1 /* 2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit 3 * Ethernet adapters. Based on earlier sk98lin, e100 and 4 * FreeBSD if_sk drivers. 5 * 6 * This driver intentionally does not support all the features 7 * of the original driver such as link fail-over and link management because 8 * those should be done at higher levels. 9 * 10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/in.h> 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/netdevice.h> 33 #include <linux/etherdevice.h> 34 #include <linux/ethtool.h> 35 #include <linux/pci.h> 36 #include <linux/if_vlan.h> 37 #include <linux/ip.h> 38 #include <linux/delay.h> 39 #include <linux/crc32.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/debugfs.h> 42 #include <linux/sched.h> 43 #include <linux/seq_file.h> 44 #include <linux/mii.h> 45 #include <linux/slab.h> 46 #include <linux/dmi.h> 47 #include <linux/prefetch.h> 48 #include <asm/irq.h> 49 50 #include "skge.h" 51 52 #define DRV_NAME "skge" 53 #define DRV_VERSION "1.14" 54 55 #define DEFAULT_TX_RING_SIZE 128 56 #define DEFAULT_RX_RING_SIZE 512 57 #define MAX_TX_RING_SIZE 1024 58 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1) 59 #define MAX_RX_RING_SIZE 4096 60 #define RX_COPY_THRESHOLD 128 61 #define RX_BUF_SIZE 1536 62 #define PHY_RETRIES 1000 63 #define ETH_JUMBO_MTU 9000 64 #define TX_WATCHDOG (5 * HZ) 65 #define NAPI_WEIGHT 64 66 #define BLINK_MS 250 67 #define LINK_HZ HZ 68 69 #define SKGE_EEPROM_MAGIC 0x9933aabb 70 71 72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); 73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>"); 74 MODULE_LICENSE("GPL"); 75 MODULE_VERSION(DRV_VERSION); 76 77 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 78 NETIF_MSG_LINK | NETIF_MSG_IFUP | 79 NETIF_MSG_IFDOWN); 80 81 static int debug = -1; /* defaults above */ 82 module_param(debug, int, 0); 83 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 84 85 static const struct pci_device_id skge_id_table[] = { 86 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */ 87 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */ 88 #ifdef CONFIG_SKGE_GENESIS 89 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */ 90 #endif 91 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */ 92 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */ 93 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */ 94 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */ 95 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */ 96 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */ 97 { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */ 98 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */ 99 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */ 100 { 0 } 101 }; 102 MODULE_DEVICE_TABLE(pci, skge_id_table); 103 104 static int skge_up(struct net_device *dev); 105 static int skge_down(struct net_device *dev); 106 static void skge_phy_reset(struct skge_port *skge); 107 static void skge_tx_clean(struct net_device *dev); 108 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 109 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 110 static void genesis_get_stats(struct skge_port *skge, u64 *data); 111 static void yukon_get_stats(struct skge_port *skge, u64 *data); 112 static void yukon_init(struct skge_hw *hw, int port); 113 static void genesis_mac_init(struct skge_hw *hw, int port); 114 static void genesis_link_up(struct skge_port *skge); 115 static void skge_set_multicast(struct net_device *dev); 116 static irqreturn_t skge_intr(int irq, void *dev_id); 117 118 /* Avoid conditionals by using array */ 119 static const int txqaddr[] = { Q_XA1, Q_XA2 }; 120 static const int rxqaddr[] = { Q_R1, Q_R2 }; 121 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; 122 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; 123 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F }; 124 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 }; 125 126 static inline bool is_genesis(const struct skge_hw *hw) 127 { 128 #ifdef CONFIG_SKGE_GENESIS 129 return hw->chip_id == CHIP_ID_GENESIS; 130 #else 131 return false; 132 #endif 133 } 134 135 static int skge_get_regs_len(struct net_device *dev) 136 { 137 return 0x4000; 138 } 139 140 /* 141 * Returns copy of whole control register region 142 * Note: skip RAM address register because accessing it will 143 * cause bus hangs! 144 */ 145 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, 146 void *p) 147 { 148 const struct skge_port *skge = netdev_priv(dev); 149 const void __iomem *io = skge->hw->regs; 150 151 regs->version = 1; 152 memset(p, 0, regs->len); 153 memcpy_fromio(p, io, B3_RAM_ADDR); 154 155 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1, 156 regs->len - B3_RI_WTO_R1); 157 } 158 159 /* Wake on Lan only supported on Yukon chips with rev 1 or above */ 160 static u32 wol_supported(const struct skge_hw *hw) 161 { 162 if (is_genesis(hw)) 163 return 0; 164 165 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 166 return 0; 167 168 return WAKE_MAGIC | WAKE_PHY; 169 } 170 171 static void skge_wol_init(struct skge_port *skge) 172 { 173 struct skge_hw *hw = skge->hw; 174 int port = skge->port; 175 u16 ctrl; 176 177 skge_write16(hw, B0_CTST, CS_RST_CLR); 178 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR); 179 180 /* Turn on Vaux */ 181 skge_write8(hw, B0_POWER_CTRL, 182 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); 183 184 /* WA code for COMA mode -- clear PHY reset */ 185 if (hw->chip_id == CHIP_ID_YUKON_LITE && 186 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 187 u32 reg = skge_read32(hw, B2_GP_IO); 188 reg |= GP_DIR_9; 189 reg &= ~GP_IO_9; 190 skge_write32(hw, B2_GP_IO, reg); 191 } 192 193 skge_write32(hw, SK_REG(port, GPHY_CTRL), 194 GPC_DIS_SLEEP | 195 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | 196 GPC_ANEG_1 | GPC_RST_SET); 197 198 skge_write32(hw, SK_REG(port, GPHY_CTRL), 199 GPC_DIS_SLEEP | 200 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | 201 GPC_ANEG_1 | GPC_RST_CLR); 202 203 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR); 204 205 /* Force to 10/100 skge_reset will re-enable on resume */ 206 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, 207 (PHY_AN_100FULL | PHY_AN_100HALF | 208 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA)); 209 /* no 1000 HD/FD */ 210 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0); 211 gm_phy_write(hw, port, PHY_MARV_CTRL, 212 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE | 213 PHY_CT_RE_CFG | PHY_CT_DUP_MD); 214 215 216 /* Set GMAC to no flow control and auto update for speed/duplex */ 217 gma_write16(hw, port, GM_GP_CTRL, 218 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA| 219 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS); 220 221 /* Set WOL address */ 222 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR), 223 skge->netdev->dev_addr, ETH_ALEN); 224 225 /* Turn on appropriate WOL control bits */ 226 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT); 227 ctrl = 0; 228 if (skge->wol & WAKE_PHY) 229 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT; 230 else 231 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT; 232 233 if (skge->wol & WAKE_MAGIC) 234 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT; 235 else 236 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT; 237 238 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT; 239 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl); 240 241 /* block receiver */ 242 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 243 } 244 245 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 246 { 247 struct skge_port *skge = netdev_priv(dev); 248 249 wol->supported = wol_supported(skge->hw); 250 wol->wolopts = skge->wol; 251 } 252 253 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 254 { 255 struct skge_port *skge = netdev_priv(dev); 256 struct skge_hw *hw = skge->hw; 257 258 if ((wol->wolopts & ~wol_supported(hw)) || 259 !device_can_wakeup(&hw->pdev->dev)) 260 return -EOPNOTSUPP; 261 262 skge->wol = wol->wolopts; 263 264 device_set_wakeup_enable(&hw->pdev->dev, skge->wol); 265 266 return 0; 267 } 268 269 /* Determine supported/advertised modes based on hardware. 270 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx 271 */ 272 static u32 skge_supported_modes(const struct skge_hw *hw) 273 { 274 u32 supported; 275 276 if (hw->copper) { 277 supported = (SUPPORTED_10baseT_Half | 278 SUPPORTED_10baseT_Full | 279 SUPPORTED_100baseT_Half | 280 SUPPORTED_100baseT_Full | 281 SUPPORTED_1000baseT_Half | 282 SUPPORTED_1000baseT_Full | 283 SUPPORTED_Autoneg | 284 SUPPORTED_TP); 285 286 if (is_genesis(hw)) 287 supported &= ~(SUPPORTED_10baseT_Half | 288 SUPPORTED_10baseT_Full | 289 SUPPORTED_100baseT_Half | 290 SUPPORTED_100baseT_Full); 291 292 else if (hw->chip_id == CHIP_ID_YUKON) 293 supported &= ~SUPPORTED_1000baseT_Half; 294 } else 295 supported = (SUPPORTED_1000baseT_Full | 296 SUPPORTED_1000baseT_Half | 297 SUPPORTED_FIBRE | 298 SUPPORTED_Autoneg); 299 300 return supported; 301 } 302 303 static int skge_get_settings(struct net_device *dev, 304 struct ethtool_cmd *ecmd) 305 { 306 struct skge_port *skge = netdev_priv(dev); 307 struct skge_hw *hw = skge->hw; 308 309 ecmd->transceiver = XCVR_INTERNAL; 310 ecmd->supported = skge_supported_modes(hw); 311 312 if (hw->copper) { 313 ecmd->port = PORT_TP; 314 ecmd->phy_address = hw->phy_addr; 315 } else 316 ecmd->port = PORT_FIBRE; 317 318 ecmd->advertising = skge->advertising; 319 ecmd->autoneg = skge->autoneg; 320 ethtool_cmd_speed_set(ecmd, skge->speed); 321 ecmd->duplex = skge->duplex; 322 return 0; 323 } 324 325 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 326 { 327 struct skge_port *skge = netdev_priv(dev); 328 const struct skge_hw *hw = skge->hw; 329 u32 supported = skge_supported_modes(hw); 330 int err = 0; 331 332 if (ecmd->autoneg == AUTONEG_ENABLE) { 333 ecmd->advertising = supported; 334 skge->duplex = -1; 335 skge->speed = -1; 336 } else { 337 u32 setting; 338 u32 speed = ethtool_cmd_speed(ecmd); 339 340 switch (speed) { 341 case SPEED_1000: 342 if (ecmd->duplex == DUPLEX_FULL) 343 setting = SUPPORTED_1000baseT_Full; 344 else if (ecmd->duplex == DUPLEX_HALF) 345 setting = SUPPORTED_1000baseT_Half; 346 else 347 return -EINVAL; 348 break; 349 case SPEED_100: 350 if (ecmd->duplex == DUPLEX_FULL) 351 setting = SUPPORTED_100baseT_Full; 352 else if (ecmd->duplex == DUPLEX_HALF) 353 setting = SUPPORTED_100baseT_Half; 354 else 355 return -EINVAL; 356 break; 357 358 case SPEED_10: 359 if (ecmd->duplex == DUPLEX_FULL) 360 setting = SUPPORTED_10baseT_Full; 361 else if (ecmd->duplex == DUPLEX_HALF) 362 setting = SUPPORTED_10baseT_Half; 363 else 364 return -EINVAL; 365 break; 366 default: 367 return -EINVAL; 368 } 369 370 if ((setting & supported) == 0) 371 return -EINVAL; 372 373 skge->speed = speed; 374 skge->duplex = ecmd->duplex; 375 } 376 377 skge->autoneg = ecmd->autoneg; 378 skge->advertising = ecmd->advertising; 379 380 if (netif_running(dev)) { 381 skge_down(dev); 382 err = skge_up(dev); 383 if (err) { 384 dev_close(dev); 385 return err; 386 } 387 } 388 389 return 0; 390 } 391 392 static void skge_get_drvinfo(struct net_device *dev, 393 struct ethtool_drvinfo *info) 394 { 395 struct skge_port *skge = netdev_priv(dev); 396 397 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 398 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 399 strlcpy(info->bus_info, pci_name(skge->hw->pdev), 400 sizeof(info->bus_info)); 401 } 402 403 static const struct skge_stat { 404 char name[ETH_GSTRING_LEN]; 405 u16 xmac_offset; 406 u16 gma_offset; 407 } skge_stats[] = { 408 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI }, 409 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI }, 410 411 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK }, 412 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK }, 413 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK }, 414 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK }, 415 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK }, 416 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK }, 417 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE }, 418 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE }, 419 420 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL }, 421 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL }, 422 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL }, 423 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL }, 424 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR }, 425 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV }, 426 427 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 428 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT }, 429 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG }, 430 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 431 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR }, 432 }; 433 434 static int skge_get_sset_count(struct net_device *dev, int sset) 435 { 436 switch (sset) { 437 case ETH_SS_STATS: 438 return ARRAY_SIZE(skge_stats); 439 default: 440 return -EOPNOTSUPP; 441 } 442 } 443 444 static void skge_get_ethtool_stats(struct net_device *dev, 445 struct ethtool_stats *stats, u64 *data) 446 { 447 struct skge_port *skge = netdev_priv(dev); 448 449 if (is_genesis(skge->hw)) 450 genesis_get_stats(skge, data); 451 else 452 yukon_get_stats(skge, data); 453 } 454 455 /* Use hardware MIB variables for critical path statistics and 456 * transmit feedback not reported at interrupt. 457 * Other errors are accounted for in interrupt handler. 