1 /* 2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit 3 * Ethernet adapters. Based on earlier sk98lin, e100 and 4 * FreeBSD if_sk drivers. 5 * 6 * This driver intentionally does not support all the features 7 * of the original driver such as link fail-over and link management because 8 * those should be done at higher levels. 9 * 10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org> 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/in.h> 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 #include <linux/moduleparam.h> 32 #include <linux/netdevice.h> 33 #include <linux/etherdevice.h> 34 #include <linux/ethtool.h> 35 #include <linux/pci.h> 36 #include <linux/if_vlan.h> 37 #include <linux/ip.h> 38 #include <linux/delay.h> 39 #include <linux/crc32.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/debugfs.h> 42 #include <linux/sched.h> 43 #include <linux/seq_file.h> 44 #include <linux/mii.h> 45 #include <linux/slab.h> 46 #include <linux/dmi.h> 47 #include <linux/prefetch.h> 48 #include <asm/irq.h> 49 50 #include "skge.h" 51 52 #define DRV_NAME "skge" 53 #define DRV_VERSION "1.14" 54 55 #define DEFAULT_TX_RING_SIZE 128 56 #define DEFAULT_RX_RING_SIZE 512 57 #define MAX_TX_RING_SIZE 1024 58 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1) 59 #define MAX_RX_RING_SIZE 4096 60 #define RX_COPY_THRESHOLD 128 61 #define RX_BUF_SIZE 1536 62 #define PHY_RETRIES 1000 63 #define ETH_JUMBO_MTU 9000 64 #define TX_WATCHDOG (5 * HZ) 65 #define NAPI_WEIGHT 64 66 #define BLINK_MS 250 67 #define LINK_HZ HZ 68 69 #define SKGE_EEPROM_MAGIC 0x9933aabb 70 71 72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver"); 73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>"); 74 MODULE_LICENSE("GPL"); 75 MODULE_VERSION(DRV_VERSION); 76 77 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 78 NETIF_MSG_LINK | NETIF_MSG_IFUP | 79 NETIF_MSG_IFDOWN); 80 81 static int debug = -1; /* defaults above */ 82 module_param(debug, int, 0); 83 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 84 85 static const struct pci_device_id skge_id_table[] = { 86 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */ 87 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */ 88 #ifdef CONFIG_SKGE_GENESIS 89 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */ 90 #endif 91 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */ 92 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */ 93 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */ 94 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */ 95 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */ 96 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */ 97 { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */ 98 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */ 99 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */ 100 { 0 } 101 }; 102 MODULE_DEVICE_TABLE(pci, skge_id_table); 103 104 static int skge_up(struct net_device *dev); 105 static int skge_down(struct net_device *dev); 106 static void skge_phy_reset(struct skge_port *skge); 107 static void skge_tx_clean(struct net_device *dev); 108 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 109 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val); 110 static void genesis_get_stats(struct skge_port *skge, u64 *data); 111 static void yukon_get_stats(struct skge_port *skge, u64 *data); 112 static void yukon_init(struct skge_hw *hw, int port); 113 static void genesis_mac_init(struct skge_hw *hw, int port); 114 static void genesis_link_up(struct skge_port *skge); 115 static void skge_set_multicast(struct net_device *dev); 116 static irqreturn_t skge_intr(int irq, void *dev_id); 117 118 /* Avoid conditionals by using array */ 119 static const int txqaddr[] = { Q_XA1, Q_XA2 }; 120 static const int rxqaddr[] = { Q_R1, Q_R2 }; 121 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F }; 122 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F }; 123 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F }; 124 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 }; 125 126 static inline bool is_genesis(const struct skge_hw *hw) 127 { 128 #ifdef CONFIG_SKGE_GENESIS 129 return hw->chip_id == CHIP_ID_GENESIS; 130 #else 131 return false; 132 #endif 133 } 134 135 static int skge_get_regs_len(struct net_device *dev) 136 { 137 return 0x4000; 138 } 139 140 /* 141 * Returns copy of whole control register region 142 * Note: skip RAM address register because accessing it will 143 * cause bus hangs! 144 */ 145 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs, 146 void *p) 147 { 148 const struct skge_port *skge = netdev_priv(dev); 149 const void __iomem *io = skge->hw->regs; 150 151 regs->version = 1; 152 memset(p, 0, regs->len); 153 memcpy_fromio(p, io, B3_RAM_ADDR); 154 155 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1, 156 regs->len - B3_RI_WTO_R1); 157 } 158 159 /* Wake on Lan only supported on Yukon chips with rev 1 or above */ 160 static u32 wol_supported(const struct skge_hw *hw) 161 { 162 if (is_genesis(hw)) 163 return 0; 164 165 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 166 return 0; 167 168 return WAKE_MAGIC | WAKE_PHY; 169 } 170 171 static void skge_wol_init(struct skge_port *skge) 172 { 173 struct skge_hw *hw = skge->hw; 174 int port = skge->port; 175 u16 ctrl; 176 177 skge_write16(hw, B0_CTST, CS_RST_CLR); 178 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR); 179 180 /* Turn on Vaux */ 181 skge_write8(hw, B0_POWER_CTRL, 182 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF); 183 184 /* WA code for COMA mode -- clear PHY reset */ 185 if (hw->chip_id == CHIP_ID_YUKON_LITE && 186 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 187 u32 reg = skge_read32(hw, B2_GP_IO); 188 reg |= GP_DIR_9; 189 reg &= ~GP_IO_9; 190 skge_write32(hw, B2_GP_IO, reg); 191 } 192 193 skge_write32(hw, SK_REG(port, GPHY_CTRL), 194 GPC_DIS_SLEEP | 195 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | 196 GPC_ANEG_1 | GPC_RST_SET); 197 198 skge_write32(hw, SK_REG(port, GPHY_CTRL), 199 GPC_DIS_SLEEP | 200 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 | 201 GPC_ANEG_1 | GPC_RST_CLR); 202 203 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR); 204 205 /* Force to 10/100 skge_reset will re-enable on resume */ 206 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, 207 (PHY_AN_100FULL | PHY_AN_100HALF | 208 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA)); 209 /* no 1000 HD/FD */ 210 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0); 211 gm_phy_write(hw, port, PHY_MARV_CTRL, 212 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE | 213 PHY_CT_RE_CFG | PHY_CT_DUP_MD); 214 215 216 /* Set GMAC to no flow control and auto update for speed/duplex */ 217 