1 /* 2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit 3 * Ethernet adapters. Based on earlier sk98lin, e100 and 4 * FreeBSD if_sk drivers. 5 * 6 * This driver intentionally does not support all the features 7 * of the original driver such as link fail-over and link management because 8 * those should be done at higher levels. 9 * 10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/in.h> 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/netdevice.h> 33 #include <linux/etherdevice.h> 34 #include <linux/ethtool.h> 35 #include <linux/pci.h> 36 #include <linux/if_vlan.h> 37 #include <linux/ip.h> 38 #include <linux/delay.h> 39 #include <linux/crc32.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/debugfs.h> 42 #include <linux/sched.h> 43 #include <linux/seq_file.h> 44 #include <linux/mii.h> 45 #include <linux/slab.h> 46 #include <linux/dmi.h> 47 #include <linux/prefetch.h> 48 #include <asm/irq.h> 49 50 #include "skge.h" 51 52 #define DRV_NAME "skge" 53 #define DRV_VERSION "1.14" 54 55 #define DEFAULT_TX_RING_SIZE 128 56 #define DEFAULT_RX_RING_SIZE 512 57 #define MAX_TX_RING_SIZE 1024 58 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1) 59 #define MAX_RX_RING_SIZE 4096 60 #define RX_COPY_THRESHOLD 128 61 #define RX_BUF_SIZE 1536 62 #define PHY_RETRIES 1000 63 #define ETH_JUMBO_MTU 9000 64 #define TX_WATCHDOG (5 * HZ) 65 #define NAPI_WEIGHT 64 66 #define BLINK_MS 250 67 #define LINK_HZ HZ 68 69 #define SKGE_EEPROM_MAGIC 0x9933aabb 70 71 72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); 73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>"); 74 MODULE_LICENSE("GPL"); 75 MODULE_VERSION(DRV_VERSION); 76 77 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 78 NETIF_MSG_LINK | NETIF_MSG_IFUP | 79 NETIF_MSG_IFDOWN); 80 81 static int debug = -1; /* defaults above */ 82 module_param(debug, int, 0); 83 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 84 85 static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = { 86 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */ 87 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */ 88 #ifdef CONFIG_SKGE_GENESIS 89 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */ 90 #endif 91 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */ 92 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */ 93 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */ 94 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */ 95 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */ 96 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */ 97 { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */ 98 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */ 99 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */ 100 { 0 } 101 }; 102 MODULE_DEVICE_TABLE(pci, skge_id_table); 103 104 static int skge_up(struct net_device *dev); 105 static int skge_down(struct net_device *dev); 106 static void skge_phy_reset(struct skge_port *skge); 107 static void skge_tx_clean(struct net_device *dev); 108 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 109 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 110 static void genesis_get_stats(struct skge_port *skge, u64 *data); 111 static void yukon_get_stats(struct skge_port *skge, u64 *data); 112 static void yukon_init(struct skge_hw *hw, int port); 113 static void genesis_mac_init(struct skge_hw *hw, int port); 114 static void genesis_link_up(struct skge_port *skge); 115 static void skge_set_multicast(struct net_device *dev); 116 static irqreturn_t skge_intr(int irq, void *dev_id); 117 118 /* Avoid conditionals by using array */ 119 static const int txqaddr[] = { Q_XA1, Q_XA2 }; 120 static const int rxqaddr[] = { Q_R1, Q_R2 }; 121 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; 122 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; 123 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F }; 124 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 }; 125 126 static inline bool is_genesis(const struct skge_hw *hw) 127 { 128 #ifdef CONFIG_SKGE_GENESIS 129 return hw->chip_id == CHIP_ID_GENESIS; 130 #else 131 return false; 132 #endif 133 } 134 135 static int skge_get_regs_len(struct net_device *dev) 136 { 137 return 0x4000; 138 } 139 140 /* 141 * Returns copy of whole control register region 142 * Note: skip RAM address register because accessing it will 143 * cause bus hangs! 144 */ 145 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, 146 void *p) 147 { 148 const struct skge_port *skge = netdev_priv(dev); 149 const void __iomem *io = skge->hw->regs; 150 151 regs->version = 1; 152 memset(p, 0, regs->len); 153 memcpy_fromio(p, io, B3_RAM_ADDR); 154 155 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1, 156 regs->len - B3_RI_WTO_R1); 157 } 158 159 /* Wake on Lan only supported on Yukon chips with rev 1 or above */ 160 static u32 wol_supported(const struct skge_hw *hw) 161 { 162 if (is_genesis(hw)) 163 return 0; 164 165 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 166 return 0; 167 168 return WAKE_MAGIC | WAKE_PHY; 169 } 170 171 static void skge_wol_init(struct skge_port *skge) 172 { 173 struct skge_hw *hw = skge->hw; 174 int port = skge->port; 175 u16 ctrl; 176 177 skge_write16(hw, B0_CTST, CS_RST_CLR); 178 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR); 179 180 /* Turn on Vaux */ 181 skge_write8(hw, B0_POWER_CTRL, 182 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); 183 184 /* WA code for COMA mode -- clear PHY reset */ 185 if (hw->chip_id == CHIP_ID_YUKON_LITE && 186 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 187 u32 reg = skge_read32(hw, B2_GP_IO); 188 reg |= GP_DIR_9; 189 reg &= ~GP_IO_9; 190 skge_write32(hw, B2_GP_IO, reg); 191 } 192 193 skge_write32(hw, SK_REG(port, GPHY_CTRL), 194 GPC_DIS_SLEEP | 195 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | 196 GPC_ANEG_1 | GPC_RST_SET); 197 198 skge_write32(hw, SK_REG(port, GPHY_CTRL), 199 GPC_DIS_SLEEP | 200 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | 201 GPC_ANEG_1 | GPC_RST_CLR); 202 203 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR); 204 205 /* Force to 10/100 skge_reset will re-enable on resume */ 206 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, 207 (PHY_AN_100FULL | PHY_AN_100HALF | 208 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA)); 209 /* no 1000 HD/FD */ 210 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0); 211 gm_phy_write(hw, port, PHY_MARV_CTRL, 212 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE | 213 PHY_CT_RE_CFG | PHY_CT_DUP_MD); 214 215 216 /* Set GMAC to no flow control and auto update for speed/duplex */ 217 gma_write16(hw, port, GM_GP_CTRL, 218 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA| 219 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS); 220 221 /* Set WOL address */ 222 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR), 223 skge->netdev->dev_addr, ETH_ALEN); 224 225 /* Turn on appropriate WOL control bits */ 226 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT); 227 ctrl = 0; 228 if (skge->wol & WAKE_PHY) 229 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT; 230 else 231 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT; 232 233 if (skge->wol & WAKE_MAGIC) 234 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT; 235 else 236 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT; 237 238 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT; 239 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl); 240 241 /* block receiver */ 242 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 243 } 244 245 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 246 { 247 struct skge_port *skge = netdev_priv(dev); 248 249 wol->supported = wol_supported(skge->hw); 250 wol->wolopts = skge->wol; 251 } 252 253 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 254 { 255 struct skge_port *skge = netdev_priv(dev); 256 struct skge_hw *hw = skge->hw; 257 258 if ((wol->wolopts & ~wol_supported(hw)) || 259 !device_can_wakeup(&hw->pdev->dev)) 260 return -EOPNOTSUPP; 261 262 skge->wol = wol->wolopts; 263 264 device_set_wakeup_enable(&hw->pdev->dev, skge->wol); 265 266 return 0; 267 } 268 269 /* Determine supported/advertised modes based on hardware. 270 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx 271 */ 272 static u32 skge_supported_modes(const struct skge_hw *hw) 273 { 274 u32 supported; 275 276 if (hw->copper) { 277 supported = (SUPPORTED_10baseT_Half | 278 SUPPORTED_10baseT_Full | 279 SUPPORTED_100baseT_Half | 280 SUPPORTED_100baseT_Full | 281 SUPPORTED_1000baseT_Half | 282 SUPPORTED_1000baseT_Full | 283 SUPPORTED_Autoneg | 284 SUPPORTED_TP); 285 286 if (is_genesis(hw)) 287 supported &= ~(SUPPORTED_10baseT_Half | 288 SUPPORTED_10baseT_Full | 289 SUPPORTED_100baseT_Half | 290 SUPPORTED_100baseT_Full); 291 292 else if (hw->chip_id == CHIP_ID_YUKON) 293 supported &= ~SUPPORTED_1000baseT_Half; 294 } else 295 supported = (SUPPORTED_1000baseT_Full | 296 SUPPORTED_1000baseT_Half | 297 SUPPORTED_FIBRE | 298 SUPPORTED_Autoneg); 299 300 return supported; 301 } 302 303 static int skge_get_settings(struct net_device *dev, 304 struct ethtool_cmd *ecmd) 305 { 306 struct skge_port *skge = netdev_priv(dev); 307 struct skge_hw *hw = skge->hw; 308 309 ecmd->transceiver = XCVR_INTERNAL; 310 ecmd->supported = skge_supported_modes(hw); 311 312 if (hw->copper) { 313 ecmd->port = PORT_TP; 314 ecmd->phy_address = hw->phy_addr; 315 } else 316 ecmd->port = PORT_FIBRE; 317 318 ecmd->advertising = skge->advertising; 319 ecmd->autoneg = skge->autoneg; 320 ethtool_cmd_speed_set(ecmd, skge->speed); 321 ecmd->duplex = skge->duplex; 322 return 0; 323 } 324 325 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 326 { 327 struct skge_port *skge = netdev_priv(dev); 328 const struct skge_hw *hw = skge->hw; 329 u32 supported = skge_supported_modes(hw); 330 int err = 0; 331 332 if (ecmd->autoneg == AUTONEG_ENABLE) { 333 ecmd->advertising = supported; 334 skge->duplex = -1; 335 skge->speed = -1; 336 } else { 337 u32 setting; 338 u32 speed = ethtool_cmd_speed(ecmd); 339 340 switch (speed) { 341 case SPEED_1000: 342 if (ecmd->duplex == DUPLEX_FULL) 343 setting = SUPPORTED_1000baseT_Full; 344 else if (ecmd->duplex == DUPLEX_HALF) 345 setting = SUPPORTED_1000baseT_Half; 346 else 347 return -EINVAL; 348 break; 349 case SPEED_100: 350 if (ecmd->duplex == DUPLEX_FULL) 351 setting = SUPPORTED_100baseT_Full; 352 else if (ecmd->duplex == DUPLEX_HALF) 353 setting = SUPPORTED_100baseT_Half; 354 else 355 return -EINVAL; 356 break; 357 358 case SPEED_10: 359 if (ecmd->duplex == DUPLEX_FULL) 360 setting = SUPPORTED_10baseT_Full; 361 else if (ecmd->duplex == DUPLEX_HALF) 362 setting = SUPPORTED_10baseT_Half; 363 else 364 return -EINVAL; 365 break; 366 default: 367 return -EINVAL; 368 } 369 370 if ((setting & supported) == 0) 371 return -EINVAL; 372 373 skge->speed = speed; 374 skge->duplex = ecmd->duplex; 375 } 376 377 skge->autoneg = ecmd->autoneg; 378 skge->advertising = ecmd->advertising; 379 380 if (netif_running(dev)) { 381 skge_down(dev); 382 err = skge_up(dev); 383 if (err) { 384 dev_close(dev); 385 return err; 386 } 387 } 388 389 return 0; 390 } 391 392 static void skge_get_drvinfo(struct net_device *dev, 393 struct ethtool_drvinfo *info) 394 { 395 struct skge_port *skge = netdev_priv(dev); 396 397 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 398 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 399 strlcpy(info->bus_info, pci_name(skge->hw->pdev), 400 sizeof(info->bus_info)); 401 } 402 403 static const struct skge_stat { 404 char name[ETH_GSTRING_LEN]; 405 u16 xmac_offset; 406 u16 gma_offset; 407 } skge_stats[] = { 408 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI }, 409 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI }, 410 411 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK }, 412 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK }, 413 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK }, 414 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK }, 415 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK }, 416 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK }, 417 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE }, 418 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE }, 419 420 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL }, 421 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL }, 422 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL }, 423 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL }, 424 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR }, 425 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV }, 426 427 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 428 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT }, 429 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG }, 430 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 431 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR }, 432 }; 433 434 static int skge_get_sset_count(struct net_device *dev, int sset) 435 { 436 switch (sset) { 437 case ETH_SS_STATS: 438 return ARRAY_SIZE(skge_stats); 439 default: 440 return -EOPNOTSUPP; 441 } 442 } 443 444 static void skge_get_ethtool_stats(struct net_device *dev, 445 struct ethtool_stats *stats, u64 *data) 446 { 447 struct skge_port *skge = netdev_priv(dev); 448 449 if (is_genesis(skge->hw)) 450 genesis_get_stats(skge, data); 451 else 452 yukon_get_stats(skge, data); 453 } 454 455 /* Use hardware MIB variables for critical path statistics and 456 * transmit feedback not reported at interrupt. 457 * Other errors are accounted for in interrupt handler. 