xref: /openbmc/linux/drivers/net/ethernet/marvell/skge.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4  * Ethernet adapters. Based on earlier sk98lin, e100 and
5  * FreeBSD if_sk drivers.
6  *
7  * This driver intentionally does not support all the features
8  * of the original driver such as link fail-over and link management because
9  * those should be done at higher levels.
10  *
11  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/in.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/pci.h>
24 #include <linux/if_vlan.h>
25 #include <linux/ip.h>
26 #include <linux/delay.h>
27 #include <linux/crc32.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/mii.h>
33 #include <linux/slab.h>
34 #include <linux/dmi.h>
35 #include <linux/prefetch.h>
36 #include <asm/irq.h>
37 
38 #include "skge.h"
39 
40 #define DRV_NAME		"skge"
41 #define DRV_VERSION		"1.14"
42 
43 #define DEFAULT_TX_RING_SIZE	128
44 #define DEFAULT_RX_RING_SIZE	512
45 #define MAX_TX_RING_SIZE	1024
46 #define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
47 #define MAX_RX_RING_SIZE	4096
48 #define RX_COPY_THRESHOLD	128
49 #define RX_BUF_SIZE		1536
50 #define PHY_RETRIES	        1000
51 #define ETH_JUMBO_MTU		9000
52 #define TX_WATCHDOG		(5 * HZ)
53 #define NAPI_WEIGHT		64
54 #define BLINK_MS		250
55 #define LINK_HZ			HZ
56 
57 #define SKGE_EEPROM_MAGIC	0x9933aabb
58 
59 
60 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
61 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
62 MODULE_LICENSE("GPL");
63 MODULE_VERSION(DRV_VERSION);
64 
65 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
66 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
67 				NETIF_MSG_IFDOWN);
68 
69 static int debug = -1;	/* defaults above */
70 module_param(debug, int, 0);
71 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
72 
73 static const struct pci_device_id skge_id_table[] = {
74 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
75 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
76 #ifdef CONFIG_SKGE_GENESIS
77 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
78 #endif
79 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
80 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
81 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
82 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
83 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
84 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
85 	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
86 	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
87 	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
88 	{ 0 }
89 };
90 MODULE_DEVICE_TABLE(pci, skge_id_table);
91 
92 static int skge_up(struct net_device *dev);
93 static int skge_down(struct net_device *dev);
94 static void skge_phy_reset(struct skge_port *skge);
95 static void skge_tx_clean(struct net_device *dev);
96 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
98 static void genesis_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_get_stats(struct skge_port *skge, u64 *data);
100 static void yukon_init(struct skge_hw *hw, int port);
101 static void genesis_mac_init(struct skge_hw *hw, int port);
102 static void genesis_link_up(struct skge_port *skge);
103 static void skge_set_multicast(struct net_device *dev);
104 static irqreturn_t skge_intr(int irq, void *dev_id);
105 
106 /* Avoid conditionals by using array */
107 static const int txqaddr[] = { Q_XA1, Q_XA2 };
108 static const int rxqaddr[] = { Q_R1, Q_R2 };
109 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
110 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
111 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
112 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
113 
114 static inline bool is_genesis(const struct skge_hw *hw)
115 {
116 #ifdef CONFIG_SKGE_GENESIS
117 	return hw->chip_id == CHIP_ID_GENESIS;
118 #else
119 	return false;
120 #endif
121 }
122 
123 static int skge_get_regs_len(struct net_device *dev)
124 {
125 	return 0x4000;
126 }
127 
128 /*
129  * Returns copy of whole control register region
130  * Note: skip RAM address register because accessing it will
131  * 	 cause bus hangs!
132  */
133 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
134 			  void *p)
135 {
136 	const struct skge_port *skge = netdev_priv(dev);
137 	const void __iomem *io = skge->hw->regs;
138 
139 	regs->version = 1;
140 	memset(p, 0, regs->len);
141 	memcpy_fromio(p, io, B3_RAM_ADDR);
142 
143 	if (regs->len > B3_RI_WTO_R1) {
144 		memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
145 			      regs->len - B3_RI_WTO_R1);
146 	}
147 }
148 
149 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
150 static u32 wol_supported(const struct skge_hw *hw)
151 {
152 	if (is_genesis(hw))
153 		return 0;
154 
155 	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
156 		return 0;
157 
158 	return WAKE_MAGIC | WAKE_PHY;
159 }
160 
161 static void skge_wol_init(struct skge_port *skge)
162 {
163 	struct skge_hw *hw = skge->hw;
164 	int port = skge->port;
165 	u16 ctrl;
166 
167 	skge_write16(hw, B0_CTST, CS_RST_CLR);
168 	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
169 
170 	/* Turn on Vaux */
171 	skge_write8(hw, B0_POWER_CTRL,
172 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
173 
174 	/* WA code for COMA mode -- clear PHY reset */
175 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
176 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
177 		u32 reg = skge_read32(hw, B2_GP_IO);
178 		reg |= GP_DIR_9;
179 		reg &= ~GP_IO_9;
180 		skge_write32(hw, B2_GP_IO, reg);
181 	}
182 
183 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
184 		     GPC_DIS_SLEEP |
185 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
186 		     GPC_ANEG_1 | GPC_RST_SET);
187 
188 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
189 		     GPC_DIS_SLEEP |
190 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
191 		     GPC_ANEG_1 | GPC_RST_CLR);
192 
193 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
194 
195 	/* Force to 10/100 skge_reset will re-enable on resume	 */
196 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
197 		     (PHY_AN_100FULL | PHY_AN_100HALF |
198 		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
199 	/* no 1000 HD/FD */
200 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
201 	gm_phy_write(hw, port, PHY_MARV_CTRL,
202 		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
203 		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
204 
205 
206 	/* Set GMAC to no flow control and auto update for speed/duplex */
207 	gma_write16(hw, port, GM_GP_CTRL,
208 		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
209 		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
210 
211 	/* Set WOL address */
212 	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
213 		    skge->netdev->dev_addr, ETH_ALEN);
214 
215 	/* Turn on appropriate WOL control bits */
216 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
217 	ctrl = 0;
218 	if (skge->wol & WAKE_PHY)
219 		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
220 	else
221 		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
222 
223 	if (skge->wol & WAKE_MAGIC)
224 		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
225 	else
226 		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
227 
228 	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
229 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
230 
231 	/* block receiver */
232 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
233 }
234 
235 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
236 {
237 	struct skge_port *skge = netdev_priv(dev);
238 
239 	wol->supported = wol_supported(skge->hw);
240 	wol->wolopts = skge->wol;
241 }
242 
243 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
244 {
245 	struct skge_port *skge = netdev_priv(dev);
246 	struct skge_hw *hw = skge->hw;
247 
248 	if ((wol->wolopts & ~wol_supported(hw)) ||
249 	    !device_can_wakeup(&hw->pdev->dev))
250 		return -EOPNOTSUPP;
251 
252 	skge->wol = wol->wolopts;
253 
254 	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
255 
256 	return 0;
257 }
258 
259 /* Determine supported/advertised modes based on hardware.
260  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
261  */
262 static u32 skge_supported_modes(const struct skge_hw *hw)
263 {
264 	u32 supported;
265 
266 	if (hw->copper) {
267 		supported = (SUPPORTED_10baseT_Half |
268 			     SUPPORTED_10baseT_Full |
269 			     SUPPORTED_100baseT_Half |
270 			     SUPPORTED_100baseT_Full |
271 			     SUPPORTED_1000baseT_Half |
272 			     SUPPORTED_1000baseT_Full |
273 			     SUPPORTED_Autoneg |
274 			     SUPPORTED_TP);
275 
276 		if (is_genesis(hw))
277 			supported &= ~(SUPPORTED_10baseT_Half |
278 				       SUPPORTED_10baseT_Full |
279 				       SUPPORTED_100baseT_Half |
280 				       SUPPORTED_100baseT_Full);
281 
282 		else if (hw->chip_id == CHIP_ID_YUKON)
283 			supported &= ~SUPPORTED_1000baseT_Half;
284 	} else
285 		supported = (SUPPORTED_1000baseT_Full |
286 			     SUPPORTED_1000baseT_Half |
287 			     SUPPORTED_FIBRE |
288 			     SUPPORTED_Autoneg);
289 
290 	return supported;
291 }
292 
293 static int skge_get_link_ksettings(struct net_device *dev,
294 				   struct ethtool_link_ksettings *cmd)
295 {
296 	struct skge_port *skge = netdev_priv(dev);
297 	struct skge_hw *hw = skge->hw;
298 	u32 supported, advertising;
299 
300 	supported = skge_supported_modes(hw);
301 
302 	if (hw->copper) {
303 		cmd->base.port = PORT_TP;
304 		cmd->base.phy_address = hw->phy_addr;
305 	} else
306 		cmd->base.port = PORT_FIBRE;
307 
308 	advertising = skge->advertising;
309 	cmd->base.autoneg = skge->autoneg;
310 	cmd->base.speed = skge->speed;
311 	cmd->base.duplex = skge->duplex;
312 
313 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
314 						supported);
315 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
316 						advertising);
317 
318 	return 0;
319 }
320 
321 static int skge_set_link_ksettings(struct net_device *dev,
322 				   const struct ethtool_link_ksettings *cmd)
323 {
324 	struct skge_port *skge = netdev_priv(dev);
325 	const struct skge_hw *hw = skge->hw;
326 	u32 supported = skge_supported_modes(hw);
327 	int err = 0;
328 	u32 advertising;
329 
330 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
331 						cmd->link_modes.advertising);
332 
333 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
334 		advertising = supported;
335 		skge->duplex = -1;
336 		skge->speed = -1;
337 	} else {
338 		u32 setting;
339 		u32 speed = cmd->base.speed;
340 
341 		switch (speed) {
342 		case SPEED_1000:
343 			if (cmd->base.duplex == DUPLEX_FULL)
344 				setting = SUPPORTED_1000baseT_Full;
345 			else if (cmd->base.duplex == DUPLEX_HALF)
346 				setting = SUPPORTED_1000baseT_Half;
347 			else
348 				return -EINVAL;
349 			break;
350 		case SPEED_100:
351 			if (cmd->base.duplex == DUPLEX_FULL)
352 				setting = SUPPORTED_100baseT_Full;
353 			else if (cmd->base.duplex == DUPLEX_HALF)
354 				setting = SUPPORTED_100baseT_Half;
355 			else
356 				return -EINVAL;
357 			break;
358 
359 		case SPEED_10:
360 			if (cmd->base.duplex == DUPLEX_FULL)
361 				setting = SUPPORTED_10baseT_Full;
362 			else if (cmd->base.duplex == DUPLEX_HALF)
363 				setting = SUPPORTED_10baseT_Half;
364 			else
365 				return -EINVAL;
366 			break;
367 		default:
368 			return -EINVAL;
369 		}
370 
371 		if ((setting & supported) == 0)
372 			return -EINVAL;
373 
374 		skge->speed = speed;
375 		skge->duplex = cmd->base.duplex;
376 	}
377 
378 	skge->autoneg = cmd->base.autoneg;
379 	skge->advertising = advertising;
380 
381 	if (netif_running(dev)) {
382 		skge_down(dev);
383 		err = skge_up(dev);
384 		if (err) {
385 			dev_close(dev);
386 			return err;
387 		}
388 	}
389 
390 	return 0;
391 }
392 
393 static void skge_get_drvinfo(struct net_device *dev,
394 			     struct ethtool_drvinfo *info)
395 {
396 	struct skge_port *skge = netdev_priv(dev);
397 
398 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
399 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
400 	strlcpy(info->bus_info, pci_name(skge->hw->pdev),
401 		sizeof(info->bus_info));
402 }
403 
404 static const struct skge_stat {
405 	char 	   name[ETH_GSTRING_LEN];
406 	u16	   xmac_offset;
407 	u16	   gma_offset;
408 } skge_stats[] = {
409 	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
410 	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
411 
412 	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
413 	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
414 	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
415 	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
416 	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
417 	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
418 	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
419 	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
420 
421 	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
422 	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
423 	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
424 	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
425 	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
426 	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
427 
428 	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
429 	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
430 	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
431 	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
432 	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
433 };
434 
435 static int skge_get_sset_count(struct net_device *dev, int sset)
436 {
437 	switch (sset) {
438 	case ETH_SS_STATS:
439 		return ARRAY_SIZE(skge_stats);
440 	default:
441 		return -EOPNOTSUPP;
442 	}
443 }
444 
445 static void skge_get_ethtool_stats(struct net_device *dev,
446 				   struct ethtool_stats *stats, u64 *data)
447 {
448 	struct skge_port *skge = netdev_priv(dev);
449 
450 	if (is_genesis(skge->hw))
451 		genesis_get_stats(skge, data);
452 	else
453 		yukon_get_stats(skge, data);
454 }
455 
456 /* Use hardware MIB variables for critical path statistics and
457  * transmit feedback not reported at interrupt.
458  * Other errors are accounted for in interrupt handler.