gma_write16(hw, port, GM_GP_CTRL, 218 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA| 219 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS); 220 221 /* Set WOL address */ 222 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR), 223 skge->netdev->dev_addr, ETH_ALEN); 224 225 /* Turn on appropriate WOL control bits */ 226 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT); 227 ctrl = 0; 228 if (skge->wol & WAKE_PHY) 229 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT; 230 else 231 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT; 232 233 if (skge->wol & WAKE_MAGIC) 234 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT; 235 else 236 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT; 237 238 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT; 239 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl); 240 241 /* block receiver */ 242 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 243 } 244 245 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 246 { 247 struct skge_port *skge = netdev_priv(dev); 248 249 wol->supported = wol_supported(skge->hw); 250 wol->wolopts = skge->wol; 251 } 252 253 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 254 { 255 struct skge_port *skge = netdev_priv(dev); 256 struct skge_hw *hw = skge->hw; 257 258 if ((wol->wolopts & ~wol_supported(hw)) || 259 !device_can_wakeup(&hw->pdev->dev)) 260 return -EOPNOTSUPP; 261 262 skge->wol = wol->wolopts; 263 264 device_set_wakeup_enable(&hw->pdev->dev, skge->wol); 265 266 return 0; 267 } 268 269 /* Determine supported/advertised modes based on hardware. 270 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx 271 */ 272 static u32 skge_supported_modes(const struct skge_hw *hw) 273 { 274 u32 supported; 275 276 if (hw->copper) { 277 supported = (SUPPORTED_10baseT_Half | 278 SUPPORTED_10baseT_Full | 279 SUPPORTED_100baseT_Half | 280 SUPPORTED_100baseT_Full | 281 SUPPORTED_1000baseT_Half | 282 SUPPORTED_1000baseT_Full | 283 SUPPORTED_Autoneg | 284 SUPPORTED_TP); 285 286 if (is_genesis(hw)) 287 supported &= ~(SUPPORTED_10baseT_Half | 288 SUPPORTED_10baseT_Full | 289 SUPPORTED_100baseT_Half | 290 SUPPORTED_100baseT_Full); 291 292 else if (hw->chip_id == CHIP_ID_YUKON) 293 supported &= ~SUPPORTED_1000baseT_Half; 294 } else 295 supported = (SUPPORTED_1000baseT_Full | 296 SUPPORTED_1000baseT_Half | 297 SUPPORTED_FIBRE | 298 SUPPORTED_Autoneg); 299 300 return supported; 301 } 302 303 static int skge_get_link_ksettings(struct net_device *dev, 304 struct ethtool_link_ksettings *cmd) 305 { 306 struct skge_port *skge = netdev_priv(dev); 307 struct skge_hw *hw = skge->hw; 308 u32 supported, advertising; 309 310 supported = skge_supported_modes(hw); 311 312 if (hw->copper) { 313 cmd->base.port = PORT_TP; 314 cmd->base.phy_address = hw->phy_addr; 315 } else 316 cmd->base.port = PORT_FIBRE; 317 318 advertising = skge->advertising; 319 cmd->base.autoneg = skge->autoneg; 320 cmd->base.speed = skge->speed; 321 cmd->base.duplex = skge->duplex; 322 323 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 324 supported); 325 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 326 advertising); 327 328 return 0; 329 } 330 331 static int skge_set_link_ksettings(struct net_device *dev, 332 const struct ethtool_link_ksettings *cmd) 333 { 334 struct skge_port *skge = netdev_priv(dev); 335 const struct skge_hw *hw = skge->hw; 336 u32 supported = skge_supported_modes(hw); 337 int err = 0; 338 u32 advertising; 339 340 ethtool_convert_link_mode_to_legacy_u32(&advertising, 341 cmd->link_modes.advertising); 342 343 if (cmd->base.autoneg == AUTONEG_ENABLE) { 344 advertising = supported; 345 skge->duplex = -1; 346 skge->speed = -1; 347 } else { 348 u32 setting; 349 u32 speed = cmd->base.speed; 350 351 switch (speed) { 352 case SPEED_1000: 353 if (cmd->base.duplex == DUPLEX_FULL) 354 setting = SUPPORTED_1000baseT_Full; 355 else if (cmd->base.duplex == DUPLEX_HALF) 356 setting = SUPPORTED_1000baseT_Half; 357 else 358 return -EINVAL; 359 break; 360 case SPEED_100: 361 if (cmd->base.duplex == DUPLEX_FULL) 362 setting = SUPPORTED_100baseT_Full; 363 else if (cmd->base.duplex == DUPLEX_HALF) 364 setting = SUPPORTED_100baseT_Half; 365 else 366 return -EINVAL; 367 break; 368 369 case SPEED_10: 370 if (cmd->base.duplex == DUPLEX_FULL) 371 setting = SUPPORTED_10baseT_Full; 372 else if (cmd->base.duplex == DUPLEX_HALF) 373 setting = SUPPORTED_10baseT_Half; 374 else 375 return -EINVAL; 376 break; 377 default: 378 return -EINVAL; 379 } 380 381 if ((setting & supported) == 0) 382 return -EINVAL; 383 384 skge->speed = speed; 385 skge->duplex = cmd->base.duplex; 386 } 387 388 skge->autoneg = cmd->base.autoneg; 389 skge->advertising = advertising; 390 391 if (netif_running(dev)) { 392 skge_down(dev); 393 err = skge_up(dev); 394 if (err) { 395 dev_close(dev); 396 return err; 397 } 398 } 399 400 return 0; 401 } 402 403 static void skge_get_drvinfo(struct net_device *dev, 404 struct ethtool_drvinfo *info) 405 { 406 struct skge_port *skge = netdev_priv(dev); 407 408 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 409 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 410 strlcpy(info->bus_info, pci_name(skge->hw->pdev), 411 sizeof(info->bus_info)); 412 } 413 414 static const struct skge_stat { 415 char name[ETH_GSTRING_LEN]; 416 u16 xmac_offset; 417 u16 gma_offset; 418 } skge_stats[] = { 419 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI }, 420 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI }, 421 422 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK }, 423 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK }, 424 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK }, 425 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK }, 426 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK }, 427 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK }, 428 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE }, 429 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE }, 430 431 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL }, 432 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL }, 433 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL }, 434 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL }, 435 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR }, 436 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV }, 437 438 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 439 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT }, 440 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG }, 441 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR }, 442 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR }, 443 }; 444 445 static int skge_get_sset_count(struct net_device *dev, int sset) 446 { 447 switch (sset) { 448 case ETH_SS_STATS: 449 return ARRAY_SIZE(skge_stats); 450 default: 451 return -EOPNOTSUPP; 452 } 453 } 454 455 static void skge_get_ethtool_stats(struct net_device *dev, 456 struct ethtool_stats *stats, u64 *data) 457 { 458 struct skge_port *skge = netdev_priv(dev); 459 460 if (is_genesis(skge->hw)) 461 genesis_get_stats(skge, data); 462 else 463 yukon_get_stats(skge, data); 464 } 465 466 /* Use hardware MIB variables for critical path statistics and 467 * transmit feedback not reported at interrupt. 