458 */ 459 static struct net_device_stats *skge_get_stats(struct net_device *dev) 460 { 461 struct skge_port *skge = netdev_priv(dev); 462 u64 data[ARRAY_SIZE(skge_stats)]; 463 464 if (is_genesis(skge->hw)) 465 genesis_get_stats(skge, data); 466 else 467 yukon_get_stats(skge, data); 468 469 dev->stats.tx_bytes = data[0]; 470 dev->stats.rx_bytes = data[1]; 471 dev->stats.tx_packets = data[2] + data[4] + data[6]; 472 dev->stats.rx_packets = data[3] + data[5] + data[7]; 473 dev->stats.multicast = data[3] + data[5]; 474 dev->stats.collisions = data[10]; 475 dev->stats.tx_aborted_errors = data[12]; 476 477 return &dev->stats; 478 } 479 480 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) 481 { 482 int i; 483 484 switch (stringset) { 485 case ETH_SS_STATS: 486 for (i = 0; i < ARRAY_SIZE(skge_stats); i++) 487 memcpy(data + i * ETH_GSTRING_LEN, 488 skge_stats[i].name, ETH_GSTRING_LEN); 489 break; 490 } 491 } 492 493 static void skge_get_ring_param(struct net_device *dev, 494 struct ethtool_ringparam *p) 495 { 496 struct skge_port *skge = netdev_priv(dev); 497 498 p->rx_max_pending = MAX_RX_RING_SIZE; 499 p->tx_max_pending = MAX_TX_RING_SIZE; 500 501 p->rx_pending = skge->rx_ring.count; 502 p->tx_pending = skge->tx_ring.count; 503 } 504 505 static int skge_set_ring_param(struct net_device *dev, 506 struct ethtool_ringparam *p) 507 { 508 struct skge_port *skge = netdev_priv(dev); 509 int err = 0; 510 511 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE || 512 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE) 513 return -EINVAL; 514 515 skge->rx_ring.count = p->rx_pending; 516 skge->tx_ring.count = p->tx_pending; 517 518 if (netif_running(dev)) { 519 skge_down(dev); 520 err = skge_up(dev); 521 if (err) 522 dev_close(dev); 523 } 524 525 return err; 526 } 527 528 static u32 skge_get_msglevel(struct net_device *netdev) 529 { 530 struct skge_port *skge = netdev_priv(netdev); 531 return skge->msg_enable; 532 } 533 534 static void skge_set_msglevel(struct net_device *netdev, u32 value) 535 { 536 struct skge_port *skge = netdev_priv(netdev); 537 skge->msg_enable = value; 538 } 539 540 static int skge_nway_reset(struct net_device *dev) 541 { 542 struct skge_port *skge = netdev_priv(dev); 543 544 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev)) 545 return -EINVAL; 546 547 skge_phy_reset(skge); 548 return 0; 549 } 550 551 static void skge_get_pauseparam(struct net_device *dev, 552 struct ethtool_pauseparam *ecmd) 553 { 554 struct skge_port *skge = netdev_priv(dev); 555 556 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) || 557 (skge->flow_control == FLOW_MODE_SYM_OR_REM)); 558 ecmd->tx_pause = (ecmd->rx_pause || 559 (skge->flow_control == FLOW_MODE_LOC_SEND)); 560 561 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause; 562 } 563 564 static int skge_set_pauseparam(struct net_device *dev, 565 struct ethtool_pauseparam *ecmd) 566 { 567 struct skge_port *skge = netdev_priv(dev); 568 struct ethtool_pauseparam old; 569 int err = 0; 570 571 skge_get_pauseparam(dev, &old); 572 573 if (ecmd->autoneg != old.autoneg) 574 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC; 575 else { 576 if (ecmd->rx_pause && ecmd->tx_pause) 577 skge->flow_control = FLOW_MODE_SYMMETRIC; 578 else if (ecmd->rx_pause && !ecmd->tx_pause) 579 skge->flow_control = FLOW_MODE_SYM_OR_REM; 580 else if (!ecmd->rx_pause && ecmd->tx_pause) 581 skge->flow_control = FLOW_MODE_LOC_SEND; 582 else 583 skge->flow_control = FLOW_MODE_NONE; 584 } 585 586 if (netif_running(dev)) { 587 skge_down(dev); 588 err = skge_up(dev); 589 if (err) { 590 dev_close(dev); 591 return err; 592 } 593 } 594 595 return 0; 596 } 597 598 /* Chip internal frequency for clock calculations */ 599 static inline u32 hwkhz(const struct skge_hw *hw) 600 { 601 return is_genesis(hw) ? 53125 : 78125; 602 } 603 604 /* Chip HZ to microseconds */ 605 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks) 606 { 607 return (ticks * 1000) / hwkhz(hw); 608 } 609 610 /* Microseconds to chip HZ */ 611 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec) 612 { 613 return hwkhz(hw) * usec / 1000; 614 } 615 616 static int skge_get_coalesce(struct net_device *dev, 617 struct ethtool_coalesce *ecmd) 618 { 619 struct skge_port *skge = netdev_priv(dev); 620 struct skge_hw *hw = skge->hw; 621 int port = skge->port; 622 623 ecmd->rx_coalesce_usecs = 0; 624 ecmd->tx_coalesce_usecs = 0; 625 626 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) { 627 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI)); 628 u32 msk = skge_read32(hw, B2_IRQM_MSK); 629 630 if (msk & rxirqmask[port]) 631 ecmd->rx_coalesce_usecs = delay; 632 if (msk & txirqmask[port]) 633 ecmd->tx_coalesce_usecs = delay; 634 } 635 636 return 0; 637 } 638 639 /* Note: interrupt timer is per board, but can turn on/off per port */ 640 static int skge_set_coalesce(struct net_device *dev, 641 struct ethtool_coalesce *ecmd) 642 { 643 struct skge_port *skge = netdev_priv(dev); 644 struct skge_hw *hw = skge->hw; 645 int port = skge->port; 646 u32 msk = skge_read32(hw, B2_IRQM_MSK); 647 u32 delay = 25; 648 649 if (ecmd->rx_coalesce_usecs == 0) 650 msk &= ~rxirqmask[port]; 651 else if (ecmd->rx_coalesce_usecs < 25 || 652 ecmd->rx_coalesce_usecs > 33333) 653 return -EINVAL; 654 else { 655 msk |= rxirqmask[port]; 656 delay = ecmd->rx_coalesce_usecs; 657 } 658 659 if (ecmd->tx_coalesce_usecs == 0) 660 msk &= ~txirqmask[port]; 661 else if (ecmd->tx_coalesce_usecs < 25 || 662 ecmd->tx_coalesce_usecs > 33333) 663 return -EINVAL; 664 else { 665 msk |= txirqmask[port]; 666 delay = min(delay, ecmd->rx_coalesce_usecs); 667 } 668 669 skge_write32(hw, B2_IRQM_MSK, msk); 670 if (msk == 0) 671 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP); 672 else { 673 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay)); 674 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 675 } 676 return 0; 677 } 678 679 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST }; 680 static void skge_led(struct skge_port *skge, enum led_mode mode) 681 { 682 struct skge_hw *hw = skge->hw; 683 int port = skge->port; 684 685 spin_lock_bh(&hw->phy_lock); 686 if (is_genesis(hw)) { 687 switch (mode) { 688 case LED_MODE_OFF: 689 if (hw->phy_type == SK_PHY_BCOM) 690 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF); 691 else { 692 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0); 693 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF); 694 } 695 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); 696 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0); 697 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF); 698 break; 699 700 case LED_MODE_ON: 701 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON); 702 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); 703 704 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 705 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 706 707 break; 708 709 case LED_MODE_TST: 710 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON); 711 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100); 712 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 713 714 if (hw->phy_type == SK_PHY_BCOM) 715 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON); 716 else { 717 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON); 718 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100); 719 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 720 } 721 722 } 723 } else { 724 switch (mode) { 725 case LED_MODE_OFF: 726 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 727 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 728 PHY_M_LED_MO_DUP(MO_LED_OFF) | 729 PHY_M_LED_MO_10(MO_LED_OFF) | 730 PHY_M_LED_MO_100(MO_LED_OFF) | 731 PHY_M_LED_MO_1000(MO_LED_OFF) | 732 PHY_M_LED_MO_RX(MO_LED_OFF)); 733 break; 734 case LED_MODE_ON: 735 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 736 PHY_M_LED_PULS_DUR(PULS_170MS) | 737 PHY_M_LED_BLINK_RT(BLINK_84MS) | 738 PHY_M_LEDC_TX_CTRL | 739 PHY_M_LEDC_DP_CTRL); 740 741 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 742 PHY_M_LED_MO_RX(MO_LED_OFF) | 743 (skge->speed == SPEED_100 ? 744 PHY_M_LED_MO_100(MO_LED_ON) : 0)); 745 break; 746 case LED_MODE_TST: 747 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 748 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 749 PHY_M_LED_MO_DUP(MO_LED_ON) | 750 PHY_M_LED_MO_10(MO_LED_ON) | 751 PHY_M_LED_MO_100(MO_LED_ON) | 752 PHY_M_LED_MO_1000(MO_LED_ON) | 753 PHY_M_LED_MO_RX(MO_LED_ON)); 754 } 755 } 756 spin_unlock_bh(&hw->phy_lock); 757 } 758 759 /* blink LED's for finding board */ 760 static int skge_set_phys_id(struct net_device *dev, 761 enum ethtool_phys_id_state state) 762 { 763 struct skge_port *skge = netdev_priv(dev); 764 765 switch (state) { 766 case ETHTOOL_ID_ACTIVE: 767 return 2; /* cycle on/off twice per second */ 768 769 case ETHTOOL_ID_ON: 770 skge_led(skge, LED_MODE_TST); 771 break; 772 773 case ETHTOOL_ID_OFF: 774 skge_led(skge, LED_MODE_OFF); 775 break; 776 777 case ETHTOOL_ID_INACTIVE: 778 /* back to regular LED state */ 779 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF); 780 } 781 782 return 0; 783 } 784 785 static int skge_get_eeprom_len(struct net_device *dev) 786 { 787 struct skge_port *skge = netdev_priv(dev); 788 u32 reg2; 789 790 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, ®2); 791 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8); 792 } 793 794 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset) 795 { 796 u32 val; 797 798 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset); 799 800 do { 801 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); 802 } while (!(offset & PCI_VPD_ADDR_F)); 803 804 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val); 805 return val; 806 } 807 808 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val) 809 { 810 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val); 811 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, 812 offset | PCI_VPD_ADDR_F); 813 814 do { 815 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); 816 } while (offset & PCI_VPD_ADDR_F); 817 } 818 819 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 820 u8 *data) 821 { 822 struct skge_port *skge = netdev_priv(dev); 823 struct pci_dev *pdev = skge->hw->pdev; 824 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); 825 int length = eeprom->len; 826 u16 offset = eeprom->offset; 827 828 if (!cap) 829 return -EINVAL; 830 831 eeprom->magic = SKGE_EEPROM_MAGIC; 832 833 while (length > 0) { 834 u32 val = skge_vpd_read(pdev, cap, offset); 835 int n = min_t(int, length, sizeof(val)); 836 837 memcpy(data, &val, n); 838 length -= n; 839 data += n; 840 offset += n; 841 } 842 return 0; 843 } 844 845 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 846 u8 *data) 847 { 848 struct skge_port *skge = netdev_priv(dev); 849 struct pci_dev *pdev = skge->hw->pdev; 850 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); 851 int length = eeprom->len; 852 u16 offset = eeprom->offset; 853 854 if (!cap) 855 return -EINVAL; 856 857 if (eeprom->magic != SKGE_EEPROM_MAGIC) 858 return -EINVAL; 859 860 while (length > 0) { 861 u32 val; 862 int n = min_t(int, length, sizeof(val)); 863 864 if (n < sizeof(val)) 865 val = skge_vpd_read(pdev, cap, offset); 866 memcpy(&val, data, n); 867 868 skge_vpd_write(pdev, cap, offset, val); 869 870 length -= n; 871 data += n; 872 offset += n; 873 } 874 return 0; 875 } 876 877 static const struct ethtool_ops skge_ethtool_ops = { 878 .get_settings = skge_get_settings, 879 .set_settings = skge_set_settings, 880 .get_drvinfo = skge_get_drvinfo, 881 .get_regs_len = skge_get_regs_len, 882 .get_regs = skge_get_regs, 883 .get_wol = skge_get_wol, 884 .set_wol = skge_set_wol, 885 .get_msglevel = skge_get_msglevel, 886 .set_msglevel = skge_set_msglevel, 887 .nway_reset = skge_nway_reset, 888 .get_link = ethtool_op_get_link, 889 .get_eeprom_len = skge_get_eeprom_len, 890 .get_eeprom = skge_get_eeprom, 891 .set_eeprom = skge_set_eeprom, 892 .get_ringparam = skge_get_ring_param, 893 .set_ringparam = skge_set_ring_param, 894 .get_pauseparam = skge_get_pauseparam, 895 .set_pauseparam = skge_set_pauseparam, 896 .get_coalesce = skge_get_coalesce, 897 .set_coalesce = skge_set_coalesce, 898 .get_strings = skge_get_strings, 899 .set_phys_id = skge_set_phys_id, 900 .get_sset_count = skge_get_sset_count, 901 .get_ethtool_stats = skge_get_ethtool_stats, 902 }; 903 904 /* 905 * Allocate ring elements and chain them together 906 * One-to-one association of board descriptors with ring elements 907 */ 908 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base) 909 { 910 struct skge_tx_desc *d; 911 struct skge_element *e; 912 int i; 913 914 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL); 915 if (!ring->start) 916 return -ENOMEM; 917 918 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { 919 e->desc = d; 920 if (i == ring->count - 1) { 921 e->next = ring->start; 922 d->next_offset = base; 923 } else { 924 e->next = e + 1; 925 d->next_offset = base + (i+1) * sizeof(*d); 926 } 927 } 928 ring->to_use = ring->to_clean = ring->start; 929 930 return 0; 931 } 932 933 /* Allocate and setup a new buffer for receiving */ 934 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e, 935 struct sk_buff *skb, unsigned int bufsize) 936 { 937 struct skge_rx_desc *rd = e->desc; 938 u64 map; 939 940 map = pci_map_single(skge->hw->pdev, skb->data, bufsize, 941 PCI_DMA_FROMDEVICE); 942 943 rd->dma_lo = map; 944 rd->dma_hi = map >> 32; 945 e->skb = skb; 946 rd->csum1_start = ETH_HLEN; 947 rd->csum2_start = ETH_HLEN; 948 rd->csum1 = 0; 949 rd->csum2 = 0; 950 951 wmb(); 952 953 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; 954 dma_unmap_addr_set(e, mapaddr, map); 955 dma_unmap_len_set(e, maplen, bufsize); 956 } 957 958 /* Resume receiving using existing skb, 959 * Note: DMA address is not changed by chip. 960 * MTU not changed while receiver active. 961 */ 962 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size) 963 { 964 struct skge_rx_desc *rd = e->desc; 965 966 rd->csum2 = 0; 967 rd->csum2_start = ETH_HLEN; 968 969 wmb(); 970 971 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size; 972 } 973 974 975 /* Free all buffers in receive ring, assumes receiver stopped */ 976 static void skge_rx_clean(struct skge_port *skge) 977 { 978 struct skge_hw *hw = skge->hw; 979 struct skge_ring *ring = &skge->rx_ring; 980 struct skge_element *e; 981 982 e = ring->start; 983 do { 984 struct skge_rx_desc *rd = e->desc; 985 rd->control = 0; 986 if (e->skb) { 987 pci_unmap_single(hw->pdev, 988 dma_unmap_addr(e, mapaddr), 989 dma_unmap_len(e, maplen), 990 PCI_DMA_FROMDEVICE); 991 dev_kfree_skb(e->skb); 992 e->skb = NULL; 993 } 994 } while ((e = e->next) != ring->start); 995 } 996 997 998 /* Allocate buffers for receive ring 999 * For receive: to_clean is next received frame. 