458 */ 459 static struct net_device_stats *skge_get_stats(struct net_device *dev) 460 { 461 struct skge_port *skge = netdev_priv(dev); 462 u64 data[ARRAY_SIZE(skge_stats)]; 463 464 if (is_genesis(skge->hw)) 465 genesis_get_stats(skge, data); 466 else 467 yukon_get_stats(skge, data); 468 469 dev->stats.tx_bytes = data[0]; 470 dev->stats.rx_bytes = data[1]; 471 dev->stats.tx_packets = data[2] + data[4] + data[6]; 472 dev->stats.rx_packets = data[3] + data[5] + data[7]; 473 dev->stats.multicast = data[3] + data[5]; 474 dev->stats.collisions = data[10]; 475 dev->stats.tx_aborted_errors = data[12]; 476 477 return &dev->stats; 478 } 479 480 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) 481 { 482 int i; 483 484 switch (stringset) { 485 case ETH_SS_STATS: 486 for (i = 0; i < ARRAY_SIZE(skge_stats); i++) 487 memcpy(data + i * ETH_GSTRING_LEN, 488 skge_stats[i].name, ETH_GSTRING_LEN); 489 break; 490 } 491 } 492 493 static void skge_get_ring_param(struct net_device *dev, 494 struct ethtool_ringparam *p) 495 { 496 struct skge_port *skge = netdev_priv(dev); 497 498 p->rx_max_pending = MAX_RX_RING_SIZE; 499 p->tx_max_pending = MAX_TX_RING_SIZE; 500 501 p->rx_pending = skge->rx_ring.count; 502 p->tx_pending = skge->tx_ring.count; 503 } 504 505 static int skge_set_ring_param(struct net_device *dev, 506 struct ethtool_ringparam *p) 507 { 508 struct skge_port *skge = netdev_priv(dev); 509 int err = 0; 510 511 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE || 512 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE) 513 return -EINVAL; 514 515 skge->rx_ring.count = p->rx_pending; 516 skge->tx_ring.count = p->tx_pending; 517 518 if (netif_running(dev)) { 519 skge_down(dev); 520 err = skge_up(dev); 521 if (err) 522 dev_close(dev); 523 } 524 525 return err; 526 } 527 528 static u32 skge_get_msglevel(struct net_device *netdev) 529 { 530 struct skge_port *skge = netdev_priv(netdev); 531 return skge->msg_enable; 532 } 533 534 static void skge_set_msglevel(struct net_device *netdev, u32 value) 535 { 536 struct skge_port *skge = netdev_priv(netdev); 537 skge->msg_enable = value; 538 } 539 540 static int skge_nway_reset(struct net_device *dev) 541 { 542 struct skge_port *skge = netdev_priv(dev); 543 544 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev)) 545 return -EINVAL; 546 547 skge_phy_reset(skge); 548 return 0; 549 } 550 551 static void skge_get_pauseparam(struct net_device *dev, 552 struct ethtool_pauseparam *ecmd) 553 { 554 struct skge_port *skge = netdev_priv(dev); 555 556 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) || 557 (skge->flow_control == FLOW_MODE_SYM_OR_REM)); 558 ecmd->tx_pause = (ecmd->rx_pause || 559 (skge->flow_control == FLOW_MODE_LOC_SEND)); 560 561 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause; 562 } 563 564 static int skge_set_pauseparam(struct net_device *dev, 565 struct ethtool_pauseparam *ecmd) 566 { 567 struct skge_port *skge = netdev_priv(dev); 568 struct ethtool_pauseparam old; 569 int err = 0; 570 571 skge_get_pauseparam(dev, &old); 572 573 if (ecmd->autoneg != old.autoneg) 574 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC; 575 else { 576 if (ecmd->rx_pause && ecmd->tx_pause) 577 skge->flow_control = FLOW_MODE_SYMMETRIC; 578 else if (ecmd->rx_pause && !ecmd->tx_pause) 579 skge->flow_control = FLOW_MODE_SYM_OR_REM; 580 else if (!ecmd->rx_pause && ecmd->tx_pause) 581 skge->flow_control = FLOW_MODE_LOC_SEND; 582 else 583 skge->flow_control = FLOW_MODE_NONE; 584 } 585 586 if (netif_running(dev)) { 587 skge_down(dev); 588 err = skge_up(dev); 589 if (err) { 590 dev_close(dev); 591 return err; 592 } 593 } 594 595 return 0; 596 } 597 598 /* Chip internal frequency for clock calculations */ 599 static inline u32 hwkhz(const struct skge_hw *hw) 600 { 601 return is_genesis(hw) ? 53125 : 78125; 602 } 603 604 /* Chip HZ to microseconds */ 605 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks) 606 { 607 return (ticks * 1000) / hwkhz(hw); 608 } 609 610 /* Microseconds to chip HZ */ 611 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec) 612 { 613 return hwkhz(hw) * usec / 1000; 614 } 615 616 static int skge_get_coalesce(struct net_device *dev, 617 struct ethtool_coalesce *ecmd) 618 { 619 struct skge_port *skge = netdev_priv(dev); 620 struct skge_hw *hw = skge->hw; 621 int port = skge->port; 622 623 ecmd->rx_coalesce_usecs = 0; 624 ecmd->tx_coalesce_usecs = 0; 625 626 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) { 627 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI)); 628 u32 msk = skge_read32(hw, B2_IRQM_MSK); 629 630 if (msk & rxirqmask[port]) 631 ecmd->rx_coalesce_usecs = delay; 632 if (msk & txirqmask[port]) 633 ecmd->tx_coalesce_usecs = delay; 634 } 635 636 return 0; 637 } 638 639 /* Note: interrupt timer is per board, but can turn on/off per port */ 640 static int skge_set_coalesce(struct net_device *dev, 641 struct ethtool_coalesce *ecmd) 642 { 643 struct skge_port *skge = netdev_priv(dev); 644 struct skge_hw *hw = skge->hw; 645 int port = skge->port; 646 u32 msk = skge_read32(hw, B2_IRQM_MSK); 647 u32 delay = 25; 648 649 if (ecmd->rx_coalesce_usecs == 0) 650 msk &= ~rxirqmask[port]; 651 else if (ecmd->rx_coalesce_usecs < 25 || 652 ecmd->rx_coalesce_usecs > 33333) 653 return -EINVAL; 654 else { 655 msk |= rxirqmask[port]; 656 delay = ecmd->rx_coalesce_usecs; 657 } 658 659 if (ecmd->tx_coalesce_usecs == 0) 660 msk &= ~txirqmask[port]; 661 else if (ecmd->tx_coalesce_usecs < 25 || 662 ecmd->tx_coalesce_usecs > 33333) 663 return -EINVAL; 664 else { 665 msk |= txirqmask[port]; 666 delay = min(delay, ecmd->rx_coalesce_usecs); 667 } 668 669 skge_write32(hw, B2_IRQM_MSK, msk); 670 if (msk == 0) 671 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP); 672 else { 673 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay)); 674 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 675 } 676 return 0; 677 } 678 679 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST }; 680 static void skge_led(struct skge_port *skge, enum led_mode mode) 681 { 682 struct skge_hw *hw = skge->hw; 683 int port = skge->port; 684 685 spin_lock_bh(&hw->phy_lock); 686 if (is_genesis(hw)) { 687 switch (mode) { 688 case LED_MODE_OFF: 689 if (hw->phy_type == SK_PHY_BCOM) 690 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF); 691 else { 692 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0); 693 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF); 694 } 695 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); 696 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0); 697 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF); 698 break; 699 700 case LED_MODE_ON: 701 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON); 702 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); 703 704 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 705 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 706 707 break; 708 709 case LED_MODE_TST: 710 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON); 711 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100); 712 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 713 714 if (hw->phy_type == SK_PHY_BCOM) 715 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON); 716 else { 717 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON); 718 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100); 719 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 720 } 721 722 } 723 } else { 724 switch (mode) { 725 case LED_MODE_OFF: 726 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 727 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 728 PHY_M_LED_MO_DUP(MO_LED_OFF) | 729 PHY_M_LED_MO_10(MO_LED_OFF) | 730 PHY_M_LED_MO_100(MO_LED_OFF) | 731 PHY_M_LED_MO_1000(MO_LED_OFF) | 732 PHY_M_LED_MO_RX(MO_LED_OFF)); 733 break; 734 case LED_MODE_ON: 735 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 736 PHY_M_LED_PULS_DUR(PULS_170MS) | 737 PHY_M_LED_BLINK_RT(BLINK_84MS) | 738 PHY_M_LEDC_TX_CTRL | 739 PHY_M_LEDC_DP_CTRL); 740 741 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 742 PHY_M_LED_MO_RX(MO_LED_OFF) | 743 (skge->speed == SPEED_100 ? 744 PHY_M_LED_MO_100(MO_LED_ON) : 0)); 745 break; 746 case LED_MODE_TST: 747 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 748 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 749 PHY_M_LED_MO_DUP(MO_LED_ON) | 750 PHY_M_LED_MO_10(MO_LED_ON) | 751 PHY_M_LED_MO_100(MO_LED_ON) | 752 PHY_M_LED_MO_1000(MO_LED_ON) | 753 PHY_M_LED_MO_RX(MO_LED_ON)); 754 } 755 } 756 spin_unlock_bh(&hw->phy_lock); 757 } 758 759 /* blink LED's for finding board */ 760 static int skge_set_phys_id(struct net_device *dev, 761 enum ethtool_phys_id_state state) 762 { 763 struct skge_port *skge = netdev_priv(dev); 764 765 switch (state) { 766 case ETHTOOL_ID_ACTIVE: 767 return 2; /* cycle on/off twice per second */ 768 769 case ETHTOOL_ID_ON: 770 skge_led(skge, LED_MODE_TST); 771 break; 772 773 case ETHTOOL_ID_OFF: 774 skge_led(skge, LED_MODE_OFF); 775 break; 776 777 case ETHTOOL_ID_INACTIVE: 778 /* back to regular LED state */ 779 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF); 780 } 781 782 return 0; 783 } 784 785 static int skge_get_eeprom_len(struct net_device *dev) 786 { 787 struct skge_port *skge = netdev_priv(dev); 788 u32 reg2; 789 790 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, ®2); 791 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8); 792 } 793 794 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset) 795 { 796 u32 val; 797 798 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset); 799 800 do { 801 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); 802 } while (!(offset & PCI_VPD_ADDR_F)); 803 804 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val); 805 return val; 806 } 807 808 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val) 809 { 810 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val); 811 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, 812 offset | PCI_VPD_ADDR_F); 813 814 do { 815 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); 816 } while (offset & PCI_VPD_ADDR_F); 817 } 818 819 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 820 u8 *data) 821 { 822 struct skge_port *skge = netdev_priv(dev); 823 struct pci_dev *pdev = skge->hw->pdev; 824 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); 825 int length = eeprom->len; 826 u16 offset = eeprom->offset; 827 828 if (!cap) 829 return -EINVAL; 830 831 eeprom->magic = SKGE_EEPROM_MAGIC; 832 833 while (length > 0) { 834 u32 val = skge_vpd_read(pdev, cap, offset); 835 int n = min_t(int, length, sizeof(val)); 836 837 memcpy(data, &val, n); 838 length -= n; 839 data += n; 840 offset += n; 841 } 842 return 0; 843 } 844 845 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 846 u8 *data) 847 { 848 struct skge_port *skge = netdev_priv(dev); 849 struct pci_dev *pdev = skge->hw->pdev; 850 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); 851 int length = eeprom->len; 852 u16 offset = eeprom->offset; 853 854 if (!cap) 855 return -EINVAL; 856 857 if (eeprom->magic != SKGE_EEPROM_MAGIC) 858 return -EINVAL; 859 860 while (length > 0) { 861 u32 val; 862 int n = min_t(int, length, sizeof(val)); 863 864 if (n < sizeof(val)) 865 val = skge_vpd_read(pdev, cap, offset); 866 memcpy(&val, data, n); 867 868 skge_vpd_write(pdev, cap, offset, val); 869 870 length -= n; 871 data += n; 872 offset += n; 873 } 874 return 0; 875 } 876 877 static const struct ethtool_ops skge_ethtool_ops = { 878 .get_settings = skge_get_settings, 879 .set_settings = skge_set_settings, 880 .get_drvinfo = skge_get_drvinfo, 881 .get_regs_len = skge_get_regs_len, 882 .get_regs = skge_get_regs, 883 .get_wol = skge_get_wol, 884 .set_wol = skge_set_wol, 885 .get_msglevel = skge_get_msglevel, 886 .set_msglevel = skge_set_msglevel, 887 .nway_reset = skge_nway_reset, 888 .get_link = ethtool_op_get_link, 889 .get_eeprom_len = skge_get_eeprom_len, 890 .get_eeprom = skge_get_eeprom, 891 .set_eeprom = skge_set_eeprom, 892 .get_ringparam = skge_get_ring_param, 893 .set_ringparam = skge_set_ring_param, 894 .get_pauseparam = skge_get_pauseparam, 895 .set_pauseparam = skge_set_pauseparam, 896 .get_coalesce = skge_get_coalesce, 897 .set_coalesce = skge_set_coalesce, 898 .get_strings = skge_get_strings, 899 .set_phys_id = skge_set_phys_id, 900 .get_sset_count = skge_get_sset_count, 901 .get_ethtool_stats = skge_get_ethtool_stats, 902 }; 903 904 /* 905 * Allocate ring elements and chain them together 906 * One-to-one association of board descriptors with ring elements 907 */ 908 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base) 909 { 910 struct skge_tx_desc *d; 911 struct skge_element *e; 912 int i; 913 914 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL); 915 if (!ring->start) 916 return -ENOMEM; 917 918 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { 919 e->desc = d; 920 if (i == ring->count - 1) { 921 e->next = ring->start; 922 d->next_offset = base; 923 } else { 924 e->next = e + 1; 925 d->next_offset = base + (i+1) * sizeof(*d); 926 } 927 } 928 ring->to_use = ring->to_clean = ring->start; 929 930 return 0; 931 } 932 933 /* Allocate and setup a new buffer for receiving */ 934 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e, 935 struct sk_buff *skb, unsigned int bufsize) 936 { 937 struct skge_rx_desc *rd = e->desc; 938 dma_addr_t map; 939 940 map = pci_map_single(skge->hw->pdev, skb->data, bufsize, 941 PCI_DMA_FROMDEVICE); 942 943 if (pci_dma_mapping_error(skge->hw->pdev, map)) 944 return -1; 945 946 rd->dma_lo = lower_32_bits(map); 947 rd->dma_hi = upper_32_bits(map); 948 e->skb = skb; 949 rd->csum1_start = ETH_HLEN; 950 rd->csum2_start = ETH_HLEN; 951 rd->csum1 = 0; 952 rd->csum2 = 0; 953 954 wmb(); 955 956 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; 957 dma_unmap_addr_set(e, mapaddr, map); 958 dma_unmap_len_set(e, maplen, bufsize); 959 return 0; 960 } 961 962 /* Resume receiving using existing skb, 963 * Note: DMA address is not changed by chip. 964 * MTU not changed while receiver active. 965 */ 966 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size) 967 { 968 struct skge_rx_desc *rd = e->desc; 969 970 rd->csum2 = 0; 971 rd->csum2_start = ETH_HLEN; 972 973 wmb(); 974 975 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size; 976 } 977 978 979 /* Free all buffers in receive ring, assumes receiver stopped */ 980 static void skge_rx_clean(struct skge_port *skge) 981 { 982 struct skge_hw *hw = skge->hw; 983 struct skge_ring *ring = &skge->rx_ring; 984 struct skge_element *e; 985 986 e = ring->start; 987 do { 988 struct skge_rx_desc *rd = e->desc; 989 rd->control = 0; 990 if (e->skb) { 991 pci_unmap_single(hw->pdev, 992 dma_unmap_addr(e, mapaddr), 993 dma_unmap_len(e, maplen), 994 PCI_DMA_FROMDEVICE); 995 dev_kfree_skb(e->skb); 996 e->skb = NULL; 997 } 998 } while ((e = e->next) != ring->start); 999 } 1000 1001 1002 /* Allocate buffers for receive ring 1003 * For receive: to_clean is next received frame. 