468 * Other errors are accounted for in interrupt handler. 469 */ 470 static struct net_device_stats *skge_get_stats(struct net_device *dev) 471 { 472 struct skge_port *skge = netdev_priv(dev); 473 u64 data[ARRAY_SIZE(skge_stats)]; 474 475 if (is_genesis(skge->hw)) 476 genesis_get_stats(skge, data); 477 else 478 yukon_get_stats(skge, data); 479 480 dev->stats.tx_bytes = data[0]; 481 dev->stats.rx_bytes = data[1]; 482 dev->stats.tx_packets = data[2] + data[4] + data[6]; 483 dev->stats.rx_packets = data[3] + data[5] + data[7]; 484 dev->stats.multicast = data[3] + data[5]; 485 dev->stats.collisions = data[10]; 486 dev->stats.tx_aborted_errors = data[12]; 487 488 return &dev->stats; 489 } 490 491 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data) 492 { 493 int i; 494 495 switch (stringset) { 496 case ETH_SS_STATS: 497 for (i = 0; i < ARRAY_SIZE(skge_stats); i++) 498 memcpy(data + i * ETH_GSTRING_LEN, 499 skge_stats[i].name, ETH_GSTRING_LEN); 500 break; 501 } 502 } 503 504 static void skge_get_ring_param(struct net_device *dev, 505 struct ethtool_ringparam *p) 506 { 507 struct skge_port *skge = netdev_priv(dev); 508 509 p->rx_max_pending = MAX_RX_RING_SIZE; 510 p->tx_max_pending = MAX_TX_RING_SIZE; 511 512 p->rx_pending = skge->rx_ring.count; 513 p->tx_pending = skge->tx_ring.count; 514 } 515 516 static int skge_set_ring_param(struct net_device *dev, 517 struct ethtool_ringparam *p) 518 { 519 struct skge_port *skge = netdev_priv(dev); 520 int err = 0; 521 522 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE || 523 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE) 524 return -EINVAL; 525 526 skge->rx_ring.count = p->rx_pending; 527 skge->tx_ring.count = p->tx_pending; 528 529 if (netif_running(dev)) { 530 skge_down(dev); 531 err = skge_up(dev); 532 if (err) 533 dev_close(dev); 534 } 535 536 return err; 537 } 538 539 static u32 skge_get_msglevel(struct net_device *netdev) 540 { 541 struct skge_port *skge = netdev_priv(netdev); 542 return skge->msg_enable; 543 } 544 545 static void skge_set_msglevel(struct net_device *netdev, u32 value) 546 { 547 struct skge_port *skge = netdev_priv(netdev); 548 skge->msg_enable = value; 549 } 550 551 static int skge_nway_reset(struct net_device *dev) 552 { 553 struct skge_port *skge = netdev_priv(dev); 554 555 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev)) 556 return -EINVAL; 557 558 skge_phy_reset(skge); 559 return 0; 560 } 561 562 static void skge_get_pauseparam(struct net_device *dev, 563 struct ethtool_pauseparam *ecmd) 564 { 565 struct skge_port *skge = netdev_priv(dev); 566 567 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) || 568 (skge->flow_control == FLOW_MODE_SYM_OR_REM)); 569 ecmd->tx_pause = (ecmd->rx_pause || 570 (skge->flow_control == FLOW_MODE_LOC_SEND)); 571 572 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause; 573 } 574 575 static int skge_set_pauseparam(struct net_device *dev, 576 struct ethtool_pauseparam *ecmd) 577 { 578 struct skge_port *skge = netdev_priv(dev); 579 struct ethtool_pauseparam old; 580 int err = 0; 581 582 skge_get_pauseparam(dev, &old); 583 584 if (ecmd->autoneg != old.autoneg) 585 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC; 586 else { 587 if (ecmd->rx_pause && ecmd->tx_pause) 588 skge->flow_control = FLOW_MODE_SYMMETRIC; 589 else if (ecmd->rx_pause && !ecmd->tx_pause) 590 skge->flow_control = FLOW_MODE_SYM_OR_REM; 591 else if (!ecmd->rx_pause && ecmd->tx_pause) 592 skge->flow_control = FLOW_MODE_LOC_SEND; 593 else 594 skge->flow_control = FLOW_MODE_NONE; 595 } 596 597 if (netif_running(dev)) { 598 skge_down(dev); 599 err = skge_up(dev); 600 if (err) { 601 dev_close(dev); 602 return err; 603 } 604 } 605 606 return 0; 607 } 608 609 /* Chip internal frequency for clock calculations */ 610 static inline u32 hwkhz(const struct skge_hw *hw) 611 { 612 return is_genesis(hw) ? 53125 : 78125; 613 } 614 615 /* Chip HZ to microseconds */ 616 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks) 617 { 618 return (ticks * 1000) / hwkhz(hw); 619 } 620 621 /* Microseconds to chip HZ */ 622 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec) 623 { 624 return hwkhz(hw) * usec / 1000; 625 } 626 627 static int skge_get_coalesce(struct net_device *dev, 628 struct ethtool_coalesce *ecmd) 629 { 630 struct skge_port *skge = netdev_priv(dev); 631 struct skge_hw *hw = skge->hw; 632 int port = skge->port; 633 634 ecmd->rx_coalesce_usecs = 0; 635 ecmd->tx_coalesce_usecs = 0; 636 637 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) { 638 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI)); 639 u32 msk = skge_read32(hw, B2_IRQM_MSK); 640 641 if (msk & rxirqmask[port]) 642 ecmd->rx_coalesce_usecs = delay; 643 if (msk & txirqmask[port]) 644 ecmd->tx_coalesce_usecs = delay; 645 } 646 647 return 0; 648 } 649 650 /* Note: interrupt timer is per board, but can turn on/off per port */ 651 static int skge_set_coalesce(struct net_device *dev, 652 struct ethtool_coalesce *ecmd) 653 { 654 struct skge_port *skge = netdev_priv(dev); 655 struct skge_hw *hw = skge->hw; 656 int port = skge->port; 657 u32 msk = skge_read32(hw, B2_IRQM_MSK); 658 u32 delay = 25; 659 660 if (ecmd->rx_coalesce_usecs == 0) 661 msk &= ~rxirqmask[port]; 662 else if (ecmd->rx_coalesce_usecs < 25 || 663 ecmd->rx_coalesce_usecs > 33333) 664 return -EINVAL; 665 else { 666 msk |= rxirqmask[port]; 667 delay = ecmd->rx_coalesce_usecs; 668 } 669 670 if (ecmd->tx_coalesce_usecs == 0) 671 msk &= ~txirqmask[port]; 672 else if (ecmd->tx_coalesce_usecs < 25 || 673 ecmd->tx_coalesce_usecs > 33333) 674 return -EINVAL; 675 else { 676 msk |= txirqmask[port]; 677 delay = min(delay, ecmd->rx_coalesce_usecs); 678 } 679 680 skge_write32(hw, B2_IRQM_MSK, msk); 681 if (msk == 0) 682 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP); 683 else { 684 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay)); 685 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 686 } 687 return 0; 688 } 689 690 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST }; 691 static void skge_led(struct skge_port *skge, enum led_mode mode) 692 { 693 struct skge_hw *hw = skge->hw; 694 int port = skge->port; 695 696 spin_lock_bh(&hw->phy_lock); 697 if (is_genesis(hw)) { 