_mac_parity(hw, 0);
3294 
3295 	if (hwstatus & IS_M2_PAR_ERR)
3296 		skge_mac_parity(hw, 1);
3297 
3298 	if (hwstatus & IS_R1_PAR_ERR) {
3299 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3300 			hw->dev[0]->name);
3301 		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3302 	}
3303 
3304 	if (hwstatus & IS_R2_PAR_ERR) {
3305 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3306 			hw->dev[1]->name);
3307 		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3308 	}
3309 
3310 	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3311 		u16 pci_status, pci_cmd;
3312 
3313 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3314 		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3315 
3316 		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3317 			pci_cmd, pci_status);
3318 
3319 		/* Write the error bits back to clear them. */
3320 		pci_status &= PCI_STATUS_ERROR_BITS;
3321 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3322 		pci_write_config_word(pdev, PCI_COMMAND,
3323 				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3324 		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3325 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3326 
3327 		/* if error still set then just ignore it */
3328 		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3329 		if (hwstatus & IS_IRQ_STAT) {
3330 			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3331 			hw->intr_mask &= ~IS_HW_ERR;
3332 		}
3333 	}
3334 }
3335 
3336 /*
3337  * Interrupt from PHY are handled in tasklet (softirq)
3338  * because accessing phy registers requires spin wait which might
3339  * cause excess interrupt latency.
3340  */
3341 static void skge_extirq(unsigned long arg)
3342 {
3343 	struct skge_hw *hw = (struct skge_hw *) arg;
3344 	int port;
3345 
3346 	for (port = 0; port < hw->ports; port++) {
3347 		struct net_device *dev = hw->dev[port];
3348 
3349 		if (netif_running(dev)) {
3350 			struct skge_port *skge = netdev_priv(dev);
3351 
3352 			spin_lock(&hw->phy_lock);
3353 			if (!is_genesis(hw))
3354 				yukon_phy_intr(skge);
3355 			else if (hw->phy_type == SK_PHY_BCOM)
3356 				bcom_phy_intr(skge);
3357 			spin_unlock(&hw->phy_lock);
3358 		}
3359 	}
3360 
3361 	spin_lock_irq(&hw->hw_lock);
3362 	hw->intr_mask |= IS_EXT_REG;
3363 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3364 	skge_read32(hw, B0_IMSK);
3365 	spin_unlock_irq(&hw->hw_lock);
3366 }
3367 
3368 static irqreturn_t skge_intr(int irq, void *dev_id)
3369 {
3370 	struct skge_hw *hw = dev_id;
3371 	u32 status;
3372 	int handled = 0;
3373 
3374 	spin_lock(&hw->hw_lock);
3375 	/* Reading this register masks IRQ */
3376 	status = skge_read32(hw, B0_SP_ISRC);
3377 	if (status == 0 || status == ~0)
3378 		goto out;
3379 
3380 	handled = 1;
3381 	status &= hw->intr_mask;
3382 	if (status & IS_EXT_REG) {
3383 		hw->intr_mask &= ~IS_EXT_REG;
3384 		tasklet_schedule(&hw->phy_task);
3385 	}
3386 
3387 	if (status & (IS_XA1_F|IS_R1_F)) {
3388 		struct skge_port *skge = netdev_priv(hw->dev[0]);
3389 		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3390 		napi_schedule(&skge->napi);
3391 	}
3392 
3393 	if (status & IS_PA_TO_TX1)
3394 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3395 
3396 	if (status & IS_PA_TO_RX1) {
3397 		++hw->dev[0]->stats.rx_over_errors;
3398 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3399 	}
3400 
3401 
3402 	if (status & IS_MAC1)
3403 		skge_mac_intr(hw, 0);
3404 
3405 	if (hw->dev[1]) {
3406 		struct skge_port *skge = netdev_priv(hw->dev[1]);
3407 
3408 		if (status & (IS_XA2_F|IS_R2_F)) {
3409 			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3410 			napi_schedule(&skge->napi);
