1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit 4 * Ethernet adapters. Based on earlier sk98lin, e100 and 5 * FreeBSD if_sk drivers. 6 * 7 * This driver intentionally does not support all the features 8 * of the original driver such as link fail-over and link management because 9 * those should be done at higher levels. 10 * 11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org> 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/in.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/moduleparam.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/ethtool.h> 23 #include <linux/pci.h> 24 #include <linux/if_vlan.h> 25 #include <linux/ip.h> 26 #include <linux/delay.h> 27 #include <linux/crc32.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/debugfs.h> 30 #include <linux/sched.h> 31 #include <linux/seq_file.h> 32 #include <linux/mii.h> 33 #include <linux/slab.h> 34 #include <linux/dmi.h> 35 #include <linux/prefetch.h> 36 #include <asm/irq.h> 37 38 #include "skge.h" 39 40 #define DRV_NAME "skge" 41 #define DRV_VERSION "1.14" 42 43 #define DEFAULT_TX_RING_SIZE 128 44 #define DEFAULT_RX_RING_SIZE 512 45 #define MAX_TX_RING_SIZE 1024 46 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1) 47 #define MAX_RX_RING_SIZE 4096 48 #define RX_COPY_THRESHOLD 128 49 #define RX_BUF_SIZE 1536 50 #define PHY_RETRIES 1000 51 #define ETH_JUMBO_MTU 9000 52 #define TX_WATCHDOG (5 * HZ) 53 #define NAPI_WEIGHT 64 54 #define BLINK_MS 250 55 #define LINK_HZ HZ 56 57 #define SKGE_EEPROM_MAGIC 0x9933aabb 58 59 60 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); 61 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>"); 62 MODULE_LICENSE("GPL"); 63 MODULE_VERSION(DRV_VERSION); 64 65 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 66 NETIF_MSG_LINK | NETIF_MSG_IFUP | 67 NETIF_MSG_IFDOWN); 68 69 static int debug = -1; /* defaults above */ 70 module_param(debug, int, 0); 71 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 72 73 static const struct pci_device_id skge_id_table[] = { 74 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */ 75 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */ 76 #ifdef CONFIG_SKGE_GENESIS 77 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */ 78 #endif 79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */ 80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */ 81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */ 82 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */ 83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */ 84 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */ 85 { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */ 86 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */ 87 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */ 88 { 0 } 89 }; 90 MODULE_DEVICE_TABLE(pci, skge_id_table); 91 92 static int skge_up(struct net_device *dev); 93 static int skge_down(struct net_device *dev); 94 static void skge_phy_reset(struct skge_port *skge); 95 static void skge_tx_clean(struct net_device *dev); 96 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 97 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 98 static void genesis_get_stats(struct skge_port *skge, u64 *data); 99 static void yukon_get_stats(struct skge_port *skge, u64 *data); 100 static void yukon_init(struct skge_hw *hw, int port); 101 static void genesis_mac_init(struct skge_hw *hw, int port); 102 static void genesis_link_up(struct skge_port *skge); 103 static void skge_set_multicast(struct net_device *dev); 104 static irqreturn_t skge_intr(int irq, void *dev_id); 105 106 /* Avoid conditionals by using array */ 107 static const int txqaddr[] = { Q_XA1, Q_XA2 }; 108 static const int rxqaddr[] = { Q_R1, Q_R2 }; 109 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; 110 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; 111 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F }; 112 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 }; 113 114 static inline bool is_genesis(const struct skge_hw *hw) 115 { 116 #ifdef CONFIG_SKGE_GENESIS 117 return hw->chip_id == CHIP_ID_GENESIS; 118 #else 119 return false; 120 #endif 121 } 122 123 static int skge_get_regs_len(struct net_device *dev) 124 { 125 return 0x4000; 126 } 127 128 /* 129 * Returns copy of whole control register region 130 * Note: skip RAM address register because accessing it will 131 * cause bus hangs! 132 */ 133 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, 134 void *p) 135 { 136 const struct skge_port *skge = netdev_priv(dev); 137 const void __iomem *io = skge->hw->regs; 138 139 regs->version = 1; 140 memset(p, 0, regs->len); 141 memcpy_fromio(p, io, B3_RAM_ADDR); 142 143 if (regs->len > B3_RI_WTO_R1) { 144 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1, 145 regs->len - B3_RI_WTO_R1); 146 } 147 } 148 149 /* Wake on Lan only supported on Yukon chips with rev 1 or above */ 150 static u32 wol_supported(const struct skge_hw *hw) 151 { 152 if (is_genesis(hw)) 153 return 0; 154 155 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 156 return 0; 157 158 return WAKE_MAGIC | WAKE_PHY; 159 } 160 161 static void skge_wol_init(struct skge_port *skge) 162 { 163 struct skge_hw *hw = skge->hw; 164 int port = skge->port; 165 u16 ctrl; 166 167 skge_write16(hw, B0_CTST, CS_RST_CLR); 168 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR); 169 170 /* Turn on Vaux */ 171 skge_write8(hw, B0_POWER_CTRL, 172 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); 173 174 /* WA code for COMA mode -- clear PHY reset */ 175 if (hw->chip_id == CHIP_ID_YUKON_LITE && 176 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 177 u32 reg = skge_read32(hw, B2_GP_IO); 178 reg |= GP_DIR_9; 179 reg &= ~GP_IO_9; 180 skge_write32(hw, B2_GP_IO, reg); 181 } 182 183 skge_write32(hw, SK_REG(port, GPHY_CTRL), 184 GPC_DIS_SLEEP | 185 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | 186 GPC_ANEG_1 | GPC_RST_SET); 187 188 skge_write32(hw, SK_REG(port, GPHY_CTRL), 189 GPC_DIS_SLEEP | 190 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | 191 GPC_ANEG_1 | GPC_RST_CLR); 192 193 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR); 194 195 /* Force to 10/100 skge_reset will re-enable on resume */ 196 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, 197 (PHY_AN_100FULL | PHY_AN_100HALF | 198 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA)); 199 /* no 1000 HD/FD */ 200 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0); 201 gm_phy_write(hw, port, PHY_MARV_CTRL, 202 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE | 203 PHY_CT_RE_CFG | PHY_CT_DUP_MD); 204 205 206 /* Set GMAC to no flow control and auto update for speed/duplex */ 207 gma_write16(hw, port, GM_GP_CTRL, 208 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA| 209 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS); 210 211 /* Set WOL address */ 212 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR), 213 skge->netdev->dev_addr, ETH_ALEN); 214 215 /* Turn on appropriate WOL control bits */ 216 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT); 217 ctrl = 0; 218 if (skge->wol & WAKE_PHY) 219 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT; 220 else 221 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT; 222 223 if (skge->wol & WAKE_MAGIC) 224 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT; 225 else 226 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT; 227 228 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT; 229 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl); 230 231 /* block receiver */ 232 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 233 } 234 235 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 236 { 237 struct skge_port *skge = netdev_priv(dev); 238 239 wol->supported = wol_supported(skge->hw); 240 wol->wolopts = skge->wol; 241 } 242 243 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 244 { 245 struct skge_port *skge = netdev_priv(dev); 246 struct skge_hw *hw = skge->hw; 247 248 if ((wol->wolopts & ~wol_supported(hw)) || 249 !device_can_wakeup(&hw->pdev->dev)) 250 return -EOPNOTSUPP; 251 252 skge->wol = wol->wolopts; 253 254 device_set_wakeup_enable(&hw->pdev->dev, skge->wol); 255 256 return 0; 257 } 258 259 /* Determine supported/advertised modes based on hardware. 260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx 261 */ 262 static u32 skge_supported_modes(const struct skge_hw *hw) 263 { 264 u32 supported; 265 266 if (hw->copper) { 267 supported = (SUPPORTED_10baseT_Half | 268 SUPPORTED_10baseT_Full | 269 SUPPORTED_100baseT_Half | 270 SUPPORTED_100baseT_Full | 271 SUPPORTED_1000baseT_Half | 272 SUPPORTED_1000baseT_Full | 273 SUPPORTED_Autoneg | 274 SUPPORTED_TP); 275 276 if (is_genesis(hw)) 277 supported &= ~(SUPPORTED_10baseT_Half | 278 SUPPORTED_10baseT_Full | 279 SUPPORTED_100baseT_Half | 280 SUPPORTED_100baseT_Full); 281 282 else if (hw->chip_id == CHIP_ID_YUKON) 283 supported &= ~SUPPORTED_1000baseT_Half; 284 } else 285 supported = (SUPPORTED_1000baseT_Full | 286 SUPPORTED_1000baseT_Half | 287 SUPPORTED_FIBRE | 288 SUPPORTED_Autoneg); 289 290 return supported; 291 } 292 293 static int skge_get_link_ksettings(struct net_device *dev, 294 struct ethtool_link_ksettings *cmd) 295 { 296 struct skge_port *skge = netdev_priv(dev); 297 struct skge_hw *hw = skge->hw; 298 u32 supported, advertising; 299 300 supported = skge_supported_modes(hw); 301 302 if (hw->copper) { 303 cmd->base.port = PORT_TP; 304 cmd->base.phy_address = hw->phy_addr; 305 } else 306 cmd->base.port = PORT_FIBRE; 307 308 advertising = skge->advertising; 309 cmd->base.autoneg = skge->autoneg; 310 cmd->base.speed = skge->speed; 311 cmd->base.duplex = skge->duplex; 312 313 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 314 supported); 315 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 316 advertising); 317 318 return 0; 319 } 320 321 static int skge_set_link_ksettings(struct net_device *dev, 322 const struct ethtool_link_ksettings *cmd) 323 { 324 struct skge_port *skge = netdev_priv(dev); 325 const struct skge_hw *hw = skge->hw; 326 u32 supported = skge_supported_modes(hw); 327 int err = 0; 328 u32 advertising; 329 330 ethtool_convert_link_mode_to_legacy_u32(&advertising, 331 cmd->link_modes.advertising); 332 333 if (cmd->base.autoneg == AUTONEG_ENABLE) { 334 advertising = supported; 335 skge->duplex = -1; 336 skge->speed = -1; 337 } else { 338 u32 setting; 339 u32 speed = cmd->base.speed; 340 341 switch (speed) { 342 case SPEED_1000: 343 if (cmd->base.duplex == DUPLEX_FULL) 344 setting = SUPPORTED_1000baseT_Full; 345 else if (cmd->base.duplex == DUPLEX_HALF) 346 setting = SUPPORTED_1000baseT_Half; 347 else 348 return -EINVAL; 349 break; 350 case SPEED_100: 351 if (cmd->base.duplex == DUPLEX_FULL) 352 setting = SUPPORTED_100baseT_Full; 353 else if (cmd->base.duplex == DUPLEX_HALF) 354 setting = SUPPORTED_100baseT_Half; 355 else 356 return -EINVAL; 357 break; 358 359 case SPEED_10: 360 if (cmd->base.duplex == DUPLEX_FULL) 361 setting = SUPPORTED_10baseT_Full; 362 else if (cmd->base.duplex == DUPLEX_HALF) 363 setting = SUPPORTED_10baseT_Half; 364 else 365 return -EINVAL; 366 break; 367 default: 368 return -EINVAL; 369 } 370 371 if ((setting & supported) == 0) 372 return -EINVAL; 373 374 skge->speed = speed; 375 skge->duplex = cmd->base.duplex; 376 } 377 378 skge->autoneg = cmd->base.autoneg; 379 skge->advertising = advertising; 380 381 if (netif_running(dev)) { 382 skge_down(dev); 383 err = skge_up(dev); 384 if (err) { 385 dev_close(dev); 386 return err; 387 } 388 } 389 390 return 0; 391 } 392 393 static void skge_get_drvinfo(struct net_device *dev, 394 struct ethtool_drvinfo *info) 395 { 396 struct skge_port *skge = netdev_priv(dev); 397 398 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 399 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 400 strlcpy(info->bus_info, pci_name(skge->hw->pdev), 401 sizeof(info->bus_info)); 402 } 403 404 static const struct skge_stat { 405 char name[ETH_GSTRING_LEN]; 406 u16 xmac_offset; 407 u16 gma_offset; 408 } skge_stats[] = { 409 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI }, 410 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI }, 411 412 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK }, 413 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK }, 414 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK }, 415 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK }, 416 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK }, 417 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK }, 418 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE }, 419 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE }, 420 421 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL }, 422 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL }, 423 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL }, 424 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL }, 425 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR }, 426 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV }, 427 428 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 429 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT }, 430 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG }, 431 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 432 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR }, 433 }; 434 435 static int skge_get_sset_count(struct net_device *dev, int sset) 436 { 437 switch (sset) { 438 case ETH_SS_STATS: 439 return ARRAY_SIZE(skge_stats); 440 default: 441 return -EOPNOTSUPP; 442 } 443 } 444 445 static void skge_get_ethtool_stats(struct net_device *dev, 446 struct ethtool_stats *stats, u64 *data) 447 { 448 struct skge_port *skge = netdev_priv(dev); 449 450 if (is_genesis(skge->hw)) 451 genesis_get_stats(skge, data); 452 else 453 yukon_get_stats(skge, data); 454 } 455 456 /* Use hardware MIB variables for critical path statistics and 457 * transmit feedback not reported at interrupt. 458 * Other errors are accounted for in interrupt handler. 