698 switch (mode) { 699 case LED_MODE_OFF: 700 if (hw->phy_type == SK_PHY_BCOM) 701 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF); 702 else { 703 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0); 704 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF); 705 } 706 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); 707 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0); 708 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF); 709 break; 710 711 case LED_MODE_ON: 712 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON); 713 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON); 714 715 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 716 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 717 718 break; 719 720 case LED_MODE_TST: 721 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON); 722 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100); 723 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START); 724 725 if (hw->phy_type == SK_PHY_BCOM) 726 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON); 727 else { 728 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON); 729 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100); 730 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START); 731 } 732 733 } 734 } else { 735 switch (mode) { 736 case LED_MODE_OFF: 737 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 738 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 739 PHY_M_LED_MO_DUP(MO_LED_OFF) | 740 PHY_M_LED_MO_10(MO_LED_OFF) | 741 PHY_M_LED_MO_100(MO_LED_OFF) | 742 PHY_M_LED_MO_1000(MO_LED_OFF) | 743 PHY_M_LED_MO_RX(MO_LED_OFF)); 744 break; 745 case LED_MODE_ON: 746 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 747 PHY_M_LED_PULS_DUR(PULS_170MS) | 748 PHY_M_LED_BLINK_RT(BLINK_84MS) | 749 PHY_M_LEDC_TX_CTRL | 750 PHY_M_LEDC_DP_CTRL); 751 752 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 753 PHY_M_LED_MO_RX(MO_LED_OFF) | 754 (skge->speed == SPEED_100 ? 755 PHY_M_LED_MO_100(MO_LED_ON) : 0)); 756 break; 757 case LED_MODE_TST: 758 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0); 759 gm_phy_write(hw, port, PHY_MARV_LED_OVER, 760 PHY_M_LED_MO_DUP(MO_LED_ON) | 761 PHY_M_LED_MO_10(MO_LED_ON) | 762 PHY_M_LED_MO_100(MO_LED_ON) | 763 PHY_M_LED_MO_1000(MO_LED_ON) | 764 PHY_M_LED_MO_RX(MO_LED_ON)); 765 } 766 } 767 spin_unlock_bh(&hw->phy_lock); 768 } 769 770 /* blink LED's for finding board */ 771 static int skge_set_phys_id(struct net_device *dev, 772 enum ethtool_phys_id_state state) 773 { 774 struct skge_port *skge = netdev_priv(dev); 775 776 switch (state) { 777 case ETHTOOL_ID_ACTIVE: 778 return 2; /* cycle on/off twice per second */ 779 780 case ETHTOOL_ID_ON: 781 skge_led(skge, LED_MODE_TST); 782 break; 783 784 case ETHTOOL_ID_OFF: 785 skge_led(skge, LED_MODE_OFF); 786 break; 787 788 case ETHTOOL_ID_INACTIVE: 789 /* back to regular LED state */ 790 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF); 791 } 792 793 return 0; 794 } 795 796 static int skge_get_eeprom_len(struct net_device *dev) 797 { 798 struct skge_port *skge = netdev_priv(dev); 799 u32 reg2; 800 801 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, ®2); 802 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8); 803 } 804 805 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset) 806 { 807 u32 val; 808 809 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset); 810 811 do { 812 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); 813 } while (!(offset & PCI_VPD_ADDR_F)); 814 815 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val); 816 return val; 817 } 818 819 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val) 820 { 821 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val); 822 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, 823 offset | PCI_VPD_ADDR_F); 824 825 do { 826 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset); 827 } while (offset & PCI_VPD_ADDR_F); 828 } 829 830 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 831 u8 *data) 832 { 833 struct skge_port *skge = netdev_priv(dev); 834 struct pci_dev *pdev = skge->hw->pdev; 835 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); 836 int length = eeprom->len; 837 u16 offset = eeprom->offset; 838 839 if (!cap) 840 return -EINVAL; 841 842 eeprom->magic = SKGE_EEPROM_MAGIC; 843 844 while (length > 0) { 845 u32 val = skge_vpd_read(pdev, cap, offset); 846 int n = min_t(int, length, sizeof(val)); 847 848 memcpy(data, &val, n); 849 length -= n; 850 data += n; 851 offset += n; 852 } 853 return 0; 854 } 855 856 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, 857 u8 *data) 858 { 859 struct skge_port *skge = netdev_priv(dev); 860 struct pci_dev *pdev = skge->hw->pdev; 861 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD); 862 int length = eeprom->len; 863 u16 offset = eeprom->offset; 864 865 if (!cap) 866 return -EINVAL; 867 868 if (eeprom->magic != SKGE_EEPROM_MAGIC) 869 return -EINVAL; 870 871 while (length > 0) { 872 u32 val; 873 int n = min_t(int, length, sizeof(val)); 874 875 if (n < sizeof(val)) 876 val = skge_vpd_read(pdev, cap, offset); 877 memcpy(&val, data, n); 878 879 skge_vpd_write(pdev, cap, offset, val); 880 881 length -= n; 882 data += n; 883 offset += n; 884 } 885 return 0; 886 } 887 888 static const struct ethtool_ops skge_ethtool_ops = { 889 .get_drvinfo = skge_get_drvinfo, 890 .get_regs_len = skge_get_regs_len, 891 .get_regs = skge_get_regs, 892 .get_wol = skge_get_wol, 893 .set_wol = skge_set_wol, 894 .get_msglevel = skge_get_msglevel, 895 .set_msglevel = skge_set_msglevel, 896 .nway_reset = skge_nway_reset, 897 .get_link = ethtool_op_get_link, 898 .get_eeprom_len = skge_get_eeprom_len, 899 .get_eeprom = skge_get_eeprom, 900 .set_eeprom = skge_set_eeprom, 901 .get_ringparam = skge_get_ring_param, 902 .set_ringparam = skge_set_ring_param, 903 .get_pauseparam = skge_get_pauseparam, 904 .set_pauseparam = skge_set_pauseparam, 905 .get_coalesce = skge_get_coalesce, 906 .set_coalesce = skge_set_coalesce, 907 .get_strings = skge_get_strings, 908 .set_phys_id = skge_set_phys_id, 909 .get_sset_count = skge_get_sset_count, 910 .get_ethtool_stats = skge_get_ethtool_stats, 911 .get_link_ksettings = skge_get_link_ksettings, 912 .set_link_ksettings = skge_set_link_ksettings, 913 }; 914 915 /* 916 * Allocate ring elements and chain them together 917 * One-to-one association of board descriptors with ring elements 918 */ 919 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base) 920 { 921 struct skge_tx_desc *d; 922 struct skge_element *e; 923 int i; 924 925 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL); 926 if (!ring->start) 927 return -ENOMEM; 928 929 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) { 930 e->desc = d; 931 