1000 */ 1001 static int skge_rx_fill(struct net_device *dev) 1002 { 1003 struct skge_port *skge = netdev_priv(dev); 1004 struct skge_ring *ring = &skge->rx_ring; 1005 struct skge_element *e; 1006 1007 e = ring->start; 1008 do { 1009 struct sk_buff *skb; 1010 1011 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN, 1012 GFP_KERNEL); 1013 if (!skb) 1014 return -ENOMEM; 1015 1016 skb_reserve(skb, NET_IP_ALIGN); 1017 skge_rx_setup(skge, e, skb, skge->rx_buf_size); 1018 } while ((e = e->next) != ring->start); 1019 1020 ring->to_clean = ring->start; 1021 return 0; 1022 } 1023 1024 static const char *skge_pause(enum pause_status status) 1025 { 1026 switch (status) { 1027 case FLOW_STAT_NONE: 1028 return "none"; 1029 case FLOW_STAT_REM_SEND: 1030 return "rx only"; 1031 case FLOW_STAT_LOC_SEND: 1032 return "tx_only"; 1033 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */ 1034 return "both"; 1035 default: 1036 return "indeterminated"; 1037 } 1038 } 1039 1040 1041 static void skge_link_up(struct skge_port *skge) 1042 { 1043 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), 1044 LED_BLK_OFF|LED_SYNC_OFF|LED_ON); 1045 1046 netif_carrier_on(skge->netdev); 1047 netif_wake_queue(skge->netdev); 1048 1049 netif_info(skge, link, skge->netdev, 1050 "Link is up at %d Mbps, %s duplex, flow control %s\n", 1051 skge->speed, 1052 skge->duplex == DUPLEX_FULL ? "full" : "half", 1053 skge_pause(skge->flow_status)); 1054 } 1055 1056 static void skge_link_down(struct skge_port *skge) 1057 { 1058 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); 1059 netif_carrier_off(skge->netdev); 1060 netif_stop_queue(skge->netdev); 1061 1062 netif_info(skge, link, skge->netdev, "Link is down\n"); 1063 } 1064 1065 static void xm_link_down(struct skge_hw *hw, int port) 1066 { 1067 struct net_device *dev = hw->dev[port]; 1068 struct skge_port *skge = netdev_priv(dev); 1069 1070 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); 1071 1072 if (netif_carrier_ok(dev)) 1073 skge_link_down(skge); 1074 } 1075 1076 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1077 { 1078 int i; 1079 1080 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 1081 *val = xm_read16(hw, port, XM_PHY_DATA); 1082 1083 if (hw->phy_type == SK_PHY_XMAC) 1084 goto ready; 1085 1086 for (i = 0; i < PHY_RETRIES; i++) { 1087 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY) 1088 goto ready; 1089 udelay(1); 1090 } 1091 1092 return -ETIMEDOUT; 1093 ready: 1094 *val = xm_read16(hw, port, XM_PHY_DATA); 1095 1096 return 0; 1097 } 1098 1099 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg) 1100 { 1101 u16 v = 0; 1102 if (__xm_phy_read(hw, port, reg, &v)) 1103 pr_warning("%s: phy read timed out\n", hw->dev[port]->name); 1104 return v; 1105 } 1106 1107 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1108 { 1109 int i; 1110 1111 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 1112 for (i = 0; i < PHY_RETRIES; i++) { 1113 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 1114 goto ready; 1115 udelay(1); 1116 } 1117 return -EIO; 1118 1119 ready: 1120 xm_write16(hw, port, XM_PHY_DATA, val); 1121 for (i = 0; i < PHY_RETRIES; i++) { 1122 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 1123 return 0; 1124 udelay(1); 1125 } 1126 return -ETIMEDOUT; 1127 } 1128 1129 static void genesis_init(struct skge_hw *hw) 1130 { 1131 /* set blink source counter */ 1132 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100); 1133 skge_write8(hw, B2_BSC_CTRL, BSC_START); 1134 1135 /* configure mac arbiter */ 1136 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1137 1138 /* configure mac arbiter timeout values */ 1139 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53); 1140 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53); 1141 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53); 1142 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53); 1143 1144 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1145 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1146 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1147 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1148 1149 /* configure packet arbiter timeout */ 1150 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR); 1151 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); 1152 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); 1153 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); 1154 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); 1155 } 1156 1157 static void genesis_reset(struct skge_hw *hw, int port) 1158 { 1159 static const u8 zero[8] = { 0 }; 1160 u32 reg; 1161 1162 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 1163 1164 /* reset the statistics module */ 1165 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); 1166 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); 1167 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */ 1168 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */ 1169 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */ 1170 1171 /* disable Broadcom PHY IRQ */ 1172 if (hw->phy_type == SK_PHY_BCOM) 1173 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); 1174 1175 xm_outhash(hw, port, XM_HSM, zero); 1176 1177 /* Flush TX and RX fifo */ 1178 reg = xm_read32(hw, port, XM_MODE); 1179 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF); 1180 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF); 1181 } 1182 1183 /* Convert mode to MII values */ 1184 static const u16 phy_pause_map[] = { 1185 [FLOW_MODE_NONE] = 0, 1186 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM, 1187 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP, 1188 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM, 1189 }; 1190 1191 /* special defines for FIBER (88E1011S only) */ 1192 static const u16 fiber_pause_map[] = { 1193 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE, 1194 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD, 1195 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD, 1196 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD, 1197 }; 1198 1199 1200 /* Check status of Broadcom phy link */ 1201 static void bcom_check_link(struct skge_hw *hw, int port) 1202 { 1203 struct net_device *dev = hw->dev[port]; 1204 struct skge_port *skge = netdev_priv(dev); 1205 u16 status; 1206 1207 /* read twice because of latch */ 1208 xm_phy_read(hw, port, PHY_BCOM_STAT); 1209 status = xm_phy_read(hw, port, PHY_BCOM_STAT); 1210 1211 if ((status & PHY_ST_LSYNC) == 0) { 1212 xm_link_down(hw, port); 1213 return; 1214 } 1215 1216 if (skge->autoneg == AUTONEG_ENABLE) { 1217 u16 lpa, aux; 1218 1219 if (!(status & PHY_ST_AN_OVER)) 1220 return; 1221 1222 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); 1223 if (lpa & PHY_B_AN_RF) { 1224 netdev_notice(dev, "remote fault\n"); 1225 return; 1226 } 1227 1228 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); 1229 1230 /* Check Duplex mismatch */ 1231 switch (aux & PHY_B_AS_AN_RES_MSK) { 1232 case PHY_B_RES_1000FD: 1233 skge->duplex = DUPLEX_FULL; 1234 break; 1235 case PHY_B_RES_1000HD: 1236 skge->duplex = DUPLEX_HALF; 1237 break; 1238 default: 1239 netdev_notice(dev, "duplex mismatch\n"); 1240 return; 1241 } 1242 1243 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1244 switch (aux & PHY_B_AS_PAUSE_MSK) { 1245 case PHY_B_AS_PAUSE_MSK: 1246 skge->flow_status = FLOW_STAT_SYMMETRIC; 1247 break; 1248 case PHY_B_AS_PRR: 1249 skge->flow_status = FLOW_STAT_REM_SEND; 1250 break; 1251 case PHY_B_AS_PRT: 1252 skge->flow_status = FLOW_STAT_LOC_SEND; 1253 break; 1254 default: 1255 skge->flow_status = FLOW_STAT_NONE; 1256 } 1257 skge->speed = SPEED_1000; 1258 } 1259 1260 if (!netif_carrier_ok(dev)) 1261 genesis_link_up(skge); 1262 } 1263 1264 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional 1265 * Phy on for 100 or 10Mbit operation 1266 */ 1267 static void bcom_phy_init(struct skge_port *skge) 1268 { 1269 struct skge_hw *hw = skge->hw; 1270 int port = skge->port; 1271 int i; 1272 u16 id1, r, ext, ctl; 1273 1274 /* magic workaround patterns for Broadcom */ 1275 static const struct { 1276 u16 reg; 1277 u16 val; 1278 } A1hack[] = { 1279 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, 1280 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, 1281 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, 1282 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 1283 }, C0hack[] = { 1284 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, 1285 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, 1286 }; 1287 1288 /* read Id from external PHY (all have the same address) */ 1289 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1); 1290 1291 /* Optimize MDIO transfer by suppressing preamble. */ 1292 r = xm_read16(hw, port, XM_MMU_CMD); 1293 r |= XM_MMU_NO_PRE; 1294 xm_write16(hw, port, XM_MMU_CMD, r); 1295 1296 switch (id1) { 1297 case PHY_BCOM_ID1_C0: 1298 /* 1299 * Workaround BCOM Errata for the C0 type. 1300 * Write magic patterns to reserved registers. 1301 */ 1302 for (i = 0; i < ARRAY_SIZE(C0hack); i++) 1303 xm_phy_write(hw, port, 1304 C0hack[i].reg, C0hack[i].val); 1305 1306 break; 1307 case PHY_BCOM_ID1_A1: 1308 /* 1309 * Workaround BCOM Errata for the A1 type. 1310 * Write magic patterns to reserved registers. 1311 */ 1312 for (i = 0; i < ARRAY_SIZE(A1hack); i++) 1313 xm_phy_write(hw, port, 1314 A1hack[i].reg, A1hack[i].val); 1315 break; 1316 } 1317 1318 /* 1319 * Workaround BCOM Errata (#10523) for all BCom PHYs. 1320 * Disable Power Management after reset. 1321 */ 1322 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); 1323 r |= PHY_B_AC_DIS_PM; 1324 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r); 1325 1326 /* Dummy read */ 1327 xm_read16(hw, port, XM_ISRC); 1328 1329 ext = PHY_B_PEC_EN_LTR; /* enable tx led */ 1330 ctl = PHY_CT_SP1000; /* always 1000mbit */ 1331 1332 if (skge->autoneg == AUTONEG_ENABLE) { 1333 /* 1334 * Workaround BCOM Errata #1 for the C5 type. 1335 * 1000Base-T Link Acquisition Failure in Slave Mode 1336 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register 1337 */ 1338 u16 adv = PHY_B_1000C_RD; 1339 if (skge->advertising & ADVERTISED_1000baseT_Half) 1340 adv |= PHY_B_1000C_AHD; 1341 if (skge->advertising & ADVERTISED_1000baseT_Full) 1342 adv |= PHY_B_1000C_AFD; 1343 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv); 1344 1345 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG; 1346 } else { 1347 if (skge->duplex == DUPLEX_FULL) 1348 ctl |= PHY_CT_DUP_MD; 1349 /* Force to slave */ 1350 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE); 1351 } 1352 1353 /* Set autonegotiation pause parameters */ 1354 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, 1355 phy_pause_map[skge->flow_control] | PHY_AN_CSMA); 1356 1357 /* Handle Jumbo frames */ 1358 if (hw->dev[port]->mtu > ETH_DATA_LEN) { 1359 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1360 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK); 1361 1362 ext |= PHY_B_PEC_HIGH_LA; 1363 1364 } 1365 1366 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext); 1367 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl); 1368 1369 /* Use link status change interrupt */ 1370 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1371 } 1372 1373 static void xm_phy_init(struct skge_port *skge) 1374 { 1375 struct skge_hw *hw = skge->hw; 1376 int port = skge->port; 1377 u16 ctrl = 0; 1378 1379 if (skge->autoneg == AUTONEG_ENABLE) { 1380 if (skge->advertising & ADVERTISED_1000baseT_Half) 1381 ctrl |= PHY_X_AN_HD; 1382 if (skge->advertising & ADVERTISED_1000baseT_Full) 1383 ctrl |= PHY_X_AN_FD; 1384 1385 ctrl |= fiber_pause_map[skge->flow_control]; 1386 1387 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl); 1388 1389 /* Restart Auto-negotiation */ 1390 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG; 1391 } else { 1392 /* Set DuplexMode in Config register */ 1393 if (skge->duplex == DUPLEX_FULL) 1394 ctrl |= PHY_CT_DUP_MD; 1395 /* 1396 * Do NOT enable Auto-negotiation here. This would hold 1397 * the link down because no IDLEs are transmitted 1398 */ 1399 } 1400 1401 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl); 1402 1403 /* Poll PHY for status changes */ 1404 mod_timer(&skge->link_timer, jiffies + LINK_HZ); 1405 } 1406 1407 static int xm_check_link(struct net_device *dev) 1408 { 1409 struct skge_port *skge = netdev_priv(dev); 1410 struct skge_hw *hw = skge->hw; 1411 int port = skge->port; 1412 u16 status; 1413 1414 /* read twice because of latch */ 1415 xm_phy_read(hw, port, PHY_XMAC_STAT); 1416 status = xm_phy_read(hw, port, PHY_XMAC_STAT); 1417 1418 if ((status & PHY_ST_LSYNC) == 0) { 1419 xm_link_down(hw, port); 1420 return 0; 1421 } 1422 1423 if (skge->autoneg == AUTONEG_ENABLE) { 1424 u16 lpa, res; 1425 1426 if (!(status & PHY_ST_AN_OVER)) 1427 return 0; 1428 1429 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); 1430 if (lpa & PHY_B_AN_RF) { 1431 netdev_notice(dev, "remote fault\n"); 1432 return 0; 1433 } 1434 1435 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI); 1436 1437 /* Check Duplex mismatch */ 1438 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) { 1439 case PHY_X_RS_FD: 1440 skge->duplex = DUPLEX_FULL; 1441 break; 1442 case PHY_X_RS_HD: 1443 skge->duplex = DUPLEX_HALF; 1444 break; 1445 default: 1446 netdev_notice(dev, "duplex mismatch\n"); 1447 return 0; 1448 } 1449 1450 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1451 if ((skge->flow_control == FLOW_MODE_SYMMETRIC || 1452 skge->flow_control == FLOW_MODE_SYM_OR_REM) && 1453 (lpa & PHY_X_P_SYM_MD)) 1454 skge->flow_status = FLOW_STAT_SYMMETRIC; 1455 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM && 1456 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD) 1457 /* Enable PAUSE receive, disable PAUSE transmit */ 1458 skge->flow_status = FLOW_STAT_REM_SEND; 1459 else if (skge->flow_control == FLOW_MODE_LOC_SEND && 1460 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD) 1461 /* Disable PAUSE receive, enable PAUSE transmit */ 1462 skge->flow_status = FLOW_STAT_LOC_SEND; 1463 else 1464 skge->flow_status = FLOW_STAT_NONE; 1465 1466 skge->speed = SPEED_1000; 1467 } 1468 1469 if (!netif_carrier_ok(dev)) 1470 genesis_link_up(skge); 1471 return 1; 1472 } 1473 1474 /* Poll to check for link coming up. 1475 * 1476 * Since internal PHY is wired to a level triggered pin, can't 1477 * get an interrupt when carrier is detected, need to poll for 1478 * link coming up. 1479 */ 1480 static void xm_link_timer(unsigned long arg) 1481 { 1482 struct skge_port *skge = (struct skge_port *) arg; 1483 struct net_device *dev = skge->netdev; 1484 struct skge_hw *hw = skge->hw; 1485 int port = skge->port; 1486 int i; 1487 unsigned long flags; 1488 1489 if (!netif_running(dev)) 1490 return; 1491 1492 spin_lock_irqsave(&hw->phy_lock, flags); 1493 1494 /* 1495 * Verify that the link by checking GPIO register three times. 1496 * This pin has the signal from the link_sync pin connected to it. 1497 */ 1498 for (i = 0; i < 3; i++) { 1499 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS) 1500 goto link_down; 1501 } 1502 1503 /* Re-enable interrupt to detect link down */ 1504 if (xm_check_link(dev)) { 1505 u16 msk = xm_read16(hw, port, XM_IMSK); 1506 msk &= ~XM_IS_INP_ASS; 1507 xm_write16(hw, port, XM_IMSK, msk); 1508 xm_read16(hw, port, XM_ISRC); 1509 } else { 1510 link_down: 1511 mod_timer(&skge->link_timer, 1512 round_jiffies(jiffies + LINK_HZ)); 1513 } 1514 spin_unlock_irqrestore(&hw->phy_lock, flags); 1515 } 1516 1517 static void genesis_mac_init(struct skge_hw *hw, int port) 1518 { 1519 struct net_device *dev = hw->dev[port]; 1520 struct skge_port *skge = netdev_priv(dev); 1521 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN; 1522 int i; 1523 u32 r; 1524 static const u8 zero[6] = { 0 }; 1525 1526 for (i = 0; i < 10; i++) { 1527 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 1528 MFF_SET_MAC_RST); 1529 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST) 1530 goto reset_ok; 1531 udelay(1); 1532 } 1533 1534 netdev_warn(dev, "genesis reset failed\n"); 1535 1536 reset_ok: 1537 /* Unreset the XMAC. */ 1538 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1539 1540 /* 1541 * Perform additional initialization for external PHYs, 1542 * namely for the 1000baseTX cards that use the XMAC's 1543 * GMII mode. 1544 */ 1545 if (hw->phy_type != SK_PHY_XMAC) { 1546 /* Take external Phy out of reset */ 1547 r = skge_read32(hw, B2_GP_IO); 1548 if (port == 0) 1549 r |= GP_DIR_0|GP_IO_0; 1550 else 1551 r |= GP_DIR_2|GP_IO_2; 1552 1553 skge_write32(hw, B2_GP_IO, r); 1554 1555 /* Enable GMII interface */ 1556 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); 1557 } 1558 1559 1560 switch (hw->phy_type) { 1561 case SK_PHY_XMAC: 1562 xm_phy_init(skge); 1563 break; 1564 case SK_PHY_BCOM: 1565 bcom_phy_init(skge); 1566 bcom_check_link(hw, port); 1567 } 1568 1569 /* Set Station Address */ 1570 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 1571 1572 /* We don't use match addresses so clear */ 1573 for (i = 1; i < 16; i++) 1574 xm_outaddr(hw, port, XM_EXM(i), zero); 1575 1576 /* Clear MIB counters */ 1577 xm_write16(hw, port, XM_STAT_CMD, 1578 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1579 /* Clear two times according to Errata #3 */ 1580 xm_write16(hw, port, XM_STAT_CMD, 1581 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1582 1583 /* configure Rx High Water Mark (XM_RX_HI_WM) */ 1584 xm_write16(hw, port, XM_RX_HI_WM, 1450); 1585 1586 /* We don't need the FCS appended to the packet. */ 1587 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS; 1588 if (jumbo) 1589 r |= XM_RX_BIG_PK_OK; 1590 1591 if (skge->duplex == DUPLEX_HALF) { 1592 /* 1593 * If in manual half duplex mode the other side might be in 1594 * full duplex mode, so ignore if a carrier extension is not seen 1595 * on frames received 1596 */ 1597 r |= XM_RX_DIS_CEXT; 1598 } 1599 xm_write16(hw, port, XM_RX_CMD, r); 1600 1601 /* We want short frames padded to 60 bytes. */ 1602 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD); 1603 1604 /* Increase threshold for jumbo frames on dual port */ 1605 if (hw->ports > 1 && jumbo) 1606 xm_write16(hw, port, XM_TX_THR, 1020); 1607 else 1608 xm_write16(hw, port, XM_TX_THR, 512); 1609 1610 /* 1611 * Enable the reception of all error frames. This is is 1612 * a necessary evil due to the design of the XMAC. The 1613 * XMAC's receive FIFO is only 8K in size, however jumbo 1614 * frames can be up to 9000 bytes in length. When bad 1615 * frame filtering is enabled, the XMAC's RX FIFO operates 1616 * in 'store and forward' mode. For this to work, the 1617 * entire frame has to fit into the FIFO, but that means 1618 * that jumbo frames larger than 8192 bytes will be 1619 * truncated. Disabling all bad frame filtering causes 1620 * the RX FIFO to operate in streaming mode, in which 1621 * case the XMAC will start transferring frames out of the 1622 * RX FIFO as soon as the FIFO threshold is reached. 