1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit 4 * Ethernet adapters. Based on earlier sk98lin, e100 and 5 * FreeBSD if_sk drivers. 6 * 7 * This driver intentionally does not support all the features 8 * of the original driver such as link fail-over and link management because 9 * those should be done at higher levels. 10 * 11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org> 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/in.h> 17 #include <linux/kernel.h> 18 #include <linux/module.h> 19 #include <linux/moduleparam.h> 20 #include <linux/netdevice.h> 21 #include <linux/etherdevice.h> 22 #include <linux/ethtool.h> 23 #include <linux/pci.h> 24 #include <linux/if_vlan.h> 25 #include <linux/ip.h> 26 #include <linux/delay.h> 27 #include <linux/crc32.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/debugfs.h> 30 #include <linux/sched.h> 31 #include <linux/seq_file.h> 32 #include <linux/mii.h> 33 #include <linux/slab.h> 34 #include <linux/dmi.h> 35 #include <linux/prefetch.h> 36 #include <asm/irq.h> 37 38 #include "skge.h" 39 40 #define DRV_NAME "skge" 41 #define DRV_VERSION "1.14" 42 43 #define DEFAULT_TX_RING_SIZE 128 44 #define DEFAULT_RX_RING_SIZE 512 45 #define MAX_TX_RING_SIZE 1024 46 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1) 47 #define MAX_RX_RING_SIZE 4096 48 #define RX_COPY_THRESHOLD 128 49 #define RX_BUF_SIZE 1536 50 #define PHY_RETRIES 1000 51 #define ETH_JUMBO_MTU 9000 52 #define TX_WATCHDOG (5 * HZ) 53 #define NAPI_WEIGHT 64 54 #define BLINK_MS 250 55 #define LINK_HZ HZ 56 57 #define SKGE_EEPROM_MAGIC 0x9933aabb 58 59 60 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); 61 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>"); 62 MODULE_LICENSE("GPL"); 63 MODULE_VERSION(DRV_VERSION); 64 65 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 66 NETIF_MSG_LINK | NETIF_MSG_IFUP | 67 NETIF_MSG_IFDOWN); 68 69 static int debug = -1; /* defaults above */ 70 module_param(debug, int, 0); 71 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 72 73 static const struct pci_device_id skge_id_table[] = { 74 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */ 75 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */ 76 #ifdef CONFIG_SKGE_GENESIS 77 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */ 78 #endif 79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */ 80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */ 81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */ 82 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */ 83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */ 84 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */ 85 { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */ 86 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */ 87 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */ 88 { 0 } 89 }; 90 MODULE_DEVICE_TABLE(pci, skge_id_table); 91 92 static int skge_up(struct net_device *dev); 93 static int skge_down(struct net_device *dev); 94 static void skge_phy_reset(struct skge_port *skge); 95 static void skge_tx_clean(struct net_device *dev); 96 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 97 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 98 static void genesis_get_stats(struct skge_port *skge, u64 *data); 99 static void yukon_get_stats(struct skge_port *skge, u64 *data); 100 static void yukon_init(struct skge_hw *hw, int port); 101 static void genesis_mac_init(struct skge_hw *hw, int port); 102 static void genesis_link_up(struct skge_port *skge); 103 static void skge_set_multicast(struct net_device *dev); 104 static irqreturn_t skge_intr(int irq, void *dev_id); 105 106 /* Avoid conditionals by using array */ 107 static const int txqaddr[] = { Q_XA1, Q_XA2 }; 108 static const int rxqaddr[] = { Q_R1, Q_R2 }; 109 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; 110 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; 111 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F }; 112 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 }; 113 114 static inline bool is_genesis(const struct skge_hw *hw) 115 { 116 #ifdef CONFIG_SKGE_GENESIS 117 return hw->chip_id == CHIP_ID_GENESIS; 118 #else 119 return false; 120 #endif 121 } 122 123 static int skge_get_regs_len(struct net_device *dev) 124 { 125 return 0x4000; 126 } 127 128 /* 129 * Returns copy of whole control register region 130 * Note: skip RAM address register because accessing it will 131 * cause bus hangs! 132 */ 133 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, 134 void *p) 135 { 136 const struct skge_port *skge = netdev_priv(dev); 137 const void __iomem *io = skge->hw->regs; 138 139 regs->version = 1; 140 memset(p, 0, regs->len); 141 memcpy_fromio(p, io, B3_RAM_ADDR); 142 143 if (regs->len > B3_RI_WTO_R1) { 144 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1, 145 regs->len - B3_RI_WTO_R1); 146 } 147 } 148 149 /* Wake on Lan only supported on Yukon chips with rev 1 or above */ 150 static u32 wol_supported(const struct skge_hw *hw) 151 { 152 if (is_genesis(hw)) 153 return 0; 154 155 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 156 return 0; 157 158 return WAKE_MAGIC | WAKE_PHY; 159 } 160 161 static void skge_wol_init(struct skge_port *skge) 162 { 163 struct skge_hw *hw = skge->hw; 164 int port = skge->port; 165 u16 ctrl; 166 167 skge_write16(hw, B0_CTST, CS_RST_CLR); 168 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR); 169 170 /* Turn on Vaux */ 171 skge_write8(hw, B0_POWER_CTRL, 172 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); 173 174 /* WA code for COMA mode -- clear PHY reset */ 175 if (hw->chip_id == CHIP_ID_YUKON_LITE && 176 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 177 u32 reg = skge_read32(hw, B2_GP_IO); 178 reg |= GP_DIR_9; 179 reg &= ~GP_IO_9; 180 skge_write32(hw, B2_GP_IO, reg); 181 } 182 183 skge_write32(hw, SK_REG(port, GPHY_CTRL), 184 GPC_DIS_SLEEP | 185 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | 186 GPC_ANEG_1 | GPC_RST_SET); 187 188 skge_write32(hw, SK_REG(port, GPHY_CTRL), 189 GPC_DIS_SLEEP | 190 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | 191 GPC_ANEG_1 | GPC_RST_CLR); 192 193 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR); 194 195 /* Force to 10/100 skge_reset will re-enable on resume */ 196 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, 197 (PHY_AN_100FULL | PHY_AN_100HALF | 198 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA)); 199 /* no 1000 HD/FD */ 200 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0); 201 gm_phy_write(hw, port, PHY_MARV_CTRL, 202 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE | 203 PHY_CT_RE_CFG | PHY_CT_DUP_MD); 204 205 206 /* Set GMAC to no flow control and auto update for speed/duplex */ 207 gma_write16(hw, port, GM_GP_CTRL, 208 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA| 209 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS); 210 211 /* Set WOL address */ 212 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR), 213 skge->netdev->dev_addr, ETH_ALEN); 214 215 /* Turn on appropriate WOL control bits */ 216 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT); 217 ctrl = 0; 218 if (skge->wol & WAKE_PHY) 219 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT; 220 else 221 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT; 222 223 if (skge->wol & WAKE_MAGIC) 224 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT; 225 else 226 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT; 227 228 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT; 229 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl); 230 231 /* block receiver */ 232 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 233 } 234 235 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 236 { 237 struct skge_port *skge = netdev_priv(dev); 238 239 wol->supported = wol_supported(skge->hw); 240 wol->wolopts = skge->wol; 241 } 242 243 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 244 { 245 struct skge_port *skge = netdev_priv(dev); 246 struct skge_hw *hw = skge->hw; 247 248 if ((wol->wolopts & ~wol_supported(hw)) || 249 !device_can_wakeup(&hw->pdev->dev)) 250 return -EOPNOTSUPP; 251 252 skge->wol = wol->wolopts; 253 254 device_set_wakeup_enable(&hw->pdev->dev, skge->wol); 255 256 return 0; 257 } 258 259 /* Determine supported/advertised modes based on hardware. 260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx 261 */ 262 static u32 skge_supported_modes(const struct skge_hw *hw) 263 { 264 u32 supported; 265 266 if (hw->copper) { 267 supported = (SUPPORTED_10baseT_Half | 268 SUPPORTED_10baseT_Full | 269 SUPPORTED_100baseT_Half | 270 SUPPORTED_100baseT_Full | 271 SUPPORTED_1000baseT_Half | 272 SUPPORTED_1000baseT_Full | 273 SUPPORTED_Autoneg | 274 SUPPORTED_TP); 275 276 if (is_genesis(hw)) 277 supported &= ~(SUPPORTED_10baseT_Half | 278 SUPPORTED_10baseT_Full | 279 SUPPORTED_100baseT_Half | 280 SUPPORTED_100baseT_Full); 281 282 else if (hw->chip_id == CHIP_ID_YUKON) 283 supported &= ~SUPPORTED_1000baseT_Half; 284 } else 285 supported = (SUPPORTED_1000baseT_Full | 286 SUPPORTED_1000baseT_Half | 287 SUPPORTED_FIBRE | 288 SUPPORTED_Autoneg); 289 290 return supported; 291 } 292 293 static int skge_get_link_ksettings(struct net_device *dev, 294 struct ethtool_link_ksettings *cmd) 295 { 296 struct skge_port *skge = netdev_priv(dev); 297 struct skge_hw *hw = skge->hw; 298 u32 supported, advertising; 299 300 supported = skge_supported_modes(hw); 301 302 if (hw->copper) { 303 cmd->base.port = PORT_TP; 304 cmd->base.phy_address = hw->phy_addr; 305 } else 306 cmd->base.port = PORT_FIBRE; 307 308 advertising = skge->advertising; 309 cmd->base.autoneg = skge->autoneg; 310 cmd->base.speed = skge->speed; 311 cmd->base.duplex = skge->duplex; 312 313 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 314 supported); 315 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 316 advertising); 317 318 return 0; 319 } 320 321 static int skge_set_link_ksettings(struct net_device *dev, 322 const struct ethtool_link_ksettings *cmd) 323 { 324 struct skge_port *skge = netdev_priv(dev); 325 const struct skge_hw *hw = skge->hw; 326 u32 supported = skge_supported_modes(hw); 327 int err = 0; 328 u32 advertising; 329 330 ethtool_convert_link_mode_to_legacy_u32(&advertising, 331 cmd->link_modes.advertising); 332 333 if (cmd->base.autoneg == AUTONEG_ENABLE) { 334 advertising = supported; 335 skge->duplex = -1; 336 skge->speed = -1; 337 } else { 338 u32 setting; 339 u32 speed = cmd->base.speed; 340 341 switch (speed) { 342 case SPEED_1000: 343 if (cmd->base.duplex == DUPLEX_FULL) 344 setting = SUPPORTED_1000baseT_Full; 345 else if (cmd->base.duplex == DUPLEX_HALF) 346 setting = SUPPORTED_1000baseT_Half; 347 else 348 return -EINVAL; 349 break; 350 case SPEED_100: 351 if (cmd->base.duplex == DUPLEX_FULL) 352 setting = SUPPORTED_100baseT_Full; 353 else if (cmd->base.duplex == DUPLEX_HALF) 354 setting = SUPPORTED_100baseT_Half; 355 else 356 return -EINVAL; 357 break; 358 359 case SPEED_10: 360 if (cmd->base.duplex == DUPLEX_FULL) 361 setting = SUPPORTED_10baseT_Full; 362 else if (cmd->base.duplex == DUPLEX_HALF) 363 setting = SUPPORTED_10baseT_Half; 364 else 365 return -EINVAL; 366 break; 367 default: 368 return -EINVAL; 369 } 370 371 if ((setting & supported) == 0) 372 return -EINVAL; 373 374 skge->speed = speed; 375 skge->duplex = cmd->base.duplex; 376 } 377 378 skge->autoneg = cmd->base.autoneg; 379 skge->advertising = advertising; 380 381 if (netif_running(dev)) { 382 skge_down(dev); 383 err = skge_up(dev); 384 if (err) { 385 dev_close(dev); 386 return err; 387 } 388 } 389 390 return 0; 391 } 392 393 static void skge_get_drvinfo(struct net_device *dev, 394 struct ethtool_drvinfo *info) 395 { 396 struct skge_port *skge = netdev_priv(dev); 397 398 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 399 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 400 strlcpy(info->bus_info, pci_name(skge->hw->pdev), 401 sizeof(info->bus_info)); 402 } 403 404 static const struct skge_stat { 405 char name[ETH_GSTRING_LEN]; 406 u16 xmac_offset; 407 u16 gma_offset; 408 } skge_stats[] = { 409 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI }, 410 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI }, 411 412 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK }, 413 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK }, 414 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK }, 415 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK }, 416 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK }, 417 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK }, 418 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE }, 419 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE }, 420 421 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL }, 422 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL }, 423 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL }, 424 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL }, 425 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR }, 426 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV }, 427 428 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 429 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT }, 430 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG }, 431 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 432 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR }, 433 }; 434 435 static int skge_get_sset_count(struct net_device *dev, int sset) 436 { 437 switch (sset) { 438 case ETH_SS_STATS: 439 return ARRAY_SIZE(skge_stats); 440 default: 441 return -EOPNOTSUPP; 442 } 443 } 444 445 static void skge_get_ethtool_stats(struct net_device *dev, 446 struct ethtool_stats *stats, u64 *data) 447 { 448 struct skge_port *skge = netdev_priv(dev); 449 450 if (is_genesis(skge->hw)) 451 genesis_get_stats(skge, data); 452 else 453 yukon_get_stats(skge, data); 454 } 455 456 /* Use hardware MIB variables for critical path statistics and 457 * transmit feedback not reported at interrupt. 458 * Other errors are accounted for in interrupt handler. 