1004 */ 1005 static int skge_rx_fill(struct net_device *dev) 1006 { 1007 struct skge_port *skge = netdev_priv(dev); 1008 struct skge_ring *ring = &skge->rx_ring; 1009 struct skge_element *e; 1010 1011 e = ring->start; 1012 do { 1013 struct sk_buff *skb; 1014 1015 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN, 1016 GFP_KERNEL); 1017 if (!skb) 1018 return -ENOMEM; 1019 1020 skb_reserve(skb, NET_IP_ALIGN); 1021 if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) { 1022 dev_kfree_skb(skb); 1023 return -EIO; 1024 } 1025 } while ((e = e->next) != ring->start); 1026 1027 ring->to_clean = ring->start; 1028 return 0; 1029 } 1030 1031 static const char *skge_pause(enum pause_status status) 1032 { 1033 switch (status) { 1034 case FLOW_STAT_NONE: 1035 return "none"; 1036 case FLOW_STAT_REM_SEND: 1037 return "rx only"; 1038 case FLOW_STAT_LOC_SEND: 1039 return "tx_only"; 1040 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */ 1041 return "both"; 1042 default: 1043 return "indeterminated"; 1044 } 1045 } 1046 1047 1048 static void skge_link_up(struct skge_port *skge) 1049 { 1050 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), 1051 LED_BLK_OFF|LED_SYNC_OFF|LED_ON); 1052 1053 netif_carrier_on(skge->netdev); 1054 netif_wake_queue(skge->netdev); 1055 1056 netif_info(skge, link, skge->netdev, 1057 "Link is up at %d Mbps, %s duplex, flow control %s\n", 1058 skge->speed, 1059 skge->duplex == DUPLEX_FULL ? "full" : "half", 1060 skge_pause(skge->flow_status)); 1061 } 1062 1063 static void skge_link_down(struct skge_port *skge) 1064 { 1065 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); 1066 netif_carrier_off(skge->netdev); 1067 netif_stop_queue(skge->netdev); 1068 1069 netif_info(skge, link, skge->netdev, "Link is down\n"); 1070 } 1071 1072 static void xm_link_down(struct skge_hw *hw, int port) 1073 { 1074 struct net_device *dev = hw->dev[port]; 1075 struct skge_port *skge = netdev_priv(dev); 1076 1077 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); 1078 1079 if (netif_carrier_ok(dev)) 1080 skge_link_down(skge); 1081 } 1082 1083 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1084 { 1085 int i; 1086 1087 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 1088 *val = xm_read16(hw, port, XM_PHY_DATA); 1089 1090 if (hw->phy_type == SK_PHY_XMAC) 1091 goto ready; 1092 1093 for (i = 0; i < PHY_RETRIES; i++) { 1094 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY) 1095 goto ready; 1096 udelay(1); 1097 } 1098 1099 return -ETIMEDOUT; 1100 ready: 1101 *val = xm_read16(hw, port, XM_PHY_DATA); 1102 1103 return 0; 1104 } 1105 1106 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg) 1107 { 1108 u16 v = 0; 1109 if (__xm_phy_read(hw, port, reg, &v)) 1110 pr_warn("%s: phy read timed out\n", hw->dev[port]->name); 1111 return v; 1112 } 1113 1114 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1115 { 1116 int i; 1117 1118 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 1119 for (i = 0; i < PHY_RETRIES; i++) { 1120 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 1121 goto ready; 1122 udelay(1); 1123 } 1124 return -EIO; 1125 1126 ready: 1127 xm_write16(hw, port, XM_PHY_DATA, val); 1128 for (i = 0; i < PHY_RETRIES; i++) { 1129 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 1130 return 0; 1131 udelay(1); 1132 } 1133 return -ETIMEDOUT; 1134 } 1135 1136 static void genesis_init(struct skge_hw *hw) 1137 { 1138 /* set blink source counter */ 1139 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100); 1140 skge_write8(hw, B2_BSC_CTRL, BSC_START); 1141 1142 /* configure mac arbiter */ 1143 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1144 1145 /* configure mac arbiter timeout values */ 1146 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53); 1147 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53); 1148 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53); 1149 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53); 1150 1151 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1152 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1153 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1154 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1155 1156 /* configure packet arbiter timeout */ 1157 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR); 1158 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); 1159 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); 1160 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); 1161 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); 1162 } 1163 1164 static void genesis_reset(struct skge_hw *hw, int port) 1165 { 1166 static const u8 zero[8] = { 0 }; 1167 u32 reg; 1168 1169 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 1170 1171 /* reset the statistics module */ 1172 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); 1173 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); 1174 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */ 1175 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */ 1176 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */ 1177 1178 /* disable Broadcom PHY IRQ */ 1179 if (hw->phy_type == SK_PHY_BCOM) 1180 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); 1181 1182 xm_outhash(hw, port, XM_HSM, zero); 1183 1184 /* Flush TX and RX fifo */ 1185 reg = xm_read32(hw, port, XM_MODE); 1186 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF); 1187 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF); 1188 } 1189 1190 /* Convert mode to MII values */ 1191 static const u16 phy_pause_map[] = { 1192 [FLOW_MODE_NONE] = 0, 1193 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM, 1194 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP, 1195 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM, 1196 }; 1197 1198 /* special defines for FIBER (88E1011S only) */ 1199 static const u16 fiber_pause_map[] = { 1200 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE, 1201 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD, 1202 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD, 1203 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD, 1204 }; 1205 1206 1207 /* Check status of Broadcom phy link */ 1208 static void bcom_check_link(struct skge_hw *hw, int port) 1209 { 1210 struct net_device *dev = hw->dev[port]; 1211 struct skge_port *skge = netdev_priv(dev); 1212 u16 status; 1213 1214 /* read twice because of latch */ 1215 xm_phy_read(hw, port, PHY_BCOM_STAT); 1216 status = xm_phy_read(hw, port, PHY_BCOM_STAT); 1217 1218 if ((status & PHY_ST_LSYNC) == 0) { 1219 xm_link_down(hw, port); 1220 return; 1221 } 1222 1223 if (skge->autoneg == AUTONEG_ENABLE) { 1224 u16 lpa, aux; 1225 1226 if (!(status & PHY_ST_AN_OVER)) 1227 return; 1228 1229 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); 1230 if (lpa & PHY_B_AN_RF) { 1231 netdev_notice(dev, "remote fault\n"); 1232 return; 1233 } 1234 1235 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); 1236 1237 /* Check Duplex mismatch */ 1238 switch (aux & PHY_B_AS_AN_RES_MSK) { 1239 case PHY_B_RES_1000FD: 1240 skge->duplex = DUPLEX_FULL; 1241 break; 1242 case PHY_B_RES_1000HD: 1243 skge->duplex = DUPLEX_HALF; 1244 break; 1245 default: 1246 netdev_notice(dev, "duplex mismatch\n"); 1247 return; 1248 } 1249 1250 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1251 switch (aux & PHY_B_AS_PAUSE_MSK) { 1252 case PHY_B_AS_PAUSE_MSK: 1253 skge->flow_status = FLOW_STAT_SYMMETRIC; 1254 break; 1255 case PHY_B_AS_PRR: 1256 skge->flow_status = FLOW_STAT_REM_SEND; 1257 break; 1258 case PHY_B_AS_PRT: 1259 skge->flow_status = FLOW_STAT_LOC_SEND; 1260 break; 1261 default: 1262 skge->flow_status = FLOW_STAT_NONE; 1263 } 1264 skge->speed = SPEED_1000; 1265 } 1266 1267 if (!netif_carrier_ok(dev)) 1268 genesis_link_up(skge); 1269 } 1270 1271 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional 1272 * Phy on for 100 or 10Mbit operation 1273 */ 1274 static void bcom_phy_init(struct skge_port *skge) 1275 { 1276 struct skge_hw *hw = skge->hw; 1277 int port = skge->port; 1278 int i; 1279 u16 id1, r, ext, ctl; 1280 1281 /* magic workaround patterns for Broadcom */ 1282 static const struct { 1283 u16 reg; 1284 u16 val; 1285 } A1hack[] = { 1286 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, 1287 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, 1288 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, 1289 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 1290 }, C0hack[] = { 1291 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, 1292 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, 1293 }; 1294 1295 /* read Id from external PHY (all have the same address) */ 1296 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1); 1297 1298 /* Optimize MDIO transfer by suppressing preamble. */ 1299 r = xm_read16(hw, port, XM_MMU_CMD); 1300 r |= XM_MMU_NO_PRE; 1301 xm_write16(hw, port, XM_MMU_CMD, r); 1302 1303 switch (id1) { 1304 case PHY_BCOM_ID1_C0: 1305 /* 1306 * Workaround BCOM Errata for the C0 type. 1307 * Write magic patterns to reserved registers. 1308 */ 1309 for (i = 0; i < ARRAY_SIZE(C0hack); i++) 1310 xm_phy_write(hw, port, 1311 C0hack[i].reg, C0hack[i].val); 1312 1313 break; 1314 case PHY_BCOM_ID1_A1: 1315 /* 1316 * Workaround BCOM Errata for the A1 type. 1317 * Write magic patterns to reserved registers. 1318 */ 1319 for (i = 0; i < ARRAY_SIZE(A1hack); i++) 1320 xm_phy_write(hw, port, 1321 A1hack[i].reg, A1hack[i].val); 1322 break; 1323 } 1324 1325 /* 1326 * Workaround BCOM Errata (#10523) for all BCom PHYs. 1327 * Disable Power Management after reset. 1328 */ 1329 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); 1330 r |= PHY_B_AC_DIS_PM; 1331 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r); 1332 1333 /* Dummy read */ 1334 xm_read16(hw, port, XM_ISRC); 1335 1336 ext = PHY_B_PEC_EN_LTR; /* enable tx led */ 1337 ctl = PHY_CT_SP1000; /* always 1000mbit */ 1338 1339 if (skge->autoneg == AUTONEG_ENABLE) { 1340 /* 1341 * Workaround BCOM Errata #1 for the C5 type. 1342 * 1000Base-T Link Acquisition Failure in Slave Mode 1343 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register 1344 */ 1345 u16 adv = PHY_B_1000C_RD; 1346 if (skge->advertising & ADVERTISED_1000baseT_Half) 1347 adv |= PHY_B_1000C_AHD; 1348 if (skge->advertising & ADVERTISED_1000baseT_Full) 1349 adv |= PHY_B_1000C_AFD; 1350 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv); 1351 1352 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG; 1353 } else { 1354 if (skge->duplex == DUPLEX_FULL) 1355 ctl |= PHY_CT_DUP_MD; 1356 /* Force to slave */ 1357 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE); 1358 } 1359 1360 /* Set autonegotiation pause parameters */ 1361 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, 1362 phy_pause_map[skge->flow_control] | PHY_AN_CSMA); 1363 1364 /* Handle Jumbo frames */ 1365 if (hw->dev[port]->mtu > ETH_DATA_LEN) { 1366 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1367 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK); 1368 1369 ext |= PHY_B_PEC_HIGH_LA; 1370 1371 } 1372 1373 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext); 1374 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl); 1375 1376 /* Use link status change interrupt */ 1377 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1378 } 1379 1380 static void xm_phy_init(struct skge_port *skge) 1381 { 1382 struct skge_hw *hw = skge->hw; 1383 int port = skge->port; 1384 u16 ctrl = 0; 1385 1386 if (skge->autoneg == AUTONEG_ENABLE) { 1387 if (skge->advertising & ADVERTISED_1000baseT_Half) 1388 ctrl |= PHY_X_AN_HD; 1389 if (skge->advertising & ADVERTISED_1000baseT_Full) 1390 ctrl |= PHY_X_AN_FD; 1391 1392 ctrl |= fiber_pause_map[skge->flow_control]; 1393 1394 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl); 1395 1396 /* Restart Auto-negotiation */ 1397 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG; 1398 } else { 1399 /* Set DuplexMode in Config register */ 1400 if (skge->duplex == DUPLEX_FULL) 1401 ctrl |= PHY_CT_DUP_MD; 1402 /* 1403 * Do NOT enable Auto-negotiation here. This would hold 1404 * the link down because no IDLEs are transmitted 1405 */ 1406 } 1407 1408 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl); 1409 1410 /* Poll PHY for status changes */ 1411 mod_timer(&skge->link_timer, jiffies + LINK_HZ); 1412 } 1413 1414 static int xm_check_link(struct net_device *dev) 1415 { 1416 struct skge_port *skge = netdev_priv(dev); 1417 struct skge_hw *hw = skge->hw; 1418 int port = skge->port; 1419 u16 status; 1420 1421 /* read twice because of latch */ 1422 xm_phy_read(hw, port, PHY_XMAC_STAT); 1423 status = xm_phy_read(hw, port, PHY_XMAC_STAT); 1424 1425 if ((status & PHY_ST_LSYNC) == 0) { 1426 xm_link_down(hw, port); 1427 return 0; 1428 } 1429 1430 if (skge->autoneg == AUTONEG_ENABLE) { 1431 u16 lpa, res; 1432 1433 if (!(status & PHY_ST_AN_OVER)) 1434 return 0; 1435 1436 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); 1437 if (lpa & PHY_B_AN_RF) { 1438 netdev_notice(dev, "remote fault\n"); 1439 return 0; 1440 } 1441 1442 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI); 1443 1444 /* Check Duplex mismatch */ 1445 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) { 1446 case PHY_X_RS_FD: 1447 skge->duplex = DUPLEX_FULL; 1448 break; 1449 case PHY_X_RS_HD: 1450 skge->duplex = DUPLEX_HALF; 1451 break; 1452 default: 1453 netdev_notice(dev, "duplex mismatch\n"); 1454 return 0; 1455 } 1456 1457 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1458 if ((skge->flow_control == FLOW_MODE_SYMMETRIC || 1459 skge->flow_control == FLOW_MODE_SYM_OR_REM) && 1460 (lpa & PHY_X_P_SYM_MD)) 1461 skge->flow_status = FLOW_STAT_SYMMETRIC; 1462 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM && 1463 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD) 1464 /* Enable PAUSE receive, disable PAUSE transmit */ 1465 skge->flow_status = FLOW_STAT_REM_SEND; 1466 else if (skge->flow_control == FLOW_MODE_LOC_SEND && 1467 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD) 1468 /* Disable PAUSE receive, enable PAUSE transmit */ 1469 skge->flow_status = FLOW_STAT_LOC_SEND; 1470 else 1471 skge->flow_status = FLOW_STAT_NONE; 1472 1473 skge->speed = SPEED_1000; 1474 } 1475 1476 if (!netif_carrier_ok(dev)) 1477 genesis_link_up(skge); 1478 return 1; 1479 } 1480 1481 /* Poll to check for link coming up. 1482 * 1483 * Since internal PHY is wired to a level triggered pin, can't 1484 * get an interrupt when carrier is detected, need to poll for 1485 * link coming up. 1486 */ 1487 static void xm_link_timer(unsigned long arg) 1488 { 1489 struct skge_port *skge = (struct skge_port *) arg; 1490 struct net_device *dev = skge->netdev; 1491 struct skge_hw *hw = skge->hw; 1492 int port = skge->port; 1493 int i; 1494 unsigned long flags; 1495 1496 if (!netif_running(dev)) 1497 return; 1498 1499 spin_lock_irqsave(&hw->phy_lock, flags); 1500 1501 /* 1502 * Verify that the link by checking GPIO register three times. 1503 * This pin has the signal from the link_sync pin connected to it. 1504 */ 1505 for (i = 0; i < 3; i++) { 1506 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS) 1507 goto link_down; 1508 } 1509 1510 /* Re-enable interrupt to detect link down */ 1511 if (xm_check_link(dev)) { 1512 u16 msk = xm_read16(hw, port, XM_IMSK); 1513 msk &= ~XM_IS_INP_ASS; 1514 xm_write16(hw, port, XM_IMSK, msk); 1515 xm_read16(hw, port, XM_ISRC); 1516 } else { 1517 link_down: 1518 mod_timer(&skge->link_timer, 1519 round_jiffies(jiffies + LINK_HZ)); 1520 } 1521 spin_unlock_irqrestore(&hw->phy_lock, flags); 1522 } 1523 1524 static void genesis_mac_init(struct skge_hw *hw, int port) 1525 { 1526 struct net_device *dev = hw->dev[port]; 1527 struct skge_port *skge = netdev_priv(dev); 1528 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN; 1529 int i; 1530 u32 r; 1531 static const u8 zero[6] = { 0 }; 1532 1533 for (i = 0; i < 10; i++) { 1534 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 1535 MFF_SET_MAC_RST); 1536 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST) 1537 goto reset_ok; 1538 udelay(1); 1539 } 1540 1541 netdev_warn(dev, "genesis reset failed\n"); 1542 1543 reset_ok: 1544 /* Unreset the XMAC. */ 1545 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1546 1547 /* 1548 * Perform additional initialization for external PHYs, 1549 * namely for the 1000baseTX cards that use the XMAC's 1550 * GMII mode. 1551 */ 1552 if (hw->phy_type != SK_PHY_XMAC) { 1553 /* Take external Phy out of reset */ 1554 r = skge_read32(hw, B2_GP_IO); 1555 if (port == 0) 1556 r |= GP_DIR_0|GP_IO_0; 1557 else 1558 r |= GP_DIR_2|GP_IO_2; 1559 1560 skge_write32(hw, B2_GP_IO, r); 1561 1562 /* Enable GMII interface */ 1563 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); 1564 } 1565 1566 1567 switch (hw->phy_type) { 1568 case SK_PHY_XMAC: 1569 xm_phy_init(skge); 1570 break; 1571 case SK_PHY_BCOM: 1572 bcom_phy_init(skge); 1573 bcom_check_link(hw, port); 1574 } 1575 1576 /* Set Station Address */ 1577 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 1578 1579 /* We don't use match addresses so clear */ 1580 for (i = 1; i < 16; i++) 1581 xm_outaddr(hw, port, XM_EXM(i), zero); 1582 1583 /* Clear MIB counters */ 1584 xm_write16(hw, port, XM_STAT_CMD, 1585 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1586 /* Clear two times according to Errata #3 */ 1587 xm_write16(hw, port, XM_STAT_CMD, 1588 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1589 1590 /* configure Rx High Water Mark (XM_RX_HI_WM) */ 1591 xm_write16(hw, port, XM_RX_HI_WM, 1450); 1592 1593 /* We don't need the FCS appended to the packet. */ 1594 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS; 1595 if (jumbo) 1596 r |= XM_RX_BIG_PK_OK; 1597 1598 if (skge->duplex == DUPLEX_HALF) { 1599 /* 1600 * If in manual half duplex mode the other side might be in 1601 * full duplex mode, so ignore if a carrier extension is not seen 1602 * on frames received 1603 */ 1604 r |= XM_RX_DIS_CEXT; 1605 } 1606 xm_write16(hw, port, XM_RX_CMD, r); 1607 1608 /* We want short frames padded to 60 bytes. */ 1609 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD); 1610 1611 /* Increase threshold for jumbo frames on dual port */ 1612 if (hw->ports > 1 && jumbo) 1613 xm_write16(hw, port, XM_TX_THR, 1020); 1614 else 1615 xm_write16(hw, port, XM_TX_THR, 512); 1616 1617 /* 1618 * Enable the reception of all error frames. This is is 1619 * a necessary evil due to the design of the XMAC. The 1620 * XMAC's receive FIFO is only 8K in size, however jumbo 1621 * frames can be up to 9000 bytes in length. When bad 1622 * frame filtering is enabled, the XMAC's RX FIFO operates 1623 * in 'store and forward' mode. For this to work, the 1624 * entire frame has to fit into the FIFO, but that means 1625 * that jumbo frames larger than 8192 bytes will be 1626 * truncated. Disabling all bad frame filtering causes 1627 * the RX FIFO to operate in streaming mode, in which 1628 * case the XMAC will start transferring frames out of the 1629 * RX FIFO as soon as the FIFO threshold is reached. 