459 */ 460 static struct net_device_stats *skge_get_stats(struct net_device *dev) 461 { 462 struct skge_port *skge = netdev_priv(dev); 463 u64 data[ARRAY_SIZE(skge_stats)]; 464 465 if (is_genesis(skge->hw)) 466 genesis_get_stats(skge, data); 467 else 468 yukon_get_stats(skge, data); 469 470 dev->stats.tx_bytes = data[0]; 471 dev->stats.rx_bytes = data[1]; 472 dev->stats.tx_packets = data[2] + data[4] + data[6]; 473 dev->stats.rx_packets = data[3] + data[5] + data[7]; 474 dev->stats.multicast = data[3] + data[5]; 475 dev->stats.collisions = data[10]; 476 dev->stats.tx_aborted_errors = data[12]; 477 478 return &dev->stats; 479 } 480 481 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) 482 { 483 int i; 484 485 switch (stringset) { 486 case ETH_SS_STATS: 487 for (i = 0; i < ARRAY_SIZE(skge_stats); i++) 488 memcpy(data + i * ETH_GSTRING_LEN, 489 skge_stats[i].name, ETH_GSTRING_LEN); 490 break; 491 } 492 } 493 494 static void skge_get_ring_param(struct net_device *dev, 495 struct ethtool_ringparam *p) 496 { 497 struct skge_port *skge = netdev_priv(dev); 498 499 p->rx_max_pending = MAX_RX_RING_SIZE; 500 p->tx_max_pending = MAX_TX_RING_SIZE; 501 502 p->rx_pending = skge->rx_ring.count; 503 p->tx_pending = skge->tx_ring.count; 504 } 505 506 static int skge_set_ring_param(struct net_device *dev, 507 struct ethtool_ringparam *p) 508 { 509 struct skge_port *skge = netdev_priv(dev); 510 int err = 0; 511 512 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE || 513 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE) 514 return -EINVAL; 515 516 skge->rx_ring.count = p->rx_pending; 517 skge->tx_ring.count = p->tx_pending; 518 519 if (netif_running(dev)) { 520 skge_down(dev); 521 err = skge_up(dev); 522 if (err) 523 dev_close(dev); 524 } 525 526 return err; 527 } 528 529 static u32 skge_get_msglevel(struct net_device *netdev) 530 { 531 struct skge_port *skge = netdev_priv(netdev); 532 return skge->msg_enable; 533 } 534 535 static void skge_set_msglevel(struct net_device *netdev, u32 value) 536 { 537 struct skge_port *skge = netdev_priv(netdev); 538 skge->msg_enable = value; 539 } 540 541 static int skge_nway_reset(struct net_device *dev) 542 { 543 struct skge_port *skge = netdev_priv(dev); 544 545 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev)) 546 return -EINVAL; 547 548 skge_phy_reset(skge); 549 return 0; 550 } 551 552 static void skge_get_pauseparam(struct net_device *dev, 553 struct ethtool_pauseparam *ecmd) 554 { 555 struct skge_port *skge = netdev_priv(dev); 556 557 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) || 558 (skge->flow_control == FLOW_MODE_SYM_OR_REM)); 559 ecmd->tx_pause = (ecmd->rx_pause || 560 (skge->flow_control == FLOW_MODE_LOC_SEND)); 561 562 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause; 563 } 564 565 static int skge_set_pauseparam(struct net_device *dev, 566 struct ethtool_pauseparam *ecmd) 567 { 568 struct skge_port *skge = netdev_priv(dev); 569 struct ethtool_pauseparam old; 570 int err = 0; 571 572 skge_get_pauseparam(dev, &old); 573 574 if (ecmd->autoneg != old.autoneg) 575 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC; 576 else { 577 if (ecmd->rx_pause && ecmd->tx_pause) 578 skge->flow_control = FLOW_MODE_SYMMETRIC; 579 else if (ecmd->rx_pause && !ecmd->tx_pause) 580 skge->flow_control = FLOW_MODE_SYM_OR_REM; 581 else if (!ecmd->rx_pause && ecmd->tx_pause) 582 skge->flow_control = FLOW_MODE_LOC_SEND; 583 else 584 skge->flow_control = FLOW_MODE_NONE; 585 } 586 587 if (netif_running(dev)) { 588 skge_down(dev); 589 err = skge_up(dev); 590 if (err) { 591 dev_close(dev); 592 return err; 593 } 594 } 595 596 return 0; 597 } 598 599 /* Chip internal frequency for clock calculations */ 600 static inline u32 hwkhz(const struct skge_hw *hw) 601 { 602 return is_genesis(hw) ? 53125 : 78125; 603 } 604 605 /* Chip HZ to microseconds */ 606 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks) 607 { 608 return (ticks * 1000) / hwkhz(hw); 609 } 610 611 /* Microseconds to chip HZ */ 612 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec) 613 { 614 return hwkhz(hw) * usec / 1000; 615 } 616 617 static int skge_get_coalesce(struct net_device *dev, 618 struct ethtool_coalesce *ecmd) 619 { 620 struct skge_port *skge = netdev_priv(dev); 621 struct skge_hw *hw = skge->hw; 622 int port = skge->port; 623 624 ecmd->rx_coalesce_usecs = 0; 625 ecmd->tx_coalesce_usecs = 0; 626 627 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) { 628 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI)); 629 u32 msk = skge_read32(hw, B2_IRQM_MSK); 630 631 if (msk & rxirqmask[port]) 632 ecmd->rx_coalesce_usecs = delay; 633 if (msk & txirqmask[port]) 634 ecmd->tx_coalesce_usecs = delay; 635 } 636 637 return 0; 638 } 639 640 /* Note: interrupt timer is per board, but can turn on/off per port */ 641 static int skge_set_coalesce(struct net_device *dev, 642 struct ethtool_coalesce *ecmd) 643 { 644 struct skge_port *skge = netdev_priv(dev); 645 struct skge_hw *hw = skge->hw; 646 int port = skge->port; 647 u32 msk = skge_read32(hw, B2_IRQM_MSK); 648 u32 delay = 25; 649 650 if (ecmd->rx_coalesce_usecs == 0) 651 msk &= ~rxirqmask[port]; 652 else if (ecmd->rx_coalesce_usecs < 25 || 653 ecmd->rx_coalesce_usecs > 33333) 654 return -EINVAL; 655 else { 656 msk |= rxirqmask[port]; 657 delay = ecmd->rx_coalesce_usecs; 658 } 659 660 if (ecmd->tx_coalesce_usecs == 0) 661 msk &= ~txirqmask[port]; 662 else if (ecmd->tx_coalesce_usecs < 25 || 663 ecmd->tx_coalesce_usecs > 33333) 664 return -EINVAL; 665 else { 666 msk |= txirqmask[port]; 667 delay = min(delay, ecmd->rx_coalesce_usecs); 668 } 669 670 skge_write32(hw, B2_IRQM_MSK, msk); 671 if (msk == 0) 672 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP); 673 else { 674 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay)); 675 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 676 } 677 return 0; 678 } 679 680 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST }; 681 static void skge_led(struct skge_port *skge, enum led_mode mode) 682 { 683 struct skge_hw *hw = skge->hw; 684 int port = skge->port; 685 686 spin_lock_bh(&hw->phy_lock); 687 if (is_genesis(hw)) { 688 switch (mode) { 689 case LED_MODE_OFF: 690 if (hw->phy_type == SK_PHY_BCOM) 691 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF); 692 else { 693 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0); 694 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF); 695 } 696 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); 697 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0); 698 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF); 699 break; 700 701 case LED_MODE_ON: 702 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON); 703 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); 704 705 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 706 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 707 708 break; 709 710 case LED_MODE_TST: 711 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON); 712 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100); 713 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 714 715 if (hw->phy_type == SK_PHY_BCOM) 716 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON); 717 else { 718 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON); 719 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100); 720 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 721 } 722 723 } 724 } else { 725 switch (mode) { 726 case LED_MODE_OFF: 727 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 728 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 729 PHY_M_LED_MO_DUP(MO_LED_OFF) | 730 PHY_M_LED_MO_10(MO_LED_OFF) | 731 PHY_M_LED_MO_100(MO_LED_OFF) | 732 PHY_M_LED_MO_1000(MO_LED_OFF) | 733 PHY_M_LED_MO_RX(MO_LED_OFF)); 734 break; 735 case LED_MODE_ON: 736 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 737 PHY_M_LED_PULS_DUR(PULS_170MS) | 738 PHY_M_LED_BLINK_RT(BLINK_84MS) | 739 PHY_M_LEDC_TX_CTRL | 740 PHY_M_LEDC_DP_CTRL); 741 742 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 743 PHY_M_LED_MO_RX(MO_LED_OFF) | 744 (skge->speed == SPEED_100 ? 745 PHY_M_LED_MO_100(MO_LED_ON) : 0)); 746 break; 747 case LED_MODE_TST: 748 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 749 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 750 PHY_M_LED_MO_DUP(MO_LED_ON) | 751 PHY_M_LED_MO_10(MO_LED_ON) | 752 PHY_M_LED_MO_100(MO_LED_ON) | 753 PHY_M_LED_MO_1000(MO_LED_ON) | 754 PHY_M_LED_MO_RX(MO_LED_ON)); 755 } 756 } 757 spin_unlock_bh(&hw->phy_lock); 758 } 759 760 /* blink LED's for finding board */ 761 static int skge_set_phys_id(struct net_device *dev, 762 enum ethtool_phys_id_state state) 763 { 764 struct skge_port *skge = netdev_priv(dev); 765 766 switch (state) { 767 case ETHTOOL_ID_ACTIVE: 768 return 2; /* cycle on/off twice per second */ 769 770 case ETHTOOL_ID_ON: 771 skge_led(skge, LED_MODE_TST); 772 break; 773 774 case ETHTOOL_ID_OFF: 775 skge_led(skge, LED_MODE_OFF); 776 break; 777 778 case ETHTOOL_ID_INACTIVE: 779 /* back to regular LED state */ 780 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF); 781 } 782 783 return 0; 784 } 785 786 static int skge_get_eeprom_len(struct net_device *dev) 787 { 788 struct skge_port *skge = netdev_priv(dev); 789 u32 reg2; 790 791 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, ®2); 792 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8); 793 } 794 795 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset) 796 { 797 u32 val; 798 799 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset); 800 801 do { 802 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); 803 } while (!(offset & PCI_VPD_ADDR_F)); 804 805 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val); 806 return val; 807 } 808 809 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val) 810 { 811 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val); 812 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, 813 offset | PCI_VPD_ADDR_F); 814 815 do { 816 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); 817 } while (offset & PCI_VPD_ADDR_F); 818 } 819 820 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 821 u8 *data) 822 { 823 struct skge_port *skge = netdev_priv(dev); 824 struct pci_dev *pdev = skge->hw->pdev; 825 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); 826 int length = eeprom->len; 827 u16 offset = eeprom->offset; 828 829 if (!cap) 830 return -EINVAL; 831 832 eeprom->magic = SKGE_EEPROM_MAGIC; 833 834 while (length > 0) { 835 u32 val = skge_vpd_read(pdev, cap, offset); 836 int n = min_t(int, length, sizeof(val)); 837 838 memcpy(data, &val, n); 839 length -= n; 840 data += n; 841 offset += n; 842 } 843 return 0; 844 } 845 846 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 847 u8 *data) 848 { 849 struct skge_port *skge = netdev_priv(dev); 850 struct pci_dev *pdev = skge->hw->pdev; 851 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); 852 int length = eeprom->len; 853 u16 offset = eeprom->offset; 854 855 if (!cap) 856 return -EINVAL; 857 858 if (eeprom->magic != SKGE_EEPROM_MAGIC) 859 return -EINVAL; 860 861 while (length > 0) { 862 u32 val; 863 int n = min_t(int, length, sizeof(val)); 864 865 if (n < sizeof(val)) 866 val = skge_vpd_read(pdev, cap, offset); 867 memcpy(&val, data, n); 868 869 skge_vpd_write(pdev, cap, offset, val); 870 871 length -= n; 872 data += n; 873 offset += n; 874 } 875 return 0; 876 } 877 878 static const struct ethtool_ops skge_ethtool_ops = { 879 .get_drvinfo = skge_get_drvinfo, 880 .get_regs_len = skge_get_regs_len, 881 .get_regs = skge_get_regs, 882 .get_wol = skge_get_wol, 883 .set_wol = skge_set_wol, 884 .get_msglevel = skge_get_msglevel, 885 .set_msglevel = skge_set_msglevel, 886 .nway_reset = skge_nway_reset, 887 .get_link = ethtool_op_get_link, 888 .get_eeprom_len = skge_get_eeprom_len, 889 .get_eeprom = skge_get_eeprom, 890 .set_eeprom = skge_set_eeprom, 891 .get_ringparam = skge_get_ring_param, 892 .set_ringparam = skge_set_ring_param, 893 .get_pauseparam = skge_get_pauseparam, 894 .set_pauseparam = skge_set_pauseparam, 895 .get_coalesce = skge_get_coalesce, 896 .set_coalesce = skge_set_coalesce, 897 .get_strings = skge_get_strings, 898 .set_phys_id = skge_set_phys_id, 899 .get_sset_count = skge_get_sset_count, 900 .get_ethtool_stats = skge_get_ethtool_stats, 901 .get_link_ksettings = skge_get_link_ksettings, 902 .set_link_ksettings = skge_set_link_ksettings, 903 }; 904 905 /* 906 * Allocate ring elements and chain them together 907 * One-to-one association of board descriptors with ring elements 908 */ 909 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base) 910 { 911 struct skge_tx_desc *d; 912 struct skge_element *e; 913 int i; 914 915 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL); 916 if (!ring->start) 917 return -ENOMEM; 918 919 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { 920 e->desc = d; 921 if (i == ring->count - 1) { 922 e->next = ring->start; 923 d->next_offset = base; 924 } else { 925 e->next = e + 1; 926 d->next_offset = base + (i+1) * sizeof(*d); 927 } 928 } 929 ring->to_use = ring->to_clean = ring->start; 930 931 return 0; 932 } 933 934 /* Allocate and setup a new buffer for receiving */ 935 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e, 936 struct sk_buff *skb, unsigned int bufsize) 937 { 938 struct skge_rx_desc *rd = e->desc; 939 dma_addr_t map; 940 941 map = pci_map_single(skge->hw->pdev, skb->data, bufsize, 942 PCI_DMA_FROMDEVICE); 943 944 if (pci_dma_mapping_error(skge->hw->pdev, map)) 945 return -1; 946 947 rd->dma_lo = lower_32_bits(map); 948 rd->dma_hi = upper_32_bits(map); 949 e->skb = skb; 950 rd->csum1_start = ETH_HLEN; 951 rd->csum2_start = ETH_HLEN; 952 rd->csum1 = 0; 953 rd->csum2 = 0; 954 955 wmb(); 956 957 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; 958 dma_unmap_addr_set(e, mapaddr, map); 959 dma_unmap_len_set(e, maplen, bufsize); 960 return 0; 961 } 962 963 /* Resume receiving using existing skb, 964 * Note: DMA address is not changed by chip. 965 * MTU not changed while receiver active. 966 */ 967 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size) 968 { 969 struct skge_rx_desc *rd = e->desc; 970 971 rd->csum2 = 0; 972 rd->csum2_start = ETH_HLEN; 973 974 wmb(); 975 976 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size; 977 } 978 979 980 /* Free all buffers in receive ring, assumes receiver stopped */ 981 static void skge_rx_clean(struct skge_port *skge) 982 { 983 struct skge_hw *hw = skge->hw; 984 struct skge_ring *ring = &skge->rx_ring; 985 struct skge_element *e; 986 987 e = ring->start; 988 do { 989 struct skge_rx_desc *rd = e->desc; 990 rd->control = 0; 991 if (e->skb) { 992 pci_unmap_single(hw->pdev, 993 dma_unmap_addr(e, mapaddr), 994 dma_unmap_len(e, maplen), 995 PCI_DMA_FROMDEVICE); 996 dev_kfree_skb(e->skb); 997 e->skb = NULL; 998 } 999 } while ((e = e->next) != ring->start); 1000 } 1001 1002 1003 /* Allocate buffers for receive ring 1004 * For receive: to_clean is next received frame. 