459 */ 460 static struct net_device_stats *skge_get_stats(struct net_device *dev) 461 { 462 struct skge_port *skge = netdev_priv(dev); 463 u64 data[ARRAY_SIZE(skge_stats)]; 464 465 if (is_genesis(skge->hw)) 466 genesis_get_stats(skge, data); 467 else 468 yukon_get_stats(skge, data); 469 470 dev->stats.tx_bytes = data[0]; 471 dev->stats.rx_bytes = data[1]; 472 dev->stats.tx_packets = data[2] + data[4] + data[6]; 473 dev->stats.rx_packets = data[3] + data[5] + data[7]; 474 dev->stats.multicast = data[3] + data[5]; 475 dev->stats.collisions = data[10]; 476 dev->stats.tx_aborted_errors = data[12]; 477 478 return &dev->stats; 479 } 480 481 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) 482 { 483 int i; 484 485 switch (stringset) { 486 case ETH_SS_STATS: 487 for (i = 0; i < ARRAY_SIZE(skge_stats); i++) 488 memcpy(data + i * ETH_GSTRING_LEN, 489 skge_stats[i].name, ETH_GSTRING_LEN); 490 break; 491 } 492 } 493 494 static void skge_get_ring_param(struct net_device *dev, 495 struct ethtool_ringparam *p) 496 { 497 struct skge_port *skge = netdev_priv(dev); 498 499 p->rx_max_pending = MAX_RX_RING_SIZE; 500 p->tx_max_pending = MAX_TX_RING_SIZE; 501 502 p->rx_pending = skge->rx_ring.count; 503 p->tx_pending = skge->tx_ring.count; 504 } 505 506 static int skge_set_ring_param(struct net_device *dev, 507 struct ethtool_ringparam *p) 508 { 509 struct skge_port *skge = netdev_priv(dev); 510 int err = 0; 511 512 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE || 513 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE) 514 return -EINVAL; 515 516 skge->rx_ring.count = p->rx_pending; 517 skge->tx_ring.count = p->tx_pending; 518 519 if (netif_running(dev)) { 520 skge_down(dev); 521 err = skge_up(dev); 522 if (err) 523 dev_close(dev); 524 } 525 526 return err; 527 } 528 529 static u32 skge_get_msglevel(struct net_device *netdev) 530 { 531 struct skge_port *skge = netdev_priv(netdev); 532 return skge->msg_enable; 533 } 534 535 static void skge_set_msglevel(struct net_device *netdev, u32 value) 536 { 537 struct skge_port *skge = netdev_priv(netdev); 538 skge->msg_enable = value; 539 } 540 541 static int skge_nway_reset(struct net_device *dev) 542 { 543 struct skge_port *skge = netdev_priv(dev); 544 545 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev)) 546 return -EINVAL; 547 548 skge_phy_reset(skge); 549 return 0; 550 } 551 552 static void skge_get_pauseparam(struct net_device *dev, 553 struct ethtool_pauseparam *ecmd) 554 { 555 struct skge_port *skge = netdev_priv(dev); 556 557 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) || 558 (skge->flow_control == FLOW_MODE_SYM_OR_REM)); 559 ecmd->tx_pause = (ecmd->rx_pause || 560 (skge->flow_control == FLOW_MODE_LOC_SEND)); 561 562 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause; 563 } 564 565 static int skge_set_pauseparam(struct net_device *dev, 566 struct ethtool_pauseparam *ecmd) 567 { 568 struct skge_port *skge = netdev_priv(dev); 569 struct ethtool_pauseparam old; 570 int err = 0; 571 572 skge_get_pauseparam(dev, &old); 573 574 if (ecmd->autoneg != old.autoneg) 575 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC; 576 else { 577 if (ecmd->rx_pause && ecmd->tx_pause) 578 skge->flow_control = FLOW_MODE_SYMMETRIC; 579 else if (ecmd->rx_pause && !ecmd->tx_pause) 580 skge->flow_control = FLOW_MODE_SYM_OR_REM; 581 else if (!ecmd->rx_pause && ecmd->tx_pause) 582 skge->flow_control = FLOW_MODE_LOC_SEND; 583 else 584 skge->flow_control = FLOW_MODE_NONE; 585 } 586 587 if (netif_running(dev)) { 588 skge_down(dev); 589 err = skge_up(dev); 590 if (err) { 591 dev_close(dev); 592 return err; 593 } 594 } 595 596 return 0; 597 } 598 599 /* Chip internal frequency for clock calculations */ 600 static inline u32 hwkhz(const struct skge_hw *hw) 601 { 602 return is_genesis(hw) ? 53125 : 78125; 603 } 604 605 /* Chip HZ to microseconds */ 606 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks) 607 { 608 return (ticks * 1000) / hwkhz(hw); 609 } 610 611 /* Microseconds to chip HZ */ 612 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec) 613 { 614 return hwkhz(hw) * usec / 1000; 615 } 616 617 static int skge_get_coalesce(struct net_device *dev, 618 struct ethtool_coalesce *ecmd, 619 struct kernel_ethtool_coalesce *kernel_coal, 620 struct netlink_ext_ack *extack) 621 { 622 struct skge_port *skge = netdev_priv(dev); 623 struct skge_hw *hw = skge->hw; 624 int port = skge->port; 625 626 ecmd->rx_coalesce_usecs = 0; 627 ecmd->tx_coalesce_usecs = 0; 628 629 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) { 630 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI)); 631 u32 msk = skge_read32(hw, B2_IRQM_MSK); 632 633 if (msk & rxirqmask[port]) 634 ecmd->rx_coalesce_usecs = delay; 635 if (msk & txirqmask[port]) 636 ecmd->tx_coalesce_usecs = delay; 637 } 638 639 return 0; 640 } 641 642 /* Note: interrupt timer is per board, but can turn on/off per port */ 643 static int skge_set_coalesce(struct net_device *dev, 644 struct ethtool_coalesce *ecmd, 645 struct kernel_ethtool_coalesce *kernel_coal, 646 struct netlink_ext_ack *extack) 647 { 648 struct skge_port *skge = netdev_priv(dev); 649 struct skge_hw *hw = skge->hw; 650 int port = skge->port; 651 u32 msk = skge_read32(hw, B2_IRQM_MSK); 652 u32 delay = 25; 653 654 if (ecmd->rx_coalesce_usecs == 0) 655 msk &= ~rxirqmask[port]; 656 else if (ecmd->rx_coalesce_usecs < 25 || 657 ecmd->rx_coalesce_usecs > 33333) 658 return -EINVAL; 659 else { 660 msk |= rxirqmask[port]; 661 delay = ecmd->rx_coalesce_usecs; 662 } 663 664 if (ecmd->tx_coalesce_usecs == 0) 665 msk &= ~txirqmask[port]; 666 else if (ecmd->tx_coalesce_usecs < 25 || 667 ecmd->tx_coalesce_usecs > 33333) 668 return -EINVAL; 669 else { 670 msk |= txirqmask[port]; 671 delay = min(delay, ecmd->rx_coalesce_usecs); 672 } 673 674 skge_write32(hw, B2_IRQM_MSK, msk); 675 if (msk == 0) 676 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP); 677 else { 678 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay)); 679 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 680 } 681 return 0; 682 } 683 684 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST }; 685 static void skge_led(struct skge_port *skge, enum led_mode mode) 686 { 687 struct skge_hw *hw = skge->hw; 688 int port = skge->port; 689 690 spin_lock_bh(&hw->phy_lock); 691 if (is_genesis(hw)) { 692 switch (mode) { 693 case LED_MODE_OFF: 694 if (hw->phy_type == SK_PHY_BCOM) 695 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF); 696 else { 697 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0); 698 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF); 699 } 700 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); 701 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0); 702 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF); 703 break; 704 705 case LED_MODE_ON: 706 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON); 707 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); 708 709 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 710 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 711 712 break; 713 714 case LED_MODE_TST: 715 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON); 716 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100); 717 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 718 719 if (hw->phy_type == SK_PHY_BCOM) 720 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON); 721 else { 722 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON); 723 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100); 724 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 725 } 726 727 } 728 } else { 729 switch (mode) { 730 case LED_MODE_OFF: 731 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 732 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 733 PHY_M_LED_MO_DUP(MO_LED_OFF) | 734 PHY_M_LED_MO_10(MO_LED_OFF) | 735 PHY_M_LED_MO_100(MO_LED_OFF) | 736 PHY_M_LED_MO_1000(MO_LED_OFF) | 737 PHY_M_LED_MO_RX(MO_LED_OFF)); 738 break; 739 case LED_MODE_ON: 740 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 741 PHY_M_LED_PULS_DUR(PULS_170MS) | 742 PHY_M_LED_BLINK_RT(BLINK_84MS) | 743 PHY_M_LEDC_TX_CTRL | 744 PHY_M_LEDC_DP_CTRL); 745 746 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 747 PHY_M_LED_MO_RX(MO_LED_OFF) | 748 (skge->speed == SPEED_100 ? 749 PHY_M_LED_MO_100(MO_LED_ON) : 0)); 750 break; 751 case LED_MODE_TST: 752 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 753 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 754 PHY_M_LED_MO_DUP(MO_LED_ON) | 755 PHY_M_LED_MO_10(MO_LED_ON) | 756 PHY_M_LED_MO_100(MO_LED_ON) | 757 PHY_M_LED_MO_1000(MO_LED_ON) | 758 PHY_M_LED_MO_RX(MO_LED_ON)); 759 } 760 } 761 spin_unlock_bh(&hw->phy_lock); 762 } 763 764 /* blink LED's for finding board */ 765 static int skge_set_phys_id(struct net_device *dev, 766 enum ethtool_phys_id_state state) 767 { 768 struct skge_port *skge = netdev_priv(dev); 769 770 switch (state) { 771 case ETHTOOL_ID_ACTIVE: 772 return 2; /* cycle on/off twice per second */ 773 774 case ETHTOOL_ID_ON: 775 skge_led(skge, LED_MODE_TST); 776 break; 777 778 case ETHTOOL_ID_OFF: 779 skge_led(skge, LED_MODE_OFF); 780 break; 781 782 case ETHTOOL_ID_INACTIVE: 783 /* back to regular LED state */ 784 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF); 785 } 786 787 return 0; 788 } 789 790 static int skge_get_eeprom_len(struct net_device *dev) 791 { 792 struct skge_port *skge = netdev_priv(dev); 793 u32 reg2; 794 795 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, ®2); 796 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8); 797 } 798 799 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset) 800 { 801 u32 val; 802 803 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset); 804 805 do { 806 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); 807 } while (!(offset & PCI_VPD_ADDR_F)); 808 809 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val); 810 return val; 811 } 812 813 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val) 814 { 815 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val); 816 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, 817 offset | PCI_VPD_ADDR_F); 818 819 do { 820 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); 821 } while (offset & PCI_VPD_ADDR_F); 822 } 823 824 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 825 u8 *data) 826 { 827 struct skge_port *skge = netdev_priv(dev); 828 struct pci_dev *pdev = skge->hw->pdev; 829 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); 830 int length = eeprom->len; 831 u16 offset = eeprom->offset; 832 833 if (!cap) 834 return -EINVAL; 835 836 eeprom->magic = SKGE_EEPROM_MAGIC; 837 838 while (length > 0) { 839 u32 val = skge_vpd_read(pdev, cap, offset); 840 int n = min_t(int, length, sizeof(val)); 841 842 memcpy(data, &val, n); 843 length -= n; 844 data += n; 845 offset += n; 846 } 847 return 0; 848 } 849 850 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 851 u8 *data) 852 { 853 struct skge_port *skge = netdev_priv(dev); 854 struct pci_dev *pdev = skge->hw->pdev; 855 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); 856 int length = eeprom->len; 857 u16 offset = eeprom->offset; 858 859 if (!cap) 860 return -EINVAL; 861 862 if (eeprom->magic != SKGE_EEPROM_MAGIC) 863 return -EINVAL; 864 865 while (length > 0) { 866 u32 val; 867 int n = min_t(int, length, sizeof(val)); 868 869 if (n < sizeof(val)) 870 val = skge_vpd_read(pdev, cap, offset); 871 memcpy(&val, data, n); 872 873 skge_vpd_write(pdev, cap, offset, val); 874 875 length -= n; 876 data += n; 877 offset += n; 878 } 879 return 0; 880 } 881 882 static const struct ethtool_ops skge_ethtool_ops = { 883 .supported_coalesce_params = ETHTOOL_COALESCE_USECS, 884 .get_drvinfo = skge_get_drvinfo, 885 .get_regs_len = skge_get_regs_len, 886 .get_regs = skge_get_regs, 887 .get_wol = skge_get_wol, 888 .set_wol = skge_set_wol, 889 .get_msglevel = skge_get_msglevel, 890 .set_msglevel = skge_set_msglevel, 891 .nway_reset = skge_nway_reset, 892 .get_link = ethtool_op_get_link, 893 .get_eeprom_len = skge_get_eeprom_len, 894 .get_eeprom = skge_get_eeprom, 895 .set_eeprom = skge_set_eeprom, 896 .get_ringparam = skge_get_ring_param, 897 .set_ringparam = skge_set_ring_param, 898 .get_pauseparam = skge_get_pauseparam, 899 .set_pauseparam = skge_set_pauseparam, 900 .get_coalesce = skge_get_coalesce, 901 .set_coalesce = skge_set_coalesce, 902 .get_strings = skge_get_strings, 903 .set_phys_id = skge_set_phys_id, 904 .get_sset_count = skge_get_sset_count, 905 .get_ethtool_stats = skge_get_ethtool_stats, 906 .get_link_ksettings = skge_get_link_ksettings, 907 .set_link_ksettings = skge_set_link_ksettings, 908 }; 909 910 /* 911 * Allocate ring elements and chain them together 912 * One-to-one association of board descriptors with ring elements 913 */ 914 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base) 915 { 916 struct skge_tx_desc *d; 917 struct skge_element *e; 918 int i; 919 920 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL); 921 if (!ring->start) 922 return -ENOMEM; 923 924 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { 925 e->desc = d; 926 if (i == ring->count - 1) { 927 e->next = ring->start; 928 d->next_offset = base; 929 } else { 930 e->next = e + 1; 931 d->next_offset = base + (i+1) * sizeof(*d); 932 } 933 } 934 ring->to_use = ring->to_clean = ring->start; 935 936 return 0; 937 } 938 939 /* Allocate and setup a new buffer for receiving */ 940 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e, 941 struct sk_buff *skb, unsigned int bufsize) 942 { 943 struct skge_rx_desc *rd = e->desc; 944 dma_addr_t map; 945 946 map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize, 947 DMA_FROM_DEVICE); 948 949 if (dma_mapping_error(&skge->hw->pdev->dev, map)) 950 return -1; 951 952 rd->dma_lo = lower_32_bits(map); 953 rd->dma_hi = upper_32_bits(map); 954 e->skb = skb; 955 rd->csum1_start = ETH_HLEN; 956 rd->csum2_start = ETH_HLEN; 957 rd->csum1 = 0; 958 rd->csum2 = 0; 959 960 wmb(); 961 962 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; 963 dma_unmap_addr_set(e, mapaddr, map); 964 dma_unmap_len_set(e, maplen, bufsize); 965 return 0; 966 } 967 968 /* Resume receiving using existing skb, 969 * Note: DMA address is not changed by chip. 970 * MTU not changed while receiver active. 971 */ 972 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size) 973 { 974 struct skge_rx_desc *rd = e->desc; 975 976 rd->csum2 = 0; 977 rd->csum2_start = ETH_HLEN; 978 979 wmb(); 980 981 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size; 982 } 983 984 985 /* Free all buffers in receive ring, assumes receiver stopped */ 986 static void skge_rx_clean(struct skge_port *skge) 987 { 988 struct skge_hw *hw = skge->hw; 989 struct skge_ring *ring = &skge->rx_ring; 990 struct skge_element *e; 991 992 e = ring->start; 993 do { 994 struct skge_rx_desc *rd = e->desc; 995 rd->control = 0; 996 if (e->skb) { 997 dma_unmap_single(&hw->pdev->dev, 998 dma_unmap_addr(e, mapaddr), 999 dma_unmap_len(e, maplen), 1000 DMA_FROM_DEVICE); 1001 dev_kfree_skb(e->skb); 1002 e->skb = NULL; 1003 } 1004 } while ((e = e->next) != ring->start); 1005 } 1006 1007 1008 /* Allocate buffers for receive ring 1009 * For receive: to_clean is next received frame. 