1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit 4 * Ethernet adapters. Based on earlier sk98lin, e100 and 5 * FreeBSD if_sk drivers. 6 * 7 * This driver intentionally does not support all the features 8 * of the original driver such as link fail-over and link management because 9 * those should be done at higher levels. 10 * 11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org> 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/in.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/moduleparam.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/ethtool.h> 23 #include <linux/pci.h> 24 #include <linux/if_vlan.h> 25 #include <linux/ip.h> 26 #include <linux/delay.h> 27 #include <linux/crc32.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/debugfs.h> 30 #include <linux/sched.h> 31 #include <linux/seq_file.h> 32 #include <linux/mii.h> 33 #include <linux/slab.h> 34 #include <linux/dmi.h> 35 #include <linux/prefetch.h> 36 #include <asm/irq.h> 37 38 #include "skge.h" 39 40 #define DRV_NAME "skge" 41 #define DRV_VERSION "1.14" 42 43 #define DEFAULT_TX_RING_SIZE 128 44 #define DEFAULT_RX_RING_SIZE 512 45 #define MAX_TX_RING_SIZE 1024 46 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1) 47 #define MAX_RX_RING_SIZE 4096 48 #define RX_COPY_THRESHOLD 128 49 #define RX_BUF_SIZE 1536 50 #define PHY_RETRIES 1000 51 #define ETH_JUMBO_MTU 9000 52 #define TX_WATCHDOG (5 * HZ) 53 #define BLINK_MS 250 54 #define LINK_HZ HZ 55 56 #define SKGE_EEPROM_MAGIC 0x9933aabb 57 58 59 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); 60 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>"); 61 MODULE_LICENSE("GPL"); 62 MODULE_VERSION(DRV_VERSION); 63 64 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 65 NETIF_MSG_LINK | NETIF_MSG_IFUP | 66 NETIF_MSG_IFDOWN); 67 68 static int debug = -1; /* defaults above */ 69 module_param(debug, int, 0); 70 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 71 72 static const struct pci_device_id skge_id_table[] = { 73 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */ 74 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */ 75 #ifdef CONFIG_SKGE_GENESIS 76 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */ 77 #endif 78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */ 79 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */ 80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */ 81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */ 82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */ 83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */ 84 { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */ 85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */ 86 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */ 87 { 0 } 88 }; 89 MODULE_DEVICE_TABLE(pci, skge_id_table); 90 91 static int skge_up(struct net_device *dev); 92 static int skge_down(struct net_device *dev); 93 static void skge_phy_reset(struct skge_port *skge); 94 static void skge_tx_clean(struct net_device *dev); 95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 97 static void genesis_get_stats(struct skge_port *skge, u64 *data); 98 static void yukon_get_stats(struct skge_port *skge, u64 *data); 99 static void yukon_init(struct skge_hw *hw, int port); 100 static void genesis_mac_init(struct skge_hw *hw, int port); 101 static void genesis_link_up(struct skge_port *skge); 102 static void skge_set_multicast(struct net_device *dev); 103 static irqreturn_t skge_intr(int irq, void *dev_id); 104 105 /* Avoid conditionals by using array */ 106 static const int txqaddr[] = { Q_XA1, Q_XA2 }; 107 static const int rxqaddr[] = { Q_R1, Q_R2 }; 108 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; 109 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; 110 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F }; 111 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 }; 112 113 static inline bool is_genesis(const struct skge_hw *hw) 114 { 115 #ifdef CONFIG_SKGE_GENESIS 116 return hw->chip_id == CHIP_ID_GENESIS; 117 #else 118 return false; 119 #endif 120 } 121 122 static int skge_get_regs_len(struct net_device *dev) 123 { 124 return 0x4000; 125 } 126 127 /* 128 * Returns copy of whole control register region 129 * Note: skip RAM address register because accessing it will 130 * cause bus hangs! 131 */ 132 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, 133 void *p) 134 { 135 const struct skge_port *skge = netdev_priv(dev); 136 const void __iomem *io = skge->hw->regs; 137 138 regs->version = 1; 139 memset(p, 0, regs->len); 140 memcpy_fromio(p, io, B3_RAM_ADDR); 141 142 if (regs->len > B3_RI_WTO_R1) { 143 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1, 144 regs->len - B3_RI_WTO_R1); 145 } 146 } 147 148 /* Wake on Lan only supported on Yukon chips with rev 1 or above */ 149 static u32 wol_supported(const struct skge_hw *hw) 150 { 151 if (is_genesis(hw)) 152 return 0; 153 154 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 155 return 0; 156 157 return WAKE_MAGIC | WAKE_PHY; 158 } 159 160 static void skge_wol_init(struct skge_port *skge) 161 { 162 struct skge_hw *hw = skge->hw; 163 int port = skge->port; 164 u16 ctrl; 165 166 skge_write16(hw, B0_CTST, CS_RST_CLR); 167 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR); 168 169 /* Turn on Vaux */ 170 skge_write8(hw, B0_POWER_CTRL, 171 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); 172 173 /* WA code for COMA mode -- clear PHY reset */ 174 if (hw->chip_id == CHIP_ID_YUKON_LITE && 175 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 176 u32 reg = skge_read32(hw, B2_GP_IO); 177 reg |= GP_DIR_9; 178 reg &= ~GP_IO_9; 179 skge_write32(hw, B2_GP_IO, reg); 180 } 181 182 skge_write32(hw, SK_REG(port, GPHY_CTRL), 183 GPC_DIS_SLEEP | 184 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | 185 GPC_ANEG_1 | GPC_RST_SET); 186 187 skge_write32(hw, SK_REG(port, GPHY_CTRL), 188 GPC_DIS_SLEEP | 189 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | 190 GPC_ANEG_1 | GPC_RST_CLR); 191 192 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR); 193 194 /* Force to 10/100 skge_reset will re-enable on resume */ 195 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, 196 (PHY_AN_100FULL | PHY_AN_100HALF | 197 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA)); 198 /* no 1000 HD/FD */ 199 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0); 200 gm_phy_write(hw, port, PHY_MARV_CTRL, 201 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE | 202 PHY_CT_RE_CFG | PHY_CT_DUP_MD); 203 204 205 /* Set GMAC to no flow control and auto update for speed/duplex */ 206 gma_write16(hw, port, GM_GP_CTRL, 207 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA| 208 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS); 209 210 /* Set WOL address */ 211 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR), 212 skge->netdev->dev_addr, ETH_ALEN); 213 214 /* Turn on appropriate WOL control bits */ 215 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT); 216 ctrl = 0; 217 if (skge->wol & WAKE_PHY) 218 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT; 219 else 220 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT; 221 222 if (skge->wol & WAKE_MAGIC) 223 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT; 224 else 225 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT; 226 227 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT; 228 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl); 229 230 /* block receiver */ 231 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 232 } 233 234 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 235 { 236 struct skge_port *skge = netdev_priv(dev); 237 238 wol->supported = wol_supported(skge->hw); 239 wol->wolopts = skge->wol; 240 } 241 242 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 243 { 244 struct skge_port *skge = netdev_priv(dev); 245 struct skge_hw *hw = skge->hw; 246 247 if ((wol->wolopts & ~wol_supported(hw)) || 248 !device_can_wakeup(&hw->pdev->dev)) 249 return -EOPNOTSUPP; 250 251 skge->wol = wol->wolopts; 252 253 device_set_wakeup_enable(&hw->pdev->dev, skge->wol); 254 255 return 0; 256 } 257 258 /* Determine supported/advertised modes based on hardware. 259 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx 260 */ 261 static u32 skge_supported_modes(const struct skge_hw *hw) 262 { 263 u32 supported; 264 265 if (hw->copper) { 266 supported = (SUPPORTED_10baseT_Half | 267 SUPPORTED_10baseT_Full | 268 SUPPORTED_100baseT_Half | 269 SUPPORTED_100baseT_Full | 270 SUPPORTED_1000baseT_Half | 271 SUPPORTED_1000baseT_Full | 272 SUPPORTED_Autoneg | 273 SUPPORTED_TP); 274 275 if (is_genesis(hw)) 276 supported &= ~(SUPPORTED_10baseT_Half | 277 SUPPORTED_10baseT_Full | 278 SUPPORTED_100baseT_Half | 279 SUPPORTED_100baseT_Full); 280 281 else if (hw->chip_id == CHIP_ID_YUKON) 282 supported &= ~SUPPORTED_1000baseT_Half; 283 } else 284 supported = (SUPPORTED_1000baseT_Full | 285 SUPPORTED_1000baseT_Half | 286 SUPPORTED_FIBRE | 287 SUPPORTED_Autoneg); 288 289 return supported; 290 } 291 292 static int skge_get_link_ksettings(struct net_device *dev, 293 struct ethtool_link_ksettings *cmd) 294 { 295 struct skge_port *skge = netdev_priv(dev); 296 struct skge_hw *hw = skge->hw; 297 u32 supported, advertising; 298 299 supported = skge_supported_modes(hw); 300 301 if (hw->copper) { 302 cmd->base.port = PORT_TP; 303 cmd->base.phy_address = hw->phy_addr; 304 } else 305 cmd->base.port = PORT_FIBRE; 306 307 advertising = skge->advertising; 308 cmd->base.autoneg = skge->autoneg; 309 cmd->base.speed = skge->speed; 310 cmd->base.duplex = skge->duplex; 311 312 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 313 supported); 314 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 315 advertising); 316 317 return 0; 318 } 319 320 static int skge_set_link_ksettings(struct net_device *dev, 321 const struct ethtool_link_ksettings *cmd) 322 { 323 struct skge_port *skge = netdev_priv(dev); 324 const struct skge_hw *hw = skge->hw; 325 u32 supported = skge_supported_modes(hw); 326 int err = 0; 327 u32 advertising; 328 329 ethtool_convert_link_mode_to_legacy_u32(&advertising, 330 cmd->link_modes.advertising); 331 332 if (cmd->base.autoneg == AUTONEG_ENABLE) { 333 advertising = supported; 334 skge->duplex = -1; 335 skge->speed = -1; 336 } else { 337 u32 setting; 338 u32 speed = cmd->base.speed; 339 340 switch (speed) { 341 case SPEED_1000: 342 if (cmd->base.duplex == DUPLEX_FULL) 343 setting = SUPPORTED_1000baseT_Full; 344 else if (cmd->base.duplex == DUPLEX_HALF) 345 setting = SUPPORTED_1000baseT_Half; 346 else 347 return -EINVAL; 348 break; 349 case SPEED_100: 350 if (cmd->base.duplex == DUPLEX_FULL) 351 setting = SUPPORTED_100baseT_Full; 352 else if (cmd->base.duplex == DUPLEX_HALF) 353 setting = SUPPORTED_100baseT_Half; 354 else 355 return -EINVAL; 356 break; 357 358 case SPEED_10: 359 if (cmd->base.duplex == DUPLEX_FULL) 360 setting = SUPPORTED_10baseT_Full; 361 else if (cmd->base.duplex == DUPLEX_HALF) 362 setting = SUPPORTED_10baseT_Half; 363 else 364 return -EINVAL; 365 break; 366 default: 367 return -EINVAL; 368 } 369 370 if ((setting & supported) == 0) 371 return -EINVAL; 372 373 skge->speed = speed; 374 skge->duplex = cmd->base.duplex; 375 } 376 377 skge->autoneg = cmd->base.autoneg; 378 skge->advertising = advertising; 379 380 if (netif_running(dev)) { 381 skge_down(dev); 382 err = skge_up(dev); 383 if (err) { 384 dev_close(dev); 385 return err; 386 } 387 } 388 389 return 0; 390 } 391 392 static void skge_get_drvinfo(struct net_device *dev, 393 struct ethtool_drvinfo *info) 394 { 395 struct skge_port *skge = netdev_priv(dev); 396 397 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 398 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 399 strlcpy(info->bus_info, pci_name(skge->hw->pdev), 400 sizeof(info->bus_info)); 401 } 402 403 static const struct skge_stat { 404 char name[ETH_GSTRING_LEN]; 405 u16 xmac_offset; 406 u16 gma_offset; 407 } skge_stats[] = { 408 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI }, 409 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI }, 410 411 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK }, 412 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK }, 413 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK }, 414 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK }, 415 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK }, 416 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK }, 417 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE }, 418 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE }, 419 420 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL }, 421 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL }, 422 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL }, 423 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL }, 424 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR }, 425 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV }, 426 427 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 428 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT }, 429 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG }, 430 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 431 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR }, 432 }; 433 434 static int skge_get_sset_count(struct net_device *dev, int sset) 435 { 436 switch (sset) { 437 case ETH_SS_STATS: 438 return ARRAY_SIZE(skge_stats); 439 default: 440 return -EOPNOTSUPP; 441 } 442 } 443 444 static void skge_get_ethtool_stats(struct net_device *dev, 445 struct ethtool_stats *stats, u64 *data) 446 { 447 struct skge_port *skge = netdev_priv(dev); 448 449 if (is_genesis(skge->hw)) 450 genesis_get_stats(skge, data); 451 else 452 yukon_get_stats(skge, data); 453 } 454 455 /* Use hardware MIB variables for critical path statistics and 456 * transmit feedback not reported at interrupt. 457 * Other errors are accounted for in interrupt handler. 