3411 		}
3412 
3413 		if (status & IS_PA_TO_RX2) {
3414 			++hw->dev[1]->stats.rx_over_errors;
3415 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3416 		}
3417 
3418 		if (status & IS_PA_TO_TX2)
3419 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3420 
3421 		if (status & IS_MAC2)
3422 			skge_mac_intr(hw, 1);
3423 	}
3424 
3425 	if (status & IS_HW_ERR)
3426 		skge_error_irq(hw);
3427 out:
3428 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3429 	skge_read32(hw, B0_IMSK);
3430 	spin_unlock(&hw->hw_lock);
3431 
3432 	return IRQ_RETVAL(handled);
3433 }
3434 
3435 #ifdef CONFIG_NET_POLL_CONTROLLER
3436 static void skge_netpoll(struct net_device *dev)
3437 {
3438 	struct skge_port *skge = netdev_priv(dev);
3439 
3440 	disable_irq(dev->irq);
3441 	skge_intr(dev->irq, skge->hw);
3442 	enable_irq(dev->irq);
3443 }
3444 #endif
3445 
3446 static int skge_set_mac_address(struct net_device *dev, void *p)
3447 {
3448 	struct skge_port *skge = netdev_priv(dev);
3449 	struct skge_hw *hw = skge->hw;
3450 	unsigned port = skge->port;
3451 	const struct sockaddr *addr = p;
3452 	u16 ctrl;
3453 
3454 	if (!is_valid_ether_addr(addr->sa_data))
3455 		return -EADDRNOTAVAIL;
3456 
3457 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3458 
3459 	if (!netif_running(dev)) {
3460 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3461 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3462 	} else {
3463 		/* disable Rx */
3464 		spin_lock_bh(&hw->phy_lock);
3465 		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3466 		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3467 
3468 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3469 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3470 
3471 		if (is_genesis(hw))
3472 			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3473 		else {
3474 			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3475 			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3476 		}
3477 
3478 		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3479 		spin_unlock_bh(&hw->phy_lock);
3480 	}
3481 
3482 	return 0;
3483 }
3484 
3485 static const struct {
3486 	u8 id;
3487 	const char *name;
3488 } skge_chips[] = {
3489 	{ CHIP_ID_GENESIS,	"Genesis" },
3490 	{ CHIP_ID_YUKON,	 "Yukon" },
3491 	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3492 	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3493 };
3494 
3495 static const char *skge_board_name(const struct skge_hw *hw)
3496 {
3497 	int i;
3498 	static char buf[16];
3499 
3500 	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3501 		if (skge_chips[i].id == hw->chip_id)
3502 			return skge_chips[i].name;
3503 
3504 	snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3505 	return buf;
3506 }
3507 
3508 
3509 /*
3510  * Setup the board data structure, but don't bring up
3511  * the port(s)
3512  */
3513 static int skge_reset(struct skge_hw *hw)
3514 {
3515 	u32 reg;
3516 	u16 ctst, pci_status;
3517 	u8 t8, mac_cfg, pmd_type;
3518 	int i;
3519 
3520 	ctst = skge_read16(hw, B0_CTST);
3521 
3522 	/* do a SW reset */
3523 	skge_write8(hw, B0_CTST, CS_RST_SET);
3524 	skge_write8(hw, B0_CTST, CS_RST_CLR);
3525 
3526 	/* clear PCI errors, if any */
3527 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3528 	skge_write8(hw, B2_TST_CTRL2, 0);
3529 
3530 	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3531 	pci_write_config_word(hw->pdev, PCI_STATUS,
3532 			      pci_status | PCI_STATUS_ERROR_BITS);
3533 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3534 	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3535 
3536 	/* restore CLK_RUN bits (for Yukon-Lite) */
3537 	skge_write16(hw, B0_CTST,