1010 */ 1011 static int skge_rx_fill(struct net_device *dev) 1012 { 1013 struct skge_port *skge = netdev_priv(dev); 1014 struct skge_ring *ring = &skge->rx_ring; 1015 struct skge_element *e; 1016 1017 e = ring->start; 1018 do { 1019 struct sk_buff *skb; 1020 1021 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN, 1022 GFP_KERNEL); 1023 if (!skb) 1024 return -ENOMEM; 1025 1026 skb_reserve(skb, NET_IP_ALIGN); 1027 if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) { 1028 dev_kfree_skb(skb); 1029 return -EIO; 1030 } 1031 } while ((e = e->next) != ring->start); 1032 1033 ring->to_clean = ring->start; 1034 return 0; 1035 } 1036 1037 static const char *skge_pause(enum pause_status status) 1038 { 1039 switch (status) { 1040 case FLOW_STAT_NONE: 1041 return "none"; 1042 case FLOW_STAT_REM_SEND: 1043 return "rx only"; 1044 case FLOW_STAT_LOC_SEND: 1045 return "tx_only"; 1046 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */ 1047 return "both"; 1048 default: 1049 return "indeterminated"; 1050 } 1051 } 1052 1053 1054 static void skge_link_up(struct skge_port *skge) 1055 { 1056 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), 1057 LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON); 1058 1059 netif_carrier_on(skge->netdev); 1060 netif_wake_queue(skge->netdev); 1061 1062 netif_info(skge, link, skge->netdev, 1063 "Link is up at %d Mbps, %s duplex, flow control %s\n", 1064 skge->speed, 1065 skge->duplex == DUPLEX_FULL ? "full" : "half", 1066 skge_pause(skge->flow_status)); 1067 } 1068 1069 static void skge_link_down(struct skge_port *skge) 1070 { 1071 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF); 1072 netif_carrier_off(skge->netdev); 1073 netif_stop_queue(skge->netdev); 1074 1075 netif_info(skge, link, skge->netdev, "Link is down\n"); 1076 } 1077 1078 static void xm_link_down(struct skge_hw *hw, int port) 1079 { 1080 struct net_device *dev = hw->dev[port]; 1081 struct skge_port *skge = netdev_priv(dev); 1082 1083 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); 1084 1085 if (netif_carrier_ok(dev)) 1086 skge_link_down(skge); 1087 } 1088 1089 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1090 { 1091 int i; 1092 1093 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 1094 *val = xm_read16(hw, port, XM_PHY_DATA); 1095 1096 if (hw->phy_type == SK_PHY_XMAC) 1097 goto ready; 1098 1099 for (i = 0; i < PHY_RETRIES; i++) { 1100 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY) 1101 goto ready; 1102 udelay(1); 1103 } 1104 1105 return -ETIMEDOUT; 1106 ready: 1107 *val = xm_read16(hw, port, XM_PHY_DATA); 1108 1109 return 0; 1110 } 1111 1112 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg) 1113 { 1114 u16 v = 0; 1115 if (__xm_phy_read(hw, port, reg, &v)) 1116 pr_warn("%s: phy read timed out\n", hw->dev[port]->name); 1117 return v; 1118 } 1119 1120 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1121 { 1122 int i; 1123 1124 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 1125 for (i = 0; i < PHY_RETRIES; i++) { 1126 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 1127 goto ready; 1128 udelay(1); 1129 } 1130 return -EIO; 1131 1132 ready: 1133 xm_write16(hw, port, XM_PHY_DATA, val); 1134 for (i = 0; i < PHY_RETRIES; i++) { 1135 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 1136 return 0; 1137 udelay(1); 1138 } 1139 return -ETIMEDOUT; 1140 } 1141 1142 static void genesis_init(struct skge_hw *hw) 1143 { 1144 /* set blink source counter */ 1145 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100); 1146 skge_write8(hw, B2_BSC_CTRL, BSC_START); 1147 1148 /* configure mac arbiter */ 1149 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1150 1151 /* configure mac arbiter timeout values */ 1152 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53); 1153 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53); 1154 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53); 1155 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53); 1156 1157 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1158 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1159 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1160 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1161 1162 /* configure packet arbiter timeout */ 1163 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR); 1164 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); 1165 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); 1166 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); 1167 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); 1168 } 1169 1170 static void genesis_reset(struct skge_hw *hw, int port) 1171 { 1172 static const u8 zero[8] = { 0 }; 1173 u32 reg; 1174 1175 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 1176 1177 /* reset the statistics module */ 1178 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); 1179 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); 1180 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */ 1181 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */ 1182 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */ 1183 1184 /* disable Broadcom PHY IRQ */ 1185 if (hw->phy_type == SK_PHY_BCOM) 1186 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); 1187 1188 xm_outhash(hw, port, XM_HSM, zero); 1189 1190 /* Flush TX and RX fifo */ 1191 reg = xm_read32(hw, port, XM_MODE); 1192 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF); 1193 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF); 1194 } 1195 1196 /* Convert mode to MII values */ 1197 static const u16 phy_pause_map[] = { 1198 [FLOW_MODE_NONE] = 0, 1199 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM, 1200 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP, 1201 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM, 1202 }; 1203 1204 /* special defines for FIBER (88E1011S only) */ 1205 static const u16 fiber_pause_map[] = { 1206 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE, 1207 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD, 1208 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD, 1209 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD, 1210 }; 1211 1212 1213 /* Check status of Broadcom phy link */ 1214 static void bcom_check_link(struct skge_hw *hw, int port) 1215 { 1216 struct net_device *dev = hw->dev[port]; 1217 struct skge_port *skge = netdev_priv(dev); 1218 u16 status; 1219 1220 /* read twice because of latch */ 1221 xm_phy_read(hw, port, PHY_BCOM_STAT); 1222 status = xm_phy_read(hw, port, PHY_BCOM_STAT); 1223 1224 if ((status & PHY_ST_LSYNC) == 0) { 1225 xm_link_down(hw, port); 1226 return; 1227 } 1228 1229 if (skge->autoneg == AUTONEG_ENABLE) { 1230 u16 lpa, aux; 1231 1232 if (!(status & PHY_ST_AN_OVER)) 1233 return; 1234 1235 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); 1236 if (lpa & PHY_B_AN_RF) { 1237 netdev_notice(dev, "remote fault\n"); 1238 return; 1239 } 1240 1241 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); 1242 1243 /* Check Duplex mismatch */ 1244 switch (aux & PHY_B_AS_AN_RES_MSK) { 1245 case PHY_B_RES_1000FD: 1246 skge->duplex = DUPLEX_FULL; 1247 break; 1248 case PHY_B_RES_1000HD: 1249 skge->duplex = DUPLEX_HALF; 1250 break; 1251 default: 1252 netdev_notice(dev, "duplex mismatch\n"); 1253 return; 1254 } 1255 1256 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1257 switch (aux & PHY_B_AS_PAUSE_MSK) { 1258 case PHY_B_AS_PAUSE_MSK: 1259 skge->flow_status = FLOW_STAT_SYMMETRIC; 1260 break; 1261 case PHY_B_AS_PRR: 1262 skge->flow_status = FLOW_STAT_REM_SEND; 1263 break; 1264 case PHY_B_AS_PRT: 1265 skge->flow_status = FLOW_STAT_LOC_SEND; 1266 break; 1267 default: 1268 skge->flow_status = FLOW_STAT_NONE; 1269 } 1270 skge->speed = SPEED_1000; 1271 } 1272 1273 if (!netif_carrier_ok(dev)) 1274 genesis_link_up(skge); 1275 } 1276 1277 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional 1278 * Phy on for 100 or 10Mbit operation 1279 */ 1280 static void bcom_phy_init(struct skge_port *skge) 1281 { 1282 struct skge_hw *hw = skge->hw; 1283 int port = skge->port; 1284 int i; 1285 u16 id1, r, ext, ctl; 1286 1287 /* magic workaround patterns for Broadcom */ 1288 static const struct { 1289 u16 reg; 1290 u16 val; 1291 } A1hack[] = { 1292 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, 1293 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, 1294 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, 1295 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 1296 }, C0hack[] = { 1297 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, 1298 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, 1299 }; 1300 1301 /* read Id from external PHY (all have the same address) */ 1302 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1); 1303 1304 /* Optimize MDIO transfer by suppressing preamble. */ 1305 r = xm_read16(hw, port, XM_MMU_CMD); 1306 r |= XM_MMU_NO_PRE; 1307 xm_write16(hw, port, XM_MMU_CMD, r); 1308 1309 switch (id1) { 1310 case PHY_BCOM_ID1_C0: 1311 /* 1312 * Workaround BCOM Errata for the C0 type. 1313 * Write magic patterns to reserved registers. 1314 */ 1315 for (i = 0; i < ARRAY_SIZE(C0hack); i++) 1316 xm_phy_write(hw, port, 1317 C0hack[i].reg, C0hack[i].val); 1318 1319 break; 1320 case PHY_BCOM_ID1_A1: 1321 /* 1322 * Workaround BCOM Errata for the A1 type. 1323 * Write magic patterns to reserved registers. 1324 */ 1325 for (i = 0; i < ARRAY_SIZE(A1hack); i++) 1326 xm_phy_write(hw, port, 1327 A1hack[i].reg, A1hack[i].val); 1328 break; 1329 } 1330 1331 /* 1332 * Workaround BCOM Errata (#10523) for all BCom PHYs. 1333 * Disable Power Management after reset. 1334 */ 1335 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); 1336 r |= PHY_B_AC_DIS_PM; 1337 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r); 1338 1339 /* Dummy read */ 1340 xm_read16(hw, port, XM_ISRC); 1341 1342 ext = PHY_B_PEC_EN_LTR; /* enable tx led */ 1343 ctl = PHY_CT_SP1000; /* always 1000mbit */ 1344 1345 if (skge->autoneg == AUTONEG_ENABLE) { 1346 /* 1347 * Workaround BCOM Errata #1 for the C5 type. 1348 * 1000Base-T Link Acquisition Failure in Slave Mode 1349 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register 1350 */ 1351 u16 adv = PHY_B_1000C_RD; 1352 if (skge->advertising & ADVERTISED_1000baseT_Half) 1353 adv |= PHY_B_1000C_AHD; 1354 if (skge->advertising & ADVERTISED_1000baseT_Full) 1355 adv |= PHY_B_1000C_AFD; 1356 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv); 1357 1358 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG; 1359 } else { 1360 if (skge->duplex == DUPLEX_FULL) 1361 ctl |= PHY_CT_DUP_MD; 1362 /* Force to slave */ 1363 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE); 1364 } 1365 1366 /* Set autonegotiation pause parameters */ 1367 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, 1368 phy_pause_map[skge->flow_control] | PHY_AN_CSMA); 1369 1370 /* Handle Jumbo frames */ 1371 if (hw->dev[port]->mtu > ETH_DATA_LEN) { 1372 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1373 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK); 1374 1375 ext |= PHY_B_PEC_HIGH_LA; 1376 1377 } 1378 1379 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext); 1380 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl); 1381 1382 /* Use link status change interrupt */ 1383 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1384 } 1385 1386 static void xm_phy_init(struct skge_port *skge) 1387 { 1388 struct skge_hw *hw = skge->hw; 1389 int port = skge->port; 1390 u16 ctrl = 0; 1391 1392 if (skge->autoneg == AUTONEG_ENABLE) { 1393 if (skge->advertising & ADVERTISED_1000baseT_Half) 1394 ctrl |= PHY_X_AN_HD; 1395 if (skge->advertising & ADVERTISED_1000baseT_Full) 1396 ctrl |= PHY_X_AN_FD; 1397 1398 ctrl |= fiber_pause_map[skge->flow_control]; 1399 1400 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl); 1401 1402 /* Restart Auto-negotiation */ 1403 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG; 1404 } else { 1405 /* Set DuplexMode in Config register */ 1406 if (skge->duplex == DUPLEX_FULL) 1407 ctrl |= PHY_CT_DUP_MD; 1408 /* 1409 * Do NOT enable Auto-negotiation here. This would hold 1410 * the link down because no IDLEs are transmitted 1411 */ 1412 } 1413 1414 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl); 1415 1416 /* Poll PHY for status changes */ 1417 mod_timer(&skge->link_timer, jiffies + LINK_HZ); 1418 } 1419 1420 static int xm_check_link(struct net_device *dev) 1421 { 1422 struct skge_port *skge = netdev_priv(dev); 1423 struct skge_hw *hw = skge->hw; 1424 int port = skge->port; 1425 u16 status; 1426 1427 /* read twice because of latch */ 1428 xm_phy_read(hw, port, PHY_XMAC_STAT); 1429 status = xm_phy_read(hw, port, PHY_XMAC_STAT); 1430 1431 if ((status & PHY_ST_LSYNC) == 0) { 1432 xm_link_down(hw, port); 1433 return 0; 1434 } 1435 1436 if (skge->autoneg == AUTONEG_ENABLE) { 1437 u16 lpa, res; 1438 1439 if (!(status & PHY_ST_AN_OVER)) 1440 return 0; 1441 1442 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); 1443 if (lpa & PHY_B_AN_RF) { 1444 netdev_notice(dev, "remote fault\n"); 1445 return 0; 1446 } 1447 1448 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI); 1449 1450 /* Check Duplex mismatch */ 1451 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) { 1452 case PHY_X_RS_FD: 1453 skge->duplex = DUPLEX_FULL; 1454 break; 1455 case PHY_X_RS_HD: 1456 skge->duplex = DUPLEX_HALF; 1457 break; 1458 default: 1459 netdev_notice(dev, "duplex mismatch\n"); 1460 return 0; 1461 } 1462 1463 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1464 if ((skge->flow_control == FLOW_MODE_SYMMETRIC || 1465 skge->flow_control == FLOW_MODE_SYM_OR_REM) && 1466 (lpa & PHY_X_P_SYM_MD)) 1467 skge->flow_status = FLOW_STAT_SYMMETRIC; 1468 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM && 1469 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD) 1470 /* Enable PAUSE receive, disable PAUSE transmit */ 1471 skge->flow_status = FLOW_STAT_REM_SEND; 1472 else if (skge->flow_control == FLOW_MODE_LOC_SEND && 1473 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD) 1474 /* Disable PAUSE receive, enable PAUSE transmit */ 1475 skge->flow_status = FLOW_STAT_LOC_SEND; 1476 else 1477 skge->flow_status = FLOW_STAT_NONE; 1478 1479 skge->speed = SPEED_1000; 1480 } 1481 1482 if (!netif_carrier_ok(dev)) 1483 genesis_link_up(skge); 1484 return 1; 1485 } 1486 1487 /* Poll to check for link coming up. 1488 * 1489 * Since internal PHY is wired to a level triggered pin, can't 1490 * get an interrupt when carrier is detected, need to poll for 1491 * link coming up. 1492 */ 1493 static void xm_link_timer(struct timer_list *t) 1494 { 1495 struct skge_port *skge = from_timer(skge, t, link_timer); 1496 struct net_device *dev = skge->netdev; 1497 struct skge_hw *hw = skge->hw; 1498 int port = skge->port; 1499 int i; 1500 unsigned long flags; 1501 1502 if (!netif_running(dev)) 1503 return; 1504 1505 spin_lock_irqsave(&hw->phy_lock, flags); 1506 1507 /* 1508 * Verify that the link by checking GPIO register three times. 