1630 */ 1631 xm_write32(hw, port, XM_MODE, XM_DEF_MODE); 1632 1633 1634 /* 1635 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK) 1636 * - Enable all bits excepting 'Octets Rx OK Low CntOv' 1637 * and 'Octets Rx OK Hi Cnt Ov'. 1638 */ 1639 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK); 1640 1641 /* 1642 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK) 1643 * - Enable all bits excepting 'Octets Tx OK Low CntOv' 1644 * and 'Octets Tx OK Hi Cnt Ov'. 1645 */ 1646 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK); 1647 1648 /* Configure MAC arbiter */ 1649 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1650 1651 /* configure timeout values */ 1652 skge_write8(hw, B3_MA_TOINI_RX1, 72); 1653 skge_write8(hw, B3_MA_TOINI_RX2, 72); 1654 skge_write8(hw, B3_MA_TOINI_TX1, 72); 1655 skge_write8(hw, B3_MA_TOINI_TX2, 72); 1656 1657 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1658 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1659 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1660 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1661 1662 /* Configure Rx MAC FIFO */ 1663 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); 1664 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); 1665 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); 1666 1667 /* Configure Tx MAC FIFO */ 1668 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); 1669 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); 1670 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); 1671 1672 if (jumbo) { 1673 /* Enable frame flushing if jumbo frames used */ 1674 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH); 1675 } else { 1676 /* enable timeout timers if normal frames */ 1677 skge_write16(hw, B3_PA_CTRL, 1678 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); 1679 } 1680 } 1681 1682 static void genesis_stop(struct skge_port *skge) 1683 { 1684 struct skge_hw *hw = skge->hw; 1685 int port = skge->port; 1686 unsigned retries = 1000; 1687 u16 cmd; 1688 1689 /* Disable Tx and Rx */ 1690 cmd = xm_read16(hw, port, XM_MMU_CMD); 1691 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1692 xm_write16(hw, port, XM_MMU_CMD, cmd); 1693 1694 genesis_reset(hw, port); 1695 1696 /* Clear Tx packet arbiter timeout IRQ */ 1697 skge_write16(hw, B3_PA_CTRL, 1698 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2); 1699 1700 /* Reset the MAC */ 1701 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1702 do { 1703 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); 1704 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)) 1705 break; 1706 } while (--retries > 0); 1707 1708 /* For external PHYs there must be special handling */ 1709 if (hw->phy_type != SK_PHY_XMAC) { 1710 u32 reg = skge_read32(hw, B2_GP_IO); 1711 if (port == 0) { 1712 reg |= GP_DIR_0; 1713 reg &= ~GP_IO_0; 1714 } else { 1715 reg |= GP_DIR_2; 1716 reg &= ~GP_IO_2; 1717 } 1718 skge_write32(hw, B2_GP_IO, reg); 1719 skge_read32(hw, B2_GP_IO); 1720 } 1721 1722 xm_write16(hw, port, XM_MMU_CMD, 1723 xm_read16(hw, port, XM_MMU_CMD) 1724 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); 1725 1726 xm_read16(hw, port, XM_MMU_CMD); 1727 } 1728 1729 1730 static void genesis_get_stats(struct skge_port *skge, u64 *data) 1731 { 1732 struct skge_hw *hw = skge->hw; 1733 int port = skge->port; 1734 int i; 1735 unsigned long timeout = jiffies + HZ; 1736 1737 xm_write16(hw, port, 1738 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); 1739 1740 /* wait for update to complete */ 1741 while (xm_read16(hw, port, XM_STAT_CMD) 1742 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { 1743 if (time_after(jiffies, timeout)) 1744 break; 1745 udelay(10); 1746 } 1747 1748 /* special case for 64 bit octet counter */ 1749 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32 1750 | xm_read32(hw, port, XM_TXO_OK_LO); 1751 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32 1752 | xm_read32(hw, port, XM_RXO_OK_LO); 1753 1754 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 1755 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset); 1756 } 1757 1758 static void genesis_mac_intr(struct skge_hw *hw, int port) 1759 { 1760 struct net_device *dev = hw->dev[port]; 1761 struct skge_port *skge = netdev_priv(dev); 1762 u16 status = xm_read16(hw, port, XM_ISRC); 1763 1764 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 1765 "mac interrupt status 0x%x\n", status); 1766 1767 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) { 1768 xm_link_down(hw, port); 1769 mod_timer(&skge->link_timer, jiffies + 1); 1770 } 1771 1772 if (status & XM_IS_TXF_UR) { 1773 xm_write32(hw, port, XM_MODE, XM_MD_FTF); 1774 ++dev->stats.tx_fifo_errors; 1775 } 1776 } 1777 1778 static void genesis_link_up(struct skge_port *skge) 1779 { 1780 struct skge_hw *hw = skge->hw; 1781 int port = skge->port; 1782 u16 cmd, msk; 1783 u32 mode; 1784 1785 cmd = xm_read16(hw, port, XM_MMU_CMD); 1786 1787 /* 1788 * enabling pause frame reception is required for 1000BT 1789 * because the XMAC is not reset if the link is going down 1790 */ 1791 if (skge->flow_status == FLOW_STAT_NONE || 1792 skge->flow_status == FLOW_STAT_LOC_SEND) 1793 /* Disable Pause Frame Reception */ 1794 cmd |= XM_MMU_IGN_PF; 1795 else 1796 /* Enable Pause Frame Reception */ 1797 cmd &= ~XM_MMU_IGN_PF; 1798 1799 xm_write16(hw, port, XM_MMU_CMD, cmd); 1800 1801 mode = xm_read32(hw, port, XM_MODE); 1802 if (skge->flow_status == FLOW_STAT_SYMMETRIC || 1803 skge->flow_status == FLOW_STAT_LOC_SEND) { 1804 /* 1805 * Configure Pause Frame Generation 1806 * Use internal and external Pause Frame Generation. 1807 * Sending pause frames is edge triggered. 1808 * Send a Pause frame with the maximum pause time if 1809 * internal oder external FIFO full condition occurs. 1810 * Send a zero pause time frame to re-start transmission. 1811 */ 1812 /* XM_PAUSE_DA = '010000C28001' (default) */ 1813 /* XM_MAC_PTIME = 0xffff (maximum) */ 1814 /* remember this value is defined in big endian (!) */ 1815 xm_write16(hw, port, XM_MAC_PTIME, 0xffff); 1816 1817 mode |= XM_PAUSE_MODE; 1818 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); 1819 } else { 1820 /* 1821 * disable pause frame generation is required for 1000BT 1822 * because the XMAC is not reset if the link is going down 1823 */ 1824 /* Disable Pause Mode in Mode Register */ 1825 mode &= ~XM_PAUSE_MODE; 1826 1827 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); 1828 } 1829 1830 xm_write32(hw, port, XM_MODE, mode); 1831 1832 /* Turn on detection of Tx underrun */ 1833 msk = xm_read16(hw, port, XM_IMSK); 1834 msk &= ~XM_IS_TXF_UR; 1835 xm_write16(hw, port, XM_IMSK, msk); 1836 1837 xm_read16(hw, port, XM_ISRC); 1838 1839 /* get MMU Command Reg. */ 1840 cmd = xm_read16(hw, port, XM_MMU_CMD); 1841 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL) 1842 cmd |= XM_MMU_GMII_FD; 1843 1844 /* 1845 * Workaround BCOM Errata (#10523) for all BCom Phys 1846 * Enable Power Management after link up 1847 */ 1848 if (hw->phy_type == SK_PHY_BCOM) { 1849 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1850 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) 1851 & ~PHY_B_AC_DIS_PM); 1852 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1853 } 1854 1855 /* enable Rx/Tx */ 1856 xm_write16(hw, port, XM_MMU_CMD, 1857 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1858 skge_link_up(skge); 1859 } 1860 1861 1862 static inline void bcom_phy_intr(struct skge_port *skge) 1863 { 1864 struct skge_hw *hw = skge->hw; 1865 int port = skge->port; 1866 u16 isrc; 1867 1868 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT); 1869 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 1870 "phy interrupt status 0x%x\n", isrc); 1871 1872 if (isrc & PHY_B_IS_PSE) 1873 pr_err("%s: uncorrectable pair swap error\n", 1874 hw->dev[port]->name); 1875 1876 /* Workaround BCom Errata: 1877 * enable and disable loopback mode if "NO HCD" occurs. 1878 */ 1879 if (isrc & PHY_B_IS_NO_HDCL) { 1880 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL); 1881 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1882 ctrl | PHY_CT_LOOP); 1883 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1884 ctrl & ~PHY_CT_LOOP); 1885 } 1886 1887 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) 1888 bcom_check_link(hw, port); 1889 1890 } 1891 1892 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1893 { 1894 int i; 1895 1896 gma_write16(hw, port, GM_SMI_DATA, val); 1897 gma_write16(hw, port, GM_SMI_CTRL, 1898 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); 1899 for (i = 0; i < PHY_RETRIES; i++) { 1900 udelay(1); 1901 1902 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) 1903 return 0; 1904 } 1905 1906 pr_warn("%s: phy write timeout\n", hw->dev[port]->name); 1907 return -EIO; 1908 } 1909 1910 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1911 { 1912 int i; 1913 1914 gma_write16(hw, port, GM_SMI_CTRL, 1915 GM_SMI_CT_PHY_AD(hw->phy_addr) 1916 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); 1917 1918 for (i = 0; i < PHY_RETRIES; i++) { 1919 udelay(1); 1920 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) 1921 goto ready; 1922 } 1923 1924 return -ETIMEDOUT; 1925 ready: 1926 *val = gma_read16(hw, port, GM_SMI_DATA); 1927 return 0; 1928 } 1929 1930 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg) 1931 { 1932 u16 v = 0; 1933 if (__gm_phy_read(hw, port, reg, &v)) 1934 pr_warn("%s: phy read timeout\n", hw->dev[port]->name); 1935 return v; 1936 } 1937 1938 /* Marvell Phy Initialization */ 1939 static void yukon_init(struct skge_hw *hw, int port) 1940 { 1941 struct skge_port *skge = netdev_priv(hw->dev[port]); 1942 u16 ctrl, ct1000, adv; 1943 1944 if (skge->autoneg == AUTONEG_ENABLE) { 1945 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); 1946 1947 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | 1948 PHY_M_EC_MAC_S_MSK); 1949 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); 1950 1951 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); 1952 1953 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); 1954 } 1955 1956 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 1957 if (skge->autoneg == AUTONEG_DISABLE) 1958 ctrl &= ~PHY_CT_ANE; 1959 1960 ctrl |= PHY_CT_RESET; 1961 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1962 1963 ctrl = 0; 1964 ct1000 = 0; 1965 adv = PHY_AN_CSMA; 1966 1967 if (skge->autoneg == AUTONEG_ENABLE) { 1968 if (hw->copper) { 1969 if (skge->advertising & ADVERTISED_1000baseT_Full) 1970 ct1000 |= PHY_M_1000C_AFD; 1971 if (skge->advertising & ADVERTISED_1000baseT_Half) 1972 ct1000 |= PHY_M_1000C_AHD; 1973 if (skge->advertising & ADVERTISED_100baseT_Full) 1974 adv |= PHY_M_AN_100_FD; 1975 if (skge->advertising & ADVERTISED_100baseT_Half) 1976 adv |= PHY_M_AN_100_HD; 1977 if (skge->advertising & ADVERTISED_10baseT_Full) 1978 adv |= PHY_M_AN_10_FD; 1979 if (skge->advertising & ADVERTISED_10baseT_Half) 1980 adv |= PHY_M_AN_10_HD; 1981 1982 /* Set Flow-control capabilities */ 1983 adv |= phy_pause_map[skge->flow_control]; 1984 } else { 1985 if (skge->advertising & ADVERTISED_1000baseT_Full) 1986 adv |= PHY_M_AN_1000X_AFD; 1987 if (skge->advertising & ADVERTISED_1000baseT_Half) 1988 adv |= PHY_M_AN_1000X_AHD; 1989 1990 adv |= fiber_pause_map[skge->flow_control]; 1991 } 1992 1993 /* Restart Auto-negotiation */ 1994 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; 1995 } else { 1996 /* forced speed/duplex settings */ 1997 ct1000 = PHY_M_1000C_MSE; 1998 1999 if (skge->duplex == DUPLEX_FULL) 2000 ctrl |= PHY_CT_DUP_MD; 2001 2002 switch (skge->speed) { 2003 case SPEED_1000: 2004 ctrl |= PHY_CT_SP1000; 2005 break; 2006 case SPEED_100: 2007 ctrl |= PHY_CT_SP100; 2008 break; 2009 } 2010 2011 ctrl |= PHY_CT_RESET; 2012 } 2013 2014 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); 2015 2016 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); 2017 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2018 2019 /* Enable phy interrupt on autonegotiation complete (or link up) */ 2020 if (skge->autoneg == AUTONEG_ENABLE) 2021 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK); 2022 else 2023 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 2024 } 2025 2026 static void yukon_reset(struct skge_hw *hw, int port) 2027 { 2028 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ 2029 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ 2030 gma_write16(hw, port, GM_MC_ADDR_H2, 0); 2031 gma_write16(hw, port, GM_MC_ADDR_H3, 0); 2032 gma_write16(hw, port, GM_MC_ADDR_H4, 0); 2033 2034 gma_write16(hw, port, GM_RX_CTRL, 2035 gma_read16(hw, port, GM_RX_CTRL) 2036 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2037 } 2038 2039 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */ 2040 static int is_yukon_lite_a0(struct skge_hw *hw) 2041 { 2042 u32 reg; 2043 int ret; 2044 2045 if (hw->chip_id != CHIP_ID_YUKON) 2046 return 0; 2047 2048 reg = skge_read32(hw, B2_FAR); 2049 skge_write8(hw, B2_FAR + 3, 0xff); 2050 ret = (skge_read8(hw, B2_FAR + 3) != 0); 2051 skge_write32(hw, B2_FAR, reg); 2052 return ret; 2053 } 2054 2055 static void yukon_mac_init(struct skge_hw *hw, int port) 2056 { 2057 struct skge_port *skge = netdev_priv(hw->dev[port]); 2058 int i; 2059 u32 reg; 2060 const u8 *addr = hw->dev[port]->dev_addr; 2061 2062 /* WA code for COMA mode -- set PHY reset */ 2063 if (hw->chip_id == CHIP_ID_YUKON_LITE && 2064 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 2065 reg = skge_read32(hw, B2_GP_IO); 2066 reg |= GP_DIR_9 | GP_IO_9; 2067 skge_write32(hw, B2_GP_IO, reg); 2068 } 2069 2070 /* hard reset */ 2071 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 2072 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 2073 2074 /* WA code for COMA mode -- clear PHY reset */ 2075 if (hw->chip_id == CHIP_ID_YUKON_LITE && 2076 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 2077 reg = skge_read32(hw, B2_GP_IO); 2078 reg |= GP_DIR_9; 2079 reg &= ~GP_IO_9; 2080 skge_write32(hw, B2_GP_IO, reg); 2081 } 2082 2083 /* Set hardware config mode */ 2084 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP | 2085 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE; 2086 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; 2087 2088 /* Clear GMC reset */ 2089 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET); 2090 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); 2091 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); 2092 2093 if (skge->autoneg == AUTONEG_DISABLE) { 2094 reg = GM_GPCR_AU_ALL_DIS; 2095 gma_write16(hw, port, GM_GP_CTRL, 2096 gma_read16(hw, port, GM_GP_CTRL) | reg); 2097 2098 switch (skge->speed) { 2099 case SPEED_1000: 2100 reg &= ~GM_GPCR_SPEED_100; 2101 reg |= GM_GPCR_SPEED_1000; 2102 break; 2103 case SPEED_100: 2104 reg &= ~GM_GPCR_SPEED_1000; 2105 reg |= GM_GPCR_SPEED_100; 2106 break; 2107 case SPEED_10: 2108 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100); 2109 break; 2110 } 2111 2112 if (skge->duplex == DUPLEX_FULL) 2113 reg |= GM_GPCR_DUP_FULL; 2114 } else 2115 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; 2116 2117 switch (skge->flow_control) { 2118 case FLOW_MODE_NONE: 2119 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2120 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 2121 break; 2122 case FLOW_MODE_LOC_SEND: 2123 /* disable Rx flow-control */ 2124 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 2125 break; 2126 case FLOW_MODE_SYMMETRIC: 2127 case FLOW_MODE_SYM_OR_REM: 2128 /* enable Tx & Rx flow-control */ 2129 break; 2130 } 2131 2132 gma_write16(hw, port, GM_GP_CTRL, reg); 2133 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); 2134 2135 yukon_init(hw, port); 2136 2137 /* MIB clear */ 2138 reg = gma_read16(hw, port, GM_PHY_ADDR); 2139 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); 2140 2141 for (i = 0; i < GM_MIB_CNT_SIZE; i++) 2142 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); 2143 gma_write16(hw, port, GM_PHY_ADDR, reg); 2144 2145 /* transmit control */ 2146 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); 2147 2148 /* receive control reg: unicast + multicast + no FCS */ 2149 gma_write16(hw, port, GM_RX_CTRL, 2150 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); 2151 2152 /* transmit flow control */ 2153 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); 2154 2155 /* transmit parameter */ 2156 gma_write16(hw, port, GM_TX_PARAM, 2157 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | 2158 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | 2159 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); 2160 2161 /* configure the Serial Mode Register */ 2162 reg = DATA_BLIND_VAL(DATA_BLIND_DEF) 2163 | GM_SMOD_VLAN_ENA 2164 | IPG_DATA_VAL(IPG_DATA_DEF); 2165 2166 if (hw->dev[port]->mtu > ETH_DATA_LEN) 2167 reg |= GM_SMOD_JUMBO_ENA; 2168 2169 gma_write16(hw, port, GM_SERIAL_MODE, reg); 2170 2171 /* physical address: used for pause frames */ 2172 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); 2173 /* virtual address for data */ 2174 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); 2175 2176 /* enable interrupt mask for counter overflows */ 2177 gma_write16(hw, port, GM_TX_IRQ_MSK, 0); 2178 gma_write16(hw, port, GM_RX_IRQ_MSK, 0); 2179 gma_write16(hw, port, GM_TR_IRQ_MSK, 0); 2180 2181 /* Initialize Mac Fifo */ 2182 2183 /* Configure Rx MAC FIFO */ 2184 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); 2185 reg = GMF_OPER_ON | GMF_RX_F_FL_ON; 2186 2187 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ 2188 if (is_yukon_lite_a0(hw)) 2189 reg &= ~GMF_RX_F_FL_ON; 2190 2191 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); 2192 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg); 2193 /* 2194 * because Pause Packet Truncation in GMAC is not working 2195 * we have to increase the Flush Threshold to 64 bytes 2196 * in order to flush pause packets in Rx FIFO on Yukon-1 2197 */ 2198 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1); 2199 2200 /* Configure Tx MAC FIFO */ 2201 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); 2202 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); 2203 } 2204 2205 /* Go into power down mode */ 2206 static void yukon_suspend(struct skge_hw *hw, int port) 2207 { 2208 u16 ctrl; 2209 2210 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); 2211 ctrl |= PHY_M_PC_POL_R_DIS; 2212 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); 2213 2214 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 2215 ctrl |= PHY_CT_RESET; 2216 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2217 2218 /* switch IEEE compatible power down mode on */ 2219 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 2220 ctrl |= PHY_CT_PDOWN; 2221 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2222 } 2223 2224 static void yukon_stop(struct skge_port *skge) 2225 { 2226 struct skge_hw *hw = skge->hw; 2227 int port = skge->port; 2228 2229 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 2230 yukon_reset(hw, port); 2231 2232 gma_write16(hw, port, GM_GP_CTRL, 2233 gma_read16(hw, port, GM_GP_CTRL) 2234 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA)); 2235 gma_read16(hw, port, GM_GP_CTRL); 2236 2237 yukon_suspend(hw, port); 2238 2239 /* set GPHY Control reset */ 2240 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 2241 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 2242 } 2243 2244 static void yukon_get_stats(struct skge_port *skge, u64 *data) 2245 { 2246 struct skge_hw *hw = skge->hw; 2247 int port = skge->port; 2248 int i; 2249 2250 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 2251 | gma_read32(hw, port, GM_TXO_OK_LO); 2252 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 2253 | gma_read32(hw, port, GM_RXO_OK_LO); 2254 2255 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 2256 data[i] = gma_read32(hw, port, 2257 skge_stats[i].gma_offset); 2258 } 2259 2260 static void yukon_mac_intr(struct skge_hw *hw, int port) 2261 { 2262 struct net_device *dev = hw->dev[port]; 2263 struct skge_port *skge = netdev_priv(dev); 2264 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); 2265 2266 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 2267 "mac interrupt status 0x%x\n", status); 2268 2269 if (status & GM_IS_RX_FF_OR) { 2270 ++dev->stats.rx_fifo_errors; 2271 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); 2272 } 2273 2274 if (status & GM_IS_TX_FF_UR) { 2275 ++dev->stats.tx_fifo_errors; 2276 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); 2277 } 2278 2279 } 2280 2281 static u16 yukon_speed(const struct skge_hw *hw, u16 aux) 2282 { 2283 switch (aux & PHY_M_PS_SPEED_MSK) { 2284 case PHY_M_PS_SPEED_1000: 2285 return SPEED_1000; 2286 case PHY_M_PS_SPEED_100: 2287 return SPEED_100; 2288 default: 2289 return SPEED_10; 2290 } 2291 } 2292 2293 static void yukon_link_up(struct skge_port *skge) 2294 { 2295 struct skge_hw *hw = skge->hw; 2296 int port = skge->port; 2297 u16 reg; 2298 2299 /* Enable Transmit FIFO Underrun */ 2300 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); 2301 2302 reg = gma_read16(hw, port, GM_GP_CTRL); 2303 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) 2304 reg |= GM_GPCR_DUP_FULL; 2305 2306 /* enable Rx/Tx */ 2307 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; 2308 gma_write16(hw, port, GM_GP_CTRL, reg); 2309 2310 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 2311 skge_link_up(skge); 2312 } 2313 2314 static void yukon_link_down(struct skge_port *skge) 2315 { 2316 struct skge_hw *hw = skge->hw; 2317 int port = skge->port; 2318 u16 ctrl; 2319 2320 ctrl = gma_read16(hw, port, GM_GP_CTRL); 2321 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 2322 gma_write16(hw, port, GM_GP_CTRL, ctrl); 2323 2324 if (skge->flow_status == FLOW_STAT_REM_SEND) { 2325 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV); 2326 ctrl |= PHY_M_AN_ASP; 2327 /* restore Asymmetric Pause bit */ 2328 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl); 2329 } 2330 2331 skge_link_down(skge); 2332 2333 yukon_init(hw, port); 2334 } 2335 2336 static void yukon_phy_intr(struct skge_port *skge) 2337 { 2338 struct skge_hw *hw = skge->hw; 2339 int port = skge->port; 2340 const char *reason = NULL; 2341 u16 istatus, phystat; 2342 2343 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); 2344 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); 2345 2346 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 2347 "phy interrupt status 0x%x 0x%x\n", istatus, phystat); 2348 2349 if (istatus & PHY_M_IS_AN_COMPL) { 2350 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP) 2351 & PHY_M_AN_RF) { 2352 reason = "remote fault"; 2353 goto failed; 2354 } 2355 2356 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { 2357 reason = "master/slave fault"; 2358 goto failed; 2359 } 2360 2361 if (!(phystat & PHY_M_PS_SPDUP_RES)) { 2362 reason = "speed/duplex"; 2363 goto failed; 2364 } 2365 2366 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) 2367 ? DUPLEX_FULL : DUPLEX_HALF; 2368 skge->speed = yukon_speed(hw, phystat); 2369 2370 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 2371 switch (phystat & PHY_M_PS_PAUSE_MSK) { 2372 case PHY_M_PS_PAUSE_MSK: 2373 skge->flow_status = FLOW_STAT_SYMMETRIC; 2374 break; 2375 case PHY_M_PS_RX_P_EN: 2376 skge->flow_status = FLOW_STAT_REM_SEND; 2377 break; 2378 case PHY_M_PS_TX_P_EN: 2379 skge->flow_status = FLOW_STAT_LOC_SEND; 2380 break; 2381 default: 2382 skge->flow_status = FLOW_STAT_NONE; 2383 } 2384 2385 if (skge->flow_status == FLOW_STAT_NONE || 2386 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) 2387 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2388 else 2389 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); 2390 yukon_link_up(skge); 2391 return; 2392 } 2393 2394 if (istatus & PHY_M_IS_LSP_CHANGE) 2395 skge->speed = yukon_speed(hw, phystat); 2396 2397 if (istatus & PHY_M_IS_DUP_CHANGE) 2398 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; 2399 if (istatus & PHY_M_IS_LST_CHANGE) { 2400 if (phystat & PHY_M_PS_LINK_UP) 2401 yukon_link_up(skge); 2402 else 2403 yukon_link_down(skge); 2404 } 2405 return; 2406 failed: 2407 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason); 2408 2409 /* XXX restart autonegotiation? */ 2410 } 2411 2412 static void skge_phy_reset(struct skge_port *skge) 2413 { 2414 struct skge_hw *hw = skge->hw; 2415 int port = skge->port; 2416 struct net_device *dev = hw->dev[port]; 2417 2418 netif_stop_queue(skge->netdev); 2419 netif_carrier_off(skge->netdev); 2420 2421 spin_lock_bh(&hw->phy_lock); 2422 if (is_genesis(hw)) { 2423 genesis_reset(hw, port); 2424 genesis_mac_init(hw, port); 2425 } else { 2426 yukon_reset(hw, port); 2427 yukon_init(hw, port); 2428 } 2429 spin_unlock_bh(&hw->phy_lock); 2430 2431 skge_set_multicast(dev); 2432 } 2433 2434 /* Basic MII support */ 2435 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2436 { 2437 struct mii_ioctl_data *data = if_mii(ifr); 2438 struct skge_port *skge = netdev_priv(dev); 2439 struct skge_hw *hw = skge->hw; 2440 int err = -EOPNOTSUPP; 2441 2442 if (!netif_running(dev)) 2443 return -ENODEV; /* Phy still in reset */ 2444 2445 switch (cmd) { 2446 case SIOCGMIIPHY: 2447 data->phy_id = hw->phy_addr; 2448 2449 /* fallthru */ 2450 case SIOCGMIIREG: { 2451 u16 val = 0; 2452 spin_lock_bh(&hw->phy_lock); 2453 2454 if (is_genesis(hw)) 2455 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2456 else 2457 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2458 spin_unlock_bh(&hw->phy_lock); 2459 data->val_out = val; 2460 break; 2461 } 2462 2463 case SIOCSMIIREG: 2464 spin_lock_bh(&hw->phy_lock); 2465 if (is_genesis(hw)) 2466 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2467 data->val_in); 2468 else 2469 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2470 data->val_in); 2471 spin_unlock_bh(&hw->phy_lock); 2472 break; 2473 } 2474 return err; 2475 } 2476 2477 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len) 2478 { 2479 u32 end; 2480 2481 start /= 8; 2482 len /= 8; 2483 end = start + len - 1; 2484 2485 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); 2486 skge_write32(hw, RB_ADDR(q, RB_START), start); 2487 skge_write32(hw, RB_ADDR(q, RB_WP), start); 2488 skge_write32(hw, RB_ADDR(q, RB_RP), start); 2489 skge_write32(hw, RB_ADDR(q, RB_END), end); 2490 2491 if (q == Q_R1 || q == Q_R2) { 2492 /* Set thresholds on receive queue's */ 2493 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), 2494 start + (2*len)/3); 2495 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), 2496 start + (len/3)); 2497 } else { 2498 /* Enable store & forward on Tx queue's because 2499 * Tx FIFO is only 4K on Genesis and 1K on Yukon 2500 */ 2501 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); 2502 } 2503 2504 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); 2505 } 2506 2507 /* Setup Bus Memory Interface */ 2508 static void skge_qset(struct skge_port *skge, u16 q, 2509 const struct skge_element *e) 2510 { 2511 struct skge_hw *hw = skge->hw; 2512 u32 watermark = 0x600; 2513 u64 base = skge->dma + (e->desc - skge->mem); 2514 2515 /* optimization to reduce window on 32bit/33mhz */ 2516 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0) 2517 watermark /= 2; 2518 2519 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET); 2520 skge_write32(hw, Q_ADDR(q, Q_F), watermark); 2521 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32)); 2522 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base); 2523 } 2524 2525 static int skge_up(struct net_device *dev) 2526 { 2527 struct skge_port *skge = netdev_priv(dev); 2528 struct skge_hw *hw = skge->hw; 2529 int port = skge->port; 2530 u32 chunk, ram_addr; 2531 size_t rx_size, tx_size; 2532 int err; 2533 2534 if (!is_valid_ether_addr(dev->dev_addr)) 2535 return -EINVAL; 2536 2537 netif_info(skge, ifup, skge->netdev, "enabling interface\n"); 2538 2539 if (dev->mtu > RX_BUF_SIZE) 2540 skge->rx_buf_size = dev->mtu + ETH_HLEN; 2541 else 2542 skge->rx_buf_size = RX_BUF_SIZE; 2543 2544 2545 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); 2546 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); 2547 skge->mem_size = tx_size + rx_size; 2548 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma); 2549 if (!skge->mem) 2550 return -ENOMEM; 2551 2552 BUG_ON(skge->dma & 7); 2553 2554 if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) { 2555 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n"); 2556 err = -EINVAL; 2557 goto free_pci_mem; 2558 } 2559 2560 memset(skge->mem, 0, skge->mem_size); 2561 2562 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma); 2563 if (err) 2564 goto free_pci_mem; 2565 2566 err = skge_rx_fill(dev); 2567 if (err) 2568 goto free_rx_ring; 2569 2570 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, 2571 skge->dma + rx_size); 2572 if (err) 2573 goto free_rx_ring; 2574 2575 if (hw->ports == 1) { 2576 err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED, 2577 dev->name, hw); 2578 if (err) { 2579 netdev_err(dev, "Unable to allocate interrupt %d error: %d\n", 2580 