1623 */ 1624 xm_write32(hw, port, XM_MODE, XM_DEF_MODE); 1625 1626 1627 /* 1628 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK) 1629 * - Enable all bits excepting 'Octets Rx OK Low CntOv' 1630 * and 'Octets Rx OK Hi Cnt Ov'. 1631 */ 1632 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK); 1633 1634 /* 1635 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK) 1636 * - Enable all bits excepting 'Octets Tx OK Low CntOv' 1637 * and 'Octets Tx OK Hi Cnt Ov'. 1638 */ 1639 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK); 1640 1641 /* Configure MAC arbiter */ 1642 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1643 1644 /* configure timeout values */ 1645 skge_write8(hw, B3_MA_TOINI_RX1, 72); 1646 skge_write8(hw, B3_MA_TOINI_RX2, 72); 1647 skge_write8(hw, B3_MA_TOINI_TX1, 72); 1648 skge_write8(hw, B3_MA_TOINI_TX2, 72); 1649 1650 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1651 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1652 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1653 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1654 1655 /* Configure Rx MAC FIFO */ 1656 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); 1657 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); 1658 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); 1659 1660 /* Configure Tx MAC FIFO */ 1661 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); 1662 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); 1663 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); 1664 1665 if (jumbo) { 1666 /* Enable frame flushing if jumbo frames used */ 1667 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH); 1668 } else { 1669 /* enable timeout timers if normal frames */ 1670 skge_write16(hw, B3_PA_CTRL, 1671 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); 1672 } 1673 } 1674 1675 static void genesis_stop(struct skge_port *skge) 1676 { 1677 struct skge_hw *hw = skge->hw; 1678 int port = skge->port; 1679 unsigned retries = 1000; 1680 u16 cmd; 1681 1682 /* Disable Tx and Rx */ 1683 cmd = xm_read16(hw, port, XM_MMU_CMD); 1684 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1685 xm_write16(hw, port, XM_MMU_CMD, cmd); 1686 1687 genesis_reset(hw, port); 1688 1689 /* Clear Tx packet arbiter timeout IRQ */ 1690 skge_write16(hw, B3_PA_CTRL, 1691 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2); 1692 1693 /* Reset the MAC */ 1694 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1695 do { 1696 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); 1697 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)) 1698 break; 1699 } while (--retries > 0); 1700 1701 /* For external PHYs there must be special handling */ 1702 if (hw->phy_type != SK_PHY_XMAC) { 1703 u32 reg = skge_read32(hw, B2_GP_IO); 1704 if (port == 0) { 1705 reg |= GP_DIR_0; 1706 reg &= ~GP_IO_0; 1707 } else { 1708 reg |= GP_DIR_2; 1709 reg &= ~GP_IO_2; 1710 } 1711 skge_write32(hw, B2_GP_IO, reg); 1712 skge_read32(hw, B2_GP_IO); 1713 } 1714 1715 xm_write16(hw, port, XM_MMU_CMD, 1716 xm_read16(hw, port, XM_MMU_CMD) 1717 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); 1718 1719 xm_read16(hw, port, XM_MMU_CMD); 1720 } 1721 1722 1723 static void genesis_get_stats(struct skge_port *skge, u64 *data) 1724 { 1725 struct skge_hw *hw = skge->hw; 1726 int port = skge->port; 1727 int i; 1728 unsigned long timeout = jiffies + HZ; 1729 1730 xm_write16(hw, port, 1731 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); 1732 1733 /* wait for update to complete */ 1734 while (xm_read16(hw, port, XM_STAT_CMD) 1735 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { 1736 if (time_after(jiffies, timeout)) 1737 break; 1738 udelay(10); 1739 } 1740 1741 /* special case for 64 bit octet counter */ 1742 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32 1743 | xm_read32(hw, port, XM_TXO_OK_LO); 1744 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32 1745 | xm_read32(hw, port, XM_RXO_OK_LO); 1746 1747 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 1748 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset); 1749 } 1750 1751 static void genesis_mac_intr(struct skge_hw *hw, int port) 1752 { 1753 struct net_device *dev = hw->dev[port]; 1754 struct skge_port *skge = netdev_priv(dev); 1755 u16 status = xm_read16(hw, port, XM_ISRC); 1756 1757 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 1758 "mac interrupt status 0x%x\n", status); 1759 1760 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) { 1761 xm_link_down(hw, port); 1762 mod_timer(&skge->link_timer, jiffies + 1); 1763 } 1764 1765 if (status & XM_IS_TXF_UR) { 1766 xm_write32(hw, port, XM_MODE, XM_MD_FTF); 1767 ++dev->stats.tx_fifo_errors; 1768 } 1769 } 1770 1771 static void genesis_link_up(struct skge_port *skge) 1772 { 1773 struct skge_hw *hw = skge->hw; 1774 int port = skge->port; 1775 u16 cmd, msk; 1776 u32 mode; 1777 1778 cmd = xm_read16(hw, port, XM_MMU_CMD); 1779 1780 /* 1781 * enabling pause frame reception is required for 1000BT 1782 * because the XMAC is not reset if the link is going down 1783 */ 1784 if (skge->flow_status == FLOW_STAT_NONE || 1785 skge->flow_status == FLOW_STAT_LOC_SEND) 1786 /* Disable Pause Frame Reception */ 1787 cmd |= XM_MMU_IGN_PF; 1788 else 1789 /* Enable Pause Frame Reception */ 1790 cmd &= ~XM_MMU_IGN_PF; 1791 1792 xm_write16(hw, port, XM_MMU_CMD, cmd); 1793 1794 mode = xm_read32(hw, port, XM_MODE); 1795 if (skge->flow_status == FLOW_STAT_SYMMETRIC || 1796 skge->flow_status == FLOW_STAT_LOC_SEND) { 1797 /* 1798 * Configure Pause Frame Generation 1799 * Use internal and external Pause Frame Generation. 1800 * Sending pause frames is edge triggered. 1801 * Send a Pause frame with the maximum pause time if 1802 * internal oder external FIFO full condition occurs. 1803 * Send a zero pause time frame to re-start transmission. 1804 */ 1805 /* XM_PAUSE_DA = '010000C28001' (default) */ 1806 /* XM_MAC_PTIME = 0xffff (maximum) */ 1807 /* remember this value is defined in big endian (!) */ 1808 xm_write16(hw, port, XM_MAC_PTIME, 0xffff); 1809 1810 mode |= XM_PAUSE_MODE; 1811 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); 1812 } else { 1813 /* 1814 * disable pause frame generation is required for 1000BT 1815 * because the XMAC is not reset if the link is going down 1816 */ 1817 /* Disable Pause Mode in Mode Register */ 1818 mode &= ~XM_PAUSE_MODE; 1819 1820 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); 1821 } 1822 1823 xm_write32(hw, port, XM_MODE, mode); 1824 1825 /* Turn on detection of Tx underrun */ 1826 msk = xm_read16(hw, port, XM_IMSK); 1827 msk &= ~XM_IS_TXF_UR; 1828 xm_write16(hw, port, XM_IMSK, msk); 1829 1830 xm_read16(hw, port, XM_ISRC); 1831 1832 /* get MMU Command Reg. */ 1833 cmd = xm_read16(hw, port, XM_MMU_CMD); 1834 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL) 1835 cmd |= XM_MMU_GMII_FD; 1836 1837 /* 1838 * Workaround BCOM Errata (#10523) for all BCom Phys 1839 * Enable Power Management after link up 1840 */ 1841 if (hw->phy_type == SK_PHY_BCOM) { 1842 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1843 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) 1844 & ~PHY_B_AC_DIS_PM); 1845 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1846 } 1847 1848 /* enable Rx/Tx */ 1849 xm_write16(hw, port, XM_MMU_CMD, 1850 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1851 skge_link_up(skge); 1852 } 1853 1854 1855 static inline void bcom_phy_intr(struct skge_port *skge) 1856 { 1857 struct skge_hw *hw = skge->hw; 1858 int port = skge->port; 1859 u16 isrc; 1860 1861 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT); 1862 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 1863 "phy interrupt status 0x%x\n", isrc); 1864 1865 if (isrc & PHY_B_IS_PSE) 1866 pr_err("%s: uncorrectable pair swap error\n", 1867 hw->dev[port]->name); 1868 1869 /* Workaround BCom Errata: 1870 * enable and disable loopback mode if "NO HCD" occurs. 1871 */ 1872 if (isrc & PHY_B_IS_NO_HDCL) { 1873 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL); 1874 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1875 ctrl | PHY_CT_LOOP); 1876 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1877 ctrl & ~PHY_CT_LOOP); 1878 } 1879 1880 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) 1881 bcom_check_link(hw, port); 1882 1883 } 1884 1885 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1886 { 1887 int i; 1888 1889 gma_write16(hw, port, GM_SMI_DATA, val); 1890 gma_write16(hw, port, GM_SMI_CTRL, 1891 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); 1892 for (i = 0; i < PHY_RETRIES; i++) { 1893 udelay(1); 1894 1895 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) 1896 return 0; 1897 } 1898 1899 pr_warning("%s: phy write timeout\n", hw->dev[port]->name); 1900 return -EIO; 1901 } 1902 1903 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1904 { 1905 int i; 1906 1907 gma_write16(hw, port, GM_SMI_CTRL, 1908 GM_SMI_CT_PHY_AD(hw->phy_addr) 1909 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); 1910 1911 for (i = 0; i < PHY_RETRIES; i++) { 1912 udelay(1); 1913 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) 1914 goto ready; 1915 } 1916 1917 return -ETIMEDOUT; 1918 ready: 1919 *val = gma_read16(hw, port, GM_SMI_DATA); 1920 return 0; 1921 } 1922 1923 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg) 1924 { 1925 u16 v = 0; 1926 if (__gm_phy_read(hw, port, reg, &v)) 1927 pr_warning("%s: phy read timeout\n", hw->dev[port]->name); 1928 return v; 1929 } 1930 1931 /* Marvell Phy Initialization */ 1932 static void yukon_init(struct skge_hw *hw, int port) 1933 { 1934 struct skge_port *skge = netdev_priv(hw->dev[port]); 1935 u16 ctrl, ct1000, adv; 1936 1937 if (skge->autoneg == AUTONEG_ENABLE) { 1938 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); 1939 1940 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | 1941 PHY_M_EC_MAC_S_MSK); 1942 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); 1943 1944 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); 1945 1946 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); 1947 } 1948 1949 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 1950 if (skge->autoneg == AUTONEG_DISABLE) 1951 ctrl &= ~PHY_CT_ANE; 1952 1953 ctrl |= PHY_CT_RESET; 1954 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1955 1956 ctrl = 0; 1957 ct1000 = 0; 1958 adv = PHY_AN_CSMA; 1959 1960 if (skge->autoneg == AUTONEG_ENABLE) { 1961 if (hw->copper) { 1962 if (skge->advertising & ADVERTISED_1000baseT_Full) 1963 ct1000 |= PHY_M_1000C_AFD; 1964 if (skge->advertising & ADVERTISED_1000baseT_Half) 1965 ct1000 |= PHY_M_1000C_AHD; 1966 if (skge->advertising & ADVERTISED_100baseT_Full) 1967 adv |= PHY_M_AN_100_FD; 1968 if (skge->advertising & ADVERTISED_100baseT_Half) 1969 adv |= PHY_M_AN_100_HD; 1970 if (skge->advertising & ADVERTISED_10baseT_Full) 1971 adv |= PHY_M_AN_10_FD; 1972 if (skge->advertising & ADVERTISED_10baseT_Half) 1973 adv |= PHY_M_AN_10_HD; 1974 1975 /* Set Flow-control capabilities */ 1976 adv |= phy_pause_map[skge->flow_control]; 1977 } else { 1978 if (skge->advertising & ADVERTISED_1000baseT_Full) 1979 adv |= PHY_M_AN_1000X_AFD; 1980 if (skge->advertising & ADVERTISED_1000baseT_Half) 1981 adv |= PHY_M_AN_1000X_AHD; 1982 1983 adv |= fiber_pause_map[skge->flow_control]; 1984 } 1985 1986 /* Restart Auto-negotiation */ 1987 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; 1988 } else { 1989 /* forced speed/duplex settings */ 1990 ct1000 = PHY_M_1000C_MSE; 1991 1992 if (skge->duplex == DUPLEX_FULL) 1993 ctrl |= PHY_CT_DUP_MD; 1994 1995 switch (skge->speed) { 1996 case SPEED_1000: 1997 ctrl |= PHY_CT_SP1000; 1998 break; 1999 case SPEED_100: 2000 ctrl |= PHY_CT_SP100; 2001 break; 2002 } 2003 2004 ctrl |= PHY_CT_RESET; 2005 } 2006 2007 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); 2008 2009 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); 2010 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2011 2012 /* Enable phy interrupt on autonegotiation complete (or link up) */ 2013 if (skge->autoneg == AUTONEG_ENABLE) 2014 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK); 2015 else 2016 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 2017 } 2018 2019 static void yukon_reset(struct skge_hw *hw, int port) 2020 { 2021 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ 2022 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ 2023 gma_write16(hw, port, GM_MC_ADDR_H2, 0); 2024 gma_write16(hw, port, GM_MC_ADDR_H3, 0); 2025 gma_write16(hw, port, GM_MC_ADDR_H4, 0); 2026 2027 gma_write16(hw, port, GM_RX_CTRL, 2028 gma_read16(hw, port, GM_RX_CTRL) 2029 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2030 } 2031 2032 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */ 2033 static int is_yukon_lite_a0(struct skge_hw *hw) 2034 { 2035 u32 reg; 2036 int ret; 2037 2038 if (hw->chip_id != CHIP_ID_YUKON) 2039 return 0; 2040 2041 reg = skge_read32(hw, B2_FAR); 2042 skge_write8(hw, B2_FAR + 3, 0xff); 2043 ret = (skge_read8(hw, B2_FAR + 3) != 0); 2044 skge_write32(hw, B2_FAR, reg); 2045 return ret; 2046 } 2047 2048 static void yukon_mac_init(struct skge_hw *hw, int port) 2049 { 2050 struct skge_port *skge = netdev_priv(hw->dev[port]); 2051 int i; 2052 u32 reg; 2053 const u8 *addr = hw->dev[port]->dev_addr; 2054 2055 /* WA code for COMA mode -- set PHY reset */ 2056 if (hw->chip_id == CHIP_ID_YUKON_LITE && 2057 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 2058 reg = skge_read32(hw, B2_GP_IO); 2059 reg |= GP_DIR_9 | GP_IO_9; 2060 skge_write32(hw, B2_GP_IO, reg); 2061 } 2062 2063 /* hard reset */ 2064 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 2065 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 2066 2067 /* WA code for COMA mode -- clear PHY reset */ 2068 if (hw->chip_id == CHIP_ID_YUKON_LITE && 2069 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 2070 reg = skge_read32(hw, B2_GP_IO); 2071 reg |= GP_DIR_9; 2072 reg &= ~GP_IO_9; 2073 skge_write32(hw, B2_GP_IO, reg); 2074 } 2075 2076 /* Set hardware config mode */ 2077 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP | 2078 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE; 2079 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; 2080 2081 /* Clear GMC reset */ 2082 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET); 2083 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); 2084 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); 2085 2086 if (skge->autoneg == AUTONEG_DISABLE) { 2087 reg = GM_GPCR_AU_ALL_DIS; 2088 gma_write16(hw, port, GM_GP_CTRL, 2089 gma_read16(hw, port, GM_GP_CTRL) | reg); 2090 2091 switch (skge->speed) { 2092 case SPEED_1000: 2093 reg &= ~GM_GPCR_SPEED_100; 2094 reg |= GM_GPCR_SPEED_1000; 2095 break; 2096 case SPEED_100: 2097 reg &= ~GM_GPCR_SPEED_1000; 2098 reg |= GM_GPCR_SPEED_100; 2099 break; 2100 case SPEED_10: 2101 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100); 2102 break; 2103 } 2104 2105 if (skge->duplex == DUPLEX_FULL) 2106 reg |= GM_GPCR_DUP_FULL; 2107 } else 2108 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; 2109 2110 switch (skge->flow_control) { 2111 case FLOW_MODE_NONE: 2112 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2113 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 2114 break; 2115 case FLOW_MODE_LOC_SEND: 2116 /* disable Rx flow-control */ 2117 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 2118 break; 2119 case FLOW_MODE_SYMMETRIC: 2120 case FLOW_MODE_SYM_OR_REM: 2121 /* enable Tx & Rx flow-control */ 2122 break; 2123 } 2124 2125 gma_write16(hw, port, GM_GP_CTRL, reg); 2126 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); 2127 2128 yukon_init(hw, port); 2129 2130 /* MIB clear */ 2131 reg = gma_read16(hw, port, GM_PHY_ADDR); 2132 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); 2133 2134 for (i = 0; i < GM_MIB_CNT_SIZE; i++) 2135 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); 2136 gma_write16(hw, port, GM_PHY_ADDR, reg); 2137 2138 /* transmit control */ 2139 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); 2140 2141 /* receive control reg: unicast + multicast + no FCS */ 2142 gma_write16(hw, port, GM_RX_CTRL, 2143 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); 2144 2145 /* transmit flow control */ 2146 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); 2147 2148 /* transmit parameter */ 2149 gma_write16(hw, port, GM_TX_PARAM, 2150 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | 2151 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | 2152 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); 2153 2154 /* configure the Serial Mode Register */ 2155 reg = DATA_BLIND_VAL(DATA_BLIND_DEF) 2156 | GM_SMOD_VLAN_ENA 2157 | IPG_DATA_VAL(IPG_DATA_DEF); 2158 2159 if (hw->dev[port]->mtu > ETH_DATA_LEN) 2160 reg |= GM_SMOD_JUMBO_ENA; 2161 2162 gma_write16(hw, port, GM_SERIAL_MODE, reg); 2163 2164 /* physical address: used for pause frames */ 2165 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); 2166 /* virtual address for data */ 2167 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); 2168 2169 /* enable interrupt mask for counter overflows */ 2170 gma_write16(hw, port, GM_TX_IRQ_MSK, 0); 2171 gma_write16(hw, port, GM_RX_IRQ_MSK, 0); 2172 gma_write16(hw, port, GM_TR_IRQ_MSK, 0); 2173 2174 /* Initialize Mac Fifo */ 2175 2176 /* Configure Rx MAC FIFO */ 2177 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); 2178 reg = GMF_OPER_ON | GMF_RX_F_FL_ON; 2179 2180 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ 2181 if (is_yukon_lite_a0(hw)) 2182 reg &= ~GMF_RX_F_FL_ON; 2183 2184 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); 2185 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg); 2186 /* 2187 * because Pause Packet Truncation in GMAC is not working 2188 * we have to increase the Flush Threshold to 64 bytes 2189 * in order to flush pause packets in Rx FIFO on Yukon-1 2190 */ 2191 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1); 2192 2193 /* Configure Tx MAC FIFO */ 2194 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); 2195 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); 2196 } 2197 2198 /* Go into power down mode */ 2199 static void yukon_suspend(struct skge_hw *hw, int port) 2200 { 2201 u16 ctrl; 2202 2203 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); 2204 ctrl |= PHY_M_PC_POL_R_DIS; 2205 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); 2206 2207 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 2208 ctrl |= PHY_CT_RESET; 2209 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2210 2211 /* switch IEEE compatible power down mode on */ 2212 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 2213 ctrl |= PHY_CT_PDOWN; 2214 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2215 } 2216 2217 static void yukon_stop(struct skge_port *skge) 2218 { 2219 struct skge_hw *hw = skge->hw; 2220 int port = skge->port; 2221 2222 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 2223 yukon_reset(hw, port); 2224 2225 gma_write16(hw, port, GM_GP_CTRL, 2226 gma_read16(hw, port, GM_GP_CTRL) 2227 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA)); 2228 gma_read16(hw, port, GM_GP_CTRL); 2229 2230 yukon_suspend(hw, port); 2231 2232 /* set GPHY Control reset */ 2233 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 2234 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 2235 } 2236 2237 static void yukon_get_stats(struct skge_port *skge, u64 *data) 2238 { 2239 struct skge_hw *hw = skge->hw; 2240 int port = skge->port; 2241 int i; 2242 2243 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 2244 | gma_read32(hw, port, GM_TXO_OK_LO); 2245 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 2246 | gma_read32(hw, port, GM_RXO_OK_LO); 2247 2248 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 2249 data[i] = gma_read32(hw, port, 2250 skge_stats[i].gma_offset); 2251 } 2252 2253 static void yukon_mac_intr(struct skge_hw *hw, int port) 2254 { 2255 struct net_device *dev = hw->dev[port]; 2256 struct skge_port *skge = netdev_priv(dev); 2257 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); 2258 2259 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 2260 "mac interrupt status 0x%x\n", status); 2261 2262 if (status & GM_IS_RX_FF_OR) { 2263 ++dev->stats.rx_fifo_errors; 2264 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); 2265 } 2266 2267 if (status & GM_IS_TX_FF_UR) { 2268 ++dev->stats.tx_fifo_errors; 2269 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); 2270 } 2271 2272 } 2273 2274 static u16 yukon_speed(const struct skge_hw *hw, u16 aux) 2275 { 2276 switch (aux & PHY_M_PS_SPEED_MSK) { 2277 case PHY_M_PS_SPEED_1000: 2278 return SPEED_1000; 2279 case PHY_M_PS_SPEED_100: 2280 return SPEED_100; 2281 default: 2282 return SPEED_10; 2283 } 2284 } 2285 2286 static void yukon_link_up(struct skge_port *skge) 2287 { 2288 struct skge_hw *hw = skge->hw; 2289 int port = skge->port; 2290 u16 reg; 2291 2292 /* Enable Transmit FIFO Underrun */ 2293 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); 2294 2295 reg = gma_read16(hw, port, GM_GP_CTRL); 2296 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) 2297 reg |= GM_GPCR_DUP_FULL; 2298 2299 /* enable Rx/Tx */ 2300 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; 2301 gma_write16(hw, port, GM_GP_CTRL, reg); 2302 2303 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 2304 skge_link_up(skge); 2305 } 2306 2307 static void yukon_link_down(struct skge_port *skge) 2308 { 2309 struct skge_hw *hw = skge->hw; 2310 int port = skge->port; 2311 u16 ctrl; 2312 2313 ctrl = gma_read16(hw, port, GM_GP_CTRL); 2314 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 2315 gma_write16(hw, port, GM_GP_CTRL, ctrl); 2316 2317 if (skge->flow_status == FLOW_STAT_REM_SEND) { 2318 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV); 2319 ctrl |= PHY_M_AN_ASP; 2320 /* restore Asymmetric Pause bit */ 2321 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl); 2322 } 2323 2324 skge_link_down(skge); 2325 2326 yukon_init(hw, port); 2327 } 2328 2329 static void yukon_phy_intr(struct skge_port *skge) 2330 { 2331 struct skge_hw *hw = skge->hw; 2332 int port = skge->port; 2333 const char *reason = NULL; 2334 u16 istatus, phystat; 2335 2336 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); 2337 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); 2338 2339 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 2340 "phy interrupt status 0x%x 0x%x\n", istatus, phystat); 2341 2342 if (istatus & PHY_M_IS_AN_COMPL) { 2343 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP) 2344 & PHY_M_AN_RF) { 2345 reason = "remote fault"; 2346 goto failed; 2347 } 2348 2349 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { 2350 reason = "master/slave fault"; 2351 goto failed; 2352 } 2353 2354 if (!(phystat & PHY_M_PS_SPDUP_RES)) { 2355 reason = "speed/duplex"; 2356 goto failed; 2357 } 2358 2359 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) 2360 ? DUPLEX_FULL : DUPLEX_HALF; 2361 skge->speed = yukon_speed(hw, phystat); 2362 2363 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 2364 switch (phystat & PHY_M_PS_PAUSE_MSK) { 2365 case PHY_M_PS_PAUSE_MSK: 2366 skge->flow_status = FLOW_STAT_SYMMETRIC; 2367 break; 2368 case PHY_M_PS_RX_P_EN: 2369 skge->flow_status = FLOW_STAT_REM_SEND; 2370 break; 2371 case PHY_M_PS_TX_P_EN: 2372 skge->flow_status = FLOW_STAT_LOC_SEND; 2373 break; 2374 default: 2375 skge->flow_status = FLOW_STAT_NONE; 2376 } 2377 2378 if (skge->flow_status == FLOW_STAT_NONE || 2379 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) 2380 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2381 else 2382 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); 2383 yukon_link_up(skge); 2384 return; 2385 } 2386 2387 if (istatus & PHY_M_IS_LSP_CHANGE) 2388 skge->speed = yukon_speed(hw, phystat); 2389 2390 if (istatus & PHY_M_IS_DUP_CHANGE) 2391 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; 2392 if (istatus & PHY_M_IS_LST_CHANGE) { 2393 if (phystat & PHY_M_PS_LINK_UP) 2394 yukon_link_up(skge); 2395 else 2396 yukon_link_down(skge); 2397 } 2398 return; 2399 failed: 2400 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason); 2401 2402 /* XXX restart autonegotiation? */ 2403 } 2404 2405 static void skge_phy_reset(struct skge_port *skge) 2406 { 2407 struct skge_hw *hw = skge->hw; 2408 int port = skge->port; 2409 struct net_device *dev = hw->dev[port]; 2410 2411 netif_stop_queue(skge->netdev); 2412 netif_carrier_off(skge->netdev); 2413 2414 spin_lock_bh(&hw->phy_lock); 2415 if (is_genesis(hw)) { 2416 genesis_reset(hw, port); 2417 genesis_mac_init(hw, port); 2418 } else { 2419 yukon_reset(hw, port); 2420 yukon_init(hw, port); 2421 } 2422 spin_unlock_bh(&hw->phy_lock); 2423 2424 skge_set_multicast(dev); 2425 } 2426 2427 /* Basic MII support */ 2428 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2429 { 2430 struct mii_ioctl_data *data = if_mii(ifr); 2431 struct skge_port *skge = netdev_priv(dev); 2432 struct skge_hw *hw = skge->hw; 2433 int err = -EOPNOTSUPP; 2434 2435 if (!netif_running(dev)) 2436 return -ENODEV; /* Phy still in reset */ 2437 2438 switch (cmd) { 2439 case SIOCGMIIPHY: 2440 data->phy_id = hw->phy_addr; 2441 2442 /* fallthru */ 2443 case SIOCGMIIREG: { 2444 u16 val = 0; 2445 spin_lock_bh(&hw->phy_lock); 2446 2447 if (is_genesis(hw)) 2448 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2449 else 2450 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2451 spin_unlock_bh(&hw->phy_lock); 2452 data->val_out = val; 2453 break; 2454 } 2455 2456 case SIOCSMIIREG: 2457 spin_lock_bh(&hw->phy_lock); 2458 if (is_genesis(hw)) 2459 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2460 data->val_in); 2461 else 2462 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2463 data->val_in); 2464 spin_unlock_bh(&hw->phy_lock); 2465 break; 2466 } 2467 return err; 2468 } 2469 2470 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len) 2471 { 2472 u32 end; 2473 2474 start /= 8; 2475 len /= 8; 2476 end = start + len - 1; 2477 2478 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); 2479 skge_write32(hw, RB_ADDR(q, RB_START), start); 2480 skge_write32(hw, RB_ADDR(q, RB_WP), start); 2481 skge_write32(hw, RB_ADDR(q, RB_RP), start); 2482 skge_write32(hw, RB_ADDR(q, RB_END), end); 2483 2484 if (q == Q_R1 || q == Q_R2) { 2485 /* Set thresholds on receive queue's */ 2486 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), 2487 start + (2*len)/3); 2488 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), 2489 start + (len/3)); 2490 } else { 2491 /* Enable store & forward on Tx queue's because 2492 * Tx FIFO is only 4K on Genesis and 1K on Yukon 2493 */ 2494 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); 2495 } 2496 2497 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); 2498 } 2499 2500 /* Setup Bus Memory Interface */ 2501 static void skge_qset(struct skge_port *skge, u16 q, 2502 const struct skge_element *e) 2503 { 2504 struct skge_hw *hw = skge->hw; 2505 u32 watermark = 0x600; 2506 u64 base = skge->dma + (e->desc - skge->mem); 2507 2508 /* optimization to reduce window on 32bit/33mhz */ 2509 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0) 2510 watermark /= 2; 2511 2512 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET); 2513 skge_write32(hw, Q_ADDR(q, Q_F), watermark); 2514 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32)); 2515 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base); 2516 } 2517 2518 static int skge_up(struct net_device *dev) 2519 { 2520 struct skge_port *skge = netdev_priv(dev); 2521 struct skge_hw *hw = skge->hw; 2522 int port = skge->port; 2523 u32 chunk, ram_addr; 2524 size_t rx_size, tx_size; 2525 int err; 2526 2527 if (!is_valid_ether_addr(dev->dev_addr)) 2528 return -EINVAL; 2529 2530 netif_info(skge, ifup, skge->netdev, "enabling interface\n"); 2531 2532 if (dev->mtu > RX_BUF_SIZE) 2533 skge->rx_buf_size = dev->mtu + ETH_HLEN; 2534 else 2535 skge->rx_buf_size = RX_BUF_SIZE; 2536 2537 2538 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); 2539 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); 2540 skge->mem_size = tx_size + rx_size; 2541 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma); 2542 if (!skge->mem) 2543 return -ENOMEM; 2544 2545 BUG_ON(skge->dma & 7); 2546 2547 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) { 2548 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n"); 2549 err = -EINVAL; 2550 goto free_pci_mem; 2551 } 2552 2553 memset(skge->mem, 0, skge->mem_size); 2554 2555 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma); 2556 if (err) 2557 goto free_pci_mem; 2558 2559 err = skge_rx_fill(dev); 2560 if (err) 2561 goto free_rx_ring; 2562 2563 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, 2564 skge->dma + rx_size); 2565 if (err) 2566 goto free_rx_ring; 2567 2568 if (hw->ports == 1) { 2569 err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED, 2570 dev->name, hw); 2571 if (err) { 2572 netdev_err(dev, "Unable to allocate interrupt %d error: %d\n", 2573 hw->pdev->irq, err); 2574 goto free_tx_ring; 2575 } 2576 } 2577 2578 /* Initialize MAC */ 2579 netif_carrier_off(dev); 2580 spin_lock_bh(&hw->phy_lock); 2581 if (is_genesis(hw)) 2582 genesis_mac_init(hw, port); 2583 else 2584 yukon_mac_init(hw, port); 2585 spin_unlock_bh(&hw->phy_lock); 2586 2587 /* Configure RAMbuffers - equally between ports and tx/rx */ 2588 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2); 2589 ram_addr = hw->ram_offset + 2 * chunk * port; 2590 2591 skge_ramset(hw, rxqaddr[port], ram_addr, chunk); 2592 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean); 2593 2594 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean); 2595 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk); 2596 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use); 2597 2598 /* Start receiver BMU */ 2599 wmb(); 2600 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F); 2601 skge_led(skge, LED_MODE_ON); 2602 2603 spin_lock_irq(&hw->hw_lock); 2604 hw->intr_mask |= portmask[port]; 2605 skge_write32(hw, B0_IMSK, hw->intr_mask); 2606 skge_read32(hw, B0_IMSK); 2607 spin_unlock_irq(&hw->hw_lock); 2608 2609 napi_enable(&skge->napi); 2610 2611 skge_set_multicast(dev); 2612 2613 return 0; 2614 2615 free_tx_ring: 2616 kfree(skge->tx_ring.start); 2617 free_rx_ring: 2618 skge_rx_clean(skge); 2619 kfree(skge->rx_ring.start); 2620 free_pci_mem: 2621 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); 2622 skge->mem = NULL; 2623 2624 return err; 2625 } 2626 2627 /* stop receiver */ 2628 static void skge_rx_stop(struct skge_hw *hw, int port) 2629 { 2630 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP); 2631 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL), 2632 RB_RST_SET|RB_DIS_OP_MD); 2633 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); 2634 } 2635 2636 static int skge_down(struct net_device *dev) 2637 { 2638 struct skge_port *skge = netdev_priv(dev); 2639 struct skge_hw *hw = skge->hw; 2640 int port = skge->port; 2641 2642 if (skge->mem == NULL) 2643 return 0; 2644 2645 netif_info(skge, ifdown, skge->netdev, "disabling interface\n"); 2646 2647 netif_tx_disable(dev); 2648 2649 if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC) 2650 del_timer_sync(&skge->link_timer); 2651 2652 napi_disable(&skge->napi); 2653 netif_carrier_off(dev); 2654 2655 spin_lock_irq(&hw->hw_lock); 2656 hw->intr_mask &= ~portmask[port]; 2657 skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask); 2658 skge_read32(hw, B0_IMSK); 2659 spin_unlock_irq(&hw->hw_lock); 2660 2661 if (hw->ports == 1) 2662 free_irq(hw->pdev->irq, hw); 2663 2664 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); 2665 if (is_genesis(hw)) 2666 genesis_stop(skge); 2667 else 2668 yukon_stop(skge); 2669 2670 /* Stop transmitter */ 2671 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); 2672 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), 2673 RB_RST_SET|RB_DIS_OP_MD); 2674 2675 2676 /* Disable Force Sync bit and Enable Alloc bit */ 2677 skge_write8(hw, SK_REG(port, TXA_CTRL), 2678 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); 2679 2680 /* Stop Interval Timer and Limit Counter of Tx Arbiter */ 2681 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); 2682 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); 2683 2684 /* Reset PCI FIFO */ 2685 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); 2686 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); 2687 2688 /* Reset the RAM Buffer async Tx queue */ 2689 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET); 2690 2691 skge_rx_stop(hw, port); 2692 2693 if (is_genesis(hw)) { 2694 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET); 2695 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET); 2696 } else { 2697 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 2698 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); 2699 } 2700 2701 skge_led(skge, LED_MODE_OFF); 2702 2703 netif_tx_lock_bh(dev); 2704 skge_tx_clean(dev); 2705 netif_tx_unlock_bh(dev); 2706 2707 skge_rx_clean(skge); 2708 2709 kfree(skge->rx_ring.start); 2710 kfree(skge->tx_ring.start); 2711 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); 2712 skge->mem = NULL; 2713 return 0; 2714 } 2715 2716 static inline int skge_avail(const struct skge_ring *ring) 2717 { 2718 smp_mb(); 2719 return ((ring->to_clean > ring->to_use) ? 0 : ring->count) 2720 + (ring->to_clean - ring->to_use) - 1; 2721 } 2722 2723 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb, 2724 struct net_device *dev) 2725 { 2726 struct skge_port *skge = netdev_priv(dev); 2727 struct skge_hw *hw = skge->hw; 2728 struct skge_element *e; 2729 struct skge_tx_desc *td; 2730 int i; 2731 u32 control, len; 2732 u64 map; 2733 2734 if (skb_padto(skb, ETH_ZLEN)) 2735 return NETDEV_TX_OK; 2736 2737 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) 2738 return NETDEV_TX_BUSY; 2739 2740 e = skge->tx_ring.to_use; 2741 td = e->desc; 2742 BUG_ON(td->control & BMU_OWN); 2743 e->skb = skb; 2744 len = skb_headlen(skb); 2745 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); 2746 dma_unmap_addr_set(e, mapaddr, map); 2747 dma_unmap_len_set(e, maplen, len); 2748 2749 td->dma_lo = map; 2750 td->dma_hi = map >> 32; 2751 2752 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2753 const int offset = skb_checksum_start_offset(skb); 2754 2755 /* This seems backwards, but it is what the sk98lin 2756 * does. Looks like hardware is wrong? 2757 */ 2758 if (ipip_hdr(skb)->protocol == IPPROTO_UDP && 2759 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON) 2760 control = BMU_TCP_CHECK; 2761 else 2762 control = BMU_UDP_CHECK; 2763 2764 td->csum_offs = 0; 2765 td->csum_start = offset; 2766 td->csum_write = offset + skb->csum_offset; 2767 } else 2768 control = BMU_CHECK; 2769 2770 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */ 2771 control |= BMU_EOF | BMU_IRQ_EOF; 2772 else { 2773 struct skge_tx_desc *tf = td; 2774 2775 control |= BMU_STFWD; 2776 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2777 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2778 2779 map = skb_frag_dma_map(&hw->pdev->dev, frag, 0, 2780 skb_frag_size(frag), DMA_TO_DEVICE); 2781 2782 e = e->next; 2783 e->skb = skb; 2784 tf = e->desc; 2785 BUG_ON(tf->control & BMU_OWN); 2786 2787 tf->dma_lo = map; 2788 tf->dma_hi = (u64) map >> 32; 2789 dma_unmap_addr_set(e, mapaddr, map); 2790 dma_unmap_len_set(e, maplen, skb_frag_size(frag)); 2791 2792 tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag); 2793 } 2794 tf->control |= BMU_EOF | BMU_IRQ_EOF; 2795 } 2796 /* Make sure all the descriptors written */ 2797 wmb(); 2798 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len; 2799 wmb(); 2800 2801 netdev_sent_queue(dev, skb->len); 2802 2803 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START); 2804 2805 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev, 2806 "tx queued, slot %td, len %d\n", 2807 e - skge->tx_ring.start, skb->len); 2808 2809 skge->tx_ring.to_use = e->next; 2810 smp_wmb(); 2811 2812 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) { 2813 netdev_dbg(dev, "transmit queue full\n"); 2814 netif_stop_queue(dev); 2815 } 2816 2817 return NETDEV_TX_OK; 2818 } 2819 2820 2821 /* Free resources associated with this reing element */ 2822 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e, 2823 u32 control) 2824 { 2825 /* skb header vs. fragment */ 2826 if (control & BMU_STF) 2827 pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr), 2828 dma_unmap_len(e, maplen), 2829 PCI_DMA_TODEVICE); 2830 else 2831 pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr), 2832 dma_unmap_len(e, maplen), 2833 PCI_DMA_TODEVICE); 2834 } 2835 2836 /* Free all buffers in transmit ring */ 2837 static void skge_tx_clean(struct net_device *dev) 2838 { 2839 struct skge_port *skge = netdev_priv(dev); 2840 struct skge_element *e; 2841 2842 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { 2843 struct skge_tx_desc *td = e->desc; 2844 2845 skge_tx_unmap(skge->hw->pdev, e, td->control); 2846 2847 if (td->control & BMU_EOF) 2848 dev_kfree_skb(e->skb); 2849 td->control = 0; 2850 } 2851 2852 netdev_reset_queue(dev); 2853 skge->tx_ring.to_clean = e; 2854 } 2855 2856 static void skge_tx_timeout(struct net_device *dev) 2857 { 2858 struct skge_port *skge = netdev_priv(dev); 2859 2860 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n"); 2861 2862 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP); 2863 skge_tx_clean(dev); 2864 netif_wake_queue(dev); 2865 } 2866 2867 static int skge_change_mtu(struct net_device *dev, int new_mtu) 2868 { 2869 int err; 2870 2871 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) 2872 return -EINVAL; 2873 2874 if (!netif_running(dev)) { 2875 dev->mtu = new_mtu; 2876 return 0; 2877 } 2878 2879 skge_down(dev); 2880 2881 dev->mtu = new_mtu; 2882 2883 err = skge_up(dev); 2884 if (err) 2885 dev_close(dev); 2886 2887 return err; 2888 } 2889 2890 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 }; 2891 2892 static void genesis_add_filter(u8 filter[8], const u8 *addr) 2893 { 2894 u32 crc, bit; 2895 2896 crc = ether_crc_le(ETH_ALEN, addr); 2897 bit = ~crc & 0x3f; 2898 filter[bit/8] |= 1 << (bit%8); 2899 } 2900 2901 static void genesis_set_multicast(struct net_device *dev) 2902 { 2903 struct skge_port *skge = netdev_priv(dev); 2904 struct skge_hw *hw = skge->hw; 2905 int port = skge->port; 2906 struct netdev_hw_addr *ha; 2907 u32 mode; 2908 u8 filter[8]; 2909 2910 mode = xm_read32(hw, port, XM_MODE); 2911 mode |= XM_MD_ENA_HASH; 2912 if (dev->flags & IFF_PROMISC) 2913 mode |= XM_MD_ENA_PROM; 2914 else 2915 mode &= ~XM_MD_ENA_PROM; 2916 2917 if (dev->flags & IFF_ALLMULTI) 2918 memset(filter, 0xff, sizeof(filter)); 2919 else { 2920 memset(filter, 0, sizeof(filter)); 2921 2922 if (skge->flow_status == FLOW_STAT_REM_SEND || 2923 skge->flow_status == FLOW_STAT_SYMMETRIC) 2924 genesis_add_filter(filter, pause_mc_addr); 2925 2926 netdev_for_each_mc_addr(ha, dev) 2927 genesis_add_filter(filter, ha->addr); 2928 } 2929 2930 xm_write32(hw, port, XM_MODE, mode); 2931 xm_outhash(hw, port, XM_HSM, filter); 2932 } 2933 2934 static void yukon_add_filter(u8 filter[8], const u8 *addr) 2935 { 2936 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f; 2937 filter[bit/8] |= 1 << (bit%8); 2938 } 2939 2940 static void yukon_set_multicast(struct net_device *dev) 2941 { 2942 struct skge_port *skge = netdev_priv(dev); 2943 struct skge_hw *hw = skge->hw; 2944 int port = skge->port; 2945 struct netdev_hw_addr *ha; 2946 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND || 2947 skge->flow_status == FLOW_STAT_SYMMETRIC); 2948 u16 reg; 2949 u8 filter[8]; 2950 2951 memset(filter, 0, sizeof(filter)); 2952 2953 reg = gma_read16(hw, port, GM_RX_CTRL); 2954 reg |= GM_RXCR_UCF_ENA; 2955 2956 if (dev->flags & IFF_PROMISC) /* promiscuous */ 2957 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2958 else if (dev->flags & IFF_ALLMULTI) /* all multicast */ 2959 memset(filter, 0xff, sizeof(filter)); 2960 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */ 2961 reg &= ~GM_RXCR_MCF_ENA; 2962 else { 2963 reg |= GM_RXCR_MCF_ENA; 2964 2965 if (rx_pause) 2966 yukon_add_filter(filter, pause_mc_addr); 2967 2968 netdev_for_each_mc_addr(ha, dev) 2969 yukon_add_filter(filter, ha->addr); 2970 } 2971 2972 2973 gma_write16(hw, port, GM_MC_ADDR_H1, 2974 (u16)filter[0] | ((u16)filter[1] << 8)); 2975 gma_write16(hw, port, GM_MC_ADDR_H2, 2976 (u16)filter[2] | ((u16)filter[3] << 8)); 2977 gma_write16(hw, port, GM_MC_ADDR_H3, 2978 (u16)filter[4] | ((u16)filter[5] << 8)); 2979 gma_write16(hw, port, GM_MC_ADDR_H4, 2980 (u16)filter[6] | ((u16)filter[7] << 8)); 2981 2982 gma_write16(hw, port, GM_RX_CTRL, reg); 2983 } 2984 2985 static inline u16 phy_length(const struct skge_hw *hw, u32 status) 2986 { 2987 if (is_genesis(hw)) 2988 return status >> XMR_FS_LEN_SHIFT; 2989 else 2990 return status >> GMR_FS_LEN_SHIFT; 2991 } 2992 2993 static inline int bad_phy_status(const struct skge_hw *hw, u32 status) 2994 { 2995 if (is_genesis(hw)) 2996 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0; 2997 else 2998 return (status & GMR_FS_ANY_ERR) || 2999 (status & GMR_FS_RX_OK) == 0; 3000 } 3001 3002 static void skge_set_multicast(struct net_device *dev) 3003 { 3004 struct skge_port *skge = netdev_priv(dev); 3005 3006 if (is_genesis(skge->hw)) 3007 genesis_set_multicast(dev); 3008 else 3009 yukon_set_multicast(dev); 3010 3011 } 3012 3013 3014 /* Get receive buffer from descriptor. 