1005 */ 1006 static int skge_rx_fill(struct net_device *dev) 1007 { 1008 struct skge_port *skge = netdev_priv(dev); 1009 struct skge_ring *ring = &skge->rx_ring; 1010 struct skge_element *e; 1011 1012 e = ring->start; 1013 do { 1014 struct sk_buff *skb; 1015 1016 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN, 1017 GFP_KERNEL); 1018 if (!skb) 1019 return -ENOMEM; 1020 1021 skb_reserve(skb, NET_IP_ALIGN); 1022 if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) { 1023 dev_kfree_skb(skb); 1024 return -EIO; 1025 } 1026 } while ((e = e->next) != ring->start); 1027 1028 ring->to_clean = ring->start; 1029 return 0; 1030 } 1031 1032 static const char *skge_pause(enum pause_status status) 1033 { 1034 switch (status) { 1035 case FLOW_STAT_NONE: 1036 return "none"; 1037 case FLOW_STAT_REM_SEND: 1038 return "rx only"; 1039 case FLOW_STAT_LOC_SEND: 1040 return "tx_only"; 1041 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */ 1042 return "both"; 1043 default: 1044 return "indeterminated"; 1045 } 1046 } 1047 1048 1049 static void skge_link_up(struct skge_port *skge) 1050 { 1051 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), 1052 LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON); 1053 1054 netif_carrier_on(skge->netdev); 1055 netif_wake_queue(skge->netdev); 1056 1057 netif_info(skge, link, skge->netdev, 1058 "Link is up at %d Mbps, %s duplex, flow control %s\n", 1059 skge->speed, 1060 skge->duplex == DUPLEX_FULL ? "full" : "half", 1061 skge_pause(skge->flow_status)); 1062 } 1063 1064 static void skge_link_down(struct skge_port *skge) 1065 { 1066 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF); 1067 netif_carrier_off(skge->netdev); 1068 netif_stop_queue(skge->netdev); 1069 1070 netif_info(skge, link, skge->netdev, "Link is down\n"); 1071 } 1072 1073 static void xm_link_down(struct skge_hw *hw, int port) 1074 { 1075 struct net_device *dev = hw->dev[port]; 1076 struct skge_port *skge = netdev_priv(dev); 1077 1078 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); 1079 1080 if (netif_carrier_ok(dev)) 1081 skge_link_down(skge); 1082 } 1083 1084 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1085 { 1086 int i; 1087 1088 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 1089 *val = xm_read16(hw, port, XM_PHY_DATA); 1090 1091 if (hw->phy_type == SK_PHY_XMAC) 1092 goto ready; 1093 1094 for (i = 0; i < PHY_RETRIES; i++) { 1095 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY) 1096 goto ready; 1097 udelay(1); 1098 } 1099 1100 return -ETIMEDOUT; 1101 ready: 1102 *val = xm_read16(hw, port, XM_PHY_DATA); 1103 1104 return 0; 1105 } 1106 1107 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg) 1108 { 1109 u16 v = 0; 1110 if (__xm_phy_read(hw, port, reg, &v)) 1111 pr_warn("%s: phy read timed out\n", hw->dev[port]->name); 1112 return v; 1113 } 1114 1115 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1116 { 1117 int i; 1118 1119 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 1120 for (i = 0; i < PHY_RETRIES; i++) { 1121 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 1122 goto ready; 1123 udelay(1); 1124 } 1125 return -EIO; 1126 1127 ready: 1128 xm_write16(hw, port, XM_PHY_DATA, val); 1129 for (i = 0; i < PHY_RETRIES; i++) { 1130 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 1131 return 0; 1132 udelay(1); 1133 } 1134 return -ETIMEDOUT; 1135 } 1136 1137 static void genesis_init(struct skge_hw *hw) 1138 { 1139 /* set blink source counter */ 1140 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100); 1141 skge_write8(hw, B2_BSC_CTRL, BSC_START); 1142 1143 /* configure mac arbiter */ 1144 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1145 1146 /* configure mac arbiter timeout values */ 1147 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53); 1148 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53); 1149 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53); 1150 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53); 1151 1152 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1153 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1154 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1155 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1156 1157 /* configure packet arbiter timeout */ 1158 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR); 1159 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); 1160 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); 1161 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); 1162 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); 1163 } 1164 1165 static void genesis_reset(struct skge_hw *hw, int port) 1166 { 1167 static const u8 zero[8] = { 0 }; 1168 u32 reg; 1169 1170 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 1171 1172 /* reset the statistics module */ 1173 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); 1174 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); 1175 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */ 1176 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */ 1177 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */ 1178 1179 /* disable Broadcom PHY IRQ */ 1180 if (hw->phy_type == SK_PHY_BCOM) 1181 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); 1182 1183 xm_outhash(hw, port, XM_HSM, zero); 1184 1185 /* Flush TX and RX fifo */ 1186 reg = xm_read32(hw, port, XM_MODE); 1187 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF); 1188 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF); 1189 } 1190 1191 /* Convert mode to MII values */ 1192 static const u16 phy_pause_map[] = { 1193 [FLOW_MODE_NONE] = 0, 1194 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM, 1195 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP, 1196 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM, 1197 }; 1198 1199 /* special defines for FIBER (88E1011S only) */ 1200 static const u16 fiber_pause_map[] = { 1201 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE, 1202 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD, 1203 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD, 1204 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD, 1205 }; 1206 1207 1208 /* Check status of Broadcom phy link */ 1209 static void bcom_check_link(struct skge_hw *hw, int port) 1210 { 1211 struct net_device *dev = hw->dev[port]; 1212 struct skge_port *skge = netdev_priv(dev); 1213 u16 status; 1214 1215 /* read twice because of latch */ 1216 xm_phy_read(hw, port, PHY_BCOM_STAT); 1217 status = xm_phy_read(hw, port, PHY_BCOM_STAT); 1218 1219 if ((status & PHY_ST_LSYNC) == 0) { 1220 xm_link_down(hw, port); 1221 return; 1222 } 1223 1224 if (skge->autoneg == AUTONEG_ENABLE) { 1225 u16 lpa, aux; 1226 1227 if (!(status & PHY_ST_AN_OVER)) 1228 return; 1229 1230 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); 1231 if (lpa & PHY_B_AN_RF) { 1232 netdev_notice(dev, "remote fault\n"); 1233 return; 1234 } 1235 1236 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); 1237 1238 /* Check Duplex mismatch */ 1239 switch (aux & PHY_B_AS_AN_RES_MSK) { 1240 case PHY_B_RES_1000FD: 1241 skge->duplex = DUPLEX_FULL; 1242 break; 1243 case PHY_B_RES_1000HD: 1244 skge->duplex = DUPLEX_HALF; 1245 break; 1246 default: 1247 netdev_notice(dev, "duplex mismatch\n"); 1248 return; 1249 } 1250 1251 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1252 switch (aux & PHY_B_AS_PAUSE_MSK) { 1253 case PHY_B_AS_PAUSE_MSK: 1254 skge->flow_status = FLOW_STAT_SYMMETRIC; 1255 break; 1256 case PHY_B_AS_PRR: 1257 skge->flow_status = FLOW_STAT_REM_SEND; 1258 break; 1259 case PHY_B_AS_PRT: 1260 skge->flow_status = FLOW_STAT_LOC_SEND; 1261 break; 1262 default: 1263 skge->flow_status = FLOW_STAT_NONE; 1264 } 1265 skge->speed = SPEED_1000; 1266 } 1267 1268 if (!netif_carrier_ok(dev)) 1269 genesis_link_up(skge); 1270 } 1271 1272 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional 1273 * Phy on for 100 or 10Mbit operation 1274 */ 1275 static void bcom_phy_init(struct skge_port *skge) 1276 { 1277 struct skge_hw *hw = skge->hw; 1278 int port = skge->port; 1279 int i; 1280 u16 id1, r, ext, ctl; 1281 1282 /* magic workaround patterns for Broadcom */ 1283 static const struct { 1284 u16 reg; 1285 u16 val; 1286 } A1hack[] = { 1287 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, 1288 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, 1289 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, 1290 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 1291 }, C0hack[] = { 1292 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, 1293 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, 1294 }; 1295 1296 /* read Id from external PHY (all have the same address) */ 1297 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1); 1298 1299 /* Optimize MDIO transfer by suppressing preamble. */ 1300 r = xm_read16(hw, port, XM_MMU_CMD); 1301 r |= XM_MMU_NO_PRE; 1302 xm_write16(hw, port, XM_MMU_CMD, r); 1303 1304 switch (id1) { 1305 case PHY_BCOM_ID1_C0: 1306 /* 1307 * Workaround BCOM Errata for the C0 type. 1308 * Write magic patterns to reserved registers. 1309 */ 1310 for (i = 0; i < ARRAY_SIZE(C0hack); i++) 1311 xm_phy_write(hw, port, 1312 C0hack[i].reg, C0hack[i].val); 1313 1314 break; 1315 case PHY_BCOM_ID1_A1: 1316 /* 1317 * Workaround BCOM Errata for the A1 type. 1318 * Write magic patterns to reserved registers. 1319 */ 1320 for (i = 0; i < ARRAY_SIZE(A1hack); i++) 1321 xm_phy_write(hw, port, 1322 A1hack[i].reg, A1hack[i].val); 1323 break; 1324 } 1325 1326 /* 1327 * Workaround BCOM Errata (#10523) for all BCom PHYs. 1328 * Disable Power Management after reset. 1329 */ 1330 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); 1331 r |= PHY_B_AC_DIS_PM; 1332 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r); 1333 1334 /* Dummy read */ 1335 xm_read16(hw, port, XM_ISRC); 1336 1337 ext = PHY_B_PEC_EN_LTR; /* enable tx led */ 1338 ctl = PHY_CT_SP1000; /* always 1000mbit */ 1339 1340 if (skge->autoneg == AUTONEG_ENABLE) { 1341 /* 1342 * Workaround BCOM Errata #1 for the C5 type. 1343 * 1000Base-T Link Acquisition Failure in Slave Mode 1344 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register 1345 */ 1346 u16 adv = PHY_B_1000C_RD; 1347 if (skge->advertising & ADVERTISED_1000baseT_Half) 1348 adv |= PHY_B_1000C_AHD; 1349 if (skge->advertising & ADVERTISED_1000baseT_Full) 1350 adv |= PHY_B_1000C_AFD; 1351 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv); 1352 1353 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG; 1354 } else { 1355 if (skge->duplex == DUPLEX_FULL) 1356 ctl |= PHY_CT_DUP_MD; 1357 /* Force to slave */ 1358 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE); 1359 } 1360 1361 /* Set autonegotiation pause parameters */ 1362 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, 1363 phy_pause_map[skge->flow_control] | PHY_AN_CSMA); 1364 1365 /* Handle Jumbo frames */ 1366 if (hw->dev[port]->mtu > ETH_DATA_LEN) { 1367 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1368 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK); 1369 1370 ext |= PHY_B_PEC_HIGH_LA; 1371 1372 } 1373 1374 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext); 1375 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl); 1376 1377 /* Use link status change interrupt */ 1378 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1379 } 1380 1381 static void xm_phy_init(struct skge_port *skge) 1382 { 1383 struct skge_hw *hw = skge->hw; 1384 int port = skge->port; 1385 u16 ctrl = 0; 1386 1387 if (skge->autoneg == AUTONEG_ENABLE) { 1388 if (skge->advertising & ADVERTISED_1000baseT_Half) 1389 ctrl |= PHY_X_AN_HD; 1390 if (skge->advertising & ADVERTISED_1000baseT_Full) 1391 ctrl |= PHY_X_AN_FD; 1392 1393 ctrl |= fiber_pause_map[skge->flow_control]; 1394 1395 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl); 1396 1397 /* Restart Auto-negotiation */ 1398 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG; 1399 } else { 1400 /* Set DuplexMode in Config register */ 1401 if (skge->duplex == DUPLEX_FULL) 1402 ctrl |= PHY_CT_DUP_MD; 1403 /* 1404 * Do NOT enable Auto-negotiation here. This would hold 1405 * the link down because no IDLEs are transmitted 1406 */ 1407 } 1408 1409 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl); 1410 1411 /* Poll PHY for status changes */ 1412 mod_timer(&skge->link_timer, jiffies + LINK_HZ); 1413 } 1414 1415 static int xm_check_link(struct net_device *dev) 1416 { 1417 struct skge_port *skge = netdev_priv(dev); 1418 struct skge_hw *hw = skge->hw; 1419 int port = skge->port; 1420 u16 status; 1421 1422 /* read twice because of latch */ 1423 xm_phy_read(hw, port, PHY_XMAC_STAT); 1424 status = xm_phy_read(hw, port, PHY_XMAC_STAT); 1425 1426 if ((status & PHY_ST_LSYNC) == 0) { 1427 xm_link_down(hw, port); 1428 return 0; 1429 } 1430 1431 if (skge->autoneg == AUTONEG_ENABLE) { 1432 u16 lpa, res; 1433 1434 if (!(status & PHY_ST_AN_OVER)) 1435 return 0; 1436 1437 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); 1438 if (lpa & PHY_B_AN_RF) { 1439 netdev_notice(dev, "remote fault\n"); 1440 return 0; 1441 } 1442 1443 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI); 1444 1445 /* Check Duplex mismatch */ 1446 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) { 1447 case PHY_X_RS_FD: 1448 skge->duplex = DUPLEX_FULL; 1449 break; 1450 case PHY_X_RS_HD: 1451 skge->duplex = DUPLEX_HALF; 1452 break; 1453 default: 1454 netdev_notice(dev, "duplex mismatch\n"); 1455 return 0; 1456 } 1457 1458 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1459 if ((skge->flow_control == FLOW_MODE_SYMMETRIC || 1460 skge->flow_control == FLOW_MODE_SYM_OR_REM) && 1461 (lpa & PHY_X_P_SYM_MD)) 1462 skge->flow_status = FLOW_STAT_SYMMETRIC; 1463 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM && 1464 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD) 1465 /* Enable PAUSE receive, disable PAUSE transmit */ 1466 skge->flow_status = FLOW_STAT_REM_SEND; 1467 else if (skge->flow_control == FLOW_MODE_LOC_SEND && 1468 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD) 1469 /* Disable PAUSE receive, enable PAUSE transmit */ 1470 skge->flow_status = FLOW_STAT_LOC_SEND; 1471 else 1472 skge->flow_status = FLOW_STAT_NONE; 1473 1474 skge->speed = SPEED_1000; 1475 } 1476 1477 if (!netif_carrier_ok(dev)) 1478 genesis_link_up(skge); 1479 return 1; 1480 } 1481 1482 /* Poll to check for link coming up. 1483 * 1484 * Since internal PHY is wired to a level triggered pin, can't 1485 * get an interrupt when carrier is detected, need to poll for 1486 * link coming up. 1487 */ 1488 static void xm_link_timer(struct timer_list *t) 1489 { 1490 struct skge_port *skge = from_timer(skge, t, link_timer); 1491 struct net_device *dev = skge->netdev; 1492 struct skge_hw *hw = skge->hw; 1493 int port = skge->port; 1494 int i; 1495 unsigned long flags; 1496 1497 if (!netif_running(dev)) 1498 return; 1499 1500 spin_lock_irqsave(&hw->phy_lock, flags); 1501 1502 /* 1503 * Verify that the link by checking GPIO register three times. 