459  */
460 static struct net_device_stats *skge_get_stats(struct net_device *dev)
461 {
462 	struct skge_port *skge = netdev_priv(dev);
463 	u64 data[ARRAY_SIZE(skge_stats)];
464 
465 	if (is_genesis(skge->hw))
466 		genesis_get_stats(skge, data);
467 	else
468 		yukon_get_stats(skge, data);
469 
470 	dev->stats.tx_bytes = data[0];
471 	dev->stats.rx_bytes = data[1];
472 	dev->stats.tx_packets = data[2] + data[4] + data[6];
473 	dev->stats.rx_packets = data[3] + data[5] + data[7];
474 	dev->stats.multicast = data[3] + data[5];
475 	dev->stats.collisions = data[10];
476 	dev->stats.tx_aborted_errors = data[12];
477 
478 	return &dev->stats;
479 }
480 
481 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
482 {
483 	int i;
484 
485 	switch (stringset) {
486 	case ETH_SS_STATS:
487 		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
488 			memcpy(data + i * ETH_GSTRING_LEN,
489 			       skge_stats[i].name, ETH_GSTRING_LEN);
490 		break;
491 	}
492 }
493 
494 static void skge_get_ring_param(struct net_device *dev,
495 				struct ethtool_ringparam *p)
496 {
497 	struct skge_port *skge = netdev_priv(dev);
498 
499 	p->rx_max_pending = MAX_RX_RING_SIZE;
500 	p->tx_max_pending = MAX_TX_RING_SIZE;
501 
502 	p->rx_pending = skge->rx_ring.count;
503 	p->tx_pending = skge->tx_ring.count;
504 }
505 
506 static int skge_set_ring_param(struct net_device *dev,
507 			       struct ethtool_ringparam *p)
508 {
509 	struct skge_port *skge = netdev_priv(dev);
510 	int err = 0;
511 
512 	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
513 	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
514 		return -EINVAL;
515 
516 	skge->rx_ring.count = p->rx_pending;
517 	skge->tx_ring.count = p->tx_pending;
518 
519 	if (netif_running(dev)) {
520 		skge_down(dev);
521 		err = skge_up(dev);
522 		if (err)
523 			dev_close(dev);
524 	}
525 
526 	return err;
527 }
528 
529 static u32 skge_get_msglevel(struct net_device *netdev)
530 {
531 	struct skge_port *skge = netdev_priv(netdev);
532 	return skge->msg_enable;
533 }
534 
535 static void skge_set_msglevel(struct net_device *netdev, u32 value)
536 {
537 	struct skge_port *skge = netdev_priv(netdev);
538 	skge->msg_enable = value;
539 }
540 
541 static int skge_nway_reset(struct net_device *dev)
542 {
543 	struct skge_port *skge = netdev_priv(dev);
544 
545 	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
546 		return -EINVAL;
547 
548 	skge_phy_reset(skge);
549 	return 0;
550 }
551 
552 static void skge_get_pauseparam(struct net_device *dev,
553 				struct ethtool_pauseparam *ecmd)
554 {
555 	struct skge_port *skge = netdev_priv(dev);
556 
557 	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
558 			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
559 	ecmd->tx_pause = (ecmd->rx_pause ||
560 			  (skge->flow_control == FLOW_MODE_LOC_SEND));
561 
562 	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
563 }
564 
565 static int skge_set_pauseparam(struct net_device *dev,
566 			       struct ethtool_pauseparam *ecmd)
567 {
568 	struct skge_port *skge = netdev_priv(dev);
569 	struct ethtool_pauseparam old;
570 	int err = 0;
571 
572 	skge_get_pauseparam(dev, &old);
573 
574 	if (ecmd->autoneg != old.autoneg)
575 		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
576 	else {
577 		if (ecmd->rx_pause && ecmd->tx_pause)
578 			skge->flow_control = FLOW_MODE_SYMMETRIC;
579 		else if (ecmd->rx_pause && !ecmd->tx_pause)
580 			skge->flow_control = FLOW_MODE_SYM_OR_REM;
581 		else if (!ecmd->rx_pause && ecmd->tx_pause)
582 			skge->flow_control = FLOW_MODE_LOC_SEND;
583 		else
584 			skge->flow_control = FLOW_MODE_NONE;
585 	}
586 
587 	if (netif_running(dev)) {
588 		skge_down(dev);
589 		err = skge_up(dev);
590 		if (err) {
591 			dev_close(dev);
592 			return err;
593 		}
594 	}
595 
596 	return 0;
597 }
598 
599 /* Chip internal frequency for clock calculations */
600 static inline u32 hwkhz(const struct skge_hw *hw)
601 {
602 	return is_genesis(hw) ? 53125 : 78125;
603 }
604 
605 /* Chip HZ to microseconds */
606 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
607 {
608 	return (ticks * 1000) / hwkhz(hw);
609 }
610 
611 /* Microseconds to chip HZ */
612 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
613 {
614 	return hwkhz(hw) * usec / 1000;
615 }
616 
617 static int skge_get_coalesce(struct net_device *dev,
618 			     struct ethtool_coalesce *ecmd)
619 {
620 	struct skge_port *skge = netdev_priv(dev);
621 	struct skge_hw *hw = skge->hw;
622 	int port = skge->port;
623 
624 	ecmd->rx_coalesce_usecs = 0;
625 	ecmd->tx_coalesce_usecs = 0;
626 
627 	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
628 		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
629 		u32 msk = skge_read32(hw, B2_IRQM_MSK);
630 
631 		if (msk & rxirqmask[port])
632 			ecmd->rx_coalesce_usecs = delay;
633 		if (msk & txirqmask[port])
634 			ecmd->tx_coalesce_usecs = delay;
635 	}
636 
637 	return 0;
638 }
639 
640 /* Note: interrupt timer is per board, but can turn on/off per port */
641 static int skge_set_coalesce(struct net_device *dev,
642 			     struct ethtool_coalesce *ecmd)
643 {
644 	struct skge_port *skge = netdev_priv(dev);
645 	struct skge_hw *hw = skge->hw;
646 	int port = skge->port;
647 	u32 msk = skge_read32(hw, B2_IRQM_MSK);
648 	u32 delay = 25;
649 
650 	if (ecmd->rx_coalesce_usecs == 0)
651 		msk &= ~rxirqmask[port];
652 	else if (ecmd->rx_coalesce_usecs < 25 ||
653 		 ecmd->rx_coalesce_usecs > 33333)
654 		return -EINVAL;
655 	else {
656 		msk |= rxirqmask[port];
657 		delay = ecmd->rx_coalesce_usecs;
658 	}
659 
660 	if (ecmd->tx_coalesce_usecs == 0)
661 		msk &= ~txirqmask[port];
662 	else if (ecmd->tx_coalesce_usecs < 25 ||
663 		 ecmd->tx_coalesce_usecs > 33333)
664 		return -EINVAL;
665 	else {
666 		msk |= txirqmask[port];
667 		delay = min(delay, ecmd->rx_coalesce_usecs);
668 	}
669 
670 	skge_write32(hw, B2_IRQM_MSK, msk);
671 	if (msk == 0)
672 		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
673 	else {
674 		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
675 		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
676 	}
677 	return 0;
678 }
679 
680 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
681 static void skge_led(struct skge_port *skge, enum led_mode mode)
682 {
683 	struct skge_hw *hw = skge->hw;
684 	int port = skge->port;
685 
686 	spin_lock_bh(&hw->phy_lock);
687 	if (is_genesis(hw)) {
688 		switch (mode) {
689 		case LED_MODE_OFF:
690 			if (hw->phy_type == SK_PHY_BCOM)
691 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
692 			else {
693 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
694 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
695 			}
696 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
697 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
698 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
699 			break;
700 
701 		case LED_MODE_ON:
702 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
703 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
704 
705 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
706 			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
707 
708 			break;
709 
710 		case LED_MODE_TST:
711 			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
712 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
713 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
714 
715 			if (hw->phy_type == SK_PHY_BCOM)
716 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
717 			else {
718 				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
719 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
720 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
721 			}
722 
723 		}
724 	} else {
725 		switch (mode) {
726 		case LED_MODE_OFF:
727 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
728 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
729 				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
730 				     PHY_M_LED_MO_10(MO_LED_OFF)   |
731 				     PHY_M_LED_MO_100(MO_LED_OFF)  |
732 				     PHY_M_LED_MO_1000(MO_LED_OFF) |
733 				     PHY_M_LED_MO_RX(MO_LED_OFF));
734 			break;
735 		case LED_MODE_ON:
736 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
737 				     PHY_M_LED_PULS_DUR(PULS_170MS) |
738 				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
739 				     PHY_M_LEDC_TX_CTRL |
740 				     PHY_M_LEDC_DP_CTRL);
741 
742 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
743 				     PHY_M_LED_MO_RX(MO_LED_OFF) |
744 				     (skge->speed == SPEED_100 ?
745 				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
746 			break;
747 		case LED_MODE_TST:
748 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
749 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
750 				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
751 				     PHY_M_LED_MO_10(MO_LED_ON)   |
752 				     PHY_M_LED_MO_100(MO_LED_ON)  |
753 				     PHY_M_LED_MO_1000(MO_LED_ON) |
754 				     PHY_M_LED_MO_RX(MO_LED_ON));
755 		}
756 	}
757 	spin_unlock_bh(&hw->phy_lock);
758 }
759 
760 /* blink LED's for finding board */
761 static int skge_set_phys_id(struct net_device *dev,
762 			    enum ethtool_phys_id_state state)
763 {
764 	struct skge_port *skge = netdev_priv(dev);
765 
766 	switch (state) {
767 	case ETHTOOL_ID_ACTIVE:
768 		return 2;	/* cycle on/off twice per second */
769 
770 	case ETHTOOL_ID_ON:
771 		skge_led(skge, LED_MODE_TST);
772 		break;
773 
774 	case ETHTOOL_ID_OFF:
775 		skge_led(skge, LED_MODE_OFF);
776 		break;
777 
778 	case ETHTOOL_ID_INACTIVE:
779 		/* back to regular LED state */
780 		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
781 	}
782 
783 	return 0;
784 }
785 
786 static int skge_get_eeprom_len(struct net_device *dev)
787 {
788 	struct skge_port *skge = netdev_priv(dev);
789 	u32 reg2;
790 
791 	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
792 	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
793 }
794 
795 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
796 {
797 	u32 val;
798 
799 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
800 
801 	do {
802 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
803 	} while (!(offset & PCI_VPD_ADDR_F));
804 
805 	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
806 	return val;
807 }
808 
809 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
810 {
811 	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
812 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
813 			      offset | PCI_VPD_ADDR_F);
814 
815 	do {
816 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
817 	} while (offset & PCI_VPD_ADDR_F);
818 }
819 
820 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
821 			   u8 *data)
822 {
823 	struct skge_port *skge = netdev_priv(dev);
824 	struct pci_dev *pdev = skge->hw->pdev;
825 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
826 	int length = eeprom->len;
827 	u16 offset = eeprom->offset;
828 
829 	if (!cap)
830 		return -EINVAL;
831 
832 	eeprom->magic = SKGE_EEPROM_MAGIC;
833 
834 	while (length > 0) {
835 		u32 val = skge_vpd_read(pdev, cap, offset);
836 		int n = min_t(int, length, sizeof(val));
837 
838 		memcpy(data, &val, n);
839 		length -= n;
840 		data += n;
841 		offset += n;
842 	}
843 	return 0;
844 }
845 
846 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
847 			   u8 *data)
848 {
849 	struct skge_port *skge = netdev_priv(dev);
850 	struct pci_dev *pdev = skge->hw->pdev;
851 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
852 	int length = eeprom->len;
853 	u16 offset = eeprom->offset;
854 
855 	if (!cap)
856 		return -EINVAL;
857 
858 	if (eeprom->magic != SKGE_EEPROM_MAGIC)
859 		return -EINVAL;
860 
861 	while (length > 0) {
862 		u32 val;
863 		int n = min_t(int, length, sizeof(val));
864 
865 		if (n < sizeof(val))
866 			val = skge_vpd_read(pdev, cap, offset);
867 		memcpy(&val, data, n);
868 
869 		skge_vpd_write(pdev, cap, offset, val);
870 
871 		length -= n;
872 		data += n;
873 		offset += n;
874 	}
875 	return 0;
876 }
877 
878 static const struct ethtool_ops skge_ethtool_ops = {
879 	.get_drvinfo	= skge_get_drvinfo,
880 	.get_regs_len	= skge_get_regs_len,
881 	.get_regs	= skge_get_regs,
882 	.get_wol	= skge_get_wol,
883 	.set_wol	= skge_set_wol,
884 	.get_msglevel	= skge_get_msglevel,
885 	.set_msglevel	= skge_set_msglevel,
886 	.nway_reset	= skge_nway_reset,
887 	.get_link	= ethtool_op_get_link,
888 	.get_eeprom_len	= skge_get_eeprom_len,
889 	.get_eeprom	= skge_get_eeprom,
890 	.set_eeprom	= skge_set_eeprom,
891 	.get_ringparam	= skge_get_ring_param,
892 	.set_ringparam	= skge_set_ring_param,
893 	.get_pauseparam = skge_get_pauseparam,
894 	.set_pauseparam = skge_set_pauseparam,
895 	.get_coalesce	= skge_get_coalesce,
896 	.set_coalesce	= skge_set_coalesce,
897 	.get_strings	= skge_get_strings,
898 	.set_phys_id	= skge_set_phys_id,
899 	.get_sset_count = skge_get_sset_count,
900 	.get_ethtool_stats = skge_get_ethtool_stats,
901 	.get_link_ksettings = skge_get_link_ksettings,
902 	.set_link_ksettings = skge_set_link_ksettings,
903 };
904 
905 /*
906  * Allocate ring elements and chain them together
907  * One-to-one association of board descriptors with ring elements
908  */
909 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
910 {
911 	struct skge_tx_desc *d;
912 	struct skge_element *e;
913 	int i;
914 
915 	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
916 	if (!ring->start)
917 		return -ENOMEM;
918 
919 	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
920 		e->desc = d;
921 		if (i == ring->count - 1) {
922 			e->next = ring->start;
923 			d->next_offset = base;
924 		} else {
925 			e->next = e + 1;
926 			d->next_offset = base + (i+1) * sizeof(*d);
927 		}
928 	}
929 	ring->to_use = ring->to_clean = ring->start;
930 
931 	return 0;
932 }
933 
934 /* Allocate and setup a new buffer for receiving */
935 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
936 			 struct sk_buff *skb, unsigned int bufsize)
937 {
938 	struct skge_rx_desc *rd = e->desc;
939 	dma_addr_t map;
940 
941 	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
942 			     PCI_DMA_FROMDEVICE);
943 
944 	if (pci_dma_mapping_error(skge->hw->pdev, map))
945 		return -1;
946 
947 	rd->dma_lo = lower_32_bits(map);
948 	rd->dma_hi = upper_32_bits(map);
949 	e->skb = skb;
950 	rd->csum1_start = ETH_HLEN;
951 	rd->csum2_start = ETH_HLEN;
952 	rd->csum1 = 0;
953 	rd->csum2 = 0;
954 
955 	wmb();
956 
957 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
958 	dma_unmap_addr_set(e, mapaddr, map);
959 	dma_unmap_len_set(e, maplen, bufsize);
960 	return 0;
961 }
962 
963 /* Resume receiving using existing skb,
964  * Note: DMA address is not changed by chip.
965  * 	 MTU not changed while receiver active.
966  */
967 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
968 {
969 	struct skge_rx_desc *rd = e->desc;
970 
971 	rd->csum2 = 0;
972 	rd->csum2_start = ETH_HLEN;
973 
974 	wmb();
975 
976 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
977 }
978 
979 
980 /* Free all  buffers in receive ring, assumes receiver stopped */
981 static void skge_rx_clean(struct skge_port *skge)
982 {
983 	struct skge_hw *hw = skge->hw;
984 	struct skge_ring *ring = &skge->rx_ring;
985 	struct skge_element *e;
986 
987 	e = ring->start;
988 	do {
989 		struct skge_rx_desc *rd = e->desc;
990 		rd->control = 0;
991 		if (e->skb) {
992 			pci_unmap_single(hw->pdev,
993 					 dma_unmap_addr(e, mapaddr),
994 					 dma_unmap_len(e, maplen),
995 					 PCI_DMA_FROMDEVICE);
996 			dev_kfree_skb(e->skb);
997 			e->skb = NULL;
998 		}
999 	} while ((e = e->next) != ring->start);
1000 }
1001 
1002 
1003 /* Allocate buffers for receive ring
1004  * For receive:  to_clean is next received frame.