458 */ 459 static struct net_device_stats *skge_get_stats(struct net_device *dev) 460 { 461 struct skge_port *skge = netdev_priv(dev); 462 u64 data[ARRAY_SIZE(skge_stats)]; 463 464 if (is_genesis(skge->hw)) 465 genesis_get_stats(skge, data); 466 else 467 yukon_get_stats(skge, data); 468 469 dev->stats.tx_bytes = data[0]; 470 dev->stats.rx_bytes = data[1]; 471 dev->stats.tx_packets = data[2] + data[4] + data[6]; 472 dev->stats.rx_packets = data[3] + data[5] + data[7]; 473 dev->stats.multicast = data[3] + data[5]; 474 dev->stats.collisions = data[10]; 475 dev->stats.tx_aborted_errors = data[12]; 476 477 return &dev->stats; 478 } 479 480 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) 481 { 482 int i; 483 484 switch (stringset) { 485 case ETH_SS_STATS: 486 for (i = 0; i < ARRAY_SIZE(skge_stats); i++) 487 memcpy(data + i * ETH_GSTRING_LEN, 488 skge_stats[i].name, ETH_GSTRING_LEN); 489 break; 490 } 491 } 492 493 static void skge_get_ring_param(struct net_device *dev, 494 struct ethtool_ringparam *p, 495 struct kernel_ethtool_ringparam *kernel_p, 496 struct netlink_ext_ack *extack) 497 { 498 struct skge_port *skge = netdev_priv(dev); 499 500 p->rx_max_pending = MAX_RX_RING_SIZE; 501 p->tx_max_pending = MAX_TX_RING_SIZE; 502 503 p->rx_pending = skge->rx_ring.count; 504 p->tx_pending = skge->tx_ring.count; 505 } 506 507 static int skge_set_ring_param(struct net_device *dev, 508 struct ethtool_ringparam *p, 509 struct kernel_ethtool_ringparam *kernel_p, 510 struct netlink_ext_ack *extack) 511 { 512 struct skge_port *skge = netdev_priv(dev); 513 int err = 0; 514 515 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE || 516 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE) 517 return -EINVAL; 518 519 skge->rx_ring.count = p->rx_pending; 520 skge->tx_ring.count = p->tx_pending; 521 522 if (netif_running(dev)) { 523 skge_down(dev); 524 err = skge_up(dev); 525 if (err) 526 dev_close(dev); 527 } 528 529 return err; 530 } 531 532 static u32 skge_get_msglevel(struct net_device *netdev) 533 { 534 struct skge_port *skge = netdev_priv(netdev); 535 return skge->msg_enable; 536 } 537 538 static void skge_set_msglevel(struct net_device *netdev, u32 value) 539 { 540 struct skge_port *skge = netdev_priv(netdev); 541 skge->msg_enable = value; 542 } 543 544 static int skge_nway_reset(struct net_device *dev) 545 { 546 struct skge_port *skge = netdev_priv(dev); 547 548 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev)) 549 return -EINVAL; 550 551 skge_phy_reset(skge); 552 return 0; 553 } 554 555 static void skge_get_pauseparam(struct net_device *dev, 556 struct ethtool_pauseparam *ecmd) 557 { 558 struct skge_port *skge = netdev_priv(dev); 559 560 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) || 561 (skge->flow_control == FLOW_MODE_SYM_OR_REM)); 562 ecmd->tx_pause = (ecmd->rx_pause || 563 (skge->flow_control == FLOW_MODE_LOC_SEND)); 564 565 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause; 566 } 567 568 static int skge_set_pauseparam(struct net_device *dev, 569 struct ethtool_pauseparam *ecmd) 570 { 571 struct skge_port *skge = netdev_priv(dev); 572 struct ethtool_pauseparam old; 573 int err = 0; 574 575 skge_get_pauseparam(dev, &old); 576 577 if (ecmd->autoneg != old.autoneg) 578 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC; 579 else { 580 if (ecmd->rx_pause && ecmd->tx_pause) 581 skge->flow_control = FLOW_MODE_SYMMETRIC; 582 else if (ecmd->rx_pause && !ecmd->tx_pause) 583 skge->flow_control = FLOW_MODE_SYM_OR_REM; 584 else if (!ecmd->rx_pause && ecmd->tx_pause) 585 skge->flow_control = FLOW_MODE_LOC_SEND; 586 else 587 skge->flow_control = FLOW_MODE_NONE; 588 } 589 590 if (netif_running(dev)) { 591 skge_down(dev); 592 err = skge_up(dev); 593 if (err) { 594 dev_close(dev); 595 return err; 596 } 597 } 598 599 return 0; 600 } 601 602 /* Chip internal frequency for clock calculations */ 603 static inline u32 hwkhz(const struct skge_hw *hw) 604 { 605 return is_genesis(hw) ? 53125 : 78125; 606 } 607 608 /* Chip HZ to microseconds */ 609 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks) 610 { 611 return (ticks * 1000) / hwkhz(hw); 612 } 613 614 /* Microseconds to chip HZ */ 615 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec) 616 { 617 return hwkhz(hw) * usec / 1000; 618 } 619 620 static int skge_get_coalesce(struct net_device *dev, 621 struct ethtool_coalesce *ecmd, 622 struct kernel_ethtool_coalesce *kernel_coal, 623 struct netlink_ext_ack *extack) 624 { 625 struct skge_port *skge = netdev_priv(dev); 626 struct skge_hw *hw = skge->hw; 627 int port = skge->port; 628 629 ecmd->rx_coalesce_usecs = 0; 630 ecmd->tx_coalesce_usecs = 0; 631 632 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) { 633 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI)); 634 u32 msk = skge_read32(hw, B2_IRQM_MSK); 635 636 if (msk & rxirqmask[port]) 637 ecmd->rx_coalesce_usecs = delay; 638 if (msk & txirqmask[port]) 639 ecmd->tx_coalesce_usecs = delay; 640 } 641 642 return 0; 643 } 644 645 /* Note: interrupt timer is per board, but can turn on/off per port */ 646 static int skge_set_coalesce(struct net_device *dev, 647 struct ethtool_coalesce *ecmd, 648 struct kernel_ethtool_coalesce *kernel_coal, 649 struct netlink_ext_ack *extack) 650 { 651 struct skge_port *skge = netdev_priv(dev); 652 struct skge_hw *hw = skge->hw; 653 int port = skge->port; 654 u32 msk = skge_read32(hw, B2_IRQM_MSK); 655 u32 delay = 25; 656 657 if (ecmd->rx_coalesce_usecs == 0) 658 msk &= ~rxirqmask[port]; 659 else if (ecmd->rx_coalesce_usecs < 25 || 660 ecmd->rx_coalesce_usecs > 33333) 661 return -EINVAL; 662 else { 663 msk |= rxirqmask[port]; 664 delay = ecmd->rx_coalesce_usecs; 665 } 666 667 if (ecmd->tx_coalesce_usecs == 0) 668 msk &= ~txirqmask[port]; 669 else if (ecmd->tx_coalesce_usecs < 25 || 670 ecmd->tx_coalesce_usecs > 33333) 671 return -EINVAL; 672 else { 673 msk |= txirqmask[port]; 674 delay = min(delay, ecmd->rx_coalesce_usecs); 675 } 676 677 skge_write32(hw, B2_IRQM_MSK, msk); 678 if (msk == 0) 679 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP); 680 else { 681 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay)); 682 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 683 } 684 return 0; 685 } 686 687 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST }; 688 static void skge_led(struct skge_port *skge, enum led_mode mode) 689 { 690 struct skge_hw *hw = skge->hw; 691 int port = skge->port; 692 693 spin_lock_bh(&hw->phy_lock); 694 if (is_genesis(hw)) { 695 switch (mode) { 696 case LED_MODE_OFF: 697 if (hw->phy_type == SK_PHY_BCOM) 698 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF); 699 else { 700 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0); 701 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF); 702 } 703 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); 704 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0); 705 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF); 706 break; 707 708 case LED_MODE_ON: 709 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON); 710 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); 711 712 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 713 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 714 715 break; 716 717 case LED_MODE_TST: 718 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON); 719 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100); 720 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 721 722 if (hw->phy_type == SK_PHY_BCOM) 723 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON); 724 else { 725 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON); 726 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100); 727 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 728 } 729 730 } 731 } else { 732 switch (mode) { 733 case LED_MODE_OFF: 734 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 735 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 736 PHY_M_LED_MO_DUP(MO_LED_OFF) | 737 PHY_M_LED_MO_10(MO_LED_OFF) | 738 PHY_M_LED_MO_100(MO_LED_OFF) | 739 PHY_M_LED_MO_1000(MO_LED_OFF) | 740 PHY_M_LED_MO_RX(MO_LED_OFF)); 741 break; 742 case LED_MODE_ON: 743 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 744 PHY_M_LED_PULS_DUR(PULS_170MS) | 745 PHY_M_LED_BLINK_RT(BLINK_84MS) | 746 PHY_M_LEDC_TX_CTRL | 747 PHY_M_LEDC_DP_CTRL); 748 749 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 750 PHY_M_LED_MO_RX(MO_LED_OFF) | 751 (skge->speed == SPEED_100 ? 752 PHY_M_LED_MO_100(MO_LED_ON) : 0)); 753 break; 754 case LED_MODE_TST: 755 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 756 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 757 PHY_M_LED_MO_DUP(MO_LED_ON) | 758 PHY_M_LED_MO_10(MO_LED_ON) | 759 PHY_M_LED_MO_100(MO_LED_ON) | 760 PHY_M_LED_MO_1000(MO_LED_ON) | 761 PHY_M_LED_MO_RX(MO_LED_ON)); 762 } 763 } 764 spin_unlock_bh(&hw->phy_lock); 765 } 766 767 /* blink LED's for finding board */ 768 static int skge_set_phys_id(struct net_device *dev, 769 enum ethtool_phys_id_state state) 770 { 771 struct skge_port *skge = netdev_priv(dev); 772 773 switch (state) { 774 case ETHTOOL_ID_ACTIVE: 775 return 2; /* cycle on/off twice per second */ 776 777 case ETHTOOL_ID_ON: 778 skge_led(skge, LED_MODE_TST); 779 break; 780 781 case ETHTOOL_ID_OFF: 782 skge_led(skge, LED_MODE_OFF); 783 break; 784 785 case ETHTOOL_ID_INACTIVE: 786 /* back to regular LED state */ 787 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF); 788 } 789 790 return 0; 791 } 792 793 static int skge_get_eeprom_len(struct net_device *dev) 794 { 795 struct skge_port *skge = netdev_priv(dev); 796 u32 reg2; 797 798 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, ®2); 799 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8); 800 } 801 802 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset) 803 { 804 u32 val; 805 806 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset); 807 808 do { 809 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); 810 } while (!(offset & PCI_VPD_ADDR_F)); 811 812 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val); 813 return val; 814 } 815 816 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val) 817 { 818 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val); 819 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, 820 offset | PCI_VPD_ADDR_F); 821 822 do { 823 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); 824 } while (offset & PCI_VPD_ADDR_F); 825 } 826 827 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 828 u8 *data) 829 { 830 struct skge_port *skge = netdev_priv(dev); 831 struct pci_dev *pdev = skge->hw->pdev; 832 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); 833 int length = eeprom->len; 834 u16 offset = eeprom->offset; 835 836 if (!cap) 837 return -EINVAL; 838 839 eeprom->magic = SKGE_EEPROM_MAGIC; 840 841 while (length > 0) { 842 u32 val = skge_vpd_read(pdev, cap, offset); 843 int n = min_t(int, length, sizeof(val)); 844 845 memcpy(data, &val, n); 846 length -= n; 847 data += n; 848 offset += n; 849 } 850 return 0; 851 } 852 853 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 854 u8 *data) 855 { 856 struct skge_port *skge = netdev_priv(dev); 857 struct pci_dev *pdev = skge->hw->pdev; 858 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); 859 int length = eeprom->len; 860 u16 offset = eeprom->offset; 861 862 if (!cap) 863 return -EINVAL; 864 865 if (eeprom->magic != SKGE_EEPROM_MAGIC) 866 return -EINVAL; 867 868 while (length > 0) { 869 u32 val; 870 int n = min_t(int, length, sizeof(val)); 871 872 if (n < sizeof(val)) 873 val = skge_vpd_read(pdev, cap, offset); 874 memcpy(&val, data, n); 875 876 skge_vpd_write(pdev, cap, offset, val); 877 878 length -= n; 879 data += n; 880 offset += n; 881 } 882 return 0; 883 } 884 885 static const struct ethtool_ops skge_ethtool_ops = { 886 .supported_coalesce_params = ETHTOOL_COALESCE_USECS, 887 .get_drvinfo = skge_get_drvinfo, 888 .get_regs_len = skge_get_regs_len, 889 .get_regs = skge_get_regs, 890 .get_wol = skge_get_wol, 891 .set_wol = skge_set_wol, 892 .get_msglevel = skge_get_msglevel, 893 .set_msglevel = skge_set_msglevel, 894 .nway_reset = skge_nway_reset, 895 .get_link = ethtool_op_get_link, 896 .get_eeprom_len = skge_get_eeprom_len, 897 .get_eeprom = skge_get_eeprom, 898 .set_eeprom = skge_set_eeprom, 899 .get_ringparam = skge_get_ring_param, 900 .set_ringparam = skge_set_ring_param, 901 .get_pauseparam = skge_get_pauseparam, 902 .set_pauseparam = skge_set_pauseparam, 903 .get_coalesce = skge_get_coalesce, 904 .set_coalesce = skge_set_coalesce, 905 .get_strings = skge_get_strings, 906 .set_phys_id = skge_set_phys_id, 907 .get_sset_count = skge_get_sset_count, 908 .get_ethtool_stats = skge_get_ethtool_stats, 909 .get_link_ksettings = skge_get_link_ksettings, 910 .set_link_ksettings = skge_set_link_ksettings, 911 }; 912 913 /* 914 * Allocate ring elements and chain them together 915 * One-to-one association of board descriptors with ring elements 916 */ 917 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base) 918 { 919 struct skge_tx_desc *d; 920 struct skge_element *e; 921 int i; 922 923 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL); 924 if (!ring->start) 925 return -ENOMEM; 926 927 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { 928 e->desc = d; 929 if (i == ring->count - 1) { 930 e->next = ring->start; 931 d->next_offset = base; 932 } else { 933 e->next = e + 1; 934 d->next_offset = base + (i+1) * sizeof(*d); 935 } 936 } 937 ring->to_use = ring->to_clean = ring->start; 938 939 return 0; 940 } 941 942 /* Allocate and setup a new buffer for receiving */ 943 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e, 944 struct sk_buff *skb, unsigned int bufsize) 945 { 946 struct skge_rx_desc *rd = e->desc; 947 dma_addr_t map; 948 949 map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize, 950 DMA_FROM_DEVICE); 951 952 if (dma_mapping_error(&skge->hw->pdev->dev, map)) 953 return -1; 954 955 rd->dma_lo = lower_32_bits(map); 956 rd->dma_hi = upper_32_bits(map); 957 e->skb = skb; 958 rd->csum1_start = ETH_HLEN; 959 rd->csum2_start = ETH_HLEN; 960 rd->csum1 = 0; 961 rd->csum2 = 0; 962 963 wmb(); 964 965 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; 966 dma_unmap_addr_set(e, mapaddr, map); 967 dma_unmap_len_set(e, maplen, bufsize); 968 return 0; 969 } 970 971 /* Resume receiving using existing skb, 972 * Note: DMA address is not changed by chip. 973 * MTU not changed while receiver active. 974 */ 975 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size) 976 { 977 struct skge_rx_desc *rd = e->desc; 978 979 rd->csum2 = 0; 980 rd->csum2_start = ETH_HLEN; 981 982 wmb(); 983 984 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size; 985 } 986 987 988 /* Free all buffers in receive ring, assumes receiver stopped */ 989 static void skge_rx_clean(struct skge_port *skge) 990 { 991 struct skge_hw *hw = skge->hw; 992 struct skge_ring *ring = &skge->rx_ring; 993 struct skge_element *e; 994 995 e = ring->start; 996 do { 997 struct skge_rx_desc *rd = e->desc; 998 rd->control = 0; 999 if (e->skb) { 1000 dma_unmap_single(&hw->pdev->dev, 1001 dma_unmap_addr(e, mapaddr), 1002 dma_unmap_len(e, maplen), 1003 DMA_FROM_DEVICE); 1004 dev_kfree_skb(e->skb); 1005 e->skb = NULL; 1006 } 1007 } while ((e = e->next) != ring->start); 1008 } 1009 1010 1011 /* Allocate buffers for receive ring 1012 * For receive: to_clean is next received frame. 