1509 * This pin has the signal from the link_sync pin connected to it. 1510 */ 1511 for (i = 0; i < 3; i++) { 1512 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS) 1513 goto link_down; 1514 } 1515 1516 /* Re-enable interrupt to detect link down */ 1517 if (xm_check_link(dev)) { 1518 u16 msk = xm_read16(hw, port, XM_IMSK); 1519 msk &= ~XM_IS_INP_ASS; 1520 xm_write16(hw, port, XM_IMSK, msk); 1521 xm_read16(hw, port, XM_ISRC); 1522 } else { 1523 link_down: 1524 mod_timer(&skge->link_timer, 1525 round_jiffies(jiffies + LINK_HZ)); 1526 } 1527 spin_unlock_irqrestore(&hw->phy_lock, flags); 1528 } 1529 1530 static void genesis_mac_init(struct skge_hw *hw, int port) 1531 { 1532 struct net_device *dev = hw->dev[port]; 1533 struct skge_port *skge = netdev_priv(dev); 1534 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN; 1535 int i; 1536 u32 r; 1537 static const u8 zero[6] = { 0 }; 1538 1539 for (i = 0; i < 10; i++) { 1540 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 1541 MFF_SET_MAC_RST); 1542 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST) 1543 goto reset_ok; 1544 udelay(1); 1545 } 1546 1547 netdev_warn(dev, "genesis reset failed\n"); 1548 1549 reset_ok: 1550 /* Unreset the XMAC. */ 1551 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1552 1553 /* 1554 * Perform additional initialization for external PHYs, 1555 * namely for the 1000baseTX cards that use the XMAC's 1556 * GMII mode. 1557 */ 1558 if (hw->phy_type != SK_PHY_XMAC) { 1559 /* Take external Phy out of reset */ 1560 r = skge_read32(hw, B2_GP_IO); 1561 if (port == 0) 1562 r |= GP_DIR_0|GP_IO_0; 1563 else 1564 r |= GP_DIR_2|GP_IO_2; 1565 1566 skge_write32(hw, B2_GP_IO, r); 1567 1568 /* Enable GMII interface */ 1569 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); 1570 } 1571 1572 1573 switch (hw->phy_type) { 1574 case SK_PHY_XMAC: 1575 xm_phy_init(skge); 1576 break; 1577 case SK_PHY_BCOM: 1578 bcom_phy_init(skge); 1579 bcom_check_link(hw, port); 1580 } 1581 1582 /* Set Station Address */ 1583 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 1584 1585 /* We don't use match addresses so clear */ 1586 for (i = 1; i < 16; i++) 1587 xm_outaddr(hw, port, XM_EXM(i), zero); 1588 1589 /* Clear MIB counters */ 1590 xm_write16(hw, port, XM_STAT_CMD, 1591 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1592 /* Clear two times according to Errata #3 */ 1593 xm_write16(hw, port, XM_STAT_CMD, 1594 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1595 1596 /* configure Rx High Water Mark (XM_RX_HI_WM) */ 1597 xm_write16(hw, port, XM_RX_HI_WM, 1450); 1598 1599 /* We don't need the FCS appended to the packet. */ 1600 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS; 1601 if (jumbo) 1602 r |= XM_RX_BIG_PK_OK; 1603 1604 if (skge->duplex == DUPLEX_HALF) { 1605 /* 1606 * If in manual half duplex mode the other side might be in 1607 * full duplex mode, so ignore if a carrier extension is not seen 1608 * on frames received 1609 */ 1610 r |= XM_RX_DIS_CEXT; 1611 } 1612 xm_write16(hw, port, XM_RX_CMD, r); 1613 1614 /* We want short frames padded to 60 bytes. */ 1615 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD); 1616 1617 /* Increase threshold for jumbo frames on dual port */ 1618 if (hw->ports > 1 && jumbo) 1619 xm_write16(hw, port, XM_TX_THR, 1020); 1620 else 1621 xm_write16(hw, port, XM_TX_THR, 512); 1622 1623 /* 1624 * Enable the reception of all error frames. This is 1625 * a necessary evil due to the design of the XMAC. The 1626 * XMAC's receive FIFO is only 8K in size, however jumbo 1627 * frames can be up to 9000 bytes in length. When bad 1628 * frame filtering is enabled, the XMAC's RX FIFO operates 1629 * in 'store and forward' mode. For this to work, the 1630 * entire frame has to fit into the FIFO, but that means 1631 * that jumbo frames larger than 8192 bytes will be 1632 * truncated. Disabling all bad frame filtering causes 1633 * the RX FIFO to operate in streaming mode, in which 1634 * case the XMAC will start transferring frames out of the 1635 * RX FIFO as soon as the FIFO threshold is reached. 1636 */ 1637 xm_write32(hw, port, XM_MODE, XM_DEF_MODE); 1638 1639 1640 /* 1641 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK) 1642 * - Enable all bits excepting 'Octets Rx OK Low CntOv' 1643 * and 'Octets Rx OK Hi Cnt Ov'. 1644 */ 1645 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK); 1646 1647 /* 1648 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK) 1649 * - Enable all bits excepting 'Octets Tx OK Low CntOv' 1650 * and 'Octets Tx OK Hi Cnt Ov'. 1651 */ 1652 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK); 1653 1654 /* Configure MAC arbiter */ 1655 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1656 1657 /* configure timeout values */ 1658 skge_write8(hw, B3_MA_TOINI_RX1, 72); 1659 skge_write8(hw, B3_MA_TOINI_RX2, 72); 1660 skge_write8(hw, B3_MA_TOINI_TX1, 72); 1661 skge_write8(hw, B3_MA_TOINI_TX2, 72); 1662 1663 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1664 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1665 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1666 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1667 1668 /* Configure Rx MAC FIFO */ 1669 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); 1670 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); 1671 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); 1672 1673 /* Configure Tx MAC FIFO */ 1674 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); 1675 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); 1676 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); 1677 1678 if (jumbo) { 1679 /* Enable frame flushing if jumbo frames used */ 1680 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH); 1681 } else { 1682 /* enable timeout timers if normal frames */ 1683 skge_write16(hw, B3_PA_CTRL, 1684 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); 1685 } 1686 } 1687 1688 static void genesis_stop(struct skge_port *skge) 1689 { 1690 struct skge_hw *hw = skge->hw; 1691 int port = skge->port; 1692 unsigned retries = 1000; 1693 u16 cmd; 1694 1695 /* Disable Tx and Rx */ 1696 cmd = xm_read16(hw, port, XM_MMU_CMD); 1697 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1698 xm_write16(hw, port, XM_MMU_CMD, cmd); 1699 1700 genesis_reset(hw, port); 1701 1702 /* Clear Tx packet arbiter timeout IRQ */ 1703 skge_write16(hw, B3_PA_CTRL, 1704 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2); 1705 1706 /* Reset the MAC */ 1707 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1708 do { 1709 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); 1710 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)) 1711 break; 1712 } while (--retries > 0); 1713 1714 /* For external PHYs there must be special handling */ 1715 if (hw->phy_type != SK_PHY_XMAC) { 1716 u32 reg = skge_read32(hw, B2_GP_IO); 1717 if (port == 0) { 1718 reg |= GP_DIR_0; 1719 reg &= ~GP_IO_0; 1720 } else { 1721 reg |= GP_DIR_2; 1722 reg &= ~GP_IO_2; 1723 } 1724 skge_write32(hw, B2_GP_IO, reg); 1725 skge_read32(hw, B2_GP_IO); 1726 } 1727 1728 xm_write16(hw, port, XM_MMU_CMD, 1729 xm_read16(hw, port, XM_MMU_CMD) 1730 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); 1731 1732 xm_read16(hw, port, XM_MMU_CMD); 1733 } 1734 1735 1736 static void genesis_get_stats(struct skge_port *skge, u64 *data) 1737 { 1738 struct skge_hw *hw = skge->hw; 1739 int port = skge->port; 1740 int i; 1741 unsigned long timeout = jiffies + HZ; 1742 1743 xm_write16(hw, port, 1744 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); 1745 1746 /* wait for update to complete */ 1747 while (xm_read16(hw, port, XM_STAT_CMD) 1748 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { 1749 if (time_after(jiffies, timeout)) 1750 break; 1751 udelay(10); 1752 } 1753 1754 /* special case for 64 bit octet counter */ 1755 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32 1756 | xm_read32(hw, port, XM_TXO_OK_LO); 1757 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32 1758 | xm_read32(hw, port, XM_RXO_OK_LO); 1759 1760 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 1761 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset); 1762 } 1763 1764 static void genesis_mac_intr(struct skge_hw *hw, int port) 1765 { 1766 struct net_device *dev = hw->dev[port]; 1767 struct skge_port *skge = netdev_priv(dev); 1768 u16 status = xm_read16(hw, port, XM_ISRC); 1769 1770 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 1771 "mac interrupt status 0x%x\n", status); 1772 1773 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) { 1774 xm_link_down(hw, port); 1775 mod_timer(&skge->link_timer, jiffies + 1); 1776 } 1777 1778 if (status & XM_IS_TXF_UR) { 1779 xm_write32(hw, port, XM_MODE, XM_MD_FTF); 1780 ++dev->stats.tx_fifo_errors; 1781 } 1782 } 1783 1784 static void genesis_link_up(struct skge_port *skge) 1785 { 1786 struct skge_hw *hw = skge->hw; 1787 int port = skge->port; 1788 u16 cmd, msk; 1789 u32 mode; 1790 1791 cmd = xm_read16(hw, port, XM_MMU_CMD); 1792 1793 /* 1794 * enabling pause frame reception is required for 1000BT 1795 * because the XMAC is not reset if the link is going down 1796 */ 1797 if (skge->flow_status == FLOW_STAT_NONE || 1798 skge->flow_status == FLOW_STAT_LOC_SEND) 1799 /* Disable Pause Frame Reception */ 1800 cmd |= XM_MMU_IGN_PF; 1801 else 1802 /* Enable Pause Frame Reception */ 1803 cmd &= ~XM_MMU_IGN_PF; 1804 1805 xm_write16(hw, port, XM_MMU_CMD, cmd); 1806 1807 mode = xm_read32(hw, port, XM_MODE); 1808 if (skge->flow_status == FLOW_STAT_SYMMETRIC || 1809 skge->flow_status == FLOW_STAT_LOC_SEND) { 1810 /* 1811 * Configure Pause Frame Generation 1812 * Use internal and external Pause Frame Generation. 1813 * Sending pause frames is edge triggered. 1814 * Send a Pause frame with the maximum pause time if 1815 * internal oder external FIFO full condition occurs. 1816 * Send a zero pause time frame to re-start transmission. 1817 */ 1818 /* XM_PAUSE_DA = '010000C28001' (default) */ 1819 /* XM_MAC_PTIME = 0xffff (maximum) */ 1820 /* remember this value is defined in big endian (!) */ 1821 xm_write16(hw, port, XM_MAC_PTIME, 0xffff); 1822 1823 mode |= XM_PAUSE_MODE; 1824 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); 1825 } else { 1826 /* 1827 * disable pause frame generation is required for 1000BT 1828 * because the XMAC is not reset if the link is going down 1829 */ 1830 /* Disable Pause Mode in Mode Register */ 1831 mode &= ~XM_PAUSE_MODE; 1832 1833 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); 1834 } 1835 1836 xm_write32(hw, port, XM_MODE, mode); 1837 1838 /* Turn on detection of Tx underrun */ 1839 msk = xm_read16(hw, port, XM_IMSK); 1840 msk &= ~XM_IS_TXF_UR; 1841 xm_write16(hw, port, XM_IMSK, msk); 1842 1843 xm_read16(hw, port, XM_ISRC); 1844 1845 /* get MMU Command Reg. */ 1846 cmd = xm_read16(hw, port, XM_MMU_CMD); 1847 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL) 1848 cmd |= XM_MMU_GMII_FD; 1849 1850 /* 1851 * Workaround BCOM Errata (#10523) for all BCom Phys 1852 * Enable Power Management after link up 1853 */ 1854 if (hw->phy_type == SK_PHY_BCOM) { 1855 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1856 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) 1857 & ~PHY_B_AC_DIS_PM); 1858 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1859 } 1860 1861 /* enable Rx/Tx */ 1862 xm_write16(hw, port, XM_MMU_CMD, 1863 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1864 skge_link_up(skge); 1865 } 1866 1867 1868 static inline void bcom_phy_intr(struct skge_port *skge) 1869 { 1870 struct skge_hw *hw = skge->hw; 1871 int port = skge->port; 1872 u16 isrc; 1873 1874 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT); 1875 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 1876 "phy interrupt status 0x%x\n", isrc); 1877 1878 if (isrc & PHY_B_IS_PSE) 1879 pr_err("%s: uncorrectable pair swap error\n", 1880 hw->dev[port]->name); 1881 1882 /* Workaround BCom Errata: 1883 * enable and disable loopback mode if "NO HCD" occurs. 1884 */ 1885 if (isrc & PHY_B_IS_NO_HDCL) { 1886 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL); 1887 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1888 ctrl | PHY_CT_LOOP); 1889 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1890 ctrl & ~PHY_CT_LOOP); 1891 } 1892 1893 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) 1894 bcom_check_link(hw, port); 1895 1896 } 1897 1898 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1899 { 1900 int i; 1901 1902 gma_write16(hw, port, GM_SMI_DATA, val); 1903 gma_write16(hw, port, GM_SMI_CTRL, 1904 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); 1905 for (i = 0; i < PHY_RETRIES; i++) { 1906 udelay(1); 1907 1908 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) 1909 return 0; 1910 } 1911 1912 pr_warn("%s: phy write timeout\n", hw->dev[port]->name); 1913 return -EIO; 1914 } 1915 1916 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1917 { 1918 int i; 1919 1920 gma_write16(hw, port, GM_SMI_CTRL, 1921 GM_SMI_CT_PHY_AD(hw->phy_addr) 1922 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); 1923 1924 for (i = 0; i < PHY_RETRIES; i++) { 1925 udelay(1); 1926 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) 1927 goto ready; 1928 } 1929 1930 return -ETIMEDOUT; 1931 ready: 1932 *val = gma_read16(hw, port, GM_SMI_DATA); 1933 return 0; 1934 } 1935 1936 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg) 1937 { 1938 u16 v = 0; 1939 if (__gm_phy_read(hw, port, reg, &v)) 1940 pr_warn("%s: phy read timeout\n", hw->dev[port]->name); 1941 return v; 1942 } 1943 1944 /* Marvell Phy Initialization */ 1945 static void yukon_init(struct skge_hw *hw, int port) 1946 { 1947 struct skge_port *skge = netdev_priv(hw->dev[port]); 1948 u16 ctrl, ct1000, adv; 1949 1950 if (skge->autoneg == AUTONEG_ENABLE) { 1951 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); 1952 1953 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | 1954 PHY_M_EC_MAC_S_MSK); 1955 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); 1956 1957 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); 1958 1959 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); 1960 } 1961 1962 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 1963 if (skge->autoneg == AUTONEG_DISABLE) 1964 ctrl &= ~PHY_CT_ANE; 1965 1966 ctrl |= PHY_CT_RESET; 1967 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1968 1969 ctrl = 0; 1970 ct1000 = 0; 1971 adv = PHY_AN_CSMA; 1972 1973 if (skge->autoneg == AUTONEG_ENABLE) { 1974 if (hw->copper) { 1975 if (skge->advertising & ADVERTISED_1000baseT_Full) 1976 ct1000 |= PHY_M_1000C_AFD; 1977 if (skge->advertising & ADVERTISED_1000baseT_Half) 1978 ct1000 |= PHY_M_1000C_AHD; 1979 if (skge->advertising & ADVERTISED_100baseT_Full) 1980 adv |= PHY_M_AN_100_FD; 1981 if (skge->advertising & ADVERTISED_100baseT_Half) 1982 adv |= PHY_M_AN_100_HD; 1983 if (skge->advertising & ADVERTISED_10baseT_Full) 1984 adv |= PHY_M_AN_10_FD; 1985 if (skge->advertising & ADVERTISED_10baseT_Half) 1986 adv |= PHY_M_AN_10_HD; 1987 1988 /* Set Flow-control capabilities */ 1989 adv |= phy_pause_map[skge->flow_control]; 1990 } else { 1991 if (skge->advertising & ADVERTISED_1000baseT_Full) 1992 adv |= PHY_M_AN_1000X_AFD; 1993 if (skge->advertising & ADVERTISED_1000baseT_Half) 1994 adv |= PHY_M_AN_1000X_AHD; 1995 1996 adv |= fiber_pause_map[skge->flow_control]; 1997 } 1998 1999 /* Restart Auto-negotiation */ 2000 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; 2001 } else { 2002 /* forced speed/duplex settings */ 2003 ct1000 = PHY_M_1000C_MSE; 2004 2005 if (skge->duplex == DUPLEX_FULL) 2006 ctrl |= PHY_CT_DUP_MD; 2007 2008 switch (skge->speed) { 2009 case SPEED_1000: 2010 ctrl |= PHY_CT_SP1000; 2011 break; 2012 case SPEED_100: 2013 ctrl |= PHY_CT_SP100; 2014 break; 2015 } 2016 2017 ctrl |= PHY_CT_RESET; 2018 } 2019 2020 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); 2021 2022 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); 2023 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2024 2025 /* Enable phy interrupt on autonegotiation complete (or link up) */ 2026 if (skge->autoneg == AUTONEG_ENABLE) 2027 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK); 2028 else 2029 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 2030 } 2031 2032 static void yukon_reset(struct skge_hw *hw, int port) 2033 { 2034 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ 2035 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ 2036 gma_write16(hw, port, GM_MC_ADDR_H2, 0); 2037 gma_write16(hw, port, GM_MC_ADDR_H3, 0); 2038 gma_write16(hw, port, GM_MC_ADDR_H4, 0); 2039 2040 gma_write16(hw, port, GM_RX_CTRL, 2041 gma_read16(hw, port, GM_RX_CTRL) 2042 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2043 } 2044 2045 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */ 2046 static int is_yukon_lite_a0(struct skge_hw *hw) 2047 { 2048 u32 reg; 2049 int ret; 2050 2051 if (hw->chip_id != CHIP_ID_YUKON) 2052 return 0; 2053 