hw->pdev->irq, err); 2581 goto free_tx_ring; 2582 } 2583 } 2584 2585 /* Initialize MAC */ 2586 netif_carrier_off(dev); 2587 spin_lock_bh(&hw->phy_lock); 2588 if (is_genesis(hw)) 2589 genesis_mac_init(hw, port); 2590 else 2591 yukon_mac_init(hw, port); 2592 spin_unlock_bh(&hw->phy_lock); 2593 2594 /* Configure RAMbuffers - equally between ports and tx/rx */ 2595 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2); 2596 ram_addr = hw->ram_offset + 2 * chunk * port; 2597 2598 skge_ramset(hw, rxqaddr[port], ram_addr, chunk); 2599 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean); 2600 2601 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean); 2602 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk); 2603 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use); 2604 2605 /* Start receiver BMU */ 2606 wmb(); 2607 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F); 2608 skge_led(skge, LED_MODE_ON); 2609 2610 spin_lock_irq(&hw->hw_lock); 2611 hw->intr_mask |= portmask[port]; 2612 skge_write32(hw, B0_IMSK, hw->intr_mask); 2613 skge_read32(hw, B0_IMSK); 2614 spin_unlock_irq(&hw->hw_lock); 2615 2616 napi_enable(&skge->napi); 2617 2618 skge_set_multicast(dev); 2619 2620 return 0; 2621 2622 free_tx_ring: 2623 kfree(skge->tx_ring.start); 2624 free_rx_ring: 2625 skge_rx_clean(skge); 2626 kfree(skge->rx_ring.start); 2627 free_pci_mem: 2628 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); 2629 skge->mem = NULL; 2630 2631 return err; 2632 } 2633 2634 /* stop receiver */ 2635 static void skge_rx_stop(struct skge_hw *hw, int port) 2636 { 2637 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP); 2638 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL), 2639 RB_RST_SET|RB_DIS_OP_MD); 2640 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); 2641 } 2642 2643 static int skge_down(struct net_device *dev) 2644 { 2645 struct skge_port *skge = netdev_priv(dev); 2646 struct skge_hw *hw = skge->hw; 2647 int port = skge->port; 2648 2649 if (skge->mem == NULL) 2650 return 0; 2651 2652 netif_info(skge, ifdown, skge->netdev, "disabling interface\n"); 2653 2654 netif_tx_disable(dev); 2655 2656 if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC) 2657 del_timer_sync(&skge->link_timer); 2658 2659 napi_disable(&skge->napi); 2660 netif_carrier_off(dev); 2661 2662 spin_lock_irq(&hw->hw_lock); 2663 hw->intr_mask &= ~portmask[port]; 2664 skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask); 2665 skge_read32(hw, B0_IMSK); 2666 spin_unlock_irq(&hw->hw_lock); 2667 2668 if (hw->ports == 1) 2669 free_irq(hw->pdev->irq, hw); 2670 2671 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF); 2672 if (is_genesis(hw)) 2673 genesis_stop(skge); 2674 else 2675 yukon_stop(skge); 2676 2677 /* Stop transmitter */ 2678 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); 2679 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), 2680 RB_RST_SET|RB_DIS_OP_MD); 2681 2682 2683 /* Disable Force Sync bit and Enable Alloc bit */ 2684 skge_write8(hw, SK_REG(port, TXA_CTRL), 2685 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); 2686 2687 /* Stop Interval Timer and Limit Counter of Tx Arbiter */ 2688 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); 2689 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); 2690 2691 /* Reset PCI FIFO */ 2692 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); 2693 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); 2694 2695 /* Reset the RAM Buffer async Tx queue */ 2696 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET); 2697 2698 skge_rx_stop(hw, port); 2699 2700 if (is_genesis(hw)) { 2701 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET); 2702 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET); 2703 } else { 2704 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 2705 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); 2706 } 2707 2708 skge_led(skge, LED_MODE_OFF); 2709 2710 netif_tx_lock_bh(dev); 2711 skge_tx_clean(dev); 2712 netif_tx_unlock_bh(dev); 2713 2714 skge_rx_clean(skge); 2715 2716 kfree(skge->rx_ring.start); 2717 kfree(skge->tx_ring.start); 2718 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); 2719 skge->mem = NULL; 2720 return 0; 2721 } 2722 2723 static inline int skge_avail(const struct skge_ring *ring) 2724 { 2725 smp_mb(); 2726 return ((ring->to_clean > ring->to_use) ? 0 : ring->count) 2727 + (ring->to_clean - ring->to_use) - 1; 2728 } 2729 2730 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb, 2731 struct net_device *dev) 2732 { 2733 struct skge_port *skge = netdev_priv(dev); 2734 struct skge_hw *hw = skge->hw; 2735 struct skge_element *e; 2736 struct skge_tx_desc *td; 2737 int i; 2738 u32 control, len; 2739 dma_addr_t map; 2740 2741 if (skb_padto(skb, ETH_ZLEN)) 2742 return NETDEV_TX_OK; 2743 2744 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) 2745 return NETDEV_TX_BUSY; 2746 2747 e = skge->tx_ring.to_use; 2748 td = e->desc; 2749 BUG_ON(td->control & BMU_OWN); 2750 e->skb = skb; 2751 len = skb_headlen(skb); 2752 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); 2753 if (pci_dma_mapping_error(hw->pdev, map)) 2754 goto mapping_error; 2755 2756 dma_unmap_addr_set(e, mapaddr, map); 2757 dma_unmap_len_set(e, maplen, len); 2758 2759 td->dma_lo = lower_32_bits(map); 2760 td->dma_hi = upper_32_bits(map); 2761 2762 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2763 const int offset = skb_checksum_start_offset(skb); 2764 2765 /* This seems backwards, but it is what the sk98lin 2766 * does. Looks like hardware is wrong? 2767 */ 2768 if (ipip_hdr(skb)->protocol == IPPROTO_UDP && 2769 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON) 2770 control = BMU_TCP_CHECK; 2771 else 2772 control = BMU_UDP_CHECK; 2773 2774 td->csum_offs = 0; 2775 td->csum_start = offset; 2776 td->csum_write = offset + skb->csum_offset; 2777 } else 2778 control = BMU_CHECK; 2779 2780 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */ 2781 control |= BMU_EOF | BMU_IRQ_EOF; 2782 else { 2783 struct skge_tx_desc *tf = td; 2784 2785 control |= BMU_STFWD; 2786 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2787 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2788 2789 map = skb_frag_dma_map(&hw->pdev->dev, frag, 0, 2790 skb_frag_size(frag), DMA_TO_DEVICE); 2791 if (dma_mapping_error(&hw->pdev->dev, map)) 2792 goto mapping_unwind; 2793 2794 e = e->next; 2795 e->skb = skb; 2796 tf = e->desc; 2797 BUG_ON(tf->control & BMU_OWN); 2798 2799 tf->dma_lo = lower_32_bits(map); 2800 tf->dma_hi = upper_32_bits(map); 2801 dma_unmap_addr_set(e, mapaddr, map); 2802 dma_unmap_len_set(e, maplen, skb_frag_size(frag)); 2803 2804 tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag); 2805 } 2806 tf->control |= BMU_EOF | BMU_IRQ_EOF; 2807 } 2808 /* Make sure all the descriptors written */ 2809 wmb(); 2810 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len; 2811 wmb(); 2812 2813 netdev_sent_queue(dev, skb->len); 2814 2815 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START); 2816 2817 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev, 2818 "tx queued, slot %td, len %d\n", 2819 e - skge->tx_ring.start, skb->len); 2820 2821 skge->tx_ring.to_use = e->next; 2822 smp_wmb(); 2823 2824 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) { 2825 netdev_dbg(dev, "transmit queue full\n"); 2826 netif_stop_queue(dev); 2827 } 2828 2829 return NETDEV_TX_OK; 2830 2831 mapping_unwind: 2832 e = skge->tx_ring.to_use; 2833 pci_unmap_single(hw->pdev, 2834 dma_unmap_addr(e, mapaddr), 2835 dma_unmap_len(e, maplen), 2836 PCI_DMA_TODEVICE); 2837 while (i-- > 0) { 2838 e = e->next; 2839 pci_unmap_page(hw->pdev, 2840 dma_unmap_addr(e, mapaddr), 2841 dma_unmap_len(e, maplen), 2842 PCI_DMA_TODEVICE); 2843 } 2844 2845 mapping_error: 2846 if (net_ratelimit()) 2847 dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name); 2848 dev_kfree_skb_any(skb); 2849 return NETDEV_TX_OK; 2850 } 2851 2852 2853 /* Free resources associated with this reing element */ 2854 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e, 2855 u32 control) 2856 { 2857 /* skb header vs. fragment */ 2858 if (control & BMU_STF) 2859 pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr), 2860 dma_unmap_len(e, maplen), 2861 PCI_DMA_TODEVICE); 2862 else 2863 pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr), 2864 dma_unmap_len(e, maplen), 2865 PCI_DMA_TODEVICE); 2866 } 2867 2868 /* Free all buffers in transmit ring */ 2869 static void skge_tx_clean(struct net_device *dev) 2870 { 2871 struct skge_port *skge = netdev_priv(dev); 2872 struct skge_element *e; 2873 2874 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { 2875 struct skge_tx_desc *td = e->desc; 2876 2877 skge_tx_unmap(skge->hw->pdev, e, td->control); 2878 2879 if (td->control & BMU_EOF) 2880 dev_kfree_skb(e->skb); 2881 td->control = 0; 2882 } 2883 2884 netdev_reset_queue(dev); 2885 skge->tx_ring.to_clean = e; 2886 } 2887 2888 static void skge_tx_timeout(struct net_device *dev) 2889 { 2890 struct skge_port *skge = netdev_priv(dev); 2891 2892 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n"); 2893 2894 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP); 2895 skge_tx_clean(dev); 2896 netif_wake_queue(dev); 2897 } 2898 2899 static int skge_change_mtu(struct net_device *dev, int new_mtu) 2900 { 2901 int err; 2902 2903 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) 2904 return -EINVAL; 2905 2906 if (!netif_running(dev)) { 2907 dev->mtu = new_mtu; 2908 return 0; 2909 } 2910 2911 skge_down(dev); 2912 2913 dev->mtu = new_mtu; 2914 2915 err = skge_up(dev); 2916 if (err) 2917 dev_close(dev); 2918 2919 return err; 2920 } 2921 2922 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 }; 2923 2924 static void genesis_add_filter(u8 filter[8], const u8 *addr) 2925 { 2926 u32 crc, bit; 2927 2928 crc = ether_crc_le(ETH_ALEN, addr); 2929 bit = ~crc & 0x3f; 2930 filter[bit/8] |= 1 << (bit%8); 2931 } 2932 2933 static void genesis_set_multicast(struct net_device *dev) 2934 { 2935 struct skge_port *skge = netdev_priv(dev); 2936 struct skge_hw *hw = skge->hw; 2937 int port = skge->port; 2938 struct netdev_hw_addr *ha; 2939 u32 mode; 2940 u8 filter[8]; 2941 2942 mode = xm_read32(hw, port, XM_MODE); 2943 mode |= XM_MD_ENA_HASH; 2944 if (dev->flags & IFF_PROMISC) 2945 mode |= XM_MD_ENA_PROM; 2946 else 2947 mode &= ~XM_MD_ENA_PROM; 2948 2949 if (dev->flags & IFF_ALLMULTI) 2950 memset(filter, 0xff, sizeof(filter)); 2951 else { 2952 memset(filter, 0, sizeof(filter)); 2953 2954 if (skge->flow_status == FLOW_STAT_REM_SEND || 2955 skge->flow_status == FLOW_STAT_SYMMETRIC) 2956 genesis_add_filter(filter, pause_mc_addr); 2957 2958 netdev_for_each_mc_addr(ha, dev) 2959 genesis_add_filter(filter, ha->addr); 2960 } 2961 2962 xm_write32(hw, port, XM_MODE, mode); 2963 xm_outhash(hw, port, XM_HSM, filter); 2964 } 2965 2966 static void yukon_add_filter(u8 filter[8], const u8 *addr) 2967 { 2968 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f; 2969 filter[bit/8] |= 1 << (bit%8); 2970 } 2971 2972 static void yukon_set_multicast(struct net_device *dev) 2973 { 2974 struct skge_port *skge = netdev_priv(dev); 2975 struct skge_hw *hw = skge->hw; 2976 int port = skge->port; 2977 struct netdev_hw_addr *ha; 2978 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND || 2979 skge->flow_status == FLOW_STAT_SYMMETRIC); 2980 u16 reg; 2981 u8 filter[8]; 2982 2983 memset(filter, 0, sizeof(filter)); 2984 2985 reg = gma_read16(hw, port, GM_RX_CTRL); 2986 reg |= GM_RXCR_UCF_ENA; 2987 2988 if (dev->flags & IFF_PROMISC) /* promiscuous */ 2989 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2990 else if (dev->flags & IFF_ALLMULTI) /* all multicast */ 2991 memset(filter, 0xff, sizeof(filter)); 2992 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */ 2993 reg &= ~GM_RXCR_MCF_ENA; 2994 else { 2995 reg |= GM_RXCR_MCF_ENA; 2996 2997 if (rx_pause) 2998 yukon_add_filter(filter, pause_mc_addr); 2999 3000 netdev_for_each_mc_addr(ha, dev) 3001 yukon_add_filter(filter, ha->addr); 3002 } 3003 3004 3005 gma_write16(hw, port, GM_MC_ADDR_H1, 3006 (u16)filter[0] | ((u16)filter[1] << 8)); 3007 gma_write16(hw, port, GM_MC_ADDR_H2, 3008 (u16)filter[2] | ((u16)filter[3] << 8)); 3009 gma_write16(hw, port, GM_MC_ADDR_H3, 3010 (u16)filter[4] | ((u16)filter[5] << 8)); 3011 gma_write16(hw, port, GM_MC_ADDR_H4, 3012 (u16)filter[6] | ((u16)filter[7] << 8)); 3013 3014 gma_write16(hw, port, GM_RX_CTRL, reg); 3015 } 3016 3017 static inline u16 phy_length(const struct skge_hw *hw, u32 status) 3018 { 3019 if (is_genesis(hw)) 3020 return status >> XMR_FS_LEN_SHIFT; 3021 else 3022 return status >> GMR_FS_LEN_SHIFT; 3023 } 3024 3025 static inline int bad_phy_status(const struct skge_hw *hw, u32 status) 3026 { 3027 if (is_genesis(hw)) 3028 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0; 3029 else 3030 return (status & GMR_FS_ANY_ERR) || 3031 (status & GMR_FS_RX_OK) == 0; 3032 } 3033 3034 static void skge_set_multicast(struct net_device *dev) 3035 { 3036 struct skge_port *skge = netdev_priv(dev); 3037 3038 if (is_genesis(skge->hw)) 3039 genesis_set_multicast(dev); 3040 else 3041 yukon_set_multicast(dev); 3042 3043 } 3044 3045 3046 /* Get receive buffer from descriptor. 