1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4  * Ethernet adapters. Based on earlier sk98lin, e100 and
5  * FreeBSD if_sk drivers.
6  *
7  * This driver intentionally does not support all the features
8  * of the original driver such as link fail-over and link management because
9  * those should be done at higher levels.
10  *
11  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/in.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/pci.h>
24 #include <linux/if_vlan.h>
25 #include <linux/ip.h>
26 #include <linux/delay.h>
27 #include <linux/crc32.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/mii.h>
33 #include <linux/slab.h>
34 #include <linux/dmi.h>
35 #include <linux/prefetch.h>
36 #include <asm/irq.h>
37 
38 #include "skge.h"
39 
40 #define DRV_NAME		"skge"
41 #define DRV_VERSION		"1.14"
42 
43 #define DEFAULT_TX_RING_SIZE	128
44 #define DEFAULT_RX_RING_SIZE	512
45 #define MAX_TX_RING_SIZE	1024
46 #define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
47 #define MAX_RX_RING_SIZE	4096
48 #define RX_COPY_THRESHOLD	128
49 #define RX_BUF_SIZE		1536
50 #define PHY_RETRIES	        1000
51 #define ETH_JUMBO_MTU		9000
52 #define TX_WATCHDOG		(5 * HZ)
53 #define NAPI_WEIGHT		64
54 #define BLINK_MS		250
55 #define LINK_HZ			HZ
56 
57 #define SKGE_EEPROM_MAGIC	0x9933aabb
58 
59 
60 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
61 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
62 MODULE_LICENSE("GPL");
63 MODULE_VERSION(DRV_VERSION);
64 
65 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
66 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
67 				NETIF_MSG_IFDOWN);
68 
69 static int debug = -1;	/* defaults above */
70 module_param(debug, int, 0);
71 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
72 
73 static const struct pci_device_id skge_id_table[] = {
74 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
75 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
76 #ifdef CONFIG_SKGE_GENESIS
77 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
78 #endif
79 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
80 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
81 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
82 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
83 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
84 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
85 	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
86 	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
87 	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
88 	{ 0 }
89 };
90 MODULE_DEVICE_TABLE(pci, skge_id_table);
91 
92 static int skge_up(struct net_device *dev);
93 static int skge_down(struct net_device *dev);
94 static void skge_phy_reset(struct skge_port *skge);
95 static void skge_tx_clean(struct net_device *dev);
96 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
98 static void genesis_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_get_stats(struct skge_port *skge, u64 *data);
100 static void yukon_init(struct skge_hw *hw, int port);
101 static void genesis_mac_init(struct skge_hw *hw, int port);
102 static void genesis_link_up(struct skge_port *skge);
103 static void skge_set_multicast(struct net_device *dev);
104 static irqreturn_t skge_intr(int irq, void *dev_id);
105 
106 /* Avoid conditionals by using array */
107 static const int txqaddr[] = { Q_XA1, Q_XA2 };
108 static const int rxqaddr[] = { Q_R1, Q_R2 };
109 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
110 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
111 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
112 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
113 
114 static inline bool is_genesis(const struct skge_hw *hw)
115 {
116 #ifdef CONFIG_SKGE_GENESIS
117 	return hw->chip_id == CHIP_ID_GENESIS;
118 #else
119 	return false;
120 #endif
121 }
122 
123 static int skge_get_regs_len(struct net_device *dev)
124 {
125 	return 0x4000;
126 }
127 
128 /*
129  * Returns copy of whole control register region
130  * Note: skip RAM address register because accessing it will
131  * 	 cause bus hangs!
132  */
133 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
134 			  void *p)
135 {
136 	const struct skge_port *skge = netdev_priv(dev);
137 	const void __iomem *io = skge->hw->regs;
138 
139 	regs->version = 1;
140 	memset(p, 0, regs->len);
141 	memcpy_fromio(p, io, B3_RAM_ADDR);
142 
143 	if (regs->len > B3_RI_WTO_R1) {
144 		memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
145 			      regs->len - B3_RI_WTO_R1);
146 	}
147 }
148 
149 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
150 static u32 wol_supported(const struct skge_hw *hw)
151 {
152 	if (is_genesis(hw))
153 		return 0;
154 
155 	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
156 		return 0;
157 
158 	return WAKE_MAGIC | WAKE_PHY;
159 }
160 
161 static void skge_wol_init(struct skge_port *skge)
162 {
163 	struct skge_hw *hw = skge->hw;
164 	int port = skge->port;
165 	u16 ctrl;
166 
167 	skge_write16(hw, B0_CTST, CS_RST_CLR);
168 	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
169 
170 	/* Turn on Vaux */
171 	skge_write8(hw, B0_POWER_CTRL,
172 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
173 
174 	/* WA code for COMA mode -- clear PHY reset */
175 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
176 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
177 		u32 reg = skge_read32(hw, B2_GP_IO);
178 		reg |= GP_DIR_9;
179 		reg &= ~GP_IO_9;
180 		skge_write32(hw, B2_GP_IO, reg);
181 	}
182 
183 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
184 		     GPC_DIS_SLEEP |
185 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
186 		     GPC_ANEG_1 | GPC_RST_SET);
187 
188 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
189 		     GPC_DIS_SLEEP |
190 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
191 		     GPC_ANEG_1 | GPC_RST_CLR);
192 
193 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
194 
195 	/* Force to 10/100 skge_reset will re-enable on resume	 */
196 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
197 		     (PHY_AN_100FULL | PHY_AN_100HALF |
198 		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
199 	/* no 1000 HD/FD */
200 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
201 	gm_phy_write(hw, port, PHY_MARV_CTRL,
202 		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
203 		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
204 
205 
206 	/* Set GMAC to no flow control and auto update for speed/duplex */
207 	gma_write16(hw, port, GM_GP_CTRL,
208 		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
209 		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
210 
211 	/* Set WOL address */
212 	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
213 		    skge->netdev->dev_addr, ETH_ALEN);
214 
215 	/* Turn on appropriate WOL control bits */
216 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
217 	ctrl = 0;
218 	if (skge->wol & WAKE_PHY)
219 		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
220 	else
221 		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
222 
223 	if (skge->wol & WAKE_MAGIC)
224 		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
225 	else
226 		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
227 
228 	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
229 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
230 
231 	/* block receiver */
232 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
233 }
234 
235 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
236 {
237 	struct skge_port *skge = netdev_priv(dev);
238 
239 	wol->supported = wol_supported(skge->hw);
240 	wol->wolopts = skge->wol;
241 }
242 
243 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
244 {
245 	struct skge_port *skge = netdev_priv(dev);
246 	struct skge_hw *hw = skge->hw;
247 
248 	if ((wol->wolopts & ~wol_supported(hw)) ||
249 	    !device_can_wakeup(&hw->pdev->dev))
250 		return -EOPNOTSUPP;
251 
252 	skge->wol = wol->wolopts;
253 
254 	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
255 
256 	return 0;
257 }
258 
259 /* Determine supported/advertised modes based on hardware.
260  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
261  */
262 static u32 skge_supported_modes(const struct skge_hw *hw)
263 {
264 	u32 supported;
265 
266 	if (hw->copper) {
267 		supported = (SUPPORTED_10baseT_Half |
268 			     SUPPORTED_10baseT_Full |
269 			     SUPPORTED_100baseT_Half |
270 			     SUPPORTED_100baseT_Full |
271 			     SUPPORTED_1000baseT_Half |
272 			     SUPPORTED_1000baseT_Full |
273 			     SUPPORTED_Autoneg |
274 			     SUPPORTED_TP);
275 
276 		if (is_genesis(hw))
277 			supported &= ~(SUPPORTED_10baseT_Half |
278 				       SUPPORTED_10baseT_Full |
279 				       SUPPORTED_100baseT_Half |
280 				       SUPPORTED_100baseT_Full);
281 
282 		else if (hw->chip_id == CHIP_ID_YUKON)
283 			supported &= ~SUPPORTED_1000baseT_Half;
284 	} else
285 		supported = (SUPPORTED_1000baseT_Full |
286 			     SUPPORTED_1000baseT_Half |
287 			     SUPPORTED_FIBRE |
288 			     SUPPORTED_Autoneg);
289 
290 	return supported;
291 }
292 
293 static int skge_get_link_ksettings(struct net_device *dev,
294 				   struct ethtool_link_ksettings *cmd)
295 {
296 	struct skge_port *skge = netdev_priv(dev);
297 	struct skge_hw *hw = skge->hw;
298 	u32 supported, advertising;
299 
300 	supported = skge_supported_modes(hw);
301 
302 	if (hw->copper) {
303 		cmd->base.port = PORT_TP;
304 		cmd->base.phy_address = hw->phy_addr;
305 	} else
306 		cmd->base.port = PORT_FIBRE;
307 
308 	advertising = skge->advertising;
309 	cmd->base.autoneg = skge->autoneg;
310 	cmd->base.speed = skge->speed;
311 	cmd->base.duplex = skge->duplex;
312 
313 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
314 						supported);
315 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
316 						advertising);
317 
318 	return 0;
319 }
320 
321 static int skge_set_link_ksettings(struct net_device *dev,
322 				   const struct ethtool_link_ksettings *cmd)
323 {
324 	struct skge_port *skge = netdev_priv(dev);
325 	const struct skge_hw *hw = skge->hw;
326 	u32 supported = skge_supported_modes(hw);
327 	int err = 0;
328 	u32 advertising;
329 
330 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
331 						cmd->link_modes.advertising);
332 
333 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
334 		advertising = supported;
335 		skge->duplex = -1;
336 		skge->speed = -1;
337 	} else {
338 		u32 setting;
339 		u32 speed = cmd->base.speed;
340 
341 		switch (speed) {
342 		case SPEED_1000:
343 			if (cmd->base.duplex == DUPLEX_FULL)
344 				setting = SUPPORTED_1000baseT_Full;
345 			else if (cmd->base.duplex == DUPLEX_HALF)
346 				setting = SUPPORTED_1000baseT_Half;
347 			else
348 				return -EINVAL;
349 			break;
350 		case SPEED_100:
351 			if (cmd->base.duplex == DUPLEX_FULL)
352 				setting = SUPPORTED_100baseT_Full;
353 			else if (cmd->base.duplex == DUPLEX_HALF)
354 				setting = SUPPORTED_100baseT_Half;
355 			else
356 				return -EINVAL;
357 			break;
358 
359 		case SPEED_10:
360 			if (cmd->base.duplex == DUPLEX_FULL)
361 				setting = SUPPORTED_10baseT_Full;
362 			else if (cmd->base.duplex == DUPLEX_HALF)
363 				setting = SUPPORTED_10baseT_Half;
364 			else
365 				return -EINVAL;
366 			break;
367 		default:
368 			return -EINVAL;
369 		}
370 
371 		if ((setting & supported) == 0)
372 			return -EINVAL;
373 
374 		skge->speed = speed;
375 		skge->duplex = cmd->base.duplex;
376 	}
377 
378 	skge->autoneg = cmd->base.autoneg;
379 	skge->advertising = advertising;
380 
381 	if (netif_running(dev)) {
382 		skge_down(dev);
383 		err = skge_up(dev);
384 		if (err) {
385 			dev_close(dev);
386 			return err;
387 		}
388 	}
389 
390 	return 0;
391 }
392 
393 static void skge_get_drvinfo(struct net_device *dev,
394 			     struct ethtool_drvinfo *info)
395 {
396 	struct skge_port *skge = netdev_priv(dev);
397 
398 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
399 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
400 	strlcpy(info->bus_info, pci_name(skge->hw->pdev),
401 		sizeof(info->bus_info));
402 }
403 
404 static const struct skge_stat {
405 	char 	   name[ETH_GSTRING_LEN];
406 	u16	   xmac_offset;
407 	u16	   gma_offset;
408 } skge_stats[] = {
409 	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
410 	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
411 
412 	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
413 	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
414 	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
415 	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
416 	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
417 	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
418 	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
419 	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
420 
421 	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
422 	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
423 	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
424 	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
425 	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
426 	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
427 
428 	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
429 	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
430 	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
431 	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
432 	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
433 };
434 
435 static int skge_get_sset_count(struct net_device *dev, int sset)
436 {
437 	switch (sset) {
438 	case ETH_SS_STATS:
439 		return ARRAY_SIZE(skge_stats);
440 	default:
441 		return -EOPNOTSUPP;
442 	}
443 }
444 
445 static void skge_get_ethtool_stats(struct net_device *dev,
446 				   struct ethtool_stats *stats, u64 *data)
447 {
448 	struct skge_port *skge = netdev_priv(dev);
449 
450 	if (is_genesis(skge->hw))
451 		genesis_get_stats(skge, data);
452 	else
453 		yukon_get_stats(skge, data);
454 }
455 
456 /* Use hardware MIB variables for critical path statistics and
457  * transmit feedback not reported at interrupt.
458  * Other errors are accounted for in interrupt handler.