1504 * This pin has the signal from the link_sync pin connected to it. 1505 */ 1506 for (i = 0; i < 3; i++) { 1507 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS) 1508 goto link_down; 1509 } 1510 1511 /* Re-enable interrupt to detect link down */ 1512 if (xm_check_link(dev)) { 1513 u16 msk = xm_read16(hw, port, XM_IMSK); 1514 msk &= ~XM_IS_INP_ASS; 1515 xm_write16(hw, port, XM_IMSK, msk); 1516 xm_read16(hw, port, XM_ISRC); 1517 } else { 1518 link_down: 1519 mod_timer(&skge->link_timer, 1520 round_jiffies(jiffies + LINK_HZ)); 1521 } 1522 spin_unlock_irqrestore(&hw->phy_lock, flags); 1523 } 1524 1525 static void genesis_mac_init(struct skge_hw *hw, int port) 1526 { 1527 struct net_device *dev = hw->dev[port]; 1528 struct skge_port *skge = netdev_priv(dev); 1529 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN; 1530 int i; 1531 u32 r; 1532 static const u8 zero[6] = { 0 }; 1533 1534 for (i = 0; i < 10; i++) { 1535 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 1536 MFF_SET_MAC_RST); 1537 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST) 1538 goto reset_ok; 1539 udelay(1); 1540 } 1541 1542 netdev_warn(dev, "genesis reset failed\n"); 1543 1544 reset_ok: 1545 /* Unreset the XMAC. */ 1546 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1547 1548 /* 1549 * Perform additional initialization for external PHYs, 1550 * namely for the 1000baseTX cards that use the XMAC's 1551 * GMII mode. 1552 */ 1553 if (hw->phy_type != SK_PHY_XMAC) { 1554 /* Take external Phy out of reset */ 1555 r = skge_read32(hw, B2_GP_IO); 1556 if (port == 0) 1557 r |= GP_DIR_0|GP_IO_0; 1558 else 1559 r |= GP_DIR_2|GP_IO_2; 1560 1561 skge_write32(hw, B2_GP_IO, r); 1562 1563 /* Enable GMII interface */ 1564 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); 1565 } 1566 1567 1568 switch (hw->phy_type) { 1569 case SK_PHY_XMAC: 1570 xm_phy_init(skge); 1571 break; 1572 case SK_PHY_BCOM: 1573 bcom_phy_init(skge); 1574 bcom_check_link(hw, port); 1575 } 1576 1577 /* Set Station Address */ 1578 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 1579 1580 /* We don't use match addresses so clear */ 1581 for (i = 1; i < 16; i++) 1582 xm_outaddr(hw, port, XM_EXM(i), zero); 1583 1584 /* Clear MIB counters */ 1585 xm_write16(hw, port, XM_STAT_CMD, 1586 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1587 /* Clear two times according to Errata #3 */ 1588 xm_write16(hw, port, XM_STAT_CMD, 1589 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1590 1591 /* configure Rx High Water Mark (XM_RX_HI_WM) */ 1592 xm_write16(hw, port, XM_RX_HI_WM, 1450); 1593 1594 /* We don't need the FCS appended to the packet. */ 1595 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS; 1596 if (jumbo) 1597 r |= XM_RX_BIG_PK_OK; 1598 1599 if (skge->duplex == DUPLEX_HALF) { 1600 /* 1601 * If in manual half duplex mode the other side might be in 1602 * full duplex mode, so ignore if a carrier extension is not seen 1603 * on frames received 1604 */ 1605 r |= XM_RX_DIS_CEXT; 1606 } 1607 xm_write16(hw, port, XM_RX_CMD, r); 1608 1609 /* We want short frames padded to 60 bytes. */ 1610 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD); 1611 1612 /* Increase threshold for jumbo frames on dual port */ 1613 if (hw->ports > 1 && jumbo) 1614 xm_write16(hw, port, XM_TX_THR, 1020); 1615 else 1616 xm_write16(hw, port, XM_TX_THR, 512); 1617 1618 /* 1619 * Enable the reception of all error frames. This is is 1620 * a necessary evil due to the design of the XMAC. The 1621 * XMAC's receive FIFO is only 8K in size, however jumbo 1622 * frames can be up to 9000 bytes in length. When bad 1623 * frame filtering is enabled, the XMAC's RX FIFO operates 1624 * in 'store and forward' mode. For this to work, the 1625 * entire frame has to fit into the FIFO, but that means 1626 * that jumbo frames larger than 8192 bytes will be 1627 * truncated. Disabling all bad frame filtering causes 1628 * the RX FIFO to operate in streaming mode, in which 1629 * case the XMAC will start transferring frames out of the 1630 * RX FIFO as soon as the FIFO threshold is reached. 1631 */ 1632 xm_write32(hw, port, XM_MODE, XM_DEF_MODE); 1633 1634 1635 /* 1636 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK) 1637 * - Enable all bits excepting 'Octets Rx OK Low CntOv' 1638 * and 'Octets Rx OK Hi Cnt Ov'. 1639 */ 1640 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK); 1641 1642 /* 1643 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK) 1644 * - Enable all bits excepting 'Octets Tx OK Low CntOv' 1645 * and 'Octets Tx OK Hi Cnt Ov'. 1646 */ 1647 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK); 1648 1649 /* Configure MAC arbiter */ 1650 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1651 1652 /* configure timeout values */ 1653 skge_write8(hw, B3_MA_TOINI_RX1, 72); 1654 skge_write8(hw, B3_MA_TOINI_RX2, 72); 1655 skge_write8(hw, B3_MA_TOINI_TX1, 72); 1656 skge_write8(hw, B3_MA_TOINI_TX2, 72); 1657 1658 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1659 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1660 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1661 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1662 1663 /* Configure Rx MAC FIFO */ 1664 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); 1665 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); 1666 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); 1667 1668 /* Configure Tx MAC FIFO */ 1669 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); 1670 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); 1671 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); 1672 1673 if (jumbo) { 1674 /* Enable frame flushing if jumbo frames used */ 1675 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH); 1676 } else { 1677 /* enable timeout timers if normal frames */ 1678 skge_write16(hw, B3_PA_CTRL, 1679 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); 1680 } 1681 } 1682 1683 static void genesis_stop(struct skge_port *skge) 1684 { 1685 struct skge_hw *hw = skge->hw; 1686 int port = skge->port; 1687 unsigned retries = 1000; 1688 u16 cmd; 1689 1690 /* Disable Tx and Rx */ 1691 cmd = xm_read16(hw, port, XM_MMU_CMD); 1692 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1693 xm_write16(hw, port, XM_MMU_CMD, cmd); 1694 1695 genesis_reset(hw, port); 1696 1697 /* Clear Tx packet arbiter timeout IRQ */ 1698 skge_write16(hw, B3_PA_CTRL, 1699 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2); 1700 1701 /* Reset the MAC */ 1702 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1703 do { 1704 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); 1705 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)) 1706 break; 1707 } while (--retries > 0); 1708 1709 /* For external PHYs there must be special handling */ 1710 if (hw->phy_type != SK_PHY_XMAC) { 1711 u32 reg = skge_read32(hw, B2_GP_IO); 1712 if (port == 0) { 1713 reg |= GP_DIR_0; 1714 reg &= ~GP_IO_0; 1715 } else { 1716 reg |= GP_DIR_2; 1717 reg &= ~GP_IO_2; 1718 } 1719 skge_write32(hw, B2_GP_IO, reg); 1720 skge_read32(hw, B2_GP_IO); 1721 } 1722 1723 xm_write16(hw, port, XM_MMU_CMD, 1724 xm_read16(hw, port, XM_MMU_CMD) 1725 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); 1726 1727 xm_read16(hw, port, XM_MMU_CMD); 1728 } 1729 1730 1731 static void genesis_get_stats(struct skge_port *skge, u64 *data) 1732 { 1733 struct skge_hw *hw = skge->hw; 1734 int port = skge->port; 1735 int i; 1736 unsigned long timeout = jiffies + HZ; 1737 1738 xm_write16(hw, port, 1739 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); 1740 1741 /* wait for update to complete */ 1742 while (xm_read16(hw, port, XM_STAT_CMD) 1743 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { 1744 if (time_after(jiffies, timeout)) 1745 break; 1746 udelay(10); 1747 } 1748 1749 /* special case for 64 bit octet counter */ 1750 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32 1751 | xm_read32(hw, port, XM_TXO_OK_LO); 1752 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32 1753 | xm_read32(hw, port, XM_RXO_OK_LO); 1754 1755 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 1756 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset); 1757 } 1758 1759 static void genesis_mac_intr(struct skge_hw *hw, int port) 1760 { 1761 struct net_device *dev = hw->dev[port]; 1762 struct skge_port *skge = netdev_priv(dev); 1763 u16 status = xm_read16(hw, port, XM_ISRC); 1764 1765 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 1766 "mac interrupt status 0x%x\n", status); 1767 1768 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) { 1769 xm_link_down(hw, port); 1770 mod_timer(&skge->link_timer, jiffies + 1); 1771 } 1772 1773 if (status & XM_IS_TXF_UR) { 1774 xm_write32(hw, port, XM_MODE, XM_MD_FTF); 1775 ++dev->stats.tx_fifo_errors; 1776 } 1777 } 1778 1779 static void genesis_link_up(struct skge_port *skge) 1780 { 1781 struct skge_hw *hw = skge->hw; 1782 int port = skge->port; 1783 u16 cmd, msk; 1784 u32 mode; 1785 1786 cmd = xm_read16(hw, port, XM_MMU_CMD); 1787 1788 /* 1789 * enabling pause frame reception is required for 1000BT 1790 * because the XMAC is not reset if the link is going down 1791 */ 1792 if (skge->flow_status == FLOW_STAT_NONE || 1793 skge->flow_status == FLOW_STAT_LOC_SEND) 1794 /* Disable Pause Frame Reception */ 1795 cmd |= XM_MMU_IGN_PF; 1796 else 1797 /* Enable Pause Frame Reception */ 1798 cmd &= ~XM_MMU_IGN_PF; 1799 1800 xm_write16(hw, port, XM_MMU_CMD, cmd); 1801 1802 mode = xm_read32(hw, port, XM_MODE); 1803 if (skge->flow_status == FLOW_STAT_SYMMETRIC || 1804 skge->flow_status == FLOW_STAT_LOC_SEND) { 1805 /* 1806 * Configure Pause Frame Generation 1807 * Use internal and external Pause Frame Generation. 1808 * Sending pause frames is edge triggered. 1809 * Send a Pause frame with the maximum pause time if 1810 * internal oder external FIFO full condition occurs. 1811 * Send a zero pause time frame to re-start transmission. 1812 */ 1813 /* XM_PAUSE_DA = '010000C28001' (default) */ 1814 /* XM_MAC_PTIME = 0xffff (maximum) */ 1815 /* remember this value is defined in big endian (!) */ 1816 xm_write16(hw, port, XM_MAC_PTIME, 0xffff); 1817 1818 mode |= XM_PAUSE_MODE; 1819 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); 1820 } else { 1821 /* 1822 * disable pause frame generation is required for 1000BT 1823 * because the XMAC is not reset if the link is going down 1824 */ 1825 /* Disable Pause Mode in Mode Register */ 1826 mode &= ~XM_PAUSE_MODE; 1827 1828 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); 1829 } 1830 1831 xm_write32(hw, port, XM_MODE, mode); 1832 1833 /* Turn on detection of Tx underrun */ 1834 msk = xm_read16(hw, port, XM_IMSK); 1835 msk &= ~XM_IS_TXF_UR; 1836 xm_write16(hw, port, XM_IMSK, msk); 1837 1838 xm_read16(hw, port, XM_ISRC); 1839 1840 /* get MMU Command Reg. */ 1841 cmd = xm_read16(hw, port, XM_MMU_CMD); 1842 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL) 1843 cmd |= XM_MMU_GMII_FD; 1844 1845 /* 1846 * Workaround BCOM Errata (#10523) for all BCom Phys 1847 * Enable Power Management after link up 1848 */ 1849 if (hw->phy_type == SK_PHY_BCOM) { 1850 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1851 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) 1852 & ~PHY_B_AC_DIS_PM); 1853 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1854 } 1855 1856 /* enable Rx/Tx */ 1857 xm_write16(hw, port, XM_MMU_CMD, 1858 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1859 skge_link_up(skge); 1860 } 1861 1862 1863 static inline void bcom_phy_intr(struct skge_port *skge) 1864 { 1865 struct skge_hw *hw = skge->hw; 1866 int port = skge->port; 1867 u16 isrc; 1868 1869 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT); 1870 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 1871 "phy interrupt status 0x%x\n", isrc); 1872 1873 if (isrc & PHY_B_IS_PSE) 1874 pr_err("%s: uncorrectable pair swap error\n", 1875 hw->dev[port]->name); 1876 1877 /* Workaround BCom Errata: 1878 * enable and disable loopback mode if "NO HCD" occurs. 1879 */ 1880 if (isrc & PHY_B_IS_NO_HDCL) { 1881 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL); 1882 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1883 ctrl | PHY_CT_LOOP); 1884 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1885 ctrl & ~PHY_CT_LOOP); 1886 } 1887 1888 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) 1889 bcom_check_link(hw, port); 1890 1891 } 1892 1893 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1894 { 1895 int i; 1896 1897 gma_write16(hw, port, GM_SMI_DATA, val); 1898 gma_write16(hw, port, GM_SMI_CTRL, 1899 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); 1900 for (i = 0; i < PHY_RETRIES; i++) { 1901 udelay(1); 1902 1903 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) 1904 return 0; 1905 } 1906 1907 pr_warn("%s: phy write timeout\n", hw->dev[port]->name); 1908 return -EIO; 1909 } 1910 1911 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1912 { 1913 int i; 1914 1915 gma_write16(hw, port, GM_SMI_CTRL, 1916 GM_SMI_CT_PHY_AD(hw->phy_addr) 1917 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); 1918 1919 for (i = 0; i < PHY_RETRIES; i++) { 1920 udelay(1); 1921 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) 1922 goto ready; 1923 } 1924 1925 return -ETIMEDOUT; 1926 ready: 1927 *val = gma_read16(hw, port, GM_SMI_DATA); 1928 return 0; 1929 } 1930 1931 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg) 1932 { 1933 u16 v = 0; 1934 if (__gm_phy_read(hw, port, reg, &v)) 1935 pr_warn("%s: phy read timeout\n", hw->dev[port]->name); 1936 return v; 1937 } 1938 1939 /* Marvell Phy Initialization */ 1940 static void yukon_init(struct skge_hw *hw, int port) 1941 { 1942 struct skge_port *skge = netdev_priv(hw->dev[port]); 1943 u16 ctrl, ct1000, adv; 1944 1945 if (skge->autoneg == AUTONEG_ENABLE) { 1946 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); 1947 1948 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | 1949 PHY_M_EC_MAC_S_MSK); 1950 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); 1951 1952 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); 1953 1954 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); 1955 } 1956 1957 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 1958 if (skge->autoneg == AUTONEG_DISABLE) 1959 ctrl &= ~PHY_CT_ANE; 1960 1961 ctrl |= PHY_CT_RESET; 1962 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1963 1964 ctrl = 0; 1965 ct1000 = 0; 1966 adv = PHY_AN_CSMA; 1967 1968 if (skge->autoneg == AUTONEG_ENABLE) { 1969 if (hw->copper) { 1970 if (skge->advertising & ADVERTISED_1000baseT_Full) 1971 ct1000 |= PHY_M_1000C_AFD; 1972 if (skge->advertising & ADVERTISED_1000baseT_Half) 1973 ct1000 |= PHY_M_1000C_AHD; 1974 if (skge->advertising & ADVERTISED_100baseT_Full) 1975 adv |= PHY_M_AN_100_FD; 1976 if (skge->advertising & ADVERTISED_100baseT_Half) 1977 adv |= PHY_M_AN_100_HD; 1978 if (skge->advertising & ADVERTISED_10baseT_Full) 1979 adv |= PHY_M_AN_10_FD; 1980 if (skge->advertising & ADVERTISED_10baseT_Half) 1981 adv |= PHY_M_AN_10_HD; 1982 1983 /* Set Flow-control capabilities */ 1984 adv |= phy_pause_map[skge->flow_control]; 1985 } else { 1986 if (skge->advertising & ADVERTISED_1000baseT_Full) 1987 adv |= PHY_M_AN_1000X_AFD; 1988 if (skge->advertising & ADVERTISED_1000baseT_Half) 1989 adv |= PHY_M_AN_1000X_AHD; 1990 1991 adv |= fiber_pause_map[skge->flow_control]; 1992 } 1993 1994 /* Restart Auto-negotiation */ 1995 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; 1996 } else { 1997 /* forced speed/duplex settings */ 1998 ct1000 = PHY_M_1000C_MSE; 1999 2000 if (skge->duplex == DUPLEX_FULL) 2001 ctrl |= PHY_CT_DUP_MD; 2002 2003 switch (skge->speed) { 2004 case SPEED_1000: 2005 ctrl |= PHY_CT_SP1000; 2006 break; 2007 case SPEED_100: 2008 ctrl |= PHY_CT_SP100; 2009 break; 2010 } 2011 2012 ctrl |= PHY_CT_RESET; 2013 } 2014 2015 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); 2016 2017 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); 2018 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2019 2020 /* Enable phy interrupt on autonegotiation complete (or link up) */ 2021 if (skge->autoneg == AUTONEG_ENABLE) 2022 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK); 2023 else 2024 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 2025 } 2026 2027 static void yukon_reset(struct skge_hw *hw, int port) 2028 { 2029 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ 2030 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ 2031 gma_write16(hw, port, GM_MC_ADDR_H2, 0); 2032 gma_write16(hw, port, GM_MC_ADDR_H3, 0); 2033 gma_write16(hw, port, GM_MC_ADDR_H4, 0); 2034 2035 gma_write16(hw, port, GM_RX_CTRL, 2036 gma_read16(hw, port, GM_RX_CTRL) 2037 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2038 } 2039 2040 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */ 2041 static int is_yukon_lite_a0(struct skge_hw *hw) 2042 { 2043 u32 reg; 2044 int ret; 2045 2046 if (hw->chip_id != CHIP_ID_YUKON) 2047 return 0; 2048 2049 reg = skge_read32(hw, B2_FAR); 2050 skge_write8(hw, B2_FAR + 3, 0xff); 2051 ret = (skge_read8(hw, B2_FAR + 3) != 0); 2052 skge_write32(hw, B2_FAR, reg); 2053 return ret; 2054 } 2055 2056 static void yukon_mac_init(struct skge_hw *hw, int port) 2057 { 2058 struct skge_port *skge = netdev_priv(hw->dev[port]); 2059 int i; 2060 u32 reg; 2061 const u8 *addr = hw->dev[port]->dev_addr; 