2054 reg = skge_read32(hw, B2_FAR); 2055 skge_write8(hw, B2_FAR + 3, 0xff); 2056 ret = (skge_read8(hw, B2_FAR + 3) != 0); 2057 skge_write32(hw, B2_FAR, reg); 2058 return ret; 2059 } 2060 2061 static void yukon_mac_init(struct skge_hw *hw, int port) 2062 { 2063 struct skge_port *skge = netdev_priv(hw->dev[port]); 2064 int i; 2065 u32 reg; 2066 const u8 *addr = hw->dev[port]->dev_addr; 2067 2068 /* WA code for COMA mode -- set PHY reset */ 2069 if (hw->chip_id == CHIP_ID_YUKON_LITE && 2070 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 2071 reg = skge_read32(hw, B2_GP_IO); 2072 reg |= GP_DIR_9 | GP_IO_9; 2073 skge_write32(hw, B2_GP_IO, reg); 2074 } 2075 2076 /* hard reset */ 2077 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 2078 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 2079 2080 /* WA code for COMA mode -- clear PHY reset */ 2081 if (hw->chip_id == CHIP_ID_YUKON_LITE && 2082 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 2083 reg = skge_read32(hw, B2_GP_IO); 2084 reg |= GP_DIR_9; 2085 reg &= ~GP_IO_9; 2086 skge_write32(hw, B2_GP_IO, reg); 2087 } 2088 2089 /* Set hardware config mode */ 2090 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP | 2091 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE; 2092 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; 2093 2094 /* Clear GMC reset */ 2095 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET); 2096 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); 2097 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); 2098 2099 if (skge->autoneg == AUTONEG_DISABLE) { 2100 reg = GM_GPCR_AU_ALL_DIS; 2101 gma_write16(hw, port, GM_GP_CTRL, 2102 gma_read16(hw, port, GM_GP_CTRL) | reg); 2103 2104 switch (skge->speed) { 2105 case SPEED_1000: 2106 reg &= ~GM_GPCR_SPEED_100; 2107 reg |= GM_GPCR_SPEED_1000; 2108 break; 2109 case SPEED_100: 2110 reg &= ~GM_GPCR_SPEED_1000; 2111 reg |= GM_GPCR_SPEED_100; 2112 break; 2113 case SPEED_10: 2114 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100); 2115 break; 2116 } 2117 2118 if (skge->duplex == DUPLEX_FULL) 2119 reg |= GM_GPCR_DUP_FULL; 2120 } else 2121 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; 2122 2123 switch (skge->flow_control) { 2124 case FLOW_MODE_NONE: 2125 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2126 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 2127 break; 2128 case FLOW_MODE_LOC_SEND: 2129 /* disable Rx flow-control */ 2130 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 2131 break; 2132 case FLOW_MODE_SYMMETRIC: 2133 case FLOW_MODE_SYM_OR_REM: 2134 /* enable Tx & Rx flow-control */ 2135 break; 2136 } 2137 2138 gma_write16(hw, port, GM_GP_CTRL, reg); 2139 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); 2140 2141 yukon_init(hw, port); 2142 2143 /* MIB clear */ 2144 reg = gma_read16(hw, port, GM_PHY_ADDR); 2145 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); 2146 2147 for (i = 0; i < GM_MIB_CNT_SIZE; i++) 2148 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); 2149 gma_write16(hw, port, GM_PHY_ADDR, reg); 2150 2151 /* transmit control */ 2152 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); 2153 2154 /* receive control reg: unicast + multicast + no FCS */ 2155 gma_write16(hw, port, GM_RX_CTRL, 2156 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); 2157 2158 /* transmit flow control */ 2159 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); 2160 2161 /* transmit parameter */ 2162 gma_write16(hw, port, GM_TX_PARAM, 2163 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | 2164 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | 2165 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); 2166 2167 /* configure the Serial Mode Register */ 2168 reg = DATA_BLIND_VAL(DATA_BLIND_DEF) 2169 | GM_SMOD_VLAN_ENA 2170 | IPG_DATA_VAL(IPG_DATA_DEF); 2171 2172 if (hw->dev[port]->mtu > ETH_DATA_LEN) 2173 reg |= GM_SMOD_JUMBO_ENA; 2174 2175 gma_write16(hw, port, GM_SERIAL_MODE, reg); 2176 2177 /* physical address: used for pause frames */ 2178 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); 2179 /* virtual address for data */ 2180 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); 2181 2182 /* enable interrupt mask for counter overflows */ 2183 gma_write16(hw, port, GM_TX_IRQ_MSK, 0); 2184 gma_write16(hw, port, GM_RX_IRQ_MSK, 0); 2185 gma_write16(hw, port, GM_TR_IRQ_MSK, 0); 2186 2187 /* Initialize Mac Fifo */ 2188 2189 /* Configure Rx MAC FIFO */ 2190 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); 2191 reg = GMF_OPER_ON | GMF_RX_F_FL_ON; 2192 2193 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ 2194 if (is_yukon_lite_a0(hw)) 2195 reg &= ~GMF_RX_F_FL_ON; 2196 2197 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); 2198 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg); 2199 /* 2200 * because Pause Packet Truncation in GMAC is not working 2201 * we have to increase the Flush Threshold to 64 bytes 2202 * in order to flush pause packets in Rx FIFO on Yukon-1 2203 */ 2204 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1); 2205 2206 /* Configure Tx MAC FIFO */ 2207 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); 2208 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); 2209 } 2210 2211 /* Go into power down mode */ 2212 static void yukon_suspend(struct skge_hw *hw, int port) 2213 { 2214 u16 ctrl; 2215 2216 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); 2217 ctrl |= PHY_M_PC_POL_R_DIS; 2218 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); 2219 2220 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 2221 ctrl |= PHY_CT_RESET; 2222 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2223 2224 /* switch IEEE compatible power down mode on */ 2225 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 2226 ctrl |= PHY_CT_PDOWN; 2227 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2228 } 2229 2230 static void yukon_stop(struct skge_port *skge) 2231 { 2232 struct skge_hw *hw = skge->hw; 2233 int port = skge->port; 2234 2235 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 2236 yukon_reset(hw, port); 2237 2238 gma_write16(hw, port, GM_GP_CTRL, 2239 gma_read16(hw, port, GM_GP_CTRL) 2240 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA)); 2241 gma_read16(hw, port, GM_GP_CTRL); 2242 2243 yukon_suspend(hw, port); 2244 2245 /* set GPHY Control reset */ 2246 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 2247 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 2248 } 2249 2250 static void yukon_get_stats(struct skge_port *skge, u64 *data) 2251 { 2252 struct skge_hw *hw = skge->hw; 2253 int port = skge->port; 2254 int i; 2255 2256 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 2257 | gma_read32(hw, port, GM_TXO_OK_LO); 2258 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 2259 | gma_read32(hw, port, GM_RXO_OK_LO); 2260 2261 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 2262 data[i] = gma_read32(hw, port, 2263 skge_stats[i].gma_offset); 2264 } 2265 2266 static void yukon_mac_intr(struct skge_hw *hw, int port) 2267 { 2268 struct net_device *dev = hw->dev[port]; 2269 struct skge_port *skge = netdev_priv(dev); 2270 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); 2271 2272 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 2273 "mac interrupt status 0x%x\n", status); 2274 2275 if (status & GM_IS_RX_FF_OR) { 2276 ++dev->stats.rx_fifo_errors; 2277 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); 2278 } 2279 2280 if (status & GM_IS_TX_FF_UR) { 2281 ++dev->stats.tx_fifo_errors; 2282 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); 2283 } 2284 2285 } 2286 2287 static u16 yukon_speed(const struct skge_hw *hw, u16 aux) 2288 { 2289 switch (aux & PHY_M_PS_SPEED_MSK) { 2290 case PHY_M_PS_SPEED_1000: 2291 return SPEED_1000; 2292 case PHY_M_PS_SPEED_100: 2293 return SPEED_100; 2294 default: 2295 return SPEED_10; 2296 } 2297 } 2298 2299 static void yukon_link_up(struct skge_port *skge) 2300 { 2301 struct skge_hw *hw = skge->hw; 2302 int port = skge->port; 2303 u16 reg; 2304 2305 /* Enable Transmit FIFO Underrun */ 2306 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); 2307 2308 reg = gma_read16(hw, port, GM_GP_CTRL); 2309 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) 2310 reg |= GM_GPCR_DUP_FULL; 2311 2312 /* enable Rx/Tx */ 2313 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; 2314 gma_write16(hw, port, GM_GP_CTRL, reg); 2315 2316 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 2317 skge_link_up(skge); 2318 } 2319 2320 static void yukon_link_down(struct skge_port *skge) 2321 { 2322 struct skge_hw *hw = skge->hw; 2323 int port = skge->port; 2324 u16 ctrl; 2325 2326 ctrl = gma_read16(hw, port, GM_GP_CTRL); 2327 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 2328 gma_write16(hw, port, GM_GP_CTRL, ctrl); 2329 2330 if (skge->flow_status == FLOW_STAT_REM_SEND) { 2331 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV); 2332 ctrl |= PHY_M_AN_ASP; 2333 /* restore Asymmetric Pause bit */ 2334 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl); 2335 } 2336 2337 skge_link_down(skge); 2338 2339 yukon_init(hw, port); 2340 } 2341 2342 static void yukon_phy_intr(struct skge_port *skge) 2343 { 2344 struct skge_hw *hw = skge->hw; 2345 int port = skge->port; 2346 const char *reason = NULL; 2347 u16 istatus, phystat; 2348 2349 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); 2350 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); 2351 2352 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 2353 "phy interrupt status 0x%x 0x%x\n", istatus, phystat); 2354 2355 if (istatus & PHY_M_IS_AN_COMPL) { 2356 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP) 2357 & PHY_M_AN_RF) { 2358 reason = "remote fault"; 2359 goto failed; 2360 } 2361 2362 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { 2363 reason = "master/slave fault"; 2364 goto failed; 2365 } 2366 2367 if (!(phystat & PHY_M_PS_SPDUP_RES)) { 2368 reason = "speed/duplex"; 2369 goto failed; 2370 } 2371 2372 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) 2373 ? DUPLEX_FULL : DUPLEX_HALF; 2374 skge->speed = yukon_speed(hw, phystat); 2375 2376 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 2377 switch (phystat & PHY_M_PS_PAUSE_MSK) { 2378 case PHY_M_PS_PAUSE_MSK: 2379 skge->flow_status = FLOW_STAT_SYMMETRIC; 2380 break; 2381 case PHY_M_PS_RX_P_EN: 2382 skge->flow_status = FLOW_STAT_REM_SEND; 2383 break; 2384 case PHY_M_PS_TX_P_EN: 2385 skge->flow_status = FLOW_STAT_LOC_SEND; 2386 break; 2387 default: 2388 skge->flow_status = FLOW_STAT_NONE; 2389 } 2390 2391 if (skge->flow_status == FLOW_STAT_NONE || 2392 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) 2393 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2394 else 2395 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); 2396 yukon_link_up(skge); 2397 return; 2398 } 2399 2400 if (istatus & PHY_M_IS_LSP_CHANGE) 2401 skge->speed = yukon_speed(hw, phystat); 2402 2403 if (istatus & PHY_M_IS_DUP_CHANGE) 2404 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; 2405 if (istatus & PHY_M_IS_LST_CHANGE) { 2406 if (phystat & PHY_M_PS_LINK_UP) 2407 yukon_link_up(skge); 2408 else 2409 yukon_link_down(skge); 2410 } 2411 return; 2412 failed: 2413 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason); 2414 2415 /* XXX restart autonegotiation? */ 2416 } 2417 2418 static void skge_phy_reset(struct skge_port *skge) 2419 { 2420 struct skge_hw *hw = skge->hw; 2421 int port = skge->port; 2422 struct net_device *dev = hw->dev[port]; 2423 2424 netif_stop_queue(skge->netdev); 2425 netif_carrier_off(skge->netdev); 2426 2427 spin_lock_bh(&hw->phy_lock); 2428 if (is_genesis(hw)) { 2429 genesis_reset(hw, port); 2430 genesis_mac_init(hw, port); 2431 } else { 2432 yukon_reset(hw, port); 2433 yukon_init(hw, port); 2434 } 2435 spin_unlock_bh(&hw->phy_lock); 2436 2437 skge_set_multicast(dev); 2438 } 2439 2440 /* Basic MII support */ 2441 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2442 { 2443 struct mii_ioctl_data *data = if_mii(ifr); 2444 struct skge_port *skge = netdev_priv(dev); 2445 struct skge_hw *hw = skge->hw; 2446 int err = -EOPNOTSUPP; 2447 2448 if (!netif_running(dev)) 2449 return -ENODEV; /* Phy still in reset */ 2450 2451 switch (cmd) { 2452 case SIOCGMIIPHY: 2453 data->phy_id = hw->phy_addr; 2454 2455 fallthrough; 2456 case SIOCGMIIREG: { 2457 u16 val = 0; 2458 spin_lock_bh(&hw->phy_lock); 2459 2460 if (is_genesis(hw)) 2461 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2462 else 2463 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2464 spin_unlock_bh(&hw->phy_lock); 2465 data->val_out = val; 2466 break; 2467 } 2468 2469 case SIOCSMIIREG: 2470 spin_lock_bh(&hw->phy_lock); 2471 if (is_genesis(hw)) 2472 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2473 data->val_in); 2474 else 2475 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2476 data->val_in); 2477 spin_unlock_bh(&hw->phy_lock); 2478 break; 2479 } 2480 return err; 2481 } 2482 2483 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len) 2484 { 2485 u32 end; 2486 2487 start /= 8; 2488 len /= 8; 2489 end = start + len - 1; 2490 2491 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); 2492 skge_write32(hw, RB_ADDR(q, RB_START), start); 2493 skge_write32(hw, RB_ADDR(q, RB_WP), start); 2494 skge_write32(hw, RB_ADDR(q, RB_RP), start); 2495 skge_write32(hw, RB_ADDR(q, RB_END), end); 2496 2497 if (q == Q_R1 || q == Q_R2) { 2498 /* Set thresholds on receive queue's */ 2499 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), 2500 start + (2*len)/3); 2501 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), 2502 start + (len/3)); 2503 } else { 2504 /* Enable store & forward on Tx queue's because 2505 * Tx FIFO is only 4K on Genesis and 1K on Yukon 2506 */ 2507 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); 2508 } 2509 2510 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); 2511 } 2512 2513 /* Setup Bus Memory Interface */ 2514 static void skge_qset(struct skge_port *skge, u16 q, 2515 const struct skge_element *e) 2516 { 2517 struct skge_hw *hw = skge->hw; 2518 u32 watermark = 0x600; 2519 u64 base = skge->dma + (e->desc - skge->mem); 2520 2521 /* optimization to reduce window on 32bit/33mhz */ 2522 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0) 2523 watermark /= 2; 2524 2525 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET); 2526 skge_write32(hw, Q_ADDR(q, Q_F), watermark); 2527 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32)); 2528 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base); 2529 } 2530 2531 static int skge_up(struct net_device *dev) 2532 { 2533 struct skge_port *skge = netdev_priv(dev); 2534 struct skge_hw *hw = skge->hw; 2535 int port = skge->port; 2536 u32 chunk, ram_addr; 2537 size_t rx_size, tx_size; 2538 int err; 2539 2540 if (!is_valid_ether_addr(dev->dev_addr)) 2541 return -EINVAL; 2542 2543 netif_info(skge, ifup, skge->netdev, "enabling interface\n"); 2544 2545 if (dev->mtu > RX_BUF_SIZE) 2546 skge->rx_buf_size = dev->mtu + ETH_HLEN; 2547 else 2548 skge->rx_buf_size = RX_BUF_SIZE; 2549 2550 2551 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); 2552 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); 2553 skge->mem_size = tx_size + rx_size; 2554 skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size, 