459  */
460 static struct net_device_stats *skge_get_stats(struct net_device *dev)
461 {
462 	struct skge_port *skge = netdev_priv(dev);
463 	u64 data[ARRAY_SIZE(skge_stats)];
464 
465 	if (is_genesis(skge->hw))
466 		genesis_get_stats(skge, data);
467 	else
468 		yukon_get_stats(skge, data);
469 
470 	dev->stats.tx_bytes = data[0];
471 	dev->stats.rx_bytes = data[1];
472 	dev->stats.tx_packets = data[2] + data[4] + data[6];
473 	dev->stats.rx_packets = data[3] + data[5] + data[7];
474 	dev->stats.multicast = data[3] + data[5];
475 	dev->stats.collisions = data[10];
476 	dev->stats.tx_aborted_errors = data[12];
477 
478 	return &dev->stats;
479 }
480 
481 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
482 {
483 	int i;
484 
485 	switch (stringset) {
486 	case ETH_SS_STATS:
487 		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
488 			memcpy(data + i * ETH_GSTRING_LEN,
489 			       skge_stats[i].name, ETH_GSTRING_LEN);
490 		break;
491 	}
492 }
493 
494 static void skge_get_ring_param(struct net_device *dev,
495 				struct ethtool_ringparam *p,
496 				struct kernel_ethtool_ringparam *kernel_p,
497 				struct netlink_ext_ack *extack)
498 {
499 	struct skge_port *skge = netdev_priv(dev);
500 
501 	p->rx_max_pending = MAX_RX_RING_SIZE;
502 	p->tx_max_pending = MAX_TX_RING_SIZE;
503 
504 	p->rx_pending = skge->rx_ring.count;
505 	p->tx_pending = skge->tx_ring.count;
506 }
507 
508 static int skge_set_ring_param(struct net_device *dev,
509 			       struct ethtool_ringparam *p,
510 			       struct kernel_ethtool_ringparam *kernel_p,
511 			       struct netlink_ext_ack *extack)
512 {
513 	struct skge_port *skge = netdev_priv(dev);
514 	int err = 0;
515 
516 	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
517 	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
518 		return -EINVAL;
519 
520 	skge->rx_ring.count = p->rx_pending;
521 	skge->tx_ring.count = p->tx_pending;
522 
523 	if (netif_running(dev)) {
524 		skge_down(dev);
525 		err = skge_up(dev);
526 		if (err)
527 			dev_close(dev);
528 	}
529 
530 	return err;
531 }
532 
533 static u32 skge_get_msglevel(struct net_device *netdev)
534 {
535 	struct skge_port *skge = netdev_priv(netdev);
536 	return skge->msg_enable;
537 }
538 
539 static void skge_set_msglevel(struct net_device *netdev, u32 value)
540 {
541 	struct skge_port *skge = netdev_priv(netdev);
542 	skge->msg_enable = value;
543 }
544 
545 static int skge_nway_reset(struct net_device *dev)
546 {
547 	struct skge_port *skge = netdev_priv(dev);
548 
549 	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
550 		return -EINVAL;
551 
552 	skge_phy_reset(skge);
553 	return 0;
554 }
555 
556 static void skge_get_pauseparam(struct net_device *dev,
557 				struct ethtool_pauseparam *ecmd)
558 {
559 	struct skge_port *skge = netdev_priv(dev);
560 
561 	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
562 			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
563 	ecmd->tx_pause = (ecmd->rx_pause ||
564 			  (skge->flow_control == FLOW_MODE_LOC_SEND));
565 
566 	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
567 }
568 
569 static int skge_set_pauseparam(struct net_device *dev,
570 			       struct ethtool_pauseparam *ecmd)
571 {
572 	struct skge_port *skge = netdev_priv(dev);
573 	struct ethtool_pauseparam old;
574 	int err = 0;
575 
576 	skge_get_pauseparam(dev, &old);
577 
578 	if (ecmd->autoneg != old.autoneg)
579 		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
580 	else {
581 		if (ecmd->rx_pause && ecmd->tx_pause)
582 			skge->flow_control = FLOW_MODE_SYMMETRIC;
583 		else if (ecmd->rx_pause && !ecmd->tx_pause)
584 			skge->flow_control = FLOW_MODE_SYM_OR_REM;
585 		else if (!ecmd->rx_pause && ecmd->tx_pause)
586 			skge->flow_control = FLOW_MODE_LOC_SEND;
587 		else
588 			skge->flow_control = FLOW_MODE_NONE;
589 	}
590 
591 	if (netif_running(dev)) {
592 		skge_down(dev);
593 		err = skge_up(dev);
594 		if (err) {
595 			dev_close(dev);
596 			return err;
597 		}
598 	}
599 
600 	return 0;
601 }
602 
603 /* Chip internal frequency for clock calculations */
604 static inline u32 hwkhz(const struct skge_hw *hw)
605 {
606 	return is_genesis(hw) ? 53125 : 78125;
607 }
608 
609 /* Chip HZ to microseconds */
610 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
611 {
612 	return (ticks * 1000) / hwkhz(hw);
613 }
614 
615 /* Microseconds to chip HZ */
616 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
617 {
618 	return hwkhz(hw) * usec / 1000;
619 }
620 
621 static int skge_get_coalesce(struct net_device *dev,
622 			     struct ethtool_coalesce *ecmd,
623 			     struct kernel_ethtool_coalesce *kernel_coal,
624 			     struct netlink_ext_ack *extack)
625 {
626 	struct skge_port *skge = netdev_priv(dev);
627 	struct skge_hw *hw = skge->hw;
628 	int port = skge->port;
629 
630 	ecmd->rx_coalesce_usecs = 0;
631 	ecmd->tx_coalesce_usecs = 0;
632 
633 	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
634 		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
635 		u32 msk = skge_read32(hw, B2_IRQM_MSK);
636 
637 		if (msk & rxirqmask[port])
638 			ecmd->rx_coalesce_usecs = delay;
639 		if (msk & txirqmask[port])
640 			ecmd->tx_coalesce_usecs = delay;
641 	}
642 
643 	return 0;
644 }
645 
646 /* Note: interrupt timer is per board, but can turn on/off per port */
647 static int skge_set_coalesce(struct net_device *dev,
648 			     struct ethtool_coalesce *ecmd,
649 			     struct kernel_ethtool_coalesce *kernel_coal,
650 			     struct netlink_ext_ack *extack)
651 {
652 	struct skge_port *skge = netdev_priv(dev);
653 	struct skge_hw *hw = skge->hw;
654 	int port = skge->port;
655 	u32 msk = skge_read32(hw, B2_IRQM_MSK);
656 	u32 delay = 25;
657 
658 	if (ecmd->rx_coalesce_usecs == 0)
659 		msk &= ~rxirqmask[port];
660 	else if (ecmd->rx_coalesce_usecs < 25 ||
661 		 ecmd->rx_coalesce_usecs > 33333)
662 		return -EINVAL;
663 	else {
664 		msk |= rxirqmask[port];
665 		delay = ecmd->rx_coalesce_usecs;
666 	}
667 
668 	if (ecmd->tx_coalesce_usecs == 0)
669 		msk &= ~txirqmask[port];
670 	else if (ecmd->tx_coalesce_usecs < 25 ||
671 		 ecmd->tx_coalesce_usecs > 33333)
672 		return -EINVAL;
673 	else {
674 		msk |= txirqmask[port];
675 		delay = min(delay, ecmd->rx_coalesce_usecs);
676 	}
677 
678 	skge_write32(hw, B2_IRQM_MSK, msk);
679 	if (msk == 0)
680 		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
681 	else {
682 		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
683 		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
684 	}
685 	return 0;
686 }
687 
688 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
689 static void skge_led(struct skge_port *skge, enum led_mode mode)
690 {
691 	struct skge_hw *hw = skge->hw;
692 	int port = skge->port;
693 
694 	spin_lock_bh(&hw->phy_lock);
695 	if (is_genesis(hw)) {
696 		switch (mode) {
697 		case LED_MODE_OFF:
698 			if (hw->phy_type == SK_PHY_BCOM)
699 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
700 			else {
701 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
702 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
703 			}
704 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
705 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
706 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
707 			break;
708 
709 		case LED_MODE_ON:
710 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
711 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
712 
713 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
714 			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
715 
716 			break;
717 
718 		case LED_MODE_TST:
719 			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
720 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
721 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
722 
723 			if (hw->phy_type == SK_PHY_BCOM)
724 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
725 			else {
726 				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
727 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
728 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
729 			}
730 
731 		}
732 	} else {
733 		switch (mode) {
734 		case LED_MODE_OFF:
735 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
736 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
737 				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
738 				     PHY_M_LED_MO_10(MO_LED_OFF)   |
739 				     PHY_M_LED_MO_100(MO_LED_OFF)  |
740 				     PHY_M_LED_MO_1000(MO_LED_OFF) |
741 				     PHY_M_LED_MO_RX(MO_LED_OFF));
742 			break;
743 		case LED_MODE_ON:
744 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
745 				     PHY_M_LED_PULS_DUR(PULS_170MS) |
746 				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
747 				     PHY_M_LEDC_TX_CTRL |
748 				     PHY_M_LEDC_DP_CTRL);
749 
750 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
751 				     PHY_M_LED_MO_RX(MO_LED_OFF) |
752 				     (skge->speed == SPEED_100 ?
753 				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
754 			break;
755 		case LED_MODE_TST:
756 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
757 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
758 				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
759 				     PHY_M_LED_MO_10(MO_LED_ON)   |
760 				     PHY_M_LED_MO_100(MO_LED_ON)  |
761 				     PHY_M_LED_MO_1000(MO_LED_ON) |
762 				     PHY_M_LED_MO_RX(MO_LED_ON));
763 		}
764 	}
765 	spin_unlock_bh(&hw->phy_lock);
766 }
767 
768 /* blink LED's for finding board */
769 static int skge_set_phys_id(struct net_device *dev,
770 			    enum ethtool_phys_id_state state)
771 {
772 	struct skge_port *skge = netdev_priv(dev);
773 
774 	switch (state) {
775 	case ETHTOOL_ID_ACTIVE:
776 		return 2;	/* cycle on/off twice per second */
777 
778 	case ETHTOOL_ID_ON:
779 		skge_led(skge, LED_MODE_TST);
780 		break;
781 
782 	case ETHTOOL_ID_OFF:
783 		skge_led(skge, LED_MODE_OFF);
784 		break;
785 
786 	case ETHTOOL_ID_INACTIVE:
787 		/* back to regular LED state */
788 		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
789 	}
790 
791 	return 0;
792 }
793 
794 static int skge_get_eeprom_len(struct net_device *dev)
795 {
796 	struct skge_port *skge = netdev_priv(dev);
797 	u32 reg2;
798 
799 	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
800 	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
801 }
802 
803 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
804 {
805 	u32 val;
806 
807 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
808 
809 	do {
810 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
811 	} while (!(offset & PCI_VPD_ADDR_F));
812 
813 	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
814 	return val;
815 }
816 
817 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
818 {
819 	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
820 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
821 			      offset | PCI_VPD_ADDR_F);
822 
823 	do {
824 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
825 	} while (offset & PCI_VPD_ADDR_F);
826 }
827 
828 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
829 			   u8 *data)
830 {
831 	struct skge_port *skge = netdev_priv(dev);
832 	struct pci_dev *pdev = skge->hw->pdev;
833 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
834 	int length = eeprom->len;
835 	u16 offset = eeprom->offset;
836 
837 	if (!cap)
838 		return -EINVAL;
839 
840 	eeprom->magic = SKGE_EEPROM_MAGIC;
841 
842 	while (length > 0) {
843 		u32 val = skge_vpd_read(pdev, cap, offset);
844 		int n = min_t(int, length, sizeof(val));
845 
846 		memcpy(data, &val, n);
847 		length -= n;
848 		data += n;
849 		offset += n;
850 	}
851 	return 0;
852 }
853 
854 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
855 			   u8 *data)
856 {
857 	struct skge_port *skge = netdev_priv(dev);
858 	struct pci_dev *pdev = skge->hw->pdev;
859 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
860 	int length = eeprom->len;
861 	u16 offset = eeprom->offset;
862 
863 	if (!cap)
864 		return -EINVAL;
865 
866 	if (eeprom->magic != SKGE_EEPROM_MAGIC)
867 		return -EINVAL;
868 
869 	while (length > 0) {
870 		u32 val;
871 		int n = min_t(int, length, sizeof(val));
872 
873 		if (n < sizeof(val))
874 			val = skge_vpd_read(pdev, cap, offset);
875 		memcpy(&val, data, n);
876 
877 		skge_vpd_write(pdev, cap, offset, val);
878 
879 		length -= n;
880 		data += n;
881 		offset += n;
882 	}
883 	return 0;
884 }
885 
886 static const struct ethtool_ops skge_ethtool_ops = {
887 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS,
888 	.get_drvinfo	= skge_get_drvinfo,
889 	.get_regs_len	= skge_get_regs_len,
890 	.get_regs	= skge_get_regs,
891 	.get_wol	= skge_get_wol,
892 	.set_wol	= skge_set_wol,
893 	.get_msglevel	= skge_get_msglevel,
894 	.set_msglevel	= skge_set_msglevel,
895 	.nway_reset	= skge_nway_reset,
896 	.get_link	= ethtool_op_get_link,
897 	.get_eeprom_len	= skge_get_eeprom_len,
898 	.get_eeprom	= skge_get_eeprom,
899 	.set_eeprom	= skge_set_eeprom,
900 	.get_ringparam	= skge_get_ring_param,
901 	.set_ringparam	= skge_set_ring_param,
902 	.get_pauseparam = skge_get_pauseparam,
903 	.set_pauseparam = skge_set_pauseparam,
904 	.get_coalesce	= skge_get_coalesce,
905 	.set_coalesce	= skge_set_coalesce,
906 	.get_strings	= skge_get_strings,
907 	.set_phys_id	= skge_set_phys_id,
908 	.get_sset_count = skge_get_sset_count,
909 	.get_ethtool_stats = skge_get_ethtool_stats,
910 	.get_link_ksettings = skge_get_link_ksettings,
911 	.set_link_ksettings = skge_set_link_ksettings,
912 };
913 
914 /*
915  * Allocate ring elements and chain them together
916  * One-to-one association of board descriptors with ring elements
917  */
918 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
919 {
920 	struct skge_tx_desc *d;
921 	struct skge_element *e;
922 	int i;
923 
924 	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
925 	if (!ring->start)
926 		return -ENOMEM;
927 
928 	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
929 		e->desc = d;
930 		if (i == ring->count - 1) {
931 			e->next = ring->start;
932 			d->next_offset = base;
933 		} else {
934 			e->next = e + 1;
935 			d->next_offset = base + (i+1) * sizeof(*d);
936 		}
937 	}
938 	ring->to_use = ring->to_clean = ring->start;
939 
940 	return 0;
941 }
942 
943 /* Allocate and setup a new buffer for receiving */
944 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
945 			 struct sk_buff *skb, unsigned int bufsize)
946 {
947 	struct skge_rx_desc *rd = e->desc;
948 	dma_addr_t map;
949 
950 	map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
951 			     DMA_FROM_DEVICE);
952 
953 	if (dma_mapping_error(&skge->hw->pdev->dev, map))
954 		return -1;
955 
956 	rd->dma_lo = lower_32_bits(map);
957 	rd->dma_hi = upper_32_bits(map);
958 	e->skb = skb;
959 	rd->csum1_start = ETH_HLEN;
960 	rd->csum2_start = ETH_HLEN;
961 	rd->csum1 = 0;
962 	rd->csum2 = 0;
963 
964 	wmb();
965 
966 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
967 	dma_unmap_addr_set(e, mapaddr, map);
968 	dma_unmap_len_set(e, maplen, bufsize);
969 	return 0;
970 }
971 
972 /* Resume receiving using existing skb,
973  * Note: DMA address is not changed by chip.
974  * 	 MTU not changed while receiver active.
975  */
976 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
977 {
978 	struct skge_rx_desc *rd = e->desc;
979 
980 	rd->csum2 = 0;
981 	rd->csum2_start = ETH_HLEN;
982 
983 	wmb();
984 
985 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
986 }
987 
988 
989 /* Free all  buffers in receive ring, assumes receiver stopped */
990 static void skge_rx_clean(struct skge_port *skge)
991 {
992 	struct skge_hw *hw = skge->hw;
993 	struct skge_ring *ring = &skge->rx_ring;
994 	struct skge_element *e;
995 
996 	e = ring->start;
997 	do {
998 		struct skge_rx_desc *rd = e->desc;
999 		rd->control = 0;
1000 		if (e->skb) {
1001 			dma_unmap_single(&hw->pdev->dev,
1002 					 dma_unmap_addr(e, mapaddr),
1003 					 dma_unmap_len(e, maplen),
1004 					 DMA_FROM_DEVICE);
1005 			dev_kfree_skb(e->skb);
1006 			e->skb = NULL;
1007 		}
1008 	} while ((e = e->next) != ring->start);
1009 }
1010 
1011 
1012 /* Allocate buffers for receive ring
1013  * For receive:  to_clean is next received frame.