if (i == ring->count - 1) { 932 e->next = ring->start; 933 d->next_offset = base; 934 } else { 935 e->next = e + 1; 936 d->next_offset = base + (i+1) * sizeof(*d); 937 } 938 } 939 ring->to_use = ring->to_clean = ring->start; 940 941 return 0; 942 } 943 944 /* Allocate and setup a new buffer for receiving */ 945 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e, 946 struct sk_buff *skb, unsigned int bufsize) 947 { 948 struct skge_rx_desc *rd = e->desc; 949 dma_addr_t map; 950 951 map = pci_map_single(skge->hw->pdev, skb->data, bufsize, 952 PCI_DMA_FROMDEVICE); 953 954 if (pci_dma_mapping_error(skge->hw->pdev, map)) 955 return -1; 956 957 rd->dma_lo = lower_32_bits(map); 958 rd->dma_hi = upper_32_bits(map); 959 e->skb = skb; 960 rd->csum1_start = ETH_HLEN; 961 rd->csum2_start = ETH_HLEN; 962 rd->csum1 = 0; 963 rd->csum2 = 0; 964 965 wmb(); 966 967 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize; 968 dma_unmap_addr_set(e, mapaddr, map); 969 dma_unmap_len_set(e, maplen, bufsize); 970 return 0; 971 } 972 973 /* Resume receiving using existing skb, 974 * Note: DMA address is not changed by chip. 975 * MTU not changed while receiver active. 976 */ 977 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size) 978 { 979 struct skge_rx_desc *rd = e->desc; 980 981 rd->csum2 = 0; 982 rd->csum2_start = ETH_HLEN; 983 984 wmb(); 985 986 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size; 987 } 988 989 990 /* Free all buffers in receive ring, assumes receiver stopped */ 991 static void skge_rx_clean(struct skge_port *skge) 992 { 993 struct skge_hw *hw = skge->hw; 994 struct skge_ring *ring = &skge->rx_ring; 995 struct skge_element *e; 996 997 e = ring->start; 998 do { 999 struct skge_rx_desc *rd = e->desc; 1000 rd->control = 0; 1001 if (e->skb) { 1002 pci_unmap_single(hw->pdev, 1003 dma_unmap_addr(e, mapaddr), 1004 dma_unmap_len(e, maplen), 1005 PCI_DMA_FROMDEVICE); 1006 dev_kfree_skb(e->skb); 1007 e->skb = NULL; 1008 } 1009 } while ((e = e->next) != ring->start); 1010 } 1011 1012 1013 /* Allocate buffers for receive ring 1014 * For receive: to_clean is next received frame. 1015 */ 1016 static int skge_rx_fill(struct net_device *dev) 1017 { 1018 struct skge_port *skge = netdev_priv(dev); 1019 struct skge_ring *ring = &skge->rx_ring; 1020 struct skge_element *e; 1021 1022 e = ring->start; 1023 do { 1024 struct sk_buff *skb; 1025 1026 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN, 1027 GFP_KERNEL); 1028 if (!skb) 1029 return -ENOMEM; 1030 1031 skb_reserve(skb, NET_IP_ALIGN); 1032 if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) { 1033 dev_kfree_skb(skb); 1034 return -EIO; 1035 } 1036 } while ((e = e->next) != ring->start); 1037 1038 ring->to_clean = ring->start; 1039 return 0; 1040 } 1041 1042 static const char *skge_pause(enum pause_status status) 1043 { 1044 switch (status) { 1045 case FLOW_STAT_NONE: 1046 return "none"; 1047 case FLOW_STAT_REM_SEND: 1048 return "rx only"; 1049 case FLOW_STAT_LOC_SEND: 1050 return "tx_only"; 1051 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */ 1052 return "both"; 1053 default: 1054 return "indeterminated"; 1055 } 1056 } 1057 1058 1059 static void skge_link_up(struct skge_port *skge) 1060 { 1061 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), 1062 LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON); 1063 1064 netif_carrier_on(skge->netdev); 1065 netif_wake_queue(skge->netdev); 1066 1067 netif_info(skge, link, skge->netdev, 1068 "Link is up at %d Mbps, %s duplex, flow control %s\n", 1069 skge->speed, 1070 skge->duplex == DUPLEX_FULL ? "full" : "half", 1071 skge_pause(skge->flow_status)); 1072 } 1073 1074 static void skge_link_down(struct skge_port *skge) 1075 { 1076 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF); 1077 netif_carrier_off(skge->netdev); 1078 netif_stop_queue(skge->netdev); 1079 1080 netif_info(skge, link, skge->netdev, "Link is down\n"); 1081 } 1082 1083 static void xm_link_down(struct skge_hw *hw, int port) 1084 { 1085 struct net_device *dev = hw->dev[port]; 1086 struct skge_port *skge = netdev_priv(dev); 1087 1088 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); 1089 1090 if (netif_carrier_ok(dev)) 1091 skge_link_down(skge); 1092 } 1093 1094 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1095 { 1096 int i; 1097 1098 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 1099 *val = xm_read16(hw, port, XM_PHY_DATA); 1100 1101 if (hw->phy_type == SK_PHY_XMAC) 1102 goto ready; 1103 1104 for (i = 0; i < PHY_RETRIES; i++) { 1105 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY) 1106 goto ready; 1107 udelay(1); 1108 } 1109 1110 return -ETIMEDOUT; 1111 ready: 1112 *val = xm_read16(hw, port, XM_PHY_DATA); 1113 1114 return 0; 1115 } 1116 1117 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg) 1118 { 1119 u16 v = 0; 1120 if (__xm_phy_read(hw, port, reg, &v)) 1121 pr_warn("%s: phy read timed out\n", hw->dev[port]->name); 1122 return v; 1123 } 1124 1125 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1126 { 1127 int i; 1128 1129 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr); 1130 for (i = 0; i < PHY_RETRIES; i++) { 1131 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 1132 goto ready; 1133 udelay(1); 1134 } 1135 return -EIO; 1136 1137 ready: 1138 xm_write16(hw, port, XM_PHY_DATA, val); 1139 for (i = 0; i < PHY_RETRIES; i++) { 1140 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY)) 1141 return 0; 1142 udelay(1); 1143 } 1144 return -ETIMEDOUT; 1145 } 1146 1147 static void genesis_init(struct skge_hw *hw) 1148 { 1149 /* set blink source counter */ 1150 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100); 1151 skge_write8(hw, B2_BSC_CTRL, BSC_START); 1152 1153 /* configure mac arbiter */ 1154 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1155 1156 /* configure mac arbiter timeout values */ 1157 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53); 1158 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53); 1159 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53); 1160 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53); 1161 1162 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1163 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1164 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1165 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1166 1167 /* configure packet arbiter timeout */ 1168 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR); 1169 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); 1170 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); 1171 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); 1172 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); 1173 } 1174 1175 static void genesis_reset(struct skge_hw *hw, int