2555 &skge->dma, GFP_KERNEL); 2556 if (!skge->mem) 2557 return -ENOMEM; 2558 2559 BUG_ON(skge->dma & 7); 2560 2561 if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) { 2562 dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n"); 2563 err = -EINVAL; 2564 goto free_pci_mem; 2565 } 2566 2567 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma); 2568 if (err) 2569 goto free_pci_mem; 2570 2571 err = skge_rx_fill(dev); 2572 if (err) 2573 goto free_rx_ring; 2574 2575 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, 2576 skge->dma + rx_size); 2577 if (err) 2578 goto free_rx_ring; 2579 2580 if (hw->ports == 1) { 2581 err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED, 2582 dev->name, hw); 2583 if (err) { 2584 netdev_err(dev, "Unable to allocate interrupt %d error: %d\n", 2585 hw->pdev->irq, err); 2586 goto free_tx_ring; 2587 } 2588 } 2589 2590 /* Initialize MAC */ 2591 netif_carrier_off(dev); 2592 spin_lock_bh(&hw->phy_lock); 2593 if (is_genesis(hw)) 2594 genesis_mac_init(hw, port); 2595 else 2596 yukon_mac_init(hw, port); 2597 spin_unlock_bh(&hw->phy_lock); 2598 2599 /* Configure RAMbuffers - equally between ports and tx/rx */ 2600 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2); 2601 ram_addr = hw->ram_offset + 2 * chunk * port; 2602 2603 skge_ramset(hw, rxqaddr[port], ram_addr, chunk); 2604 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean); 2605 2606 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean); 2607 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk); 2608 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use); 2609 2610 /* Start receiver BMU */ 2611 wmb(); 2612 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F); 2613 skge_led(skge, LED_MODE_ON); 2614 2615 spin_lock_irq(&hw->hw_lock); 2616 hw->intr_mask |= portmask[port]; 2617 skge_write32(hw, B0_IMSK, hw->intr_mask); 2618 skge_read32(hw, B0_IMSK); 2619 spin_unlock_irq(&hw->hw_lock); 2620 2621 napi_enable(&skge->napi); 2622 2623 skge_set_multicast(dev); 2624 2625 return 0; 2626 2627 free_tx_ring: 2628 kfree(skge->tx_ring.start); 2629 free_rx_ring: 2630 skge_rx_clean(skge); 2631 kfree(skge->rx_ring.start); 2632 free_pci_mem: 2633 dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem, 2634 skge->dma); 2635 skge->mem = NULL; 2636 2637 return err; 2638 } 2639 2640 /* stop receiver */ 2641 static void skge_rx_stop(struct skge_hw *hw, int port) 2642 { 2643 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP); 2644 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL), 2645 RB_RST_SET|RB_DIS_OP_MD); 2646 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); 2647 } 2648 2649 static int skge_down(struct net_device *dev) 2650 { 2651 struct skge_port *skge = netdev_priv(dev); 2652 struct skge_hw *hw = skge->hw; 2653 int port = skge->port; 2654 2655 if (!skge->mem) 2656 return 0; 2657 2658 netif_info(skge, ifdown, skge->netdev, "disabling interface\n"); 2659 2660 netif_tx_disable(dev); 2661 2662 if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC) 2663 del_timer_sync(&skge->link_timer); 2664 2665 napi_disable(&skge->napi); 2666 netif_carrier_off(dev); 2667 2668 spin_lock_irq(&hw->hw_lock); 2669 hw->intr_mask &= ~portmask[port]; 2670 skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask); 2671 skge_read32(hw, B0_IMSK); 2672 spin_unlock_irq(&hw->hw_lock); 2673 2674 if (hw->ports == 1) 2675 free_irq(hw->pdev->irq, hw); 2676 2677 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF); 2678 if (is_genesis(hw)) 2679 genesis_stop(skge); 2680 else 2681 yukon_stop(skge); 2682 2683 /* Stop transmitter */ 2684 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); 2685 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), 2686 RB_RST_SET|RB_DIS_OP_MD); 2687 2688 2689 /* Disable Force Sync bit and Enable Alloc bit */ 2690 skge_write8(hw, SK_REG(port, TXA_CTRL), 2691 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); 2692 2693 /* Stop Interval Timer and Limit Counter of Tx Arbiter */ 2694 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); 2695 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); 2696 2697 /* Reset PCI FIFO */ 2698 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); 2699 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); 2700 2701 /* Reset the RAM Buffer async Tx queue */ 2702 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET); 2703 2704 skge_rx_stop(hw, port); 2705 2706 if (is_genesis(hw)) { 2707 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET); 2708 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET); 2709 } else { 2710 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 2711 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); 2712 } 2713 2714 skge_led(skge, LED_MODE_OFF); 2715 2716 netif_tx_lock_bh(dev); 2717 skge_tx_clean(dev); 2718 netif_tx_unlock_bh(dev); 2719 2720 skge_rx_clean(skge); 2721 2722 kfree(skge->rx_ring.start); 2723 kfree(skge->tx_ring.start); 2724 dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem, 2725 skge->dma); 2726 skge->mem = NULL; 2727 return 0; 2728 } 2729 2730 static inline int skge_avail(const struct skge_ring *ring) 2731 { 2732 smp_mb(); 2733 return ((ring->to_clean > ring->to_use) ? 0 : ring->count) 2734 + (ring->to_clean - ring->to_use) - 1; 2735 } 2736 2737 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb, 2738 struct net_device *dev) 2739 { 2740 struct skge_port *skge = netdev_priv(dev); 2741 struct skge_hw *hw = skge->hw; 2742 struct skge_element *e; 2743 struct skge_tx_desc *td; 2744 int i; 2745 u32 control, len; 2746 dma_addr_t map; 2747 2748 if (skb_padto(skb, ETH_ZLEN)) 2749 return NETDEV_TX_OK; 2750 2751 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) 2752 return NETDEV_TX_BUSY; 2753 2754 e = skge->tx_ring.to_use; 2755 td = e->desc; 2756 BUG_ON(td->control & BMU_OWN); 2757 e->skb = skb; 2758 len = skb_headlen(skb); 2759 map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE); 2760 if (dma_mapping_error(&hw->pdev->dev, map)) 2761 goto mapping_error; 2762 2763 dma_unmap_addr_set(e, mapaddr, map); 2764 dma_unmap_len_set(e, maplen, len); 2765 2766 td->dma_lo = lower_32_bits(map); 2767 td->dma_hi = upper_32_bits(map); 2768 2769 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2770 const int offset = skb_checksum_start_offset(skb); 2771 2772 /* This seems backwards, but it is what the sk98lin 2773 * does. Looks like hardware is wrong? 2774 */ 2775 if (ipip_hdr(skb)->protocol == IPPROTO_UDP && 2776 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON) 2777 control = BMU_TCP_CHECK; 2778 else 2779 control = BMU_UDP_CHECK; 2780 2781 td->csum_offs = 0; 2782 td->csum_start = offset; 2783 td->csum_write = offset + skb->csum_offset; 2784 } else 2785 control = BMU_CHECK; 2786 2787 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */ 2788 control |= BMU_EOF | BMU_IRQ_EOF; 2789 else { 2790 struct skge_tx_desc *tf = td; 2791 2792 control |= BMU_STFWD; 2793 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2794 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2795 2796 map = skb_frag_dma_map(&hw->pdev->dev, frag, 0, 2797 skb_frag_size(frag), DMA_TO_DEVICE); 2798 if (dma_mapping_error(&hw->pdev->dev, map)) 2799 goto mapping_unwind; 2800 2801 e = e->next; 2802 e->skb = skb; 2803 tf = e->desc; 2804 BUG_ON(tf->control & BMU_OWN); 2805 2806 tf->dma_lo = lower_32_bits(map); 2807 tf->dma_hi = upper_32_bits(map); 2808 dma_unmap_addr_set(e, mapaddr, map); 2809 dma_unmap_len_set(e, maplen, skb_frag_size(frag)); 2810 2811 tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag); 2812 } 2813 tf->control |= BMU_EOF | BMU_IRQ_EOF; 2814 } 2815 /* Make sure all the descriptors written */ 2816 wmb(); 2817 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len; 2818 wmb(); 2819 2820 netdev_sent_queue(dev, skb->len); 2821 2822 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START); 2823 2824 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev, 2825 "tx queued, slot %td, len %d\n", 2826 e - skge->tx_ring.start, skb->len); 2827 2828 skge->tx_ring.to_use = e->next; 2829 smp_wmb(); 2830 2831 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) { 2832 netdev_dbg(dev, "transmit queue full\n"); 2833 netif_stop_queue(dev); 2834 } 2835 2836 return NETDEV_TX_OK; 2837 2838 mapping_unwind: 2839 e = skge->tx_ring.to_use; 2840 dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr), 2841 dma_unmap_len(e, maplen), DMA_TO_DEVICE); 2842 while (i-- > 0) { 2843 e = e->next; 2844 dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr), 2845 dma_unmap_len(e, maplen), DMA_TO_DEVICE); 2846 } 2847 2848 mapping_error: 2849 if (net_ratelimit()) 2850 dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name); 2851 dev_kfree_skb_any(skb); 2852 return NETDEV_TX_OK; 2853 } 2854 2855 2856 /* Free resources associated with this reing element */ 2857 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e, 2858 u32 control) 2859 { 2860 /* skb header vs. fragment */ 2861 if (control & BMU_STF) 2862 dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr), 2863 dma_unmap_len(e, maplen), DMA_TO_DEVICE); 2864 else 2865 dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr), 2866 dma_unmap_len(e, maplen), DMA_TO_DEVICE); 2867 } 2868 2869 /* Free all buffers in transmit ring */ 2870 static void skge_tx_clean(struct net_device *dev) 2871 { 2872 struct skge_port *skge = netdev_priv(dev); 2873 struct skge_element *e; 2874 2875 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { 2876 struct skge_tx_desc *td = e->desc; 2877 2878 skge_tx_unmap(skge->hw->pdev, e, td->control); 2879 2880 if (td->control & BMU_EOF) 2881 dev_kfree_skb(e->skb); 2882 td->control = 0; 2883 } 2884 2885 netdev_reset_queue(dev); 2886 skge->tx_ring.to_clean = e; 2887 } 2888 2889 static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue) 2890 { 2891 struct skge_port *skge = netdev_priv(dev); 2892 2893 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n"); 2894 2895 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP); 2896 skge_tx_clean(dev); 2897 netif_wake_queue(dev); 2898 } 2899 2900 static int skge_change_mtu(struct net_device *dev, int new_mtu) 2901 { 2902 int err; 2903 2904 if (!netif_running(dev)) { 2905 dev->mtu = new_mtu; 2906 return 0; 2907 } 2908 2909 skge_down(dev); 2910 2911 dev->mtu = new_mtu; 2912 2913 err = skge_up(dev); 2914 if (err) 2915 dev_close(dev); 2916 2917 return err; 2918 } 2919 2920 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 }; 2921 2922 static void genesis_add_filter(u8 filter[8], const u8 *addr) 2923 { 2924 u32 crc, bit; 2925 2926 crc = ether_crc_le(ETH_ALEN, addr); 2927 bit = ~crc & 0x3f; 2928 filter[bit/8] |= 1 << (bit%8); 2929 } 2930 2931 static void genesis_set_multicast(struct net_device *dev) 2932 { 2933 struct skge_port *skge = netdev_priv(dev); 2934 struct skge_hw *hw = skge->hw; 2935 int port = skge->port; 2936 struct netdev_hw_addr *ha; 2937 u32 mode; 2938 u8 filter[8]; 2939 2940 mode = xm_read32(hw, port, XM_MODE); 2941 mode |= XM_MD_ENA_HASH; 2942 if (dev->flags & IFF_PROMISC) 2943 mode |= XM_MD_ENA_PROM; 2944 else 2945 mode &= ~XM_MD_ENA_PROM; 2946 2947 if (dev->flags & IFF_ALLMULTI) 2948 memset(filter, 0xff, sizeof(filter)); 2949 else { 2950 memset(filter, 0, sizeof(filter)); 2951 2952 if (skge->flow_status == FLOW_STAT_REM_SEND || 2953 skge->flow_status == FLOW_STAT_SYMMETRIC) 2954 genesis_add_filter(filter, pause_mc_addr); 2955 2956 netdev_for_each_mc_addr(ha, dev) 2957 genesis_add_filter(filter, ha->addr); 2958 } 2959 2960 xm_write32(hw, port, XM_MODE, mode); 2961 xm_outhash(hw, port, XM_HSM, filter); 2962 } 2963 2964 static void yukon_add_filter(u8 filter[8], const u8 *addr) 2965 { 2966 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f; 2967 2968 filter[bit / 8] |= 1 << (bit % 8); 2969 } 2970 2971 static void yukon_set_multicast(struct net_device *dev) 2972 { 2973 struct skge_port *skge = netdev_priv(dev); 2974 struct skge_hw *hw = skge->hw; 2975 int port = skge->port; 2976 struct netdev_hw_addr *ha; 2977 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND || 2978 skge->flow_status == FLOW_STAT_SYMMETRIC); 2979 u16 reg; 2980 u8 filter[8]; 2981 2982 memset(filter, 0, sizeof(filter)); 2983 2984 reg = gma_read16(hw, port, GM_RX_CTRL); 2985 reg |= GM_RXCR_UCF_ENA; 2986 2987 if (dev->flags & IFF_PROMISC) /* promiscuous */ 2988 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2989 else if (dev->flags & IFF_ALLMULTI) /* all multicast */ 2990 memset(filter, 0xff, sizeof(filter)); 2991 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */ 2992 reg &= ~GM_RXCR_MCF_ENA; 2993 else { 2994 reg |= GM_RXCR_MCF_ENA; 2995 2996 if (rx_pause) 2997 yukon_add_filter(filter, pause_mc_addr); 2998 2999 netdev_for_each_mc_addr(ha, dev) 3000 yukon_add_filter(filter, ha->addr); 3001 } 3002 3003 3004 gma_write16(hw, port, GM_MC_ADDR_H1, 3005 (u16)filter[0] | ((u16)filter[1] << 8)); 3006 gma_write16(hw, port, GM_MC_ADDR_H2, 3007 (u16)filter[2] | ((u16)filter[3] << 8)); 3008 gma_write16(hw, port, GM_MC_ADDR_H3, 3009 (u16)filter[4] | ((u16)filter[5] << 8)); 3010 gma_write16(hw, port, GM_MC_ADDR_H4, 3011 (u16)filter[6] | ((u16)filter[7] << 8)); 3012 3013 gma_write16(hw, port, GM_RX_CTRL, reg); 3014 } 3015 3016 static inline u16 phy_length(const struct skge_hw *hw, u32 status) 3017 { 3018 if (is_genesis(hw)) 3019 return status >> XMR_FS_LEN_SHIFT; 3020 else 3021 return status >> GMR_FS_LEN_SHIFT; 3022 } 3023 3024 static inline int bad_phy_status(const struct skge_hw *hw, u32 status) 3025 { 3026 if (is_genesis(hw)) 3027 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0; 3028 else 3029 return (status & GMR_FS_ANY_ERR) || 3030 (status & GMR_FS_RX_OK) == 0; 3031 } 3032 3033 static void skge_set_multicast(struct net_device *dev) 3034 { 3035 struct skge_port *skge = netdev_priv(dev); 3036 3037 if (is_genesis(skge->hw)) 3038 genesis_set_multicast(dev); 3039 else 3040 yukon_set_multicast(dev); 3041 3042 } 3043 3044 3045 /* Get receive buffer from descriptor. 