1014  */
1015 static int skge_rx_fill(struct net_device *dev)
1016 {
1017 	struct skge_port *skge = netdev_priv(dev);
1018 	struct skge_ring *ring = &skge->rx_ring;
1019 	struct skge_element *e;
1020 
1021 	e = ring->start;
1022 	do {
1023 		struct sk_buff *skb;
1024 
1025 		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1026 					 GFP_KERNEL);
1027 		if (!skb)
1028 			return -ENOMEM;
1029 
1030 		skb_reserve(skb, NET_IP_ALIGN);
1031 		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1032 			dev_kfree_skb(skb);
1033 			return -EIO;
1034 		}
1035 	} while ((e = e->next) != ring->start);
1036 
1037 	ring->to_clean = ring->start;
1038 	return 0;
1039 }
1040 
1041 static const char *skge_pause(enum pause_status status)
1042 {
1043 	switch (status) {
1044 	case FLOW_STAT_NONE:
1045 		return "none";
1046 	case FLOW_STAT_REM_SEND:
1047 		return "rx only";
1048 	case FLOW_STAT_LOC_SEND:
1049 		return "tx_only";
1050 	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1051 		return "both";
1052 	default:
1053 		return "indeterminated";
1054 	}
1055 }
1056 
1057 
1058 static void skge_link_up(struct skge_port *skge)
1059 {
1060 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1061 		    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1062 
1063 	netif_carrier_on(skge->netdev);
1064 	netif_wake_queue(skge->netdev);
1065 
1066 	netif_info(skge, link, skge->netdev,
1067 		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1068 		   skge->speed,
1069 		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1070 		   skge_pause(skge->flow_status));
1071 }
1072 
1073 static void skge_link_down(struct skge_port *skge)
1074 {
1075 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1076 	netif_carrier_off(skge->netdev);
1077 	netif_stop_queue(skge->netdev);
1078 
1079 	netif_info(skge, link, skge->netdev, "Link is down\n");
1080 }
1081 
1082 static void xm_link_down(struct skge_hw *hw, int port)
1083 {
1084 	struct net_device *dev = hw->dev[port];
1085 	struct skge_port *skge = netdev_priv(dev);
1086 
1087 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1088 
1089 	if (netif_carrier_ok(dev))
1090 		skge_link_down(skge);
1091 }
1092 
1093 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1094 {
1095 	int i;
1096 
1097 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1098 	*val = xm_read16(hw, port, XM_PHY_DATA);
1099 
1100 	if (hw->phy_type == SK_PHY_XMAC)
1101 		goto ready;
1102 
1103 	for (i = 0; i < PHY_RETRIES; i++) {
1104 		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1105 			goto ready;
1106 		udelay(1);
1107 	}
1108 
1109 	return -ETIMEDOUT;
1110  ready:
1111 	*val = xm_read16(hw, port, XM_PHY_DATA);
1112 
1113 	return 0;
1114 }
1115 
1116 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1117 {
1118 	u16 v = 0;
1119 	if (__xm_phy_read(hw, port, reg, &v))
1120 		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1121 	return v;
1122 }
1123 
1124 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1125 {
1126 	int i;
1127 
1128 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1129 	for (i = 0; i < PHY_RETRIES; i++) {
1130 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1131 			goto ready;
1132 		udelay(1);
1133 	}
1134 	return -EIO;
1135 
1136  ready:
1137 	xm_write16(hw, port, XM_PHY_DATA, val);
1138 	for (i = 0; i < PHY_RETRIES; i++) {
1139 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1140 			return 0;
1141 		udelay(1);
1142 	}
1143 	return -ETIMEDOUT;
1144 }
1145 
1146 static void genesis_init(struct skge_hw *hw)
1147 {
1148 	/* set blink source counter */
1149 	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1150 	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1151 
1152 	/* configure mac arbiter */
1153 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1154 
1155 	/* configure mac arbiter timeout values */
1156 	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1157 	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1158 	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1159 	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1160 
1161 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1162 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1163 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1164 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1165 
1166 	/* configure packet arbiter timeout */
1167 	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1168 	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1169 	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1170 	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1171 	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1172 }
1173 
1174 static void genesis_reset(struct skge_hw *hw, int port)
1175 {
1176 	static const u8 zero[8]  = { 0 };
1177 	u32 reg;
1178 
1179 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1180 
1181 	/* reset the statistics module */
1182 	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1183 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1184 	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1185 	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1186 	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1187 
1188 	/* disable Broadcom PHY IRQ */
1189 	if (hw->phy_type == SK_PHY_BCOM)
1190 		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1191 
1192 	xm_outhash(hw, port, XM_HSM, zero);
1193 
1194 	/* Flush TX and RX fifo */
1195 	reg = xm_read32(hw, port, XM_MODE);
1196 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1197 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1198 }
1199 
1200 /* Convert mode to MII values  */
1201 static const u16 phy_pause_map[] = {
1202 	[FLOW_MODE_NONE] =	0,
1203 	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1204 	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1205 	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1206 };
1207 
1208 /* special defines for FIBER (88E1011S only) */
1209 static const u16 fiber_pause_map[] = {
1210 	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1211 	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1212 	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1213 	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1214 };
1215 
1216 
1217 /* Check status of Broadcom phy link */
1218 static void bcom_check_link(struct skge_hw *hw, int port)
1219 {
1220 	struct net_device *dev = hw->dev[port];
1221 	struct skge_port *skge = netdev_priv(dev);
1222 	u16 status;
1223 
1224 	/* read twice because of latch */
1225 	xm_phy_read(hw, port, PHY_BCOM_STAT);
1226 	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1227 
1228 	if ((status & PHY_ST_LSYNC) == 0) {
1229 		xm_link_down(hw, port);
1230 		return;
1231 	}
1232 
1233 	if (skge->autoneg == AUTONEG_ENABLE) {
1234 		u16 lpa, aux;
1235 
1236 		if (!(status & PHY_ST_AN_OVER))
1237 			return;
1238 
1239 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1240 		if (lpa & PHY_B_AN_RF) {
1241 			netdev_notice(dev, "remote fault\n");
1242 			return;
1243 		}
1244 
1245 		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1246 
1247 		/* Check Duplex mismatch */
1248 		switch (aux & PHY_B_AS_AN_RES_MSK) {
1249 		case PHY_B_RES_1000FD:
1250 			skge->duplex = DUPLEX_FULL;
1251 			break;
1252 		case PHY_B_RES_1000HD:
1253 			skge->duplex = DUPLEX_HALF;
1254 			break;
1255 		default:
1256 			netdev_notice(dev, "duplex mismatch\n");
1257 			return;
1258 		}
1259 
1260 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1261 		switch (aux & PHY_B_AS_PAUSE_MSK) {
1262 		case PHY_B_AS_PAUSE_MSK:
1263 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1264 			break;
1265 		case PHY_B_AS_PRR:
1266 			skge->flow_status = FLOW_STAT_REM_SEND;
1267 			break;
1268 		case PHY_B_AS_PRT:
1269 			skge->flow_status = FLOW_STAT_LOC_SEND;
1270 			break;
1271 		default:
1272 			skge->flow_status = FLOW_STAT_NONE;
1273 		}
1274 		skge->speed = SPEED_1000;
1275 	}
1276 
1277 	if (!netif_carrier_ok(dev))
1278 		genesis_link_up(skge);
1279 }
1280 
1281 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1282  * Phy on for 100 or 10Mbit operation
1283  */
1284 static void bcom_phy_init(struct skge_port *skge)
1285 {
1286 	struct skge_hw *hw = skge->hw;
1287 	int port = skge->port;
1288 	int i;
1289 	u16 id1, r, ext, ctl;
1290 
1291 	/* magic workaround patterns for Broadcom */
1292 	static const struct {
1293 		u16 reg;
1294 		u16 val;
1295 	} A1hack[] = {
1296 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1297 		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1298 		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1299 		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1300 	}, C0hack[] = {
1301 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1302 		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1303 	};
1304 
1305 	/* read Id from external PHY (all have the same address) */
1306 	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1307 
1308 	/* Optimize MDIO transfer by suppressing preamble. */
1309 	r = xm_read16(hw, port, XM_MMU_CMD);
1310 	r |=  XM_MMU_NO_PRE;
1311 	xm_write16(hw, port, XM_MMU_CMD, r);
1312 
1313 	switch (id1) {
1314 	case PHY_BCOM_ID1_C0:
1315 		/*
1316 		 * Workaround BCOM Errata for the C0 type.
1317 		 * Write magic patterns to reserved registers.
1318 		 */
1319 		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1320 			xm_phy_write(hw, port,
1321 				     C0hack[i].reg, C0hack[i].val);
1322 
1323 		break;
1324 	case PHY_BCOM_ID1_A1:
1325 		/*
1326 		 * Workaround BCOM Errata for the A1 type.
1327 		 * Write magic patterns to reserved registers.
1328 		 */
1329 		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1330 			xm_phy_write(hw, port,
1331 				     A1hack[i].reg, A1hack[i].val);
1332 		break;
1333 	}
1334 
1335 	/*
1336 	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1337 	 * Disable Power Management after reset.
1338 	 */
1339 	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1340 	r |= PHY_B_AC_DIS_PM;
1341 	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1342 
1343 	/* Dummy read */
1344 	xm_read16(hw, port, XM_ISRC);
1345 
1346 	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1347 	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1348 
1349 	if (skge->autoneg == AUTONEG_ENABLE) {
1350 		/*
1351 		 * Workaround BCOM Errata #1 for the C5 type.
1352 		 * 1000Base-T Link Acquisition Failure in Slave Mode
1353 		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1354 		 */
1355 		u16 adv = PHY_B_1000C_RD;
1356 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1357 			adv |= PHY_B_1000C_AHD;
1358 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1359 			adv |= PHY_B_1000C_AFD;
1360 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1361 
1362 		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1363 	} else {
1364 		if (skge->duplex == DUPLEX_FULL)
1365 			ctl |= PHY_CT_DUP_MD;
1366 		/* Force to slave */
1367 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1368 	}
1369 
1370 	/* Set autonegotiation pause parameters */
1371 	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1372 		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1373 
1374 	/* Handle Jumbo frames */
1375 	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1376 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1377 			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1378 
1379 		ext |= PHY_B_PEC_HIGH_LA;
1380 
1381 	}
1382 
1383 	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1384 	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1385 
1386 	/* Use link status change interrupt */
1387 	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1388 }
1389 
1390 static void xm_phy_init(struct skge_port *skge)
1391 {
1392 	struct skge_hw *hw = skge->hw;
1393 	int port = skge->port;
1394 	u16 ctrl = 0;
1395 
1396 	if (skge->autoneg == AUTONEG_ENABLE) {
1397 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1398 			ctrl |= PHY_X_AN_HD;
1399 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1400 			ctrl |= PHY_X_AN_FD;
1401 
1402 		ctrl |= fiber_pause_map[skge->flow_control];
1403 
1404 		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1405 
1406 		/* Restart Auto-negotiation */
1407 		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1408 	} else {
1409 		/* Set DuplexMode in Config register */
1410 		if (skge->duplex == DUPLEX_FULL)
1411 			ctrl |= PHY_CT_DUP_MD;
1412 		/*
1413 		 * Do NOT enable Auto-negotiation here. This would hold
1414 		 * the link down because no IDLEs are transmitted
1415 		 */
1416 	}
1417 
1418 	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1419 
1420 	/* Poll PHY for status changes */
1421 	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1422 }
1423 
1424 static int xm_check_link(struct net_device *dev)
1425 {
1426 	struct skge_port *skge = netdev_priv(dev);
1427 	struct skge_hw *hw = skge->hw;
1428 	int port = skge->port;
1429 	u16 status;
1430 
1431 	/* read twice because of latch */
1432 	xm_phy_read(hw, port, PHY_XMAC_STAT);
1433 	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1434 
1435 	if ((status & PHY_ST_LSYNC) == 0) {
1436 		xm_link_down(hw, port);
1437 		return 0;
1438 	}
1439 
1440 	if (skge->autoneg == AUTONEG_ENABLE) {
1441 		u16 lpa, res;
1442 
1443 		if (!(status & PHY_ST_AN_OVER))
1444 			return 0;
1445 
1446 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1447 		if (lpa & PHY_B_AN_RF) {
1448 			netdev_notice(dev, "remote fault\n");
1449 			return 0;
1450 		}
1451 
1452 		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1453 
1454 		/* Check Duplex mismatch */
1455 		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1456 		case PHY_X_RS_FD:
1457 			skge->duplex = DUPLEX_FULL;
1458 			break;
1459 		case PHY_X_RS_HD:
1460 			skge->duplex = DUPLEX_HALF;
1461 			break;
1462 		default:
1463 			netdev_notice(dev, "duplex mismatch\n");
1464 			return 0;
1465 		}
1466 
1467 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1468 		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1469 		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1470 		    (lpa & PHY_X_P_SYM_MD))
1471 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1472 		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1473 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1474 			/* Enable PAUSE receive, disable PAUSE transmit */
1475 			skge->flow_status  = FLOW_STAT_REM_SEND;
1476 		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1477 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1478 			/* Disable PAUSE receive, enable PAUSE transmit */
1479 			skge->flow_status = FLOW_STAT_LOC_SEND;
1480 		else
1481 			skge->flow_status = FLOW_STAT_NONE;
1482 
1483 		skge->speed = SPEED_1000;
1484 	}
1485 
1486 	if (!netif_carrier_ok(dev))
1487 		genesis_link_up(skge);
1488 	return 1;
1489 }
1490 
1491 /* Poll to check for link coming up.
1492  *
1493  * Since internal PHY is wired to a level triggered pin, can't
1494  * get an interrupt when carrier is detected, need to poll for
1495  * link coming up.
1496  */
1497 static void xm_link_timer(struct timer_list *t)
1498 {
1499 	struct skge_port *skge = from_timer(skge, t, link_timer);
1500 	struct net_device *dev = skge->netdev;
1501 	struct skge_hw *hw = skge->hw;
1502 	int port = skge->port;
1503 	int i;
1504 	unsigned long flags;
1505 
1506 	if (!netif_running(dev))
1507 		return;
1508 
1509 	spin_lock_irqsave(&hw->phy_lock, flags);
1510 
1511 	/*
1512 	 * Verify that the link by checking GPIO register three times.
1513 	 * This pin has the signal from the link_sync pin connected to it.
1514 	 */
1515 	for (i = 0; i < 3; i++) {
1516 		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1517 			goto link_down;
1518 	}
1519 
1520 	/* Re-enable interrupt to detect link down */
1521 	if (xm_check_link(dev)) {
1522 		u16 msk = xm_read16(hw, port, XM_IMSK);
1523 		msk &= ~XM_IS_INP_ASS;
1524 		xm_write16(hw, port, XM_IMSK, msk);
1525 		xm_read16(hw, port, XM_ISRC);
1526 	} else {
1527 link_down:
1528 		mod_timer(&skge->link_timer,
1529 			  round_jiffies(jiffies + LINK_HZ));
1530 	}
1531 	spin_unlock_irqrestore(&hw->phy_lock, flags);
1532 }
1533 
1534 static void genesis_mac_init(struct skge_hw *hw, int port)
1535 {
1536 	struct net_device *dev = hw->dev[port];
1537 	struct skge_port *skge = netdev_priv(dev);
1538 	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1539 	int i;
1540 	u32 r;
1541 	static const u8 zero[6]  = { 0 };
1542 
1543 	for (i = 0; i < 10; i++) {
1544 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1545 			     MFF_SET_MAC_RST);
1546 		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1547 			goto reset_ok;
1548 		udelay(1);
1549 	}
1550 
1551 	netdev_warn(dev, "genesis reset failed\n");
1552 
1553  reset_ok:
1554 	/* Unreset the XMAC. */
1555 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1556 
1557 	/*
1558 	 * Perform additional initialization for external PHYs,
1559 	 * namely for the 1000baseTX cards that use the XMAC's
1560 	 * GMII mode.