3538 		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3539 
3540 	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3541 	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3542 	pmd_type = skge_read8(hw, B2_PMD_TYP);
3543 	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3544 
3545 	switch (hw->chip_id) {
3546 	case CHIP_ID_GENESIS:
3547 #ifdef CONFIG_SKGE_GENESIS
3548 		switch (hw->phy_type) {
3549 		case SK_PHY_XMAC:
3550 			hw->phy_addr = PHY_ADDR_XMAC;
3551 			break;
3552 		case SK_PHY_BCOM:
3553 			hw->phy_addr = PHY_ADDR_BCOM;
3554 			break;
3555 		default:
3556 			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3557 			       hw->phy_type);
3558 			return -EOPNOTSUPP;
3559 		}
3560 		break;
3561 #else
3562 		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3563 		return -EOPNOTSUPP;
3564 #endif
3565 
3566 	case CHIP_ID_YUKON:
3567 	case CHIP_ID_YUKON_LITE:
3568 	case CHIP_ID_YUKON_LP:
3569 		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3570 			hw->copper = 1;
3571 
3572 		hw->phy_addr = PHY_ADDR_MARV;
3573 		break;
3574 
3575 	default:
3576 		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3577 		       hw->chip_id);
3578 		return -EOPNOTSUPP;
3579 	}
3580 
3581 	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3582 	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3583 	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3584 
3585 	/* read the adapters RAM size */
3586 	t8 = skge_read8(hw, B2_E_0);
3587 	if (is_genesis(hw)) {
3588 		if (t8 == 3) {
3589 			/* special case: 4 x 64k x 36, offset = 0x80000 */
3590 			hw->ram_size = 0x100000;
3591 			hw->ram_offset = 0x80000;
3592 		} else
3593 			hw->ram_size = t8 * 512;
3594 	} else if (t8 == 0)
3595 		hw->ram_size = 0x20000;
3596 	else
3597 		hw->ram_size = t8 * 4096;
3598 
3599 	hw->intr_mask = IS_HW_ERR;
3600 
3601 	/* Use PHY IRQ for all but fiber based Genesis board */
3602 	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3603 		hw->intr_mask |= IS_EXT_REG;
3604 
3605 	if (is_genesis(hw))
3606 		genesis_init(hw);
3607 	else {
3608 		/* switch power to VCC (WA for VAUX problem) */
3609 		skge_write8(hw, B0_POWER_CTRL,
3610 			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3611 
3612 		/* avoid boards with stuck Hardware error bits */
3613 		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3614 		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3615 			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3616 			hw->intr_mask &= ~IS_HW_ERR;
3617 		}
3618 
3619 		/* Clear PHY COMA */
3620 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3621 		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3622 		reg &= ~PCI_PHY_COMA;
3623 		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3624 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3625 
3626 
3627 		for (i = 0; i < hw->ports; i++) {
3628 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3629 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3630 		}
3631 	}
3632 
3633 	/* turn off hardware timer (unused) */
3634 	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3635 	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3636 	skge_write8(hw, B0_LED, LED_STAT_ON);
3637 
3638 	/* enable the Tx Arbiters */
3639 	for (i = 0; i < hw->ports; i++)
3640 		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3641 
3642 	/* Initialize ram interface */
3643 	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3644 