2062 2063 /* WA code for COMA mode -- set PHY reset */ 2064 if (hw->chip_id == CHIP_ID_YUKON_LITE && 2065 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 2066 reg = skge_read32(hw, B2_GP_IO); 2067 reg |= GP_DIR_9 | GP_IO_9; 2068 skge_write32(hw, B2_GP_IO, reg); 2069 } 2070 2071 /* hard reset */ 2072 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 2073 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 2074 2075 /* WA code for COMA mode -- clear PHY reset */ 2076 if (hw->chip_id == CHIP_ID_YUKON_LITE && 2077 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 2078 reg = skge_read32(hw, B2_GP_IO); 2079 reg |= GP_DIR_9; 2080 reg &= ~GP_IO_9; 2081 skge_write32(hw, B2_GP_IO, reg); 2082 } 2083 2084 /* Set hardware config mode */ 2085 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP | 2086 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE; 2087 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; 2088 2089 /* Clear GMC reset */ 2090 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET); 2091 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); 2092 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); 2093 2094 if (skge->autoneg == AUTONEG_DISABLE) { 2095 reg = GM_GPCR_AU_ALL_DIS; 2096 gma_write16(hw, port, GM_GP_CTRL, 2097 gma_read16(hw, port, GM_GP_CTRL) | reg); 2098 2099 switch (skge->speed) { 2100 case SPEED_1000: 2101 reg &= ~GM_GPCR_SPEED_100; 2102 reg |= GM_GPCR_SPEED_1000; 2103 break; 2104 case SPEED_100: 2105 reg &= ~GM_GPCR_SPEED_1000; 2106 reg |= GM_GPCR_SPEED_100; 2107 break; 2108 case SPEED_10: 2109 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100); 2110 break; 2111 } 2112 2113 if (skge->duplex == DUPLEX_FULL) 2114 reg |= GM_GPCR_DUP_FULL; 2115 } else 2116 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; 2117 2118 switch (skge->flow_control) { 2119 case FLOW_MODE_NONE: 2120 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2121 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 2122 break; 2123 case FLOW_MODE_LOC_SEND: 2124 /* disable Rx flow-control */ 2125 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 2126 break; 2127 case FLOW_MODE_SYMMETRIC: 2128 case FLOW_MODE_SYM_OR_REM: 2129 /* enable Tx & Rx flow-control */ 2130 break; 2131 } 2132 2133 gma_write16(hw, port, GM_GP_CTRL, reg); 2134 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); 2135 2136 yukon_init(hw, port); 2137 2138 /* MIB clear */ 2139 reg = gma_read16(hw, port, GM_PHY_ADDR); 2140 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); 2141 2142 for (i = 0; i < GM_MIB_CNT_SIZE; i++) 2143 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); 2144 gma_write16(hw, port, GM_PHY_ADDR, reg); 2145 2146 /* transmit control */ 2147 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); 2148 2149 /* receive control reg: unicast + multicast + no FCS */ 2150 gma_write16(hw, port, GM_RX_CTRL, 2151 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); 2152 2153 /* transmit flow control */ 2154 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); 2155 2156 /* transmit parameter */ 2157 gma_write16(hw, port, GM_TX_PARAM, 2158 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | 2159 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | 2160 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); 2161 2162 /* configure the Serial Mode Register */ 2163 reg = DATA_BLIND_VAL(DATA_BLIND_DEF) 2164 | GM_SMOD_VLAN_ENA 2165 | IPG_DATA_VAL(IPG_DATA_DEF); 2166 2167 if (hw->dev[port]->mtu > ETH_DATA_LEN) 2168 reg |= GM_SMOD_JUMBO_ENA; 2169 2170 gma_write16(hw, port, GM_SERIAL_MODE, reg); 2171 2172 /* physical address: used for pause frames */ 2173 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); 2174 /* virtual address for data */ 2175 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); 2176 2177 /* enable interrupt mask for counter overflows */ 2178 gma_write16(hw, port, GM_TX_IRQ_MSK, 0); 2179 gma_write16(hw, port, GM_RX_IRQ_MSK, 0); 2180 gma_write16(hw, port, GM_TR_IRQ_MSK, 0); 2181 2182 /* Initialize Mac Fifo */ 2183 2184 /* Configure Rx MAC FIFO */ 2185 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); 2186 reg = GMF_OPER_ON | GMF_RX_F_FL_ON; 2187 2188 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ 2189 if (is_yukon_lite_a0(hw)) 2190 reg &= ~GMF_RX_F_FL_ON; 2191 2192 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); 2193 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg); 2194 /* 2195 * because Pause Packet Truncation in GMAC is not working 2196 * we have to increase the Flush Threshold to 64 bytes 2197 * in order to flush pause packets in Rx FIFO on Yukon-1 2198 */ 2199 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1); 2200 2201 /* Configure Tx MAC FIFO */ 2202 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); 2203 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); 2204 } 2205 2206 /* Go into power down mode */ 2207 static void yukon_suspend(struct skge_hw *hw, int port) 2208 { 2209 u16 ctrl; 2210 2211 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); 2212 ctrl |= PHY_M_PC_POL_R_DIS; 2213 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); 2214 2215 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 2216 ctrl |= PHY_CT_RESET; 2217 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2218 2219 /* switch IEEE compatible power down mode on */ 2220 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 2221 ctrl |= PHY_CT_PDOWN; 2222 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2223 } 2224 2225 static void yukon_stop(struct skge_port *skge) 2226 { 2227 struct skge_hw *hw = skge->hw; 2228 int port = skge->port; 2229 2230 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 2231 yukon_reset(hw, port); 2232 2233 gma_write16(hw, port, GM_GP_CTRL, 2234 gma_read16(hw, port, GM_GP_CTRL) 2235 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA)); 2236 gma_read16(hw, port, GM_GP_CTRL); 2237 2238 yukon_suspend(hw, port); 2239 2240 /* set GPHY Control reset */ 2241 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 2242 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 2243 } 2244 2245 static void yukon_get_stats(struct skge_port *skge, u64 *data) 2246 { 2247 struct skge_hw *hw = skge->hw; 2248 int port = skge->port; 2249 int i; 2250 2251 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 2252 | gma_read32(hw, port, GM_TXO_OK_LO); 2253 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 2254 | gma_read32(hw, port, GM_RXO_OK_LO); 2255 2256 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 2257 data[i] = gma_read32(hw, port, 2258 skge_stats[i].gma_offset); 2259 } 2260 2261 static void yukon_mac_intr(struct skge_hw *hw, int port) 2262 { 2263 struct net_device *dev = hw->dev[port]; 2264 struct skge_port *skge = netdev_priv(dev); 2265 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); 2266 2267 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 2268 "mac interrupt status 0x%x\n", status); 2269 2270 if (status & GM_IS_RX_FF_OR) { 2271 ++dev->stats.rx_fifo_errors; 2272 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); 2273 } 2274 2275 if (status & GM_IS_TX_FF_UR) { 2276 ++dev->stats.tx_fifo_errors; 2277 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); 2278 } 2279 2280 } 2281 2282 static u16 yukon_speed(const struct skge_hw *hw, u16 aux) 2283 { 2284 switch (aux & PHY_M_PS_SPEED_MSK) { 2285 case PHY_M_PS_SPEED_1000: 2286 return SPEED_1000; 2287 case PHY_M_PS_SPEED_100: 2288 return SPEED_100; 2289 default: 2290 return SPEED_10; 2291 } 2292 } 2293 2294 static void yukon_link_up(struct skge_port *skge) 2295 { 2296 struct skge_hw *hw = skge->hw; 2297 int port = skge->port; 2298 u16 reg; 2299 2300 /* Enable Transmit FIFO Underrun */ 2301 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); 2302 2303 reg = gma_read16(hw, port, GM_GP_CTRL); 2304 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) 2305 reg |= GM_GPCR_DUP_FULL; 2306 2307 /* enable Rx/Tx */ 2308 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; 2309 gma_write16(hw, port, GM_GP_CTRL, reg); 2310 2311 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 2312 skge_link_up(skge); 2313 } 2314 2315 static void yukon_link_down(struct skge_port *skge) 2316 { 2317 struct skge_hw *hw = skge->hw; 2318 int port = skge->port; 2319 u16 ctrl; 2320 2321 ctrl = gma_read16(hw, port, GM_GP_CTRL); 2322 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 2323 gma_write16(hw, port, GM_GP_CTRL, ctrl); 2324 2325 if (skge->flow_status == FLOW_STAT_REM_SEND) { 2326 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV); 2327 ctrl |= PHY_M_AN_ASP; 2328 /* restore Asymmetric Pause bit */ 2329 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl); 2330 } 2331 2332 skge_link_down(skge); 2333 2334 yukon_init(hw, port); 2335 } 2336 2337 static void yukon_phy_intr(struct skge_port *skge) 2338 { 2339 struct skge_hw *hw = skge->hw; 2340 int port = skge->port; 2341 const char *reason = NULL; 2342 u16 istatus, phystat; 2343 2344 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); 2345 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); 2346 2347 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 2348 "phy interrupt status 0x%x 0x%x\n", istatus, phystat); 2349 2350 if (istatus & PHY_M_IS_AN_COMPL) { 2351 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP) 2352 & PHY_M_AN_RF) { 2353 reason = "remote fault"; 2354 goto failed; 2355 } 2356 2357 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { 2358 reason = "master/slave fault"; 2359 goto failed; 2360 } 2361 2362 if (!(phystat & PHY_M_PS_SPDUP_RES)) { 2363 reason = "speed/duplex"; 2364 goto failed; 2365 } 2366 2367 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) 2368 ? DUPLEX_FULL : DUPLEX_HALF; 2369 skge->speed = yukon_speed(hw, phystat); 2370 2371 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 2372 switch (phystat & PHY_M_PS_PAUSE_MSK) { 2373 case PHY_M_PS_PAUSE_MSK: 2374 skge->flow_status = FLOW_STAT_SYMMETRIC; 2375 break; 2376 case PHY_M_PS_RX_P_EN: 2377 skge->flow_status = FLOW_STAT_REM_SEND; 2378 break; 2379 case PHY_M_PS_TX_P_EN: 2380 skge->flow_status = FLOW_STAT_LOC_SEND; 2381 break; 2382 default: 2383 skge->flow_status = FLOW_STAT_NONE; 2384 } 2385 2386 if (skge->flow_status == FLOW_STAT_NONE || 2387 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) 2388 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2389 else 2390 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); 2391 yukon_link_up(skge); 2392 return; 2393 } 2394 2395 if (istatus & PHY_M_IS_LSP_CHANGE) 2396 skge->speed = yukon_speed(hw, phystat); 2397 2398 if (istatus & PHY_M_IS_DUP_CHANGE) 2399 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; 2400 if (istatus & PHY_M_IS_LST_CHANGE) { 2401 if (phystat & PHY_M_PS_LINK_UP) 2402 yukon_link_up(skge); 2403 else 2404 yukon_link_down(skge); 2405 } 2406 return; 2407 failed: 2408 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason); 2409 2410 /* XXX restart autonegotiation? */ 2411 } 2412 2413 static void skge_phy_reset(struct skge_port *skge) 2414 { 2415 struct skge_hw *hw = skge->hw; 2416 int port = skge->port; 2417 struct net_device *dev = hw->dev[port]; 2418 2419 netif_stop_queue(skge->netdev); 2420 netif_carrier_off(skge->netdev); 2421 2422 spin_lock_bh(&hw->phy_lock); 2423 if (is_genesis(hw)) { 2424 genesis_reset(hw, port); 2425 genesis_mac_init(hw, port); 2426 } else { 2427 yukon_reset(hw, port); 2428 yukon_init(hw, port); 2429 } 2430 spin_unlock_bh(&hw->phy_lock); 2431 2432 skge_set_multicast(dev); 2433 } 2434 2435 /* Basic MII support */ 2436 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2437 { 2438 struct mii_ioctl_data *data = if_mii(ifr); 2439 struct skge_port *skge = netdev_priv(dev); 2440 struct skge_hw *hw = skge->hw; 2441 int err = -EOPNOTSUPP; 2442 2443 if (!netif_running(dev)) 2444 return -ENODEV; /* Phy still in reset */ 2445 2446 switch (cmd) { 2447 case SIOCGMIIPHY: 2448 data->phy_id = hw->phy_addr; 2449 2450 /* fallthru */ 2451 case SIOCGMIIREG: { 2452 u16 val = 0; 2453 spin_lock_bh(&hw->phy_lock); 2454 2455 if (is_genesis(hw)) 2456 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2457 else 2458 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2459 spin_unlock_bh(&hw->phy_lock); 2460 data->val_out = val; 2461 break; 2462 } 2463 2464 case SIOCSMIIREG: 2465 spin_lock_bh(&hw->phy_lock); 2466 if (is_genesis(hw)) 2467 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2468 data->val_in); 2469 else 2470 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2471 data->val_in); 2472 spin_unlock_bh(&hw->phy_lock); 2473 break; 2474 } 2475 return err; 2476 } 2477 2478 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len) 2479 { 2480 u32 end; 2481 2482 start /= 8; 2483 len /= 8; 2484 end = start + len - 1; 2485 2486 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); 2487 skge_write32(hw, RB_ADDR(q, RB_START), start); 2488 skge_write32(hw, RB_ADDR(q, RB_WP), start); 2489 skge_write32(hw, RB_ADDR(q, RB_RP), start); 2490 skge_write32(hw, RB_ADDR(q, RB_END), end); 2491 2492 if (q == Q_R1 || q == Q_R2) { 2493 /* Set thresholds on receive queue's */ 2494 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), 2495 start + (2*len)/3); 2496 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), 2497 start + (len/3)); 2498 } else { 2499 /* Enable store & forward on Tx queue's because 2500 * Tx FIFO is only 4K on Genesis and 1K on Yukon 2501 */ 2502 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); 2503 } 2504 2505 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); 2506 } 2507 2508 /* Setup Bus Memory Interface */ 2509 static void skge_qset(struct skge_port *skge, u16 q, 2510 const struct skge_element *e) 2511 { 2512 struct skge_hw *hw = skge->hw; 2513 u32 watermark = 0x600; 2514 u64 base = skge->dma + (e->desc - skge->mem); 2515 2516 /* optimization to reduce window on 32bit/33mhz */ 2517 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0) 2518 watermark /= 2; 2519 2520 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET); 2521 skge_write32(hw, Q_ADDR(q, Q_F), watermark); 2522 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32)); 2523 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base); 2524 } 2525 2526 static int skge_up(struct net_device *dev) 2527 { 2528 struct skge_port *skge = netdev_priv(dev); 2529 struct skge_hw *hw = skge->hw; 2530 int port = skge->port; 2531 u32 chunk, ram_addr; 2532 size_t rx_size, tx_size; 2533 int err; 2534 2535 if (!is_valid_ether_addr(dev->dev_addr)) 2536 return -EINVAL; 2537 2538 netif_info(skge, ifup, skge->netdev, "enabling interface\n"); 2539 2540 if (dev->mtu > RX_BUF_SIZE) 2541 skge->rx_buf_size = dev->mtu + ETH_HLEN; 2542 else 2543 skge->rx_buf_size = RX_BUF_SIZE; 2544 2545 2546 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); 2547 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); 2548 skge->mem_size = tx_size + rx_size; 2549 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma); 2550 if (!skge->mem) 2551 return -ENOMEM; 2552 2553 BUG_ON(skge->dma & 7); 2554 2555 if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) { 2556 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n"); 2557 err = -EINVAL; 2558 goto free_pci_mem; 2559 } 2560 2561 memset(skge->mem, 0, skge->mem_size); 2562 2563 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma); 2564 if (err) 2565 goto free_pci_mem; 