1561 	 */
1562 	if (hw->phy_type != SK_PHY_XMAC) {
1563 		/* Take external Phy out of reset */
1564 		r = skge_read32(hw, B2_GP_IO);
1565 		if (port == 0)
1566 			r |= GP_DIR_0|GP_IO_0;
1567 		else
1568 			r |= GP_DIR_2|GP_IO_2;
1569 
1570 		skge_write32(hw, B2_GP_IO, r);
1571 
1572 		/* Enable GMII interface */
1573 		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1574 	}
1575 
1576 
1577 	switch (hw->phy_type) {
1578 	case SK_PHY_XMAC:
1579 		xm_phy_init(skge);
1580 		break;
1581 	case SK_PHY_BCOM:
1582 		bcom_phy_init(skge);
1583 		bcom_check_link(hw, port);
1584 	}
1585 
1586 	/* Set Station Address */
1587 	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1588 
1589 	/* We don't use match addresses so clear */
1590 	for (i = 1; i < 16; i++)
1591 		xm_outaddr(hw, port, XM_EXM(i), zero);
1592 
1593 	/* Clear MIB counters */
1594 	xm_write16(hw, port, XM_STAT_CMD,
1595 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1596 	/* Clear two times according to Errata #3 */
1597 	xm_write16(hw, port, XM_STAT_CMD,
1598 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1599 
1600 	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1601 	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1602 
1603 	/* We don't need the FCS appended to the packet. */
1604 	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1605 	if (jumbo)
1606 		r |= XM_RX_BIG_PK_OK;
1607 
1608 	if (skge->duplex == DUPLEX_HALF) {
1609 		/*
1610 		 * If in manual half duplex mode the other side might be in
1611 		 * full duplex mode, so ignore if a carrier extension is not seen
1612 		 * on frames received
1613 		 */
1614 		r |= XM_RX_DIS_CEXT;
1615 	}
1616 	xm_write16(hw, port, XM_RX_CMD, r);
1617 
1618 	/* We want short frames padded to 60 bytes. */
1619 	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1620 
1621 	/* Increase threshold for jumbo frames on dual port */
1622 	if (hw->ports > 1 && jumbo)
1623 		xm_write16(hw, port, XM_TX_THR, 1020);
1624 	else
1625 		xm_write16(hw, port, XM_TX_THR, 512);
1626 
1627 	/*
1628 	 * Enable the reception of all error frames. This is
1629 	 * a necessary evil due to the design of the XMAC. The
1630 	 * XMAC's receive FIFO is only 8K in size, however jumbo
1631 	 * frames can be up to 9000 bytes in length. When bad
1632 	 * frame filtering is enabled, the XMAC's RX FIFO operates
1633 	 * in 'store and forward' mode. For this to work, the
1634 	 * entire frame has to fit into the FIFO, but that means
1635 	 * that jumbo frames larger than 8192 bytes will be
1636 	 * truncated. Disabling all bad frame filtering causes
1637 	 * the RX FIFO to operate in streaming mode, in which
1638 	 * case the XMAC will start transferring frames out of the
1639 	 * RX FIFO as soon as the FIFO threshold is reached.
1640 	 */
1641 	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1642 
1643 
1644 	/*
1645 	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1646 	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1647 	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1648 	 */
1649 	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1650 
1651 	/*
1652 	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1653 	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1654 	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1655 	 */
1656 	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1657 
1658 	/* Configure MAC arbiter */
1659 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1660 
1661 	/* configure timeout values */
1662 	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1663 	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1664 	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1665 	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1666 
1667 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1668 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1669 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1670 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1671 
1672 	/* Configure Rx MAC FIFO */
1673 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1674 	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1675 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1676 
1677 	/* Configure Tx MAC FIFO */
1678 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1679 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1680 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1681 
1682 	if (jumbo) {
1683 		/* Enable frame flushing if jumbo frames used */
1684 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1685 	} else {
1686 		/* enable timeout timers if normal frames */
1687 		skge_write16(hw, B3_PA_CTRL,
1688 			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1689 	}
1690 }
1691 
1692 static void genesis_stop(struct skge_port *skge)
1693 {
1694 	struct skge_hw *hw = skge->hw;
1695 	int port = skge->port;
1696 	unsigned retries = 1000;
1697 	u16 cmd;
1698 
1699 	/* Disable Tx and Rx */
1700 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1701 	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1702 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1703 
1704 	genesis_reset(hw, port);
1705 
1706 	/* Clear Tx packet arbiter timeout IRQ */
1707 	skge_write16(hw, B3_PA_CTRL,
1708 		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1709 
1710 	/* Reset the MAC */
1711 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1712 	do {
1713 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1714 		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1715 			break;
1716 	} while (--retries > 0);
1717 
1718 	/* For external PHYs there must be special handling */
1719 	if (hw->phy_type != SK_PHY_XMAC) {
1720 		u32 reg = skge_read32(hw, B2_GP_IO);
1721 		if (port == 0) {
1722 			reg |= GP_DIR_0;
1723 			reg &= ~GP_IO_0;
1724 		} else {
1725 			reg |= GP_DIR_2;
1726 			reg &= ~GP_IO_2;
1727 		}
1728 		skge_write32(hw, B2_GP_IO, reg);
1729 		skge_read32(hw, B2_GP_IO);
1730 	}
1731 
1732 	xm_write16(hw, port, XM_MMU_CMD,
1733 			xm_read16(hw, port, XM_MMU_CMD)
1734 			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1735 
1736 	xm_read16(hw, port, XM_MMU_CMD);
1737 }
1738 
1739 
1740 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1741 {
1742 	struct skge_hw *hw = skge->hw;
1743 	int port = skge->port;
1744 	int i;
1745 	unsigned long timeout = jiffies + HZ;
1746 
1747 	xm_write16(hw, port,
1748 			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1749 
1750 	/* wait for update to complete */
1751 	while (xm_read16(hw, port, XM_STAT_CMD)
1752 	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1753 		if (time_after(jiffies, timeout))
1754 			break;
1755 		udelay(10);
1756 	}
1757 
1758 	/* special case for 64 bit octet counter */
1759 	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1760 		| xm_read32(hw, port, XM_TXO_OK_LO);
1761 	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1762 		| xm_read32(hw, port, XM_RXO_OK_LO);
1763 
1764 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1765 		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1766 }
1767 
1768 static void genesis_mac_intr(struct skge_hw *hw, int port)
1769 {
1770 	struct net_device *dev = hw->dev[port];
1771 	struct skge_port *skge = netdev_priv(dev);
1772 	u16 status = xm_read16(hw, port, XM_ISRC);
1773 
1774 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1775 		     "mac interrupt status 0x%x\n", status);
1776 
1777 	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1778 		xm_link_down(hw, port);
1779 		mod_timer(&skge->link_timer, jiffies + 1);
1780 	}
1781 
1782 	if (status & XM_IS_TXF_UR) {
1783 		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1784 		++dev->stats.tx_fifo_errors;
1785 	}
1786 }
1787 
1788 static void genesis_link_up(struct skge_port *skge)
1789 {
1790 	struct skge_hw *hw = skge->hw;
1791 	int port = skge->port;
1792 	u16 cmd, msk;
1793 	u32 mode;
1794 
1795 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1796 
1797 	/*
1798 	 * enabling pause frame reception is required for 1000BT
1799 	 * because the XMAC is not reset if the link is going down
1800 	 */
1801 	if (skge->flow_status == FLOW_STAT_NONE ||
1802 	    skge->flow_status == FLOW_STAT_LOC_SEND)
1803 		/* Disable Pause Frame Reception */
1804 		cmd |= XM_MMU_IGN_PF;
1805 	else
1806 		/* Enable Pause Frame Reception */
1807 		cmd &= ~XM_MMU_IGN_PF;
1808 
1809 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1810 
1811 	mode = xm_read32(hw, port, XM_MODE);
1812 	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1813 	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1814 		/*
1815 		 * Configure Pause Frame Generation
1816 		 * Use internal and external Pause Frame Generation.
1817 		 * Sending pause frames is edge triggered.
1818 		 * Send a Pause frame with the maximum pause time if
1819 		 * internal oder external FIFO full condition occurs.
1820 		 * Send a zero pause time frame to re-start transmission.
1821 		 */
1822 		/* XM_PAUSE_DA = '010000C28001' (default) */
1823 		/* XM_MAC_PTIME = 0xffff (maximum) */
1824 		/* remember this value is defined in big endian (!) */
1825 		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1826 
1827 		mode |= XM_PAUSE_MODE;
1828 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1829 	} else {
1830 		/*
1831 		 * disable pause frame generation is required for 1000BT
1832 		 * because the XMAC is not reset if the link is going down
1833 		 */
1834 		/* Disable Pause Mode in Mode Register */
1835 		mode &= ~XM_PAUSE_MODE;
1836 
1837 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1838 	}
1839 
1840 	xm_write32(hw, port, XM_MODE, mode);
1841 
1842 	/* Turn on detection of Tx underrun */
1843 	msk = xm_read16(hw, port, XM_IMSK);
1844 	msk &= ~XM_IS_TXF_UR;
1845 	xm_write16(hw, port, XM_IMSK, msk);
1846 
1847 	xm_read16(hw, port, XM_ISRC);
1848 
1849 	/* get MMU Command Reg. */
1850 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1851 	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1852 		cmd |= XM_MMU_GMII_FD;
1853 
1854 	/*
1855 	 * Workaround BCOM Errata (#10523) for all BCom Phys
1856 	 * Enable Power Management after link up
1857 	 */
1858 	if (hw->phy_type == SK_PHY_BCOM) {
1859 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1860 			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1861 			     & ~PHY_B_AC_DIS_PM);
1862 		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1863 	}
1864 
1865 	/* enable Rx/Tx */
1866 	xm_write16(hw, port, XM_MMU_CMD,
1867 			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1868 	skge_link_up(skge);
1869 }
1870 
1871 
1872 static inline void bcom_phy_intr(struct skge_port *skge)
1873 {
1874 	struct skge_hw *hw = skge->hw;
1875 	int port = skge->port;
1876 	u16 isrc;
1877 
1878 	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1879 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1880 		     "phy interrupt status 0x%x\n", isrc);
1881 
1882 	if (isrc & PHY_B_IS_PSE)
1883 		pr_err("%s: uncorrectable pair swap error\n",
1884 		       hw->dev[port]->name);
1885 
1886 	/* Workaround BCom Errata:
1887 	 *	enable and disable loopback mode if "NO HCD" occurs.
1888 	 */
1889 	if (isrc & PHY_B_IS_NO_HDCL) {
1890 		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1891 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1892 				  ctrl | PHY_CT_LOOP);
1893 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1894 				  ctrl & ~PHY_CT_LOOP);
1895 	}
1896 
1897 	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1898 		bcom_check_link(hw, port);
1899 
1900 }
1901 
1902 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1903 {
1904 	int i;
1905 
1906 	gma_write16(hw, port, GM_SMI_DATA, val);
1907 	gma_write16(hw, port, GM_SMI_CTRL,
1908 			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1909 	for (i = 0; i < PHY_RETRIES; i++) {
1910 		udelay(1);
1911 
1912 		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1913 			return 0;
1914 	}
1915 
1916 	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1917 	return -EIO;
1918 }
1919 
1920 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1921 {
1922 	int i;
1923 
1924 	gma_write16(hw, port, GM_SMI_CTRL,
1925 			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1926 			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1927 
1928 	for (i = 0; i < PHY_RETRIES; i++) {
1929 		udelay(1);
1930 		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1931 			goto ready;
1932 	}
1933 
1934 	return -ETIMEDOUT;
1935  ready:
1936 	*val = gma_read16(hw, port, GM_SMI_DATA);
1937 	return 0;
1938 }
1939 
1940 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1941 {
1942 	u16 v = 0;
1943 	if (__gm_phy_read(hw, port, reg, &v))
1944 		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1945 	return v;
1946 }
1947 
1948 /* Marvell Phy Initialization */
1949 static void yukon_init(struct skge_hw *hw, int port)
1950 {
1951 	struct skge_port *skge = netdev_priv(hw->dev[port]);
1952 	u16 ctrl, ct1000, adv;
1953 
1954 	if (skge->autoneg == AUTONEG_ENABLE) {
1955 		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1956 
1957 		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1958 			  PHY_M_EC_MAC_S_MSK);
1959 		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1960 
1961 		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1962 
1963 		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1964 	}
1965 
1966 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1967 	if (skge->autoneg == AUTONEG_DISABLE)
1968 		ctrl &= ~PHY_CT_ANE;
1969 
1970 	ctrl |= PHY_CT_RESET;
1971 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1972 
1973 	ctrl = 0;
1974 	ct1000 = 0;
1975 	adv = PHY_AN_CSMA;
1976 
1977 	if (skge->autoneg == AUTONEG_ENABLE) {
1978 		if (hw->copper) {
1979 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1980 				ct1000 |= PHY_M_1000C_AFD;
1981 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1982 				ct1000 |= PHY_M_1000C_AHD;
1983 			if (skge->advertising & ADVERTISED_100baseT_Full)
1984 				adv |= PHY_M_AN_100_FD;
1985 			if (skge->advertising & ADVERTISED_100baseT_Half)
1986 				adv |= PHY_M_AN_100_HD;
1987 			if (skge->advertising & ADVERTISED_10baseT_Full)
1988 				adv |= PHY_M_AN_10_FD;
1989 			if (skge->advertising & ADVERTISED_10baseT_Half)
1990 				adv |= PHY_M_AN_10_HD;
1991 
1992 			/* Set Flow-control capabilities */
1993 			adv |= phy_pause_map[skge->flow_control];
1994 		} else {
1995 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1996 				adv |= PHY_M_AN_1000X_AFD;
1997 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1998 				adv |= PHY_M_AN_1000X_AHD;
1999 
2000 			adv |= fiber_pause_map[skge->flow_control];
2001 		}
2002 
2003 		/* Restart Auto-negotiation */
2004 		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2005 	} else {
2006 		/* forced speed/duplex settings */
2007 		ct1000 = PHY_M_1000C_MSE;
2008 
2009 		if (skge->duplex == DUPLEX_FULL)
2010 			ctrl |= PHY_CT_DUP_MD;
2011 
2012 		switch (skge->speed) {
2013 		case SPEED_1000:
2014 			ctrl |= PHY_CT_SP1000;
2015 			break;
2016 		case SPEED_100:
2017 			ctrl |= PHY_CT_SP100;
2018 			break;
2019 		}
2020 
2021 		ctrl |= PHY_CT_RESET;
2022 	}
2023 
2024 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2025 
2026 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2027 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2028 
2029 	/* Enable phy interrupt on autonegotiation complete (or link up) */
2030 	if (skge->autoneg == AUTONEG_ENABLE)
2031 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2032 	else
2033 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2034 }
2035 
2036 static void yukon_reset(struct skge_hw *hw, int port)
2037 {
2038 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2039 	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2040 	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2041 	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2042 	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2043 
2044 	gma_write16(hw, port, GM_RX_CTRL,
2045 			 gma_read16(hw, port, GM_RX_CTRL)
2046 			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2047 }
2048 
2049 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2050 static int is_yukon_lite_a0(struct skge_hw *hw)
2051 {
2052 	u32 reg;
2053 	int ret;
2054 
2055 	if (hw->chip_id != CHIP_ID_YUKON)
2056 		return 0;
2057 
2058 	reg = skge_read32(hw, B2_FAR);
2059 	skge_write8(hw, B2_FAR + 3, 0xff);
2060 	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2061 	skge_write32(hw, B2_FAR, reg);
2062 	return ret;
2063 }
2064 
2065 static void yukon_mac_init(struct skge_hw *hw, int port)
2066 {
2067 	struct skge_port *skge = netdev_priv(hw->dev[port]);
2068 	int i;
2069 	u32 reg;
2070 	const u8 *addr = hw->dev[port]->dev_addr;
2071 
2072 	/* WA code for COMA mode -- set PHY reset */
2073 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2074 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2075 		reg = skge_read32(hw, B2_GP_IO);
2076 		reg |= GP_DIR_9 | GP_IO_9;
2077 		skge_write32(hw, B2_GP_IO, reg);
2078 	}
2079 
2080 	/* hard reset */
2081 	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2082 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2083 
2084 	/* WA code for COMA mode -- clear PHY reset */
2085 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2086 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2087 		reg = skge_read32(hw, B2_GP_IO);
2088 		reg |= GP_DIR_9;
2089 		reg &= ~GP_IO_9;
2090 		skge_write32(hw, B2_GP_IO, reg);
2091 	}
2092 
2093 	/* Set hardware config mode */
2094 	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2095 		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2096 	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2097 
2098 	/* Clear GMC reset */
2099 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2100 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2101 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2102 
2103 	if (skge->autoneg == AUTONEG_DISABLE) {
2104 		reg = GM_GPCR_AU_ALL_DIS;
2105 		gma_write16(hw, port, GM_GP_CTRL,
2106 				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2107 
2108 		switch (skge->speed) {
2109 		case SPEED_1000:
2110 			reg &= ~GM_GPCR_SPEED_100;
2111 			reg |= GM_GPCR_SPEED_1000;
2112 			break;
2113 		case SPEED_100:
2114 			reg &= ~GM_GPCR_SPEED_1000;
2115 			reg |= GM_GPCR_SPEED_100;
2116 			break;
2117 		case SPEED_10:
2118 			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2119 			break;
2120 		}
2121 
2122 		if (skge->duplex == DUPLEX_FULL)
2123 			reg |= GM_GPCR_DUP_FULL;
2124 	} else
2125 		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2126 
2127 	switch (skge->flow_control) {
2128 	case FLOW_MODE_NONE:
2129 		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2130 		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2131 		break;
2132 	case FLOW_MODE_LOC_SEND:
2133 		/* disable Rx flow-control */
2134 		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2135 		break;
2136 	case FLOW_MODE_SYMMETRIC:
2137 	case FLOW_MODE_SYM_OR_REM:
2138 		/* enable Tx & Rx flow-control */
2139 		break;
2140 	}
2141 
2142 	gma_write16(hw, port, GM_GP_CTRL, reg);
2143 	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2144 
2145 	yukon_init(hw, port);
2146 
2147 	/* MIB clear */
2148 	reg = gma_read16(hw, port, GM_PHY_ADDR);
2149 	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2150 