port) 1176 { 1177 static const u8 zero[8] = { 0 }; 1178 u32 reg; 1179 1180 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 1181 1182 /* reset the statistics module */ 1183 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT); 1184 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE); 1185 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */ 1186 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */ 1187 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */ 1188 1189 /* disable Broadcom PHY IRQ */ 1190 if (hw->phy_type == SK_PHY_BCOM) 1191 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff); 1192 1193 xm_outhash(hw, port, XM_HSM, zero); 1194 1195 /* Flush TX and RX fifo */ 1196 reg = xm_read32(hw, port, XM_MODE); 1197 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF); 1198 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF); 1199 } 1200 1201 /* Convert mode to MII values */ 1202 static const u16 phy_pause_map[] = { 1203 [FLOW_MODE_NONE] = 0, 1204 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM, 1205 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP, 1206 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM, 1207 }; 1208 1209 /* special defines for FIBER (88E1011S only) */ 1210 static const u16 fiber_pause_map[] = { 1211 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE, 1212 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD, 1213 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD, 1214 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD, 1215 }; 1216 1217 1218 /* Check status of Broadcom phy link */ 1219 static void bcom_check_link(struct skge_hw *hw, int port) 1220 { 1221 struct net_device *dev = hw->dev[port]; 1222 struct skge_port *skge = netdev_priv(dev); 1223 u16 status; 1224 1225 /* read twice because of latch */ 1226 xm_phy_read(hw, port, PHY_BCOM_STAT); 1227 status = xm_phy_read(hw, port, PHY_BCOM_STAT); 1228 1229 if ((status & PHY_ST_LSYNC) == 0) { 1230 xm_link_down(hw, port); 1231 return; 1232 } 1233 1234 if (skge->autoneg == AUTONEG_ENABLE) { 1235 u16 lpa, aux; 1236 1237 if (!(status & PHY_ST_AN_OVER)) 1238 return; 1239 1240 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); 1241 if (lpa & PHY_B_AN_RF) { 1242 netdev_notice(dev, "remote fault\n"); 1243 return; 1244 } 1245 1246 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT); 1247 1248 /* Check Duplex mismatch */ 1249 switch (aux & PHY_B_AS_AN_RES_MSK) { 1250 case PHY_B_RES_1000FD: 1251 skge->duplex = DUPLEX_FULL; 1252 break; 1253 case PHY_B_RES_1000HD: 1254 skge->duplex = DUPLEX_HALF; 1255 break; 1256 default: 1257 netdev_notice(dev, "duplex mismatch\n"); 1258 return; 1259 } 1260 1261 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1262 switch (aux & PHY_B_AS_PAUSE_MSK) { 1263 case PHY_B_AS_PAUSE_MSK: 1264 skge->flow_status = FLOW_STAT_SYMMETRIC; 1265 break; 1266 case PHY_B_AS_PRR: 1267 skge->flow_status = FLOW_STAT_REM_SEND; 1268 break; 1269 case PHY_B_AS_PRT: 1270 skge->flow_status = FLOW_STAT_LOC_SEND; 1271 break; 1272 default: 1273 skge->flow_status = FLOW_STAT_NONE; 1274 } 1275 skge->speed = SPEED_1000; 1276 } 1277 1278 if (!netif_carrier_ok(dev)) 1279 genesis_link_up(skge); 1280 } 1281 1282 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional 1283 * Phy on for 100 or 10Mbit operation 1284 */ 1285 static void bcom_phy_init(struct skge_port *skge) 1286 { 1287 struct skge_hw *hw = skge->hw; 1288 int port = skge->port; 1289 int i; 1290 u16 id1, r, ext, ctl; 1291 1292 /* magic workaround patterns for Broadcom */ 1293 static const struct { 1294 u16 reg; 1295 u16 val; 1296 } A1hack[] = { 1297 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, 1298 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, 1299 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, 1300 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, 1301 }, C0hack[] = { 1302 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 }, 1303 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 }, 1304 }; 1305 1306 /* read Id from external PHY (all have the same address) */ 1307 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1); 1308 1309 /* Optimize MDIO transfer by suppressing preamble. */ 1310 r = xm_read16(hw, port, XM_MMU_CMD); 1311 r |= XM_MMU_NO_PRE; 1312 xm_write16(hw, port, XM_MMU_CMD, r); 1313 1314 switch (id1) { 1315 case PHY_BCOM_ID1_C0: 1316 /* 1317 * Workaround BCOM Errata for the C0 type. 1318 * Write magic patterns to reserved registers. 1319 */ 1320 for (i = 0; i < ARRAY_SIZE(C0hack); i++) 1321 xm_phy_write(hw, port, 1322 C0hack[i].reg, C0hack[i].val); 1323 1324 break; 1325 case PHY_BCOM_ID1_A1: 1326 /* 1327 * Workaround BCOM Errata for the A1 type. 1328 * Write magic patterns to reserved registers. 1329 */ 1330 for (i = 0; i < ARRAY_SIZE(A1hack); i++) 1331 xm_phy_write(hw, port, 1332 A1hack[i].reg, A1hack[i].val); 1333 break; 1334 } 1335 1336 /* 1337 * Workaround BCOM Errata (#10523) for all BCom PHYs. 1338 * Disable Power Management after reset. 1339 */ 1340 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL); 1341 r |= PHY_B_AC_DIS_PM; 1342 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r); 1343 1344 /* Dummy read */ 1345 xm_read16(hw, port, XM_ISRC); 1346 1347 ext = PHY_B_PEC_EN_LTR; /* enable tx led */ 1348 ctl = PHY_CT_SP1000; /* always 1000mbit */ 1349 1350 if (skge->autoneg == AUTONEG_ENABLE) { 1351 /* 1352 * Workaround BCOM Errata #1 for the C5 type. 1353 * 1000Base-T Link Acquisition Failure in Slave Mode 1354 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register 1355 */ 1356 u16 adv = PHY_B_1000C_RD; 1357 if (skge->advertising & ADVERTISED_1000baseT_Half) 1358 adv |= PHY_B_1000C_AHD; 1359 if (skge->advertising & ADVERTISED_1000baseT_Full) 1360 adv |= PHY_B_1000C_AFD; 1361 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv); 1362 1363 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG; 1364 } else { 1365 if (skge->duplex == DUPLEX_FULL) 1366 ctl |= PHY_CT_DUP_MD; 1367 /* Force to slave */ 1368 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE); 1369 } 1370 1371 /* Set autonegotiation pause parameters */ 1372 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, 1373 phy_pause_map[skge->flow_control] | PHY_AN_CSMA); 1374 1375 /* Handle Jumbo frames */ 1376 if (hw->dev[port]->mtu > ETH_DATA_LEN) { 1377 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1378 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK); 1379 1380 ext |= PHY_B_PEC_HIGH_LA; 1381 1382 } 1383 1384 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext); 1385 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl); 1386 1387 /* Use link status change interrupt */ 1388 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1389 } 1390 1391 static void xm_phy_init(struct