3047 * Handles copy of small buffers and reallocation failures 3048 */ 3049 static struct sk_buff *skge_rx_get(struct net_device *dev, 3050 struct skge_element *e, 3051 u32 control, u32 status, u16 csum) 3052 { 3053 struct skge_port *skge = netdev_priv(dev); 3054 struct sk_buff *skb; 3055 u16 len = control & BMU_BBC; 3056 3057 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev, 3058 "rx slot %td status 0x%x len %d\n", 3059 e - skge->rx_ring.start, status, len); 3060 3061 if (len > skge->rx_buf_size) 3062 goto error; 3063 3064 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)) 3065 goto error; 3066 3067 if (bad_phy_status(skge->hw, status)) 3068 goto error; 3069 3070 if (phy_length(skge->hw, status) != len) 3071 goto error; 3072 3073 if (len < RX_COPY_THRESHOLD) { 3074 skb = netdev_alloc_skb_ip_align(dev, len); 3075 if (!skb) 3076 goto resubmit; 3077 3078 pci_dma_sync_single_for_cpu(skge->hw->pdev, 3079 dma_unmap_addr(e, mapaddr), 3080 dma_unmap_len(e, maplen), 3081 PCI_DMA_FROMDEVICE); 3082 skb_copy_from_linear_data(e->skb, skb->data, len); 3083 pci_dma_sync_single_for_device(skge->hw->pdev, 3084 dma_unmap_addr(e, mapaddr), 3085 dma_unmap_len(e, maplen), 3086 PCI_DMA_FROMDEVICE); 3087 skge_rx_reuse(e, skge->rx_buf_size); 3088 } else { 3089 struct skge_element ee; 3090 struct sk_buff *nskb; 3091 3092 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size); 3093 if (!nskb) 3094 goto resubmit; 3095 3096 ee = *e; 3097 3098 skb = ee.skb; 3099 prefetch(skb->data); 3100 3101 if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) { 3102 dev_kfree_skb(nskb); 3103 goto resubmit; 3104 } 3105 3106 pci_unmap_single(skge->hw->pdev, 3107 dma_unmap_addr(&ee, mapaddr), 3108 dma_unmap_len(&ee, maplen), 3109 PCI_DMA_FROMDEVICE); 3110 } 3111 3112 skb_put(skb, len); 3113 3114 if (dev->features & NETIF_F_RXCSUM) { 3115 skb->csum = csum; 3116 skb->ip_summed = CHECKSUM_COMPLETE; 3117 } 3118 3119 skb->protocol = eth_type_trans(skb, dev); 3120 3121 return skb; 3122 error: 3123 3124 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev, 3125 "rx err, slot %td control 0x%x status 0x%x\n", 3126 e - skge->rx_ring.start, control, status); 3127 3128 if (is_genesis(skge->hw)) { 3129 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) 3130 dev->stats.rx_length_errors++; 3131 if (status & XMR_FS_FRA_ERR) 3132 dev->stats.rx_frame_errors++; 3133 if (status & XMR_FS_FCS_ERR) 3134 dev->stats.rx_crc_errors++; 3135 } else { 3136 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) 3137 dev->stats.rx_length_errors++; 3138 if (status & GMR_FS_FRAGMENT) 3139 dev->stats.rx_frame_errors++; 3140 if (status & GMR_FS_CRC_ERR) 3141 dev->stats.rx_crc_errors++; 3142 } 3143 3144 resubmit: 3145 skge_rx_reuse(e, skge->rx_buf_size); 3146 return NULL; 3147 } 3148 3149 /* Free all buffers in Tx ring which are no longer owned by device */ 3150 static void skge_tx_done(struct net_device *dev) 3151 { 3152 struct skge_port *skge = netdev_priv(dev); 3153 struct skge_ring *ring = &skge->tx_ring; 3154 struct skge_element *e; 3155 unsigned int bytes_compl = 0, pkts_compl = 0; 3156 3157 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 3158 3159 for (e = ring->to_clean; e != ring->to_use; e = e->next) { 3160 u32 control = ((const struct skge_tx_desc *) e->desc)->control; 3161 3162 if (control & BMU_OWN) 3163 break; 3164 3165 skge_tx_unmap(skge->hw->pdev, e, control); 3166 3167 if (control & BMU_EOF) { 3168 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev, 3169 "tx done slot %td\n", 3170 e - skge->tx_ring.start); 3171 3172 pkts_compl++; 3173 bytes_compl += e->skb->len; 3174 3175 dev_consume_skb_any(e->skb); 3176 } 3177 } 3178 netdev_completed_queue(dev, pkts_compl, bytes_compl); 3179 skge->tx_ring.to_clean = e; 3180 3181 /* Can run lockless until we need to synchronize to restart queue. */ 3182 smp_mb(); 3183 3184 if (unlikely(netif_queue_stopped(dev) && 3185 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { 3186 netif_tx_lock(dev); 3187 if (unlikely(netif_queue_stopped(dev) && 3188 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { 3189 netif_wake_queue(dev); 3190 3191 } 3192 netif_tx_unlock(dev); 3193 } 3194 } 3195 3196 static int skge_poll(struct napi_struct *napi, int to_do) 3197 { 3198 struct skge_port *skge = container_of(napi, struct skge_port, napi); 3199 struct net_device *dev = skge->netdev; 3200 struct skge_hw *hw = skge->hw; 3201 struct skge_ring *ring = &skge->rx_ring; 3202 struct skge_element *e; 3203 int work_done = 0; 3204 3205 skge_tx_done(dev); 3206 3207 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 3208 3209 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) { 3210 struct skge_rx_desc *rd = e->desc; 3211 struct sk_buff *skb; 3212 u32 control; 3213 3214 rmb(); 3215 control = rd->control; 3216 if (control & BMU_OWN) 3217 break; 3218 3219 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2); 3220 if (likely(skb)) { 3221 napi_gro_receive(napi, skb); 3222 ++work_done; 3223 } 3224 } 3225 ring->to_clean = e; 3226 3227 /* restart receiver */ 3228 wmb(); 3229 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START); 3230 3231 if (work_done < to_do) { 3232 unsigned long flags; 3233 3234 napi_gro_flush(napi, false); 3235 spin_lock_irqsave(&hw->hw_lock, flags); 3236 __napi_complete(napi); 3237 hw->intr_mask |= napimask[skge->port]; 3238 skge_write32(hw, B0_IMSK, hw->intr_mask); 3239 skge_read32(hw, B0_IMSK); 3240 spin_unlock_irqrestore(&hw->hw_lock, flags); 3241 } 3242 3243 return work_done; 3244 } 3245 3246 /* Parity errors seem to happen when Genesis is connected to a switch 3247 * with no other ports present. Heartbeat error?? 3248 */ 3249 static void skge_mac_parity(struct skge_hw *hw, int port) 3250 { 3251 struct net_device *dev = hw->dev[port]; 3252 3253 ++dev->stats.tx_heartbeat_errors; 3254 3255 if (is_genesis(hw)) 3256 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 3257 MFF_CLR_PERR); 3258 else 3259 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ 3260 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), 3261 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 3262 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE); 3263 } 3264 3265 static void skge_mac_intr(struct skge_hw *hw, int port) 3266 { 3267 if (is_genesis(hw)) 3268 genesis_mac_intr(hw, port); 3269 else 3270 yukon_mac_intr(hw, port); 3271 } 3272 3273 /* Handle device specific framing and timeout interrupts */ 3274 static void skge_error_irq(struct skge_hw *hw) 3275 { 3276 struct pci_dev *pdev = hw->pdev; 3277 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC); 3278 3279 if (is_genesis(hw)) { 3280 /* clear xmac errors */ 3281 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) 3282 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT); 3283 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) 3284 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT); 3285 } else { 3286 /* Timestamp (unused) overflow */ 3287 if (hwstatus & IS_IRQ_TIST_OV) 3288 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 3289 } 3290 3291 if (hwstatus & IS_RAM_RD_PAR) { 3292 dev_err(&pdev->dev, "Ram read data parity error\n"); 3293 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR); 3294 } 3295 3296 if (hwstatus & IS_RAM_WR_PAR) { 3297 dev_err(&pdev->dev, "Ram write data parity error\n"); 3298 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR); 3299 } 3300 3301 if (hwstatus & IS_M1_PAR_ERR) 3302 skge_mac_parity(hw, 0); 3303 3304 if (hwstatus & IS_M2_PAR_ERR) 3305 skge_mac_parity(hw, 1); 3306 3307 if (hwstatus & IS_R1_PAR_ERR) { 3308 dev_err(&pdev->dev, "%s: receive queue parity error\n", 3309 hw->dev[0]->name); 3310 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P); 3311 } 3312 3313 if (hwstatus & IS_R2_PAR_ERR) { 3314 dev_err(&pdev->dev, "%s: receive queue parity error\n", 3315 hw->dev[1]->name); 3316 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P); 3317 } 3318 3319 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) { 3320 u16 pci_status, pci_cmd; 3321 3322 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 3323 pci_read_config_word(pdev, PCI_STATUS, &pci_status); 3324 3325 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n", 3326 pci_cmd, pci_status); 3327 3328 /* Write the error bits back to clear them. */ 3329 pci_status &= PCI_STATUS_ERROR_BITS; 3330 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3331 pci_write_config_word(pdev, PCI_COMMAND, 3332 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY); 3333 pci_write_config_word(pdev, PCI_STATUS, pci_status); 3334 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3335 3336 /* if error still set then just ignore it */ 3337 hwstatus = skge_read32(hw, B0_HWE_ISRC); 3338 if (hwstatus & IS_IRQ_STAT) { 3339 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n"); 3340 hw->intr_mask &= ~IS_HW_ERR; 3341 } 3342 } 3343 } 3344 3345 /* 3346 * Interrupt from PHY are handled in tasklet (softirq) 3347 * because accessing phy registers requires spin wait which might 3348 * cause excess interrupt latency. 3349 */ 3350 static void skge_extirq(unsigned long arg) 3351 { 3352 struct skge_hw *hw = (struct skge_hw *) arg; 3353 int port; 3354 3355 for (port = 0; port < hw->ports; port++) { 3356 struct net_device *dev = hw->dev[port]; 3357 3358 if (netif_running(dev)) { 3359 struct skge_port *skge = netdev_priv(dev); 3360 3361 spin_lock(&hw->phy_lock); 3362 if (!is_genesis(hw)) 3363 yukon_phy_intr(skge); 3364 else if (hw->phy_type == SK_PHY_BCOM) 3365 bcom_phy_intr(skge); 3366 spin_unlock(&hw->phy_lock); 3367 } 3368 } 3369 3370 spin_lock_irq(&hw->hw_lock); 3371 hw->intr_mask |= IS_EXT_REG; 3372 skge_write32(hw, B0_IMSK, hw->intr_mask); 3373 skge_read32(hw, B0_IMSK); 3374 spin_unlock_irq(&hw->hw_lock); 3375 } 3376 3377 static irqreturn_t skge_intr(int irq, void *dev_id) 3378 { 3379 struct skge_hw *hw = dev_id; 3380 u32 status; 3381 int handled = 0; 3382 3383 spin_lock(&hw->hw_lock); 3384 /* Reading this register masks IRQ */ 3385 status = skge_read32(hw, B0_SP_ISRC); 3386 if (status == 0 || status == ~0) 3387 goto out; 3388 3389 handled = 1; 3390 status &= hw->intr_mask; 3391 if (status & IS_EXT_REG) { 3392 hw->intr_mask &= ~IS_EXT_REG; 3393 tasklet_schedule(&hw->phy_task); 3394 } 3395 3396 if (status & (IS_XA1_F|IS_R1_F)) { 3397 struct skge_port *skge = netdev_priv(hw->dev[0]); 3398 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F); 3399 napi_schedule(&skge->napi); 3400 } 3401 3402 if (status & IS_PA_TO_TX1) 3403 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1); 3404 3405 if (status & IS_PA_TO_RX1) { 3406 ++hw->dev[0]->stats.rx_over_errors; 3407 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1); 3408 } 3409 3410 3411 if (status & IS_MAC1) 3412 skge_mac_intr(hw, 0); 3413 3414 if (hw->dev[1]) { 3415 struct skge_port *skge = netdev_priv(hw->dev[1]); 3416 3417 if (status & (IS_XA2_F|IS_R2_F)) { 3418 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F); 3419 napi_schedule(&skge->napi); 3420 } 3421 3422 if (status & IS_PA_TO_RX2) { 3423 ++hw->dev[1]->stats.rx_over_errors; 3424 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2); 3425 } 3426 3427 if (status & IS_PA_TO_TX2) 3428 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2); 3429 3430 if (status & IS_MAC2) 3431 skge_mac_intr(hw, 1); 3432 } 3433 3434 if (status & IS_HW_ERR) 3435 skge_error_irq(hw); 3436 out: 3437 skge_write32(hw, B0_IMSK, hw->intr_mask); 3438 skge_read32(hw, B0_IMSK); 3439 spin_unlock(&hw->hw_lock); 3440 3441 return IRQ_RETVAL(handled); 3442 } 3443 3444 #ifdef CONFIG_NET_POLL_CONTROLLER 3445 static void skge_netpoll(struct net_device *dev) 3446 { 3447 struct skge_port *skge = netdev_priv(dev); 3448 3449 disable_irq(dev->irq); 3450 skge_intr(dev->irq, skge->hw); 3451 enable_irq(dev->irq); 3452 } 3453 #endif 3454 3455 static int skge_set_mac_address(struct net_device *dev, void *p) 3456 { 3457 struct skge_port *skge = netdev_priv(dev); 3458 struct skge_hw *hw = skge->hw; 3459 unsigned port = skge->port; 3460 const struct sockaddr *addr = p; 3461 u16 ctrl; 3462 3463 if (!is_valid_ether_addr(addr->sa_data)) 3464 return -EADDRNOTAVAIL; 3465 3466 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 3467 3468 if (!netif_running(dev)) { 3469 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); 3470 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); 3471 } else { 3472 /* disable Rx */ 3473 spin_lock_bh(&hw->phy_lock); 3474 ctrl = gma_read16(hw, port, GM_GP_CTRL); 3475 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA); 3476 3477 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); 3478 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); 3479 3480 if (is_genesis(hw)) 3481 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 3482 else { 3483 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); 3484 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); 3485 } 3486 3487 gma_write16(hw, port, GM_GP_CTRL, ctrl); 3488 spin_unlock_bh(&hw->phy_lock); 3489 } 3490 3491 return 0; 3492 } 3493 3494 static const struct { 3495 u8 id; 3496 const char *name; 3497 } skge_chips[] = { 3498 { CHIP_ID_GENESIS, "Genesis" }, 3499 { CHIP_ID_YUKON, "Yukon" }, 3500 { CHIP_ID_YUKON_LITE, "Yukon-Lite"}, 3501 { CHIP_ID_YUKON_LP, "Yukon-LP"}, 3502 }; 3503 3504 static const char *skge_board_name(const struct skge_hw *hw) 3505 { 3506 int i; 3507 static char buf[16]; 3508 3509 for (i = 0; i < ARRAY_SIZE(skge_chips); i++) 3510 if (skge_chips[i].id == hw->chip_id) 3511 return skge_chips[i].name; 3512 3513 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id); 3514 return buf; 3515 } 3516 3517 3518 /* 3519 * Setup the board data structure, but don't bring up 3520 * the port(s) 3521 */ 3522 static int skge_reset(struct skge_hw *hw) 3523 { 3524 u32 reg; 3525 u16 ctst, pci_status; 3526 u8 t8, mac_cfg, pmd_type; 3527 int i; 3528 3529 ctst = skge_read16(hw, B0_CTST); 3530 3531 /* do a SW reset */ 3532 skge_write8(hw, B0_CTST, CS_RST_SET); 3533 skge_write8(hw, B0_CTST, CS_RST_CLR); 3534 3535 /* clear PCI errors, if any */ 3536 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3537 skge_write8(hw, B2_TST_CTRL2, 0); 3538 3539 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status); 3540 pci_write_config_word(hw->pdev, PCI_STATUS, 3541 pci_status | PCI_STATUS_ERROR_BITS); 3542 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3543 skge_write8(hw, B0_CTST, CS_MRST_CLR); 3544 3545 /* restore CLK_RUN bits (for Yukon-Lite) */ 3546 skge_write16(hw, B0_CTST, 3547 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA)); 3548 3549 hw->chip_id = skge_read8(hw, B2_CHIP_ID); 3550 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf; 3551 pmd_type = skge_read8(hw, B2_PMD_TYP); 3552 hw->copper = (pmd_type == 'T' || pmd_type == '1'); 3553 3554 switch (hw->chip_id) { 3555 case CHIP_ID_GENESIS: 3556 #ifdef CONFIG_SKGE_GENESIS 3557 switch (hw->phy_type) { 3558 case SK_PHY_XMAC: 3559 hw->phy_addr = PHY_ADDR_XMAC; 3560 break; 3561 case SK_PHY_BCOM: 3562 hw->phy_addr = PHY_ADDR_BCOM; 3563 break; 3564 default: 3565 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n", 3566 hw->phy_type); 3567 return -EOPNOTSUPP; 3568 } 3569 break; 3570 #else 3571 dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n"); 3572 return -EOPNOTSUPP; 3573 #endif 3574 3575 case CHIP_ID_YUKON: 3576 case CHIP_ID_YUKON_LITE: 3577 case CHIP_ID_YUKON_LP: 3578 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S') 3579 hw->copper = 1; 3580 3581 hw->phy_addr = PHY_ADDR_MARV; 3582 break; 3583 3584 default: 3585 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n", 3586 hw->chip_id); 3587 return -EOPNOTSUPP; 3588 } 3589 3590 mac_cfg = skge_read8(hw, B2_MAC_CFG); 3591 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2; 3592 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4; 3593 3594 /* read the adapters RAM size */ 3595 t8 = skge_read8(hw, B2_E_0); 3596 if (is_genesis(hw)) { 3597 if (t8 == 3) { 3598 /* special case: 4 x 64k x 36, offset = 0x80000 */ 3599 hw->ram_size = 0x100000; 3600 hw->ram_offset = 0x80000; 3601 } else 3602 hw->ram_size = t8 * 512; 3603 } else if (t8 == 0) 3604 hw->ram_size = 0x20000; 3605 else 3606 hw->ram_size = t8 * 4096; 3607 3608 hw->intr_mask = IS_HW_ERR; 3609 3610 /* Use PHY IRQ for all but fiber based Genesis board */ 3611 if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)) 3612 hw->intr_mask |= IS_EXT_REG; 3613 3614 if (is_genesis(hw)) 3615 genesis_init(hw); 3616 else { 3617 /* switch power to VCC (WA for VAUX problem) */ 3618 skge_write8(hw, B0_POWER_CTRL, 3619 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); 3620 3621 /* avoid boards with stuck Hardware error bits */ 3622 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) && 3623 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) { 3624 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n"); 3625 hw->intr_mask &= ~IS_HW_ERR; 3626 } 3627 3628 /* Clear PHY COMA */ 3629 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3630 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®); 3631 reg &= ~PCI_PHY_COMA; 3632 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg); 3633 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3634 3635 3636 for (i = 0; i < hw->ports; i++) { 3637 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); 3638 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); 3639 } 3640 } 3641 3642 /* turn off hardware timer (unused) */ 3643 skge_write8(hw, B2_TI_CTRL, TIM_STOP); 3644 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); 