2151 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2152 		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2153 	gma_write16(hw, port, GM_PHY_ADDR, reg);
2154 
2155 	/* transmit control */
2156 	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2157 
2158 	/* receive control reg: unicast + multicast + no FCS  */
2159 	gma_write16(hw, port, GM_RX_CTRL,
2160 			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2161 
2162 	/* transmit flow control */
2163 	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2164 
2165 	/* transmit parameter */
2166 	gma_write16(hw, port, GM_TX_PARAM,
2167 			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2168 			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2169 			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2170 
2171 	/* configure the Serial Mode Register */
2172 	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2173 		| GM_SMOD_VLAN_ENA
2174 		| IPG_DATA_VAL(IPG_DATA_DEF);
2175 
2176 	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2177 		reg |= GM_SMOD_JUMBO_ENA;
2178 
2179 	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2180 
2181 	/* physical address: used for pause frames */
2182 	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2183 	/* virtual address for data */
2184 	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2185 
2186 	/* enable interrupt mask for counter overflows */
2187 	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2188 	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2189 	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2190 
2191 	/* Initialize Mac Fifo */
2192 
2193 	/* Configure Rx MAC FIFO */
2194 	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2195 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2196 
2197 	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2198 	if (is_yukon_lite_a0(hw))
2199 		reg &= ~GMF_RX_F_FL_ON;
2200 
2201 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2202 	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2203 	/*
2204 	 * because Pause Packet Truncation in GMAC is not working
2205 	 * we have to increase the Flush Threshold to 64 bytes
2206 	 * in order to flush pause packets in Rx FIFO on Yukon-1
2207 	 */
2208 	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2209 
2210 	/* Configure Tx MAC FIFO */
2211 	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2212 	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2213 }
2214 
2215 /* Go into power down mode */
2216 static void yukon_suspend(struct skge_hw *hw, int port)
2217 {
2218 	u16 ctrl;
2219 
2220 	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2221 	ctrl |= PHY_M_PC_POL_R_DIS;
2222 	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2223 
2224 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2225 	ctrl |= PHY_CT_RESET;
2226 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2227 
2228 	/* switch IEEE compatible power down mode on */
2229 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2230 	ctrl |= PHY_CT_PDOWN;
2231 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2232 }
2233 
2234 static void yukon_stop(struct skge_port *skge)
2235 {
2236 	struct skge_hw *hw = skge->hw;
2237 	int port = skge->port;
2238 
2239 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2240 	yukon_reset(hw, port);
2241 
2242 	gma_write16(hw, port, GM_GP_CTRL,
2243 			 gma_read16(hw, port, GM_GP_CTRL)
2244 			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2245 	gma_read16(hw, port, GM_GP_CTRL);
2246 
2247 	yukon_suspend(hw, port);
2248 
2249 	/* set GPHY Control reset */
2250 	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2251 	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2252 }
2253 
2254 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2255 {
2256 	struct skge_hw *hw = skge->hw;
2257 	int port = skge->port;
2258 	int i;
2259 
2260 	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2261 		| gma_read32(hw, port, GM_TXO_OK_LO);
2262 	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2263 		| gma_read32(hw, port, GM_RXO_OK_LO);
2264 
2265 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2266 		data[i] = gma_read32(hw, port,
2267 					  skge_stats[i].gma_offset);
2268 }
2269 
2270 static void yukon_mac_intr(struct skge_hw *hw, int port)
2271 {
2272 	struct net_device *dev = hw->dev[port];
2273 	struct skge_port *skge = netdev_priv(dev);
2274 	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2275 
2276 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2277 		     "mac interrupt status 0x%x\n", status);
2278 
2279 	if (status & GM_IS_RX_FF_OR) {
2280 		++dev->stats.rx_fifo_errors;
2281 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2282 	}
2283 
2284 	if (status & GM_IS_TX_FF_UR) {
2285 		++dev->stats.tx_fifo_errors;
2286 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2287 	}
2288 
2289 }
2290 
2291 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2292 {
2293 	switch (aux & PHY_M_PS_SPEED_MSK) {
2294 	case PHY_M_PS_SPEED_1000:
2295 		return SPEED_1000;
2296 	case PHY_M_PS_SPEED_100:
2297 		return SPEED_100;
2298 	default:
2299 		return SPEED_10;
2300 	}
2301 }
2302 
2303 static void yukon_link_up(struct skge_port *skge)
2304 {
2305 	struct skge_hw *hw = skge->hw;
2306 	int port = skge->port;
2307 	u16 reg;
2308 
2309 	/* Enable Transmit FIFO Underrun */
2310 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2311 
2312 	reg = gma_read16(hw, port, GM_GP_CTRL);
2313 	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2314 		reg |= GM_GPCR_DUP_FULL;
2315 
2316 	/* enable Rx/Tx */
2317 	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2318 	gma_write16(hw, port, GM_GP_CTRL, reg);
2319 
2320 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2321 	skge_link_up(skge);
2322 }
2323 
2324 static void yukon_link_down(struct skge_port *skge)
2325 {
2326 	struct skge_hw *hw = skge->hw;
2327 	int port = skge->port;
2328 	u16 ctrl;
2329 
2330 	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2331 	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2332 	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2333 
2334 	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2335 		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2336 		ctrl |= PHY_M_AN_ASP;
2337 		/* restore Asymmetric Pause bit */
2338 		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2339 	}
2340 
2341 	skge_link_down(skge);
2342 
2343 	yukon_init(hw, port);
2344 }
2345 
2346 static void yukon_phy_intr(struct skge_port *skge)
2347 {
2348 	struct skge_hw *hw = skge->hw;
2349 	int port = skge->port;
2350 	const char *reason = NULL;
2351 	u16 istatus, phystat;
2352 
2353 	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2354 	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2355 
2356 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2357 		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2358 
2359 	if (istatus & PHY_M_IS_AN_COMPL) {
2360 		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2361 		    & PHY_M_AN_RF) {
2362 			reason = "remote fault";
2363 			goto failed;
2364 		}
2365 
2366 		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2367 			reason = "master/slave fault";
2368 			goto failed;
2369 		}
2370 
2371 		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2372 			reason = "speed/duplex";
2373 			goto failed;
2374 		}
2375 
2376 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2377 			? DUPLEX_FULL : DUPLEX_HALF;
2378 		skge->speed = yukon_speed(hw, phystat);
2379 
2380 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2381 		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2382 		case PHY_M_PS_PAUSE_MSK:
2383 			skge->flow_status = FLOW_STAT_SYMMETRIC;
2384 			break;
2385 		case PHY_M_PS_RX_P_EN:
2386 			skge->flow_status = FLOW_STAT_REM_SEND;
2387 			break;
2388 		case PHY_M_PS_TX_P_EN:
2389 			skge->flow_status = FLOW_STAT_LOC_SEND;
2390 			break;
2391 		default:
2392 			skge->flow_status = FLOW_STAT_NONE;
2393 		}
2394 
2395 		if (skge->flow_status == FLOW_STAT_NONE ||
2396 		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2397 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2398 		else
2399 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2400 		yukon_link_up(skge);
2401 		return;
2402 	}
2403 
2404 	if (istatus & PHY_M_IS_LSP_CHANGE)
2405 		skge->speed = yukon_speed(hw, phystat);
2406 
2407 	if (istatus & PHY_M_IS_DUP_CHANGE)
2408 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2409 	if (istatus & PHY_M_IS_LST_CHANGE) {
2410 		if (phystat & PHY_M_PS_LINK_UP)
2411 			yukon_link_up(skge);
2412 		else
2413 			yukon_link_down(skge);
2414 	}
2415 	return;
2416  failed:
2417 	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2418 
2419 	/* XXX restart autonegotiation? */
2420 }
2421 
2422 static void skge_phy_reset(struct skge_port *skge)
2423 {
2424 	struct skge_hw *hw = skge->hw;
2425 	int port = skge->port;
2426 	struct net_device *dev = hw->dev[port];
2427 
2428 	netif_stop_queue(skge->netdev);
2429 	netif_carrier_off(skge->netdev);
2430 
2431 	spin_lock_bh(&hw->phy_lock);
2432 	if (is_genesis(hw)) {
2433 		genesis_reset(hw, port);
2434 		genesis_mac_init(hw, port);
2435 	} else {
2436 		yukon_reset(hw, port);
2437 		yukon_init(hw, port);
2438 	}
2439 	spin_unlock_bh(&hw->phy_lock);
2440 
2441 	skge_set_multicast(dev);
2442 }
2443 
2444 /* Basic MII support */
2445 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2446 {
2447 	struct mii_ioctl_data *data = if_mii(ifr);
2448 	struct skge_port *skge = netdev_priv(dev);
2449 	struct skge_hw *hw = skge->hw;
2450 	int err = -EOPNOTSUPP;
2451 
2452 	if (!netif_running(dev))
2453 		return -ENODEV;	/* Phy still in reset */
2454 
2455 	switch (cmd) {
2456 	case SIOCGMIIPHY:
2457 		data->phy_id = hw->phy_addr;
2458 
2459 		fallthrough;
2460 	case SIOCGMIIREG: {
2461 		u16 val = 0;
2462 		spin_lock_bh(&hw->phy_lock);
2463 
2464 		if (is_genesis(hw))
2465 			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2466 		else
2467 			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2468 		spin_unlock_bh(&hw->phy_lock);
2469 		data->val_out = val;
2470 		break;
2471 	}
2472 
2473 	case SIOCSMIIREG:
2474 		spin_lock_bh(&hw->phy_lock);
2475 		if (is_genesis(hw))
2476 			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2477 				   data->val_in);
2478 		else
2479 			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2480 				   data->val_in);
2481 		spin_unlock_bh(&hw->phy_lock);
2482 		break;
2483 	}
2484 	return err;
2485 }
2486 
2487 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2488 {
2489 	u32 end;
2490 
2491 	start /= 8;
2492 	len /= 8;
2493 	end = start + len - 1;
2494 
2495 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2496 	skge_write32(hw, RB_ADDR(q, RB_START), start);
2497 	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2498 	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2499 	skge_write32(hw, RB_ADDR(q, RB_END), end);
2500 
2501 	if (q == Q_R1 || q == Q_R2) {
2502 		/* Set thresholds on receive queue's */
2503 		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2504 			     start + (2*len)/3);
2505 		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2506 			     start + (len/3));
2507 	} else {
2508 		/* Enable store & forward on Tx queue's because
2509 		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2510 		 */
2511 		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2512 	}
2513 
2514 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2515 }
2516 
2517 /* Setup Bus Memory Interface */
2518 static void skge_qset(struct skge_port *skge, u16 q,
2519 		      const struct skge_element *e)
2520 {
2521 	struct skge_hw *hw = skge->hw;
2522 	u32 watermark = 0x600;
2523 	u64 base = skge->dma + (e->desc - skge->mem);
2524 
2525 	/* optimization to reduce window on 32bit/33mhz */
2526 	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2527 		watermark /= 2;
2528 
2529 	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2530 	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2531 	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2532 	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2533 }
2534 
2535 static int skge_up(struct net_device *dev)
2536 {
2537 	struct skge_port *skge = netdev_priv(dev);
2538 	struct skge_hw *hw = skge->hw;
2539 	int port = skge->port;
2540 	u32 chunk, ram_addr;
2541 	size_t rx_size, tx_size;
2542 	int err;
2543 
2544 	if (!is_valid_ether_addr(dev->dev_addr))
2545 		return -EINVAL;
2546 
2547 	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2548 
2549 	if (dev->mtu > RX_BUF_SIZE)
2550 		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2551 	else
2552 		skge->rx_buf_size = RX_BUF_SIZE;
2553 
2554 
2555 	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2556 	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2557 	skge->mem_size = tx_size + rx_size;
2558 	skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2559 				       &skge->dma, GFP_KERNEL);
2560 	if (!skge->mem)
2561 		return -ENOMEM;
2562 
2563 	BUG_ON(skge->dma & 7);
2564 
2565 	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2566 		dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2567 		err = -EINVAL;
2568 		goto free_pci_mem;
2569 	}
2570 
2571 	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2572 	if (err)
2573 		goto free_pci_mem;
2574 
2575 	err = skge_rx_fill(dev);
2576 	if (err)
2577 		goto free_rx_ring;
2578 
2579 	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2580 			      skge->dma + rx_size);
2581 	if (err)
2582 		goto free_rx_ring;
2583 
2584 	if (hw->ports == 1) {
2585 		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2586 				  dev->name, hw);
2587 		if (err) {
2588 			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2589 				   hw->pdev->irq, err);
2590 			goto free_tx_ring;
2591 		}
2592 	}
2593 
2594 	/* Initialize MAC */
2595 	netif_carrier_off(dev);
2596 	spin_lock_bh(&hw->phy_lock);
2597 	if (is_genesis(hw))
2598 		genesis_mac_init(hw, port);
2599 	else
2600 		yukon_mac_init(hw, port);
2601 	spin_unlock_bh(&hw->phy_lock);
2602 
2603 	/* Configure RAMbuffers - equally between ports and tx/rx */
2604 	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2605 	ram_addr = hw->ram_offset + 2 * chunk * port;
2606 
2607 	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2608 	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2609 
2610 	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2611 	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2612 	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2613 
2614 	/* Start receiver BMU */
2615 	wmb();
2616 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2617 	skge_led(skge, LED_MODE_ON);
2618 
2619 	spin_lock_irq(&hw->hw_lock);
2620 	hw->intr_mask |= portmask[port];
2621 	skge_write32(hw, B0_IMSK, hw->intr_mask);
2622 	skge_read32(hw, B0_IMSK);
2623 	spin_unlock_irq(&hw->hw_lock);
2624 
2625 	napi_enable(&skge->napi);
2626 
2627 	skge_set_multicast(dev);
2628 
2629 	return 0;
2630 
2631  free_tx_ring:
2632 	kfree(skge->tx_ring.start);
2633  free_rx_ring:
2634 	skge_rx_clean(skge);
2635 	kfree(skge->rx_ring.start);
2636  free_pci_mem:
2637 	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2638 			  skge->dma);
2639 	skge->mem = NULL;
2640 
2641 	return err;
2642 }
2643 
2644 /* stop receiver */
2645 static void skge_rx_stop(struct skge_hw *hw, int port)
2646 {
2647 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2648 	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2649 		     RB_RST_SET|RB_DIS_OP_MD);
2650 	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2651 }
2652 
2653 static int skge_down(struct net_device *dev)
2654 {
2655 	struct skge_port *skge = netdev_priv(dev);
2656 	struct skge_hw *hw = skge->hw;
2657 	int port = skge->port;
2658 
2659 	if (!skge->mem)
2660 		return 0;
2661 
2662 	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2663 
2664 	netif_tx_disable(dev);
2665 
2666 	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2667 		del_timer_sync(&skge->link_timer);
2668 
2669 	napi_disable(&skge->napi);
2670 	netif_carrier_off(dev);
2671 
2672 	spin_lock_irq(&hw->hw_lock);
2673 	hw->intr_mask &= ~portmask[port];
2674 	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2675 	skge_read32(hw, B0_IMSK);
2676 	spin_unlock_irq(&hw->hw_lock);
2677 
2678 	if (hw->ports == 1)
2679 		free_irq(hw->pdev->irq, hw);
2680 
2681 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2682 	if (is_genesis(hw))
2683 		genesis_stop(skge);
2684 	else
2685 		yukon_stop(skge);
2686 
2687 	/* Stop transmitter */
2688 	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2689 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2690 		     RB_RST_SET|RB_DIS_OP_MD);
2691 
2692 
2693 	/* Disable Force Sync bit and Enable Alloc bit */
2694 	skge_write8(hw, SK_REG(port, TXA_CTRL),
2695 		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2696 
2697 	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2698 	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2699 	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2700 
2701 	/* Reset PCI FIFO */
2702 	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2703 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2704 
2705 	/* Reset the RAM Buffer async Tx queue */
2706 	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2707 
2708 	skge_rx_stop(hw, port);
2709 
2710 	if (is_genesis(hw)) {
2711 		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2712 		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2713 	} else {
2714 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2715 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2716 	}
2717 
2718 	skge_led(skge, LED_MODE_OFF);
2719 
2720 	netif_tx_lock_bh(dev);
2721 	skge_tx_clean(dev);
2722 	netif_tx_unlock_bh(dev);
2723 
2724 	skge_rx_clean(skge);
2725 
2726 	kfree(skge->rx_ring.start);
2727 	kfree(skge->tx_ring.start);
2728 	dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2729 			  skge->dma);
2730 	skge->mem = NULL;
2731 	return 0;
2732 }
2733 
2734 static inline int skge_avail(const struct skge_ring *ring)
2735 {
2736 	smp_mb();
2737 	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2738 		+ (ring->to_clean - ring->to_use) - 1;
2739 }
2740 
2741 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2742 				   struct net_device *dev)
2743 {
2744 	struct skge_port *skge = netdev_priv(dev);
2745 	struct skge_hw *hw = skge->hw;
2746 	struct skge_element *e;
2747 	struct skge_tx_desc *td;
2748 	int i;
2749 	u32 control, len;
2750 	dma_addr_t map;
2751 
2752 	if (skb_padto(skb, ETH_ZLEN))
2753 		return NETDEV_TX_OK;
2754 
2755 	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2756 		return NETDEV_TX_BUSY;
2757 
2758 	e = skge->tx_ring.to_use;
2759 	td = e->desc;
2760 	BUG_ON(td->control & BMU_OWN);
2761 	e->skb = skb;
2762 	len = skb_headlen(skb);
2763 	map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2764 	if (dma_mapping_error(&hw->pdev->dev, map))
2765 		goto mapping_error;
2766 
2767 	dma_unmap_addr_set(e, mapaddr, map);
2768 	dma_unmap_len_set(e, maplen, len);
2769 
2770 	td->dma_lo = lower_32_bits(map);
2771 	td->dma_hi = upper_32_bits(map);
2772 
2773 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2774 		const int offset = skb_checksum_start_offset(skb);
2775 
2776 		/* This seems backwards, but it is what the sk98lin
2777 		 * does.  Looks like hardware is wrong?