1013 */ 1014 static int skge_rx_fill(struct net_device *dev) 1015 { 1016 struct skge_port *skge = netdev_priv(dev); 1017 struct skge_ring *ring = &skge->rx_ring; 1018 struct skge_element *e; 1019 1020 e = ring->start; 1021 do { 1022 struct sk_buff *skb; 1023 1024 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN, 1025 GFP_KERNEL); 1026 if (!skb) 1027 return -ENOMEM; 1028 1029 skb_reserve(skb, NET_IP_ALIGN); 1030 if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) { 1031 dev_kfree_skb(skb); 1032 return -EIO; 1033 } 1034 } while ((e = e->next) != ring->start); 1035 1036 ring->to_clean = ring->start; 1037 return 0; 1038 } 1039 1040 static const char *skge_pause(enum pause_status status) 1041 { 1042 switch (status) { 1043 case FLOW_STAT_NONE: 1044 return "none"; 1045 case FLOW_STAT_REM_SEND: 1046 return "rx only"; 1047 case FLOW_STAT_LOC_SEND: 1048 return "tx_only"; 1049 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */ 1050 return "both"; 1051 default: 1052 return "indeterminated"; 1053 } 1054 } 1055 1056 1057 static void skge_link_up(struct skge_port *skge) 1058 { 1059 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), 1060 LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON); 1061 1062 netif_carrier_on(skge->netdev); 1063 netif_wake_queue(skge->netdev); 1064 1065 netif_info(skge, link, skge->netdev, 1066 "Link is up at %d Mbps, %s duplex, flow control %s\n", 1067 skge->speed, 1068 skge->duplex == DUPLEX_FULL ? "full" : "half", 1069 skge_pause(skge->flow_status)); 1070 } 1071 1072 static void skge_link_down(struct skge_port *skge) 1073 { 1074 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF); 1075 netif_carrier_off(skge->netdev); 1076 netif_stop_queue(skge->netdev); 1077 1078 netif_info(skge, link, skge->netdev, "Link is down\n"); 1079 } 1080 1081 static void xm_link_down(struct skge_hw *hw, int port) 1082 { 1083 struct net_device *dev = hw->dev[port]; 1084 struct skge_port *skge = netdev_priv(dev); 1085 1086 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); 1087 1088 if (netif_carrier_ok(dev)) 1089 skge_link_down(skge); 1090 } 1091 1092 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1093 { 1094 int i; 1095 1096 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 1097 *val = xm_read16(hw, port, XM_PHY_DATA); 1098 1099 if (hw->phy_type == SK_PHY_XMAC) 1100 goto ready; 1101 1102 for (i = 0; i < PHY_RETRIES; i++) { 1103 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY) 1104 goto ready; 1105 udelay(1); 1106 } 1107 1108 return -ETIMEDOUT; 1109 ready: 1110 *val = xm_read16(hw, port, XM_PHY_DATA); 1111 1112 return 0; 1113 } 1114 1115 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg) 1116 { 1117 u16 v = 0; 1118 if (__xm_phy_read(hw, port, reg, &v)) 1119 pr_warn("%s: phy read timed out\n", hw->dev[port]->name); 1120 return v; 1121 } 1122 1123 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1124 { 1125 int i; 1126 1127 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 1128 for (i = 0; i < PHY_RETRIES; i++) { 1129 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 1130 goto ready; 1131 udelay(1); 1132 } 1133 return -EIO; 1134 1135 ready: 1136 xm_write16(hw, port, XM_PHY_DATA, val); 1137 for (i = 0; i < PHY_RETRIES; i++) { 1138 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 1139 return 0; 1140 udelay(1); 1141 } 1142 return -ETIMEDOUT; 1143 } 1144 1145 static void genesis_init(struct skge_hw *hw) 1146 { 1147 /* set blink source counter */ 1148 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100); 1149 skge_write8(hw, B2_BSC_CTRL, BSC_START); 1150 1151 /* configure mac arbiter */ 1152 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1153 1154 /* configure mac arbiter timeout values */ 1155 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53); 1156 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53); 1157 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53); 1158 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53); 1159 1160 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1161 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1162 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1163 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1164 1165 /* configure packet arbiter timeout */ 1166 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR); 1167 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); 1168 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); 1169 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); 1170 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); 1171 } 1172 1173 static void genesis_reset(struct skge_hw *hw, int port) 1174 { 1175 static const u8 zero[8] = { 0 }; 1176 u32 reg; 1177 1178 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 1179 1180 /* reset the statistics module */ 1181 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); 1182 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); 1183 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */ 1184 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */ 1185 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */ 1186 1187 /* disable Broadcom PHY IRQ */ 1188 if (hw->phy_type == SK_PHY_BCOM) 1189 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); 1190 1191 xm_outhash(hw, port, XM_HSM, zero); 1192 1193 /* Flush TX and RX fifo */ 1194 reg = xm_read32(hw, port, XM_MODE); 1195 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF); 1196 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF); 1197 } 1198 1199 /* Convert mode to MII values */ 1200 static const u16 phy_pause_map[] = { 1201 [FLOW_MODE_NONE] = 0, 1202 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM, 1203 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP, 1204 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM, 1205 }; 1206 1207 /* special defines for FIBER (88E1011S only) */ 1208 static const u16 fiber_pause_map[] = { 1209 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE, 1210 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD, 1211 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD, 1212 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD, 1213 }; 1214 1215 1216 /* Check status of Broadcom phy link */ 1217 static void bcom_check_link(struct skge_hw *hw, int port) 1218 { 1219 struct net_device *dev = hw->dev[port]; 1220 struct skge_port *skge = netdev_priv(dev); 1221 u16 status; 1222 1223 /* read twice because of latch */ 1224 xm_phy_read(hw, port, PHY_BCOM_STAT); 1225 status = xm_phy_read(hw, port, PHY_BCOM_STAT); 1226 1227 if ((status & PHY_ST_LSYNC) == 0) { 1228 xm_link_down(hw, port); 1229 return; 1230 } 1231 1232 if (skge->autoneg == AUTONEG_ENABLE) { 1233 u16 lpa, aux; 1234 1235 if (!(status & PHY_ST_AN_OVER)) 1236 return; 1237 1238 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); 1239 if (lpa & PHY_B_AN_RF) { 1240 netdev_notice(dev, "remote fault\n"); 1241 return; 1242 } 1243 1244 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); 1245 1246 /* Check Duplex mismatch */ 1247 switch (aux & PHY_B_AS_AN_RES_MSK) { 1248 case PHY_B_RES_1000FD: 1249 skge->duplex = DUPLEX_FULL; 1250 break; 1251 case PHY_B_RES_1000HD: 1252 skge->duplex = DUPLEX_HALF; 1253 break; 1254 default: 1255 netdev_notice(dev, "duplex mismatch\n"); 1256 return; 1257 } 1258 1259 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1260 switch (aux & PHY_B_AS_PAUSE_MSK) { 1261 case PHY_B_AS_PAUSE_MSK: 1262 skge->flow_status = FLOW_STAT_SYMMETRIC; 1263 break; 1264 case PHY_B_AS_PRR: 1265 skge->flow_status = FLOW_STAT_REM_SEND; 1266 break; 1267 case PHY_B_AS_PRT: 1268 skge->flow_status = FLOW_STAT_LOC_SEND; 1269 break; 1270 default: 1271 skge->flow_status = FLOW_STAT_NONE; 1272 } 1273 skge->speed = SPEED_1000; 1274 } 1275 1276 if (!netif_carrier_ok(dev)) 1277 genesis_link_up(skge); 1278 } 1279 1280 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional 1281 * Phy on for 100 or 10Mbit operation 1282 */ 1283 static void bcom_phy_init(struct skge_port *skge) 1284 { 1285 struct skge_hw *hw = skge->hw; 1286 int port = skge->port; 1287 int i; 1288 u16 id1, r, ext, ctl; 1289 1290 /* magic workaround patterns for Broadcom */ 1291 static const struct { 1292 u16 reg; 1293 u16 val; 1294 } A1hack[] = { 1295 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, 1296 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, 1297 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, 1298 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 1299 }, C0hack[] = { 1300 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, 1301 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, 1302 }; 1303 1304 /* read Id from external PHY (all have the same address) */ 1305 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1); 1306 1307 /* Optimize MDIO transfer by suppressing preamble. */ 1308 r = xm_read16(hw, port, XM_MMU_CMD); 1309 r |= XM_MMU_NO_PRE; 1310 xm_write16(hw, port, XM_MMU_CMD, r); 1311 1312 switch (id1) { 1313 case PHY_BCOM_ID1_C0: 1314 /* 1315 * Workaround BCOM Errata for the C0 type. 1316 * Write magic patterns to reserved registers. 1317 */ 1318 for (i = 0; i < ARRAY_SIZE(C0hack); i++) 1319 xm_phy_write(hw, port, 1320 C0hack[i].reg, C0hack[i].val); 1321 1322 break; 1323 case PHY_BCOM_ID1_A1: 1324 /* 1325 * Workaround BCOM Errata for the A1 type. 1326 * Write magic patterns to reserved registers. 1327 */ 1328 for (i = 0; i < ARRAY_SIZE(A1hack); i++) 1329 xm_phy_write(hw, port, 1330 A1hack[i].reg, A1hack[i].val); 1331 break; 1332 } 1333 1334 /* 1335 * Workaround BCOM Errata (#10523) for all BCom PHYs. 1336 * Disable Power Management after reset. 1337 */ 1338 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); 1339 r |= PHY_B_AC_DIS_PM; 1340 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r); 1341 1342 /* Dummy read */ 1343 xm_read16(hw, port, XM_ISRC); 1344 1345 ext = PHY_B_PEC_EN_LTR; /* enable tx led */ 1346 ctl = PHY_CT_SP1000; /* always 1000mbit */ 1347 1348 if (skge->autoneg == AUTONEG_ENABLE) { 1349 /* 1350 * Workaround BCOM Errata #1 for the C5 type. 1351 * 1000Base-T Link Acquisition Failure in Slave Mode 1352 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register 1353 */ 1354 u16 adv = PHY_B_1000C_RD; 1355 if (skge->advertising & ADVERTISED_1000baseT_Half) 1356 adv |= PHY_B_1000C_AHD; 1357 if (skge->advertising & ADVERTISED_1000baseT_Full) 1358 adv |= PHY_B_1000C_AFD; 1359 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv); 1360 1361 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG; 1362 } else { 1363 if (skge->duplex == DUPLEX_FULL) 1364 ctl |= PHY_CT_DUP_MD; 1365 /* Force to slave */ 1366 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE); 1367 } 1368 1369 /* Set autonegotiation pause parameters */ 1370 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, 1371 phy_pause_map[skge->flow_control] | PHY_AN_CSMA); 1372 1373 /* Handle Jumbo frames */ 1374 if (hw->dev[port]->mtu > ETH_DATA_LEN) { 1375 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1376 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK); 1377 1378 ext |= PHY_B_PEC_HIGH_LA; 1379 1380 } 1381 1382 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext); 1383 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl); 1384 1385 /* Use link status change interrupt */ 1386 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1387 } 1388 1389 static void xm_phy_init(struct skge_port *skge) 1390 { 1391 struct skge_hw *hw = skge->hw; 1392 int port = skge->port; 1393 u16 ctrl = 0; 1394 1395 if (skge->autoneg == AUTONEG_ENABLE) { 1396 if (skge->advertising & ADVERTISED_1000baseT_Half) 1397 ctrl |= PHY_X_AN_HD; 1398 if (skge->advertising & ADVERTISED_1000baseT_Full) 1399 ctrl |= PHY_X_AN_FD; 1400 1401 ctrl |= fiber_pause_map[skge->flow_control]; 1402 1403 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl); 1404 1405 /* Restart Auto-negotiation */ 1406 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG; 1407 } else { 1408 /* Set DuplexMode in Config register */ 1409 if (skge->duplex == DUPLEX_FULL) 1410 ctrl |= PHY_CT_DUP_MD; 1411 /* 1412 * Do NOT enable Auto-negotiation here. This would hold 1413 * the link down because no IDLEs are transmitted 1414 */ 1415 } 1416 1417 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl); 1418 1419 /* Poll PHY for status changes */ 1420 mod_timer(&skge->link_timer, jiffies + LINK_HZ); 1421 } 1422 1423 static int xm_check_link(struct net_device *dev) 1424 { 1425 struct skge_port *skge = netdev_priv(dev); 1426 struct skge_hw *hw = skge->hw; 1427 int port = skge->port; 1428 u16 status; 1429 1430 /* read twice because of latch */ 1431 xm_phy_read(hw, port, PHY_XMAC_STAT); 1432 status = xm_phy_read(hw, port, PHY_XMAC_STAT); 1433 1434 if ((status & PHY_ST_LSYNC) == 0) { 1435 xm_link_down(hw, port); 1436 return 0; 1437 } 1438 1439 if (skge->autoneg == AUTONEG_ENABLE) { 1440 u16 lpa, res; 1441 1442 if (!(status & PHY_ST_AN_OVER)) 1443 return 0; 1444 1445 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); 1446 if (lpa & PHY_B_AN_RF) { 1447 netdev_notice(dev, "remote fault\n"); 1448 return 0; 1449 } 1450 1451 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI); 1452 1453 /* Check Duplex mismatch */ 1454 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) { 1455 case PHY_X_RS_FD: 1456 skge->duplex = DUPLEX_FULL; 1457 break; 1458 case PHY_X_RS_HD: 1459 skge->duplex = DUPLEX_HALF; 1460 break; 1461 default: 1462 netdev_notice(dev, "duplex mismatch\n"); 1463 return 0; 1464 } 1465 1466 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1467 if ((skge->flow_control == FLOW_MODE_SYMMETRIC || 1468 skge->flow_control == FLOW_MODE_SYM_OR_REM) && 1469 (lpa & PHY_X_P_SYM_MD)) 1470 skge->flow_status = FLOW_STAT_SYMMETRIC; 1471 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM && 1472 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD) 1473 /* Enable PAUSE receive, disable PAUSE transmit */ 1474 skge->flow_status = FLOW_STAT_REM_SEND; 1475 else if (skge->flow_control == FLOW_MODE_LOC_SEND && 1476 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD) 1477 /* Disable PAUSE receive, enable PAUSE transmit */ 1478 skge->flow_status = FLOW_STAT_LOC_SEND; 1479 else 1480 skge->flow_status = FLOW_STAT_NONE; 1481 1482 skge->speed = SPEED_1000; 1483 } 1484 1485 if (!netif_carrier_ok(dev)) 1486 genesis_link_up(skge); 1487 return 1; 1488 } 1489 1490 /* Poll to check for link coming up. 1491 * 1492 * Since internal PHY is wired to a level triggered pin, can't 1493 * get an interrupt when carrier is detected, need to poll for 1494 * link coming up. 1495 */ 1496 static void xm_link_timer(struct timer_list *t) 1497 { 1498 struct skge_port *skge = from_timer(skge, t, link_timer); 1499 struct net_device *dev = skge->netdev; 1500 struct skge_hw *hw = skge->hw; 1501 int port = skge->port; 1502 int i; 1503 unsigned long flags; 1504 1505 if (!netif_running(dev)) 1506 return; 1507 1508 spin_lock_irqsave(&hw->phy_lock, flags); 1509 1510 /* 1511 * Verify that the link by checking GPIO register three times. 