1005  */
1006 static int skge_rx_fill(struct net_device *dev)
1007 {
1008 	struct skge_port *skge = netdev_priv(dev);
1009 	struct skge_ring *ring = &skge->rx_ring;
1010 	struct skge_element *e;
1011 
1012 	e = ring->start;
1013 	do {
1014 		struct sk_buff *skb;
1015 
1016 		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1017 					 GFP_KERNEL);
1018 		if (!skb)
1019 			return -ENOMEM;
1020 
1021 		skb_reserve(skb, NET_IP_ALIGN);
1022 		if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1023 			dev_kfree_skb(skb);
1024 			return -EIO;
1025 		}
1026 	} while ((e = e->next) != ring->start);
1027 
1028 	ring->to_clean = ring->start;
1029 	return 0;
1030 }
1031 
1032 static const char *skge_pause(enum pause_status status)
1033 {
1034 	switch (status) {
1035 	case FLOW_STAT_NONE:
1036 		return "none";
1037 	case FLOW_STAT_REM_SEND:
1038 		return "rx only";
1039 	case FLOW_STAT_LOC_SEND:
1040 		return "tx_only";
1041 	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1042 		return "both";
1043 	default:
1044 		return "indeterminated";
1045 	}
1046 }
1047 
1048 
1049 static void skge_link_up(struct skge_port *skge)
1050 {
1051 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1052 		    LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1053 
1054 	netif_carrier_on(skge->netdev);
1055 	netif_wake_queue(skge->netdev);
1056 
1057 	netif_info(skge, link, skge->netdev,
1058 		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1059 		   skge->speed,
1060 		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1061 		   skge_pause(skge->flow_status));
1062 }
1063 
1064 static void skge_link_down(struct skge_port *skge)
1065 {
1066 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1067 	netif_carrier_off(skge->netdev);
1068 	netif_stop_queue(skge->netdev);
1069 
1070 	netif_info(skge, link, skge->netdev, "Link is down\n");
1071 }
1072 
1073 static void xm_link_down(struct skge_hw *hw, int port)
1074 {
1075 	struct net_device *dev = hw->dev[port];
1076 	struct skge_port *skge = netdev_priv(dev);
1077 
1078 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1079 
1080 	if (netif_carrier_ok(dev))
1081 		skge_link_down(skge);
1082 }
1083 
1084 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1085 {
1086 	int i;
1087 
1088 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1089 	*val = xm_read16(hw, port, XM_PHY_DATA);
1090 
1091 	if (hw->phy_type == SK_PHY_XMAC)
1092 		goto ready;
1093 
1094 	for (i = 0; i < PHY_RETRIES; i++) {
1095 		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1096 			goto ready;
1097 		udelay(1);
1098 	}
1099 
1100 	return -ETIMEDOUT;
1101  ready:
1102 	*val = xm_read16(hw, port, XM_PHY_DATA);
1103 
1104 	return 0;
1105 }
1106 
1107 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1108 {
1109 	u16 v = 0;
1110 	if (__xm_phy_read(hw, port, reg, &v))
1111 		pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1112 	return v;
1113 }
1114 
1115 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1116 {
1117 	int i;
1118 
1119 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1120 	for (i = 0; i < PHY_RETRIES; i++) {
1121 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1122 			goto ready;
1123 		udelay(1);
1124 	}
1125 	return -EIO;
1126 
1127  ready:
1128 	xm_write16(hw, port, XM_PHY_DATA, val);
1129 	for (i = 0; i < PHY_RETRIES; i++) {
1130 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1131 			return 0;
1132 		udelay(1);
1133 	}
1134 	return -ETIMEDOUT;
1135 }
1136 
1137 static void genesis_init(struct skge_hw *hw)
1138 {
1139 	/* set blink source counter */
1140 	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1141 	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1142 
1143 	/* configure mac arbiter */
1144 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1145 
1146 	/* configure mac arbiter timeout values */
1147 	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1148 	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1149 	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1150 	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1151 
1152 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1153 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1154 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1155 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1156 
1157 	/* configure packet arbiter timeout */
1158 	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1159 	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1160 	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1161 	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1162 	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1163 }
1164 
1165 static void genesis_reset(struct skge_hw *hw, int port)
1166 {
1167 	static const u8 zero[8]  = { 0 };
1168 	u32 reg;
1169 
1170 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1171 
1172 	/* reset the statistics module */
1173 	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1174 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1175 	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1176 	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1177 	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1178 
1179 	/* disable Broadcom PHY IRQ */
1180 	if (hw->phy_type == SK_PHY_BCOM)
1181 		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1182 
1183 	xm_outhash(hw, port, XM_HSM, zero);
1184 
1185 	/* Flush TX and RX fifo */
1186 	reg = xm_read32(hw, port, XM_MODE);
1187 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1188 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1189 }
1190 
1191 /* Convert mode to MII values  */
1192 static const u16 phy_pause_map[] = {
1193 	[FLOW_MODE_NONE] =	0,
1194 	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1195 	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1196 	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1197 };
1198 
1199 /* special defines for FIBER (88E1011S only) */
1200 static const u16 fiber_pause_map[] = {
1201 	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1202 	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1203 	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1204 	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1205 };
1206 
1207 
1208 /* Check status of Broadcom phy link */
1209 static void bcom_check_link(struct skge_hw *hw, int port)
1210 {
1211 	struct net_device *dev = hw->dev[port];
1212 	struct skge_port *skge = netdev_priv(dev);
1213 	u16 status;
1214 
1215 	/* read twice because of latch */
1216 	xm_phy_read(hw, port, PHY_BCOM_STAT);
1217 	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1218 
1219 	if ((status & PHY_ST_LSYNC) == 0) {
1220 		xm_link_down(hw, port);
1221 		return;
1222 	}
1223 
1224 	if (skge->autoneg == AUTONEG_ENABLE) {
1225 		u16 lpa, aux;
1226 
1227 		if (!(status & PHY_ST_AN_OVER))
1228 			return;
1229 
1230 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1231 		if (lpa & PHY_B_AN_RF) {
1232 			netdev_notice(dev, "remote fault\n");
1233 			return;
1234 		}
1235 
1236 		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1237 
1238 		/* Check Duplex mismatch */
1239 		switch (aux & PHY_B_AS_AN_RES_MSK) {
1240 		case PHY_B_RES_1000FD:
1241 			skge->duplex = DUPLEX_FULL;
1242 			break;
1243 		case PHY_B_RES_1000HD:
1244 			skge->duplex = DUPLEX_HALF;
1245 			break;
1246 		default:
1247 			netdev_notice(dev, "duplex mismatch\n");
1248 			return;
1249 		}
1250 
1251 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1252 		switch (aux & PHY_B_AS_PAUSE_MSK) {
1253 		case PHY_B_AS_PAUSE_MSK:
1254 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1255 			break;
1256 		case PHY_B_AS_PRR:
1257 			skge->flow_status = FLOW_STAT_REM_SEND;
1258 			break;
1259 		case PHY_B_AS_PRT:
1260 			skge->flow_status = FLOW_STAT_LOC_SEND;
1261 			break;
1262 		default:
1263 			skge->flow_status = FLOW_STAT_NONE;
1264 		}
1265 		skge->speed = SPEED_1000;
1266 	}
1267 
1268 	if (!netif_carrier_ok(dev))
1269 		genesis_link_up(skge);
1270 }
1271 
1272 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1273  * Phy on for 100 or 10Mbit operation
1274  */
1275 static void bcom_phy_init(struct skge_port *skge)
1276 {
1277 	struct skge_hw *hw = skge->hw;
1278 	int port = skge->port;
1279 	int i;
1280 	u16 id1, r, ext, ctl;
1281 
1282 	/* magic workaround patterns for Broadcom */
1283 	static const struct {
1284 		u16 reg;
1285 		u16 val;
1286 	} A1hack[] = {
1287 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1288 		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1289 		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1290 		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1291 	}, C0hack[] = {
1292 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1293 		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1294 	};
1295 
1296 	/* read Id from external PHY (all have the same address) */
1297 	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1298 
1299 	/* Optimize MDIO transfer by suppressing preamble. */
1300 	r = xm_read16(hw, port, XM_MMU_CMD);
1301 	r |=  XM_MMU_NO_PRE;
1302 	xm_write16(hw, port, XM_MMU_CMD, r);
1303 
1304 	switch (id1) {
1305 	case PHY_BCOM_ID1_C0:
1306 		/*
1307 		 * Workaround BCOM Errata for the C0 type.
1308 		 * Write magic patterns to reserved registers.
1309 		 */
1310 		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1311 			xm_phy_write(hw, port,
1312 				     C0hack[i].reg, C0hack[i].val);
1313 
1314 		break;
1315 	case PHY_BCOM_ID1_A1:
1316 		/*
1317 		 * Workaround BCOM Errata for the A1 type.
1318 		 * Write magic patterns to reserved registers.
1319 		 */
1320 		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1321 			xm_phy_write(hw, port,
1322 				     A1hack[i].reg, A1hack[i].val);
1323 		break;
1324 	}
1325 
1326 	/*
1327 	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1328 	 * Disable Power Management after reset.
1329 	 */
1330 	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1331 	r |= PHY_B_AC_DIS_PM;
1332 	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1333 
1334 	/* Dummy read */
1335 	xm_read16(hw, port, XM_ISRC);
1336 
1337 	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1338 	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1339 
1340 	if (skge->autoneg == AUTONEG_ENABLE) {
1341 		/*
1342 		 * Workaround BCOM Errata #1 for the C5 type.
1343 		 * 1000Base-T Link Acquisition Failure in Slave Mode
1344 		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1345 		 */
1346 		u16 adv = PHY_B_1000C_RD;
1347 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1348 			adv |= PHY_B_1000C_AHD;
1349 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1350 			adv |= PHY_B_1000C_AFD;
1351 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1352 
1353 		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1354 	} else {
1355 		if (skge->duplex == DUPLEX_FULL)
1356 			ctl |= PHY_CT_DUP_MD;
1357 		/* Force to slave */
1358 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1359 	}
1360 
1361 	/* Set autonegotiation pause parameters */
1362 	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1363 		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1364 
1365 	/* Handle Jumbo frames */
1366 	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1367 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1368 			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1369 
1370 		ext |= PHY_B_PEC_HIGH_LA;
1371 
1372 	}
1373 
1374 	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1375 	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1376 
1377 	/* Use link status change interrupt */
1378 	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1379 }
1380 
1381 static void xm_phy_init(struct skge_port *skge)
1382 {
1383 	struct skge_hw *hw = skge->hw;
1384 	int port = skge->port;
1385 	u16 ctrl = 0;
1386 
1387 	if (skge->autoneg == AUTONEG_ENABLE) {
1388 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1389 			ctrl |= PHY_X_AN_HD;
1390 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1391 			ctrl |= PHY_X_AN_FD;
1392 
1393 		ctrl |= fiber_pause_map[skge->flow_control];
1394 
1395 		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1396 
1397 		/* Restart Auto-negotiation */
1398 		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1399 	} else {
1400 		/* Set DuplexMode in Config register */
1401 		if (skge->duplex == DUPLEX_FULL)
1402 			ctrl |= PHY_CT_DUP_MD;
1403 		/*
1404 		 * Do NOT enable Auto-negotiation here. This would hold
1405 		 * the link down because no IDLEs are transmitted
1406 		 */
1407 	}
1408 
1409 	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1410 
1411 	/* Poll PHY for status changes */
1412 	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1413 }
1414 
1415 static int xm_check_link(struct net_device *dev)
1416 {
1417 	struct skge_port *skge = netdev_priv(dev);
1418 	struct skge_hw *hw = skge->hw;
1419 	int port = skge->port;
1420 	u16 status;
1421 
1422 	/* read twice because of latch */
1423 	xm_phy_read(hw, port, PHY_XMAC_STAT);
1424 	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1425 
1426 	if ((status & PHY_ST_LSYNC) == 0) {
1427 		xm_link_down(hw, port);
1428 		return 0;
1429 	}
1430 
1431 	if (skge->autoneg == AUTONEG_ENABLE) {
1432 		u16 lpa, res;
1433 
1434 		if (!(status & PHY_ST_AN_OVER))
1435 			return 0;
1436 
1437 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1438 		if (lpa & PHY_B_AN_RF) {
1439 			netdev_notice(dev, "remote fault\n");
1440 			return 0;
1441 		}
1442 
1443 		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1444 
1445 		/* Check Duplex mismatch */
1446 		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1447 		case PHY_X_RS_FD:
1448 			skge->duplex = DUPLEX_FULL;
1449 			break;
1450 		case PHY_X_RS_HD:
1451 			skge->duplex = DUPLEX_HALF;
1452 			break;
1453 		default:
1454 			netdev_notice(dev, "duplex mismatch\n");
1455 			return 0;
1456 		}
1457 
1458 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1459 		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1460 		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1461 		    (lpa & PHY_X_P_SYM_MD))
1462 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1463 		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1464 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1465 			/* Enable PAUSE receive, disable PAUSE transmit */
1466 			skge->flow_status  = FLOW_STAT_REM_SEND;
1467 		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1468 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1469 			/* Disable PAUSE receive, enable PAUSE transmit */
1470 			skge->flow_status = FLOW_STAT_LOC_SEND;
1471 		else
1472 			skge->flow_status = FLOW_STAT_NONE;
1473 
1474 		skge->speed = SPEED_1000;
1475 	}
1476 
1477 	if (!netif_carrier_ok(dev))
1478 		genesis_link_up(skge);
1479 	return 1;
1480 }
1481 
1482 /* Poll to check for link coming up.
1483  *
1484  * Since internal PHY is wired to a level triggered pin, can't
1485  * get an interrupt when carrier is detected, need to poll for
1486  * link coming up.
1487  */
1488 static void xm_link_timer(struct timer_list *t)
1489 {
1490 	struct skge_port *skge = from_timer(skge, t, link_timer);
1491 	struct net_device *dev = skge->netdev;
1492 	struct skge_hw *hw = skge->hw;
1493 	int port = skge->port;
1494 	int i;
1495 	unsigned long flags;
1496 
1497 	if (!netif_running(dev))
1498 		return;
1499 
1500 	spin_lock_irqsave(&hw->phy_lock, flags);
1501 
1502 	/*
1503 	 * Verify that the link by checking GPIO register three times.
1504 	 * This pin has the signal from the link_sync pin connected to it.
1505 	 */
1506 	for (i = 0; i < 3; i++) {
1507 		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1508 			goto link_down;
1509 	}
1510 
1511 	/* Re-enable interrupt to detect link down */
1512 	if (xm_check_link(dev)) {
1513 		u16 msk = xm_read16(hw, port, XM_IMSK);
1514 		msk &= ~XM_IS_INP_ASS;
1515 		xm_write16(hw, port, XM_IMSK, msk);
1516 		xm_read16(hw, port, XM_ISRC);
1517 	} else {
1518 link_down:
1519 		mod_timer(&skge->link_timer,
1520 			  round_jiffies(jiffies + LINK_HZ));
1521 	}
1522 	spin_unlock_irqrestore(&hw->phy_lock, flags);
1523 }
1524 
1525 static void genesis_mac_init(struct skge_hw *hw, int port)
1526 {
1527 	struct net_device *dev = hw->dev[port];
1528 	struct skge_port *skge = netdev_priv(dev);
1529 	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1530 	int i;
1531 	u32 r;
1532 	static const u8 zero[6]  = { 0 };
1533 
1534 	for (i = 0; i < 10; i++) {
1535 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1536 			     MFF_SET_MAC_RST);
1537 		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1538 			goto reset_ok;
1539 		udelay(1);
1540 	}
1541 
1542 	netdev_warn(dev, "genesis reset failed\n");
1543 
1544  reset_ok:
1545 	/* Unreset the XMAC. */
1546 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1547 
1548 	/*
1549 	 * Perform additional initialization for external PHYs,
1550 	 * namely for the 1000baseTX cards that use the XMAC's
1551 	 * GMII mode.
1552 	 */
1553 	if (hw->phy_type != SK_PHY_XMAC) {
1554 		/* Take external Phy out of reset */
1555 		r = skge_read32(hw, B2_GP_IO);
1556 		if (port == 0)
1557 			r |= GP_DIR_0|GP_IO_0;
1558 		else
1559 			r |= GP_DIR_2|GP_IO_2;
1560 
1561 		skge_write32(hw, B2_GP_IO, r);
1562 
1563 		/* Enable GMII interface */
1564 		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1565 	}
1566 
1567 
1568 	switch (hw->phy_type) {
1569 	case SK_PHY_XMAC:
1570 		xm_phy_init(skge);
1571 		break;
1572 	case SK_PHY_BCOM:
1573 		bcom_phy_init(skge);
1574 		bcom_check_link(hw, port);
1575 	}
1576 
1577 	/* Set Station Address */
1578 	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1579 
1580 	/* We don't use match addresses so clear */
1581 	for (i = 1; i < 16; i++)
1582 		xm_outaddr(hw, port, XM_EXM(i), zero);
1583 
1584 	/* Clear MIB counters */
1585 	xm_write16(hw, port, XM_STAT_CMD,
1586 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1587 	/* Clear two times according to Errata #3 */
1588 	xm_write16(hw, port, XM_STAT_CMD,
1589 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1590 
1591 	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1592 	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1593 
1594 	/* We don't need the FCS appended to the packet. */
1595 	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1596 	if (jumbo)
1597 		r |= XM_RX_BIG_PK_OK;
1598 
1599 	if (skge->duplex == DUPLEX_HALF) {
1600 		/*
1601 		 * If in manual half duplex mode the other side might be in
1602 		 * full duplex mode, so ignore if a carrier extension is not seen
1603 		 * on frames received
1604 		 */
1605 		r |= XM_RX_DIS_CEXT;
1606 	}
1607 	xm_write16(hw, port, XM_RX_CMD, r);
1608 
1609 	/* We want short frames padded to 60 bytes. */
1610 	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1611 
1612 	/* Increase threshold for jumbo frames on dual port */
1613 	if (hw->ports > 1 && jumbo)
1614 		xm_write16(hw, port, XM_TX_THR, 1020);
1615 	else
1616 		xm_write16(hw, port, XM_TX_THR, 512);
1617 
1618 	/*
1619 	 * Enable the reception of all error frames. This is is
1620 	 * a necessary evil due to the design of the XMAC. The
1621 	 * XMAC's receive FIFO is only 8K in size, however jumbo
1622 	 * frames can be up to 9000 bytes in length. When bad
1623 	 * frame filtering is enabled, the XMAC's RX FIFO operates
1624 	 * in 'store and forward' mode. For this to work, the
1625 	 * entire frame has to fit into the FIFO, but that means
1626 	 * that jumbo frames larger than 8192 bytes will be
1627 	 * truncated. Disabling all bad frame filtering causes
1628 	 * the RX FIFO to operate in streaming mode, in which
1629 	 * case the XMAC will start transferring frames out of the
1630 	 * RX FIFO as soon as the FIFO threshold is reached.