2778 		 */
2779 		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2780 		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2781 			control = BMU_TCP_CHECK;
2782 		else
2783 			control = BMU_UDP_CHECK;
2784 
2785 		td->csum_offs = 0;
2786 		td->csum_start = offset;
2787 		td->csum_write = offset + skb->csum_offset;
2788 	} else
2789 		control = BMU_CHECK;
2790 
2791 	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2792 		control |= BMU_EOF | BMU_IRQ_EOF;
2793 	else {
2794 		struct skge_tx_desc *tf = td;
2795 
2796 		control |= BMU_STFWD;
2797 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2798 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2799 
2800 			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2801 					       skb_frag_size(frag), DMA_TO_DEVICE);
2802 			if (dma_mapping_error(&hw->pdev->dev, map))
2803 				goto mapping_unwind;
2804 
2805 			e = e->next;
2806 			e->skb = skb;
2807 			tf = e->desc;
2808 			BUG_ON(tf->control & BMU_OWN);
2809 
2810 			tf->dma_lo = lower_32_bits(map);
2811 			tf->dma_hi = upper_32_bits(map);
2812 			dma_unmap_addr_set(e, mapaddr, map);
2813 			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2814 
2815 			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2816 		}
2817 		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2818 	}
2819 	/* Make sure all the descriptors written */
2820 	wmb();
2821 	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2822 	wmb();
2823 
2824 	netdev_sent_queue(dev, skb->len);
2825 
2826 	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2827 
2828 	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2829 		     "tx queued, slot %td, len %d\n",
2830 		     e - skge->tx_ring.start, skb->len);
2831 
2832 	skge->tx_ring.to_use = e->next;
2833 	smp_wmb();
2834 
2835 	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2836 		netdev_dbg(dev, "transmit queue full\n");
2837 		netif_stop_queue(dev);
2838 	}
2839 
2840 	return NETDEV_TX_OK;
2841 
2842 mapping_unwind:
2843 	e = skge->tx_ring.to_use;
2844 	dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2845 			 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2846 	while (i-- > 0) {
2847 		e = e->next;
2848 		dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2849 			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2850 	}
2851 
2852 mapping_error:
2853 	if (net_ratelimit())
2854 		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2855 	dev_kfree_skb_any(skb);
2856 	return NETDEV_TX_OK;
2857 }
2858 
2859 
2860 /* Free resources associated with this reing element */
2861 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2862 				 u32 control)
2863 {
2864 	/* skb header vs. fragment */
2865 	if (control & BMU_STF)
2866 		dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2867 				 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2868 	else
2869 		dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2870 			       dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2871 }
2872 
2873 /* Free all buffers in transmit ring */
2874 static void skge_tx_clean(struct net_device *dev)
2875 {
2876 	struct skge_port *skge = netdev_priv(dev);
2877 	struct skge_element *e;
2878 
2879 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2880 		struct skge_tx_desc *td = e->desc;
2881 
2882 		skge_tx_unmap(skge->hw->pdev, e, td->control);
2883 
2884 		if (td->control & BMU_EOF)
2885 			dev_kfree_skb(e->skb);
2886 		td->control = 0;
2887 	}
2888 
2889 	netdev_reset_queue(dev);
2890 	skge->tx_ring.to_clean = e;
2891 }
2892 
2893 static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2894 {
2895 	struct skge_port *skge = netdev_priv(dev);
2896 
2897 	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2898 
2899 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2900 	skge_tx_clean(dev);
2901 	netif_wake_queue(dev);
2902 }
2903 
2904 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2905 {
2906 	int err;
2907 
2908 	if (!netif_running(dev)) {
2909 		dev->mtu = new_mtu;
2910 		return 0;
2911 	}
2912 
2913 	skge_down(dev);
2914 
2915 	dev->mtu = new_mtu;
2916 
2917 	err = skge_up(dev);
2918 	if (err)
2919 		dev_close(dev);
2920 
2921 	return err;
2922 }
2923 
2924 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2925 
2926 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2927 {
2928 	u32 crc, bit;
2929 
2930 	crc = ether_crc_le(ETH_ALEN, addr);
2931 	bit = ~crc & 0x3f;
2932 	filter[bit/8] |= 1 << (bit%8);
2933 }
2934 
2935 static void genesis_set_multicast(struct net_device *dev)
2936 {
2937 	struct skge_port *skge = netdev_priv(dev);
2938 	struct skge_hw *hw = skge->hw;
2939 	int port = skge->port;
2940 	struct netdev_hw_addr *ha;
2941 	u32 mode;
2942 	u8 filter[8];
2943 
2944 	mode = xm_read32(hw, port, XM_MODE);
2945 	mode |= XM_MD_ENA_HASH;
2946 	if (dev->flags & IFF_PROMISC)
2947 		mode |= XM_MD_ENA_PROM;
2948 	else
2949 		mode &= ~XM_MD_ENA_PROM;
2950 
2951 	if (dev->flags & IFF_ALLMULTI)
2952 		memset(filter, 0xff, sizeof(filter));
2953 	else {
2954 		memset(filter, 0, sizeof(filter));
2955 
2956 		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2957 		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2958 			genesis_add_filter(filter, pause_mc_addr);
2959 
2960 		netdev_for_each_mc_addr(ha, dev)
2961 			genesis_add_filter(filter, ha->addr);
2962 	}
2963 
2964 	xm_write32(hw, port, XM_MODE, mode);
2965 	xm_outhash(hw, port, XM_HSM, filter);
2966 }
2967 
2968 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2969 {
2970 	u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2971 
2972 	filter[bit / 8] |= 1 << (bit % 8);
2973 }
2974 
2975 static void yukon_set_multicast(struct net_device *dev)
2976 {
2977 	struct skge_port *skge = netdev_priv(dev);
2978 	struct skge_hw *hw = skge->hw;
2979 	int port = skge->port;
2980 	struct netdev_hw_addr *ha;
2981 	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2982 			skge->flow_status == FLOW_STAT_SYMMETRIC);
2983 	u16 reg;
2984 	u8 filter[8];
2985 
2986 	memset(filter, 0, sizeof(filter));
2987 
2988 	reg = gma_read16(hw, port, GM_RX_CTRL);
2989 	reg |= GM_RXCR_UCF_ENA;
2990 
2991 	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2992 		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2993 	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2994 		memset(filter, 0xff, sizeof(filter));
2995 	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2996 		reg &= ~GM_RXCR_MCF_ENA;
2997 	else {
2998 		reg |= GM_RXCR_MCF_ENA;
2999 
3000 		if (rx_pause)
3001 			yukon_add_filter(filter, pause_mc_addr);
3002 
3003 		netdev_for_each_mc_addr(ha, dev)
3004 			yukon_add_filter(filter, ha->addr);
3005 	}
3006 
3007 
3008 	gma_write16(hw, port, GM_MC_ADDR_H1,
3009 			 (u16)filter[0] | ((u16)filter[1] << 8));
3010 	gma_write16(hw, port, GM_MC_ADDR_H2,
3011 			 (u16)filter[2] | ((u16)filter[3] << 8));
3012 	gma_write16(hw, port, GM_MC_ADDR_H3,
3013 			 (u16)filter[4] | ((u16)filter[5] << 8));
3014 	gma_write16(hw, port, GM_MC_ADDR_H4,
3015 			 (u16)filter[6] | ((u16)filter[7] << 8));
3016 
3017 	gma_write16(hw, port, GM_RX_CTRL, reg);
3018 }
3019 
3020 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3021 {
3022 	if (is_genesis(hw))
3023 		return status >> XMR_FS_LEN_SHIFT;
3024 	else
3025 		return status >> GMR_FS_LEN_SHIFT;
3026 }
3027 
3028 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3029 {
3030 	if (is_genesis(hw))
3031 		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3032 	else
3033 		return (status & GMR_FS_ANY_ERR) ||
3034 			(status & GMR_FS_RX_OK) == 0;
3035 }
3036 
3037 static void skge_set_multicast(struct net_device *dev)
3038 {
3039 	struct skge_port *skge = netdev_priv(dev);
3040 
3041 	if (is_genesis(skge->hw))
3042 		genesis_set_multicast(dev);
3043 	else
3044 		yukon_set_multicast(dev);
3045 
3046 }
3047 
3048 
3049 /* Get receive buffer from descriptor.
3050  * Handles copy of small buffers and reallocation failures
3051  */
3052 static struct sk_buff *skge_rx_get(struct net_device *dev,
3053 				   struct skge_element *e,
3054 				   u32 control, u32 status, u16 csum)
3055 {
3056 	struct skge_port *skge = netdev_priv(dev);
3057 	struct sk_buff *skb;
3058 	u16 len = control & BMU_BBC;
3059 
3060 	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3061 		     "rx slot %td status 0x%x len %d\n",
3062 		     e - skge->rx_ring.start, status, len);
3063 
3064 	if (len > skge->rx_buf_size)
3065 		goto error;
3066 
3067 	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3068 		goto error;
3069 
3070 	if (bad_phy_status(skge->hw, status))
3071 		goto error;
3072 
3073 	if (phy_length(skge->hw, status) != len)
3074 		goto error;
3075 
3076 	if (len < RX_COPY_THRESHOLD) {
3077 		skb = netdev_alloc_skb_ip_align(dev, len);
3078 		if (!skb)
3079 			goto resubmit;
3080 
3081 		dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3082 					dma_unmap_addr(e, mapaddr),
3083 					dma_unmap_len(e, maplen),
3084 					DMA_FROM_DEVICE);
3085 		skb_copy_from_linear_data(e->skb, skb->data, len);
3086 		dma_sync_single_for_device(&skge->hw->pdev->dev,
3087 					   dma_unmap_addr(e, mapaddr),
3088 					   dma_unmap_len(e, maplen),
3089 					   DMA_FROM_DEVICE);
3090 		skge_rx_reuse(e, skge->rx_buf_size);
3091 	} else {
3092 		struct skge_element ee;
3093 		struct sk_buff *nskb;
3094 
3095 		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3096 		if (!nskb)
3097 			goto resubmit;
3098 
3099 		ee = *e;
3100 
3101 		skb = ee.skb;
3102 		prefetch(skb->data);
3103 
3104 		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3105 			dev_kfree_skb(nskb);
3106 			goto resubmit;
3107 		}
3108 
3109 		dma_unmap_single(&skge->hw->pdev->dev,
3110 				 dma_unmap_addr(&ee, mapaddr),
3111 				 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
3112 	}
3113 
3114 	skb_put(skb, len);
3115 
3116 	if (dev->features & NETIF_F_RXCSUM) {
3117 		skb->csum = le16_to_cpu(csum);
3118 		skb->ip_summed = CHECKSUM_COMPLETE;
3119 	}
3120 
3121 	skb->protocol = eth_type_trans(skb, dev);
3122 
3123 	return skb;
3124 error:
3125 
3126 	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3127 		     "rx err, slot %td control 0x%x status 0x%x\n",
3128 		     e - skge->rx_ring.start, control, status);
3129 
3130 	if (is_genesis(skge->hw)) {
3131 		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3132 			dev->stats.rx_length_errors++;
3133 		if (status & XMR_FS_FRA_ERR)
3134 			dev->stats.rx_frame_errors++;
3135 		if (status & XMR_FS_FCS_ERR)
3136 			dev->stats.rx_crc_errors++;
3137 	} else {
3138 		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3139 			dev->stats.rx_length_errors++;
3140 		if (status & GMR_FS_FRAGMENT)
3141 			dev->stats.rx_frame_errors++;
3142 		if (status & GMR_FS_CRC_ERR)
3143 			dev->stats.rx_crc_errors++;
3144 	}
3145 
3146 resubmit:
3147 	skge_rx_reuse(e, skge->rx_buf_size);
3148 	return NULL;
3149 }
3150 
3151 /* Free all buffers in Tx ring which are no longer owned by device */
3152 static void skge_tx_done(struct net_device *dev)
3153 {
3154 	struct skge_port *skge = netdev_priv(dev);
3155 	struct skge_ring *ring = &skge->tx_ring;
3156 	struct skge_element *e;
3157 	unsigned int bytes_compl = 0, pkts_compl = 0;
3158 
3159 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3160 
3161 	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3162 		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3163 
3164 		if (control & BMU_OWN)
3165 			break;
3166 
3167 		skge_tx_unmap(skge->hw->pdev, e, control);
3168 
3169 		if (control & BMU_EOF) {
3170 			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3171 				     "tx done slot %td\n",
3172 				     e - skge->tx_ring.start);
3173 
3174 			pkts_compl++;
3175 			bytes_compl += e->skb->len;
3176 
3177 			dev_consume_skb_any(e->skb);
3178 		}
3179 	}
3180 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3181 	skge->tx_ring.to_clean = e;
3182 
3183 	/* Can run lockless until we need to synchronize to restart queue. */
3184 	smp_mb();
3185 
3186 	if (unlikely(netif_queue_stopped(dev) &&
3187 		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3188 		netif_tx_lock(dev);
3189 		if (unlikely(netif_queue_stopped(dev) &&
3190 			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3191 			netif_wake_queue(dev);
3192 
3193 		}
3194 		netif_tx_unlock(dev);
3195 	}
3196 }
3197 
3198 static int skge_poll(struct napi_struct *napi, int budget)
3199 {
3200 	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3201 	struct net_device *dev = skge->netdev;
3202 	struct skge_hw *hw = skge->hw;
3203 	struct skge_ring *ring = &skge->rx_ring;
3204 	struct skge_element *e;
3205 	int work_done = 0;
3206 
3207 	skge_tx_done(dev);
3208 
3209 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3210 
3211 	for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3212 		struct skge_rx_desc *rd = e->desc;
3213 		struct sk_buff *skb;
3214 		u32 control;
3215 
3216 		rmb();
3217 		control = rd->control;
3218 		if (control & BMU_OWN)
3219 			break;
3220 
3221 		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3222 		if (likely(skb)) {
3223 			napi_gro_receive(napi, skb);
3224 			++work_done;
3225 		}
3226 	}
3227 	ring->to_clean = e;
3228 
3229 	/* restart receiver */
3230 	wmb();
3231 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3232 
3233 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3234 		unsigned long flags;
3235 
3236 		spin_lock_irqsave(&hw->hw_lock, flags);
3237 		hw->intr_mask |= napimask[skge->port];
3238 		skge_write32(hw, B0_IMSK, hw->intr_mask);
3239 		skge_read32(hw, B0_IMSK);
3240 		spin_unlock_irqrestore(&hw->hw_lock, flags);
3241 	}
3242 
3243 	return work_done;
3244 }
3245 
3246 /* Parity errors seem to happen when Genesis is connected to a switch
3247  * with no other ports present. Heartbeat error??