1512 * This pin has the signal from the link_sync pin connected to it. 1513 */ 1514 for (i = 0; i < 3; i++) { 1515 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS) 1516 goto link_down; 1517 } 1518 1519 /* Re-enable interrupt to detect link down */ 1520 if (xm_check_link(dev)) { 1521 u16 msk = xm_read16(hw, port, XM_IMSK); 1522 msk &= ~XM_IS_INP_ASS; 1523 xm_write16(hw, port, XM_IMSK, msk); 1524 xm_read16(hw, port, XM_ISRC); 1525 } else { 1526 link_down: 1527 mod_timer(&skge->link_timer, 1528 round_jiffies(jiffies + LINK_HZ)); 1529 } 1530 spin_unlock_irqrestore(&hw->phy_lock, flags); 1531 } 1532 1533 static void genesis_mac_init(struct skge_hw *hw, int port) 1534 { 1535 struct net_device *dev = hw->dev[port]; 1536 struct skge_port *skge = netdev_priv(dev); 1537 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN; 1538 int i; 1539 u32 r; 1540 static const u8 zero[6] = { 0 }; 1541 1542 for (i = 0; i < 10; i++) { 1543 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 1544 MFF_SET_MAC_RST); 1545 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST) 1546 goto reset_ok; 1547 udelay(1); 1548 } 1549 1550 netdev_warn(dev, "genesis reset failed\n"); 1551 1552 reset_ok: 1553 /* Unreset the XMAC. */ 1554 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1555 1556 /* 1557 * Perform additional initialization for external PHYs, 1558 * namely for the 1000baseTX cards that use the XMAC's 1559 * GMII mode. 1560 */ 1561 if (hw->phy_type != SK_PHY_XMAC) { 1562 /* Take external Phy out of reset */ 1563 r = skge_read32(hw, B2_GP_IO); 1564 if (port == 0) 1565 r |= GP_DIR_0|GP_IO_0; 1566 else 1567 r |= GP_DIR_2|GP_IO_2; 1568 1569 skge_write32(hw, B2_GP_IO, r); 1570 1571 /* Enable GMII interface */ 1572 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); 1573 } 1574 1575 1576 switch (hw->phy_type) { 1577 case SK_PHY_XMAC: 1578 xm_phy_init(skge); 1579 break; 1580 case SK_PHY_BCOM: 1581 bcom_phy_init(skge); 1582 bcom_check_link(hw, port); 1583 } 1584 1585 /* Set Station Address */ 1586 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 1587 1588 /* We don't use match addresses so clear */ 1589 for (i = 1; i < 16; i++) 1590 xm_outaddr(hw, port, XM_EXM(i), zero); 1591 1592 /* Clear MIB counters */ 1593 xm_write16(hw, port, XM_STAT_CMD, 1594 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1595 /* Clear two times according to Errata #3 */ 1596 xm_write16(hw, port, XM_STAT_CMD, 1597 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1598 1599 /* configure Rx High Water Mark (XM_RX_HI_WM) */ 1600 xm_write16(hw, port, XM_RX_HI_WM, 1450); 1601 1602 /* We don't need the FCS appended to the packet. */ 1603 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS; 1604 if (jumbo) 1605 r |= XM_RX_BIG_PK_OK; 1606 1607 if (skge->duplex == DUPLEX_HALF) { 1608 /* 1609 * If in manual half duplex mode the other side might be in 1610 * full duplex mode, so ignore if a carrier extension is not seen 1611 * on frames received 1612 */ 1613 r |= XM_RX_DIS_CEXT; 1614 } 1615 xm_write16(hw, port, XM_RX_CMD, r); 1616 1617 /* We want short frames padded to 60 bytes. */ 1618 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD); 1619 1620 /* Increase threshold for jumbo frames on dual port */ 1621 if (hw->ports > 1 && jumbo) 1622 xm_write16(hw, port, XM_TX_THR, 1020); 1623 else 1624 xm_write16(hw, port, XM_TX_THR, 512); 1625 1626 /* 1627 * Enable the reception of all error frames. This is 1628 * a necessary evil due to the design of the XMAC. The 1629 * XMAC's receive FIFO is only 8K in size, however jumbo 1630 * frames can be up to 9000 bytes in length. When bad 1631 * frame filtering is enabled, the XMAC's RX FIFO operates 1632 * in 'store and forward' mode. For this to work, the 1633 * entire frame has to fit into the FIFO, but that means 1634 * that jumbo frames larger than 8192 bytes will be 1635 * truncated. Disabling all bad frame filtering causes 1636 * the RX FIFO to operate in streaming mode, in which 1637 * case the XMAC will start transferring frames out of the 1638 * RX FIFO as soon as the FIFO threshold is reached. 1639 */ 1640 xm_write32(hw, port, XM_MODE, XM_DEF_MODE); 1641 1642 1643 /* 1644 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK) 1645 * - Enable all bits excepting 'Octets Rx OK Low CntOv' 1646 * and 'Octets Rx OK Hi Cnt Ov'. 1647 */ 1648 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK); 1649 1650 /* 1651 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK) 1652 * - Enable all bits excepting 'Octets Tx OK Low CntOv' 1653 * and 'Octets Tx OK Hi Cnt Ov'. 1654 */ 1655 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK); 1656 1657 /* Configure MAC arbiter */ 1658 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1659 1660 /* configure timeout values */ 1661 skge_write8(hw, B3_MA_TOINI_RX1, 72); 1662 skge_write8(hw, B3_MA_TOINI_RX2, 72); 1663 skge_write8(hw, B3_MA_TOINI_TX1, 72); 1664 skge_write8(hw, B3_MA_TOINI_TX2, 72); 1665 1666 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1667 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1668 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1669 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1670 1671 /* Configure Rx MAC FIFO */ 1672 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); 1673 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); 1674 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); 1675 1676 /* Configure Tx MAC FIFO */ 1677 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); 1678 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); 1679 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); 1680 1681 if (jumbo) { 1682 /* Enable frame flushing if jumbo frames used */ 1683 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH); 1684 } else { 1685 /* enable timeout timers if normal frames */ 1686 skge_write16(hw, B3_PA_CTRL, 1687 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); 1688 } 1689 } 1690 1691 static void genesis_stop(struct skge_port *skge) 1692 { 1693 struct skge_hw *hw = skge->hw; 1694 int port = skge->port; 1695 unsigned retries = 1000; 1696 u16 cmd; 1697 1698 /* Disable Tx and Rx */ 1699 cmd = xm_read16(hw, port, XM_MMU_CMD); 1700 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1701 xm_write16(hw, port, XM_MMU_CMD, cmd); 1702 1703 genesis_reset(hw, port); 1704 1705 /* Clear Tx packet arbiter timeout IRQ */ 1706 skge_write16(hw, B3_PA_CTRL, 1707 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2); 1708 1709 /* Reset the MAC */ 1710 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1711 do { 1712 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); 1713 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)) 1714 break; 1715 } while (--retries > 0); 1716 1717 /* For external PHYs there must be special handling */ 1718 if (hw->phy_type != SK_PHY_XMAC) { 1719 u32 reg = skge_read32(hw, B2_GP_IO); 1720 if (port == 0) { 1721 reg |= GP_DIR_0; 1722 reg &= ~GP_IO_0; 1723 } else { 1724 reg |= GP_DIR_2; 1725 reg &= ~GP_IO_2; 1726 } 1727 skge_write32(hw, B2_GP_IO, reg); 1728 skge_read32(hw, B2_GP_IO); 1729 } 1730 1731 xm_write16(hw, port, XM_MMU_CMD, 1732 xm_read16(hw, port, XM_MMU_CMD) 1733 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); 1734 1735 xm_read16(hw, port, XM_MMU_CMD); 1736 } 1737 1738 1739 static void genesis_get_stats(struct skge_port *skge, u64 *data) 1740 { 1741 struct skge_hw *hw = skge->hw; 1742 int port = skge->port; 1743 int i; 1744 unsigned long timeout = jiffies + HZ; 1745 1746 xm_write16(hw, port, 1747 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); 1748 1749 /* wait for update to complete */ 1750 while (xm_read16(hw, port, XM_STAT_CMD) 1751 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { 1752 if (time_after(jiffies, timeout)) 1753 break; 1754 udelay(10); 1755 } 1756 1757 /* special case for 64 bit octet counter */ 1758 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32 1759 | xm_read32(hw, port, XM_TXO_OK_LO); 1760 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32 1761 | xm_read32(hw, port, XM_RXO_OK_LO); 1762 1763 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 1764 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset); 1765 } 1766 1767 static void genesis_mac_intr(struct skge_hw *hw, int port) 1768 { 1769 struct net_device *dev = hw->dev[port]; 1770 struct skge_port *skge = netdev_priv(dev); 1771 u16 status = xm_read16(hw, port, XM_ISRC); 1772 1773 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 1774 "mac interrupt status 0x%x\n", status); 1775 1776 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) { 1777 xm_link_down(hw, port); 1778 mod_timer(&skge->link_timer, jiffies + 1); 1779 } 1780 1781 if (status & XM_IS_TXF_UR) { 1782 xm_write32(hw, port, XM_MODE, XM_MD_FTF); 1783 ++dev->stats.tx_fifo_errors; 1784 } 1785 } 1786 1787 static void genesis_link_up(struct skge_port *skge) 1788 { 1789 struct skge_hw *hw = skge->hw; 1790 int port = skge->port; 1791 u16 cmd, msk; 1792 u32 mode; 1793 1794 cmd = xm_read16(hw, port, XM_MMU_CMD); 1795 1796 /* 1797 * enabling pause frame reception is required for 1000BT 1798 * because the XMAC is not reset if the link is going down 1799 */ 1800 if (skge->flow_status == FLOW_STAT_NONE || 1801 skge->flow_status == FLOW_STAT_LOC_SEND) 1802 /* Disable Pause Frame Reception */ 1803 cmd |= XM_MMU_IGN_PF; 1804 else 1805 /* Enable Pause Frame Reception */ 1806 cmd &= ~XM_MMU_IGN_PF; 1807 1808 xm_write16(hw, port, XM_MMU_CMD, cmd); 1809 1810 mode = xm_read32(hw, port, XM_MODE); 1811 if (skge->flow_status == FLOW_STAT_SYMMETRIC || 1812 skge->flow_status == FLOW_STAT_LOC_SEND) { 1813 /* 1814 * Configure Pause Frame Generation 1815 * Use internal and external Pause Frame Generation. 1816 * Sending pause frames is edge triggered. 1817 * Send a Pause frame with the maximum pause time if 1818 * internal oder external FIFO full condition occurs. 1819 * Send a zero pause time frame to re-start transmission. 1820 */ 1821 /* XM_PAUSE_DA = '010000C28001' (default) */ 1822 /* XM_MAC_PTIME = 0xffff (maximum) */ 1823 /* remember this value is defined in big endian (!) */ 1824 xm_write16(hw, port, XM_MAC_PTIME, 0xffff); 1825 1826 mode |= XM_PAUSE_MODE; 1827 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); 1828 } else { 1829 /* 1830 * disable pause frame generation is required for 1000BT 1831 * because the XMAC is not reset if the link is going down 1832 */ 1833 /* Disable Pause Mode in Mode Register */ 1834 mode &= ~XM_PAUSE_MODE; 1835 1836 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); 1837 } 1838 1839 xm_write32(hw, port, XM_MODE, mode); 1840 1841 /* Turn on detection of Tx underrun */ 1842 msk = xm_read16(hw, port, XM_IMSK); 1843 msk &= ~XM_IS_TXF_UR; 1844 xm_write16(hw, port, XM_IMSK, msk); 1845 1846 xm_read16(hw, port, XM_ISRC); 1847 1848 /* get MMU Command Reg. */ 1849 cmd = xm_read16(hw, port, XM_MMU_CMD); 1850 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL) 1851 cmd |= XM_MMU_GMII_FD; 1852 1853 /* 1854 * Workaround BCOM Errata (#10523) for all BCom Phys 1855 * Enable Power Management after link up 1856 */ 1857 if (hw->phy_type == SK_PHY_BCOM) { 1858 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1859 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) 1860 & ~PHY_B_AC_DIS_PM); 1861 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1862 } 1863 1864 /* enable Rx/Tx */ 1865 xm_write16(hw, port, XM_MMU_CMD, 1866 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1867 skge_link_up(skge); 1868 } 1869 1870 1871 static inline void bcom_phy_intr(struct skge_port *skge) 1872 { 1873 struct skge_hw *hw = skge->hw; 1874 int port = skge->port; 1875 u16 isrc; 1876 1877 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT); 1878 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 1879 "phy interrupt status 0x%x\n", isrc); 1880 1881 if (isrc & PHY_B_IS_PSE) 1882 pr_err("%s: uncorrectable pair swap error\n", 1883 hw->dev[port]->name); 1884 1885 /* Workaround BCom Errata: 1886 * enable and disable loopback mode if "NO HCD" occurs. 1887 */ 1888 if (isrc & PHY_B_IS_NO_HDCL) { 1889 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL); 1890 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1891 ctrl | PHY_CT_LOOP); 1892 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1893 ctrl & ~PHY_CT_LOOP); 1894 } 1895 1896 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) 1897 bcom_check_link(hw, port); 1898 1899 } 1900 1901 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1902 { 1903 int i; 1904 1905 gma_write16(hw, port, GM_SMI_DATA, val); 1906 gma_write16(hw, port, GM_SMI_CTRL, 1907 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); 1908 for (i = 0; i < PHY_RETRIES; i++) { 1909 udelay(1); 1910 1911 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) 1912 return 0; 1913 } 1914 1915 pr_warn("%s: phy write timeout\n", hw->dev[port]->name); 1916 return -EIO; 1917 } 1918 1919 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1920 { 1921 int i; 1922 1923 gma_write16(hw, port, GM_SMI_CTRL, 1924 GM_SMI_CT_PHY_AD(hw->phy_addr) 1925 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); 1926 1927 for (i = 0; i < PHY_RETRIES; i++) { 1928 udelay(1); 1929 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) 1930 goto ready; 1931 } 1932 1933 return -ETIMEDOUT; 1934 ready: 1935 *val = gma_read16(hw, port, GM_SMI_DATA); 1936 return 0; 1937 } 1938 1939 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg) 1940 { 1941 u16 v = 0; 1942 if (__gm_phy_read(hw, port, reg, &v)) 1943 pr_warn("%s: phy read timeout\n", hw->dev[port]->name); 1944 return v; 1945 } 1946 1947 /* Marvell Phy Initialization */ 1948 static void yukon_init(struct skge_hw *hw, int port) 1949 { 1950 struct skge_port *skge = netdev_priv(hw->dev[port]); 1951 u16 ctrl, ct1000, adv; 1952 1953 if (skge->autoneg == AUTONEG_ENABLE) { 1954 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); 1955 1956 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | 1957 PHY_M_EC_MAC_S_MSK); 1958 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); 1959 1960 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); 1961 1962 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); 1963 } 1964 1965 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 1966 if (skge->autoneg == AUTONEG_DISABLE) 1967 ctrl &= ~PHY_CT_ANE; 1968 1969 ctrl |= PHY_CT_RESET; 1970 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1971 1972 ctrl = 0; 1973 ct1000 = 0; 1974 adv = PHY_AN_CSMA; 1975 1976 if (skge->autoneg == AUTONEG_ENABLE) { 1977 if (hw->copper) { 1978 if (skge->advertising & ADVERTISED_1000baseT_Full) 1979 ct1000 |= PHY_M_1000C_AFD; 1980 if (skge->advertising & ADVERTISED_1000baseT_Half) 1981 ct1000 |= PHY_M_1000C_AHD; 1982 if (skge->advertising & ADVERTISED_100baseT_Full) 1983 adv |= PHY_M_AN_100_FD; 1984 if (skge->advertising & ADVERTISED_100baseT_Half) 1985 adv |= PHY_M_AN_100_HD; 1986 if (skge->advertising & ADVERTISED_10baseT_Full) 1987 adv |= PHY_M_AN_10_FD; 1988 if (skge->advertising & ADVERTISED_10baseT_Half) 1989 adv |= PHY_M_AN_10_HD; 1990 1991 /* Set Flow-control capabilities */ 1992 adv |= phy_pause_map[skge->flow_control]; 1993 } else { 1994 if (skge->advertising & ADVERTISED_1000baseT_Full) 1995 adv |= PHY_M_AN_1000X_AFD; 1996 if (skge->advertising & ADVERTISED_1000baseT_Half) 1997 adv |= PHY_M_AN_1000X_AHD; 1998 1999 adv |= fiber_pause_map[skge->flow_control]; 2000 } 2001 2002 /* Restart Auto-negotiation */ 2003 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; 2004 } else { 2005 /* forced speed/duplex settings */ 2006 ct1000 = PHY_M_1000C_MSE; 2007 2008 if (skge->duplex == DUPLEX_FULL) 2009 ctrl |= PHY_CT_DUP_MD; 2010 2011 switch (skge->speed) { 2012 case SPEED_1000: 2013 ctrl |= PHY_CT_SP1000; 2014 break; 2015 case SPEED_100: 2016 ctrl |= PHY_CT_SP100; 2017 break; 2018 } 2019 2020 ctrl |= PHY_CT_RESET; 2021 } 2022 2023 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); 2024 2025 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); 2026 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2027 2028 /* Enable phy interrupt on autonegotiation complete (or link up) */ 2029 if (skge->autoneg == AUTONEG_ENABLE) 2030 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK); 2031 else 2032 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 2033 } 2034 2035 static void yukon_reset(struct skge_hw *hw, int port) 2036 { 2037 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ 2038 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ 2039 gma_write16(hw, port, GM_MC_ADDR_H2, 0); 2040 gma_write16(hw, port, GM_MC_ADDR_H3, 0); 2041 gma_write16(hw, port, GM_MC_ADDR_H4, 0); 2042 2043 gma_write16(hw, port, GM_RX_CTRL, 2044 gma_read16(hw, port, GM_RX_CTRL) 2045 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2046 } 2047 2048 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */ 2049 static int is_yukon_lite_a0(struct skge_hw *hw) 2050 { 2051 u32 reg; 2052 int ret; 2053 2054 if (hw->chip_id != CHIP_ID_YUKON) 2055 return 0; 2056 2057 reg = skge_read32(hw, B2_FAR); 2058 skge_write8(hw, B2_FAR + 3, 0xff); 2059 ret = (skge_read8(hw, B2_FAR + 3) != 0); 2060 skge_write32(hw, B2_FAR, reg); 2061 return ret; 2062 } 2063 2064 static void yukon_mac_init(struct skge_hw *hw, int port) 2065 { 2066 struct skge_port *skge = netdev_priv(hw->dev[port]); 2067 int i; 2068 u32 reg; 2069 const u8 *addr = hw->dev[port]->dev_addr; 2070 2071 /* WA code for COMA mode -- set PHY reset */ 2072 if (hw->chip_id == CHIP_ID_YUKON_LITE && 2073 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 2074 reg = skge_read32(hw, B2_GP_IO); 2075 reg |= GP_DIR_9 | GP_IO_9; 2076 skge_write32(hw, B2_GP_IO, reg); 2077 } 2078 2079 /* hard reset */ 2080 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 2081 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 2082 2083 /* WA code for COMA mode -- clear PHY reset */ 2084 if (hw->chip_id == CHIP_ID_YUKON_LITE && 2085 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 2086 reg = skge_read32(hw, B2_GP_IO); 2087 reg |= GP_DIR_9; 2088 reg &= ~GP_IO_9; 2089 skge_write32(hw, B2_GP_IO, reg); 2090 } 2091 2092 /* Set hardware config mode */ 2093 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP | 2094 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE; 2095 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; 2096 2097 /* Clear GMC reset */ 2098 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET); 2099 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); 2100 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); 2101 2102 if (skge->autoneg == AUTONEG_DISABLE) { 2103 reg = GM_GPCR_AU_ALL_DIS; 2104 gma_write16(hw, port, GM_GP_CTRL, 2105 gma_read16(hw, port, GM_GP_CTRL) | reg); 2106 2107 switch (skge->speed) { 2108 case SPEED_1000: 2109 reg &= ~GM_GPCR_SPEED_100; 2110 reg |= GM_GPCR_SPEED_1000; 2111 break; 2112 case SPEED_100: 2113 reg &= ~GM_GPCR_SPEED_1000; 2114 reg |= GM_GPCR_SPEED_100; 2115 break; 2116 case SPEED_10: 2117 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100); 2118 break; 2119 } 2120 2121 if (skge->duplex == DUPLEX_FULL) 2122 reg |= GM_GPCR_DUP_FULL; 2123 } else 2124 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; 2125 2126 switch (skge->flow_control) { 2127 case FLOW_MODE_NONE: 2128 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2129 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 2130 break; 2131 case FLOW_MODE_LOC_SEND: 2132 /* disable Rx flow-control */ 2133 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 2134 break; 2135 case FLOW_MODE_SYMMETRIC: 2136 case FLOW_MODE_SYM_OR_REM: 2137 /* enable Tx & Rx flow-control */ 2138 break; 2139 } 2140 2141 gma_write16(hw, port, GM_GP_CTRL, reg); 2142 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); 2143 2144 yukon_init(hw, port); 2145 2146 /* MIB clear */ 2147 reg = gma_read16(hw, port, GM_PHY_ADDR); 2148 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); 2149 2150 for (i = 0; i < GM_MIB_CNT_SIZE; i++) 2151 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); 2152 gma_write16(hw, port, GM_PHY_ADDR, reg); 2153 2154 /* transmit control */ 2155 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); 2156 2157 /* receive control reg: unicast + multicast + no FCS */ 2158 gma_write16(hw, port, GM_RX_CTRL, 2159 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); 2160 2161 /* transmit flow control */ 2162 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); 2163 2164 /* transmit parameter */ 2165 gma_write16(hw, port, GM_TX_PARAM, 2166 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | 2167 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | 2168 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); 2169 2170 /* configure the Serial Mode Register */ 2171 reg = DATA_BLIND_VAL(DATA_BLIND_DEF) 2172 | GM_SMOD_VLAN_ENA 2173 | IPG_DATA_VAL(IPG_DATA_DEF); 2174 2175 if (hw->dev[port]->mtu > ETH_DATA_LEN) 2176 reg |= GM_SMOD_JUMBO_ENA; 2177 2178 gma_write16(hw, port, GM_SERIAL_MODE, reg); 2179 2180 /* physical address: used for pause frames */ 2181 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); 2182 /* virtual address for data */ 2183 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); 2184 2185 /* enable interrupt mask for counter overflows */ 2186 gma_write16(hw, port, GM_TX_IRQ_MSK, 0); 2187 gma_write16(hw, port, GM_RX_IRQ_MSK, 0); 2188 gma_write16(hw, port, GM_TR_IRQ_MSK, 0); 2189 2190 /* Initialize Mac Fifo */ 2191 2192 /* Configure Rx MAC FIFO */ 2193 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); 2194 reg = GMF_OPER_ON | GMF_RX_F_FL_ON; 2195 2196 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ 2197 if (is_yukon_lite_a0(hw)) 2198 reg &= ~GMF_RX_F_FL_ON; 2199 2200 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); 2201 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg); 2202 /* 2203 * because Pause Packet Truncation in GMAC is not working 2204 * we have to increase the Flush Threshold to 64 bytes 2205 * in order to flush pause packets in Rx FIFO on Yukon-1 2206 */ 2207 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1); 2208 2209 /* Configure Tx MAC FIFO */ 2210 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); 2211 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); 2212 } 2213 2214 /* Go into power down mode */ 2215 static void yukon_suspend(struct skge_hw *hw, int port) 2216 { 2217 u16 ctrl; 2218 2219 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); 2220 ctrl |= PHY_M_PC_POL_R_DIS; 2221 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); 2222 2223 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 2224 ctrl |= PHY_CT_RESET; 2225 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2226 2227 /* switch IEEE compatible power down mode on */ 2228 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 2229 ctrl |= PHY_CT_PDOWN; 2230 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2231 } 2232 2233 static void yukon_stop(struct skge_port *skge) 2234 { 2235 struct skge_hw *hw = skge->hw; 2236 int port = skge->port; 2237 2238 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 2239 yukon_reset(hw, port); 2240 2241 gma_write16(hw, port, GM_GP_CTRL, 2242 gma_read16(hw, port, GM_GP_CTRL) 2243 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA)); 2244 gma_read16(hw, port, GM_GP_CTRL); 2245 2246 yukon_suspend(hw, port); 2247 2248 /* set GPHY Control reset */ 2249 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 2250 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 2251 } 2252 2253 static void yukon_get_stats(struct skge_port *skge, u64 *data) 2254 { 2255 struct skge_hw *hw = skge->hw; 2256 int port = skge->port; 2257 int i; 2258 2259 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 2260 | gma_read32(hw, port, GM_TXO_OK_LO); 2261 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 2262 | gma_read32(hw, port, GM_RXO_OK_LO); 2263 2264 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 2265 data[i] = gma_read32(hw, port, 2266 skge_stats[i].gma_offset); 2267 } 2268 2269 static void yukon_mac_intr(struct skge_hw *hw, int port) 2270 { 2271 struct net_device *dev = hw->dev[port]; 2272 struct skge_port *skge = netdev_priv(dev); 2273 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); 2274 2275 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 2276 "mac interrupt status 0x%x\n", status); 2277 2278 if (status & GM_IS_RX_FF_OR) { 2279 ++dev->stats.rx_fifo_errors; 2280 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); 2281 } 2282 2283 if (status & GM_IS_TX_FF_UR) { 2284 ++dev->stats.tx_fifo_errors; 2285 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); 2286 } 2287 2288 } 2289 2290 static u16 yukon_speed(const struct skge_hw *hw, u16 aux) 2291 { 2292 switch (aux & PHY_M_PS_SPEED_MSK) { 2293 case PHY_M_PS_SPEED_1000: 2294 return SPEED_1000; 2295 case PHY_M_PS_SPEED_100: 2296 return SPEED_100; 2297 default: 2298 return SPEED_10; 2299 } 2300 } 2301 2302 static void yukon_link_up(struct skge_port *skge) 2303 { 2304 struct skge_hw *hw = skge->hw; 2305 int port = skge->port; 2306 u16 reg; 2307 2308 /* Enable Transmit FIFO Underrun */ 2309 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); 2310 2311 reg = gma_read16(hw, port, GM_GP_CTRL); 2312 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) 2313 reg |= GM_GPCR_DUP_FULL; 2314 2315 /* enable Rx/Tx */ 2316 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; 2317 gma_write16(hw, port, GM_GP_CTRL, reg); 2318 2319 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 2320 skge_link_up(skge); 2321 } 2322 2323 static void yukon_link_down(struct skge_port *skge) 2324 { 2325 struct skge_hw *hw = skge->hw; 2326 int port = skge->port; 2327 u16 ctrl; 2328 2329 ctrl = gma_read16(hw, port, GM_GP_CTRL); 2330 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 2331 gma_write16(hw, port, GM_GP_CTRL, ctrl); 2332 2333 if (skge->flow_status == FLOW_STAT_REM_SEND) { 2334 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV); 2335 ctrl |= PHY_M_AN_ASP; 2336 /* restore Asymmetric Pause bit */ 2337 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl); 2338 } 2339 2340 skge_link_down(skge); 2341 2342 yukon_init(hw, port); 2343 } 2344 2345 static void yukon_phy_intr(struct skge_port *skge) 2346 { 2347 struct skge_hw *hw = skge->hw; 2348 int port = skge->port; 2349 const char *reason = NULL; 2350 u16 istatus, phystat; 2351 2352 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); 2353 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); 2354 2355 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 2356 "phy interrupt status 0x%x 0x%x\n", istatus, phystat); 2357 2358 if (istatus & PHY_M_IS_AN_COMPL) { 2359 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP) 2360 & PHY_M_AN_RF) { 2361 reason = "remote fault"; 2362 goto failed; 2363 } 2364 2365 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { 2366 reason = "master/slave fault"; 2367 goto failed; 2368 } 2369 2370 if (!(phystat & PHY_M_PS_SPDUP_RES)) { 2371 reason = "speed/duplex"; 2372 goto failed; 2373 } 2374 2375 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) 2376 ? DUPLEX_FULL : DUPLEX_HALF; 2377 skge->speed = yukon_speed(hw, phystat); 2378 2379 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 2380 switch (phystat & PHY_M_PS_PAUSE_MSK) { 2381 case PHY_M_PS_PAUSE_MSK: 2382 skge->flow_status = FLOW_STAT_SYMMETRIC; 2383 break; 2384 case PHY_M_PS_RX_P_EN: 2385 skge->flow_status = FLOW_STAT_REM_SEND; 2386 break; 2387 case PHY_M_PS_TX_P_EN: 2388 skge->flow_status = FLOW_STAT_LOC_SEND; 2389 break; 2390 default: 2391 skge->flow_status = FLOW_STAT_NONE; 2392 } 2393 2394 if (skge->flow_status == FLOW_STAT_NONE || 2395 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) 2396 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2397 else 2398 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); 2399 yukon_link_up(skge); 2400 return; 2401 } 2402 2403 if (istatus & PHY_M_IS_LSP_CHANGE) 2404 skge->speed = yukon_speed(hw, phystat); 2405 2406 if (istatus & PHY_M_IS_DUP_CHANGE) 2407 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; 2408 if (istatus & PHY_M_IS_LST_CHANGE) { 2409 if (phystat & PHY_M_PS_LINK_UP) 2410 yukon_link_up(skge); 2411 else 2412 yukon_link_down(skge); 2413 } 2414 return; 2415 failed: 2416 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason); 2417 2418 /* XXX restart autonegotiation? */ 2419 } 2420 2421 static void skge_phy_reset(struct skge_port *skge) 2422 { 2423 struct skge_hw *hw = skge->hw; 2424 int port = skge->port; 2425 struct net_device *dev = hw->dev[port]; 2426 2427 netif_stop_queue(skge->netdev); 2428 netif_carrier_off(skge->netdev); 2429 2430 spin_lock_bh(&hw->phy_lock); 2431 if (is_genesis(hw)) { 2432 genesis_reset(hw, port); 2433 genesis_mac_init(hw, port); 2434 } else { 2435 yukon_reset(hw, port); 2436 yukon_init(hw, port); 2437 } 2438 spin_unlock_bh(&hw->phy_lock); 2439 2440 skge_set_multicast(dev); 2441 } 2442 2443 /* Basic MII support */ 2444 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2445 { 2446 struct mii_ioctl_data *data = if_mii(ifr); 2447 struct skge_port *skge = netdev_priv(dev); 2448 struct skge_hw *hw = skge->hw; 2449 int err = -EOPNOTSUPP; 2450 2451 if (!netif_running(dev)) 2452 return -ENODEV; /* Phy still in reset */ 2453 2454 switch (cmd) { 2455 case SIOCGMIIPHY: 2456 data->phy_id = hw->phy_addr; 2457 2458 fallthrough; 2459 case SIOCGMIIREG: { 2460 u16 val = 0; 2461 spin_lock_bh(&hw->phy_lock); 2462 2463 if (is_genesis(hw)) 2464 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2465 else 2466 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2467 spin_unlock_bh(&hw->phy_lock); 2468 data->val_out = val; 2469 break; 2470 } 2471 2472 case SIOCSMIIREG: 2473 spin_lock_bh(&hw->phy_lock); 2474 if (is_genesis(hw)) 2475 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2476 data->val_in); 2477 else 2478 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2479 data->val_in); 2480 spin_unlock_bh(&hw->phy_lock); 2481 break; 2482 } 2483 return err; 2484 } 2485 2486 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len) 2487 { 2488 u32 end; 2489 2490 start /= 8; 2491 len /= 8; 2492 end = start + len - 1; 2493 2494 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); 2495 skge_write32(hw, RB_ADDR(q, RB_START), start); 2496 skge_write32(hw, RB_ADDR(q, RB_WP), start); 2497 skge_write32(hw, RB_ADDR(q, RB_RP), start); 2498 skge_write32(hw, RB_ADDR(q, RB_END), end); 2499 2500 if (q == Q_R1 || q == Q_R2) { 2501 /* Set thresholds on receive queue's */ 2502 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), 2503 start + (2*len)/3); 2504 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), 2505 start + (len/3)); 2506 } else { 2507 /* Enable store & forward on Tx queue's because 2508 * Tx FIFO is only 4K on Genesis and 1K on Yukon 2509 */ 2510 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); 2511 } 2512 2513 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); 2514 } 2515 2516 /* Setup Bus Memory Interface */ 2517 static void skge_qset(struct skge_port *skge, u16 q, 2518 const struct skge_element *e) 2519 { 2520 struct skge_hw *hw = skge->hw; 2521 u32 watermark = 0x600; 2522 u64 base = skge->dma + (e->desc - skge->mem); 2523 2524 /* optimization to reduce window on 32bit/33mhz */ 2525 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0) 2526 watermark /= 2; 2527 2528 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET); 2529 skge_write32(hw, Q_ADDR(q, Q_F), watermark); 2530 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32)); 2531 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base); 2532 } 2533 2534 static int skge_up(struct net_device *dev) 2535 { 2536 struct skge_port *skge = netdev_priv(dev); 2537 struct skge_hw *hw = skge->hw; 2538 int port = skge->port; 2539 u32 chunk, ram_addr; 2540 size_t rx_size, tx_size; 2541 int err; 2542 2543 if (!is_valid_ether_addr(dev->dev_addr)) 2544 return -EINVAL; 2545 2546 netif_info(skge, ifup, skge->netdev, "enabling interface\n"); 2547 2548 if (dev->mtu > RX_BUF_SIZE) 2549 skge->rx_buf_size = dev->mtu + ETH_HLEN; 2550 else 2551 skge->rx_buf_size = RX_BUF_SIZE; 2552 2553 2554 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); 2555 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); 2556 skge->mem_size = tx_size + rx_size; 2557 skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size, 2558 &skge->dma, GFP_KERNEL); 