3046 * Handles copy of small buffers and reallocation failures 3047 */ 3048 static struct sk_buff *skge_rx_get(struct net_device *dev, 3049 struct skge_element *e, 3050 u32 control, u32 status, u16 csum) 3051 { 3052 struct skge_port *skge = netdev_priv(dev); 3053 struct sk_buff *skb; 3054 u16 len = control & BMU_BBC; 3055 3056 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev, 3057 "rx slot %td status 0x%x len %d\n", 3058 e - skge->rx_ring.start, status, len); 3059 3060 if (len > skge->rx_buf_size) 3061 goto error; 3062 3063 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)) 3064 goto error; 3065 3066 if (bad_phy_status(skge->hw, status)) 3067 goto error; 3068 3069 if (phy_length(skge->hw, status) != len) 3070 goto error; 3071 3072 if (len < RX_COPY_THRESHOLD) { 3073 skb = netdev_alloc_skb_ip_align(dev, len); 3074 if (!skb) 3075 goto resubmit; 3076 3077 dma_sync_single_for_cpu(&skge->hw->pdev->dev, 3078 dma_unmap_addr(e, mapaddr), 3079 dma_unmap_len(e, maplen), 3080 DMA_FROM_DEVICE); 3081 skb_copy_from_linear_data(e->skb, skb->data, len); 3082 dma_sync_single_for_device(&skge->hw->pdev->dev, 3083 dma_unmap_addr(e, mapaddr), 3084 dma_unmap_len(e, maplen), 3085 DMA_FROM_DEVICE); 3086 skge_rx_reuse(e, skge->rx_buf_size); 3087 } else { 3088 struct skge_element ee; 3089 struct sk_buff *nskb; 3090 3091 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size); 3092 if (!nskb) 3093 goto resubmit; 3094 3095 ee = *e; 3096 3097 skb = ee.skb; 3098 prefetch(skb->data); 3099 3100 if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) { 3101 dev_kfree_skb(nskb); 3102 goto resubmit; 3103 } 3104 3105 dma_unmap_single(&skge->hw->pdev->dev, 3106 dma_unmap_addr(&ee, mapaddr), 3107 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE); 3108 } 3109 3110 skb_put(skb, len); 3111 3112 if (dev->features & NETIF_F_RXCSUM) { 3113 skb->csum = le16_to_cpu(csum); 3114 skb->ip_summed = CHECKSUM_COMPLETE; 3115 } 3116 3117 skb->protocol = eth_type_trans(skb, dev); 3118 3119 return skb; 3120 error: 3121 3122 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev, 3123 "rx err, slot %td control 0x%x status 0x%x\n", 3124 e - skge->rx_ring.start, control, status); 3125 3126 if (is_genesis(skge->hw)) { 3127 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) 3128 dev->stats.rx_length_errors++; 3129 if (status & XMR_FS_FRA_ERR) 3130 dev->stats.rx_frame_errors++; 3131 if (status & XMR_FS_FCS_ERR) 3132 dev->stats.rx_crc_errors++; 3133 } else { 3134 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) 3135 dev->stats.rx_length_errors++; 3136 if (status & GMR_FS_FRAGMENT) 3137 dev->stats.rx_frame_errors++; 3138 if (status & GMR_FS_CRC_ERR) 3139 dev->stats.rx_crc_errors++; 3140 } 3141 3142 resubmit: 3143 skge_rx_reuse(e, skge->rx_buf_size); 3144 return NULL; 3145 } 3146 3147 /* Free all buffers in Tx ring which are no longer owned by device */ 3148 static void skge_tx_done(struct net_device *dev) 3149 { 3150 struct skge_port *skge = netdev_priv(dev); 3151 struct skge_ring *ring = &skge->tx_ring; 3152 struct skge_element *e; 3153 unsigned int bytes_compl = 0, pkts_compl = 0; 3154 3155 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 3156 3157 for (e = ring->to_clean; e != ring->to_use; e = e->next) { 3158 u32 control = ((const struct skge_tx_desc *) e->desc)->control; 3159 3160 if (control & BMU_OWN) 3161 break; 3162 3163 skge_tx_unmap(skge->hw->pdev, e, control); 3164 3165 if (control & BMU_EOF) { 3166 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev, 3167 "tx done slot %td\n", 3168 e - skge->tx_ring.start); 3169 3170 pkts_compl++; 3171 bytes_compl += e->skb->len; 3172 3173 dev_consume_skb_any(e->skb); 3174 } 3175 } 3176 netdev_completed_queue(dev, pkts_compl, bytes_compl); 3177 skge->tx_ring.to_clean = e; 3178 3179 /* Can run lockless until we need to synchronize to restart queue. */ 3180 smp_mb(); 3181 3182 if (unlikely(netif_queue_stopped(dev) && 3183 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { 3184 netif_tx_lock(dev); 3185 if (unlikely(netif_queue_stopped(dev) && 3186 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { 3187 netif_wake_queue(dev); 3188 3189 } 3190 netif_tx_unlock(dev); 3191 } 3192 } 3193 3194 static int skge_poll(struct napi_struct *napi, int budget) 3195 { 3196 struct skge_port *skge = container_of(napi, struct skge_port, napi); 3197 struct net_device *dev = skge->netdev; 3198 struct skge_hw *hw = skge->hw; 3199 struct skge_ring *ring = &skge->rx_ring; 3200 struct skge_element *e; 3201 int work_done = 0; 3202 3203 skge_tx_done(dev); 3204 3205 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 3206 3207 for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) { 3208 struct skge_rx_desc *rd = e->desc; 3209 struct sk_buff *skb; 3210 u32 control; 3211 3212 rmb(); 3213 control = rd->control; 3214 if (control & BMU_OWN) 3215 break; 3216 3217 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2); 3218 if (likely(skb)) { 3219 napi_gro_receive(napi, skb); 3220 ++work_done; 3221 } 3222 } 3223 ring->to_clean = e; 3224 3225 /* restart receiver */ 3226 wmb(); 3227 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START); 3228 3229 if (work_done < budget && napi_complete_done(napi, work_done)) { 3230 unsigned long flags; 3231 3232 spin_lock_irqsave(&hw->hw_lock, flags); 3233 hw->intr_mask |= napimask[skge->port]; 3234 skge_write32(hw, B0_IMSK, hw->intr_mask); 3235 skge_read32(hw, B0_IMSK); 3236 spin_unlock_irqrestore(&hw->hw_lock, flags); 3237 } 3238 3239 return work_done; 3240 } 3241 3242 /* Parity errors seem to happen when Genesis is connected to a switch 3243 * with no other ports present. Heartbeat error?? 3244 */ 3245 static void skge_mac_parity(struct skge_hw *hw, int port) 3246 { 3247 struct net_device *dev = hw->dev[port]; 3248 3249 ++dev->stats.tx_heartbeat_errors; 3250 3251 if (is_genesis(hw)) 3252 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 3253 MFF_CLR_PERR); 3254 else 3255 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ 3256 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), 3257 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 3258 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE); 3259 } 3260 3261 static void skge_mac_intr(struct skge_hw *hw, int port) 3262 { 3263 if (is_genesis(hw)) 3264 genesis_mac_intr(hw, port); 3265 else 3266 yukon_mac_intr(hw, port); 3267 } 3268 3269 /* Handle device specific framing and timeout interrupts */ 3270 static void skge_error_irq(struct skge_hw *hw) 3271 { 3272 struct pci_dev *pdev = hw->pdev; 3273 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC); 3274 3275 if (is_genesis(hw)) { 3276 /* clear xmac errors */ 3277 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) 3278 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT); 3279 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) 3280 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT); 3281 } else { 3282 /* Timestamp (unused) overflow */ 3283 if (hwstatus & IS_IRQ_TIST_OV) 3284 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 3285 } 3286 3287 if (hwstatus & IS_RAM_RD_PAR) { 3288 dev_err(&pdev->dev, "Ram read data parity error\n"); 3289 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR); 3290 } 3291 3292 if (hwstatus & IS_RAM_WR_PAR) { 3293 dev_err(&pdev->dev, "Ram write data parity error\n"); 3294 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR); 3295 } 3296 3297 if (hwstatus & IS_M1_PAR_ERR) 3298 skge_mac_parity(hw, 0); 3299 3300 if (hwstatus & IS_M2_PAR_ERR) 3301 skge_mac_parity(hw, 1); 3302 3303 if (hwstatus & IS_R1_PAR_ERR) { 3304 dev_err(&pdev->dev, "%s: receive queue parity error\n", 3305 hw->dev[0]->name); 3306 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P); 3307 } 3308 3309 if (hwstatus & IS_R2_PAR_ERR) { 3310 dev_err(&pdev->dev, "%s: receive queue parity error\n", 3311 hw->dev[1]->name); 3312 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P); 3313 } 3314 3315 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) { 3316 u16 pci_status, pci_cmd; 3317 3318 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 3319 pci_read_config_word(pdev, PCI_STATUS, &pci_status); 3320 3321 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n", 3322 pci_cmd, pci_status); 3323 3324 /* Write the error bits back to clear them. */ 3325 pci_status &= PCI_STATUS_ERROR_BITS; 3326 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3327 pci_write_config_word(pdev, PCI_COMMAND, 3328 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY); 3329 pci_write_config_word(pdev, PCI_STATUS, pci_status); 3330 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3331 3332 /* if error still set then just ignore it */ 3333 hwstatus = skge_read32(hw, B0_HWE_ISRC); 3334 if (hwstatus & IS_IRQ_STAT) { 3335 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n"); 3336 hw->intr_mask &= ~IS_HW_ERR; 3337 } 3338 } 3339 } 3340 3341 /* 3342 * Interrupt from PHY are handled in tasklet (softirq) 3343 * because accessing phy registers requires spin wait which might 3344 * cause excess interrupt latency. 3345 */ 3346 static void skge_extirq(struct tasklet_struct *t) 3347 { 3348 struct skge_hw *hw = from_tasklet(hw, t, phy_task); 3349 int port; 3350 3351 for (port = 0; port < hw->ports; port++) { 3352 struct net_device *dev = hw->dev[port]; 3353 3354 if (netif_running(dev)) { 3355 struct skge_port *skge = netdev_priv(dev); 3356 3357 spin_lock(&hw->phy_lock); 3358 if (!is_genesis(hw)) 3359 yukon_phy_intr(skge); 3360 else if (hw->phy_type == SK_PHY_BCOM) 3361 bcom_phy_intr(skge); 3362 spin_unlock(&hw->phy_lock); 3363 } 3364 } 3365 3366 spin_lock_irq(&hw->hw_lock); 3367 hw->intr_mask |= IS_EXT_REG; 3368 skge_write32(hw, B0_IMSK, hw->intr_mask); 3369 skge_read32(hw, B0_IMSK); 3370 spin_unlock_irq(&hw->hw_lock); 3371 } 3372 3373 static irqreturn_t skge_intr(int irq, void *dev_id) 3374 { 3375 struct skge_hw *hw = dev_id; 3376 u32 status; 3377 int handled = 0; 3378 3379 spin_lock(&hw->hw_lock); 3380 /* Reading this register masks IRQ */ 3381 status = skge_read32(hw, B0_SP_ISRC); 3382 if (status == 0 || status == ~0) 3383 goto out; 3384 3385 handled = 1; 3386 status &= hw->intr_mask; 3387 if (status & IS_EXT_REG) { 3388 hw->intr_mask &= ~IS_EXT_REG; 3389 tasklet_schedule(&hw->phy_task); 3390 } 3391 3392 if (status & (IS_XA1_F|IS_R1_F)) { 3393 struct skge_port *skge = netdev_priv(hw->dev[0]); 3394 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F); 3395 napi_schedule(&skge->napi); 3396 } 3397 3398 if (status & IS_PA_TO_TX1) 3399 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1); 3400 3401 if (status & IS_PA_TO_RX1) { 3402 ++hw->dev[0]->stats.rx_over_errors; 3403 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1); 3404 } 3405 3406 3407 if (status & IS_MAC1) 3408 skge_mac_intr(hw, 0); 3409 3410 if (hw->dev[1]) { 3411 struct skge_port *skge = netdev_priv(hw->dev[1]); 3412 3413 if (status & (IS_XA2_F|IS_R2_F)) { 3414 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F); 3415 napi_schedule(&skge->napi); 3416 } 3417 3418 if (status & IS_PA_TO_RX2) { 3419 ++hw->dev[1]->stats.rx_over_errors; 3420 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2); 3421 } 3422 3423 if (status & IS_PA_TO_TX2) 3424 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2); 3425 3426 if (status & IS_MAC2) 3427 skge_mac_intr(hw, 1); 3428 } 3429 3430 if (status & IS_HW_ERR) 3431 skge_error_irq(hw); 3432 out: 3433 skge_write32(hw, B0_IMSK, hw->intr_mask); 3434 skge_read32(hw, B0_IMSK); 3435 spin_unlock(&hw->hw_lock); 3436 3437 return IRQ_RETVAL(handled); 3438 } 3439 3440 #ifdef CONFIG_NET_POLL_CONTROLLER 3441 static void skge_netpoll(struct net_device *dev) 3442 { 3443 struct skge_port *skge = netdev_priv(dev); 3444 3445 disable_irq(dev->irq); 3446 skge_intr(dev->irq, skge->hw); 3447 enable_irq(dev->irq); 3448 } 3449 #endif 3450 3451 static int skge_set_mac_address(struct net_device *dev, void *p) 3452 { 3453 struct skge_port *skge = netdev_priv(dev); 3454 struct skge_hw *hw = skge->hw; 3455 unsigned port = skge->port; 3456 const struct sockaddr *addr = p; 3457 u16 ctrl; 3458 3459 if (!is_valid_ether_addr(addr->sa_data)) 3460 return -EADDRNOTAVAIL; 3461 3462 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 3463 3464 if (!netif_running(dev)) { 3465 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); 3466 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); 3467 } else { 3468 /* disable Rx */ 3469 spin_lock_bh(&hw->phy_lock); 3470 ctrl = gma_read16(hw, port, GM_GP_CTRL); 3471 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA); 3472 3473 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); 3474 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); 3475 3476 if (is_genesis(hw)) 3477 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 3478 else { 3479 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); 3480 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); 3481 } 3482 3483 gma_write16(hw, port, GM_GP_CTRL, ctrl); 3484 spin_unlock_bh(&hw->phy_lock); 3485 } 3486 3487 return 0; 3488 } 3489 3490 static const struct { 3491 u8 id; 3492 const char *name; 3493 } skge_chips[] = { 3494 { CHIP_ID_GENESIS, "Genesis" }, 3495 { CHIP_ID_YUKON, "Yukon" }, 3496 { CHIP_ID_YUKON_LITE, "Yukon-Lite"}, 3497 { CHIP_ID_YUKON_LP, "Yukon-LP"}, 3498 }; 3499 3500 static const char *skge_board_name(const struct skge_hw *hw) 3501 { 3502 int i; 3503 static char buf[16]; 3504 3505 for (i = 0; i < ARRAY_SIZE(skge_chips); i++) 3506 if (skge_chips[i].id == hw->chip_id) 3507 return skge_chips[i].name; 3508 3509 snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id); 3510 return buf; 3511 } 3512 3513 3514 /* 3515 * Setup the board data structure, but don't bring up 3516 * the port(s) 3517 */ 3518 static int skge_reset(struct skge_hw *hw) 3519 { 3520 u32 reg; 3521 u16 ctst, pci_status; 3522 u8 t8, mac_cfg, pmd_type; 3523 int i; 3524 3525 ctst = skge_read16(hw, B0_CTST); 3526 3527 /* do a SW reset */ 3528 skge_write8(hw, B0_CTST, CS_RST_SET); 3529 skge_write8(hw, B0_CTST, CS_RST_CLR); 3530 3531 /* clear PCI errors, if any */ 3532 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3533 skge_write8(hw, B2_TST_CTRL2, 0); 3534 3535 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status); 3536 pci_write_config_word(hw->pdev, PCI_STATUS, 3537 pci_status | PCI_STATUS_ERROR_BITS); 3538 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3539 skge_write8(hw, B0_CTST, CS_MRST_CLR); 3540 3541 /* restore CLK_RUN bits (for Yukon-Lite) */ 3542 skge_write16(hw, B0_CTST, 3543 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA)); 3544 3545 hw->chip_id = skge_read8(hw, B2_CHIP_ID); 3546 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf; 3547 pmd_type = skge_read8(hw, B2_PMD_TYP); 3548 hw->copper = (pmd_type == 'T' || pmd_type == '1'); 3549 3550 switch (hw->chip_id) { 3551 case CHIP_ID_GENESIS: 3552 #ifdef CONFIG_SKGE_GENESIS 3553 switch (hw->phy_type) { 3554 case SK_PHY_XMAC: 3555 hw->phy_addr = PHY_ADDR_XMAC; 3556 break; 3557 case SK_PHY_BCOM: 3558 hw->phy_addr = PHY_ADDR_BCOM; 3559 break; 3560 default: 3561 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n", 3562 hw->phy_type); 3563 return -EOPNOTSUPP; 3564 } 3565 break; 3566 #else 3567 dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n"); 3568 return -EOPNOTSUPP; 3569 #endif 3570 3571 case CHIP_ID_YUKON: 3572 case CHIP_ID_YUKON_LITE: 3573 case CHIP_ID_YUKON_LP: 3574 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S') 3575 hw->copper = 1; 3576 3577 hw->phy_addr = PHY_ADDR_MARV; 3578 break; 3579 3580 default: 3581 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n", 3582 hw->chip_id); 3583 return -EOPNOTSUPP; 3584 } 3585 3586 mac_cfg = skge_read8(hw, B2_MAC_CFG); 3587 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2; 3588 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4; 3589 3590 /* read the adapters RAM size */ 3591 t8 = skge_read8(hw, B2_E_0); 3592 if (is_genesis(hw)) { 3593 if (t8 == 3) { 3594 /* special case: 4 x 64k x 36, offset = 0x80000 */ 3595 hw->ram_size = 0x100000; 3596 hw->ram_offset = 0x80000; 3597 } else 3598 hw->ram_size = t8 * 512; 3599 } else if (t8 == 0) 3600 hw->ram_size = 0x20000; 3601 else 3602 hw->ram_size = t8 * 4096; 3603 3604 hw->intr_mask = IS_HW_ERR; 3605 3606 /* Use PHY IRQ for all but fiber based Genesis board */ 3607 if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)) 3608 hw->intr_mask |= IS_EXT_REG; 3609 3610 if (is_genesis(hw)) 3611 genesis_init(hw); 3612 else { 3613 /* switch power to VCC (WA for VAUX problem) */ 3614 skge_write8(hw, B0_POWER_CTRL, 3615 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); 3616 3617 /* avoid boards with stuck Hardware error bits */ 3618 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) && 3619 