2566 2567 err = skge_rx_fill(dev); 2568 if (err) 2569 goto free_rx_ring; 2570 2571 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, 2572 skge->dma + rx_size); 2573 if (err) 2574 goto free_rx_ring; 2575 2576 if (hw->ports == 1) { 2577 err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED, 2578 dev->name, hw); 2579 if (err) { 2580 netdev_err(dev, "Unable to allocate interrupt %d error: %d\n", 2581 hw->pdev->irq, err); 2582 goto free_tx_ring; 2583 } 2584 } 2585 2586 /* Initialize MAC */ 2587 netif_carrier_off(dev); 2588 spin_lock_bh(&hw->phy_lock); 2589 if (is_genesis(hw)) 2590 genesis_mac_init(hw, port); 2591 else 2592 yukon_mac_init(hw, port); 2593 spin_unlock_bh(&hw->phy_lock); 2594 2595 /* Configure RAMbuffers - equally between ports and tx/rx */ 2596 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2); 2597 ram_addr = hw->ram_offset + 2 * chunk * port; 2598 2599 skge_ramset(hw, rxqaddr[port], ram_addr, chunk); 2600 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean); 2601 2602 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean); 2603 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk); 2604 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use); 2605 2606 /* Start receiver BMU */ 2607 wmb(); 2608 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F); 2609 skge_led(skge, LED_MODE_ON); 2610 2611 spin_lock_irq(&hw->hw_lock); 2612 hw->intr_mask |= portmask[port]; 2613 skge_write32(hw, B0_IMSK, hw->intr_mask); 2614 skge_read32(hw, B0_IMSK); 2615 spin_unlock_irq(&hw->hw_lock); 2616 2617 napi_enable(&skge->napi); 2618 2619 skge_set_multicast(dev); 2620 2621 return 0; 2622 2623 free_tx_ring: 2624 kfree(skge->tx_ring.start); 2625 free_rx_ring: 2626 skge_rx_clean(skge); 2627 kfree(skge->rx_ring.start); 2628 free_pci_mem: 2629 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); 2630 skge->mem = NULL; 2631 2632 return err; 2633 } 2634 2635 /* stop receiver */ 2636 static void skge_rx_stop(struct skge_hw *hw, int port) 2637 { 2638 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP); 2639 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL), 2640 RB_RST_SET|RB_DIS_OP_MD); 2641 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); 2642 } 2643 2644 static int skge_down(struct net_device *dev) 2645 { 2646 struct skge_port *skge = netdev_priv(dev); 2647 struct skge_hw *hw = skge->hw; 2648 int port = skge->port; 2649 2650 if (!skge->mem) 2651 return 0; 2652 2653 netif_info(skge, ifdown, skge->netdev, "disabling interface\n"); 2654 2655 netif_tx_disable(dev); 2656 2657 if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC) 2658 del_timer_sync(&skge->link_timer); 2659 2660 napi_disable(&skge->napi); 2661 netif_carrier_off(dev); 2662 2663 spin_lock_irq(&hw->hw_lock); 2664 hw->intr_mask &= ~portmask[port]; 2665 skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask); 2666 skge_read32(hw, B0_IMSK); 2667 spin_unlock_irq(&hw->hw_lock); 2668 2669 if (hw->ports == 1) 2670 free_irq(hw->pdev->irq, hw); 2671 2672 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF); 2673 if (is_genesis(hw)) 2674 genesis_stop(skge); 2675 else 2676 yukon_stop(skge); 2677 2678 /* Stop transmitter */ 2679 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); 2680 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), 2681 RB_RST_SET|RB_DIS_OP_MD); 2682 2683 2684 /* Disable Force Sync bit and Enable Alloc bit */ 2685 skge_write8(hw, SK_REG(port, TXA_CTRL), 2686 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); 2687 2688 /* Stop Interval Timer and Limit Counter of Tx Arbiter */ 2689 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); 2690 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); 2691 2692 /* Reset PCI FIFO */ 2693 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); 2694 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); 2695 2696 /* Reset the RAM Buffer async Tx queue */ 2697 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET); 2698 2699 skge_rx_stop(hw, port); 2700 2701 if (is_genesis(hw)) { 2702 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET); 2703 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET); 2704 } else { 2705 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 2706 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); 2707 } 2708 2709 skge_led(skge, LED_MODE_OFF); 2710 2711 netif_tx_lock_bh(dev); 2712 skge_tx_clean(dev); 2713 netif_tx_unlock_bh(dev); 2714 2715 skge_rx_clean(skge); 2716 2717 kfree(skge->rx_ring.start); 2718 kfree(skge->tx_ring.start); 2719 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); 2720 skge->mem = NULL; 2721 return 0; 2722 } 2723 2724 static inline int skge_avail(const struct skge_ring *ring) 2725 { 2726 smp_mb(); 2727 return ((ring->to_clean > ring->to_use) ? 0 : ring->count) 2728 + (ring->to_clean - ring->to_use) - 1; 2729 } 2730 2731 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb, 2732 struct net_device *dev) 2733 { 2734 struct skge_port *skge = netdev_priv(dev); 2735 struct skge_hw *hw = skge->hw; 2736 struct skge_element *e; 2737 struct skge_tx_desc *td; 2738 int i; 2739 u32 control, len; 2740 dma_addr_t map; 2741 2742 if (skb_padto(skb, ETH_ZLEN)) 2743 return NETDEV_TX_OK; 2744 2745 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) 2746 return NETDEV_TX_BUSY; 2747 2748 e = skge->tx_ring.to_use; 2749 td = e->desc; 2750 BUG_ON(td->control & BMU_OWN); 2751 e->skb = skb; 2752 len = skb_headlen(skb); 2753 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); 2754 if (pci_dma_mapping_error(hw->pdev, map)) 2755 goto mapping_error; 2756 2757 dma_unmap_addr_set(e, mapaddr, map); 2758 dma_unmap_len_set(e, maplen, len); 2759 2760 td->dma_lo = lower_32_bits(map); 2761 td->dma_hi = upper_32_bits(map); 2762 2763 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2764 const int offset = skb_checksum_start_offset(skb); 2765 2766 /* This seems backwards, but it is what the sk98lin 2767 * does. Looks like hardware is wrong? 2768 */ 2769 if (ipip_hdr(skb)->protocol == IPPROTO_UDP && 2770 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON) 2771 control = BMU_TCP_CHECK; 2772 else 2773 control = BMU_UDP_CHECK; 2774 2775 td->csum_offs = 0; 2776 td->csum_start = offset; 2777 td->csum_write = offset + skb->csum_offset; 2778 } else 2779 control = BMU_CHECK; 2780 2781 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */ 2782 control |= BMU_EOF | BMU_IRQ_EOF; 2783 else { 2784 struct skge_tx_desc *tf = td; 2785 2786 control |= BMU_STFWD; 2787 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2788 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2789 2790 map = skb_frag_dma_map(&hw->pdev->dev, frag, 0, 2791 skb_frag_size(frag), DMA_TO_DEVICE); 2792 if (dma_mapping_error(&hw->pdev->dev, map)) 2793 goto mapping_unwind; 2794 2795 e = e->next; 2796 e->skb = skb; 2797 tf = e->desc; 2798 BUG_ON(tf->control & BMU_OWN); 2799 2800 tf->dma_lo = lower_32_bits(map); 2801 tf->dma_hi = upper_32_bits(map); 2802 dma_unmap_addr_set(e, mapaddr, map); 2803 dma_unmap_len_set(e, maplen, skb_frag_size(frag)); 2804 2805 tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag); 2806 } 2807 tf->control |= BMU_EOF | BMU_IRQ_EOF; 2808 } 2809 /* Make sure all the descriptors written */ 2810 wmb(); 2811 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len; 2812 wmb(); 2813 2814 netdev_sent_queue(dev, skb->len); 2815 2816 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START); 2817 2818 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev, 2819 "tx queued, slot %td, len %d\n", 2820 e - skge->tx_ring.start, skb->len); 2821 2822 skge->tx_ring.to_use = e->next; 2823 smp_wmb(); 2824 2825 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) { 2826 netdev_dbg(dev, "transmit queue full\n"); 2827 netif_stop_queue(dev); 2828 } 2829 2830 return NETDEV_TX_OK; 2831 2832 mapping_unwind: 2833 e = skge->tx_ring.to_use; 2834 pci_unmap_single(hw->pdev, 2835 dma_unmap_addr(e, mapaddr), 2836 dma_unmap_len(e, maplen), 2837 PCI_DMA_TODEVICE); 2838 while (i-- > 0) { 2839 e = e->next; 2840 pci_unmap_page(hw->pdev, 2841 dma_unmap_addr(e, mapaddr), 2842 dma_unmap_len(e, maplen), 2843 PCI_DMA_TODEVICE); 2844 } 2845 2846 mapping_error: 2847 if (net_ratelimit()) 2848 dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name); 2849 dev_kfree_skb_any(skb); 2850 return NETDEV_TX_OK; 2851 } 2852 2853 2854 /* Free resources associated with this reing element */ 2855 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e, 2856 u32 control) 2857 { 2858 /* skb header vs. fragment */ 2859 if (control & BMU_STF) 2860 pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr), 2861 dma_unmap_len(e, maplen), 2862 PCI_DMA_TODEVICE); 2863 else 2864 pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr), 2865 dma_unmap_len(e, maplen), 2866 PCI_DMA_TODEVICE); 2867 } 2868 2869 /* Free all buffers in transmit ring */ 2870 static void skge_tx_clean(struct net_device *dev) 2871 { 2872 struct skge_port *skge = netdev_priv(dev); 2873 struct skge_element *e; 2874 2875 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { 2876 struct skge_tx_desc *td = e->desc; 2877 2878 skge_tx_unmap(skge->hw->pdev, e, td->control); 2879 2880 if (td->control & BMU_EOF) 2881 dev_kfree_skb(e->skb); 2882 td->control = 0; 2883 } 2884 2885 netdev_reset_queue(dev); 2886 skge->tx_ring.to_clean = e; 2887 } 2888 2889 static void skge_tx_timeout(struct net_device *dev) 2890 { 2891 struct skge_port *skge = netdev_priv(dev); 2892 2893 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n"); 2894 2895 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP); 2896 skge_tx_clean(dev); 2897 netif_wake_queue(dev); 2898 } 2899 2900 static int skge_change_mtu(struct net_device *dev, int new_mtu) 2901 { 2902 int err; 2903 2904 if (!netif_running(dev)) { 2905 dev->mtu = new_mtu; 2906 return 0; 2907 } 2908 2909 skge_down(dev); 2910 2911 dev->mtu = new_mtu; 2912 2913 err = skge_up(dev); 2914 if (err) 2915 dev_close(dev); 2916 2917 return err; 2918 } 2919 2920 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 }; 2921 2922 static void genesis_add_filter(u8 filter[8], const u8 *addr) 2923 { 2924 u32 crc, bit; 2925 2926 crc = ether_crc_le(ETH_ALEN, addr); 2927 bit = ~crc & 0x3f; 2928 filter[bit/8] |= 1 << (bit%8); 2929 } 2930 2931 static void genesis_set_multicast(struct net_device *dev) 2932 { 2933 struct skge_port *skge = netdev_priv(dev); 2934 struct skge_hw *hw = skge->hw; 2935 int port = skge->port; 2936 struct netdev_hw_addr *ha; 2937 u32 mode; 2938 u8 filter[8]; 2939 2940 mode = xm_read32(hw, port, XM_MODE); 2941 mode |= XM_MD_ENA_HASH; 2942 if (dev->flags & IFF_PROMISC) 2943 mode |= XM_MD_ENA_PROM; 2944 else 2945 mode &= ~XM_MD_ENA_PROM; 2946 2947 if (dev->flags & IFF_ALLMULTI) 2948 memset(filter, 0xff, sizeof(filter)); 2949 else { 2950 memset(filter, 0, sizeof(filter)); 2951 2952 if (skge->flow_status == FLOW_STAT_REM_SEND || 2953 skge->flow_status == FLOW_STAT_SYMMETRIC) 2954 genesis_add_filter(filter, pause_mc_addr); 2955 2956 netdev_for_each_mc_addr(ha, dev) 2957 genesis_add_filter(filter, ha->addr); 2958 } 2959 2960 xm_write32(hw, port, XM_MODE, mode); 2961 xm_outhash(hw, port, XM_HSM, filter); 2962 } 2963 2964 static void yukon_add_filter(u8 filter[8], const u8 *addr) 2965 { 2966 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f; 2967 filter[bit/8] |= 1 << (bit%8); 2968 } 2969 2970 static void yukon_set_multicast(struct net_device *dev) 2971 { 2972 struct skge_port *skge = netdev_priv(dev); 2973 struct skge_hw *hw = skge->hw; 2974 int port = skge->port; 2975 struct netdev_hw_addr *ha; 2976 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND || 2977 skge->flow_status == FLOW_STAT_SYMMETRIC); 2978 u16 reg; 2979 u8 filter[8]; 2980 2981 memset(filter, 0, sizeof(filter)); 2982 2983 reg = gma_read16(hw, port, GM_RX_CTRL); 2984 reg |= GM_RXCR_UCF_ENA; 2985 2986 if (dev->flags & IFF_PROMISC) /* promiscuous */ 2987 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2988 else if (dev->flags & IFF_ALLMULTI) /* all multicast */ 2989 memset(filter, 0xff, sizeof(filter)); 2990 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */ 2991 reg &= ~GM_RXCR_MCF_ENA; 2992 else { 2993 reg |= GM_RXCR_MCF_ENA; 2994 2995 if (rx_pause) 2996 yukon_add_filter(filter, pause_mc_addr); 2997 2998 netdev_for_each_mc_addr(ha, dev) 2999 yukon_add_filter(filter, ha->addr); 3000 } 3001 3002 3003 gma_write16(hw, port, GM_MC_ADDR_H1, 3004 (u16)filter[0] | ((u16)filter[1] << 8)); 3005 gma_write16(hw, port, GM_MC_ADDR_H2, 3006 (u16)filter[2] | ((u16)filter[3] << 8)); 3007 gma_write16(hw, port, GM_MC_ADDR_H3, 3008 (u16)filter[4] | ((u16)filter[5] << 8)); 3009 gma_write16(hw, port, GM_MC_ADDR_H4, 3010 (u16)filter[6] | ((u16)filter[7] << 8)); 3011 3012 gma_write16(hw, port, GM_RX_CTRL, reg); 3013 } 3014 3015 static inline u16 phy_length(const struct skge_hw *hw, u32 status) 3016 { 3017 if (is_genesis(hw)) 3018 return status >> XMR_FS_LEN_SHIFT; 3019 else 3020 return status >> GMR_FS_LEN_SHIFT; 3021 } 3022 3023 static inline int bad_phy_status(const struct skge_hw *hw, u32 status) 3024 { 3025 if (is_genesis(hw)) 3026 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0; 3027 else 3028 return (status & GMR_FS_ANY_ERR) || 3029 (status & GMR_FS_RX_OK) == 0; 3030 } 3031 3032 static void skge_set_multicast(struct net_device *dev) 3033 { 3034 struct skge_port *skge = netdev_priv(dev); 3035 3036 if (is_genesis(skge->hw)) 3037 genesis_set_multicast(dev); 3038 else 3039 yukon_set_multicast(dev); 3040 3041 } 3042 3043 3044 /* Get receive buffer from descriptor. 