2559 if (!skge->mem) 2560 return -ENOMEM; 2561 2562 BUG_ON(skge->dma & 7); 2563 2564 if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) { 2565 dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n"); 2566 err = -EINVAL; 2567 goto free_pci_mem; 2568 } 2569 2570 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma); 2571 if (err) 2572 goto free_pci_mem; 2573 2574 err = skge_rx_fill(dev); 2575 if (err) 2576 goto free_rx_ring; 2577 2578 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, 2579 skge->dma + rx_size); 2580 if (err) 2581 goto free_rx_ring; 2582 2583 if (hw->ports == 1) { 2584 err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED, 2585 dev->name, hw); 2586 if (err) { 2587 netdev_err(dev, "Unable to allocate interrupt %d error: %d\n", 2588 hw->pdev->irq, err); 2589 goto free_tx_ring; 2590 } 2591 } 2592 2593 /* Initialize MAC */ 2594 netif_carrier_off(dev); 2595 spin_lock_bh(&hw->phy_lock); 2596 if (is_genesis(hw)) 2597 genesis_mac_init(hw, port); 2598 else 2599 yukon_mac_init(hw, port); 2600 spin_unlock_bh(&hw->phy_lock); 2601 2602 /* Configure RAMbuffers - equally between ports and tx/rx */ 2603 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2); 2604 ram_addr = hw->ram_offset + 2 * chunk * port; 2605 2606 skge_ramset(hw, rxqaddr[port], ram_addr, chunk); 2607 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean); 2608 2609 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean); 2610 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk); 2611 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use); 2612 2613 /* Start receiver BMU */ 2614 wmb(); 2615 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F); 2616 skge_led(skge, LED_MODE_ON); 2617 2618 spin_lock_irq(&hw->hw_lock); 2619 hw->intr_mask |= portmask[port]; 2620 skge_write32(hw, B0_IMSK, hw->intr_mask); 2621 skge_read32(hw, B0_IMSK); 2622 spin_unlock_irq(&hw->hw_lock); 2623 2624 napi_enable(&skge->napi); 2625 2626 skge_set_multicast(dev); 2627 2628 return 0; 2629 2630 free_tx_ring: 2631 kfree(skge->tx_ring.start); 2632 free_rx_ring: 2633 skge_rx_clean(skge); 2634 kfree(skge->rx_ring.start); 2635 free_pci_mem: 2636 dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem, 2637 skge->dma); 2638 skge->mem = NULL; 2639 2640 return err; 2641 } 2642 2643 /* stop receiver */ 2644 static void skge_rx_stop(struct skge_hw *hw, int port) 2645 { 2646 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP); 2647 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL), 2648 RB_RST_SET|RB_DIS_OP_MD); 2649 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); 2650 } 2651 2652 static int skge_down(struct net_device *dev) 2653 { 2654 struct skge_port *skge = netdev_priv(dev); 2655 struct skge_hw *hw = skge->hw; 2656 int port = skge->port; 2657 2658 if (!skge->mem) 2659 return 0; 2660 2661 netif_info(skge, ifdown, skge->netdev, "disabling interface\n"); 2662 2663 netif_tx_disable(dev); 2664 2665 if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC) 2666 del_timer_sync(&skge->link_timer); 2667 2668 napi_disable(&skge->napi); 2669 netif_carrier_off(dev); 2670 2671 spin_lock_irq(&hw->hw_lock); 2672 hw->intr_mask &= ~portmask[port]; 2673 skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask); 2674 skge_read32(hw, B0_IMSK); 2675 spin_unlock_irq(&hw->hw_lock); 2676 2677 if (hw->ports == 1) 2678 free_irq(hw->pdev->irq, hw); 2679 2680 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF); 2681 if (is_genesis(hw)) 2682 genesis_stop(skge); 2683 else 2684 yukon_stop(skge); 2685 2686 /* Stop transmitter */ 2687 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); 2688 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), 2689 RB_RST_SET|RB_DIS_OP_MD); 2690 2691 2692 /* Disable Force Sync bit and Enable Alloc bit */ 2693 skge_write8(hw, SK_REG(port, TXA_CTRL), 2694 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); 2695 2696 /* Stop Interval Timer and Limit Counter of Tx Arbiter */ 2697 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); 2698 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); 2699 2700 /* Reset PCI FIFO */ 2701 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); 2702 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); 2703 2704 /* Reset the RAM Buffer async Tx queue */ 2705 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET); 2706 2707 skge_rx_stop(hw, port); 2708 2709 if (is_genesis(hw)) { 2710 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET); 2711 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET); 2712 } else { 2713 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 2714 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); 2715 } 2716 2717 skge_led(skge, LED_MODE_OFF); 2718 2719 netif_tx_lock_bh(dev); 2720 skge_tx_clean(dev); 2721 netif_tx_unlock_bh(dev); 2722 2723 skge_rx_clean(skge); 2724 2725 kfree(skge->rx_ring.start); 2726 kfree(skge->tx_ring.start); 2727 dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem, 2728 skge->dma); 2729 skge->mem = NULL; 2730 return 0; 2731 } 2732 2733 static inline int skge_avail(const struct skge_ring *ring) 2734 { 2735 smp_mb(); 2736 return ((ring->to_clean > ring->to_use) ? 0 : ring->count) 2737 + (ring->to_clean - ring->to_use) - 1; 2738 } 2739 2740 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb, 2741 struct net_device *dev) 2742 { 2743 struct skge_port *skge = netdev_priv(dev); 2744 struct skge_hw *hw = skge->hw; 2745 struct skge_element *e; 2746 struct skge_tx_desc *td; 2747 int i; 2748 u32 control, len; 2749 dma_addr_t map; 2750 2751 if (skb_padto(skb, ETH_ZLEN)) 2752 return NETDEV_TX_OK; 2753 2754 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) 2755 return NETDEV_TX_BUSY; 2756 2757 e = skge->tx_ring.to_use; 2758 td = e->desc; 2759 BUG_ON(td->control & BMU_OWN); 2760 e->skb = skb; 2761 len = skb_headlen(skb); 2762 map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE); 2763 if (dma_mapping_error(&hw->pdev->dev, map)) 2764 goto mapping_error; 2765 2766 dma_unmap_addr_set(e, mapaddr, map); 2767 dma_unmap_len_set(e, maplen, len); 2768 2769 td->dma_lo = lower_32_bits(map); 2770 td->dma_hi = upper_32_bits(map); 2771 2772 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2773 const int offset = skb_checksum_start_offset(skb); 2774 2775 /* This seems backwards, but it is what the sk98lin 2776 * does. Looks like hardware is wrong? 2777 */ 2778 if (ipip_hdr(skb)->protocol == IPPROTO_UDP && 2779 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON) 2780 control = BMU_TCP_CHECK; 2781 else 2782 control = BMU_UDP_CHECK; 2783 2784 td->csum_offs = 0; 2785 td->csum_start = offset; 2786 td->csum_write = offset + skb->csum_offset; 2787 } else 2788 control = BMU_CHECK; 2789 2790 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */ 2791 control |= BMU_EOF | BMU_IRQ_EOF; 2792 else { 2793 struct skge_tx_desc *tf = td; 2794 2795 control |= BMU_STFWD; 2796 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2797 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2798 2799 map = skb_frag_dma_map(&hw->pdev->dev, frag, 0, 2800 skb_frag_size(frag), DMA_TO_DEVICE); 2801 if (dma_mapping_error(&hw->pdev->dev, map)) 2802 goto mapping_unwind; 2803 2804 e = e->next; 2805 e->skb = skb; 2806 tf = e->desc; 2807 BUG_ON(tf->control & BMU_OWN); 2808 2809 tf->dma_lo = lower_32_bits(map); 2810 tf->dma_hi = upper_32_bits(map); 2811 dma_unmap_addr_set(e, mapaddr, map); 2812 dma_unmap_len_set(e, maplen, skb_frag_size(frag)); 2813 2814 tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag); 2815 } 2816 tf->control |= BMU_EOF | BMU_IRQ_EOF; 2817 } 2818 /* Make sure all the descriptors written */ 2819 wmb(); 2820 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len; 2821 wmb(); 2822 2823 netdev_sent_queue(dev, skb->len); 2824 2825 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START); 2826 2827 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev, 2828 "tx queued, slot %td, len %d\n", 2829 e - skge->tx_ring.start, skb->len); 2830 2831 skge->tx_ring.to_use = e->next; 2832 smp_wmb(); 2833 2834 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) { 2835 netdev_dbg(dev, "transmit queue full\n"); 2836 netif_stop_queue(dev); 2837 } 2838 2839 return NETDEV_TX_OK; 2840 2841 mapping_unwind: 2842 e = skge->tx_ring.to_use; 2843 dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr), 2844 dma_unmap_len(e, maplen), DMA_TO_DEVICE); 2845 while (i-- > 0) { 2846 e = e->next; 2847 dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr), 2848 dma_unmap_len(e, maplen), DMA_TO_DEVICE); 2849 } 2850 2851 mapping_error: 2852 if (net_ratelimit()) 2853 dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name); 2854 dev_kfree_skb_any(skb); 2855 return NETDEV_TX_OK; 2856 } 2857 2858 2859 /* Free resources associated with this reing element */ 2860 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e, 2861 u32 control) 2862 { 2863 /* skb header vs. fragment */ 2864 if (control & BMU_STF) 2865 dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr), 2866 dma_unmap_len(e, maplen), DMA_TO_DEVICE); 2867 else 2868 dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr), 2869 dma_unmap_len(e, maplen), DMA_TO_DEVICE); 2870 } 2871 2872 /* Free all buffers in transmit ring */ 2873 static void skge_tx_clean(struct net_device *dev) 2874 { 2875 struct skge_port *skge = netdev_priv(dev); 2876 struct skge_element *e; 2877 2878 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { 2879 struct skge_tx_desc *td = e->desc; 2880 2881 skge_tx_unmap(skge->hw->pdev, e, td->control); 2882 2883 if (td->control & BMU_EOF) 2884 dev_kfree_skb(e->skb); 2885 td->control = 0; 2886 } 2887 2888 netdev_reset_queue(dev); 2889 skge->tx_ring.to_clean = e; 2890 } 2891 2892 static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue) 2893 { 2894 struct skge_port *skge = netdev_priv(dev); 2895 2896 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n"); 2897 2898 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP); 2899 skge_tx_clean(dev); 2900 netif_wake_queue(dev); 2901 } 2902 2903 static int skge_change_mtu(struct net_device *dev, int new_mtu) 2904 { 2905 int err; 2906 2907 if (!netif_running(dev)) { 2908 dev->mtu = new_mtu; 2909 return 0; 2910 } 2911 2912 skge_down(dev); 2913 2914 dev->mtu = new_mtu; 2915 2916 err = skge_up(dev); 2917 if (err) 2918 dev_close(dev); 2919 2920 return err; 2921 } 2922 2923 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 }; 2924 2925 static void genesis_add_filter(u8 filter[8], const u8 *addr) 2926 { 2927 u32 crc, bit; 2928 2929 crc = ether_crc_le(ETH_ALEN, addr); 2930 bit = ~crc & 0x3f; 2931 filter[bit/8] |= 1 << (bit%8); 2932 } 2933 2934 static void genesis_set_multicast(struct net_device *dev) 2935 { 2936 struct skge_port *skge = netdev_priv(dev); 2937 struct skge_hw *hw = skge->hw; 2938 int port = skge->port; 2939 struct netdev_hw_addr *ha; 2940 u32 mode; 2941 u8 filter[8]; 2942 2943 mode = xm_read32(hw, port, XM_MODE); 2944 mode |= XM_MD_ENA_HASH; 2945 if (dev->flags & IFF_PROMISC) 2946 mode |= XM_MD_ENA_PROM; 2947 else 2948 mode &= ~XM_MD_ENA_PROM; 2949 2950 if (dev->flags & IFF_ALLMULTI) 2951 memset(filter, 0xff, sizeof(filter)); 2952 else { 2953 memset(filter, 0, sizeof(filter)); 2954 2955 if (skge->flow_status == FLOW_STAT_REM_SEND || 2956 skge->flow_status == FLOW_STAT_SYMMETRIC) 2957 genesis_add_filter(filter, pause_mc_addr); 2958 2959 netdev_for_each_mc_addr(ha, dev) 2960 genesis_add_filter(filter, ha->addr); 2961 } 2962 2963 xm_write32(hw, port, XM_MODE, mode); 2964 xm_outhash(hw, port, XM_HSM, filter); 2965 } 2966 2967 static void yukon_add_filter(u8 filter[8], const u8 *addr) 2968 { 2969 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f; 2970 2971 filter[bit / 8] |= 1 << (bit % 8); 2972 } 2973 2974 static void yukon_set_multicast(struct net_device *dev) 2975 { 2976 struct skge_port *skge = netdev_priv(dev); 2977 struct skge_hw *hw = skge->hw; 2978 int port = skge->port; 2979 struct netdev_hw_addr *ha; 2980 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND || 2981 skge->flow_status == FLOW_STAT_SYMMETRIC); 2982 u16 reg; 2983 u8 filter[8]; 2984 2985 memset(filter, 0, sizeof(filter)); 2986 2987 reg = gma_read16(hw, port, GM_RX_CTRL); 2988 reg |= GM_RXCR_UCF_ENA; 2989 2990 if (dev->flags & IFF_PROMISC) /* promiscuous */ 2991 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2992 else if (dev->flags & IFF_ALLMULTI) /* all multicast */ 2993 memset(filter, 0xff, sizeof(filter)); 2994 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */ 2995 reg &= ~GM_RXCR_MCF_ENA; 2996 else { 2997 reg |= GM_RXCR_MCF_ENA; 2998 2999 if (rx_pause) 3000 yukon_add_filter(filter, pause_mc_addr); 3001 3002 netdev_for_each_mc_addr(ha, dev) 3003 yukon_add_filter(filter, ha->addr); 3004 } 3005 3006 3007 gma_write16(hw, port, GM_MC_ADDR_H1, 3008 (u16)filter[0] | ((u16)filter[1] << 8)); 3009 gma_write16(hw, port, GM_MC_ADDR_H2, 3010 (u16)filter[2] | ((u16)filter[3] << 8)); 3011 gma_write16(hw, port, GM_MC_ADDR_H3, 3012 (u16)filter[4] | ((u16)filter[5] << 8)); 3013 gma_write16(hw, port, GM_MC_ADDR_H4, 3014 (u16)filter[6] | ((u16)filter[7] << 8)); 3015 3016 gma_write16(hw, port, GM_RX_CTRL, reg); 3017 } 3018 3019 static inline u16 phy_length(const struct skge_hw *hw, u32 status) 3020 { 3021 if (is_genesis(hw)) 3022 return status >> XMR_FS_LEN_SHIFT; 3023 else 3024 return status >> GMR_FS_LEN_SHIFT; 3025 } 3026 3027 static inline int bad_phy_status(const struct skge_hw *hw, u32 status) 3028 { 3029 if (is_genesis(hw)) 3030 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0; 3031 else 3032 return (status & GMR_FS_ANY_ERR) || 3033 (status & GMR_FS_RX_OK) == 0; 3034 } 3035 3036 static void skge_set_multicast(struct net_device *dev) 3037 { 3038 struct skge_port *skge = netdev_priv(dev); 3039 3040 if (is_genesis(skge->hw)) 3041 genesis_set_multicast(dev); 3042 else 3043 yukon_set_multicast(dev); 3044 3045 } 3046 3047 3048 /* Get receive buffer from descriptor. 