3248  */
3249 static void skge_mac_parity(struct skge_hw *hw, int port)
3250 {
3251 	struct net_device *dev = hw->dev[port];
3252 
3253 	++dev->stats.tx_heartbeat_errors;
3254 
3255 	if (is_genesis(hw))
3256 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3257 			     MFF_CLR_PERR);
3258 	else
3259 		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3260 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3261 			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3262 			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3263 }
3264 
3265 static void skge_mac_intr(struct skge_hw *hw, int port)
3266 {
3267 	if (is_genesis(hw))
3268 		genesis_mac_intr(hw, port);
3269 	else
3270 		yukon_mac_intr(hw, port);
3271 }
3272 
3273 /* Handle device specific framing and timeout interrupts */
3274 static void skge_error_irq(struct skge_hw *hw)
3275 {
3276 	struct pci_dev *pdev = hw->pdev;
3277 	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3278 
3279 	if (is_genesis(hw)) {
3280 		/* clear xmac errors */
3281 		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3282 			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3283 		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3284 			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3285 	} else {
3286 		/* Timestamp (unused) overflow */
3287 		if (hwstatus & IS_IRQ_TIST_OV)
3288 			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3289 	}
3290 
3291 	if (hwstatus & IS_RAM_RD_PAR) {
3292 		dev_err(&pdev->dev, "Ram read data parity error\n");
3293 		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3294 	}
3295 
3296 	if (hwstatus & IS_RAM_WR_PAR) {
3297 		dev_err(&pdev->dev, "Ram write data parity error\n");
3298 		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3299 	}
3300 
3301 	if (hwstatus & IS_M1_PAR_ERR)
3302 		skge_mac_parity(hw, 0);
3303 
3304 	if (hwstatus & IS_M2_PAR_ERR)
3305 		skge_mac_parity(hw, 1);
3306 
3307 	if (hwstatus & IS_R1_PAR_ERR) {
3308 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3309 			hw->dev[0]->name);
3310 		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3311 	}
3312 
3313 	if (hwstatus & IS_R2_PAR_ERR) {
3314 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3315 			hw->dev[1]->name);
3316 		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3317 	}
3318 
3319 	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3320 		u16 pci_status, pci_cmd;
3321 
3322 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3323 		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3324 
3325 		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3326 			pci_cmd, pci_status);
3327 
3328 		/* Write the error bits back to clear them. */
3329 		pci_status &= PCI_STATUS_ERROR_BITS;
3330 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3331 		pci_write_config_word(pdev, PCI_COMMAND,
3332 				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3333 		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3334 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3335 
3336 		/* if error still set then just ignore it */
3337 		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3338 		if (hwstatus & IS_IRQ_STAT) {
3339 			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3340 			hw->intr_mask &= ~IS_HW_ERR;
3341 		}
3342 	}
3343 }
3344 
3345 /*
3346  * Interrupt from PHY are handled in tasklet (softirq)
3347  * because accessing phy registers requires spin wait which might
3348  * cause excess interrupt latency.
3349  */
3350 static void skge_extirq(struct tasklet_struct *t)
3351 {
3352 	struct skge_hw *hw = from_tasklet(hw, t, phy_task);
3353 	int port;
3354 
3355 	for (port = 0; port < hw->ports; port++) {
3356 		struct net_device *dev = hw->dev[port];
3357 
3358 		if (netif_running(dev)) {
3359 			struct skge_port *skge = netdev_priv(dev);
3360 
3361 			spin_lock(&hw->phy_lock);
3362 			if (!is_genesis(hw))
3363 				yukon_phy_intr(skge);
3364 			else if (hw->phy_type == SK_PHY_BCOM)
3365 				bcom_phy_intr(skge);
3366 			spin_unlock(&hw->phy_lock);
3367 		}
3368 	}
3369 
3370 	spin_lock_irq(&hw->hw_lock);
3371 	hw->intr_mask |= IS_EXT_REG;
3372 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3373 	skge_read32(hw, B0_IMSK);
3374 	spin_unlock_irq(&hw->hw_lock);
3375 }
3376 
3377 static irqreturn_t skge_intr(int irq, void *dev_id)
3378 {
3379 	struct skge_hw *hw = dev_id;
3380 	u32 status;
3381 	int handled = 0;
3382 
3383 	spin_lock(&hw->hw_lock);
3384 	/* Reading this register masks IRQ */
3385 	status = skge_read32(hw, B0_SP_ISRC);
3386 	if (status == 0 || status == ~0)
3387 		goto out;
3388 
3389 	handled = 1;
3390 	status &= hw->intr_mask;
3391 	if (status & IS_EXT_REG) {
3392 		hw->intr_mask &= ~IS_EXT_REG;
3393 		tasklet_schedule(&hw->phy_task);
3394 	}
3395 
3396 	if (status & (IS_XA1_F|IS_R1_F)) {
3397 		struct skge_port *skge = netdev_priv(hw->dev[0]);
3398 		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3399 		napi_schedule(&skge->napi);
3400 	}
3401 
3402 	if (status & IS_PA_TO_TX1)
3403 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3404 
3405 	if (status & IS_PA_TO_RX1) {
3406 		++hw->dev[0]->stats.rx_over_errors;
3407 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3408 	}
3409 
3410 
3411 	if (status & IS_MAC1)
3412 		skge_mac_intr(hw, 0);
3413 
3414 	if (hw->dev[1]) {
3415 		struct skge_port *skge = netdev_priv(hw->dev[1]);
3416 
3417 		if (status & (IS_XA2_F|IS_R2_F)) {
3418 			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3419 			napi_schedule(&skge->napi);
3420 		}
3421 
3422 		if (status & IS_PA_TO_RX2) {
3423 			++hw->dev[1]->stats.rx_over_errors;
3424 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3425 		}
3426 
3427 		if (status & IS_PA_TO_TX2)
3428 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3429 
3430 		if (status & IS_MAC2)
3431 			skge_mac_intr(hw, 1);
3432 	}
3433 
3434 	if (status & IS_HW_ERR)
3435 		skge_error_irq(hw);
3436 out:
3437 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3438 	skge_read32(hw, B0_IMSK);
3439 	spin_unlock(&hw->hw_lock);
3440 
3441 	return IRQ_RETVAL(handled);
3442 }
3443 
3444 #ifdef CONFIG_NET_POLL_CONTROLLER
3445 static void skge_netpoll(struct net_device *dev)
3446 {
3447 	struct skge_port *skge = netdev_priv(dev);
3448 
3449 	disable_irq(dev->irq);
3450 	skge_intr(dev->irq, skge->hw);
3451 	enable_irq(dev->irq);
3452 }
3453 #endif
3454 
3455 static int skge_set_mac_address(struct net_device *dev, void *p)
3456 {
3457 	struct skge_port *skge = netdev_priv(dev);
3458 	struct skge_hw *hw = skge->hw;
3459 	unsigned port = skge->port;
3460 	const struct sockaddr *addr = p;
3461 	u16 ctrl;
3462 
3463 	if (!is_valid_ether_addr(addr->sa_data))
3464 		return -EADDRNOTAVAIL;
3465 
3466 	eth_hw_addr_set(dev, addr->sa_data);
3467 
3468 	if (!netif_running(dev)) {
3469 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3470 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3471 	} else {
3472 		/* disable Rx */
3473 		spin_lock_bh(&hw->phy_lock);
3474 		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3475 		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3476 
3477 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3478 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3479 
3480 		if (is_genesis(hw))
3481 			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3482 		else {
3483 			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3484 			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3485 		}
3486 
3487 		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3488 		spin_unlock_bh(&hw->phy_lock);
3489 	}
3490 
3491 	return 0;
3492 }
3493 
3494 static const struct {
3495 	u8 id;
3496 	const char *name;
3497 } skge_chips[] = {
3498 	{ CHIP_ID_GENESIS,	"Genesis" },
3499 	{ CHIP_ID_YUKON,	 "Yukon" },
3500 	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3501 	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3502 };
3503 
3504 static const char *skge_board_name(const struct skge_hw *hw)
3505 {
3506 	int i;
3507 	static char buf[16];
3508 
3509 	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3510 		if (skge_chips[i].id == hw->chip_id)
3511 			return skge_chips[i].name;
3512 
3513 	snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3514 	return buf;
3515 }
3516 
3517 
3518 /*
3519  * Setup the board data structure, but don't bring up
3520  * the port(s)
3521  */
3522 static int skge_reset(struct skge_hw *hw)
3523 {
3524 	u32 reg;
3525 	u16 ctst, pci_status;
3526 	u8 t8, mac_cfg, pmd_type;
3527 	int i;
3528 
3529 	ctst = skge_read16(hw, B0_CTST);
3530 
3531 	/* do a SW reset */
3532 	skge_write8(hw, B0_CTST, CS_RST_SET);
3533 	skge_write8(hw, B0_CTST, CS_RST_CLR);
3534 
3535 	/* clear PCI errors, if any */
3536 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3537 	skge_write8(hw, B2_TST_CTRL2, 0);
3538 
3539 	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3540 	pci_write_config_word(hw->pdev, PCI_STATUS,
3541 			      pci_status | PCI_STATUS_ERROR_BITS);
3542 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3543 	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3544 
3545 	/* restore CLK_RUN bits (for Yukon-Lite) */
3546 	skge_write16(hw, B0_CTST,
3547 		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3548 
3549 	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3550 	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3551 	pmd_type = skge_read8(hw, B2_PMD_TYP);
3552 	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3553 
3554 	switch (hw->chip_id) {
3555 	case CHIP_ID_GENESIS:
3556 #ifdef CONFIG_SKGE_GENESIS
3557 		switch (hw->phy_type) {
3558 		case SK_PHY_XMAC:
3559 			hw->phy_addr = PHY_ADDR_XMAC;
3560 			break;
3561 		case SK_PHY_BCOM:
3562 			hw->phy_addr = PHY_ADDR_BCOM;
3563 			break;
3564 		default:
3565 			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3566 			       hw->phy_type);
3567 			return -EOPNOTSUPP;
3568 		}
3569 		break;
3570 #else
3571 		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3572 		return -EOPNOTSUPP;
3573 #endif
3574 
3575 	case CHIP_ID_YUKON:
3576 	case CHIP_ID_YUKON_LITE:
3577 	case CHIP_ID_YUKON_LP:
3578 		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3579 			hw->copper = 1;
3580 
3581 		hw->phy_addr = PHY_ADDR_MARV;
3582 		break;
3583 
3584 	default:
3585 		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3586 		       hw->chip_id);
3587 		return -EOPNOTSUPP;
3588 	}
3589 
3590 	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3591 	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3592 	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3593 
3594 	/* read the adapters RAM size */
3595 	t8 = skge_read8(hw, B2_E_0);
3596 	if (is_genesis(hw)) {
3597 		if (t8 == 3) {
3598 			/* special case: 4 x 64k x 36, offset = 0x80000 */
3599 			hw->ram_size = 0x100000;
3600 			hw->ram_offset = 0x80000;
3601 		} else
3602 			hw->ram_size = t8 * 512;
3603 	} else if (t8 == 0)
3604 		hw->ram_size = 0x20000;
3605 	else
3606 		hw->ram_size = t8 * 4096;
3607 
3608 	hw->intr_mask = IS_HW_ERR;
3609 
3610 	/* Use PHY IRQ for all but fiber based Genesis board */
3611 	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3612 		hw->intr_mask |= IS_EXT_REG;
3613 
3614 	if (is_genesis(hw))
3615 		genesis_init(hw);
3616 	else {
3617 		/* switch power to VCC (WA for VAUX problem) */
3618 		skge_write8(hw, B0_POWER_CTRL,
3619 			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3620 
3621 		/* avoid boards with stuck Hardware error bits */
3622 		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3623 		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3624 			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3625 			hw->intr_mask &= ~IS_HW_ERR;
3626 		}
3627 
3628 		/* Clear PHY COMA */
3629 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3630 		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3631 		reg &= ~PCI_PHY_COMA;
3632 		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3633 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3634 
3635 
3636 		for (i = 0; i < hw->ports; i++) {
3637 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3638 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3639 		}
3640 	}
3641 
3642 	/* turn off hardware timer (unused) */
3643 	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3644 	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3645 	skge_write8(hw, B0_LED, LED_STAT_ON);
3646 
3647 	/* enable the Tx Arbiters */
3648 	for (i = 0; i < hw->ports; i++)
3649 		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3650 
3651 	/* Initialize ram interface */
3652 	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3653 
3654 	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3655 	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3656 	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3657 	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3658 	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3659 	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3660 	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3661 	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3662 	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3663 	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3664 	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3665 	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3666 
3667 	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3668 
3669 	/* Set interrupt moderation for Transmit only
3670 	 * Receive interrupts avoided by NAPI
3671 	 */
3672 	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3673 	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3674 	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3675 
3676 	/* Leave irq disabled until first port is brought up. */
3677 	skge_write32(hw, B0_IMSK, 0);