3045 * Handles copy of small buffers and reallocation failures 3046 */ 3047 static struct sk_buff *skge_rx_get(struct net_device *dev, 3048 struct skge_element *e, 3049 u32 control, u32 status, u16 csum) 3050 { 3051 struct skge_port *skge = netdev_priv(dev); 3052 struct sk_buff *skb; 3053 u16 len = control & BMU_BBC; 3054 3055 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev, 3056 "rx slot %td status 0x%x len %d\n", 3057 e - skge->rx_ring.start, status, len); 3058 3059 if (len > skge->rx_buf_size) 3060 goto error; 3061 3062 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)) 3063 goto error; 3064 3065 if (bad_phy_status(skge->hw, status)) 3066 goto error; 3067 3068 if (phy_length(skge->hw, status) != len) 3069 goto error; 3070 3071 if (len < RX_COPY_THRESHOLD) { 3072 skb = netdev_alloc_skb_ip_align(dev, len); 3073 if (!skb) 3074 goto resubmit; 3075 3076 pci_dma_sync_single_for_cpu(skge->hw->pdev, 3077 dma_unmap_addr(e, mapaddr), 3078 dma_unmap_len(e, maplen), 3079 PCI_DMA_FROMDEVICE); 3080 skb_copy_from_linear_data(e->skb, skb->data, len); 3081 pci_dma_sync_single_for_device(skge->hw->pdev, 3082 dma_unmap_addr(e, mapaddr), 3083 dma_unmap_len(e, maplen), 3084 PCI_DMA_FROMDEVICE); 3085 skge_rx_reuse(e, skge->rx_buf_size); 3086 } else { 3087 struct skge_element ee; 3088 struct sk_buff *nskb; 3089 3090 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size); 3091 if (!nskb) 3092 goto resubmit; 3093 3094 ee = *e; 3095 3096 skb = ee.skb; 3097 prefetch(skb->data); 3098 3099 if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) { 3100 dev_kfree_skb(nskb); 3101 goto resubmit; 3102 } 3103 3104 pci_unmap_single(skge->hw->pdev, 3105 dma_unmap_addr(&ee, mapaddr), 3106 dma_unmap_len(&ee, maplen), 3107 PCI_DMA_FROMDEVICE); 3108 } 3109 3110 skb_put(skb, len); 3111 3112 if (dev->features & NETIF_F_RXCSUM) { 3113 skb->csum = csum; 3114 skb->ip_summed = CHECKSUM_COMPLETE; 3115 } 3116 3117 skb->protocol = eth_type_trans(skb, dev); 3118 3119 return skb; 3120 error: 3121 3122 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev, 3123 "rx err, slot %td control 0x%x status 0x%x\n", 3124 e - skge->rx_ring.start, control, status); 3125 3126 if (is_genesis(skge->hw)) { 3127 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) 3128 dev->stats.rx_length_errors++; 3129 if (status & XMR_FS_FRA_ERR) 3130 dev->stats.rx_frame_errors++; 3131 if (status & XMR_FS_FCS_ERR) 3132 dev->stats.rx_crc_errors++; 3133 } else { 3134 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) 3135 dev->stats.rx_length_errors++; 3136 if (status & GMR_FS_FRAGMENT) 3137 dev->stats.rx_frame_errors++; 3138 if (status & GMR_FS_CRC_ERR) 3139 dev->stats.rx_crc_errors++; 3140 } 3141 3142 resubmit: 3143 skge_rx_reuse(e, skge->rx_buf_size); 3144 return NULL; 3145 } 3146 3147 /* Free all buffers in Tx ring which are no longer owned by device */ 3148 static void skge_tx_done(struct net_device *dev) 3149 { 3150 struct skge_port *skge = netdev_priv(dev); 3151 struct skge_ring *ring = &skge->tx_ring; 3152 struct skge_element *e; 3153 unsigned int bytes_compl = 0, pkts_compl = 0; 3154 3155 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 3156 3157 for (e = ring->to_clean; e != ring->to_use; e = e->next) { 3158 u32 control = ((const struct skge_tx_desc *) e->desc)->control; 3159 3160 if (control & BMU_OWN) 3161 break; 3162 3163 skge_tx_unmap(skge->hw->pdev, e, control); 3164 3165 if (control & BMU_EOF) { 3166 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev, 3167 "tx done slot %td\n", 3168 e - skge->tx_ring.start); 3169 3170 pkts_compl++; 3171 bytes_compl += e->skb->len; 3172 3173 dev_consume_skb_any(e->skb); 3174 } 3175 } 3176 netdev_completed_queue(dev, pkts_compl, bytes_compl); 3177 skge->tx_ring.to_clean = e; 3178 3179 /* Can run lockless until we need to synchronize to restart queue. */ 3180 smp_mb(); 3181 3182 if (unlikely(netif_queue_stopped(dev) && 3183 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { 3184 netif_tx_lock(dev); 3185 if (unlikely(netif_queue_stopped(dev) && 3186 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { 3187 netif_wake_queue(dev); 3188 3189 } 3190 netif_tx_unlock(dev); 3191 } 3192 } 3193 3194 static int skge_poll(struct napi_struct *napi, int budget) 3195 { 3196 struct skge_port *skge = container_of(napi, struct skge_port, napi); 3197 struct net_device *dev = skge->netdev; 3198 struct skge_hw *hw = skge->hw; 3199 struct skge_ring *ring = &skge->rx_ring; 3200 struct skge_element *e; 3201 int work_done = 0; 3202 3203 skge_tx_done(dev); 3204 3205 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 3206 3207 for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) { 3208 struct skge_rx_desc *rd = e->desc; 3209 struct sk_buff *skb; 3210 u32 control; 3211 3212 rmb(); 3213 control = rd->control; 3214 if (control & BMU_OWN) 3215 break; 3216 3217 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2); 3218 if (likely(skb)) { 3219 napi_gro_receive(napi, skb); 3220 ++work_done; 3221 } 3222 } 3223 ring->to_clean = e; 3224 3225 /* restart receiver */ 3226 wmb(); 3227 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START); 3228 3229 if (work_done < budget && napi_complete_done(napi, work_done)) { 3230 unsigned long flags; 3231 3232 spin_lock_irqsave(&hw->hw_lock, flags); 3233 hw->intr_mask |= napimask[skge->port]; 3234 skge_write32(hw, B0_IMSK, hw->intr_mask); 3235 skge_read32(hw, B0_IMSK); 3236 spin_unlock_irqrestore(&hw->hw_lock, flags); 3237 } 3238 3239 return work_done; 3240 } 3241 3242 /* Parity errors seem to happen when Genesis is connected to a switch 3243 * with no other ports present. Heartbeat error?? 3244 */ 3245 static void skge_mac_parity(struct skge_hw *hw, int port) 3246 { 3247 struct net_device *dev = hw->dev[port]; 3248 3249 ++dev->stats.tx_heartbeat_errors; 3250 3251 if (is_genesis(hw)) 3252 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 3253 MFF_CLR_PERR); 3254 else 3255 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ 3256 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), 3257 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 3258 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE); 3259 } 3260 3261 static void skge_mac_intr(struct skge_hw *hw, int port) 3262 { 3263 if (is_genesis(hw)) 3264 genesis_mac_intr(hw, port); 3265 else 3266 yukon_mac_intr(hw, port); 3267 } 3268 3269 /* Handle device specific framing and timeout interrupts */ 3270 static void skge_error_irq(struct skge_hw *hw) 3271 { 3272 struct pci_dev *pdev = hw->pdev; 3273 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC); 3274 3275 if (is_genesis(hw)) { 3276 /* clear xmac errors */ 3277 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) 3278 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT); 3279 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) 3280 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT); 3281 } else { 3282 /* Timestamp (unused) overflow */ 3283 if (hwstatus & IS_IRQ_TIST_OV) 3284 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 3285 } 3286 3287 if (hwstatus & IS_RAM_RD_PAR) { 3288 dev_err(&pdev->dev, "Ram read data parity error\n"); 3289 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR); 3290 } 3291 3292 if (hwstatus & IS_RAM_WR_PAR) { 3293 dev_err(&pdev->dev, "Ram write data parity error\n"); 3294 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR); 3295 } 3296 3297 if (hwstatus & IS_M1_PAR_ERR) 3298 skge_mac_parity(hw, 0); 3299 3300 if (hwstatus & IS_M2_PAR_ERR) 3301 skge_mac_parity(hw, 1); 3302 3303 if (hwstatus & IS_R1_PAR_ERR) { 3304 dev_err(&pdev->dev, "%s: receive queue parity error\n", 3305 hw->dev[0]->name); 3306 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P); 3307 } 3308 3309 if (hwstatus & IS_R2_PAR_ERR) { 3310 dev_err(&pdev->dev, "%s: receive queue parity error\n", 3311 hw->dev[1]->name); 3312 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P); 3313 } 3314 3315 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) { 3316 u16 pci_status, pci_cmd; 3317 3318 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 3319 pci_read_config_word(pdev, PCI_STATUS, &pci_status); 3320 3321 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n", 3322 pci_cmd, pci_status); 3323 3324 /* Write the error bits back to clear them. */ 3325 pci_status &= PCI_STATUS_ERROR_BITS; 3326 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3327 pci_write_config_word(pdev, PCI_COMMAND, 3328 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY); 3329 pci_write_config_word(pdev, PCI_STATUS, pci_status); 3330 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3331 3332 /* if error still set then just ignore it */ 3333 hwstatus = skge_read32(hw, B0_HWE_ISRC); 3334 if (hwstatus & IS_IRQ_STAT) { 3335 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n"); 3336 hw->intr_mask &= ~IS_HW_ERR; 3337 } 3338 } 3339 } 3340 3341 /* 3342 * Interrupt from PHY are handled in tasklet (softirq) 3343 * because accessing phy registers requires spin wait which might 3344 * cause excess interrupt latency. 3345 */ 3346 static void skge_extirq(unsigned long arg) 3347 { 3348 struct skge_hw *hw = (struct skge_hw *) arg; 3349 int port; 3350 3351 for (port = 0; port < hw->ports; port++) { 3352 struct net_device *dev = hw->dev[port]; 3353 3354 if (netif_running(dev)) { 3355 struct skge_port *skge = netdev_priv(dev); 3356 3357 spin_lock(&hw->phy_lock); 3358 if (!is_genesis(hw)) 3359 yukon_phy_intr(skge); 3360 else if (hw->phy_type == SK_PHY_BCOM) 3361 bcom_phy_intr(skge); 3362 spin_unlock(&hw->phy_lock); 3363 } 3364 } 3365 3366 spin_lock_irq(&hw->hw_lock); 3367 hw->intr_mask |= IS_EXT_REG; 3368 skge_write32(hw, B0_IMSK, hw->intr_mask); 3369 skge_read32(hw, B0_IMSK); 3370 spin_unlock_irq(&hw->hw_lock); 3371 } 3372 3373 static irqreturn_t skge_intr(int irq, void *dev_id) 3374 { 3375 struct skge_hw *hw = dev_id; 3376 u32 status; 3377 int handled = 0; 3378 3379 spin_lock(&hw->hw_lock); 3380 /* Reading this register masks IRQ */ 3381 status = skge_read32(hw, B0_SP_ISRC); 3382 if (status == 0 || status == ~0) 3383 goto out; 3384 3385 handled = 1; 3386 status &= hw->intr_mask; 3387 if (status & IS_EXT_REG) { 3388 hw->intr_mask &= ~IS_EXT_REG; 3389 tasklet_schedule(&hw->phy_task); 3390 } 3391 3392 if (status & (IS_XA1_F|IS_R1_F)) { 3393 struct skge_port *skge = netdev_priv(hw->dev[0]); 3394 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F); 3395 napi_schedule(&skge->napi); 3396 } 3397 3398 if (status & IS_PA_TO_TX1) 3399 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1); 3400 3401 if (status & IS_PA_TO_RX1) { 3402 ++hw->dev[0]->stats.rx_over_errors; 3403 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1); 3404 } 3405 3406 3407 if (status & IS_MAC1) 3408 skge_mac_intr(hw, 0); 3409 3410 if (hw->dev[1]) { 3411 struct skge_port *skge = netdev_priv(hw->dev[1]); 3412 3413 if (status & (IS_XA2_F|IS_R2_F)) { 3414 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F); 3415 napi_schedule(&skge->napi); 3416 } 3417 3418 if (status & IS_PA_TO_RX2) { 3419 ++hw->dev[1]->stats.rx_over_errors; 3420 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2); 3421 } 3422 3423 if (status & IS_PA_TO_TX2) 3424 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2); 3425 3426 if (status & IS_MAC2) 3427 skge_mac_intr(hw, 1); 3428 } 3429 3430 if (status & IS_HW_ERR) 3431 skge_error_irq(hw); 3432 out: 3433 skge_write32(hw, B0_IMSK, hw->intr_mask); 3434 skge_read32(hw, B0_IMSK); 3435 spin_unlock(&hw->hw_lock); 3436 3437 return IRQ_RETVAL(handled); 3438 } 3439 3440 #ifdef CONFIG_NET_POLL_CONTROLLER 3441 static void skge_netpoll(struct net_device *dev) 3442 { 3443 struct skge_port *skge = netdev_priv(dev); 3444 3445 disable_irq(dev->irq); 3446 skge_intr(dev->irq, skge->hw); 3447 enable_irq(dev->irq); 3448 } 3449 #endif 3450 3451 static int skge_set_mac_address(struct net_device *dev, void *p) 3452 { 3453 struct skge_port *skge = netdev_priv(dev); 3454 struct skge_hw *hw = skge->hw; 3455 unsigned port = skge->port; 3456 const struct sockaddr *addr = p; 3457 u16 ctrl; 3458 3459 if (!is_valid_ether_addr(addr->sa_data)) 3460 return -EADDRNOTAVAIL; 3461 3462 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 3463 3464 if (!netif_running(dev)) { 3465 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); 3466 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); 3467 } else { 3468 /* disable Rx */ 3469 spin_lock_bh(&hw->phy_lock); 3470 ctrl = gma_read16(hw, port, GM_GP_CTRL); 3471 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA); 3472 3473 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); 3474 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); 3475 3476 if (is_genesis(hw)) 3477 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 3478 else { 3479 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); 3480 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); 3481 } 3482 3483 gma_write16(hw, port, GM_GP_CTRL, ctrl); 3484 spin_unlock_bh(&hw->phy_lock); 3485 } 3486 3487 return 0; 3488 } 3489 3490 static const struct { 3491 u8 id; 3492 const char *name; 3493 } skge_chips[] = { 3494 { CHIP_ID_GENESIS, "Genesis" }, 3495 { CHIP_ID_YUKON, "Yukon" }, 3496 { CHIP_ID_YUKON_LITE, "Yukon-Lite"}, 3497 { CHIP_ID_YUKON_LP, "Yukon-LP"}, 3498 }; 3499 3500 static const char *skge_board_name(const struct skge_hw *hw) 3501 { 3502 int i; 3503 static char buf[16]; 3504 3505 for (i = 0; i < ARRAY_SIZE(skge_chips); i++) 3506 if (skge_chips[i].id == hw->chip_id) 3507 return skge_chips[i].name; 3508 3509 snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id); 3510 return buf; 3511 } 3512 3513 3514 /* 3515 * Setup the board data structure, but don't bring up 3516 * the port(s) 3517 */ 3518 static int skge_reset(struct skge_hw *hw) 3519 { 3520 u32 reg; 3521 u16 ctst, pci_status; 3522 u8 t8, mac_cfg, pmd_type; 3523 int i; 3524 3525 ctst = skge_read16(hw, B0_CTST); 3526 3527 /* do a SW reset */ 3528 skge_write8(hw, B0_CTST, CS_RST_SET); 3529 skge_write8(hw, B0_CTST, CS_RST_CLR); 3530 3531 /* clear PCI errors, if any */ 3532 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3533 skge_write8(hw, B2_TST_CTRL2, 0); 3534 3535 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status); 3536 pci_write_config_word(hw->pdev, PCI_STATUS, 3537 pci_status | PCI_STATUS_ERROR_BITS); 3538 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3539 skge_write8(hw, B0_CTST, CS_MRST_CLR); 3540 3541 /* restore CLK_RUN bits (for Yukon-Lite) */ 3542 skge_write16(hw, B0_CTST, 3543 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA)); 3544 3545 hw->chip_id = skge_read8(hw, B2_CHIP_ID); 3546 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf; 3547 pmd_type = skge_read8(hw, B2_PMD_TYP); 3548 hw->copper = (pmd_type == 'T' || pmd_type == '1'); 3549 3550 switch (hw->chip_id) { 3551 case CHIP_ID_GENESIS: 3552 #ifdef CONFIG_SKGE_GENESIS 3553 switch (hw->phy_type) { 3554 case SK_PHY_XMAC: 3555 hw->phy_addr = PHY_ADDR_XMAC; 3556 break; 3557 case SK_PHY_BCOM: 3558 hw->phy_addr = PHY_ADDR_BCOM; 3559 break; 3560 default: 3561 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n", 3562 hw->phy_type); 3563 return -EOPNOTSUPP; 3564 } 3565 break; 3566 #else 3567 dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n"); 3568 return -EOPNOTSUPP; 3569 #endif 3570 3571 case CHIP_ID_YUKON: 3572 case CHIP_ID_YUKON_LITE: 3573 case CHIP_ID_YUKON_LP: 3574 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S') 3575 hw->copper = 1; 3576 3577 hw->phy_addr = PHY_ADDR_MARV; 3578 break; 3579 3580 default: 3581 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n", 3582 hw->chip_id); 3583 return -EOPNOTSUPP; 3584 } 3585 3586 mac_cfg = skge_read8(hw, B2_MAC_CFG); 3587 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2; 3588 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4; 3589 3590 /* read the adapters RAM size */ 3591 t8 = skge_read8(hw, B2_E_0); 3592 if (is_genesis(hw)) { 3593 if (t8 == 3) { 3594 /* special case: 4 x 64k x 36, offset = 0x80000 */ 3595 hw->ram_size = 0x100000; 3596 hw->ram_offset = 0x80000; 3597 } else 3598 hw->ram_size = t8 * 512; 3599 } else if (t8 == 0) 3600 hw->ram_size = 0x20000; 3601 else 3602 hw->ram_size = t8 * 4096; 3603 3604 hw->intr_mask = IS_HW_ERR; 3605 3606 /* Use PHY IRQ for all but fiber based Genesis board */ 3607 if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)) 3608 hw->intr_mask |= IS_EXT_REG; 3609 3610 if (is_genesis(hw)) 3611 genesis_init(hw); 3612 else { 3613 /* switch power to VCC (WA for VAUX problem) */ 3614 skge_write8(hw, B0_POWER_CTRL, 3615 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); 3616 3617 /* avoid boards with stuck Hardware error bits */ 3618 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) && 3619 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) { 3620 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n"); 3621 hw->intr_mask &= ~IS_HW_ERR; 3622 } 3623 3624 /* Clear PHY COMA */ 3625 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3626 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®); 3627 reg &= ~PCI_PHY_COMA; 3628 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg); 3629 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3630 3631 3632 for (i = 0; i < hw->ports; i++) { 