1631 	 */
1632 	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1633 
1634 
1635 	/*
1636 	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1637 	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1638 	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1639 	 */
1640 	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1641 
1642 	/*
1643 	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1644 	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1645 	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1646 	 */
1647 	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1648 
1649 	/* Configure MAC arbiter */
1650 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1651 
1652 	/* configure timeout values */
1653 	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1654 	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1655 	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1656 	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1657 
1658 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1659 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1660 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1661 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1662 
1663 	/* Configure Rx MAC FIFO */
1664 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1665 	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1666 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1667 
1668 	/* Configure Tx MAC FIFO */
1669 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1670 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1671 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1672 
1673 	if (jumbo) {
1674 		/* Enable frame flushing if jumbo frames used */
1675 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1676 	} else {
1677 		/* enable timeout timers if normal frames */
1678 		skge_write16(hw, B3_PA_CTRL,
1679 			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1680 	}
1681 }
1682 
1683 static void genesis_stop(struct skge_port *skge)
1684 {
1685 	struct skge_hw *hw = skge->hw;
1686 	int port = skge->port;
1687 	unsigned retries = 1000;
1688 	u16 cmd;
1689 
1690 	/* Disable Tx and Rx */
1691 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1692 	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1693 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1694 
1695 	genesis_reset(hw, port);
1696 
1697 	/* Clear Tx packet arbiter timeout IRQ */
1698 	skge_write16(hw, B3_PA_CTRL,
1699 		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1700 
1701 	/* Reset the MAC */
1702 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1703 	do {
1704 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1705 		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1706 			break;
1707 	} while (--retries > 0);
1708 
1709 	/* For external PHYs there must be special handling */
1710 	if (hw->phy_type != SK_PHY_XMAC) {
1711 		u32 reg = skge_read32(hw, B2_GP_IO);
1712 		if (port == 0) {
1713 			reg |= GP_DIR_0;
1714 			reg &= ~GP_IO_0;
1715 		} else {
1716 			reg |= GP_DIR_2;
1717 			reg &= ~GP_IO_2;
1718 		}
1719 		skge_write32(hw, B2_GP_IO, reg);
1720 		skge_read32(hw, B2_GP_IO);
1721 	}
1722 
1723 	xm_write16(hw, port, XM_MMU_CMD,
1724 			xm_read16(hw, port, XM_MMU_CMD)
1725 			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1726 
1727 	xm_read16(hw, port, XM_MMU_CMD);
1728 }
1729 
1730 
1731 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1732 {
1733 	struct skge_hw *hw = skge->hw;
1734 	int port = skge->port;
1735 	int i;
1736 	unsigned long timeout = jiffies + HZ;
1737 
1738 	xm_write16(hw, port,
1739 			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1740 
1741 	/* wait for update to complete */
1742 	while (xm_read16(hw, port, XM_STAT_CMD)
1743 	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1744 		if (time_after(jiffies, timeout))
1745 			break;
1746 		udelay(10);
1747 	}
1748 
1749 	/* special case for 64 bit octet counter */
1750 	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1751 		| xm_read32(hw, port, XM_TXO_OK_LO);
1752 	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1753 		| xm_read32(hw, port, XM_RXO_OK_LO);
1754 
1755 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1756 		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1757 }
1758 
1759 static void genesis_mac_intr(struct skge_hw *hw, int port)
1760 {
1761 	struct net_device *dev = hw->dev[port];
1762 	struct skge_port *skge = netdev_priv(dev);
1763 	u16 status = xm_read16(hw, port, XM_ISRC);
1764 
1765 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1766 		     "mac interrupt status 0x%x\n", status);
1767 
1768 	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1769 		xm_link_down(hw, port);
1770 		mod_timer(&skge->link_timer, jiffies + 1);
1771 	}
1772 
1773 	if (status & XM_IS_TXF_UR) {
1774 		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1775 		++dev->stats.tx_fifo_errors;
1776 	}
1777 }
1778 
1779 static void genesis_link_up(struct skge_port *skge)
1780 {
1781 	struct skge_hw *hw = skge->hw;
1782 	int port = skge->port;
1783 	u16 cmd, msk;
1784 	u32 mode;
1785 
1786 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1787 
1788 	/*
1789 	 * enabling pause frame reception is required for 1000BT
1790 	 * because the XMAC is not reset if the link is going down
1791 	 */
1792 	if (skge->flow_status == FLOW_STAT_NONE ||
1793 	    skge->flow_status == FLOW_STAT_LOC_SEND)
1794 		/* Disable Pause Frame Reception */
1795 		cmd |= XM_MMU_IGN_PF;
1796 	else
1797 		/* Enable Pause Frame Reception */
1798 		cmd &= ~XM_MMU_IGN_PF;
1799 
1800 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1801 
1802 	mode = xm_read32(hw, port, XM_MODE);
1803 	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1804 	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1805 		/*
1806 		 * Configure Pause Frame Generation
1807 		 * Use internal and external Pause Frame Generation.
1808 		 * Sending pause frames is edge triggered.
1809 		 * Send a Pause frame with the maximum pause time if
1810 		 * internal oder external FIFO full condition occurs.
1811 		 * Send a zero pause time frame to re-start transmission.
1812 		 */
1813 		/* XM_PAUSE_DA = '010000C28001' (default) */
1814 		/* XM_MAC_PTIME = 0xffff (maximum) */
1815 		/* remember this value is defined in big endian (!) */
1816 		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1817 
1818 		mode |= XM_PAUSE_MODE;
1819 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1820 	} else {
1821 		/*
1822 		 * disable pause frame generation is required for 1000BT
1823 		 * because the XMAC is not reset if the link is going down
1824 		 */
1825 		/* Disable Pause Mode in Mode Register */
1826 		mode &= ~XM_PAUSE_MODE;
1827 
1828 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1829 	}
1830 
1831 	xm_write32(hw, port, XM_MODE, mode);
1832 
1833 	/* Turn on detection of Tx underrun */
1834 	msk = xm_read16(hw, port, XM_IMSK);
1835 	msk &= ~XM_IS_TXF_UR;
1836 	xm_write16(hw, port, XM_IMSK, msk);
1837 
1838 	xm_read16(hw, port, XM_ISRC);
1839 
1840 	/* get MMU Command Reg. */
1841 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1842 	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1843 		cmd |= XM_MMU_GMII_FD;
1844 
1845 	/*
1846 	 * Workaround BCOM Errata (#10523) for all BCom Phys
1847 	 * Enable Power Management after link up
1848 	 */
1849 	if (hw->phy_type == SK_PHY_BCOM) {
1850 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1851 			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1852 			     & ~PHY_B_AC_DIS_PM);
1853 		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1854 	}
1855 
1856 	/* enable Rx/Tx */
1857 	xm_write16(hw, port, XM_MMU_CMD,
1858 			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1859 	skge_link_up(skge);
1860 }
1861 
1862 
1863 static inline void bcom_phy_intr(struct skge_port *skge)
1864 {
1865 	struct skge_hw *hw = skge->hw;
1866 	int port = skge->port;
1867 	u16 isrc;
1868 
1869 	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1870 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1871 		     "phy interrupt status 0x%x\n", isrc);
1872 
1873 	if (isrc & PHY_B_IS_PSE)
1874 		pr_err("%s: uncorrectable pair swap error\n",
1875 		       hw->dev[port]->name);
1876 
1877 	/* Workaround BCom Errata:
1878 	 *	enable and disable loopback mode if "NO HCD" occurs.
1879 	 */
1880 	if (isrc & PHY_B_IS_NO_HDCL) {
1881 		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1882 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1883 				  ctrl | PHY_CT_LOOP);
1884 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1885 				  ctrl & ~PHY_CT_LOOP);
1886 	}
1887 
1888 	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1889 		bcom_check_link(hw, port);
1890 
1891 }
1892 
1893 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1894 {
1895 	int i;
1896 
1897 	gma_write16(hw, port, GM_SMI_DATA, val);
1898 	gma_write16(hw, port, GM_SMI_CTRL,
1899 			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1900 	for (i = 0; i < PHY_RETRIES; i++) {
1901 		udelay(1);
1902 
1903 		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1904 			return 0;
1905 	}
1906 
1907 	pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1908 	return -EIO;
1909 }
1910 
1911 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1912 {
1913 	int i;
1914 
1915 	gma_write16(hw, port, GM_SMI_CTRL,
1916 			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1917 			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1918 
1919 	for (i = 0; i < PHY_RETRIES; i++) {
1920 		udelay(1);
1921 		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1922 			goto ready;
1923 	}
1924 
1925 	return -ETIMEDOUT;
1926  ready:
1927 	*val = gma_read16(hw, port, GM_SMI_DATA);
1928 	return 0;
1929 }
1930 
1931 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1932 {
1933 	u16 v = 0;
1934 	if (__gm_phy_read(hw, port, reg, &v))
1935 		pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1936 	return v;
1937 }
1938 
1939 /* Marvell Phy Initialization */
1940 static void yukon_init(struct skge_hw *hw, int port)
1941 {
1942 	struct skge_port *skge = netdev_priv(hw->dev[port]);
1943 	u16 ctrl, ct1000, adv;
1944 
1945 	if (skge->autoneg == AUTONEG_ENABLE) {
1946 		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1947 
1948 		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1949 			  PHY_M_EC_MAC_S_MSK);
1950 		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1951 
1952 		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1953 
1954 		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1955 	}
1956 
1957 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1958 	if (skge->autoneg == AUTONEG_DISABLE)
1959 		ctrl &= ~PHY_CT_ANE;
1960 
1961 	ctrl |= PHY_CT_RESET;
1962 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1963 
1964 	ctrl = 0;
1965 	ct1000 = 0;
1966 	adv = PHY_AN_CSMA;
1967 
1968 	if (skge->autoneg == AUTONEG_ENABLE) {
1969 		if (hw->copper) {
1970 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1971 				ct1000 |= PHY_M_1000C_AFD;
1972 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1973 				ct1000 |= PHY_M_1000C_AHD;
1974 			if (skge->advertising & ADVERTISED_100baseT_Full)
1975 				adv |= PHY_M_AN_100_FD;
1976 			if (skge->advertising & ADVERTISED_100baseT_Half)
1977 				adv |= PHY_M_AN_100_HD;
1978 			if (skge->advertising & ADVERTISED_10baseT_Full)
1979 				adv |= PHY_M_AN_10_FD;
1980 			if (skge->advertising & ADVERTISED_10baseT_Half)
1981 				adv |= PHY_M_AN_10_HD;
1982 
1983 			/* Set Flow-control capabilities */
1984 			adv |= phy_pause_map[skge->flow_control];
1985 		} else {
1986 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1987 				adv |= PHY_M_AN_1000X_AFD;
1988 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1989 				adv |= PHY_M_AN_1000X_AHD;
1990 
1991 			adv |= fiber_pause_map[skge->flow_control];
1992 		}
1993 
1994 		/* Restart Auto-negotiation */
1995 		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1996 	} else {
1997 		/* forced speed/duplex settings */
1998 		ct1000 = PHY_M_1000C_MSE;
1999 
2000 		if (skge->duplex == DUPLEX_FULL)
2001 			ctrl |= PHY_CT_DUP_MD;
2002 
2003 		switch (skge->speed) {
2004 		case SPEED_1000:
2005 			ctrl |= PHY_CT_SP1000;
2006 			break;
2007 		case SPEED_100:
2008 			ctrl |= PHY_CT_SP100;
2009 			break;
2010 		}
2011 
2012 		ctrl |= PHY_CT_RESET;
2013 	}
2014 
2015 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2016 
2017 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2018 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2019 
2020 	/* Enable phy interrupt on autonegotiation complete (or link up) */
2021 	if (skge->autoneg == AUTONEG_ENABLE)
2022 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2023 	else
2024 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2025 }
2026 
2027 static void yukon_reset(struct skge_hw *hw, int port)
2028 {
2029 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2030 	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2031 	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2032 	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2033 	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2034 
2035 	gma_write16(hw, port, GM_RX_CTRL,
2036 			 gma_read16(hw, port, GM_RX_CTRL)
2037 			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2038 }
2039 
2040 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2041 static int is_yukon_lite_a0(struct skge_hw *hw)
2042 {
2043 	u32 reg;
2044 	int ret;
2045 
2046 	if (hw->chip_id != CHIP_ID_YUKON)
2047 		return 0;
2048 
2049 	reg = skge_read32(hw, B2_FAR);
2050 	skge_write8(hw, B2_FAR + 3, 0xff);
2051 	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2052 	skge_write32(hw, B2_FAR, reg);
2053 	return ret;
2054 }
2055 
2056 static void yukon_mac_init(struct skge_hw *hw, int port)
2057 {
2058 	struct skge_port *skge = netdev_priv(hw->dev[port]);
2059 	int i;
2060 	u32 reg;
2061 	const u8 *addr = hw->dev[port]->dev_addr;
2062 
2063 	/* WA code for COMA mode -- set PHY reset */
2064 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2065 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2066 		reg = skge_read32(hw, B2_GP_IO);
2067 		reg |= GP_DIR_9 | GP_IO_9;
2068 		skge_write32(hw, B2_GP_IO, reg);
2069 	}
2070 
2071 	/* hard reset */
2072 	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2073 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2074 
2075 	/* WA code for COMA mode -- clear PHY reset */
2076 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2077 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2078 		reg = skge_read32(hw, B2_GP_IO);
2079 		reg |= GP_DIR_9;
2080 		reg &= ~GP_IO_9;
2081 		skge_write32(hw, B2_GP_IO, reg);
2082 	}
2083 
2084 	/* Set hardware config mode */
2085 	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2086 		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2087 	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2088 
2089 	/* Clear GMC reset */
2090 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2091 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2092 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2093 
2094 	if (skge->autoneg == AUTONEG_DISABLE) {
2095 		reg = GM_GPCR_AU_ALL_DIS;
2096 		gma_write16(hw, port, GM_GP_CTRL,
2097 				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2098 
2099 		switch (skge->speed) {
2100 		case SPEED_1000:
2101 			reg &= ~GM_GPCR_SPEED_100;
2102 			reg |= GM_GPCR_SPEED_1000;
2103 			break;
2104 		case SPEED_100:
2105 			reg &= ~GM_GPCR_SPEED_1000;
2106 			reg |= GM_GPCR_SPEED_100;
2107 			break;
2108 		case SPEED_10:
2109 			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2110 			break;
2111 		}
2112 
2113 		if (skge->duplex == DUPLEX_FULL)
2114 			reg |= GM_GPCR_DUP_FULL;
2115 	} else
2116 		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2117 
2118 	switch (skge->flow_control) {
2119 	case FLOW_MODE_NONE:
2120 		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2121 		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2122 		break;
2123 	case FLOW_MODE_LOC_SEND:
2124 		/* disable Rx flow-control */
2125 		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2126 		break;
2127 	case FLOW_MODE_SYMMETRIC:
2128 	case FLOW_MODE_SYM_OR_REM:
2129 		/* enable Tx & Rx flow-control */
2130 		break;
2131 	}
2132 
2133 	gma_write16(hw, port, GM_GP_CTRL, reg);
2134 	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2135 
2136 	yukon_init(hw, port);
2137 
2138 	/* MIB clear */
2139 	reg = gma_read16(hw, port, GM_PHY_ADDR);
2140 	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2141 
2142 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2143 		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2144 	gma_write16(hw, port, GM_PHY_ADDR, reg);
2145 
2146 	/* transmit control */
2147 	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2148 
2149 	/* receive control reg: unicast + multicast + no FCS  */
2150 	gma_write16(hw, port, GM_RX_CTRL,
2151 			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2152 
2153 	/* transmit flow control */
2154 	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2155 
2156 	/* transmit parameter */
2157 	gma_write16(hw, port, GM_TX_PARAM,
2158 			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2159 			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2160 			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2161 
2162 	/* configure the Serial Mode Register */
2163 	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2164 		| GM_SMOD_VLAN_ENA
2165 		| IPG_DATA_VAL(IPG_DATA_DEF);
2166 
2167 	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2168 		reg |= GM_SMOD_JUMBO_ENA;
2169 
2170 	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2171 
2172 	/* physical address: used for pause frames */
2173 	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2174 	/* virtual address for data */
2175 	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2176 
2177 	/* enable interrupt mask for counter overflows */