3049 * Handles copy of small buffers and reallocation failures 3050 */ 3051 static struct sk_buff *skge_rx_get(struct net_device *dev, 3052 struct skge_element *e, 3053 u32 control, u32 status, u16 csum) 3054 { 3055 struct skge_port *skge = netdev_priv(dev); 3056 struct sk_buff *skb; 3057 u16 len = control & BMU_BBC; 3058 3059 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev, 3060 "rx slot %td status 0x%x len %d\n", 3061 e - skge->rx_ring.start, status, len); 3062 3063 if (len > skge->rx_buf_size) 3064 goto error; 3065 3066 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)) 3067 goto error; 3068 3069 if (bad_phy_status(skge->hw, status)) 3070 goto error; 3071 3072 if (phy_length(skge->hw, status) != len) 3073 goto error; 3074 3075 if (len < RX_COPY_THRESHOLD) { 3076 skb = netdev_alloc_skb_ip_align(dev, len); 3077 if (!skb) 3078 goto resubmit; 3079 3080 dma_sync_single_for_cpu(&skge->hw->pdev->dev, 3081 dma_unmap_addr(e, mapaddr), 3082 dma_unmap_len(e, maplen), 3083 DMA_FROM_DEVICE); 3084 skb_copy_from_linear_data(e->skb, skb->data, len); 3085 dma_sync_single_for_device(&skge->hw->pdev->dev, 3086 dma_unmap_addr(e, mapaddr), 3087 dma_unmap_len(e, maplen), 3088 DMA_FROM_DEVICE); 3089 skge_rx_reuse(e, skge->rx_buf_size); 3090 } else { 3091 struct skge_element ee; 3092 struct sk_buff *nskb; 3093 3094 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size); 3095 if (!nskb) 3096 goto resubmit; 3097 3098 ee = *e; 3099 3100 skb = ee.skb; 3101 prefetch(skb->data); 3102 3103 if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) { 3104 dev_kfree_skb(nskb); 3105 goto resubmit; 3106 } 3107 3108 dma_unmap_single(&skge->hw->pdev->dev, 3109 dma_unmap_addr(&ee, mapaddr), 3110 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE); 3111 } 3112 3113 skb_put(skb, len); 3114 3115 if (dev->features & NETIF_F_RXCSUM) { 3116 skb->csum = le16_to_cpu(csum); 3117 skb->ip_summed = CHECKSUM_COMPLETE; 3118 } 3119 3120 skb->protocol = eth_type_trans(skb, dev); 3121 3122 return skb; 3123 error: 3124 3125 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev, 3126 "rx err, slot %td control 0x%x status 0x%x\n", 3127 e - skge->rx_ring.start, control, status); 3128 3129 if (is_genesis(skge->hw)) { 3130 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) 3131 dev->stats.rx_length_errors++; 3132 if (status & XMR_FS_FRA_ERR) 3133 dev->stats.rx_frame_errors++; 3134 if (status & XMR_FS_FCS_ERR) 3135 dev->stats.rx_crc_errors++; 3136 } else { 3137 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) 3138 dev->stats.rx_length_errors++; 3139 if (status & GMR_FS_FRAGMENT) 3140 dev->stats.rx_frame_errors++; 3141 if (status & GMR_FS_CRC_ERR) 3142 dev->stats.rx_crc_errors++; 3143 } 3144 3145 resubmit: 3146 skge_rx_reuse(e, skge->rx_buf_size); 3147 return NULL; 3148 } 3149 3150 /* Free all buffers in Tx ring which are no longer owned by device */ 3151 static void skge_tx_done(struct net_device *dev) 3152 { 3153 struct skge_port *skge = netdev_priv(dev); 3154 struct skge_ring *ring = &skge->tx_ring; 3155 struct skge_element *e; 3156 unsigned int bytes_compl = 0, pkts_compl = 0; 3157 3158 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 3159 3160 for (e = ring->to_clean; e != ring->to_use; e = e->next) { 3161 u32 control = ((const struct skge_tx_desc *) e->desc)->control; 3162 3163 if (control & BMU_OWN) 3164 break; 3165 3166 skge_tx_unmap(skge->hw->pdev, e, control); 3167 3168 if (control & BMU_EOF) { 3169 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev, 3170 "tx done slot %td\n", 3171 e - skge->tx_ring.start); 3172 3173 pkts_compl++; 3174 bytes_compl += e->skb->len; 3175 3176 dev_consume_skb_any(e->skb); 3177 } 3178 } 3179 netdev_completed_queue(dev, pkts_compl, bytes_compl); 3180 skge->tx_ring.to_clean = e; 3181 3182 /* Can run lockless until we need to synchronize to restart queue. */ 3183 smp_mb(); 3184 3185 if (unlikely(netif_queue_stopped(dev) && 3186 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { 3187 netif_tx_lock(dev); 3188 if (unlikely(netif_queue_stopped(dev) && 3189 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { 3190 netif_wake_queue(dev); 3191 3192 } 3193 netif_tx_unlock(dev); 3194 } 3195 } 3196 3197 static int skge_poll(struct napi_struct *napi, int budget) 3198 { 3199 struct skge_port *skge = container_of(napi, struct skge_port, napi); 3200 struct net_device *dev = skge->netdev; 3201 struct skge_hw *hw = skge->hw; 3202 struct skge_ring *ring = &skge->rx_ring; 3203 struct skge_element *e; 3204 int work_done = 0; 3205 3206 skge_tx_done(dev); 3207 3208 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 3209 3210 for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) { 3211 struct skge_rx_desc *rd = e->desc; 3212 struct sk_buff *skb; 3213 u32 control; 3214 3215 rmb(); 3216 control = rd->control; 3217 if (control & BMU_OWN) 3218 break; 3219 3220 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2); 3221 if (likely(skb)) { 3222 napi_gro_receive(napi, skb); 3223 ++work_done; 3224 } 3225 } 3226 ring->to_clean = e; 3227 3228 /* restart receiver */ 3229 wmb(); 3230 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START); 3231 3232 if (work_done < budget && napi_complete_done(napi, work_done)) { 3233 unsigned long flags; 3234 3235 spin_lock_irqsave(&hw->hw_lock, flags); 3236 hw->intr_mask |= napimask[skge->port]; 3237 skge_write32(hw, B0_IMSK, hw->intr_mask); 3238 skge_read32(hw, B0_IMSK); 3239 spin_unlock_irqrestore(&hw->hw_lock, flags); 3240 } 3241 3242 return work_done; 3243 } 3244 3245 /* Parity errors seem to happen when Genesis is connected to a switch 3246 * with no other ports present. Heartbeat error?? 3247 */ 3248 static void skge_mac_parity(struct skge_hw *hw, int port) 3249 { 3250 struct net_device *dev = hw->dev[port]; 3251 3252 ++dev->stats.tx_heartbeat_errors; 3253 3254 if (is_genesis(hw)) 3255 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 3256 MFF_CLR_PERR); 3257 else 3258 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ 3259 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), 3260 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 3261 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE); 3262 } 3263 3264 static void skge_mac_intr(struct skge_hw *hw, int port) 3265 { 3266 if (is_genesis(hw)) 3267 genesis_mac_intr(hw, port); 3268 else 3269 yukon_mac_intr(hw, port); 3270 } 3271 3272 /* Handle device specific framing and timeout interrupts */ 3273 static void skge_error_irq(struct skge_hw *hw) 3274 { 3275 struct pci_dev *pdev = hw->pdev; 3276 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC); 3277 3278 if (is_genesis(hw)) { 3279 /* clear xmac errors */ 3280 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) 3281 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT); 3282 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) 3283 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT); 3284 } else { 3285 /* Timestamp (unused) overflow */ 3286 if (hwstatus & IS_IRQ_TIST_OV) 3287 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 3288 } 3289 3290 if (hwstatus & IS_RAM_RD_PAR) { 3291 dev_err(&pdev->dev, "Ram read data parity error\n"); 3292 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR); 3293 } 3294 3295 if (hwstatus & IS_RAM_WR_PAR) { 3296 dev_err(&pdev->dev, "Ram write data parity error\n"); 3297 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR); 3298 } 3299 3300 if (hwstatus & IS_M1_PAR_ERR) 3301 skge_mac_parity(hw, 0); 3302 3303 if (hwstatus & IS_M2_PAR_ERR) 3304 skge_mac_parity(hw, 1); 3305 3306 if (hwstatus & IS_R1_PAR_ERR) { 3307 dev_err(&pdev->dev, "%s: receive queue parity error\n", 3308 hw->dev[0]->name); 3309 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P); 3310 } 3311 3312 if (hwstatus & IS_R2_PAR_ERR) { 3313 dev_err(&pdev->dev, "%s: receive queue parity error\n", 3314 hw->dev[1]->name); 3315 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P); 3316 } 3317 3318 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) { 3319 u16 pci_status, pci_cmd; 3320 3321 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 3322 pci_read_config_word(pdev, PCI_STATUS, &pci_status); 3323 3324 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n", 3325 pci_cmd, pci_status); 3326 3327 /* Write the error bits back to clear them. */ 3328 pci_status &= PCI_STATUS_ERROR_BITS; 3329 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3330 pci_write_config_word(pdev, PCI_COMMAND, 3331 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY); 3332 pci_write_config_word(pdev, PCI_STATUS, pci_status); 3333 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3334 3335 /* if error still set then just ignore it */ 3336 hwstatus = skge_read32(hw, B0_HWE_ISRC); 3337 if (hwstatus & IS_IRQ_STAT) { 3338 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n"); 3339 hw->intr_mask &= ~IS_HW_ERR; 3340 } 3341 } 3342 } 3343 3344 /* 3345 * Interrupt from PHY are handled in tasklet (softirq) 3346 * because accessing phy registers requires spin wait which might 3347 * cause excess interrupt latency. 3348 */ 3349 static void skge_extirq(struct tasklet_struct *t) 3350 { 3351 struct skge_hw *hw = from_tasklet(hw, t, phy_task); 3352 int port; 3353 3354 for (port = 0; port < hw->ports; port++) { 3355 struct net_device *dev = hw->dev[port]; 3356 3357 if (netif_running(dev)) { 3358 struct skge_port *skge = netdev_priv(dev); 3359 3360 spin_lock(&hw->phy_lock); 3361 if (!is_genesis(hw)) 3362 yukon_phy_intr(skge); 3363 else if (hw->phy_type == SK_PHY_BCOM) 3364 bcom_phy_intr(skge); 3365 spin_unlock(&hw->phy_lock); 3366 } 3367 } 3368 3369 spin_lock_irq(&hw->hw_lock); 3370 hw->intr_mask |= IS_EXT_REG; 3371 skge_write32(hw, B0_IMSK, hw->intr_mask); 3372 skge_read32(hw, B0_IMSK); 3373 spin_unlock_irq(&hw->hw_lock); 3374 } 3375 3376 static irqreturn_t skge_intr(int irq, void *dev_id) 3377 { 3378 struct skge_hw *hw = dev_id; 3379 u32 status; 3380 int handled = 0; 3381 3382 spin_lock(&hw->hw_lock); 3383 /* Reading this register masks IRQ */ 3384 status = skge_read32(hw, B0_SP_ISRC); 3385 if (status == 0 || status == ~0) 3386 goto out; 3387 3388 handled = 1; 3389 status &= hw->intr_mask; 3390 if (status & IS_EXT_REG) { 3391 hw->intr_mask &= ~IS_EXT_REG; 3392 tasklet_schedule(&hw->phy_task); 3393 } 3394 3395 if (status & (IS_XA1_F|IS_R1_F)) { 3396 struct skge_port *skge = netdev_priv(hw->dev[0]); 3397 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F); 3398 napi_schedule(&skge->napi); 3399 } 3400 3401 if (status & IS_PA_TO_TX1) 3402 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1); 3403 3404 if (status & IS_PA_TO_RX1) { 3405 ++hw->dev[0]->stats.rx_over_errors; 3406 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1); 3407 } 3408 3409 3410 if (status & IS_MAC1) 3411 skge_mac_intr(hw, 0); 3412 3413 if (hw->dev[1]) { 3414 struct skge_port *skge = netdev_priv(hw->dev[1]); 3415 3416 if (status & (IS_XA2_F|IS_R2_F)) { 3417 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F); 3418 napi_schedule(&skge->napi); 3419 } 3420 3421 if (status & IS_PA_TO_RX2) { 3422 ++hw->dev[1]->stats.rx_over_errors; 3423 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2); 3424 } 3425 3426 if (status & IS_PA_TO_TX2) 3427 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2); 3428 3429 if (status & IS_MAC2) 3430 skge_mac_intr(hw, 1); 3431 } 3432 3433 if (status & IS_HW_ERR) 3434 skge_error_irq(hw); 3435 out: 3436 skge_write32(hw, B0_IMSK, hw->intr_mask); 3437 skge_read32(hw, B0_IMSK); 3438 spin_unlock(&hw->hw_lock); 3439 3440 return IRQ_RETVAL(handled); 3441 } 3442 3443 #ifdef CONFIG_NET_POLL_CONTROLLER 3444 static void skge_netpoll(struct net_device *dev) 3445 { 3446 struct skge_port *skge = netdev_priv(dev); 3447 3448 disable_irq(dev->irq); 3449 skge_intr(dev->irq, skge->hw); 3450 enable_irq(dev->irq); 3451 } 3452 #endif 3453 3454 static int skge_set_mac_address(struct net_device *dev, void *p) 3455 { 3456 struct skge_port *skge = netdev_priv(dev); 3457 struct skge_hw *hw = skge->hw; 3458 unsigned port = skge->port; 3459 const struct sockaddr *addr = p; 3460 u16 ctrl; 3461 3462 if (!is_valid_ether_addr(addr->sa_data)) 3463 return -EADDRNOTAVAIL; 3464 3465 eth_hw_addr_set(dev, addr->sa_data); 3466 3467 if (!netif_running(dev)) { 3468 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); 3469 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); 3470 } else { 3471 /* disable Rx */ 3472 spin_lock_bh(&hw->phy_lock); 3473 ctrl = gma_read16(hw, port, GM_GP_CTRL); 3474 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA); 3475 3476 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); 3477 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); 3478 3479 if (is_genesis(hw)) 3480 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 3481 else { 3482 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); 3483 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); 3484 } 3485 3486 gma_write16(hw, port, GM_GP_CTRL, ctrl); 3487 spin_unlock_bh(&hw->phy_lock); 3488 } 3489 3490 return 0; 3491 } 3492 3493 static const struct { 3494 u8 id; 3495 const char *name; 3496 } skge_chips[] = { 3497 { CHIP_ID_GENESIS, "Genesis" }, 3498 { CHIP_ID_YUKON, "Yukon" }, 3499 { CHIP_ID_YUKON_LITE, "Yukon-Lite"}, 3500 { CHIP_ID_YUKON_LP, "Yukon-LP"}, 3501 }; 3502 3503 static const char *skge_board_name(const struct skge_hw *hw) 3504 { 3505 int i; 3506 static char buf[16]; 3507 3508 for (i = 0; i < ARRAY_SIZE(skge_chips); i++) 3509 if (skge_chips[i].id == hw->chip_id) 3510 return skge_chips[i].name; 3511 3512 snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id); 3513 return buf; 3514 } 3515 3516 3517 /* 3518 * Setup the board data structure, but don't bring up 3519 * the port(s) 3520 */ 3521 static int skge_reset(struct skge_hw *hw) 3522 { 3523 u32 reg; 3524 u16 ctst, pci_status; 3525 u8 t8, mac_cfg, pmd_type; 3526 int i; 3527 3528 ctst = skge_read16(hw, B0_CTST); 3529 3530 /* do a SW reset */ 3531 skge_write8(hw, B0_CTST, CS_RST_SET); 3532 skge_write8(hw, B0_CTST, CS_RST_CLR); 3533 3534 /* clear PCI errors, if any */ 3535 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3536 skge_write8(hw, B2_TST_CTRL2, 0); 3537 3538 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status); 3539 pci_write_config_word(hw->pdev, PCI_STATUS, 3540 pci_status | PCI_STATUS_ERROR_BITS); 3541 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3542 skge_write8(hw, B0_CTST, CS_MRST_CLR); 3543 3544 /* restore CLK_RUN bits (for Yukon-Lite) */ 3545 skge_write16(hw, B0_CTST, 3546 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA)); 3547 3548 hw->chip_id = skge_read8(hw, B2_CHIP_ID); 3549 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf; 3550 pmd_type = skge_read8(hw, B2_PMD_TYP); 3551 hw->copper = (pmd_type == 'T' || pmd_type == '1'); 3552 3553 switch (hw->chip_id) { 3554 case CHIP_ID_GENESIS: 3555 #ifdef CONFIG_SKGE_GENESIS 3556 switch (hw->phy_type) { 3557 case SK_PHY_XMAC: 3558 hw->phy_addr = PHY_ADDR_XMAC; 3559 break; 3560 case SK_PHY_BCOM: 3561 hw->phy_addr = PHY_ADDR_BCOM; 3562 break; 3563 default: 3564 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n", 3565 hw->phy_type); 3566 return -EOPNOTSUPP; 3567 } 3568 break; 3569 #else 3570 dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n"); 3571 return -EOPNOTSUPP; 3572 #endif 3573 3574 case CHIP_ID_YUKON: 3575 case CHIP_ID_YUKON_LITE: 3576 case CHIP_ID_YUKON_LP: 3577 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S') 3578 hw->copper = 1; 3579 3580 hw->phy_addr = PHY_ADDR_MARV; 3581 break; 3582 3583 default: 3584 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n", 3585 hw->chip_id); 3586 return -EOPNOTSUPP; 3587 } 3588 3589 mac_cfg = skge_read8(hw, B2_MAC_CFG); 3590 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2; 3591 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4; 3592 3593 /* read the adapters RAM size */ 3594 t8 = skge_read8(hw, B2_E_0); 3595 if (is_genesis(hw)) { 3596 if (t8 == 3) { 3597 /* special case: 4 x 64k x 36, offset = 0x80000 */ 3598 hw->ram_size = 0x100000; 3599 hw->ram_offset = 0x80000; 3600 } else 3601 hw->ram_size = t8 * 512; 3602 } else if (t8 == 0) 3603 hw->ram_size = 0x20000; 3604 else 3605 hw->ram_size = t8 * 4096; 3606 3607 hw->intr_mask = IS_HW_ERR; 3608 3609 /* Use PHY IRQ for all but fiber based Genesis board */ 3610 if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)) 3611 hw->intr_mask |= IS_EXT_REG; 3612 3613 if (is_genesis(hw)) 3614 genesis_init(hw); 3615 else { 3616 /* switch power to VCC (WA for VAUX problem) */ 3617 skge_write8(hw, B0_POWER_CTRL, 3618 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); 3619 3620 /* avoid boards with stuck Hardware error bits */ 3621 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) && 3622 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) { 3623 