3645 	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3646 	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3647 	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3648 	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3649 	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3650 	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3651 	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3652 	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3653 	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3654 	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3655 	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3656 	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3657 
3658 	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3659 
3660 	/* Set interrupt moderation for Transmit only
3661 	 * Receive interrupts avoided by NAPI
3662 	 */
3663 	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3664 	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3665 	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3666 
3667 	/* Leave irq disabled until first port is brought up. */
3668 	skge_write32(hw, B0_IMSK, 0);
3669 
3670 	for (i = 0; i < hw->ports; i++) {
3671 		if (is_genesis(hw))
3672 			genesis_reset(hw, i);
3673 		else
3674 			yukon_reset(hw, i);
3675 	}
3676 
3677 	return 0;
3678 }
3679 
3680 
3681 #ifdef CONFIG_SKGE_DEBUG
3682 
3683 static struct dentry *skge_debug;
3684 
3685 static int skge_debug_show(struct seq_file *seq, void *v)
3686 {
3687 	struct net_device *dev = seq->private;
3688 	const struct skge_port *skge = netdev_priv(dev);
3689 	const struct skge_hw *hw = skge->hw;
3690 	const struct skge_element *e;
3691 
3692 	if (!netif_running(dev))
3693 		return -ENETDOWN;
3694 
3695 	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3696 		   skge_read32(hw, B0_IMSK));
3697 
3698 	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3699 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3700 		const struct skge_tx_desc *t = e->desc;
3701 		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3702 			   t->control, t->dma_hi, t->dma_lo, t->status,
3703 			   t->csum_offs, t->csum_write, t->csum_start);
3704 	}
3705 
3706 	seq_puts(seq, "\nRx Ring:\n");
3707 	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3708 		const struct skge_rx_desc *r = e->desc;
3709 
3710 		if (r->control & BMU_OWN)
3711 			break;
3712 
3713 		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3714 			   r->control, r->dma_hi, r->dma_lo, r->status,
3715 			   r->timestamp, r->csum1, r->csum1_start);
3716 	}
3717 
3718 	return 0;
3719 }
3720 DEFINE_SHOW_ATTRIBUTE(skge_debug);
3721 
3722 /*
3723  * Use network device events to create/remove/rename
3724  * debugfs file entries
3725  */
3726 static int skge_device_event(struct notifier_block *unused,
3727 			     unsigned long event, void *ptr)
3728 {
3729 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3730 	struct skge_port *skge;
3731 
3732 	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3733 		goto done;
3734 
3735 	skge = netdev_priv(dev);
3736 	switch (event) {
3737 	case NETDEV_CHANGENAME:
3738 		if (skge->debugfs)
3739 			skge->debugfs = debugfs_rename(skge_debug,
3740 						       skge->debugfs,
3741 						       skge_debug, dev->name);
3742 		break;
3743 
3744 	case NETDEV_GOING_DOWN:
3745 		debugfs_remove(skge->debugfs);
3746 		skge->debugfs = NULL;
3747 		break;
3748 
3749 	case NETDEV_UP:
3750 		skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3751 						    dev, &skge_debug_fops);
3752 		break;
3753 	}
3754 
3755 done:
3756 	return NOTIFY_DONE;
3757 }
3758 
3759 static struct notifier_block skge_notifier = {
3760 	.notifier_call = skge_device_event,
3761 };
3762 
3763 
3764 static __init void skge_debug_init(void)
3765 {
3766 	skge_debug = debugfs_create_dir("skge", NULL);
3767 
3768 	register_netdevice_notifier(&skge_notifier);