3645 skge_write8(hw, B0_LED, LED_STAT_ON); 3646 3647 /* enable the Tx Arbiters */ 3648 for (i = 0; i < hw->ports; i++) 3649 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); 3650 3651 /* Initialize ram interface */ 3652 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); 3653 3654 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53); 3655 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53); 3656 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53); 3657 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53); 3658 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53); 3659 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53); 3660 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53); 3661 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53); 3662 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53); 3663 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53); 3664 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53); 3665 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53); 3666 3667 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK); 3668 3669 /* Set interrupt moderation for Transmit only 3670 * Receive interrupts avoided by NAPI 3671 */ 3672 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F); 3673 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); 3674 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 3675 3676 /* Leave irq disabled until first port is brought up. */ 3677 skge_write32(hw, B0_IMSK, 0); 3678 3679 for (i = 0; i < hw->ports; i++) { 3680 if (is_genesis(hw)) 3681 genesis_reset(hw, i); 3682 else 3683 yukon_reset(hw, i); 3684 } 3685 3686 return 0; 3687 } 3688 3689 3690 #ifdef CONFIG_SKGE_DEBUG 3691 3692 static struct dentry *skge_debug; 3693 3694 static int skge_debug_show(struct seq_file *seq, void *v) 3695 { 3696 struct net_device *dev = seq->private; 3697 const struct skge_port *skge = netdev_priv(dev); 3698 const struct skge_hw *hw = skge->hw; 3699 const struct skge_element *e; 3700 3701 if (!netif_running(dev)) 3702 return -ENETDOWN; 3703 3704 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC), 3705 skge_read32(hw, B0_IMSK)); 3706 3707 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring)); 3708 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { 3709 const struct skge_tx_desc *t = e->desc; 3710 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n", 3711 t->control, t->dma_hi, t->dma_lo, t->status, 3712 t->csum_offs, t->csum_write, t->csum_start); 3713 } 3714 3715 seq_printf(seq, "\nRx Ring:\n"); 3716 for (e = skge->rx_ring.to_clean; ; e = e->next) { 3717 const struct skge_rx_desc *r = e->desc; 3718 3719 if (r->control & BMU_OWN) 3720 break; 3721 3722 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n", 3723 r->control, r->dma_hi, r->dma_lo, r->status, 3724 r->timestamp, r->csum1, r->csum1_start); 3725 } 3726 3727 return 0; 3728 } 3729 3730 static int skge_debug_open(struct inode *inode, struct file *file) 3731 { 3732 return single_open(file, skge_debug_show, inode->i_private); 3733 } 3734 3735 static const struct file_operations skge_debug_fops = { 3736 .owner = THIS_MODULE, 3737 .open = skge_debug_open, 3738 .read = seq_read, 3739 .llseek = seq_lseek, 3740 .release = single_release, 3741 }; 3742 3743 /* 3744 * Use network device events to create/remove/rename 3745 * debugfs file entries 3746 */ 3747 static int skge_device_event(struct notifier_block *unused, 3748 unsigned long event, void *ptr) 3749 { 3750 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 3751 struct skge_port *skge; 3752 struct dentry *d; 3753 3754 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug) 3755 goto done; 3756 3757 skge = netdev_priv(dev); 3758 switch (event) { 3759 case NETDEV_CHANGENAME: 3760 if (skge->debugfs) { 3761 d = debugfs_rename(skge_debug, skge->debugfs, 3762 skge_debug, dev->name); 3763 if (d) 3764 skge->debugfs = d; 3765 else { 3766 netdev_info(dev, "rename failed\n"); 3767 debugfs_remove(skge->debugfs); 3768 } 3769 } 3770 break; 3771 3772 case NETDEV_GOING_DOWN: 3773 if (skge->debugfs) { 3774 debugfs_remove(skge->debugfs); 3775 skge->debugfs = NULL; 3776 } 3777 break; 3778 3779 case NETDEV_UP: 3780 d = debugfs_create_file(dev->name, S_IRUGO, 3781 skge_debug, dev, 3782 &skge_debug_fops); 3783 if (!d || IS_ERR(d)) 3784 netdev_info(dev, "debugfs create failed\n"); 3785 else 3786 skge->debugfs = d; 3787 break; 3788 } 3789 3790 done: 3791 return NOTIFY_DONE; 3792 } 3793 3794 static struct notifier_block skge_notifier = { 3795 .notifier_call = skge_device_event, 3796 }; 3797 3798 3799 static __init void skge_debug_init(void) 3800 { 3801 struct dentry *ent; 3802 3803 ent = debugfs_create_dir("skge", NULL); 3804 if (!ent || IS_ERR(ent)) { 3805 pr_info("debugfs create directory failed\n"); 3806 return; 3807 } 3808 3809 skge_debug = ent; 3810 register_netdevice_notifier(&skge_notifier); 3811 } 3812 3813 static __exit void skge_debug_cleanup(void) 3814 { 3815 if (skge_debug) { 3816 unregister_netdevice_notifier(&skge_notifier); 3817 debugfs_remove(skge_debug); 3818 skge_debug = NULL; 3819 } 3820 } 3821 3822 #else 3823 #define skge_debug_init() 3824 #define skge_debug_cleanup() 3825 #endif 3826 3827 static const struct net_device_ops skge_netdev_ops = { 3828 .ndo_open = skge_up, 3829 .ndo_stop = skge_down, 3830 .ndo_start_xmit = skge_xmit_frame, 3831 .ndo_do_ioctl = skge_ioctl, 3832 .ndo_get_stats = skge_get_stats, 3833 .ndo_tx_timeout = skge_tx_timeout, 3834 .ndo_change_mtu = skge_change_mtu, 3835 .ndo_validate_addr = eth_validate_addr, 3836 .ndo_set_rx_mode = skge_set_multicast, 3837 .ndo_set_mac_address = skge_set_mac_address, 3838 #ifdef CONFIG_NET_POLL_CONTROLLER 3839 .ndo_poll_controller = skge_netpoll, 3840 #endif 3841 }; 3842 3843 3844 /* Initialize network device */ 3845 static struct net_device *skge_devinit(struct skge_hw *hw, int port, 3846 int highmem) 3847 { 3848 struct skge_port *skge; 3849 struct net_device *dev = alloc_etherdev(sizeof(*skge)); 3850 3851 if (!dev) 3852 return NULL; 3853 3854 SET_NETDEV_DEV(dev, &hw->pdev->dev); 3855 dev->netdev_ops = &skge_netdev_ops; 3856 dev->ethtool_ops = &skge_ethtool_ops; 3857 dev->watchdog_timeo = TX_WATCHDOG; 3858 dev->irq = hw->pdev->irq; 3859 3860 if (highmem) 3861 dev->features |= NETIF_F_HIGHDMA; 3862 3863 skge = netdev_priv(dev); 3864 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT); 3865 skge->netdev = dev; 3866 skge->hw = hw; 3867 skge->msg_enable = netif_msg_init(debug, default_msg); 3868 3869 skge->tx_ring.count = DEFAULT_TX_RING_SIZE; 3870 skge->rx_ring.count = DEFAULT_RX_RING_SIZE; 3871 3872 /* Auto speed and flow control */ 3873 skge->autoneg = AUTONEG_ENABLE; 3874 skge->flow_control = FLOW_MODE_SYM_OR_REM; 3875 skge->duplex = -1; 3876 skge->speed = -1; 3877 skge->advertising = skge_supported_modes(hw); 3878 3879 if (device_can_wakeup(&hw->pdev->dev)) { 3880 skge->wol = wol_supported(hw) & WAKE_MAGIC; 3881 device_set_wakeup_enable(&hw->pdev->dev, skge->wol); 3882 } 3883 3884 hw->dev[port] = dev; 3885 3886 skge->port = port; 3887 3888 /* Only used for Genesis XMAC */ 3889 if (is_genesis(hw)) 3890 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge); 3891 else { 3892 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3893 NETIF_F_RXCSUM; 3894 dev->features |= dev->hw_features; 3895 } 3896 3897 /* read the mac address */ 3898 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN); 3899 3900 return dev; 3901 } 3902 3903 static void skge_show_addr(struct net_device *dev) 3904 { 3905 const struct skge_port *skge = netdev_priv(dev); 3906 3907 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr); 3908 } 3909 3910 static int only_32bit_dma; 3911 3912 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3913 { 3914 struct net_device *dev, *dev1; 3915 struct skge_hw *hw; 3916 int err, using_dac = 0; 3917 3918 err = pci_enable_device(pdev); 3919 if (err) { 3920 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3921 goto err_out; 3922 } 3923 3924 err = pci_request_regions(pdev, DRV_NAME); 3925 if (err) { 3926 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 3927 goto err_out_disable_pdev; 3928 } 3929 3930 pci_set_master(pdev); 3931 3932 if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 3933 using_dac = 1; 3934 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 3935 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { 3936 using_dac = 0; 3937 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 3938 } 3939 3940 if (err) { 3941 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3942 goto err_out_free_regions; 3943 } 3944 3945 #ifdef __BIG_ENDIAN 3946 /* byte swap descriptors in hardware */ 3947 { 3948 u32 reg; 3949 3950 pci_read_config_dword(pdev, PCI_DEV_REG2, ®); 3951 reg |= PCI_REV_DESC; 3952 pci_write_config_dword(pdev, PCI_DEV_REG2, reg); 3953 } 3954 #endif 3955 3956 err = -ENOMEM; 3957 /* space for skge@pci:0000:04:00.0 */ 3958 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:") 3959 + strlen(pci_name(pdev)) + 1, GFP_KERNEL); 3960 if (!hw) 3961 goto err_out_free_regions; 3962 3963 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev)); 3964 3965 hw->pdev = pdev; 3966 spin_lock_init(&hw->hw_lock); 3967 spin_lock_init(&hw->phy_lock); 3968 tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw); 3969 3970 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); 3971 if (!hw->regs) { 3972 dev_err(&pdev->dev, "cannot map device registers\n"); 3973 goto err_out_free_hw; 3974 } 3975 3976 err = skge_reset(hw); 3977 if (err) 3978 goto err_out_iounmap; 3979 3980 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n", 3981 DRV_VERSION, 3982 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq, 3983 skge_board_name(hw), hw->chip_rev); 3984 3985 dev = skge_devinit(hw, 0, using_dac); 3986 if (!dev) { 3987 err = -ENOMEM; 3988 goto err_out_led_off; 3989 } 3990 3991 /* Some motherboards are broken and has zero in ROM. */ 3992 if (!is_valid_ether_addr(dev->dev_addr)) 3993 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n"); 3994 3995 err = register_netdev(dev); 3996 if (err) { 3997 dev_err(&pdev->dev, "cannot register net device\n"); 3998 goto err_out_free_netdev; 3999 } 4000 4001 skge_show_addr(dev); 4002 4003 if (hw->ports > 1) { 4004 dev1 = skge_devinit(hw, 1, using_dac); 4005 if (!dev1) { 4006 err = -ENOMEM; 4007 goto err_out_unregister; 4008 } 4009 4010 err = register_netdev(dev1); 4011 if (err) { 4012 dev_err(&pdev->dev, "cannot register second net device\n"); 4013 goto err_out_free_dev1; 4014 } 4015 4016 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, 4017 hw->irq_name, hw); 4018 if (err) { 4019 dev_err(&pdev->dev, "cannot assign irq %d\n", 4020 pdev->irq); 4021 goto err_out_unregister_dev1; 4022 } 4023 4024 skge_show_addr(dev1); 4025 } 4026 pci_set_drvdata(pdev, hw); 4027 4028 return 0; 4029 4030 err_out_unregister_dev1: 4031 unregister_netdev(dev1); 4032 err_out_free_dev1: 4033 free_netdev(dev1); 4034 err_out_unregister: 4035 unregister_netdev(dev); 4036 err_out_free_netdev: 4037 free_netdev(dev); 4038 err_out_led_off: 4039 skge_write16(hw, B0_LED, LED_STAT_OFF); 4040 err_out_iounmap: 4041 iounmap(hw->regs); 4042 err_out_free_hw: 4043 kfree(hw); 4044 err_out_free_regions: 4045 pci_release_regions(pdev); 4046 err_out_disable_pdev: 4047 pci_disable_device(pdev); 4048 err_out: 4049 return err; 4050 } 4051 4052 static void skge_remove(struct pci_dev *pdev) 4053 { 4054 struct skge_hw *hw = pci_get_drvdata(pdev); 4055 struct net_device *dev0, *dev1; 4056 4057 if (!hw) 4058 return; 4059 4060 dev1 = hw->dev[1]; 4061 if (dev1) 4062 unregister_netdev(dev1); 4063 dev0 = hw->dev[0]; 4064 unregister_netdev(dev0); 4065 4066 tasklet_kill(&hw->phy_task); 4067 4068 spin_lock_irq(&hw->hw_lock); 4069 hw->intr_mask = 0; 4070 4071 if (hw->ports > 1) { 4072 skge_write32(hw, B0_IMSK, 0); 4073 skge_read32(hw, B0_IMSK); 4074 free_irq(pdev->irq, hw); 4075 } 4076 spin_unlock_irq(&hw->hw_lock); 4077 4078 skge_write16(hw, B0_LED, LED_STAT_OFF); 4079 skge_write8(hw, B0_CTST, CS_RST_SET); 4080 4081 if (hw->ports > 1) 4082 free_irq(pdev->irq, hw); 4083 pci_release_regions(pdev); 4084 pci_disable_device(pdev); 4085 if (dev1) 4086 free_netdev(dev1); 4087 free_netdev(dev0); 4088 4089 iounmap(hw->regs); 4090 kfree(hw); 4091 } 4092 4093 #ifdef CONFIG_PM_SLEEP 4094 static int skge_suspend(struct device *dev) 4095 { 4096 struct pci_dev *pdev = to_pci_dev(dev); 4097 struct skge_hw *hw = pci_get_drvdata(pdev); 4098 int i; 4099 4100 if (!hw) 4101 return 0; 4102 4103 for (i = 0; i < hw->ports; i++) { 4104 struct net_device *dev = hw->dev[i]; 4105 struct skge_port *skge = netdev_priv(dev); 4106 4107 if (netif_running(dev)) 4108 skge_down(dev); 4109 4110 if (skge->wol) 4111 skge_wol_init(skge); 4112 } 4113 4114 skge_write32(hw, B0_IMSK, 0); 4115 4116 return 0; 4117 } 4118 4119 static int skge_resume(struct device *dev) 4120 { 4121 struct pci_dev *pdev = to_pci_dev(dev); 4122 struct skge_hw *hw = pci_get_drvdata(pdev); 4123 int i, err; 4124 4125 if (!hw) 4126 return 0; 4127 4128 err = skge_reset(hw); 4129 if (err) 4130 goto out; 4131 4132 for (i = 0; i < hw->ports; i++) { 4133 struct net_device *dev = hw->dev[i]; 4134 4135 if (netif_running(dev)) { 4136 err = skge_up(dev); 4137 4138 if (err) { 4139 netdev_err(dev, "could not up: %d\n", err); 4140 dev_close(dev); 4141 goto out; 4142 } 4143 } 4144 } 4145 out: 4146 return err; 4147 } 4148 4149 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume); 4150 #define SKGE_PM_OPS (&skge_pm_ops) 4151 4152 #else 4153 4154 #define SKGE_PM_OPS NULL 4155 #endif /* CONFIG_PM_SLEEP */ 4156 4157 static void skge_shutdown(struct pci_dev *pdev) 4158 { 4159 struct skge_hw *hw = pci_get_drvdata(pdev); 4160 int i; 4161 4162 if (!hw) 4163 return; 4164 4165 for (i = 0; i < hw->ports; i++) { 4166 struct net_device *dev = hw->dev[i]; 4167 struct skge_port *skge = netdev_priv(dev); 4168 4169 if (skge->wol) 4170 skge_wol_init(skge); 4171 } 4172 4173 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev)); 4174 pci_set_power_state(pdev, PCI_D3hot); 4175 } 4176 4177 static struct pci_driver skge_driver = { 4178 .name = DRV_NAME, 4179 .id_table = skge_id_table, 4180 .probe = skge_probe, 4181 .remove = skge_remove, 4182 .shutdown = skge_shutdown, 4183 .driver.pm = SKGE_PM_OPS, 4184 }; 4185 4186 static struct dmi_system_id skge_32bit_dma_boards[] = { 4187 { 4188 .ident = "Gigabyte nForce boards", 4189 .matches = { 4190 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"), 4191 DMI_MATCH(DMI_BOARD_NAME, "nForce"), 4192 }, 4193 }, 4194 { 4195 .ident = "ASUS P5NSLI", 4196 .matches = { 4197 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), 4198 DMI_MATCH(DMI_BOARD_NAME, "P5NSLI") 4199 }, 4200 }, 4201 { 4202 .ident = "FUJITSU SIEMENS A8NE-FM", 4203 .matches = { 4204 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."), 4205 DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM") 4206 }, 4207 }, 4208 {} 4209 }; 4210 4211 static int __init skge_init_module(void) 4212 { 4213 if (dmi_check_system(skge_32bit_dma_boards)) 4214 only_32bit_dma = 1; 4215 skge_debug_init(); 4216 return pci_register_driver(&skge_driver); 4217 } 4218 4219 static void __exit skge_cleanup_module(void) 4220 { 4221 pci_unregister_driver(&skge_driver); 4222 skge_debug_cleanup(); 4223 } 4224 4225 module_init(skge_init_module); 4226 module_exit(skge_cleanup_module); 4227