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n"); 3624 hw->intr_mask &= ~IS_HW_ERR; 3625 } 3626 3627 /* Clear PHY COMA */ 3628 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3629 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®); 3630 reg &= ~PCI_PHY_COMA; 3631 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg); 3632 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3633 3634 3635 for (i = 0; i < hw->ports; i++) { 3636 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); 3637 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); 3638 } 3639 } 3640 3641 /* turn off hardware timer (unused) */ 3642 skge_write8(hw, B2_TI_CTRL, TIM_STOP); 3643 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); 3644 skge_write8(hw, B0_LED, LED_STAT_ON); 3645 3646 /* enable the Tx Arbiters */ 3647 for (i = 0; i < hw->ports; i++) 3648 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); 3649 3650 /* Initialize ram interface */ 3651 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); 3652 3653 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53); 3654 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53); 3655 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53); 3656 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53); 3657 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53); 3658 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53); 3659 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53); 3660 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53); 3661 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53); 3662 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53); 3663 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53); 3664 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53); 3665 3666 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK); 3667 3668 /* Set interrupt moderation for Transmit only 3669 * Receive interrupts avoided by NAPI 3670 */ 3671 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F); 3672 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); 3673 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 3674 3675 /* Leave irq disabled until first port is brought up. */ 3676 skge_write32(hw, B0_IMSK, 0); 3677 3678 for (i = 0; i < hw->ports; i++) { 3679 if (is_genesis(hw)) 3680 genesis_reset(hw, i); 3681 else 3682 yukon_reset(hw, i); 3683 } 3684 3685 return 0; 3686 } 3687 3688 3689 #ifdef CONFIG_SKGE_DEBUG 3690 3691 static struct dentry *skge_debug; 3692 3693 static int skge_debug_show(struct seq_file *seq, void *v) 3694 { 3695 struct net_device *dev = seq->private; 3696 const struct skge_port *skge = netdev_priv(dev); 3697 const struct skge_hw *hw = skge->hw; 3698 const struct skge_element *e; 3699 3700 if (!netif_running(dev)) 3701 return -ENETDOWN; 3702 3703 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC), 3704 skge_read32(hw, B0_IMSK)); 3705 3706 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring)); 3707 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { 3708 const struct skge_tx_desc *t = e->desc; 3709 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n", 3710 t->control, t->dma_hi, t->dma_lo, t->status, 3711 t->csum_offs, t->csum_write, t->csum_start); 3712 } 3713 3714 seq_puts(seq, "\nRx Ring:\n"); 3715 for (e = skge->rx_ring.to_clean; ; e = e->next) { 3716 const struct skge_rx_desc *r = e->desc; 3717 3718 if (r->control & BMU_OWN) 3719 break; 3720 3721 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n", 3722 r->control, r->dma_hi, r->dma_lo, r->status, 3723 r->timestamp, r->csum1, r->csum1_start); 3724 } 3725 3726 return 0; 3727 } 3728 DEFINE_SHOW_ATTRIBUTE(skge_debug); 3729 3730 /* 3731 * Use network device events to create/remove/rename 3732 * debugfs file entries 3733 */ 3734 static int skge_device_event(struct notifier_block *unused, 3735 unsigned long event, void *ptr) 3736 { 3737 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 3738 struct skge_port *skge; 3739 3740 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug) 3741 goto done; 3742 3743 skge = netdev_priv(dev); 3744 switch (event) { 3745 case NETDEV_CHANGENAME: 3746 if (skge->debugfs) 3747 skge->debugfs = debugfs_rename(skge_debug, 3748 skge->debugfs, 3749 skge_debug, dev->name); 3750 break; 3751 3752 case NETDEV_GOING_DOWN: 3753 debugfs_remove(skge->debugfs); 3754 skge->debugfs = NULL; 3755 break; 3756 3757 case NETDEV_UP: 3758 skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug, 3759 dev, &skge_debug_fops); 3760 break; 3761 } 3762 3763 done: 3764 return NOTIFY_DONE; 3765 } 3766 3767 static struct notifier_block skge_notifier = { 3768 .notifier_call = skge_device_event, 3769 }; 3770 3771 3772 static __init void skge_debug_init(void) 3773 { 3774 skge_debug = debugfs_create_dir("skge", NULL); 3775 3776 register_netdevice_notifier(&skge_notifier); 3777 } 3778 3779 static __exit void skge_debug_cleanup(void) 3780 { 3781 if (skge_debug) { 3782 unregister_netdevice_notifier(&skge_notifier); 3783 debugfs_remove(skge_debug); 3784 skge_debug = NULL; 3785 } 3786 } 3787 3788 #else 3789 #define skge_debug_init() 3790 #define skge_debug_cleanup() 3791 #endif 3792 3793 static const struct net_device_ops skge_netdev_ops = { 3794 .ndo_open = skge_up, 3795 .ndo_stop = skge_down, 3796 .ndo_start_xmit = skge_xmit_frame, 3797 .ndo_eth_ioctl = skge_ioctl, 3798 .ndo_get_stats = skge_get_stats, 3799 .ndo_tx_timeout = skge_tx_timeout, 3800 .ndo_change_mtu = skge_change_mtu, 3801 .ndo_validate_addr = eth_validate_addr, 3802 .ndo_set_rx_mode = skge_set_multicast, 3803 .ndo_set_mac_address = skge_set_mac_address, 3804 #ifdef CONFIG_NET_POLL_CONTROLLER 3805 .ndo_poll_controller = skge_netpoll, 3806 #endif 3807 }; 3808 3809 3810 /* Initialize network device */ 3811 static struct net_device *skge_devinit(struct skge_hw *hw, int port, 3812 int highmem) 3813 { 3814 struct skge_port *skge; 3815 struct net_device *dev = alloc_etherdev(sizeof(*skge)); 3816 u8 addr[ETH_ALEN]; 3817 3818 if (!dev) 3819 return NULL; 3820 3821 SET_NETDEV_DEV(dev, &hw->pdev->dev); 3822 dev->netdev_ops = &skge_netdev_ops; 3823 dev->ethtool_ops = &skge_ethtool_ops; 3824 dev->watchdog_timeo = TX_WATCHDOG; 3825 dev->irq = hw->pdev->irq; 3826 3827 /* MTU range: 60 - 9000 */ 3828 dev->min_mtu = ETH_ZLEN; 3829 dev->max_mtu = ETH_JUMBO_MTU; 3830 3831 if (highmem) 3832 dev->features |= NETIF_F_HIGHDMA; 3833 3834 skge = netdev_priv(dev); 3835 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_POLL_WEIGHT); 3836 skge->netdev = dev; 3837 skge->hw = hw; 3838 skge->msg_enable = netif_msg_init(debug, default_msg); 3839 3840 skge->tx_ring.count = DEFAULT_TX_RING_SIZE; 3841 skge->rx_ring.count = DEFAULT_RX_RING_SIZE; 3842 3843 /* Auto speed and flow control */ 3844 skge->autoneg = AUTONEG_ENABLE; 3845 skge->flow_control = FLOW_MODE_SYM_OR_REM; 3846 skge->duplex = -1; 3847 skge->speed = -1; 3848 skge->advertising = skge_supported_modes(hw); 3849 3850 if (device_can_wakeup(&hw->pdev->dev)) { 3851 skge->wol = wol_supported(hw) & WAKE_MAGIC; 3852 device_set_wakeup_enable(&hw->pdev->dev, skge->wol); 3853 } 3854 3855 hw->dev[port] = dev; 3856 3857 skge->port = port; 3858 3859 /* Only used for Genesis XMAC */ 3860 if (is_genesis(hw)) 3861 timer_setup(&skge->link_timer, xm_link_timer, 0); 3862 else { 3863 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3864 NETIF_F_RXCSUM; 3865 dev->features |= dev->hw_features; 3866 } 3867 3868 /* read the mac address */ 3869 memcpy_fromio(addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN); 3870 eth_hw_addr_set(dev, addr); 3871 3872 return dev; 3873 } 3874 3875 static void skge_show_addr(struct net_device *dev) 3876 { 3877 const struct skge_port *skge = netdev_priv(dev); 3878 3879 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr); 3880 } 3881 3882 static int only_32bit_dma; 3883 3884 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3885 { 3886 struct net_device *dev, *dev1; 3887 struct skge_hw *hw; 3888 int err, using_dac = 0; 3889 3890 err = pci_enable_device(pdev); 3891 if (err) { 3892 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3893 goto err_out; 3894 } 3895 3896 err = pci_request_regions(pdev, DRV_NAME); 3897 if (err) { 3898 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 3899 goto err_out_disable_pdev; 3900 } 3901 3902 pci_set_master(pdev); 3903 3904 if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { 3905 using_dac = 1; 3906 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 3907 } else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) { 3908 using_dac = 0; 3909 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 3910 } 3911 3912 if (err) { 3913 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3914 goto err_out_free_regions; 3915 } 3916 3917 #ifdef __BIG_ENDIAN 3918 /* byte swap descriptors in hardware */ 3919 { 3920 u32 reg; 3921 3922 pci_read_config_dword(pdev, PCI_DEV_REG2, ®); 3923 reg |= PCI_REV_DESC; 3924 pci_write_config_dword(pdev, PCI_DEV_REG2, reg); 3925 } 3926 #endif 3927 3928 err = -ENOMEM; 3929 /* space for skge@pci:0000:04:00.0 */ 3930 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:") 3931 + strlen(pci_name(pdev)) + 1, GFP_KERNEL); 3932 if (!hw) 3933 goto err_out_free_regions; 3934 3935 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev)); 3936 3937 hw->pdev = pdev; 3938 spin_lock_init(&hw->hw_lock); 3939 spin_lock_init(&hw->phy_lock); 3940 tasklet_setup(&hw->phy_task, skge_extirq); 3941 3942 hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000); 3943 if (!hw->regs) { 3944 dev_err(&pdev->dev, "cannot map device registers\n"); 3945 goto err_out_free_hw; 3946 } 3947 3948 err = skge_reset(hw); 3949 if (err) 3950 goto err_out_iounmap; 3951 3952 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n", 3953 DRV_VERSION, 3954 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq, 3955 skge_board_name(hw), hw->chip_rev); 3956 3957 dev = skge_devinit(hw, 0, using_dac); 3958 if (!dev) { 3959 err = -ENOMEM; 3960 goto err_out_led_off; 3961 } 3962 3963 /* Some motherboards are broken and has zero in ROM. */ 3964 if (!is_valid_ether_addr(dev->dev_addr)) 3965 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n"); 3966 3967 err = register_netdev(dev); 3968 if (err) { 3969 dev_err(&pdev->dev, "cannot register net device\n"); 3970 goto err_out_free_netdev; 3971 } 3972 3973 skge_show_addr(dev); 3974 3975 if (hw->ports > 1) { 3976 dev1 = skge_devinit(hw, 1, using_dac); 3977 if (!dev1) { 3978 err = -ENOMEM; 3979 goto err_out_unregister; 3980 } 3981 3982 err = register_netdev(dev1); 3983 if (err) { 3984 dev_err(&pdev->dev, "cannot register second net device\n"); 3985 goto err_out_free_dev1; 3986 } 3987 3988 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, 3989 hw->irq_name, hw); 3990 if (err) { 3991 dev_err(&pdev->dev, "cannot assign irq %d\n", 3992 pdev->irq); 3993 goto err_out_unregister_dev1; 3994 } 3995 3996 skge_show_addr(dev1); 3997 } 3998 pci_set_drvdata(pdev, hw); 3999 4000 return 0; 4001 4002 err_out_unregister_dev1: 4003 unregister_netdev(dev1); 4004 err_out_free_dev1: 4005 free_netdev(dev1); 4006 err_out_unregister: 4007 unregister_netdev(dev); 4008 err_out_free_netdev: 4009 free_netdev(dev); 4010 err_out_led_off: 4011 skge_write16(hw, B0_LED, LED_STAT_OFF); 4012 err_out_iounmap: 4013 iounmap(hw->regs); 4014 err_out_free_hw: 4015 kfree(hw); 4016 err_out_free_regions: 4017 pci_release_regions(pdev); 4018 err_out_disable_pdev: 4019 pci_disable_device(pdev); 4020 err_out: 4021 return err; 4022 } 4023 4024 static void skge_remove(struct pci_dev *pdev) 4025 { 4026 struct skge_hw *hw = pci_get_drvdata(pdev); 4027 struct net_device *dev0, *dev1; 4028 4029 if (!hw) 4030 return; 4031 4032 dev1 = hw->dev[1]; 4033 if (dev1) 4034 unregister_netdev(dev1); 4035 dev0 = hw->dev[0]; 4036 unregister_netdev(dev0); 4037 4038 tasklet_kill(&hw->phy_task); 4039 4040 spin_lock_irq(&hw->hw_lock); 4041 hw->intr_mask = 0; 4042 4043 if (hw->ports > 1) { 4044 skge_write32(hw, B0_IMSK, 0); 4045 skge_read32(hw, B0_IMSK); 4046 } 4047 spin_unlock_irq(&hw->hw_lock); 4048 4049 skge_write16(hw, B0_LED, LED_STAT_OFF); 4050 skge_write8(hw, B0_CTST, CS_RST_SET); 4051 4052 if (hw->ports > 1) 4053 free_irq(pdev->irq, hw); 4054 pci_release_regions(pdev); 4055 pci_disable_device(pdev); 4056 if (dev1) 4057 free_netdev(dev1); 4058 free_netdev(dev0); 4059 4060 iounmap(hw->regs); 4061 kfree(hw); 4062 } 4063 4064 #ifdef CONFIG_PM_SLEEP 4065 static int skge_suspend(struct device *dev) 4066 { 4067 struct skge_hw *hw = dev_get_drvdata(dev); 4068 int i; 4069 4070 if (!hw) 4071 return 0; 4072 4073 for (i = 0; i < hw->ports; i++) { 4074 struct net_device *dev = hw->dev[i]; 4075 struct skge_port *skge = netdev_priv(dev); 4076 4077 if (netif_running(dev)) 4078 skge_down(dev); 4079 4080 if (skge->wol) 4081 skge_wol_init(skge); 4082 } 4083 4084 skge_write32(hw, B0_IMSK, 0); 4085 4086 return 0; 4087 } 4088 4089 static int skge_resume(struct device *dev) 4090 { 4091 struct skge_hw *hw = dev_get_drvdata(dev); 4092 int i, err; 4093 4094 if (!hw) 4095 return 0; 4096 4097 err = skge_reset(hw); 4098 if (err) 4099 goto out; 4100 4101 for (i = 0; i < hw->ports; i++) { 4102 struct net_device *dev = hw->dev[i]; 4103 4104 if (netif_running(dev)) { 4105 err = skge_up(dev); 4106 4107 if (err) { 4108 netdev_err(dev, "could not up: %d\n", err); 4109 dev_close(dev); 4110 goto out; 4111 } 4112 } 4113 } 4114 out: 4115 return err; 4116 } 4117 4118 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume); 4119 #define SKGE_PM_OPS (&skge_pm_ops) 4120 4121 #else 4122 4123 #define SKGE_PM_OPS NULL 4124 #endif /* CONFIG_PM_SLEEP */ 4125 4126 static void skge_shutdown(struct pci_dev *pdev) 4127 { 4128 struct skge_hw *hw = pci_get_drvdata(pdev); 4129 int i; 4130 4131 if (!hw) 4132 return; 4133 4134 for (i = 0; i < hw->ports; i++) { 4135 struct net_device *dev = hw->dev[i]; 4136 struct skge_port *skge = netdev_priv(dev); 4137 4138 if (skge->wol) 4139 skge_wol_init(skge); 4140 } 4141 4142 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev)); 4143 pci_set_power_state(pdev, PCI_D3hot); 4144 } 4145 4146 static struct pci_driver skge_driver = { 4147 .name = DRV_NAME, 4148 .id_table = skge_id_table, 4149 .probe = skge_probe, 4150 .remove = skge_remove, 4151 .shutdown = skge_shutdown, 4152 .driver.pm = SKGE_PM_OPS, 4153 }; 4154 4155 static const struct dmi_system_id skge_32bit_dma_boards[] = { 4156 { 4157 .ident = "Gigabyte nForce boards", 4158 .matches = { 4159 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"), 4160 DMI_MATCH(DMI_BOARD_NAME, "nForce"), 4161 }, 4162 }, 4163 { 4164 .ident = "ASUS P5NSLI", 4165 .matches = { 4166 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), 4167 DMI_MATCH(DMI_BOARD_NAME, "P5NSLI") 4168 }, 4169 }, 4170 { 4171 .ident = "FUJITSU SIEMENS A8NE-FM", 4172 .matches = { 4173 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."), 4174 DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM") 4175 }, 4176 }, 4177 {} 4178 }; 4179 4180 static int __init skge_init_module(void) 4181 { 4182 if (dmi_check_system(skge_32bit_dma_boards)) 4183 only_32bit_dma = 1; 4184 skge_debug_init(); 4185 return pci_register_driver(&skge_driver); 4186 } 4187 4188 static void __exit skge_cleanup_module(void) 4189 { 4190 pci_unregister_driver(&skge_driver); 4191 skge_debug_cleanup(); 4192 } 4193 4194 module_init(skge_init_module); 4195 module_exit(skge_cleanup_module); 4196