2178 	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2179 	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2180 	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2181 
2182 	/* Initialize Mac Fifo */
2183 
2184 	/* Configure Rx MAC FIFO */
2185 	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2186 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2187 
2188 	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2189 	if (is_yukon_lite_a0(hw))
2190 		reg &= ~GMF_RX_F_FL_ON;
2191 
2192 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2193 	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2194 	/*
2195 	 * because Pause Packet Truncation in GMAC is not working
2196 	 * we have to increase the Flush Threshold to 64 bytes
2197 	 * in order to flush pause packets in Rx FIFO on Yukon-1
2198 	 */
2199 	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2200 
2201 	/* Configure Tx MAC FIFO */
2202 	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2203 	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2204 }
2205 
2206 /* Go into power down mode */
2207 static void yukon_suspend(struct skge_hw *hw, int port)
2208 {
2209 	u16 ctrl;
2210 
2211 	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2212 	ctrl |= PHY_M_PC_POL_R_DIS;
2213 	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2214 
2215 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2216 	ctrl |= PHY_CT_RESET;
2217 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2218 
2219 	/* switch IEEE compatible power down mode on */
2220 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2221 	ctrl |= PHY_CT_PDOWN;
2222 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2223 }
2224 
2225 static void yukon_stop(struct skge_port *skge)
2226 {
2227 	struct skge_hw *hw = skge->hw;
2228 	int port = skge->port;
2229 
2230 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2231 	yukon_reset(hw, port);
2232 
2233 	gma_write16(hw, port, GM_GP_CTRL,
2234 			 gma_read16(hw, port, GM_GP_CTRL)
2235 			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2236 	gma_read16(hw, port, GM_GP_CTRL);
2237 
2238 	yukon_suspend(hw, port);
2239 
2240 	/* set GPHY Control reset */
2241 	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2242 	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2243 }
2244 
2245 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2246 {
2247 	struct skge_hw *hw = skge->hw;
2248 	int port = skge->port;
2249 	int i;
2250 
2251 	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2252 		| gma_read32(hw, port, GM_TXO_OK_LO);
2253 	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2254 		| gma_read32(hw, port, GM_RXO_OK_LO);
2255 
2256 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2257 		data[i] = gma_read32(hw, port,
2258 					  skge_stats[i].gma_offset);
2259 }
2260 
2261 static void yukon_mac_intr(struct skge_hw *hw, int port)
2262 {
2263 	struct net_device *dev = hw->dev[port];
2264 	struct skge_port *skge = netdev_priv(dev);
2265 	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2266 
2267 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2268 		     "mac interrupt status 0x%x\n", status);
2269 
2270 	if (status & GM_IS_RX_FF_OR) {
2271 		++dev->stats.rx_fifo_errors;
2272 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2273 	}
2274 
2275 	if (status & GM_IS_TX_FF_UR) {
2276 		++dev->stats.tx_fifo_errors;
2277 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2278 	}
2279 
2280 }
2281 
2282 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2283 {
2284 	switch (aux & PHY_M_PS_SPEED_MSK) {
2285 	case PHY_M_PS_SPEED_1000:
2286 		return SPEED_1000;
2287 	case PHY_M_PS_SPEED_100:
2288 		return SPEED_100;
2289 	default:
2290 		return SPEED_10;
2291 	}
2292 }
2293 
2294 static void yukon_link_up(struct skge_port *skge)
2295 {
2296 	struct skge_hw *hw = skge->hw;
2297 	int port = skge->port;
2298 	u16 reg;
2299 
2300 	/* Enable Transmit FIFO Underrun */
2301 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2302 
2303 	reg = gma_read16(hw, port, GM_GP_CTRL);
2304 	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2305 		reg |= GM_GPCR_DUP_FULL;
2306 
2307 	/* enable Rx/Tx */
2308 	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2309 	gma_write16(hw, port, GM_GP_CTRL, reg);
2310 
2311 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2312 	skge_link_up(skge);
2313 }
2314 
2315 static void yukon_link_down(struct skge_port *skge)
2316 {
2317 	struct skge_hw *hw = skge->hw;
2318 	int port = skge->port;
2319 	u16 ctrl;
2320 
2321 	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2322 	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2323 	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2324 
2325 	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2326 		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2327 		ctrl |= PHY_M_AN_ASP;
2328 		/* restore Asymmetric Pause bit */
2329 		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2330 	}
2331 
2332 	skge_link_down(skge);
2333 
2334 	yukon_init(hw, port);
2335 }
2336 
2337 static void yukon_phy_intr(struct skge_port *skge)
2338 {
2339 	struct skge_hw *hw = skge->hw;
2340 	int port = skge->port;
2341 	const char *reason = NULL;
2342 	u16 istatus, phystat;
2343 
2344 	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2345 	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2346 
2347 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2348 		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2349 
2350 	if (istatus & PHY_M_IS_AN_COMPL) {
2351 		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2352 		    & PHY_M_AN_RF) {
2353 			reason = "remote fault";
2354 			goto failed;
2355 		}
2356 
2357 		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2358 			reason = "master/slave fault";
2359 			goto failed;
2360 		}
2361 
2362 		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2363 			reason = "speed/duplex";
2364 			goto failed;
2365 		}
2366 
2367 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2368 			? DUPLEX_FULL : DUPLEX_HALF;
2369 		skge->speed = yukon_speed(hw, phystat);
2370 
2371 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2372 		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2373 		case PHY_M_PS_PAUSE_MSK:
2374 			skge->flow_status = FLOW_STAT_SYMMETRIC;
2375 			break;
2376 		case PHY_M_PS_RX_P_EN:
2377 			skge->flow_status = FLOW_STAT_REM_SEND;
2378 			break;
2379 		case PHY_M_PS_TX_P_EN:
2380 			skge->flow_status = FLOW_STAT_LOC_SEND;
2381 			break;
2382 		default:
2383 			skge->flow_status = FLOW_STAT_NONE;
2384 		}
2385 
2386 		if (skge->flow_status == FLOW_STAT_NONE ||
2387 		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2388 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2389 		else
2390 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2391 		yukon_link_up(skge);
2392 		return;
2393 	}
2394 
2395 	if (istatus & PHY_M_IS_LSP_CHANGE)
2396 		skge->speed = yukon_speed(hw, phystat);
2397 
2398 	if (istatus & PHY_M_IS_DUP_CHANGE)
2399 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2400 	if (istatus & PHY_M_IS_LST_CHANGE) {
2401 		if (phystat & PHY_M_PS_LINK_UP)
2402 			yukon_link_up(skge);
2403 		else
2404 			yukon_link_down(skge);
2405 	}
2406 	return;
2407  failed:
2408 	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2409 
2410 	/* XXX restart autonegotiation? */
2411 }
2412 
2413 static void skge_phy_reset(struct skge_port *skge)
2414 {
2415 	struct skge_hw *hw = skge->hw;
2416 	int port = skge->port;
2417 	struct net_device *dev = hw->dev[port];
2418 
2419 	netif_stop_queue(skge->netdev);
2420 	netif_carrier_off(skge->netdev);
2421 
2422 	spin_lock_bh(&hw->phy_lock);
2423 	if (is_genesis(hw)) {
2424 		genesis_reset(hw, port);
2425 		genesis_mac_init(hw, port);
2426 	} else {
2427 		yukon_reset(hw, port);
2428 		yukon_init(hw, port);
2429 	}
2430 	spin_unlock_bh(&hw->phy_lock);
2431 
2432 	skge_set_multicast(dev);
2433 }
2434 
2435 /* Basic MII support */
2436 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2437 {
2438 	struct mii_ioctl_data *data = if_mii(ifr);
2439 	struct skge_port *skge = netdev_priv(dev);
2440 	struct skge_hw *hw = skge->hw;
2441 	int err = -EOPNOTSUPP;
2442 
2443 	if (!netif_running(dev))
2444 		return -ENODEV;	/* Phy still in reset */
2445 
2446 	switch (cmd) {
2447 	case SIOCGMIIPHY:
2448 		data->phy_id = hw->phy_addr;
2449 
2450 		/* fallthru */
2451 	case SIOCGMIIREG: {
2452 		u16 val = 0;
2453 		spin_lock_bh(&hw->phy_lock);
2454 
2455 		if (is_genesis(hw))
2456 			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2457 		else
2458 			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2459 		spin_unlock_bh(&hw->phy_lock);
2460 		data->val_out = val;
2461 		break;
2462 	}
2463 
2464 	case SIOCSMIIREG:
2465 		spin_lock_bh(&hw->phy_lock);
2466 		if (is_genesis(hw))
2467 			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2468 				   data->val_in);
2469 		else
2470 			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2471 				   data->val_in);
2472 		spin_unlock_bh(&hw->phy_lock);
2473 		break;
2474 	}
2475 	return err;
2476 }
2477 
2478 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2479 {
2480 	u32 end;
2481 
2482 	start /= 8;
2483 	len /= 8;
2484 	end = start + len - 1;
2485 
2486 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2487 	skge_write32(hw, RB_ADDR(q, RB_START), start);
2488 	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2489 	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2490 	skge_write32(hw, RB_ADDR(q, RB_END), end);
2491 
2492 	if (q == Q_R1 || q == Q_R2) {
2493 		/* Set thresholds on receive queue's */
2494 		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2495 			     start + (2*len)/3);
2496 		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2497 			     start + (len/3));
2498 	} else {
2499 		/* Enable store & forward on Tx queue's because
2500 		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2501 		 */
2502 		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2503 	}
2504 
2505 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2506 }
2507 
2508 /* Setup Bus Memory Interface */
2509 static void skge_qset(struct skge_port *skge, u16 q,
2510 		      const struct skge_element *e)
2511 {
2512 	struct skge_hw *hw = skge->hw;
2513 	u32 watermark = 0x600;
2514 	u64 base = skge->dma + (e->desc - skge->mem);
2515 
2516 	/* optimization to reduce window on 32bit/33mhz */
2517 	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2518 		watermark /= 2;
2519 
2520 	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2521 	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2522 	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2523 	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2524 }
2525 
2526 static int skge_up(struct net_device *dev)
2527 {
2528 	struct skge_port *skge = netdev_priv(dev);
2529 	struct skge_hw *hw = skge->hw;
2530 	int port = skge->port;
2531 	u32 chunk, ram_addr;
2532 	size_t rx_size, tx_size;
2533 	int err;
2534 
2535 	if (!is_valid_ether_addr(dev->dev_addr))
2536 		return -EINVAL;
2537 
2538 	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2539 
2540 	if (dev->mtu > RX_BUF_SIZE)
2541 		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2542 	else
2543 		skge->rx_buf_size = RX_BUF_SIZE;
2544 
2545 
2546 	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2547 	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2548 	skge->mem_size = tx_size + rx_size;
2549 	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2550 	if (!skge->mem)
2551 		return -ENOMEM;
2552 
2553 	BUG_ON(skge->dma & 7);
2554 
2555 	if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2556 		dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2557 		err = -EINVAL;
2558 		goto free_pci_mem;
2559 	}
2560 
2561 	memset(skge->mem, 0, skge->mem_size);
2562 
2563 	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2564 	if (err)
2565 		goto free_pci_mem;
2566 
2567 	err = skge_rx_fill(dev);
2568 	if (err)
2569 		goto free_rx_ring;
2570 
2571 	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2572 			      skge->dma + rx_size);
2573 	if (err)
2574 		goto free_rx_ring;
2575 
2576 	if (hw->ports == 1) {
2577 		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2578 				  dev->name, hw);
2579 		if (err) {
2580 			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2581 				   hw->pdev->irq, err);
2582 			goto free_tx_ring;
2583 		}
2584 	}
2585 
2586 	/* Initialize MAC */
2587 	netif_carrier_off(dev);
2588 	spin_lock_bh(&hw->phy_lock);
2589 	if (is_genesis(hw))
2590 		genesis_mac_init(hw, port);
2591 	else
2592 		yukon_mac_init(hw, port);
2593 	spin_unlock_bh(&hw->phy_lock);
2594 
2595 	/* Configure RAMbuffers - equally between ports and tx/rx */
2596 	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2597 	ram_addr = hw->ram_offset + 2 * chunk * port;
2598 
2599 	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2600 	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2601 
2602 	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2603 	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2604 	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2605 
2606 	/* Start receiver BMU */
2607 	wmb();
2608 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2609 	skge_led(skge, LED_MODE_ON);
2610 
2611 	spin_lock_irq(&hw->hw_lock);
2612 	hw->intr_mask |= portmask[port];
2613 	skge_write32(hw, B0_IMSK, hw->intr_mask);
2614 	skge_read32(hw, B0_IMSK);
2615 	spin_unlock_irq(&hw->hw_lock);
2616 
2617 	napi_enable(&skge->napi);
2618 
2619 	skge_set_multicast(dev);
2620 
2621 	return 0;
2622 
2623  free_tx_ring:
2624 	kfree(skge->tx_ring.start);
2625  free_rx_ring:
2626 	skge_rx_clean(skge);
2627 	kfree(skge->rx_ring.start);
2628  free_pci_mem:
2629 	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2630 	skge->mem = NULL;
2631 
2632 	return err;
2633 }
2634 
2635 /* stop receiver */
2636 static void skge_rx_stop(struct skge_hw *hw, int port)
2637 {
2638 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2639 	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2640 		     RB_RST_SET|RB_DIS_OP_MD);
2641 	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2642 }
2643 
2644 static int skge_down(struct net_device *dev)
2645 {
2646 	struct skge_port *skge = netdev_priv(dev);
2647 	struct skge_hw *hw = skge->hw;
2648 	int port = skge->port;
2649 
2650 	if (!skge->mem)
2651 		return 0;
2652 
2653 	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2654 
2655 	netif_tx_disable(dev);
2656 
2657 	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2658 		del_timer_sync(&skge->link_timer);
2659 
2660 	napi_disable(&skge->napi);
2661 	netif_carrier_off(dev);
2662 
2663 	spin_lock_irq(&hw->hw_lock);
2664 	hw->intr_mask &= ~portmask[port];
2665 	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2666 	skge_read32(hw, B0_IMSK);
2667 	spin_unlock_irq(&hw->hw_lock);
2668 
2669 	if (hw->ports == 1)
2670 		free_irq(hw->pdev->irq, hw);
2671 
2672 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2673 	if (is_genesis(hw))
2674 		genesis_stop(skge);
2675 	else
2676 		yukon_stop(skge);
2677 
2678 	/* Stop transmitter */
2679 	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2680 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2681 		     RB_RST_SET|RB_DIS_OP_MD);
2682 
2683 
2684 	/* Disable Force Sync bit and Enable Alloc bit */
2685 	skge_write8(hw, SK_REG(port, TXA_CTRL),
2686 		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2687 
2688 	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2689 	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2690 	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2691 
2692 	/* Reset PCI FIFO */
2693 	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2694 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2695 
2696 	/* Reset the RAM Buffer async Tx queue */
2697 	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2698 
2699 	skge_rx_stop(hw, port);
2700 
2701 	if (is_genesis(hw)) {
2702 		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2703 		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2704 	} else {
2705 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2706 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2707 	}
2708 
2709 	skge_led(skge, LED_MODE_OFF);
2710 
2711 	netif_tx_lock_bh(dev);
2712 	skge_tx_clean(dev);
2713 	netif_tx_unlock_bh(dev);
2714 
2715 	skge_rx_clean(skge);
2716 
2717 	kfree(skge->rx_ring.start);
2718 	kfree(skge->tx_ring.start);
2719 	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2720 	skge->mem = NULL;
2721 	return 0;
2722 }
2723 
2724 static inline int skge_avail(const struct skge_ring *ring)
2725 {
2726 	smp_mb();
2727 	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2728 		+ (ring->to_clean - ring->to_use) - 1;
2729 }
2730 
2731 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2732 				   struct net_device *dev)
2733 {
2734 	struct skge_port *skge = netdev_priv(dev);
2735 	struct skge_hw *hw = skge->hw;
2736 	struct skge_element *e;
2737 	struct skge_tx_desc *td;
2738 	int i;
2739 	u32 control, len;
2740 	dma_addr_t map;
2741 
2742 	if (skb_padto(skb, ETH_ZLEN))
2743 		return NETDEV_TX_OK;
2744 
2745 	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2746 		return NETDEV_TX_BUSY;
2747 
2748 	e = skge->tx_ring.to_use;
2749 	td = e->desc;
2750 	BUG_ON(td->control & BMU_OWN);
2751 	e->skb = skb;
2752 	len = skb_headlen(skb);
2753 	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2754 	if (pci_dma_mapping_error(hw->pdev, map))
2755 		goto mapping_error;
2756 
2757 	dma_unmap_addr_set(e, mapaddr, map);
2758 	dma_unmap_len_set(e, maplen, len);
2759 
2760 	td->dma_lo = lower_32_bits(map);
2761 	td->dma_hi = upper_32_bits(map);
2762 
2763 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2764 		const int offset = skb_checksum_start_offset(skb);
2765 
2766 		/* This seems backwards, but it is what the sk98lin
2767 		 * does.  Looks like hardware is wrong?