3015 * Handles copy of small buffers and reallocation failures 3016 */ 3017 static struct sk_buff *skge_rx_get(struct net_device *dev, 3018 struct skge_element *e, 3019 u32 control, u32 status, u16 csum) 3020 { 3021 struct skge_port *skge = netdev_priv(dev); 3022 struct sk_buff *skb; 3023 u16 len = control & BMU_BBC; 3024 3025 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev, 3026 "rx slot %td status 0x%x len %d\n", 3027 e - skge->rx_ring.start, status, len); 3028 3029 if (len > skge->rx_buf_size) 3030 goto error; 3031 3032 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)) 3033 goto error; 3034 3035 if (bad_phy_status(skge->hw, status)) 3036 goto error; 3037 3038 if (phy_length(skge->hw, status) != len) 3039 goto error; 3040 3041 if (len < RX_COPY_THRESHOLD) { 3042 skb = netdev_alloc_skb_ip_align(dev, len); 3043 if (!skb) 3044 goto resubmit; 3045 3046 pci_dma_sync_single_for_cpu(skge->hw->pdev, 3047 dma_unmap_addr(e, mapaddr), 3048 len, PCI_DMA_FROMDEVICE); 3049 skb_copy_from_linear_data(e->skb, skb->data, len); 3050 pci_dma_sync_single_for_device(skge->hw->pdev, 3051 dma_unmap_addr(e, mapaddr), 3052 len, PCI_DMA_FROMDEVICE); 3053 skge_rx_reuse(e, skge->rx_buf_size); 3054 } else { 3055 struct sk_buff *nskb; 3056 3057 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size); 3058 if (!nskb) 3059 goto resubmit; 3060 3061 pci_unmap_single(skge->hw->pdev, 3062 dma_unmap_addr(e, mapaddr), 3063 dma_unmap_len(e, maplen), 3064 PCI_DMA_FROMDEVICE); 3065 skb = e->skb; 3066 prefetch(skb->data); 3067 skge_rx_setup(skge, e, nskb, skge->rx_buf_size); 3068 } 3069 3070 skb_put(skb, len); 3071 3072 if (dev->features & NETIF_F_RXCSUM) { 3073 skb->csum = csum; 3074 skb->ip_summed = CHECKSUM_COMPLETE; 3075 } 3076 3077 skb->protocol = eth_type_trans(skb, dev); 3078 3079 return skb; 3080 error: 3081 3082 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev, 3083 "rx err, slot %td control 0x%x status 0x%x\n", 3084 e - skge->rx_ring.start, control, status); 3085 3086 if (is_genesis(skge->hw)) { 3087 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) 3088 dev->stats.rx_length_errors++; 3089 if (status & XMR_FS_FRA_ERR) 3090 dev->stats.rx_frame_errors++; 3091 if (status & XMR_FS_FCS_ERR) 3092 dev->stats.rx_crc_errors++; 3093 } else { 3094 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) 3095 dev->stats.rx_length_errors++; 3096 if (status & GMR_FS_FRAGMENT) 3097 dev->stats.rx_frame_errors++; 3098 if (status & GMR_FS_CRC_ERR) 3099 dev->stats.rx_crc_errors++; 3100 } 3101 3102 resubmit: 3103 skge_rx_reuse(e, skge->rx_buf_size); 3104 return NULL; 3105 } 3106 3107 /* Free all buffers in Tx ring which are no longer owned by device */ 3108 static void skge_tx_done(struct net_device *dev) 3109 { 3110 struct skge_port *skge = netdev_priv(dev); 3111 struct skge_ring *ring = &skge->tx_ring; 3112 struct skge_element *e; 3113 unsigned int bytes_compl = 0, pkts_compl = 0; 3114 3115 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 3116 3117 for (e = ring->to_clean; e != ring->to_use; e = e->next) { 3118 u32 control = ((const struct skge_tx_desc *) e->desc)->control; 3119 3120 if (control & BMU_OWN) 3121 break; 3122 3123 skge_tx_unmap(skge->hw->pdev, e, control); 3124 3125 if (control & BMU_EOF) { 3126 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev, 3127 "tx done slot %td\n", 3128 e - skge->tx_ring.start); 3129 3130 pkts_compl++; 3131 bytes_compl += e->skb->len; 3132 3133 dev_kfree_skb(e->skb); 3134 } 3135 } 3136 netdev_completed_queue(dev, pkts_compl, bytes_compl); 3137 skge->tx_ring.to_clean = e; 3138 3139 /* Can run lockless until we need to synchronize to restart queue. */ 3140 smp_mb(); 3141 3142 if (unlikely(netif_queue_stopped(dev) && 3143 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { 3144 netif_tx_lock(dev); 3145 if (unlikely(netif_queue_stopped(dev) && 3146 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { 3147 netif_wake_queue(dev); 3148 3149 } 3150 netif_tx_unlock(dev); 3151 } 3152 } 3153 3154 static int skge_poll(struct napi_struct *napi, int to_do) 3155 { 3156 struct skge_port *skge = container_of(napi, struct skge_port, napi); 3157 struct net_device *dev = skge->netdev; 3158 struct skge_hw *hw = skge->hw; 3159 struct skge_ring *ring = &skge->rx_ring; 3160 struct skge_element *e; 3161 int work_done = 0; 3162 3163 skge_tx_done(dev); 3164 3165 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 3166 3167 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) { 3168 struct skge_rx_desc *rd = e->desc; 3169 struct sk_buff *skb; 3170 u32 control; 3171 3172 rmb(); 3173 control = rd->control; 3174 if (control & BMU_OWN) 3175 break; 3176 3177 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2); 3178 if (likely(skb)) { 3179 napi_gro_receive(napi, skb); 3180 ++work_done; 3181 } 3182 } 3183 ring->to_clean = e; 3184 3185 /* restart receiver */ 3186 wmb(); 3187 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START); 3188 3189 if (work_done < to_do) { 3190 unsigned long flags; 3191 3192 napi_gro_flush(napi); 3193 spin_lock_irqsave(&hw->hw_lock, flags); 3194 __napi_complete(napi); 3195 hw->intr_mask |= napimask[skge->port]; 3196 skge_write32(hw, B0_IMSK, hw->intr_mask); 3197 skge_read32(hw, B0_IMSK); 3198 spin_unlock_irqrestore(&hw->hw_lock, flags); 3199 } 3200 3201 return work_done; 3202 } 3203 3204 /* Parity errors seem to happen when Genesis is connected to a switch 3205 * with no other ports present. Heartbeat error?? 3206 */ 3207 static void skge_mac_parity(struct skge_hw *hw, int port) 3208 { 3209 struct net_device *dev = hw->dev[port]; 3210 3211 ++dev->stats.tx_heartbeat_errors; 3212 3213 if (is_genesis(hw)) 3214 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 3215 MFF_CLR_PERR); 3216 else 3217 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ 3218 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), 3219 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 3220 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE); 3221 } 3222 3223 static void skge_mac_intr(struct skge_hw *hw, int port) 3224 { 3225 if (is_genesis(hw)) 3226 genesis_mac_intr(hw, port); 3227 else 3228 yukon_mac_intr(hw, port); 3229 } 3230 3231 /* Handle device specific framing and timeout interrupts */ 3232 static void skge_error_irq(struct skge_hw *hw) 3233 { 3234 struct pci_dev *pdev = hw->pdev; 3235 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC); 3236 3237 if (is_genesis(hw)) { 3238 /* clear xmac errors */ 3239 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) 3240 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT); 3241 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) 3242 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT); 3243 } else { 3244 /* Timestamp (unused) overflow */ 3245 if (hwstatus & IS_IRQ_TIST_OV) 3246 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 3247 } 3248 3249 if (hwstatus & IS_RAM_RD_PAR) { 3250 dev_err(&pdev->dev, "Ram read data parity error\n"); 3251 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR); 3252 } 3253 3254 if (hwstatus & IS_RAM_WR_PAR) { 3255 dev_err(&pdev->dev, "Ram write data parity error\n"); 3256 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR); 3257 } 3258 3259 if (hwstatus & IS_M1_PAR_ERR) 3260 skge_mac_parity(hw, 0); 3261 3262 if (hwstatus & IS_M2_PAR_ERR) 3263 skge_mac_parity(hw, 1); 3264 3265 if (hwstatus & IS_R1_PAR_ERR) { 3266 dev_err(&pdev->dev, "%s: receive queue parity error\n", 3267 hw->dev[0]->name); 3268 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P); 3269 } 3270 3271 if (hwstatus & IS_R2_PAR_ERR) { 3272 dev_err(&pdev->dev, "%s: receive queue parity error\n", 3273 hw->dev[1]->name); 3274 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P); 3275 } 3276 3277 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) { 3278 u16 pci_status, pci_cmd; 3279 3280 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 3281 pci_read_config_word(pdev, PCI_STATUS, &pci_status); 3282 3283 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n", 3284 pci_cmd, pci_status); 3285 3286 /* Write the error bits back to clear them. */ 3287 pci_status &= PCI_STATUS_ERROR_BITS; 3288 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3289 pci_write_config_word(pdev, PCI_COMMAND, 3290 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY); 3291 pci_write_config_word(pdev, PCI_STATUS, pci_status); 3292 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3293 3294 /* if error still set then just ignore it */ 3295 hwstatus = skge_read32(hw, B0_HWE_ISRC); 3296 if (hwstatus & IS_IRQ_STAT) { 3297 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n"); 3298 hw->intr_mask &= ~IS_HW_ERR; 3299 } 3300 } 3301 } 3302 3303 /* 3304 * Interrupt from PHY are handled in tasklet (softirq) 3305 * because accessing phy registers requires spin wait which might 3306 * cause excess interrupt latency. 3307 */ 3308 static void skge_extirq(unsigned long arg) 3309 { 3310 struct skge_hw *hw = (struct skge_hw *) arg; 3311 int port; 3312 3313 for (port = 0; port < hw->ports; port++) { 3314 struct net_device *dev = hw->dev[port]; 3315 3316 if (netif_running(dev)) { 3317 struct skge_port *skge = netdev_priv(dev); 3318 3319 spin_lock(&hw->phy_lock); 3320 if (!is_genesis(hw)) 3321 yukon_phy_intr(skge); 3322 else if (hw->phy_type == SK_PHY_BCOM) 3323 bcom_phy_intr(skge); 3324 spin_unlock(&hw->phy_lock); 3325 } 3326 } 3327 3328 spin_lock_irq(&hw->hw_lock); 3329 hw->intr_mask |= IS_EXT_REG; 3330 skge_write32(hw, B0_IMSK, hw->intr_mask); 3331 skge_read32(hw, B0_IMSK); 3332 spin_unlock_irq(&hw->hw_lock); 3333 } 3334 3335 static irqreturn_t skge_intr(int irq, void *dev_id) 3336 { 3337 struct skge_hw *hw = dev_id; 3338 u32 status; 3339 int handled = 0; 3340 3341 spin_lock(&hw->hw_lock); 3342 /* Reading this register masks IRQ */ 3343 status = skge_read32(hw, B0_SP_ISRC); 3344 if (status == 0 || status == ~0) 3345 goto out; 3346 3347 handled = 1; 3348 status &= hw->intr_mask; 3349 if (status & IS_EXT_REG) { 3350 hw->intr_mask &= ~IS_EXT_REG; 3351 tasklet_schedule(&hw->phy_task); 3352 } 3353 3354 if (status & (IS_XA1_F|IS_R1_F)) { 3355 struct skge_port *skge = netdev_priv(hw->dev[0]); 3356 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F); 3357 napi_schedule(&skge->napi); 3358 } 3359 3360 if (status & IS_PA_TO_TX1) 3361 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1); 3362 3363 if (status & IS_PA_TO_RX1) { 3364 ++hw->dev[0]->stats.rx_over_errors; 3365 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1); 3366 } 3367 3368 3369 if (status & IS_MAC1) 3370 skge_mac_intr(hw, 0); 3371 3372 if (hw->dev[1]) { 3373 struct skge_port *skge = netdev_priv(hw->dev[1]); 3374 3375 if (status & (IS_XA2_F|IS_R2_F)) { 3376 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F); 3377 napi_schedule(&skge->napi); 3378 } 3379 3380 if (status & IS_PA_TO_RX2) { 3381 ++hw->dev[1]->stats.rx_over_errors; 3382 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2); 3383 } 3384 3385 if (status & IS_PA_TO_TX2) 3386 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2); 3387 3388 if (status & IS_MAC2) 3389 skge_mac_intr(hw, 1); 3390 } 3391 3392 if (status & IS_HW_ERR) 3393 skge_error_irq(hw); 3394 3395 skge_write32(hw, B0_IMSK, hw->intr_mask); 3396 skge_read32(hw, B0_IMSK); 3397 out: 3398 spin_unlock(&hw->hw_lock); 3399 3400 return IRQ_RETVAL(handled); 3401 } 3402 3403 #ifdef CONFIG_NET_POLL_CONTROLLER 3404 static void skge_netpoll(struct net_device *dev) 3405 { 3406 struct skge_port *skge = netdev_priv(dev); 3407 3408 disable_irq(dev->irq); 3409 skge_intr(dev->irq, skge->hw); 3410 enable_irq(dev->irq); 3411 } 3412 #endif 3413 3414 static int skge_set_mac_address(struct net_device *dev, void *p) 3415 { 3416 struct skge_port *skge = netdev_priv(dev); 3417 struct skge_hw *hw = skge->hw; 3418 unsigned port = skge->port; 3419 const struct sockaddr *addr = p; 3420 u16 ctrl; 3421 3422 if (!is_valid_ether_addr(addr->sa_data)) 3423 return -EADDRNOTAVAIL; 3424 3425 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 3426 3427 if (!netif_running(dev)) { 3428 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); 3429 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); 3430 } else { 3431 /* disable Rx */ 3432 spin_lock_bh(&hw->phy_lock); 3433 ctrl = gma_read16(hw, port, GM_GP_CTRL); 3434 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA); 3435 3436 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); 3437 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); 3438 3439 if (is_genesis(hw)) 3440 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 3441 else { 3442 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); 3443 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); 3444 } 3445 3446 gma_write16(hw, port, GM_GP_CTRL, ctrl); 3447 spin_unlock_bh(&hw->phy_lock); 3448 } 3449 3450 return 0; 3451 } 3452 3453 static const struct { 3454 u8 id; 3455 const char *name; 3456 } skge_chips[] = { 3457 { CHIP_ID_GENESIS, "Genesis" }, 3458 { CHIP_ID_YUKON, "Yukon" }, 3459 { CHIP_ID_YUKON_LITE, "Yukon-Lite"}, 3460 { CHIP_ID_YUKON_LP, "Yukon-LP"}, 3461 }; 3462 3463 static const char *skge_board_name(const struct skge_hw *hw) 3464 { 3465 int i; 3466 static char buf[16]; 3467 3468 for (i = 0; i < ARRAY_SIZE(skge_chips); i++) 3469 if (skge_chips[i].id == hw->chip_id) 3470 return skge_chips[i].name; 3471 3472 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id); 3473 return buf; 3474 } 3475 3476 3477 /* 3478 * Setup the board data structure, but don't bring up 3479 * the port(s) 3480 */ 3481 static int skge_reset(struct skge_hw *hw) 3482 { 3483 u32 reg; 3484 u16 ctst, pci_status; 3485 u8 t8, mac_cfg, pmd_type; 3486 int i; 3487 3488 ctst = skge_read16(hw, B0_CTST); 3489 3490 /* do a SW reset */ 3491 skge_write8(hw, B0_CTST, CS_RST_SET); 3492 skge_write8(hw, B0_CTST, CS_RST_CLR); 3493 3494 /* clear PCI errors, if any */ 3495 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3496 skge_write8(hw, B2_TST_CTRL2, 0); 3497 3498 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status); 3499 pci_write_config_word(hw->pdev, PCI_STATUS, 3500 pci_status | PCI_STATUS_ERROR_BITS); 3501 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3502 skge_write8(hw, B0_CTST, CS_MRST_CLR); 3503 3504 /* restore CLK_RUN bits (for Yukon-Lite) */ 3505 skge_write16(hw, B0_CTST, 3506 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA)); 3507 3508 hw->chip_id = skge_read8(hw, B2_CHIP_ID); 3509 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf; 3510 pmd_type = skge_read8(hw, B2_PMD_TYP); 3511 hw->copper = (pmd_type == 'T' || pmd_type == '1'); 3512 3513 switch (hw->chip_id) { 3514 case CHIP_ID_GENESIS: 3515 #ifdef CONFIG_SKGE_GENESIS 3516 switch (hw->phy_type) { 3517 case SK_PHY_XMAC: 3518 hw->phy_addr = PHY_ADDR_XMAC; 3519 break; 3520 case SK_PHY_BCOM: 3521 hw->phy_addr = PHY_ADDR_BCOM; 3522 break; 3523 default: 3524 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n", 3525 hw->phy_type); 3526 return -EOPNOTSUPP; 3527 } 3528 break; 3529 #else 3530 dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n"); 3531 return -EOPNOTSUPP; 3532 #endif 3533 3534 case CHIP_ID_YUKON: 3535 case CHIP_ID_YUKON_LITE: 3536 case CHIP_ID_YUKON_LP: 3537 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S') 3538 hw->copper = 1; 3539 3540 hw->phy_addr = PHY_ADDR_MARV; 3541 break; 3542 3543 default: 3544 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n", 3545 hw->chip_id); 3546 return -EOPNOTSUPP; 3547 } 3548 3549 mac_cfg = skge_read8(hw, B2_MAC_CFG); 3550 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2; 3551 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4; 3552 3553 /* read the adapters RAM size */ 3554 t8 = skge_read8(hw, B2_E_0); 3555 if (is_genesis(hw)) { 3556 if (t8 == 3) { 3557 /* special case: 4 x 64k x 36, offset = 0x80000 */ 3558 hw->ram_size = 0x100000; 3559 hw->ram_offset = 0x80000; 3560 } else 3561 hw->ram_size = t8 * 512; 3562 } else if (t8 == 0) 3563 hw->ram_size = 0x20000; 3564 else 3565 hw->ram_size = t8 * 4096; 3566 3567 hw->intr_mask = IS_HW_ERR; 3568 3569 /* Use PHY IRQ for all but fiber based Genesis board */ 3570 if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)) 3571 hw->intr_mask |= IS_EXT_REG; 3572 3573 if (is_genesis(hw)) 3574 genesis_init(hw); 3575 else { 3576 /* switch power to VCC (WA for VAUX problem) */ 3577 skge_write8(hw, B0_POWER_CTRL, 3578 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); 3579 3580 /* avoid boards with stuck Hardware error bits */ 3581 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) && 3582 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) { 3583 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n"); 3584 hw->intr_mask &= ~IS_HW_ERR; 3585 } 3586 3587 /* Clear PHY COMA */ 3588 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3589 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®); 3590 reg &= ~PCI_PHY_COMA; 3591 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg); 3592 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3593 3594 3595 for (i = 0; i < hw->ports; i++) { 3596 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); 3597 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); 3598 } 3599 } 3600 3601 /* turn off hardware timer (unused) */ 3602 skge_write8(hw, B2_TI_CTRL, TIM_STOP); 3603 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); 