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) { 3620 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n"); 3621 hw->intr_mask &= ~IS_HW_ERR; 3622 } 3623 3624 /* Clear PHY COMA */ 3625 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3626 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®); 3627 reg &= ~PCI_PHY_COMA; 3628 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg); 3629 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3630 3631 3632 for (i = 0; i < hw->ports; i++) { 3633 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); 3634 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); 3635 } 3636 } 3637 3638 /* turn off hardware timer (unused) */ 3639 skge_write8(hw, B2_TI_CTRL, TIM_STOP); 3640 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); 3641 skge_write8(hw, B0_LED, LED_STAT_ON); 3642 3643 /* enable the Tx Arbiters */ 3644 for (i = 0; i < hw->ports; i++) 3645 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); 3646 3647 /* Initialize ram interface */ 3648 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); 3649 3650 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53); 3651 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53); 3652 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53); 3653 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53); 3654 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53); 3655 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53); 3656 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53); 3657 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53); 3658 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53); 3659 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53); 3660 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53); 3661 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53); 3662 3663 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK); 3664 3665 /* Set interrupt moderation for Transmit only 3666 * Receive interrupts avoided by NAPI 3667 */ 3668 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F); 3669 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); 3670 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 3671 3672 /* Leave irq disabled until first port is brought up. */ 3673 skge_write32(hw, B0_IMSK, 0); 3674 3675 for (i = 0; i < hw->ports; i++) { 3676 if (is_genesis(hw)) 3677 genesis_reset(hw, i); 3678 else 3679 yukon_reset(hw, i); 3680 } 3681 3682 return 0; 3683 } 3684 3685 3686 #ifdef CONFIG_SKGE_DEBUG 3687 3688 static struct dentry *skge_debug; 3689 3690 static int skge_debug_show(struct seq_file *seq, void *v) 3691 { 3692 struct net_device *dev = seq->private; 3693 const struct skge_port *skge = netdev_priv(dev); 3694 const struct skge_hw *hw = skge->hw; 3695 const struct skge_element *e; 3696 3697 if (!netif_running(dev)) 3698 return -ENETDOWN; 3699 3700 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC), 3701 skge_read32(hw, B0_IMSK)); 3702 3703 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring)); 3704 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { 3705 const struct skge_tx_desc *t = e->desc; 3706 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n", 3707 t->control, t->dma_hi, t->dma_lo, t->status, 3708 t->csum_offs, t->csum_write, t->csum_start); 3709 } 3710 3711 seq_puts(seq, "\nRx Ring:\n"); 3712 for (e = skge->rx_ring.to_clean; ; e = e->next) { 3713 const struct skge_rx_desc *r = e->desc; 3714 3715 if (r->control & BMU_OWN) 3716 break; 3717 3718 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n", 3719 r->control, r->dma_hi, r->dma_lo, r->status, 3720 r->timestamp, r->csum1, r->csum1_start); 3721 } 3722 3723 return 0; 3724 } 3725 DEFINE_SHOW_ATTRIBUTE(skge_debug); 3726 3727 /* 3728 * Use network device events to create/remove/rename 3729 * debugfs file entries 3730 */ 3731 static int skge_device_event(struct notifier_block *unused, 3732 unsigned long event, void *ptr) 3733 { 3734 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 3735 struct skge_port *skge; 3736 3737 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug) 3738 goto done; 3739 3740 skge = netdev_priv(dev); 3741 switch (event) { 3742 case NETDEV_CHANGENAME: 3743 if (skge->debugfs) 3744 skge->debugfs = debugfs_rename(skge_debug, 3745 skge->debugfs, 3746 skge_debug, dev->name); 3747 break; 3748 3749 case NETDEV_GOING_DOWN: 3750 debugfs_remove(skge->debugfs); 3751 skge->debugfs = NULL; 3752 break; 3753 3754 case NETDEV_UP: 3755 skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug, 3756 dev, &skge_debug_fops); 3757 break; 3758 } 3759 3760 done: 3761 return NOTIFY_DONE; 3762 } 3763 3764 static struct notifier_block skge_notifier = { 3765 .notifier_call = skge_device_event, 3766 }; 3767 3768 3769 static __init void skge_debug_init(void) 3770 { 3771 skge_debug = debugfs_create_dir("skge", NULL); 3772 3773 register_netdevice_notifier(&skge_notifier); 3774 } 3775 3776 static __exit void skge_debug_cleanup(void) 3777 { 3778 if (skge_debug) { 3779 unregister_netdevice_notifier(&skge_notifier); 3780 debugfs_remove(skge_debug); 3781 skge_debug = NULL; 3782 } 3783 } 3784 3785 #else 3786 #define skge_debug_init() 3787 #define skge_debug_cleanup() 3788 #endif 3789 3790 static const struct net_device_ops skge_netdev_ops = { 3791 .ndo_open = skge_up, 3792 .ndo_stop = skge_down, 3793 .ndo_start_xmit = skge_xmit_frame, 3794 .ndo_eth_ioctl = skge_ioctl, 3795 .ndo_get_stats = skge_get_stats, 3796 .ndo_tx_timeout = skge_tx_timeout, 3797 .ndo_change_mtu = skge_change_mtu, 3798 .ndo_validate_addr = eth_validate_addr, 3799 .ndo_set_rx_mode = skge_set_multicast, 3800 .ndo_set_mac_address = skge_set_mac_address, 3801 #ifdef CONFIG_NET_POLL_CONTROLLER 3802 .ndo_poll_controller = skge_netpoll, 3803 #endif 3804 }; 3805 3806 3807 /* Initialize network device */ 3808 static struct net_device *skge_devinit(struct skge_hw *hw, int port, 3809 int highmem) 3810 { 3811 struct skge_port *skge; 3812 struct net_device *dev = alloc_etherdev(sizeof(*skge)); 3813 3814 if (!dev) 3815 return NULL; 3816 3817 SET_NETDEV_DEV(dev, &hw->pdev->dev); 3818 dev->netdev_ops = &skge_netdev_ops; 3819 dev->ethtool_ops = &skge_ethtool_ops; 3820 dev->watchdog_timeo = TX_WATCHDOG; 3821 dev->irq = hw->pdev->irq; 3822 3823 /* MTU range: 60 - 9000 */ 3824 dev->min_mtu = ETH_ZLEN; 3825 dev->max_mtu = ETH_JUMBO_MTU; 3826 3827 if (highmem) 3828 dev->features |= NETIF_F_HIGHDMA; 3829 3830 skge = netdev_priv(dev); 3831 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT); 3832 skge->netdev = dev; 3833 skge->hw = hw; 3834 skge->msg_enable = netif_msg_init(debug, default_msg); 3835 3836 skge->tx_ring.count = DEFAULT_TX_RING_SIZE; 3837 skge->rx_ring.count = DEFAULT_RX_RING_SIZE; 3838 3839 /* Auto speed and flow control */ 3840 skge->autoneg = AUTONEG_ENABLE; 3841 skge->flow_control = FLOW_MODE_SYM_OR_REM; 3842 skge->duplex = -1; 3843 skge->speed = -1; 3844 skge->advertising = skge_supported_modes(hw); 3845 3846 if (device_can_wakeup(&hw->pdev->dev)) { 3847 skge->wol = wol_supported(hw) & WAKE_MAGIC; 3848 device_set_wakeup_enable(&hw->pdev->dev, skge->wol); 3849 } 3850 3851 hw->dev[port] = dev; 3852 3853 skge->port = port; 3854 3855 /* Only used for Genesis XMAC */ 3856 if (is_genesis(hw)) 3857 timer_setup(&skge->link_timer, xm_link_timer, 0); 3858 else { 3859 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3860 NETIF_F_RXCSUM; 3861 dev->features |= dev->hw_features; 3862 } 3863 3864 /* read the mac address */ 3865 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN); 3866 3867 return dev; 3868 } 3869 3870 static void skge_show_addr(struct net_device *dev) 3871 { 3872 const struct skge_port *skge = netdev_priv(dev); 3873 3874 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr); 3875 } 3876 3877 static int only_32bit_dma; 3878 3879 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3880 { 3881 struct net_device *dev, *dev1; 3882 struct skge_hw *hw; 3883 int err, using_dac = 0; 3884 3885 err = pci_enable_device(pdev); 3886 if (err) { 3887 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3888 goto err_out; 3889 } 3890 3891 err = pci_request_regions(pdev, DRV_NAME); 3892 if (err) { 3893 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 3894 goto err_out_disable_pdev; 3895 } 3896 3897 pci_set_master(pdev); 3898 3899 if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { 3900 using_dac = 1; 3901 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64)); 3902 } else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) { 3903 using_dac = 0; 3904 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 3905 } 3906 3907 if (err) { 3908 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3909 goto err_out_free_regions; 3910 } 3911 3912 #ifdef __BIG_ENDIAN 3913 /* byte swap descriptors in hardware */ 3914 { 3915 u32 reg; 3916 3917 pci_read_config_dword(pdev, PCI_DEV_REG2, ®); 3918 reg |= PCI_REV_DESC; 3919 pci_write_config_dword(pdev, PCI_DEV_REG2, reg); 3920 } 3921 #endif 3922 3923 err = -ENOMEM; 3924 /* space for skge@pci:0000:04:00.0 */ 3925 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:") 3926 + strlen(pci_name(pdev)) + 1, GFP_KERNEL); 3927 if (!hw) 3928 goto err_out_free_regions; 3929 3930 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev)); 3931 3932 hw->pdev = pdev; 3933 spin_lock_init(&hw->hw_lock); 3934 spin_lock_init(&hw->phy_lock); 3935 tasklet_setup(&hw->phy_task, skge_extirq); 3936 3937 hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000); 3938 if (!hw->regs) { 3939 dev_err(&pdev->dev, "cannot map device registers\n"); 3940 goto err_out_free_hw; 3941 } 3942 3943 err = skge_reset(hw); 3944 if (err) 3945 goto err_out_iounmap; 3946 3947 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n", 3948 DRV_VERSION, 3949 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq, 3950 skge_board_name(hw), hw->chip_rev); 3951 3952 dev = skge_devinit(hw, 0, using_dac); 3953 if (!dev) { 3954 err = -ENOMEM; 3955 goto err_out_led_off; 3956 } 3957 3958 /* Some motherboards are broken and has zero in ROM. */ 3959 if (!is_valid_ether_addr(dev->dev_addr)) 3960 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n"); 3961 3962 err = register_netdev(dev); 3963 if (err) { 3964 dev_err(&pdev->dev, "cannot register net device\n"); 3965 goto err_out_free_netdev; 3966 } 3967 3968 skge_show_addr(dev); 3969 3970 if (hw->ports > 1) { 3971 dev1 = skge_devinit(hw, 1, using_dac); 3972 if (!dev1) { 3973 err = -ENOMEM; 3974 goto err_out_unregister; 3975 } 3976 3977 err = register_netdev(dev1); 3978 if (err) { 3979 dev_err(&pdev->dev, "cannot register second net device\n"); 3980 goto err_out_free_dev1; 3981 } 3982 3983 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, 3984 hw->irq_name, hw); 3985 if (err) { 3986 dev_err(&pdev->dev, "cannot assign irq %d\n", 3987 pdev->irq); 3988 goto err_out_unregister_dev1; 3989 } 3990 3991 skge_show_addr(dev1); 3992 } 3993 pci_set_drvdata(pdev, hw); 3994 3995 return 0; 3996 3997 err_out_unregister_dev1: 3998 unregister_netdev(dev1); 3999 err_out_free_dev1: 4000 free_netdev(dev1); 4001 err_out_unregister: 4002 unregister_netdev(dev); 4003 err_out_free_netdev: 4004 free_netdev(dev); 4005 err_out_led_off: 4006 skge_write16(hw, B0_LED, LED_STAT_OFF); 4007 err_out_iounmap: 4008 iounmap(hw->regs); 4009 err_out_free_hw: 4010 kfree(hw); 4011 err_out_free_regions: 4012 pci_release_regions(pdev); 4013 err_out_disable_pdev: 4014 pci_disable_device(pdev); 4015 err_out: 4016 return err; 4017 } 4018 4019 static void skge_remove(struct pci_dev *pdev) 4020 { 4021 struct skge_hw *hw = pci_get_drvdata(pdev); 4022 struct net_device *dev0, *dev1; 4023 4024 if (!hw) 4025 return; 4026 4027 dev1 = hw->dev[1]; 4028 if (dev1) 4029 unregister_netdev(dev1); 4030 dev0 = hw->dev[0]; 4031 unregister_netdev(dev0); 4032 4033 tasklet_kill(&hw->phy_task); 4034 4035 spin_lock_irq(&hw->hw_lock); 4036 hw->intr_mask = 0; 4037 4038 if (hw->ports > 1) { 4039 skge_write32(hw, B0_IMSK, 0); 4040 skge_read32(hw, B0_IMSK); 4041 } 4042 spin_unlock_irq(&hw->hw_lock); 4043 4044 skge_write16(hw, B0_LED, LED_STAT_OFF); 4045 skge_write8(hw, B0_CTST, CS_RST_SET); 4046 4047 if (hw->ports > 1) 4048 free_irq(pdev->irq, hw); 4049 pci_release_regions(pdev); 4050 pci_disable_device(pdev); 4051 if (dev1) 4052 free_netdev(dev1); 4053 free_netdev(dev0); 4054 4055 iounmap(hw->regs); 4056 kfree(hw); 4057 } 4058 4059 #ifdef CONFIG_PM_SLEEP 4060 static int skge_suspend(struct device *dev) 4061 { 4062 struct skge_hw *hw = dev_get_drvdata(dev); 4063 int i; 4064 4065 if (!hw) 4066 return 0; 4067 4068 for (i = 0; i < hw->ports; i++) { 4069 struct net_device *dev = hw->dev[i]; 4070 struct skge_port *skge = netdev_priv(dev); 4071 4072 if (netif_running(dev)) 4073 skge_down(dev); 4074 4075 if (skge->wol) 4076 skge_wol_init(skge); 4077 } 4078 4079 skge_write32(hw, B0_IMSK, 0); 4080 4081 return 0; 4082 } 4083 4084 static int skge_resume(struct device *dev) 4085 { 4086 struct skge_hw *hw = dev_get_drvdata(dev); 4087 int i, err; 4088 4089 if (!hw) 4090 return 0; 4091 4092 err = skge_reset(hw); 4093 if (err) 4094 goto out; 4095 4096 for (i = 0; i < hw->ports; i++) { 4097 struct net_device *dev = hw->dev[i]; 4098 4099 if (netif_running(dev)) { 4100 err = skge_up(dev); 4101 4102 if (err) { 4103 netdev_err(dev, "could not up: %d\n", err); 4104 dev_close(dev); 4105 goto out; 4106 } 4107 } 4108 } 4109 out: 4110 return err; 4111 } 4112 4113 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume); 4114 #define SKGE_PM_OPS (&skge_pm_ops) 4115 4116 #else 4117 4118 #define SKGE_PM_OPS NULL 4119 #endif /* CONFIG_PM_SLEEP */ 4120 4121 static void skge_shutdown(struct pci_dev *pdev) 4122 { 4123 struct skge_hw *hw = pci_get_drvdata(pdev); 4124 int i; 4125 4126 if (!hw) 4127 return; 4128 4129 for (i = 0; i < hw->ports; i++) { 4130 struct net_device *dev = hw->dev[i]; 4131 struct skge_port *skge = netdev_priv(dev); 4132 4133 if (skge->wol) 4134 skge_wol_init(skge); 4135 } 4136 4137 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev)); 4138 pci_set_power_state(pdev, PCI_D3hot); 4139 } 4140 4141 static struct pci_driver skge_driver = { 4142 .name = DRV_NAME, 4143 .id_table = skge_id_table, 4144 .probe = skge_probe, 4145 .remove = skge_remove, 4146 .shutdown = skge_shutdown, 4147 .driver.pm = SKGE_PM_OPS, 4148 }; 4149 4150 static const struct dmi_system_id skge_32bit_dma_boards[] = { 4151 { 4152 .ident = "Gigabyte nForce boards", 4153 .matches = { 4154 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"), 4155 DMI_MATCH(DMI_BOARD_NAME, "nForce"), 4156 }, 4157 }, 4158 { 4159 .ident = "ASUS P5NSLI", 4160 .matches = { 4161 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), 4162 DMI_MATCH(DMI_BOARD_NAME, "P5NSLI") 4163 }, 4164 }, 4165 { 4166 .ident = "FUJITSU SIEMENS A8NE-FM", 4167 .matches = { 4168 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."), 4169 DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM") 4170 }, 4171 }, 4172 {} 4173 }; 4174 4175 static int __init skge_init_module(void) 4176 { 4177 if (dmi_check_system(skge_32bit_dma_boards)) 4178 only_32bit_dma = 1; 4179 skge_debug_init(); 4180 return pci_register_driver(&skge_driver); 4181 } 4182 4183 static void __exit skge_cleanup_module(void) 4184 { 4185 pci_unregister_driver(&skge_driver); 4186 skge_debug_cleanup(); 4187 } 4188 4189 module_init(skge_init_module); 4190 module_exit(skge_cleanup_module); 4191