2768 		 */
2769 		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2770 		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2771 			control = BMU_TCP_CHECK;
2772 		else
2773 			control = BMU_UDP_CHECK;
2774 
2775 		td->csum_offs = 0;
2776 		td->csum_start = offset;
2777 		td->csum_write = offset + skb->csum_offset;
2778 	} else
2779 		control = BMU_CHECK;
2780 
2781 	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2782 		control |= BMU_EOF | BMU_IRQ_EOF;
2783 	else {
2784 		struct skge_tx_desc *tf = td;
2785 
2786 		control |= BMU_STFWD;
2787 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2788 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2789 
2790 			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2791 					       skb_frag_size(frag), DMA_TO_DEVICE);
2792 			if (dma_mapping_error(&hw->pdev->dev, map))
2793 				goto mapping_unwind;
2794 
2795 			e = e->next;
2796 			e->skb = skb;
2797 			tf = e->desc;
2798 			BUG_ON(tf->control & BMU_OWN);
2799 
2800 			tf->dma_lo = lower_32_bits(map);
2801 			tf->dma_hi = upper_32_bits(map);
2802 			dma_unmap_addr_set(e, mapaddr, map);
2803 			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2804 
2805 			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2806 		}
2807 		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2808 	}
2809 	/* Make sure all the descriptors written */
2810 	wmb();
2811 	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2812 	wmb();
2813 
2814 	netdev_sent_queue(dev, skb->len);
2815 
2816 	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2817 
2818 	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2819 		     "tx queued, slot %td, len %d\n",
2820 		     e - skge->tx_ring.start, skb->len);
2821 
2822 	skge->tx_ring.to_use = e->next;
2823 	smp_wmb();
2824 
2825 	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2826 		netdev_dbg(dev, "transmit queue full\n");
2827 		netif_stop_queue(dev);
2828 	}
2829 
2830 	return NETDEV_TX_OK;
2831 
2832 mapping_unwind:
2833 	e = skge->tx_ring.to_use;
2834 	pci_unmap_single(hw->pdev,
2835 			 dma_unmap_addr(e, mapaddr),
2836 			 dma_unmap_len(e, maplen),
2837 			 PCI_DMA_TODEVICE);
2838 	while (i-- > 0) {
2839 		e = e->next;
2840 		pci_unmap_page(hw->pdev,
2841 			       dma_unmap_addr(e, mapaddr),
2842 			       dma_unmap_len(e, maplen),
2843 			       PCI_DMA_TODEVICE);
2844 	}
2845 
2846 mapping_error:
2847 	if (net_ratelimit())
2848 		dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2849 	dev_kfree_skb_any(skb);
2850 	return NETDEV_TX_OK;
2851 }
2852 
2853 
2854 /* Free resources associated with this reing element */
2855 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2856 				 u32 control)
2857 {
2858 	/* skb header vs. fragment */
2859 	if (control & BMU_STF)
2860 		pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2861 				 dma_unmap_len(e, maplen),
2862 				 PCI_DMA_TODEVICE);
2863 	else
2864 		pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2865 			       dma_unmap_len(e, maplen),
2866 			       PCI_DMA_TODEVICE);
2867 }
2868 
2869 /* Free all buffers in transmit ring */
2870 static void skge_tx_clean(struct net_device *dev)
2871 {
2872 	struct skge_port *skge = netdev_priv(dev);
2873 	struct skge_element *e;
2874 
2875 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2876 		struct skge_tx_desc *td = e->desc;
2877 
2878 		skge_tx_unmap(skge->hw->pdev, e, td->control);
2879 
2880 		if (td->control & BMU_EOF)
2881 			dev_kfree_skb(e->skb);
2882 		td->control = 0;
2883 	}
2884 
2885 	netdev_reset_queue(dev);
2886 	skge->tx_ring.to_clean = e;
2887 }
2888 
2889 static void skge_tx_timeout(struct net_device *dev)
2890 {
2891 	struct skge_port *skge = netdev_priv(dev);
2892 
2893 	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2894 
2895 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2896 	skge_tx_clean(dev);
2897 	netif_wake_queue(dev);
2898 }
2899 
2900 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2901 {
2902 	int err;
2903 
2904 	if (!netif_running(dev)) {
2905 		dev->mtu = new_mtu;
2906 		return 0;
2907 	}
2908 
2909 	skge_down(dev);
2910 
2911 	dev->mtu = new_mtu;
2912 
2913 	err = skge_up(dev);
2914 	if (err)
2915 		dev_close(dev);
2916 
2917 	return err;
2918 }
2919 
2920 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2921 
2922 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2923 {
2924 	u32 crc, bit;
2925 
2926 	crc = ether_crc_le(ETH_ALEN, addr);
2927 	bit = ~crc & 0x3f;
2928 	filter[bit/8] |= 1 << (bit%8);
2929 }
2930 
2931 static void genesis_set_multicast(struct net_device *dev)
2932 {
2933 	struct skge_port *skge = netdev_priv(dev);
2934 	struct skge_hw *hw = skge->hw;
2935 	int port = skge->port;
2936 	struct netdev_hw_addr *ha;
2937 	u32 mode;
2938 	u8 filter[8];
2939 
2940 	mode = xm_read32(hw, port, XM_MODE);
2941 	mode |= XM_MD_ENA_HASH;
2942 	if (dev->flags & IFF_PROMISC)
2943 		mode |= XM_MD_ENA_PROM;
2944 	else
2945 		mode &= ~XM_MD_ENA_PROM;
2946 
2947 	if (dev->flags & IFF_ALLMULTI)
2948 		memset(filter, 0xff, sizeof(filter));
2949 	else {
2950 		memset(filter, 0, sizeof(filter));
2951 
2952 		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2953 		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2954 			genesis_add_filter(filter, pause_mc_addr);
2955 
2956 		netdev_for_each_mc_addr(ha, dev)
2957 			genesis_add_filter(filter, ha->addr);
2958 	}
2959 
2960 	xm_write32(hw, port, XM_MODE, mode);
2961 	xm_outhash(hw, port, XM_HSM, filter);
2962 }
2963 
2964 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2965 {
2966 	 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2967 	 filter[bit/8] |= 1 << (bit%8);
2968 }
2969 
2970 static void yukon_set_multicast(struct net_device *dev)
2971 {
2972 	struct skge_port *skge = netdev_priv(dev);
2973 	struct skge_hw *hw = skge->hw;
2974 	int port = skge->port;
2975 	struct netdev_hw_addr *ha;
2976 	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2977 			skge->flow_status == FLOW_STAT_SYMMETRIC);
2978 	u16 reg;
2979 	u8 filter[8];
2980 
2981 	memset(filter, 0, sizeof(filter));
2982 
2983 	reg = gma_read16(hw, port, GM_RX_CTRL);
2984 	reg |= GM_RXCR_UCF_ENA;
2985 
2986 	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2987 		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2988 	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2989 		memset(filter, 0xff, sizeof(filter));
2990 	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2991 		reg &= ~GM_RXCR_MCF_ENA;
2992 	else {
2993 		reg |= GM_RXCR_MCF_ENA;
2994 
2995 		if (rx_pause)
2996 			yukon_add_filter(filter, pause_mc_addr);
2997 
2998 		netdev_for_each_mc_addr(ha, dev)
2999 			yukon_add_filter(filter, ha->addr);
3000 	}
3001 
3002 
3003 	gma_write16(hw, port, GM_MC_ADDR_H1,
3004 			 (u16)filter[0] | ((u16)filter[1] << 8));
3005 	gma_write16(hw, port, GM_MC_ADDR_H2,
3006 			 (u16)filter[2] | ((u16)filter[3] << 8));
3007 	gma_write16(hw, port, GM_MC_ADDR_H3,
3008 			 (u16)filter[4] | ((u16)filter[5] << 8));
3009 	gma_write16(hw, port, GM_MC_ADDR_H4,
3010 			 (u16)filter[6] | ((u16)filter[7] << 8));
3011 
3012 	gma_write16(hw, port, GM_RX_CTRL, reg);
3013 }
3014 
3015 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3016 {
3017 	if (is_genesis(hw))
3018 		return status >> XMR_FS_LEN_SHIFT;
3019 	else
3020 		return status >> GMR_FS_LEN_SHIFT;
3021 }
3022 
3023 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3024 {
3025 	if (is_genesis(hw))
3026 		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3027 	else
3028 		return (status & GMR_FS_ANY_ERR) ||
3029 			(status & GMR_FS_RX_OK) == 0;
3030 }
3031 
3032 static void skge_set_multicast(struct net_device *dev)
3033 {
3034 	struct skge_port *skge = netdev_priv(dev);
3035 
3036 	if (is_genesis(skge->hw))
3037 		genesis_set_multicast(dev);
3038 	else
3039 		yukon_set_multicast(dev);
3040 
3041 }
3042 
3043 
3044 /* Get receive buffer from descriptor.
3045  * Handles copy of small buffers and reallocation failures
3046  */
3047 static struct sk_buff *skge_rx_get(struct net_device *dev,
3048 				   struct skge_element *e,
3049 				   u32 control, u32 status, u16 csum)
3050 {
3051 	struct skge_port *skge = netdev_priv(dev);
3052 	struct sk_buff *skb;
3053 	u16 len = control & BMU_BBC;
3054 
3055 	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3056 		     "rx slot %td status 0x%x len %d\n",
3057 		     e - skge->rx_ring.start, status, len);
3058 
3059 	if (len > skge->rx_buf_size)
3060 		goto error;
3061 
3062 	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3063 		goto error;
3064 
3065 	if (bad_phy_status(skge->hw, status))
3066 		goto error;
3067 
3068 	if (phy_length(skge->hw, status) != len)
3069 		goto error;
3070 
3071 	if (len < RX_COPY_THRESHOLD) {
3072 		skb = netdev_alloc_skb_ip_align(dev, len);
3073 		if (!skb)
3074 			goto resubmit;
3075 
3076 		pci_dma_sync_single_for_cpu(skge->hw->pdev,
3077 					    dma_unmap_addr(e, mapaddr),
3078 					    dma_unmap_len(e, maplen),
3079 					    PCI_DMA_FROMDEVICE);
3080 		skb_copy_from_linear_data(e->skb, skb->data, len);
3081 		pci_dma_sync_single_for_device(skge->hw->pdev,
3082 					       dma_unmap_addr(e, mapaddr),
3083 					       dma_unmap_len(e, maplen),
3084 					       PCI_DMA_FROMDEVICE);
3085 		skge_rx_reuse(e, skge->rx_buf_size);
3086 	} else {
3087 		struct skge_element ee;
3088 		struct sk_buff *nskb;
3089 
3090 		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3091 		if (!nskb)
3092 			goto resubmit;
3093 
3094 		ee = *e;
3095 
3096 		skb = ee.skb;
3097 		prefetch(skb->data);
3098 
3099 		if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3100 			dev_kfree_skb(nskb);
3101 			goto resubmit;
3102 		}
3103 
3104 		pci_unmap_single(skge->hw->pdev,
3105 				 dma_unmap_addr(&ee, mapaddr),
3106 				 dma_unmap_len(&ee, maplen),
3107 				 PCI_DMA_FROMDEVICE);
3108 	}
3109 
3110 	skb_put(skb, len);
3111 
3112 	if (dev->features & NETIF_F_RXCSUM) {
3113 		skb->csum = csum;
3114 		skb->ip_summed = CHECKSUM_COMPLETE;
3115 	}
3116 
3117 	skb->protocol = eth_type_trans(skb, dev);
3118 
3119 	return skb;
3120 error:
3121 
3122 	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3123 		     "rx err, slot %td control 0x%x status 0x%x\n",
3124 		     e - skge->rx_ring.start, control, status);
3125 
3126 	if (is_genesis(skge->hw)) {
3127 		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3128 			dev->stats.rx_length_errors++;
3129 		if (status & XMR_FS_FRA_ERR)
3130 			dev->stats.rx_frame_errors++;
3131 		if (status & XMR_FS_FCS_ERR)
3132 			dev->stats.rx_crc_errors++;
3133 	} else {
3134 		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3135 			dev->stats.rx_length_errors++;
3136 		if (status & GMR_FS_FRAGMENT)
3137 			dev->stats.rx_frame_errors++;
3138 		if (status & GMR_FS_CRC_ERR)
3139 			dev->stats.rx_crc_errors++;
3140 	}
3141 
3142 resubmit:
3143 	skge_rx_reuse(e, skge->rx_buf_size);
3144 	return NULL;
3145 }
3146 
3147 /* Free all buffers in Tx ring which are no longer owned by device */
3148 static void skge_tx_done(struct net_device *dev)
3149 {
3150 	struct skge_port *skge = netdev_priv(dev);
3151 	struct skge_ring *ring = &skge->tx_ring;
3152 	struct skge_element *e;
3153 	unsigned int bytes_compl = 0, pkts_compl = 0;
3154 
3155 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3156 
3157 	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3158 		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3159 
3160 		if (control & BMU_OWN)
3161 			break;
3162 
3163 		skge_tx_unmap(skge->hw->pdev, e, control);
3164 
3165 		if (control & BMU_EOF) {
3166 			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3167 				     "tx done slot %td\n",
3168 				     e - skge->tx_ring.start);
3169 
3170 			pkts_compl++;
3171 			bytes_compl += e->skb->len;
3172 
3173 			dev_consume_skb_any(e->skb);
3174 		}
3175 	}
3176 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3177 	skge->tx_ring.to_clean = e;
3178 
3179 	/* Can run lockless until we need to synchronize to restart queue. */
3180 	smp_mb();
3181 
3182 	if (unlikely(netif_queue_stopped(dev) &&
3183 		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3184 		netif_tx_lock(dev);
3185 		if (unlikely(netif_queue_stopped(dev) &&
3186 			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3187 			netif_wake_queue(dev);
3188 
3189 		}
3190 		netif_tx_unlock(dev);
3191 	}
3192 }
3193 
3194 static int skge_poll(struct napi_struct *napi, int budget)
3195 {
3196 	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3197 	struct net_device *dev = skge->netdev;
3198 	struct skge_hw *hw = skge->hw;
3199 	struct skge_ring *ring = &skge->rx_ring;
3200 	struct skge_element *e;
3201 	int work_done = 0;
3202 
3203 	skge_tx_done(dev);
3204 
3205 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3206 
3207 	for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3208 		struct skge_rx_desc *rd = e->desc;
3209 		struct sk_buff *skb;
3210 		u32 control;
3211 
3212 		rmb();
3213 		control = rd->control;
3214 		if (control & BMU_OWN)
3215 			break;
3216 
3217 		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3218 		if (likely(skb)) {
3219 			napi_gro_receive(napi, skb);
3220 			++work_done;
3221 		}
3222 	}
3223 	ring->to_clean = e;
3224 
3225 	/* restart receiver */
3226 	wmb();
3227 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3228 
3229 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3230 		unsigned long flags;
3231 
3232 		spin_lock_irqsave(&hw->hw_lock, flags);
3233 		hw->intr_mask |= napimask[skge->port];
3234 		skge_write32(hw, B0_IMSK, hw->intr_mask);
3235 		skge_read32(hw, B0_IMSK);
3236 		spin_unlock_irqrestore(&hw->hw_lock, flags);
3237 	}
3238 
3239 	return work_done;
3240 }
3241 
3242 /* Parity errors seem to happen when Genesis is connected to a switch
3243  * with no other ports present. Heartbeat error??