3769 }
3770 
3771 static __exit void skge_debug_cleanup(void)
3772 {
3773 	if (skge_debug) {
3774 		unregister_netdevice_notifier(&skge_notifier);
3775 		debugfs_remove(skge_debug);
3776 		skge_debug = NULL;
3777 	}
3778 }
3779 
3780 #else
3781 #define skge_debug_init()
3782 #define skge_debug_cleanup()
3783 #endif
3784 
3785 static const struct net_device_ops skge_netdev_ops = {
3786 	.ndo_open		= skge_up,
3787 	.ndo_stop		= skge_down,
3788 	.ndo_start_xmit		= skge_xmit_frame,
3789 	.ndo_do_ioctl		= skge_ioctl,
3790 	.ndo_get_stats		= skge_get_stats,
3791 	.ndo_tx_timeout		= skge_tx_timeout,
3792 	.ndo_change_mtu		= skge_change_mtu,
3793 	.ndo_validate_addr	= eth_validate_addr,
3794 	.ndo_set_rx_mode	= skge_set_multicast,
3795 	.ndo_set_mac_address	= skge_set_mac_address,
3796 #ifdef CONFIG_NET_POLL_CONTROLLER
3797 	.ndo_poll_controller	= skge_netpoll,
3798 #endif
3799 };
3800 
3801 
3802 /* Initialize network device */
3803 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3804 				       int highmem)
3805 {
3806 	struct skge_port *skge;
3807 	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3808 
3809 	if (!dev)
3810 		return NULL;
3811 
3812 	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3813 	dev->netdev_ops = &skge_netdev_ops;
3814 	dev->ethtool_ops = &skge_ethtool_ops;
3815 	dev->watchdog_timeo = TX_WATCHDOG;
3816 	dev->irq = hw->pdev->irq;
3817 
3818 	/* MTU range: 60 - 9000 */
3819 	dev->min_mtu = ETH_ZLEN;
3820 	dev->max_mtu = ETH_JUMBO_MTU;
3821 
3822 	if (highmem)
3823 		dev->features |= NETIF_F_HIGHDMA;
3824 
3825 	skge = netdev_priv(dev);
3826 	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3827 	skge->netdev = dev;
3828 	skge->hw = hw;
3829 	skge->msg_enable = netif_msg_init(debug, default_msg);
3830 
3831 	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3832 	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3833 
3834 	/* Auto speed and flow control */
3835 	skge->autoneg = AUTONEG_ENABLE;
3836 	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3837 	skge->duplex = -1;
3838 	skge->speed = -1;
3839 	skge->advertising = skge_supported_modes(hw);
3840 
3841 	if (device_can_wakeup(&hw->pdev->dev)) {
3842 		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3843 		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3844 	}
3845 
3846 	hw->dev[port] = dev;
3847 
3848 	skge->port = port;
3849 
3850 	/* Only used for Genesis XMAC */
3851 	if (is_genesis(hw))
3852 	    timer_setup(&skge->link_timer, xm_link_timer, 0);
3853 	else {
3854 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3855 		                   NETIF_F_RXCSUM;
3856 		dev->features |= dev->hw_features;
3857 	}
3858 
3859 	/* read the mac address */
3860 	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3861 
3862 	return dev;
3863 }
3864 
3865 static void skge_show_addr(struct net_device *dev)
3866 {
3867 	const struct skge_port *skge = netdev_priv(dev);
3868 
3869 	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3870 }
3871 
3872 static int only_32bit_dma;
3873 
3874 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3875 {
3876 	struct net_device *dev, *dev1;
3877 	struct skge_hw *hw;
3878 	int err, using_dac = 0;
3879 
3880 	err = pci_enable_device(pdev);
3881 	if (err) {
3882 		dev_err(&pdev->dev, "cannot enable PCI device\n");
3883 		goto err_out;
3884 	}
3885 
3886 	err = pci_request_regions(pdev, DRV_NAME);
3887 	if (err) {
3888 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3889 		goto err_out_disable_pdev;
3890 	}
3891 
3892 	pci_set_master(pdev);
3893 
3894 	if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3895 		using_dac = 1;