skge_port *skge) 1392 { 1393 struct skge_hw *hw = skge->hw; 1394 int port = skge->port; 1395 u16 ctrl = 0; 1396 1397 if (skge->autoneg == AUTONEG_ENABLE) { 1398 if (skge->advertising & ADVERTISED_1000baseT_Half) 1399 ctrl |= PHY_X_AN_HD; 1400 if (skge->advertising & ADVERTISED_1000baseT_Full) 1401 ctrl |= PHY_X_AN_FD; 1402 1403 ctrl |= fiber_pause_map[skge->flow_control]; 1404 1405 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl); 1406 1407 /* Restart Auto-negotiation */ 1408 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG; 1409 } else { 1410 /* Set DuplexMode in Config register */ 1411 if (skge->duplex == DUPLEX_FULL) 1412 ctrl |= PHY_CT_DUP_MD; 1413 /* 1414 * Do NOT enable Auto-negotiation here. This would hold 1415 * the link down because no IDLEs are transmitted 1416 */ 1417 } 1418 1419 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl); 1420 1421 /* Poll PHY for status changes */ 1422 mod_timer(&skge->link_timer, jiffies + LINK_HZ); 1423 } 1424 1425 static int xm_check_link(struct net_device *dev) 1426 { 1427 struct skge_port *skge = netdev_priv(dev); 1428 struct skge_hw *hw = skge->hw; 1429 int port = skge->port; 1430 u16 status; 1431 1432 /* read twice because of latch */ 1433 xm_phy_read(hw, port, PHY_XMAC_STAT); 1434 status = xm_phy_read(hw, port, PHY_XMAC_STAT); 1435 1436 if ((status & PHY_ST_LSYNC) == 0) { 1437 xm_link_down(hw, port); 1438 return 0; 1439 } 1440 1441 if (skge->autoneg == AUTONEG_ENABLE) { 1442 u16 lpa, res; 1443 1444 if (!(status & PHY_ST_AN_OVER)) 1445 return 0; 1446 1447 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP); 1448 if (lpa & PHY_B_AN_RF) { 1449 netdev_notice(dev, "remote fault\n"); 1450 return 0; 1451 } 1452 1453 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI); 1454 1455 /* Check Duplex mismatch */ 1456 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) { 1457 case PHY_X_RS_FD: 1458 skge->duplex = DUPLEX_FULL; 1459 break; 1460 case PHY_X_RS_HD: 1461 skge->duplex = DUPLEX_HALF; 1462 break; 1463 default: 1464 netdev_notice(dev, "duplex mismatch\n"); 1465 return 0; 1466 } 1467 1468 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 1469 if ((skge->flow_control == FLOW_MODE_SYMMETRIC || 1470 skge->flow_control == FLOW_MODE_SYM_OR_REM) && 1471 (lpa & PHY_X_P_SYM_MD)) 1472 skge->flow_status = FLOW_STAT_SYMMETRIC; 1473 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM && 1474 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD) 1475 /* Enable PAUSE receive, disable PAUSE transmit */ 1476 skge->flow_status = FLOW_STAT_REM_SEND; 1477 else if (skge->flow_control == FLOW_MODE_LOC_SEND && 1478 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD) 1479 /* Disable PAUSE receive, enable PAUSE transmit */ 1480 skge->flow_status = FLOW_STAT_LOC_SEND; 1481 else 1482 skge->flow_status = FLOW_STAT_NONE; 1483 1484 skge->speed = SPEED_1000; 1485 } 1486 1487 if (!netif_carrier_ok(dev)) 1488 genesis_link_up(skge); 1489 return 1; 1490 } 1491 1492 /* Poll to check for link coming up. 1493 * 1494 * Since internal PHY is wired to a level triggered pin, can't 1495 * get an interrupt when carrier is detected, need to poll for 1496 * link coming up. 1497 */ 1498 static void xm_link_timer(struct timer_list *t) 1499 { 1500 struct skge_port *skge = from_timer(skge, t, link_timer); 1501 struct net_device *dev = skge->netdev; 1502 struct skge_hw *hw = skge->hw; 1503 int port = skge->port; 1504 int i; 1505 unsigned long flags; 1506 1507 if (!netif_running(dev)) 1508 return; 1509 1510 spin_lock_irqsave(&hw->phy_lock, flags); 1511 1512 /* 1513 * Verify that the link by checking GPIO register three times. 1514 * This pin has the signal from the link_sync pin connected to it. 1515 */ 1516 for (i = 0; i < 3; i++) { 1517 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS) 1518 goto link_down; 1519 } 1520 1521 /* Re-enable interrupt to detect link down */ 1522 if (xm_check_link(dev)) { 1523 u16 msk = xm_read16(hw, port, XM_IMSK); 1524 msk &= ~XM_IS_INP_ASS; 1525 xm_write16(hw, port, XM_IMSK, msk); 1526 xm_read16(hw, port, XM_ISRC); 1527 } else { 1528 link_down: 1529 mod_timer(&skge->link_timer, 1530 round_jiffies(jiffies + LINK_HZ)); 1531 } 1532 spin_unlock_irqrestore(&hw->phy_lock, flags); 1533 } 1534 1535 static void genesis_mac_init(struct skge_hw *hw, int port) 1536 { 1537 struct net_device *dev = hw->dev[port]; 1538 struct skge_port *skge = netdev_priv(dev); 1539 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN; 1540 int i; 1541 u32 r; 1542 static const u8 zero[6] = { 0 }; 1543 1544 for (i = 0; i < 10; i++) { 1545 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 1546 MFF_SET_MAC_RST); 1547 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST) 1548 goto reset_ok; 1549 udelay(1); 1550 } 1551 1552 netdev_warn(dev, "genesis reset failed\n"); 1553 1554 reset_ok: 1555 /* Unreset the XMAC. */ 1556 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1557 1558 /* 1559 * Perform additional initialization for external PHYs, 1560 * namely for the 1000baseTX cards that use the XMAC's 1561 * GMII mode. 1562 */ 1563 if (hw->phy_type != SK_PHY_XMAC) { 1564 /* Take external Phy out of reset */ 1565 r = skge_read32(hw, B2_GP_IO); 1566 if (port == 0) 1567 r |= GP_DIR_0|GP_IO_0; 1568 else 1569 r |= GP_DIR_2|GP_IO_2; 1570 1571 skge_write32(hw, B2_GP_IO, r); 1572 1573 /* Enable GMII interface */ 1574 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD); 1575 } 1576 1577 1578 switch (hw->phy_type) { 1579 case SK_PHY_XMAC: 1580 xm_phy_init(skge); 1581 break; 1582 case SK_PHY_BCOM: 1583 bcom_phy_init(skge); 1584 bcom_check_link(hw, port); 1585 } 1586 1587 /* Set Station Address */ 1588 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 1589 1590 /* We don't use match addresses so clear */ 1591 for (i = 1; i < 16; i++) 1592 xm_outaddr(hw, port, XM_EXM(i), zero); 1593 1594 /* Clear MIB counters */ 1595 xm_write16(hw, port, XM_STAT_CMD, 1596 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1597 /* Clear two times according to Errata #3 */ 1598 xm_write16(hw, port, XM_STAT_CMD, 1599 XM_SC_CLR_RXC | XM_SC_CLR_TXC); 1600 1601 /* configure Rx High Water Mark (XM_RX_HI_WM) */ 1602 xm_write16(hw, port, XM_RX_HI_WM, 1450); 1603 1604 /* We don't need the FCS appended to the packet. */ 1605 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS; 1606 if (jumbo) 1607 r |= XM_RX_BIG_PK_OK; 1608 1609 if (skge->duplex == DUPLEX_HALF) { 1610 /* 1611 * If in manual half duplex mode the other side might be in 1612 * full duplex mode, so ignore if a carrier extension is not seen 1613 * on frames received 1614 */ 1615 r |= XM_RX_DIS_CEXT; 1616 } 1617 xm_write16(hw, port, XM_RX_CMD, r); 1618 1619 /* We want short frames padded to 60 bytes. */ 1620 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD); 1621 1622 /* Increase threshold for jumbo frames on dual port */ 1623 if (hw->ports > 1 && jumbo) 1624 xm_write16(hw, port, XM_TX_THR, 1020); 1625 else 1626 xm_write16(hw, port, XM_TX_THR, 512); 1627 1628 /* 1629 * Enable the reception of all error frames. This is is 1630 * a necessary evil due to the design of the XMAC. The 1631 * XMAC's receive FIFO is only 8K in size, however jumbo 1632 * frames can be up to 9000 bytes in length. When bad 1633 * frame filtering is enabled, the XMAC's RX FIFO operates 1634 * in 'store and forward' mode. For this to work, the 1635 * entire frame has to fit into the FIFO, but that means 1636 * that jumbo frames larger than 8192 bytes will be 1637 * truncated. Disabling all bad frame filtering causes 1638 * the RX FIFO to operate in streaming mode, in which 1639 * case the XMAC will start transferring frames out of the 1640 * RX FIFO as soon as the FIFO threshold is reached. 