3604 skge_write8(hw, B0_LED, LED_STAT_ON); 3605 3606 /* enable the Tx Arbiters */ 3607 for (i = 0; i < hw->ports; i++) 3608 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); 3609 3610 /* Initialize ram interface */ 3611 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); 3612 3613 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53); 3614 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53); 3615 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53); 3616 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53); 3617 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53); 3618 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53); 3619 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53); 3620 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53); 3621 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53); 3622 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53); 3623 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53); 3624 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53); 3625 3626 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK); 3627 3628 /* Set interrupt moderation for Transmit only 3629 * Receive interrupts avoided by NAPI 3630 */ 3631 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F); 3632 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); 3633 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 3634 3635 /* Leave irq disabled until first port is brought up. */ 3636 skge_write32(hw, B0_IMSK, 0); 3637 3638 for (i = 0; i < hw->ports; i++) { 3639 if (is_genesis(hw)) 3640 genesis_reset(hw, i); 3641 else 3642 yukon_reset(hw, i); 3643 } 3644 3645 return 0; 3646 } 3647 3648 3649 #ifdef CONFIG_SKGE_DEBUG 3650 3651 static struct dentry *skge_debug; 3652 3653 static int skge_debug_show(struct seq_file *seq, void *v) 3654 { 3655 struct net_device *dev = seq->private; 3656 const struct skge_port *skge = netdev_priv(dev); 3657 const struct skge_hw *hw = skge->hw; 3658 const struct skge_element *e; 3659 3660 if (!netif_running(dev)) 3661 return -ENETDOWN; 3662 3663 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC), 3664 skge_read32(hw, B0_IMSK)); 3665 3666 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring)); 3667 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { 3668 const struct skge_tx_desc *t = e->desc; 3669 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n", 3670 t->control, t->dma_hi, t->dma_lo, t->status, 3671 t->csum_offs, t->csum_write, t->csum_start); 3672 } 3673 3674 seq_printf(seq, "\nRx Ring:\n"); 3675 for (e = skge->rx_ring.to_clean; ; e = e->next) { 3676 const struct skge_rx_desc *r = e->desc; 3677 3678 if (r->control & BMU_OWN) 3679 break; 3680 3681 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n", 3682 r->control, r->dma_hi, r->dma_lo, r->status, 3683 r->timestamp, r->csum1, r->csum1_start); 3684 } 3685 3686 return 0; 3687 } 3688 3689 static int skge_debug_open(struct inode *inode, struct file *file) 3690 { 3691 return single_open(file, skge_debug_show, inode->i_private); 3692 } 3693 3694 static const struct file_operations skge_debug_fops = { 3695 .owner = THIS_MODULE, 3696 .open = skge_debug_open, 3697 .read = seq_read, 3698 .llseek = seq_lseek, 3699 .release = single_release, 3700 }; 3701 3702 /* 3703 * Use network device events to create/remove/rename 3704 * debugfs file entries 3705 */ 3706 static int skge_device_event(struct notifier_block *unused, 3707 unsigned long event, void *ptr) 3708 { 3709 struct net_device *dev = ptr; 3710 struct skge_port *skge; 3711 struct dentry *d; 3712 3713 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug) 3714 goto done; 3715 3716 skge = netdev_priv(dev); 3717 switch (event) { 3718 case NETDEV_CHANGENAME: 3719 if (skge->debugfs) { 3720 d = debugfs_rename(skge_debug, skge->debugfs, 3721 skge_debug, dev->name); 3722 if (d) 3723 skge->debugfs = d; 3724 else { 3725 netdev_info(dev, "rename failed\n"); 3726 debugfs_remove(skge->debugfs); 3727 } 3728 } 3729 break; 3730 3731 case NETDEV_GOING_DOWN: 3732 if (skge->debugfs) { 3733 debugfs_remove(skge->debugfs); 3734 skge->debugfs = NULL; 3735 } 3736 break; 3737 3738 case NETDEV_UP: 3739 d = debugfs_create_file(dev->name, S_IRUGO, 3740 skge_debug, dev, 3741 &skge_debug_fops); 3742 if (!d || IS_ERR(d)) 3743 netdev_info(dev, "debugfs create failed\n"); 3744 else 3745 skge->debugfs = d; 3746 break; 3747 } 3748 3749 done: 3750 return NOTIFY_DONE; 3751 } 3752 3753 static struct notifier_block skge_notifier = { 3754 .notifier_call = skge_device_event, 3755 }; 3756 3757 3758 static __init void skge_debug_init(void) 3759 { 3760 struct dentry *ent; 3761 3762 ent = debugfs_create_dir("skge", NULL); 3763 if (!ent || IS_ERR(ent)) { 3764 pr_info("debugfs create directory failed\n"); 3765 return; 3766 } 3767 3768 skge_debug = ent; 3769 register_netdevice_notifier(&skge_notifier); 3770 } 3771 3772 static __exit void skge_debug_cleanup(void) 3773 { 3774 if (skge_debug) { 3775 unregister_netdevice_notifier(&skge_notifier); 3776 debugfs_remove(skge_debug); 3777 skge_debug = NULL; 3778 } 3779 } 3780 3781 #else 3782 #define skge_debug_init() 3783 #define skge_debug_cleanup() 3784 #endif 3785 3786 static const struct net_device_ops skge_netdev_ops = { 3787 .ndo_open = skge_up, 3788 .ndo_stop = skge_down, 3789 .ndo_start_xmit = skge_xmit_frame, 3790 .ndo_do_ioctl = skge_ioctl, 3791 .ndo_get_stats = skge_get_stats, 3792 .ndo_tx_timeout = skge_tx_timeout, 3793 .ndo_change_mtu = skge_change_mtu, 3794 .ndo_validate_addr = eth_validate_addr, 3795 .ndo_set_rx_mode = skge_set_multicast, 3796 .ndo_set_mac_address = skge_set_mac_address, 3797 #ifdef CONFIG_NET_POLL_CONTROLLER 3798 .ndo_poll_controller = skge_netpoll, 3799 #endif 3800 }; 3801 3802 3803 /* Initialize network device */ 3804 static struct net_device *skge_devinit(struct skge_hw *hw, int port, 3805 int highmem) 3806 { 3807 struct skge_port *skge; 3808 struct net_device *dev = alloc_etherdev(sizeof(*skge)); 3809 3810 if (!dev) 3811 return NULL; 3812 3813 SET_NETDEV_DEV(dev, &hw->pdev->dev); 3814 dev->netdev_ops = &skge_netdev_ops; 3815 dev->ethtool_ops = &skge_ethtool_ops; 3816 dev->watchdog_timeo = TX_WATCHDOG; 3817 dev->irq = hw->pdev->irq; 3818 3819 if (highmem) 3820 dev->features |= NETIF_F_HIGHDMA; 3821 3822 skge = netdev_priv(dev); 3823 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT); 3824 skge->netdev = dev; 3825 skge->hw = hw; 3826 skge->msg_enable = netif_msg_init(debug, default_msg); 3827 3828 skge->tx_ring.count = DEFAULT_TX_RING_SIZE; 3829 skge->rx_ring.count = DEFAULT_RX_RING_SIZE; 3830 3831 /* Auto speed and flow control */ 3832 skge->autoneg = AUTONEG_ENABLE; 3833 skge->flow_control = FLOW_MODE_SYM_OR_REM; 3834 skge->duplex = -1; 3835 skge->speed = -1; 3836 skge->advertising = skge_supported_modes(hw); 3837 3838 if (device_can_wakeup(&hw->pdev->dev)) { 3839 skge->wol = wol_supported(hw) & WAKE_MAGIC; 3840 device_set_wakeup_enable(&hw->pdev->dev, skge->wol); 3841 } 3842 3843 hw->dev[port] = dev; 3844 3845 skge->port = port; 3846 3847 /* Only used for Genesis XMAC */ 3848 if (is_genesis(hw)) 3849 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge); 3850 else { 3851 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3852 NETIF_F_RXCSUM; 3853 dev->features |= dev->hw_features; 3854 } 3855 3856 /* read the mac address */ 3857 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN); 3858 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 3859 3860 return dev; 3861 } 3862 3863 static void __devinit skge_show_addr(struct net_device *dev) 3864 { 3865 const struct skge_port *skge = netdev_priv(dev); 3866 3867 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr); 3868 } 3869 3870 static int only_32bit_dma; 3871 3872 static int __devinit skge_probe(struct pci_dev *pdev, 3873 const struct pci_device_id *ent) 3874 { 3875 struct net_device *dev, *dev1; 3876 struct skge_hw *hw; 3877 int err, using_dac = 0; 3878 3879 err = pci_enable_device(pdev); 3880 if (err) { 3881 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3882 goto err_out; 3883 } 3884 3885 err = pci_request_regions(pdev, DRV_NAME); 3886 if (err) { 3887 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 3888 goto err_out_disable_pdev; 3889 } 3890 3891 pci_set_master(pdev); 3892 3893 if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 3894 using_dac = 1; 3895 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 3896 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { 3897 using_dac = 0; 3898 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 3899 } 3900 3901 if (err) { 3902 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3903 goto err_out_free_regions; 3904 } 3905 3906 #ifdef __BIG_ENDIAN 3907 /* byte swap descriptors in hardware */ 3908 { 3909 u32 reg; 3910 3911 pci_read_config_dword(pdev, PCI_DEV_REG2, ®); 3912 reg |= PCI_REV_DESC; 3913 pci_write_config_dword(pdev, PCI_DEV_REG2, reg); 3914 } 3915 #endif 3916 3917 err = -ENOMEM; 3918 /* space for skge@pci:0000:04:00.0 */ 3919 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:") 3920 + strlen(pci_name(pdev)) + 1, GFP_KERNEL); 3921 if (!hw) { 3922 dev_err(&pdev->dev, "cannot allocate hardware struct\n"); 3923 goto err_out_free_regions; 3924 } 3925 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev)); 3926 3927 hw->pdev = pdev; 3928 spin_lock_init(&hw->hw_lock); 3929 spin_lock_init(&hw->phy_lock); 3930 tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw); 3931 3932 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); 3933 if (!hw->regs) { 3934 dev_err(&pdev->dev, "cannot map device registers\n"); 3935 goto err_out_free_hw; 3936 } 3937 3938 err = skge_reset(hw); 3939 if (err) 3940 goto err_out_iounmap; 3941 3942 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n", 3943 DRV_VERSION, 3944 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq, 3945 skge_board_name(hw), hw->chip_rev); 3946 3947 dev = skge_devinit(hw, 0, using_dac); 3948 if (!dev) 3949 goto err_out_led_off; 3950 3951 /* Some motherboards are broken and has zero in ROM. */ 3952 if (!is_valid_ether_addr(dev->dev_addr)) 3953 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n"); 3954 3955 err = register_netdev(dev); 3956 if (err) { 3957 dev_err(&pdev->dev, "cannot register net device\n"); 3958 goto err_out_free_netdev; 3959 } 3960 3961 skge_show_addr(dev); 3962 3963 if (hw->ports > 1) { 3964 dev1 = skge_devinit(hw, 1, using_dac); 3965 if (!dev1) { 3966 err = -ENOMEM; 3967 goto err_out_unregister; 3968 } 3969 3970 err = register_netdev(dev1); 3971 if (err) { 3972 dev_err(&pdev->dev, "cannot register second net device\n"); 3973 goto err_out_free_dev1; 3974 } 3975 3976 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, 3977 hw->irq_name, hw); 3978 if (err) { 3979 dev_err(&pdev->dev, "cannot assign irq %d\n", 3980 pdev->irq); 3981 goto err_out_unregister_dev1; 3982 } 3983 3984 skge_show_addr(dev1); 3985 } 3986 pci_set_drvdata(pdev, hw); 3987 3988 return 0; 3989 3990 err_out_unregister_dev1: 3991 unregister_netdev(dev1); 3992 err_out_free_dev1: 3993 free_netdev(dev1); 3994 err_out_unregister: 3995 unregister_netdev(dev); 3996 err_out_free_netdev: 3997 free_netdev(dev); 3998 err_out_led_off: 3999 skge_write16(hw, B0_LED, LED_STAT_OFF); 4000 err_out_iounmap: 4001 iounmap(hw->regs); 4002 err_out_free_hw: 4003 kfree(hw); 4004 err_out_free_regions: 4005 pci_release_regions(pdev); 4006 err_out_disable_pdev: 4007 pci_disable_device(pdev); 4008 pci_set_drvdata(pdev, NULL); 4009 err_out: 4010 return err; 4011 } 4012 4013 static void __devexit skge_remove(struct pci_dev *pdev) 4014 { 4015 struct skge_hw *hw = pci_get_drvdata(pdev); 4016 struct net_device *dev0, *dev1; 4017 4018 if (!hw) 4019 return; 4020 4021 dev1 = hw->dev[1]; 4022 if (dev1) 4023 unregister_netdev(dev1); 4024 dev0 = hw->dev[0]; 4025 unregister_netdev(dev0); 4026 4027 tasklet_disable(&hw->phy_task); 4028 4029 spin_lock_irq(&hw->hw_lock); 4030 hw->intr_mask = 0; 4031 4032 if (hw->ports > 1) { 4033 skge_write32(hw, B0_IMSK, 0); 4034 skge_read32(hw, B0_IMSK); 4035 free_irq(pdev->irq, hw); 4036 } 4037 spin_unlock_irq(&hw->hw_lock); 4038 4039 skge_write16(hw, B0_LED, LED_STAT_OFF); 4040 skge_write8(hw, B0_CTST, CS_RST_SET); 4041 4042 if (hw->ports > 1) 4043 free_irq(pdev->irq, hw); 4044 pci_release_regions(pdev); 4045 pci_disable_device(pdev); 4046 if (dev1) 4047 free_netdev(dev1); 4048 free_netdev(dev0); 4049 4050 iounmap(hw->regs); 4051 kfree(hw); 4052 pci_set_drvdata(pdev, NULL); 4053 } 4054 4055 #ifdef CONFIG_PM_SLEEP 4056 static int skge_suspend(struct device *dev) 4057 { 4058 struct pci_dev *pdev = to_pci_dev(dev); 4059 struct skge_hw *hw = pci_get_drvdata(pdev); 4060 int i; 4061 4062 if (!hw) 4063 return 0; 4064 4065 for (i = 0; i < hw->ports; i++) { 4066 struct net_device *dev = hw->dev[i]; 4067 struct skge_port *skge = netdev_priv(dev); 4068 4069 if (netif_running(dev)) 4070 skge_down(dev); 4071 4072 if (skge->wol) 4073 skge_wol_init(skge); 4074 } 4075 4076 skge_write32(hw, B0_IMSK, 0); 4077 4078 return 0; 4079 } 4080 4081 static int skge_resume(struct device *dev) 4082 { 4083 struct pci_dev *pdev = to_pci_dev(dev); 4084 struct skge_hw *hw = pci_get_drvdata(pdev); 4085 int i, err; 4086 4087 if (!hw) 4088 return 0; 4089 4090 err = skge_reset(hw); 4091 if (err) 4092 goto out; 4093 4094 for (i = 0; i < hw->ports; i++) { 4095 struct net_device *dev = hw->dev[i]; 4096 4097 if (netif_running(dev)) { 4098 err = skge_up(dev); 4099 4100 if (err) { 4101 netdev_err(dev, "could not up: %d\n", err); 4102 dev_close(dev); 4103 goto out; 4104 } 4105 } 4106 } 4107 out: 4108 return err; 4109 } 4110 4111 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume); 4112 #define SKGE_PM_OPS (&skge_pm_ops) 4113 4114 #else 4115 4116 #define SKGE_PM_OPS NULL 4117 #endif /* CONFIG_PM_SLEEP */ 4118 4119 static void skge_shutdown(struct pci_dev *pdev) 4120 { 4121 struct skge_hw *hw = pci_get_drvdata(pdev); 4122 int i; 4123 4124 if (!hw) 4125 return; 4126 4127 for (i = 0; i < hw->ports; i++) { 4128 struct net_device *dev = hw->dev[i]; 4129 struct skge_port *skge = netdev_priv(dev); 4130 4131 if (skge->wol) 4132 skge_wol_init(skge); 4133 } 4134 4135 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev)); 4136 pci_set_power_state(pdev, PCI_D3hot); 4137 } 4138 4139 static struct pci_driver skge_driver = { 4140 .name = DRV_NAME, 4141 .id_table = skge_id_table, 4142 .probe = skge_probe, 4143 .remove = __devexit_p(skge_remove), 4144 .shutdown = skge_shutdown, 4145 .driver.pm = SKGE_PM_OPS, 4146 }; 4147 4148 static struct dmi_system_id skge_32bit_dma_boards[] = { 4149 { 4150 .ident = "Gigabyte nForce boards", 4151 .matches = { 4152 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"), 4153 DMI_MATCH(DMI_BOARD_NAME, "nForce"), 4154 }, 4155 }, 4156 {} 4157 }; 4158 4159 static int __init skge_init_module(void) 4160 { 4161 if (dmi_check_system(skge_32bit_dma_boards)) 4162 only_32bit_dma = 1; 4163 skge_debug_init(); 4164 return pci_register_driver(&skge_driver); 4165 } 4166 4167 static void __exit skge_cleanup_module(void) 4168 { 4169 pci_unregister_driver(&skge_driver); 4170 skge_debug_cleanup(); 4171 } 4172 4173 module_init(skge_init_module); 4174 module_exit(skge_cleanup_module); 4175