3244  */
3245 static void skge_mac_parity(struct skge_hw *hw, int port)
3246 {
3247 	struct net_device *dev = hw->dev[port];
3248 
3249 	++dev->stats.tx_heartbeat_errors;
3250 
3251 	if (is_genesis(hw))
3252 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3253 			     MFF_CLR_PERR);
3254 	else
3255 		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3256 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3257 			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3258 			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3259 }
3260 
3261 static void skge_mac_intr(struct skge_hw *hw, int port)
3262 {
3263 	if (is_genesis(hw))
3264 		genesis_mac_intr(hw, port);
3265 	else
3266 		yukon_mac_intr(hw, port);
3267 }
3268 
3269 /* Handle device specific framing and timeout interrupts */
3270 static void skge_error_irq(struct skge_hw *hw)
3271 {
3272 	struct pci_dev *pdev = hw->pdev;
3273 	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3274 
3275 	if (is_genesis(hw)) {
3276 		/* clear xmac errors */
3277 		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3278 			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3279 		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3280 			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3281 	} else {
3282 		/* Timestamp (unused) overflow */
3283 		if (hwstatus & IS_IRQ_TIST_OV)
3284 			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3285 	}
3286 
3287 	if (hwstatus & IS_RAM_RD_PAR) {
3288 		dev_err(&pdev->dev, "Ram read data parity error\n");
3289 		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3290 	}
3291 
3292 	if (hwstatus & IS_RAM_WR_PAR) {
3293 		dev_err(&pdev->dev, "Ram write data parity error\n");
3294 		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3295 	}
3296 
3297 	if (hwstatus & IS_M1_PAR_ERR)
3298 		skge_mac_parity(hw, 0);
3299 
3300 	if (hwstatus & IS_M2_PAR_ERR)
3301 		skge_mac_parity(hw, 1);
3302 
3303 	if (hwstatus & IS_R1_PAR_ERR) {
3304 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3305 			hw->dev[0]->name);
3306 		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3307 	}
3308 
3309 	if (hwstatus & IS_R2_PAR_ERR) {
3310 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3311 			hw->dev[1]->name);
3312 		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3313 	}
3314 
3315 	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3316 		u16 pci_status, pci_cmd;
3317 
3318 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3319 		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3320 
3321 		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3322 			pci_cmd, pci_status);
3323 
3324 		/* Write the error bits back to clear them. */
3325 		pci_status &= PCI_STATUS_ERROR_BITS;
3326 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3327 		pci_write_config_word(pdev, PCI_COMMAND,
3328 				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3329 		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3330 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3331 
3332 		/* if error still set then just ignore it */
3333 		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3334 		if (hwstatus & IS_IRQ_STAT) {
3335 			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3336 			hw->intr_mask &= ~IS_HW_ERR;
3337 		}
3338 	}
3339 }
3340 
3341 /*
3342  * Interrupt from PHY are handled in tasklet (softirq)
3343  * because accessing phy registers requires spin wait which might
3344  * cause excess interrupt latency.
3345  */
3346 static void skge_extirq(unsigned long arg)
3347 {
3348 	struct skge_hw *hw = (struct skge_hw *) arg;
3349 	int port;
3350 
3351 	for (port = 0; port < hw->ports; port++) {
3352 		struct net_device *dev = hw->dev[port];
3353 
3354 		if (netif_running(dev)) {
3355 			struct skge_port *skge = netdev_priv(dev);
3356 
3357 			spin_lock(&hw->phy_lock);
3358 			if (!is_genesis(hw))
3359 				yukon_phy_intr(skge);
3360 			else if (hw->phy_type == SK_PHY_BCOM)
3361 				bcom_phy_intr(skge);
3362 			spin_unlock(&hw->phy_lock);
3363 		}
3364 	}
3365 
3366 	spin_lock_irq(&hw->hw_lock);
3367 	hw->intr_mask |= IS_EXT_REG;
3368 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3369 	skge_read32(hw, B0_IMSK);
3370 	spin_unlock_irq(&hw->hw_lock);
3371 }
3372 
3373 static irqreturn_t skge_intr(int irq, void *dev_id)
3374 {
3375 	struct skge_hw *hw = dev_id;
3376 	u32 status;
3377 	int handled = 0;
3378 
3379 	spin_lock(&hw->hw_lock);
3380 	/* Reading this register masks IRQ */
3381 	status = skge_read32(hw, B0_SP_ISRC);
3382 	if (status == 0 || status == ~0)
3383 		goto out;
3384 
3385 	handled = 1;
3386 	status &= hw->intr_mask;
3387 	if (status & IS_EXT_REG) {
3388 		hw->intr_mask &= ~IS_EXT_REG;
3389 		tasklet_schedule(&hw->phy_task);
3390 	}
3391 
3392 	if (status & (IS_XA1_F|IS_R1_F)) {
3393 		struct skge_port *skge = netdev_priv(hw->dev[0]);
3394 		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3395 		napi_schedule(&skge->napi);
3396 	}
3397 
3398 	if (status & IS_PA_TO_TX1)
3399 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3400 
3401 	if (status & IS_PA_TO_RX1) {
3402 		++hw->dev[0]->stats.rx_over_errors;
3403 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3404 	}
3405 
3406 
3407 	if (status & IS_MAC1)
3408 		skge_mac_intr(hw, 0);
3409 
3410 	if (hw->dev[1]) {
3411 		struct skge_port *skge = netdev_priv(hw->dev[1]);
3412 
3413 		if (status & (IS_XA2_F|IS_R2_F)) {
3414 			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3415 			napi_schedule(&skge->napi);
3416 		}
3417 
3418 		if (status & IS_PA_TO_RX2) {
3419 			++hw->dev[1]->stats.rx_over_errors;
3420 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3421 		}
3422 
3423 		if (status & IS_PA_TO_TX2)
3424 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3425 
3426 		if (status & IS_MAC2)
3427 			skge_mac_intr(hw, 1);
3428 	}
3429 
3430 	if (status & IS_HW_ERR)
3431 		skge_error_irq(hw);
3432 out:
3433 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3434 	skge_read32(hw, B0_IMSK);
3435 	spin_unlock(&hw->hw_lock);
3436 
3437 	return IRQ_RETVAL(handled);
3438 }
3439 
3440 #ifdef CONFIG_NET_POLL_CONTROLLER
3441 static void skge_netpoll(struct net_device *dev)
3442 {
3443 	struct skge_port *skge = netdev_priv(dev);
3444 
3445 	disable_irq(dev->irq);
3446 	skge_intr(dev->irq, skge->hw);
3447 	enable_irq(dev->irq);
3448 }
3449 #endif
3450 
3451 static int skge_set_mac_address(struct net_device *dev, void *p)
3452 {
3453 	struct skge_port *skge = netdev_priv(dev);
3454 	struct skge_hw *hw = skge->hw;
3455 	unsigned port = skge->port;
3456 	const struct sockaddr *addr = p;
3457 	u16 ctrl;
3458 
3459 	if (!is_valid_ether_addr(addr->sa_data))
3460 		return -EADDRNOTAVAIL;
3461 
3462 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3463 
3464 	if (!netif_running(dev)) {
3465 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3466 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3467 	} else {
3468 		/* disable Rx */
3469 		spin_lock_bh(&hw->phy_lock);
3470 		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3471 		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3472 
3473 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3474 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3475 
3476 		if (is_genesis(hw))
3477 			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3478 		else {
3479 			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3480 			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3481 		}
3482 
3483 		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3484 		spin_unlock_bh(&hw->phy_lock);
3485 	}
3486 
3487 	return 0;
3488 }
3489 
3490 static const struct {
3491 	u8 id;
3492 	const char *name;
3493 } skge_chips[] = {
3494 	{ CHIP_ID_GENESIS,	"Genesis" },
3495 	{ CHIP_ID_YUKON,	 "Yukon" },
3496 	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3497 	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3498 };
3499 
3500 static const char *skge_board_name(const struct skge_hw *hw)
3501 {
3502 	int i;
3503 	static char buf[16];
3504 
3505 	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3506 		if (skge_chips[i].id == hw->chip_id)
3507 			return skge_chips[i].name;
3508 
3509 	snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3510 	return buf;
3511 }
3512 
3513 
3514 /*
3515  * Setup the board data structure, but don't bring up
3516  * the port(s)
3517  */
3518 static int skge_reset(struct skge_hw *hw)
3519 {
3520 	u32 reg;
3521 	u16 ctst, pci_status;
3522 	u8 t8, mac_cfg, pmd_type;
3523 	int i;
3524 
3525 	ctst = skge_read16(hw, B0_CTST);
3526 
3527 	/* do a SW reset */
3528 	skge_write8(hw, B0_CTST, CS_RST_SET);
3529 	skge_write8(hw, B0_CTST, CS_RST_CLR);
3530 
3531 	/* clear PCI errors, if any */
3532 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3533 	skge_write8(hw, B2_TST_CTRL2, 0);
3534 
3535 	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3536 	pci_write_config_word(hw->pdev, PCI_STATUS,
3537 			      pci_status | PCI_STATUS_ERROR_BITS);
3538 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3539 	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3540 
3541 	/* restore CLK_RUN bits (for Yukon-Lite) */
3542 	skge_write16(hw, B0_CTST,
3543 		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3544 
3545 	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3546 	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3547 	pmd_type = skge_read8(hw, B2_PMD_TYP);
3548 	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3549 
3550 	switch (hw->chip_id) {
3551 	case CHIP_ID_GENESIS:
3552 #ifdef CONFIG_SKGE_GENESIS
3553 		switch (hw->phy_type) {
3554 		case SK_PHY_XMAC:
3555 			hw->phy_addr = PHY_ADDR_XMAC;
3556 			break;
3557 		case SK_PHY_BCOM:
3558 			hw->phy_addr = PHY_ADDR_BCOM;
3559 			break;
3560 		default:
3561 			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3562 			       hw->phy_type);
3563 			return -EOPNOTSUPP;
3564 		}
3565 		break;
3566 #else
3567 		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3568 		return -EOPNOTSUPP;
3569 #endif
3570 
3571 	case CHIP_ID_YUKON:
3572 	case CHIP_ID_YUKON_LITE:
3573 	case CHIP_ID_YUKON_LP:
3574 		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3575 			hw->copper = 1;
3576 
3577 		hw->phy_addr = PHY_ADDR_MARV;
3578 		break;
3579 
3580 	default:
3581 		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3582 		       hw->chip_id);
3583 		return -EOPNOTSUPP;
3584 	}
3585 
3586 	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3587 	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3588 	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3589 
3590 	/* read the adapters RAM size */
3591 	t8 = skge_read8(hw, B2_E_0);
3592 	if (is_genesis(hw)) {
3593 		if (t8 == 3) {
3594 			/* special case: 4 x 64k x 36, offset = 0x80000 */
3595 			hw->ram_size = 0x100000;
3596 			hw->ram_offset = 0x80000;
3597 		} else
3598 			hw->ram_size = t8 * 512;
3599 	} else if (t8 == 0)
3600 		hw->ram_size = 0x20000;
3601 	else
3602 		hw->ram_size = t8 * 4096;
3603 
3604 	hw->intr_mask = IS_HW_ERR;
3605 
3606 	/* Use PHY IRQ for all but fiber based Genesis board */
3607 	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3608 		hw->intr_mask |= IS_EXT_REG;
3609 
3610 	if (is_genesis(hw))
3611 		genesis_init(hw);
3612 	else {
3613 		/* switch power to VCC (WA for VAUX problem) */
3614 		skge_write8(hw, B0_POWER_CTRL,
3615 			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3616 
3617 		/* avoid boards with stuck Hardware error bits */
3618 		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3619 		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3620 			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3621 			hw->intr_mask &= ~IS_HW_ERR;
3622 		}
3623 
3624 		/* Clear PHY COMA */
3625 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3626 		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3627 		reg &= ~PCI_PHY_COMA;
3628 		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3629 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3630 
3631 
3632 		for (i = 0; i < hw->ports; i++) {
3633 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3634 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3635 		}
3636 	}
3637 
3638 	/* turn off hardware timer (unused) */
3639 	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3640 	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3641 	skge_write8(hw, B0_LED, LED_STAT_ON);
3642 
3643 	/* enable the Tx Arbiters */
3644 	for (i = 0; i < hw->ports; i++)
3645 		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3646 
3647 	/* Initialize ram interface */
3648 	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3649 
3650 	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3651 	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3652 	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3653 	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3654 	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3655 	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3656 	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3657 	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3658 	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3659 	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3660 	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3661 	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3662 
3663 	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3664 
3665 	/* Set interrupt moderation for Transmit only
3666 	 * Receive interrupts avoided by NAPI
3667 	 */
3668 	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3669 	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3670 	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3671 
3672 	/* Leave irq disabled until first port is brought up. */
3673 	skge_write32(hw, B0_IMSK, 0);
3674 
3675 	for (i = 0; i < hw->ports; i++) {
3676 		if (is_genesis(hw))
3677 			genesis_reset(hw, i);
3678 		else
3679 			yukon_reset(hw, i);
3680 	}
3681 
3682 	return 0;
3683 }
3684 
3685 
3686 #ifdef CONFIG_SKGE_DEBUG
3687 
3688 static struct dentry *skge_debug;