3896 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3897 	} else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3898 		using_dac = 0;
3899 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3900 	}
3901 
3902 	if (err) {
3903 		dev_err(&pdev->dev, "no usable DMA configuration\n");
3904 		goto err_out_free_regions;
3905 	}
3906 
3907 #ifdef __BIG_ENDIAN
3908 	/* byte swap descriptors in hardware */
3909 	{
3910 		u32 reg;
3911 
3912 		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3913 		reg |= PCI_REV_DESC;
3914 		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3915 	}
3916 #endif
3917 
3918 	err = -ENOMEM;
3919 	/* space for skge@pci:0000:04:00.0 */
3920 	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3921 		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3922 	if (!hw)
3923 		goto err_out_free_regions;
3924 
3925 	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3926 
3927 	hw->pdev = pdev;
3928 	spin_lock_init(&hw->hw_lock);
3929 	spin_lock_init(&hw->phy_lock);
3930 	tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3931 
3932 	hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3933 	if (!hw->regs) {
3934 		dev_err(&pdev->dev, "cannot map device registers\n");
3935 		goto err_out_free_hw;
3936 	}
3937 
3938 	err = skge_reset(hw);
3939 	if (err)
3940 		goto err_out_iounmap;
3941 
3942 	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3943 		DRV_VERSION,
3944 		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3945 		skge_board_name(hw), hw->chip_rev);
3946 
3947 	dev = skge_devinit(hw, 0, using_dac);
3948 	if (!dev) {
3949 		err = -ENOMEM;
3950 		goto err_out_led_off;
3951 	}
3952 
3953 	/* Some motherboards are broken and has zero in ROM. */
3954 	if (!is_valid_ether_addr(dev->dev_addr))
3955 		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3956 
3957 	err = register_netdev(dev);
3958 	if (err) {
3959 		dev_err(&pdev->dev, "cannot register net device\n");
3960 		goto err_out_free_netdev;
3961 	}
3962 
3963 	skge_show_addr(dev);
3964 
3965 	if (hw->ports > 1) {
3966 		dev1 = skge_devinit(hw, 1, using_dac);
3967 		if (!dev1) {
3968 			err = -ENOMEM;
3969 			goto err_out_unregister;
3970 		}
3971 
3972 		err = register_netdev(dev1);
3973 		if (err) {
3974 			dev_err(&pdev->dev, "cannot register second net device\n");
3975 			goto err_out_free_dev1;
3976 		}
3977 
3978 		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3979 				  hw->irq_name, hw);
3980 		if (err) {
3981 			dev_err(&pdev->dev, "cannot assign irq %d\n",
3982 				pdev->irq);
3983 			goto err_out_unregister_dev1;
3984 		}
3985 
3986 		skge_show_addr(dev1);
3987 	}
3988 	pci_set_drvdata(pdev, hw);
3989 
3990 	return 0;
3991 
3992 err_out_unregister_dev1:
3993 	unregister_netdev(dev1);
3994 err_out_free_dev1:
3995 	free_netdev(dev1);
3996 err_out_unregister:
3997 	unregister_netdev(dev);
3998 err_out_free_netdev:
3999 	free_netdev(dev);
4000 err_out_led_off:
4001 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4002 err_out_iounmap:
4003 	iounmap(hw->regs);
4004 err_out_free_hw:
4005 	kfree(hw);
4006 err_out_free_regions:
4007 	pci_release_regions(pdev);
4008 err_out_disable_pdev:
4009 	pci_disable_device(pdev);
4010 err_out:
4011 	return err;
4012 }
4013 
4014 static void skge_remove(struct pci_dev *pdev)
4015 {
4016 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4017 	struct net_device *dev0, *dev1;
4018 
4019 	if (!hw)
4020 		return;
4021 
4022 	dev1 = hw->dev[1];
4023 	if (dev1)
4024 		unregister_netdev(dev1);
4025 	dev0 = hw->dev[0];
4026 	unregister_netdev(dev0);
4027 
4028 	tasklet_kill(&hw->phy_task);
4029 
4030 	spin_lock_irq(&hw->hw_lock);
4031 	hw->intr_mask = 0;
4032 