3633 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); 3634 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); 3635 } 3636 } 3637 3638 /* turn off hardware timer (unused) */ 3639 skge_write8(hw, B2_TI_CTRL, TIM_STOP); 3640 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); 3641 skge_write8(hw, B0_LED, LED_STAT_ON); 3642 3643 /* enable the Tx Arbiters */ 3644 for (i = 0; i < hw->ports; i++) 3645 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); 3646 3647 /* Initialize ram interface */ 3648 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); 3649 3650 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53); 3651 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53); 3652 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53); 3653 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53); 3654 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53); 3655 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53); 3656 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53); 3657 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53); 3658 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53); 3659 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53); 3660 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53); 3661 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53); 3662 3663 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK); 3664 3665 /* Set interrupt moderation for Transmit only 3666 * Receive interrupts avoided by NAPI 3667 */ 3668 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F); 3669 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); 3670 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 3671 3672 /* Leave irq disabled until first port is brought up. */ 3673 skge_write32(hw, B0_IMSK, 0); 3674 3675 for (i = 0; i < hw->ports; i++) { 3676 if (is_genesis(hw)) 3677 genesis_reset(hw, i); 3678 else 3679 yukon_reset(hw, i); 3680 } 3681 3682 return 0; 3683 } 3684 3685 3686 #ifdef CONFIG_SKGE_DEBUG 3687 3688 static struct dentry *skge_debug; 3689 3690 static int skge_debug_show(struct seq_file *seq, void *v) 3691 { 3692 struct net_device *dev = seq->private; 3693 const struct skge_port *skge = netdev_priv(dev); 3694 const struct skge_hw *hw = skge->hw; 3695 const struct skge_element *e; 3696 3697 if (!netif_running(dev)) 3698 return -ENETDOWN; 3699 3700 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC), 3701 skge_read32(hw, B0_IMSK)); 3702 3703 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring)); 3704 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { 3705 const struct skge_tx_desc *t = e->desc; 3706 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n", 3707 t->control, t->dma_hi, t->dma_lo, t->status, 3708 t->csum_offs, t->csum_write, t->csum_start); 3709 } 3710 3711 seq_puts(seq, "\nRx Ring:\n"); 3712 for (e = skge->rx_ring.to_clean; ; e = e->next) { 3713 const struct skge_rx_desc *r = e->desc; 3714 3715 if (r->control & BMU_OWN) 3716 break; 3717 3718 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n", 3719 r->control, r->dma_hi, r->dma_lo, r->status, 3720 r->timestamp, r->csum1, r->csum1_start); 3721 } 3722 3723 return 0; 3724 } 3725 DEFINE_SHOW_ATTRIBUTE(skge_debug); 3726 3727 /* 3728 * Use network device events to create/remove/rename 3729 * debugfs file entries 3730 */ 3731 static int skge_device_event(struct notifier_block *unused, 3732 unsigned long event, void *ptr) 3733 { 3734 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 3735 struct skge_port *skge; 3736 struct dentry *d; 3737 3738 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug) 3739 goto done; 3740 3741 skge = netdev_priv(dev); 3742 switch (event) { 3743 case NETDEV_CHANGENAME: 3744 if (skge->debugfs) { 3745 d = debugfs_rename(skge_debug, skge->debugfs, 3746 skge_debug, dev->name); 3747 if (d) 3748 skge->debugfs = d; 3749 else { 3750 netdev_info(dev, "rename failed\n"); 3751 debugfs_remove(skge->debugfs); 3752 } 3753 } 3754 break; 3755 3756 case NETDEV_GOING_DOWN: 3757 if (skge->debugfs) { 3758 debugfs_remove(skge->debugfs); 3759 skge->debugfs = NULL; 3760 } 3761 break; 3762 3763 case NETDEV_UP: 3764 d = debugfs_create_file(dev->name, 0444, 3765 skge_debug, dev, 3766 &skge_debug_fops); 3767 if (!d || IS_ERR(d)) 3768 netdev_info(dev, "debugfs create failed\n"); 3769 else 3770 skge->debugfs = d; 3771 break; 3772 } 3773 3774 done: 3775 return NOTIFY_DONE; 3776 } 3777 3778 static struct notifier_block skge_notifier = { 3779 .notifier_call = skge_device_event, 3780 }; 3781 3782 3783 static __init void skge_debug_init(void) 3784 { 3785 struct dentry *ent; 3786 3787 ent = debugfs_create_dir("skge", NULL); 3788 if (!ent || IS_ERR(ent)) { 3789 pr_info("debugfs create directory failed\n"); 3790 return; 3791 } 3792 3793 skge_debug = ent; 3794 register_netdevice_notifier(&skge_notifier); 3795 } 3796 3797 static __exit void skge_debug_cleanup(void) 3798 { 3799 if (skge_debug) { 3800 unregister_netdevice_notifier(&skge_notifier); 3801 debugfs_remove(skge_debug); 3802 skge_debug = NULL; 3803 } 3804 } 3805 3806 #else 3807 #define skge_debug_init() 3808 #define skge_debug_cleanup() 3809 #endif 3810 3811 static const struct net_device_ops skge_netdev_ops = { 3812 .ndo_open = skge_up, 3813 .ndo_stop = skge_down, 3814 .ndo_start_xmit = skge_xmit_frame, 3815 .ndo_do_ioctl = skge_ioctl, 3816 .ndo_get_stats = skge_get_stats, 3817 .ndo_tx_timeout = skge_tx_timeout, 3818 .ndo_change_mtu = skge_change_mtu, 3819 .ndo_validate_addr = eth_validate_addr, 3820 .ndo_set_rx_mode = skge_set_multicast, 3821 .ndo_set_mac_address = skge_set_mac_address, 3822 #ifdef CONFIG_NET_POLL_CONTROLLER 3823 .ndo_poll_controller = skge_netpoll, 3824 #endif 3825 }; 3826 3827 3828 /* Initialize network device */ 3829 static struct net_device *skge_devinit(struct skge_hw *hw, int port, 3830 int highmem) 3831 { 3832 struct skge_port *skge; 3833 struct net_device *dev = alloc_etherdev(sizeof(*skge)); 3834 3835 if (!dev) 3836 return NULL; 3837 3838 SET_NETDEV_DEV(dev, &hw->pdev->dev); 3839 dev->netdev_ops = &skge_netdev_ops; 3840 dev->ethtool_ops = &skge_ethtool_ops; 3841 dev->watchdog_timeo = TX_WATCHDOG; 3842 dev->irq = hw->pdev->irq; 3843 3844 /* MTU range: 60 - 9000 */ 3845 dev->min_mtu = ETH_ZLEN; 3846 dev->max_mtu = ETH_JUMBO_MTU; 3847 3848 if (highmem) 3849 dev->features |= NETIF_F_HIGHDMA; 3850 3851 skge = netdev_priv(dev); 3852 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT); 3853 skge->netdev = dev; 3854 skge->hw = hw; 3855 skge->msg_enable = netif_msg_init(debug, default_msg); 3856 3857 skge->tx_ring.count = DEFAULT_TX_RING_SIZE; 3858 skge->rx_ring.count = DEFAULT_RX_RING_SIZE; 3859 3860 /* Auto speed and flow control */ 3861 skge->autoneg = AUTONEG_ENABLE; 3862 skge->flow_control = FLOW_MODE_SYM_OR_REM; 3863 skge->duplex = -1; 3864 skge->speed = -1; 3865 skge->advertising = skge_supported_modes(hw); 3866 3867 if (device_can_wakeup(&hw->pdev->dev)) { 3868 skge->wol = wol_supported(hw) & WAKE_MAGIC; 3869 device_set_wakeup_enable(&hw->pdev->dev, skge->wol); 3870 } 3871 3872 hw->dev[port] = dev; 3873 3874 skge->port = port; 3875 3876 /* Only used for Genesis XMAC */ 3877 if (is_genesis(hw)) 3878 timer_setup(&skge->link_timer, xm_link_timer, 0); 3879 else { 3880 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3881 NETIF_F_RXCSUM; 3882 dev->features |= dev->hw_features; 3883 } 3884 3885 /* read the mac address */ 3886 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN); 3887 3888 return dev; 3889 } 3890 3891 static void skge_show_addr(struct net_device *dev) 3892 { 3893 const struct skge_port *skge = netdev_priv(dev); 3894 3895 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr); 3896 } 3897 3898 static int only_32bit_dma; 3899 3900 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3901 { 3902 struct net_device *dev, *dev1; 3903 struct skge_hw *hw; 3904 int err, using_dac = 0; 3905 3906 err = pci_enable_device(pdev); 3907 if (err) { 3908 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3909 goto err_out; 3910 } 3911 3912 err = pci_request_regions(pdev, DRV_NAME); 3913 if (err) { 3914 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 3915 goto err_out_disable_pdev; 3916 } 3917 3918 pci_set_master(pdev); 3919 3920 if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 3921 using_dac = 1; 3922 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 3923 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { 3924 using_dac = 0; 3925 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 3926 } 3927 3928 if (err) { 3929 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3930 goto err_out_free_regions; 3931 } 3932 3933 #ifdef __BIG_ENDIAN 3934 /* byte swap descriptors in hardware */ 3935 { 3936 u32 reg; 3937 3938 pci_read_config_dword(pdev, PCI_DEV_REG2, ®); 3939 reg |= PCI_REV_DESC; 3940 pci_write_config_dword(pdev, PCI_DEV_REG2, reg); 3941 } 3942 #endif 3943 3944 err = -ENOMEM; 3945 /* space for skge@pci:0000:04:00.0 */ 3946 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:") 3947 + strlen(pci_name(pdev)) + 1, GFP_KERNEL); 3948 if (!hw) 3949 goto err_out_free_regions; 3950 3951 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev)); 3952 3953 hw->pdev = pdev; 3954 spin_lock_init(&hw->hw_lock); 3955 spin_lock_init(&hw->phy_lock); 3956 tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw); 3957 3958 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); 3959 if (!hw->regs) { 3960 dev_err(&pdev->dev, "cannot map device registers\n"); 3961 goto err_out_free_hw; 3962 } 3963 3964 err = skge_reset(hw); 3965 if (err) 3966 goto err_out_iounmap; 3967 3968 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n", 3969 DRV_VERSION, 3970 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq, 3971 skge_board_name(hw), hw->chip_rev); 3972 3973 dev = skge_devinit(hw, 0, using_dac); 3974 if (!dev) { 3975 err = -ENOMEM; 3976 goto err_out_led_off; 3977 } 3978 3979 /* Some motherboards are broken and has zero in ROM. */ 3980 if (!is_valid_ether_addr(dev->dev_addr)) 3981 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n"); 3982 3983 err = register_netdev(dev); 3984 if (err) { 3985 dev_err(&pdev->dev, "cannot register net device\n"); 3986 goto err_out_free_netdev; 3987 } 3988 3989 skge_show_addr(dev); 3990 3991 if (hw->ports > 1) { 3992 dev1 = skge_devinit(hw, 1, using_dac); 3993 if (!dev1) { 3994 err = -ENOMEM; 3995 goto err_out_unregister; 3996 } 3997 3998 err = register_netdev(dev1); 3999 if (err) { 4000 dev_err(&pdev->dev, "cannot register second net device\n"); 4001 goto err_out_free_dev1; 4002 } 4003 4004 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, 4005 hw->irq_name, hw); 4006 if (err) { 4007 dev_err(&pdev->dev, "cannot assign irq %d\n", 4008 pdev->irq); 4009 goto err_out_unregister_dev1; 4010 } 4011 4012 skge_show_addr(dev1); 4013 } 4014 pci_set_drvdata(pdev, hw); 4015 4016 return 0; 4017 4018 err_out_unregister_dev1: 4019 unregister_netdev(dev1); 4020 err_out_free_dev1: 4021 free_netdev(dev1); 4022 err_out_unregister: 4023 unregister_netdev(dev); 4024 err_out_free_netdev: 4025 free_netdev(dev); 4026 err_out_led_off: 4027 skge_write16(hw, B0_LED, LED_STAT_OFF); 4028 err_out_iounmap: 4029 iounmap(hw->regs); 4030 err_out_free_hw: 4031 kfree(hw); 4032 err_out_free_regions: 4033 pci_release_regions(pdev); 4034 err_out_disable_pdev: 4035 pci_disable_device(pdev); 4036 err_out: 4037 return err; 4038 } 4039 4040 static void skge_remove(struct pci_dev *pdev) 4041 { 4042 struct skge_hw *hw = pci_get_drvdata(pdev); 4043 struct net_device *dev0, *dev1; 4044 4045 if (!hw) 4046 return; 4047 4048 dev1 = hw->dev[1]; 4049 if (dev1) 4050 unregister_netdev(dev1); 4051 dev0 = hw->dev[0]; 4052 unregister_netdev(dev0); 4053 4054 tasklet_kill(&hw->phy_task); 4055 4056 spin_lock_irq(&hw->hw_lock); 4057 hw->intr_mask = 0; 4058 4059 if (hw->ports > 1) { 4060 skge_write32(hw, B0_IMSK, 0); 4061 skge_read32(hw, B0_IMSK); 4062 } 4063 spin_unlock_irq(&hw->hw_lock); 4064 4065 skge_write16(hw, B0_LED, LED_STAT_OFF); 4066 skge_write8(hw, B0_CTST, CS_RST_SET); 4067 4068 if (hw->ports > 1) 4069 free_irq(pdev->irq, hw); 4070 pci_release_regions(pdev); 4071 pci_disable_device(pdev); 4072 if (dev1) 4073 free_netdev(dev1); 4074 free_netdev(dev0); 4075 4076 iounmap(hw->regs); 4077 kfree(hw); 4078 } 4079 4080 #ifdef CONFIG_PM_SLEEP 4081 static int skge_suspend(struct device *dev) 4082 { 4083 struct pci_dev *pdev = to_pci_dev(dev); 4084 struct skge_hw *hw = pci_get_drvdata(pdev); 4085 int i; 4086 4087 if (!hw) 4088 return 0; 4089 4090 for (i = 0; i < hw->ports; i++) { 4091 struct net_device *dev = hw->dev[i]; 4092 struct skge_port *skge = netdev_priv(dev); 4093 4094 if (netif_running(dev)) 4095 skge_down(dev); 4096 4097 if (skge->wol) 4098 skge_wol_init(skge); 4099 } 4100 4101 skge_write32(hw, B0_IMSK, 0); 4102 4103 return 0; 4104 } 4105 4106 static int skge_resume(struct device *dev) 4107 { 4108 struct pci_dev *pdev = to_pci_dev(dev); 4109 struct skge_hw *hw = pci_get_drvdata(pdev); 4110 int i, err; 4111 4112 if (!hw) 4113 return 0; 4114 4115 err = skge_reset(hw); 4116 if (err) 4117 goto out; 4118 4119 for (i = 0; i < hw->ports; i++) { 4120 struct net_device *dev = hw->dev[i]; 4121 4122 if (netif_running(dev)) { 4123 err = skge_up(dev); 4124 4125 if (err) { 4126 netdev_err(dev, "could not up: %d\n", err); 4127 dev_close(dev); 4128 goto out; 4129 } 4130 } 4131 } 4132 out: 4133 return err; 4134 } 4135 4136 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume); 4137 #define SKGE_PM_OPS (&skge_pm_ops) 4138 4139 #else 4140 4141 #define SKGE_PM_OPS NULL 4142 #endif /* CONFIG_PM_SLEEP */ 4143 4144 static void skge_shutdown(struct pci_dev *pdev) 4145 { 4146 struct skge_hw *hw = pci_get_drvdata(pdev); 4147 int i; 4148 4149 if (!hw) 4150 return; 4151 4152 for (i = 0; i < hw->ports; i++) { 4153 struct net_device *dev = hw->dev[i]; 4154 struct skge_port *skge = netdev_priv(dev); 4155 4156 if (skge->wol) 4157 skge_wol_init(skge); 4158 } 4159 4160 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev)); 4161 pci_set_power_state(pdev, PCI_D3hot); 4162 } 4163 4164 static struct pci_driver skge_driver = { 4165 .name = DRV_NAME, 4166 .id_table = skge_id_table, 4167 .probe = skge_probe, 4168 .remove = skge_remove, 4169 .shutdown = skge_shutdown, 4170 .driver.pm = SKGE_PM_OPS, 4171 }; 4172 4173 static const struct dmi_system_id skge_32bit_dma_boards[] = { 4174 { 4175 .ident = "Gigabyte nForce boards", 4176 .matches = { 4177 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"), 4178 DMI_MATCH(DMI_BOARD_NAME, "nForce"), 4179 }, 4180 }, 4181 { 4182 .ident = "ASUS P5NSLI", 4183 .matches = { 4184 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), 4185 DMI_MATCH(DMI_BOARD_NAME, "P5NSLI") 4186 }, 4187 }, 4188 { 4189 .ident = "FUJITSU SIEMENS A8NE-FM", 4190 .matches = { 4191 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."), 4192 DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM") 4193 }, 4194 }, 4195 {} 4196 }; 4197 4198 static int __init skge_init_module(void) 4199 { 4200 if (dmi_check_system(skge_32bit_dma_boards)) 4201 only_32bit_dma = 1; 4202 skge_debug_init(); 4203 return pci_register_driver(&skge_driver); 4204 } 4205 4206 static void __exit skge_cleanup_module(void) 4207 { 4208 pci_unregister_driver(&skge_driver); 4209 skge_debug_cleanup(); 4210 } 4211 4212 module_init(skge_init_module); 4213 module_exit(skge_cleanup_module); 4214