3689 
3690 static int skge_debug_show(struct seq_file *seq, void *v)
3691 {
3692 	struct net_device *dev = seq->private;
3693 	const struct skge_port *skge = netdev_priv(dev);
3694 	const struct skge_hw *hw = skge->hw;
3695 	const struct skge_element *e;
3696 
3697 	if (!netif_running(dev))
3698 		return -ENETDOWN;
3699 
3700 	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3701 		   skge_read32(hw, B0_IMSK));
3702 
3703 	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3704 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3705 		const struct skge_tx_desc *t = e->desc;
3706 		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3707 			   t->control, t->dma_hi, t->dma_lo, t->status,
3708 			   t->csum_offs, t->csum_write, t->csum_start);
3709 	}
3710 
3711 	seq_puts(seq, "\nRx Ring:\n");
3712 	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3713 		const struct skge_rx_desc *r = e->desc;
3714 
3715 		if (r->control & BMU_OWN)
3716 			break;
3717 
3718 		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3719 			   r->control, r->dma_hi, r->dma_lo, r->status,
3720 			   r->timestamp, r->csum1, r->csum1_start);
3721 	}
3722 
3723 	return 0;
3724 }
3725 DEFINE_SHOW_ATTRIBUTE(skge_debug);
3726 
3727 /*
3728  * Use network device events to create/remove/rename
3729  * debugfs file entries
3730  */
3731 static int skge_device_event(struct notifier_block *unused,
3732 			     unsigned long event, void *ptr)
3733 {
3734 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3735 	struct skge_port *skge;
3736 	struct dentry *d;
3737 
3738 	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3739 		goto done;
3740 
3741 	skge = netdev_priv(dev);
3742 	switch (event) {
3743 	case NETDEV_CHANGENAME:
3744 		if (skge->debugfs) {
3745 			d = debugfs_rename(skge_debug, skge->debugfs,
3746 					   skge_debug, dev->name);
3747 			if (d)
3748 				skge->debugfs = d;
3749 			else {
3750 				netdev_info(dev, "rename failed\n");
3751 				debugfs_remove(skge->debugfs);
3752 			}
3753 		}
3754 		break;
3755 
3756 	case NETDEV_GOING_DOWN:
3757 		if (skge->debugfs) {
3758 			debugfs_remove(skge->debugfs);
3759 			skge->debugfs = NULL;
3760 		}
3761 		break;
3762 
3763 	case NETDEV_UP:
3764 		d = debugfs_create_file(dev->name, 0444,
3765 					skge_debug, dev,
3766 					&skge_debug_fops);
3767 		if (!d || IS_ERR(d))
3768 			netdev_info(dev, "debugfs create failed\n");
3769 		else
3770 			skge->debugfs = d;
3771 		break;
3772 	}
3773 
3774 done:
3775 	return NOTIFY_DONE;
3776 }
3777 
3778 static struct notifier_block skge_notifier = {
3779 	.notifier_call = skge_device_event,
3780 };
3781 
3782 
3783 static __init void skge_debug_init(void)
3784 {
3785 	struct dentry *ent;
3786 
3787 	ent = debugfs_create_dir("skge", NULL);
3788 	if (!ent || IS_ERR(ent)) {
3789 		pr_info("debugfs create directory failed\n");
3790 		return;
3791 	}
3792 
3793 	skge_debug = ent;
3794 	register_netdevice_notifier(&skge_notifier);
3795 }
3796 
3797 static __exit void skge_debug_cleanup(void)
3798 {
3799 	if (skge_debug) {
3800 		unregister_netdevice_notifier(&skge_notifier);
3801 		debugfs_remove(skge_debug);
3802 		skge_debug = NULL;
3803 	}
3804 }
3805 
3806 #else
3807 #define skge_debug_init()
3808 #define skge_debug_cleanup()
3809 #endif
3810 
3811 static const struct net_device_ops skge_netdev_ops = {
3812 	.ndo_open		= skge_up,
3813 	.ndo_stop		= skge_down,
3814 	.ndo_start_xmit		= skge_xmit_frame,
3815 	.ndo_do_ioctl		= skge_ioctl,
3816 	.ndo_get_stats		= skge_get_stats,
3817 	.ndo_tx_timeout		= skge_tx_timeout,
3818 	.ndo_change_mtu		= skge_change_mtu,
3819 	.ndo_validate_addr	= eth_validate_addr,
3820 	.ndo_set_rx_mode	= skge_set_multicast,
3821 	.ndo_set_mac_address	= skge_set_mac_address,
3822 #ifdef CONFIG_NET_POLL_CONTROLLER
3823 	.ndo_poll_controller	= skge_netpoll,
3824 #endif
3825 };
3826 
3827 
3828 /* Initialize network device */
3829 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3830 				       int highmem)
3831 {
3832 	struct skge_port *skge;
3833 	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3834 
3835 	if (!dev)
3836 		return NULL;
3837 
3838 	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3839 	dev->netdev_ops = &skge_netdev_ops;
3840 	dev->ethtool_ops = &skge_ethtool_ops;
3841 	dev->watchdog_timeo = TX_WATCHDOG;
3842 	dev->irq = hw->pdev->irq;
3843 
3844 	/* MTU range: 60 - 9000 */
3845 	dev->min_mtu = ETH_ZLEN;
3846 	dev->max_mtu = ETH_JUMBO_MTU;
3847 
3848 	if (highmem)
3849 		dev->features |= NETIF_F_HIGHDMA;
3850 
3851 	skge = netdev_priv(dev);
3852 	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3853 	skge->netdev = dev;
3854 	skge->hw = hw;
3855 	skge->msg_enable = netif_msg_init(debug, default_msg);
3856 
3857 	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3858 	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3859 
3860 	/* Auto speed and flow control */
3861 	skge->autoneg = AUTONEG_ENABLE;
3862 	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3863 	skge->duplex = -1;
3864 	skge->speed = -1;
3865 	skge->advertising = skge_supported_modes(hw);
3866 
3867 	if (device_can_wakeup(&hw->pdev->dev)) {
3868 		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3869 		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3870 	}
3871 
3872 	hw->dev[port] = dev;
3873 
3874 	skge->port = port;
3875 
3876 	/* Only used for Genesis XMAC */
3877 	if (is_genesis(hw))
3878 	    timer_setup(&skge->link_timer, xm_link_timer, 0);
3879 	else {
3880 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3881 		                   NETIF_F_RXCSUM;
3882 		dev->features |= dev->hw_features;
3883 	}
3884 
3885 	/* read the mac address */
3886 	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3887 
3888 	return dev;
3889 }
3890 
3891 static void skge_show_addr(struct net_device *dev)
3892 {
3893 	const struct skge_port *skge = netdev_priv(dev);
3894 
3895 	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3896 }
3897 
3898 static int only_32bit_dma;
3899 
3900 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3901 {
3902 	struct net_device *dev, *dev1;
3903 	struct skge_hw *hw;
3904 	int err, using_dac = 0;
3905 
3906 	err = pci_enable_device(pdev);
3907 	if (err) {
3908 		dev_err(&pdev->dev, "cannot enable PCI device\n");
3909 		goto err_out;
3910 	}
3911 
3912 	err = pci_request_regions(pdev, DRV_NAME);
3913 	if (err) {
3914 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3915 		goto err_out_disable_pdev;
3916 	}
3917 
3918 	pci_set_master(pdev);
3919 
3920 	if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3921 		using_dac = 1;
3922 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3923 	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3924 		using_dac = 0;
3925 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3926 	}
3927 
3928 	if (err) {
3929 		dev_err(&pdev->dev, "no usable DMA configuration\n");
3930 		goto err_out_free_regions;
3931 	}
3932 
3933 #ifdef __BIG_ENDIAN
3934 	/* byte swap descriptors in hardware */
3935 	{
3936 		u32 reg;
3937 
3938 		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3939 		reg |= PCI_REV_DESC;
3940 		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3941 	}
3942 #endif
3943 
3944 	err = -ENOMEM;
3945 	/* space for skge@pci:0000:04:00.0 */
3946 	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3947 		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3948 	if (!hw)
3949 		goto err_out_free_regions;
3950 
3951 	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3952 
3953 	hw->pdev = pdev;
3954 	spin_lock_init(&hw->hw_lock);
3955 	spin_lock_init(&hw->phy_lock);
3956 	tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3957 
3958 	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3959 	if (!hw->regs) {
3960 		dev_err(&pdev->dev, "cannot map device registers\n");
3961 		goto err_out_free_hw;
3962 	}
3963 
3964 	err = skge_reset(hw);
3965 	if (err)
3966 		goto err_out_iounmap;
3967 
3968 	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3969 		DRV_VERSION,
3970 		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3971 		skge_board_name(hw), hw->chip_rev);
3972 
3973 	dev = skge_devinit(hw, 0, using_dac);
3974 	if (!dev) {
3975 		err = -ENOMEM;
3976 		goto err_out_led_off;
3977 	}
3978 
3979 	/* Some motherboards are broken and has zero in ROM. */
3980 	if (!is_valid_ether_addr(dev->dev_addr))
3981 		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3982 
3983 	err = register_netdev(dev);
3984 	if (err) {
3985 		dev_err(&pdev->dev, "cannot register net device\n");
3986 		goto err_out_free_netdev;
3987 	}
3988 
3989 	skge_show_addr(dev);
3990 
3991 	if (hw->ports > 1) {
3992 		dev1 = skge_devinit(hw, 1, using_dac);
3993 		if (!dev1) {
3994 			err = -ENOMEM;
3995 			goto err_out_unregister;
3996 		}
3997 
3998 		err = register_netdev(dev1);
3999 		if (err) {
4000 			dev_err(&pdev->dev, "cannot register second net device\n");
4001 			goto err_out_free_dev1;
4002 		}
4003 
4004 		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
4005 				  hw->irq_name, hw);
4006 		if (err) {
4007 			dev_err(&pdev->dev, "cannot assign irq %d\n",
4008 				pdev->irq);
4009 			goto err_out_unregister_dev1;
4010 		}
4011 
4012 		skge_show_addr(dev1);
4013 	}
4014 	pci_set_drvdata(pdev, hw);
4015 
4016 	return 0;
4017 
4018 err_out_unregister_dev1:
4019 	unregister_netdev(dev1);
4020 err_out_free_dev1:
4021 	free_netdev(dev1);
4022 err_out_unregister:
4023 	unregister_netdev(dev);
4024 err_out_free_netdev:
4025 	free_netdev(dev);
4026 err_out_led_off:
4027 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4028 err_out_iounmap:
4029 	iounmap(hw->regs);
4030 err_out_free_hw:
4031 	kfree(hw);
4032 err_out_free_regions:
4033 	pci_release_regions(pdev);
4034 err_out_disable_pdev:
4035 	pci_disable_device(pdev);
4036 err_out:
4037 	return err;
4038 }
4039 
4040 static void skge_remove(struct pci_dev *pdev)
4041 {
4042 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4043 	struct net_device *dev0, *dev1;
4044 
4045 	if (!hw)
4046 		return;
4047 
4048 	dev1 = hw->dev[1];
4049 	if (dev1)
4050 		unregister_netdev(dev1);
4051 	dev0 = hw->dev[0];
4052 	unregister_netdev(dev0);
4053 
4054 	tasklet_kill(&hw->phy_task);
4055 
4056 	spin_lock_irq(&hw->hw_lock);
4057 	hw->intr_mask = 0;
4058 
4059 	if (hw->ports > 1) {
4060 		skge_write32(hw, B0_IMSK, 0);
4061 		skge_read32(hw, B0_IMSK);
4062 	}
4063 	spin_unlock_irq(&hw->hw_lock);
4064 
4065 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4066 	skge_write8(hw, B0_CTST, CS_RST_SET);
4067 
4068 	if (hw->ports > 1)
4069 		free_irq(pdev->irq, hw);
4070 	pci_release_regions(pdev);
4071 	pci_disable_device(pdev);
4072 	if (dev1)
4073 		free_netdev(dev1);
4074 	free_netdev(dev0);
4075 
4076 	iounmap(hw->regs);
4077 	kfree(hw);
4078 }
4079 
4080 #ifdef CONFIG_PM_SLEEP
4081 static int skge_suspend(struct device *dev)
4082 {
4083 	struct pci_dev *pdev = to_pci_dev(dev);
4084 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4085 	int i;
4086 
4087 	if (!hw)
4088 		return 0;
4089 
4090 	for (i = 0; i < hw->ports; i++) {
4091 		struct net_device *dev = hw->dev[i];
4092 		struct skge_port *skge = netdev_priv(dev);
4093 
4094 		if (netif_running(dev))
4095 			skge_down(dev);
4096 
4097 		if (skge->wol)
4098 			skge_wol_init(skge);
4099 	}
4100 
4101 	skge_write32(hw, B0_IMSK, 0);
4102 
4103 	return 0;
4104 }
4105 
4106 static int skge_resume(struct device *dev)
4107 {
4108 	struct pci_dev *pdev = to_pci_dev(dev);
4109 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4110 	int i, err;
4111 
4112 	if (!hw)
4113 		return 0;
4114 
4115 	err = skge_reset(hw);
4116 	if (err)
4117 		goto out;
4118 
4119 	for (i = 0; i < hw->ports; i++) {
4120 		struct net_device *dev = hw->dev[i];
4121 
4122 		if (netif_running(dev)) {
4123 			err = skge_up(dev);
4124 
4125 			if (err) {
4126 				netdev_err(dev, "could not up: %d\n", err);
4127 				dev_close(dev);
4128 				goto out;
4129 			}
4130 		}
4131 	}
4132 out:
4133 	return err;
4134 }
4135 
4136 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4137 #define SKGE_PM_OPS (&skge_pm_ops)
4138 
4139 #else
4140 
4141 #define SKGE_PM_OPS NULL
4142 #endif /* CONFIG_PM_SLEEP */
4143 
4144 static void skge_shutdown(struct pci_dev *pdev)
4145 {
4146 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4147 	int i;
4148 
4149 	if (!hw)
4150 		return;
4151 
4152 	for (i = 0; i < hw->ports; i++) {
4153 		struct net_device *dev = hw->dev[i];
4154 		struct skge_port *skge = netdev_priv(dev);
4155 
4156 		if (skge->wol)
4157 			skge_wol_init(skge);
4158 	}
4159 
4160 	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4161 	pci_set_power_state(pdev, PCI_D3hot);
4162 }
4163 
4164 static struct pci_driver skge_driver = {
4165 	.name =         DRV_NAME,
4166 	.id_table =     skge_id_table,
4167 	.probe =        skge_probe,
4168 	.remove =       skge_remove,
4169 	.shutdown =	skge_shutdown,
4170 	.driver.pm =	SKGE_PM_OPS,
4171 };
4172 
4173 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4174 	{
4175 		.ident = "Gigabyte nForce boards",
4176 		.matches = {
4177 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4178 			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4179 		},
4180 	},
4181 	{
4182 		.ident = "ASUS P5NSLI",
4183 		.matches = {
4184 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4185 			DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4186 		},
4187 	},
4188 	{
4189 		.ident = "FUJITSU SIEMENS A8NE-FM",
4190 		.matches = {
4191 			DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4192 			DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4193 		},
4194 	},
4195 	{}
4196 };
4197 
4198 static int __init skge_init_module(void)
4199 {
4200 	if (dmi_check_system(skge_32bit_dma_boards))
4201 		only_32bit_dma = 1;
4202 	skge_debug_init();
4203 	return pci_register_driver(&skge_driver);
4204 }
4205 
4206 static void __exit skge_cleanup_module(void)
4207 {
4208 	pci_unregister_driver(&skge_driver);
4209 	skge_debug_cleanup();
4210 }
4211 
4212 module_init(skge_init_module);
4213 module_exit(skge_cleanup_module);
4214