4033 	if (hw->ports > 1) {
4034 		skge_write32(hw, B0_IMSK, 0);
4035 		skge_read32(hw, B0_IMSK);
4036 	}
4037 	spin_unlock_irq(&hw->hw_lock);
4038 
4039 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4040 	skge_write8(hw, B0_CTST, CS_RST_SET);
4041 
4042 	if (hw->ports > 1)
4043 		free_irq(pdev->irq, hw);
4044 	pci_release_regions(pdev);
4045 	pci_disable_device(pdev);
4046 	if (dev1)
4047 		free_netdev(dev1);
4048 	free_netdev(dev0);
4049 
4050 	iounmap(hw->regs);
4051 	kfree(hw);
4052 }
4053 
4054 #ifdef CONFIG_PM_SLEEP
4055 static int skge_suspend(struct device *dev)
4056 {
4057 	struct skge_hw *hw  = dev_get_drvdata(dev);
4058 	int i;
4059 
4060 	if (!hw)
4061 		return 0;
4062 
4063 	for (i = 0; i < hw->ports; i++) {
4064 		struct net_device *dev = hw->dev[i];
4065 		struct skge_port *skge = netdev_priv(dev);
4066 
4067 		if (netif_running(dev))
4068 			skge_down(dev);
4069 
4070 		if (skge->wol)
4071 			skge_wol_init(skge);
4072 	}
4073 
4074 	skge_write32(hw, B0_IMSK, 0);
4075 
4076 	return 0;
4077 }
4078 
4079 static int skge_resume(struct device *dev)
4080 {
4081 	struct skge_hw *hw  = dev_get_drvdata(dev);
4082 	int i, err;
4083 
4084 	if (!hw)
4085 		return 0;
4086 
4087 	err = skge_reset(hw);
4088 	if (err)
4089 		goto out;
4090 
4091 	for (i = 0; i < hw->ports; i++) {
4092 		struct net_device *dev = hw->dev[i];
4093 
4094 		if (netif_running(dev)) {
4095 			err = skge_up(dev);
4096 
4097 			if (err) {
4098 				netdev_err(dev, "could not up: %d\n", err);
4099 				dev_close(dev);
4100 				goto out;
4101 			}
4102 		}
4103 	}
4104 out:
4105 	return err;
4106 }
4107 
4108 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4109 #define SKGE_PM_OPS (&skge_pm_ops)
4110 
4111 #else
4112 
4113 #define SKGE_PM_OPS NULL
4114 #endif /* CONFIG_PM_SLEEP */
4115 
4116 static void skge_shutdown(struct pci_dev *pdev)
4117 {
4118 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4119 	int i;
4120 
4121 	if (!hw)
4122 		return;
4123 
4124 	for (i = 0; i < hw->ports; i++) {
4125 		struct net_device *dev = hw->dev[i];
4126 		struct skge_port *skge = netdev_priv(dev);
4127 
4128 		if (skge->wol)
4129 			skge_wol_init(skge);
4130 	}
4131 
4132 	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4133 	pci_set_power_state(pdev, PCI_D3hot);
4134 }
4135 
4136 static struct pci_driver skge_driver = {
4137 	.name =         DRV_NAME,
4138 	.id_table =     skge_id_table,
4139 	.probe =        skge_probe,
4140 	.remove =       skge_remove,
4141 	.shutdown =	skge_shutdown,
4142 	.driver.pm =	SKGE_PM_OPS,
4143 };
4144 
4145 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4146 	{
4147 		.ident = "Gigabyte nForce boards",
4148 		.matches = {
4149 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4150 			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4151 		},
4152 	},
4153 	{
4154 		.ident = "ASUS P5NSLI",
4155 		.matches = {
4156 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4157 			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4158 		},
4159 	},
4160 	{
4161 		.ident = "FUJITSU SIEMENS A8NE-FM",
4162 		.matches = {
4163 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4164 			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4165 		},
4166 	},
4167 	{}
4168 };
4169 
4170 static int __init skge_init_module(void)
4171 {
4172 	if (dmi_check_system(skge_32bit_dma_boards))
4173 		only_32bit_dma = 1;
4174 	skge_debug_init();
4175 	return pci_register_driver(&skge_driver);
4176 }
4177 
4178 static void __exit skge_cleanup_module(void)
4179 {
4180 	pci_unregister_driver(&skge_driver);
4181 	skge_debug_cleanup();
4182 }
4183 
4184 module_init(skge_init_module);
4185 module_exit(skge_cleanup_module);
4186