3678 
3679 	for (i = 0; i < hw->ports; i++) {
3680 		if (is_genesis(hw))
3681 			genesis_reset(hw, i);
3682 		else
3683 			yukon_reset(hw, i);
3684 	}
3685 
3686 	return 0;
3687 }
3688 
3689 
3690 #ifdef CONFIG_SKGE_DEBUG
3691 
3692 static struct dentry *skge_debug;
3693 
3694 static int skge_debug_show(struct seq_file *seq, void *v)
3695 {
3696 	struct net_device *dev = seq->private;
3697 	const struct skge_port *skge = netdev_priv(dev);
3698 	const struct skge_hw *hw = skge->hw;
3699 	const struct skge_element *e;
3700 
3701 	if (!netif_running(dev))
3702 		return -ENETDOWN;
3703 
3704 	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3705 		   skge_read32(hw, B0_IMSK));
3706 
3707 	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3708 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3709 		const struct skge_tx_desc *t = e->desc;
3710 		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3711 			   t->control, t->dma_hi, t->dma_lo, t->status,
3712 			   t->csum_offs, t->csum_write, t->csum_start);
3713 	}
3714 
3715 	seq_puts(seq, "\nRx Ring:\n");
3716 	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3717 		const struct skge_rx_desc *r = e->desc;
3718 
3719 		if (r->control & BMU_OWN)
3720 			break;
3721 
3722 		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3723 			   r->control, r->dma_hi, r->dma_lo, r->status,
3724 			   r->timestamp, r->csum1, r->csum1_start);
3725 	}
3726 
3727 	return 0;
3728 }
3729 DEFINE_SHOW_ATTRIBUTE(skge_debug);
3730 
3731 /*
3732  * Use network device events to create/remove/rename
3733  * debugfs file entries
3734  */
3735 static int skge_device_event(struct notifier_block *unused,
3736 			     unsigned long event, void *ptr)
3737 {
3738 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3739 	struct skge_port *skge;
3740 
3741 	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3742 		goto done;
3743 
3744 	skge = netdev_priv(dev);
3745 	switch (event) {
3746 	case NETDEV_CHANGENAME:
3747 		if (skge->debugfs)
3748 			skge->debugfs = debugfs_rename(skge_debug,
3749 						       skge->debugfs,
3750 						       skge_debug, dev->name);
3751 		break;
3752 
3753 	case NETDEV_GOING_DOWN:
3754 		debugfs_remove(skge->debugfs);
3755 		skge->debugfs = NULL;
3756 		break;
3757 
3758 	case NETDEV_UP:
3759 		skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3760 						    dev, &skge_debug_fops);
3761 		break;
3762 	}
3763 
3764 done:
3765 	return NOTIFY_DONE;
3766 }
3767 
3768 static struct notifier_block skge_notifier = {
3769 	.notifier_call = skge_device_event,
3770 };
3771 
3772 
3773 static __init void skge_debug_init(void)
3774 {
3775 	skge_debug = debugfs_create_dir("skge", NULL);
3776 
3777 	register_netdevice_notifier(&skge_notifier);
3778 }
3779 
3780 static __exit void skge_debug_cleanup(void)
3781 {
3782 	if (skge_debug) {
3783 		unregister_netdevice_notifier(&skge_notifier);
3784 		debugfs_remove(skge_debug);
3785 		skge_debug = NULL;
3786 	}
3787 }
3788 
3789 #else
3790 #define skge_debug_init()
3791 #define skge_debug_cleanup()
3792 #endif
3793 
3794 static const struct net_device_ops skge_netdev_ops = {
3795 	.ndo_open		= skge_up,
3796 	.ndo_stop		= skge_down,
3797 	.ndo_start_xmit		= skge_xmit_frame,
3798 	.ndo_eth_ioctl		= skge_ioctl,
3799 	.ndo_get_stats		= skge_get_stats,
3800 	.ndo_tx_timeout		= skge_tx_timeout,
3801 	.ndo_change_mtu		= skge_change_mtu,
3802 	.ndo_validate_addr	= eth_validate_addr,
3803 	.ndo_set_rx_mode	= skge_set_multicast,
3804 	.ndo_set_mac_address	= skge_set_mac_address,
3805 #ifdef CONFIG_NET_POLL_CONTROLLER
3806 	.ndo_poll_controller	= skge_netpoll,
3807 #endif
3808 };
3809 
3810 
3811 /* Initialize network device */
3812 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3813 				       int highmem)
3814 {
3815 	struct skge_port *skge;
3816 	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3817 	u8 addr[ETH_ALEN];
3818 
3819 	if (!dev)
3820 		return NULL;
3821 
3822 	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3823 	dev->netdev_ops = &skge_netdev_ops;
3824 	dev->ethtool_ops = &skge_ethtool_ops;
3825 	dev->watchdog_timeo = TX_WATCHDOG;
3826 	dev->irq = hw->pdev->irq;
3827 
3828 	/* MTU range: 60 - 9000 */
3829 	dev->min_mtu = ETH_ZLEN;
3830 	dev->max_mtu = ETH_JUMBO_MTU;
3831 
3832 	if (highmem)
3833 		dev->features |= NETIF_F_HIGHDMA;
3834 
3835 	skge = netdev_priv(dev);
3836 	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3837 	skge->netdev = dev;
3838 	skge->hw = hw;
3839 	skge->msg_enable = netif_msg_init(debug, default_msg);
3840 
3841 	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3842 	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3843 
3844 	/* Auto speed and flow control */
3845 	skge->autoneg = AUTONEG_ENABLE;
3846 	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3847 	skge->duplex = -1;
3848 	skge->speed = -1;
3849 	skge->advertising = skge_supported_modes(hw);
3850 
3851 	if (device_can_wakeup(&hw->pdev->dev)) {
3852 		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3853 		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3854 	}
3855 
3856 	hw->dev[port] = dev;
3857 
3858 	skge->port = port;
3859 
3860 	/* Only used for Genesis XMAC */
3861 	if (is_genesis(hw))
3862 		timer_setup(&skge->link_timer, xm_link_timer, 0);
3863 	else {
3864 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3865 		                   NETIF_F_RXCSUM;
3866 		dev->features |= dev->hw_features;
3867 	}
3868 
3869 	/* read the mac address */
3870 	memcpy_fromio(addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3871 	eth_hw_addr_set(dev, addr);
3872 
3873 	return dev;
3874 }
3875 
3876 static void skge_show_addr(struct net_device *dev)
3877 {
3878 	const struct skge_port *skge = netdev_priv(dev);
3879 
3880 	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3881 }
3882 
3883 static int only_32bit_dma;
3884 
3885 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3886 {
3887 	struct net_device *dev, *dev1;
3888 	struct skge_hw *hw;
3889 	int err, using_dac = 0;
3890 
3891 	err = pci_enable_device(pdev);
3892 	if (err) {
3893 		dev_err(&pdev->dev, "cannot enable PCI device\n");
3894 		goto err_out;
3895 	}
3896 
3897 	err = pci_request_regions(pdev, DRV_NAME);
3898 	if (err) {
3899 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3900 		goto err_out_disable_pdev;
3901 	}
3902 
3903 	pci_set_master(pdev);
3904 
3905 	if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3906 		using_dac = 1;
3907 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3908 	} else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3909 		using_dac = 0;
3910 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3911 	}
3912 
3913 	if (err) {
3914 		dev_err(&pdev->dev, "no usable DMA configuration\n");
3915 		goto err_out_free_regions;
3916 	}
3917 
3918 #ifdef __BIG_ENDIAN
3919 	/* byte swap descriptors in hardware */
3920 	{
3921 		u32 reg;
3922 
3923 		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3924 		reg |= PCI_REV_DESC;
3925 		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3926 	}
3927 #endif
3928 
3929 	err = -ENOMEM;
3930 	/* space for skge@pci:0000:04:00.0 */
3931 	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3932 		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3933 	if (!hw)
3934 		goto err_out_free_regions;
3935 
3936 	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3937 
3938 	hw->pdev = pdev;
3939 	spin_lock_init(&hw->hw_lock);
3940 	spin_lock_init(&hw->phy_lock);
3941 	tasklet_setup(&hw->phy_task, skge_extirq);
3942 
3943 	hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3944 	if (!hw->regs) {
3945 		dev_err(&pdev->dev, "cannot map device registers\n");
3946 		goto err_out_free_hw;
3947 	}
3948 
3949 	err = skge_reset(hw);
3950 	if (err)
3951 		goto err_out_iounmap;
3952 
3953 	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3954 		DRV_VERSION,
3955 		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3956 		skge_board_name(hw), hw->chip_rev);
3957 
3958 	dev = skge_devinit(hw, 0, using_dac);
3959 	if (!dev) {
3960 		err = -ENOMEM;
3961 		goto err_out_led_off;
3962 	}
3963 
3964 	/* Some motherboards are broken and has zero in ROM. */
3965 	if (!is_valid_ether_addr(dev->dev_addr))
3966 		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3967 
3968 	err = register_netdev(dev);
3969 	if (err) {
3970 		dev_err(&pdev->dev, "cannot register net device\n");
3971 		goto err_out_free_netdev;
3972 	}
3973 
3974 	skge_show_addr(dev);
3975 
3976 	if (hw->ports > 1) {
3977 		dev1 = skge_devinit(hw, 1, using_dac);
3978 		if (!dev1) {
3979 			err = -ENOMEM;
3980 			goto err_out_unregister;
3981 		}
3982 
3983 		err = register_netdev(dev1);
3984 		if (err) {
3985 			dev_err(&pdev->dev, "cannot register second net device\n");
3986 			goto err_out_free_dev1;
3987 		}
3988 
3989 		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3990 				  hw->irq_name, hw);
3991 		if (err) {
3992 			dev_err(&pdev->dev, "cannot assign irq %d\n",
3993 				pdev->irq);
3994 			goto err_out_unregister_dev1;
3995 		}
3996 
3997 		skge_show_addr(dev1);
3998 	}
3999 	pci_set_drvdata(pdev, hw);
4000 
4001 	return 0;
4002 
4003 err_out_unregister_dev1:
4004 	unregister_netdev(dev1);
4005 err_out_free_dev1:
4006 	free_netdev(dev1);
4007 err_out_unregister:
4008 	unregister_netdev(dev);
4009 err_out_free_netdev:
4010 	free_netdev(dev);
4011 err_out_led_off:
4012 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4013 err_out_iounmap:
4014 	iounmap(hw->regs);
4015 err_out_free_hw:
4016 	kfree(hw);
4017 err_out_free_regions:
4018 	pci_release_regions(pdev);
4019 err_out_disable_pdev:
4020 	pci_disable_device(pdev);
4021 err_out:
4022 	return err;
4023 }
4024 
4025 static void skge_remove(struct pci_dev *pdev)
4026 {
4027 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4028 	struct net_device *dev0, *dev1;
4029 
4030 	if (!hw)
4031 		return;
4032 
4033 	dev1 = hw->dev[1];
4034 	if (dev1)
4035 		unregister_netdev(dev1);
4036 	dev0 = hw->dev[0];
4037 	unregister_netdev(dev0);
4038 
4039 	tasklet_kill(&hw->phy_task);
4040 
4041 	spin_lock_irq(&hw->hw_lock);
4042 	hw->intr_mask = 0;
4043 
4044 	if (hw->ports > 1) {
4045 		skge_write32(hw, B0_IMSK, 0);
4046 		skge_read32(hw, B0_IMSK);
4047 	}
4048 	spin_unlock_irq(&hw->hw_lock);
4049 
4050 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4051 	skge_write8(hw, B0_CTST, CS_RST_SET);
4052 
4053 	if (hw->ports > 1)
4054 		free_irq(pdev->irq, hw);
4055 	pci_release_regions(pdev);
4056 	pci_disable_device(pdev);
4057 	if (dev1)
4058 		free_netdev(dev1);
4059 	free_netdev(dev0);
4060 
4061 	iounmap(hw->regs);
4062 	kfree(hw);
4063 }
4064 
4065 #ifdef CONFIG_PM_SLEEP
4066 static int skge_suspend(struct device *dev)
4067 {
4068 	struct skge_hw *hw  = dev_get_drvdata(dev);
4069 	int i;
4070 
4071 	if (!hw)
4072 		return 0;
4073 
4074 	for (i = 0; i < hw->ports; i++) {
4075 		struct net_device *dev = hw->dev[i];
4076 		struct skge_port *skge = netdev_priv(dev);
4077 
4078 		if (netif_running(dev))
4079 			skge_down(dev);
4080 
4081 		if (skge->wol)
4082 			skge_wol_init(skge);
4083 	}
4084 
4085 	skge_write32(hw, B0_IMSK, 0);
4086 
4087 	return 0;
4088 }
4089 
4090 static int skge_resume(struct device *dev)
4091 {
4092 	struct skge_hw *hw  = dev_get_drvdata(dev);
4093 	int i, err;
4094 
4095 	if (!hw)
4096 		return 0;
4097 
4098 	err = skge_reset(hw);
4099 	if (err)
4100 		goto out;
4101 
4102 	for (i = 0; i < hw->ports; i++) {
4103 		struct net_device *dev = hw->dev[i];
4104 
4105 		if (netif_running(dev)) {
4106 			err = skge_up(dev);
4107 
4108 			if (err) {
4109 				netdev_err(dev, "could not up: %d\n", err);
4110 				dev_close(dev);
4111 				goto out;
4112 			}
4113 		}
4114 	}
4115 out:
4116 	return err;
4117 }
4118 
4119 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4120 #define SKGE_PM_OPS (&skge_pm_ops)
4121 
4122 #else
4123 
4124 #define SKGE_PM_OPS NULL
4125 #endif /* CONFIG_PM_SLEEP */
4126 
4127 static void skge_shutdown(struct pci_dev *pdev)
4128 {
4129 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4130 	int i;
4131 
4132 	if (!hw)
4133 		return;
4134 
4135 	for (i = 0; i < hw->ports; i++) {
4136 		struct net_device *dev = hw->dev[i];
4137 		struct skge_port *skge = netdev_priv(dev);
4138 
4139 		if (skge->wol)
4140 			skge_wol_init(skge);
4141 	}
4142 
4143 	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4144 	pci_set_power_state(pdev, PCI_D3hot);
4145 }
4146 
4147 static struct pci_driver skge_driver = {
4148 	.name =         DRV_NAME,
4149 	.id_table =     skge_id_table,
4150 	.probe =        skge_probe,
4151 	.remove =       skge_remove,
4152 	.shutdown =	skge_shutdown,
4153 	.driver.pm =	SKGE_PM_OPS,
4154 };
4155 
4156 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4157 	{
4158 		.ident = "Gigabyte nForce boards",
4159 		.matches = {
4160 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4161 			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4162 		},
4163 	},
4164 	{
4165 		.ident = "ASUS P5NSLI",
4166 		.matches = {
4167 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4168 			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4169 		},
4170 	},
4171 	{
4172 		.ident = "FUJITSU SIEMENS A8NE-FM",
4173 		.matches = {
4174 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4175 			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4176 		},
4177 	},
4178 	{}
4179 };
4180 
4181 static int __init skge_init_module(void)
4182 {
4183 	if (dmi_check_system(skge_32bit_dma_boards))
4184 		only_32bit_dma = 1;
4185 	skge_debug_init();
4186 	return pci_register_driver(&skge_driver);
4187 }
4188 
4189 static void __exit skge_cleanup_module(void)
4190 {
4191 	pci_unregister_driver(&skge_driver);
4192 	skge_debug_cleanup();
4193 }
4194 
4195 module_init(skge_init_module);
4196 module_exit(skge_cleanup_module);
4197