1641 */ 1642 xm_write32(hw, port, XM_MODE, XM_DEF_MODE); 1643 1644 1645 /* 1646 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK) 1647 * - Enable all bits excepting 'Octets Rx OK Low CntOv' 1648 * and 'Octets Rx OK Hi Cnt Ov'. 1649 */ 1650 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK); 1651 1652 /* 1653 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK) 1654 * - Enable all bits excepting 'Octets Tx OK Low CntOv' 1655 * and 'Octets Tx OK Hi Cnt Ov'. 1656 */ 1657 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK); 1658 1659 /* Configure MAC arbiter */ 1660 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR); 1661 1662 /* configure timeout values */ 1663 skge_write8(hw, B3_MA_TOINI_RX1, 72); 1664 skge_write8(hw, B3_MA_TOINI_RX2, 72); 1665 skge_write8(hw, B3_MA_TOINI_TX1, 72); 1666 skge_write8(hw, B3_MA_TOINI_TX2, 72); 1667 1668 skge_write8(hw, B3_MA_RCINI_RX1, 0); 1669 skge_write8(hw, B3_MA_RCINI_RX2, 0); 1670 skge_write8(hw, B3_MA_RCINI_TX1, 0); 1671 skge_write8(hw, B3_MA_RCINI_TX2, 0); 1672 1673 /* Configure Rx MAC FIFO */ 1674 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR); 1675 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT); 1676 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD); 1677 1678 /* Configure Tx MAC FIFO */ 1679 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR); 1680 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); 1681 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD); 1682 1683 if (jumbo) { 1684 /* Enable frame flushing if jumbo frames used */ 1685 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH); 1686 } else { 1687 /* enable timeout timers if normal frames */ 1688 skge_write16(hw, B3_PA_CTRL, 1689 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2); 1690 } 1691 } 1692 1693 static void genesis_stop(struct skge_port *skge) 1694 { 1695 struct skge_hw *hw = skge->hw; 1696 int port = skge->port; 1697 unsigned retries = 1000; 1698 u16 cmd; 1699 1700 /* Disable Tx and Rx */ 1701 cmd = xm_read16(hw, port, XM_MMU_CMD); 1702 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1703 xm_write16(hw, port, XM_MMU_CMD, cmd); 1704 1705 genesis_reset(hw, port); 1706 1707 /* Clear Tx packet arbiter timeout IRQ */ 1708 skge_write16(hw, B3_PA_CTRL, 1709 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2); 1710 1711 /* Reset the MAC */ 1712 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST); 1713 do { 1714 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST); 1715 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)) 1716 break; 1717 } while (--retries > 0); 1718 1719 /* For external PHYs there must be special handling */ 1720 if (hw->phy_type != SK_PHY_XMAC) { 1721 u32 reg = skge_read32(hw, B2_GP_IO); 1722 if (port == 0) { 1723 reg |= GP_DIR_0; 1724 reg &= ~GP_IO_0; 1725 } else { 1726 reg |= GP_DIR_2; 1727 reg &= ~GP_IO_2; 1728 } 1729 skge_write32(hw, B2_GP_IO, reg); 1730 skge_read32(hw, B2_GP_IO); 1731 } 1732 1733 xm_write16(hw, port, XM_MMU_CMD, 1734 xm_read16(hw, port, XM_MMU_CMD) 1735 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX)); 1736 1737 xm_read16(hw, port, XM_MMU_CMD); 1738 } 1739 1740 1741 static void genesis_get_stats(struct skge_port *skge, u64 *data) 1742 { 1743 struct skge_hw *hw = skge->hw; 1744 int port = skge->port; 1745 int i; 1746 unsigned long timeout = jiffies + HZ; 1747 1748 xm_write16(hw, port, 1749 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC); 1750 1751 /* wait for update to complete */ 1752 while (xm_read16(hw, port, XM_STAT_CMD) 1753 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) { 1754 if (time_after(jiffies, timeout)) 1755 break; 1756 udelay(10); 1757 } 1758 1759 /* special case for 64 bit octet counter */ 1760 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32 1761 | xm_read32(hw, port, XM_TXO_OK_LO); 1762 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32 1763 | xm_read32(hw, port, XM_RXO_OK_LO); 1764 1765 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 1766 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset); 1767 } 1768 1769 static void genesis_mac_intr(struct skge_hw *hw, int port) 1770 { 1771 struct net_device *dev = hw->dev[port]; 1772 struct skge_port *skge = netdev_priv(dev); 1773 u16 status = xm_read16(hw, port, XM_ISRC); 1774 1775 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 1776 "mac interrupt status 0x%x\n", status); 1777 1778 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) { 1779 xm_link_down(hw, port); 1780 mod_timer(&skge->link_timer, jiffies + 1); 1781 } 1782 1783 if (status & XM_IS_TXF_UR) { 1784 xm_write32(hw, port, XM_MODE, XM_MD_FTF); 1785 ++dev->stats.tx_fifo_errors; 1786 } 1787 } 1788 1789 static void genesis_link_up(struct skge_port *skge) 1790 { 1791 struct skge_hw *hw = skge->hw; 1792 int port = skge->port; 1793 u16 cmd, msk; 1794 u32 mode; 1795 1796 cmd = xm_read16(hw, port, XM_MMU_CMD); 1797 1798 /* 1799 * enabling pause frame reception is required for 1000BT 1800 * because the XMAC is not reset if the link is going down 1801 */ 1802 if (skge->flow_status == FLOW_STAT_NONE || 1803 skge->flow_status == FLOW_STAT_LOC_SEND) 1804 /* Disable Pause Frame Reception */ 1805 cmd |= XM_MMU_IGN_PF; 1806 else 1807 /* Enable Pause Frame Reception */ 1808 cmd &= ~XM_MMU_IGN_PF; 1809 1810 xm_write16(hw, port, XM_MMU_CMD, cmd); 1811 1812 mode = xm_read32(hw, port, XM_MODE); 1813 if (skge->flow_status == FLOW_STAT_SYMMETRIC || 1814 skge->flow_status == FLOW_STAT_LOC_SEND) { 1815 /* 1816 * Configure Pause Frame Generation 1817 * Use internal and external Pause Frame Generation. 1818 * Sending pause frames is edge triggered. 1819 * Send a Pause frame with the maximum pause time if 1820 * internal oder external FIFO full condition occurs. 1821 * Send a zero pause time frame to re-start transmission. 1822 */ 1823 /* XM_PAUSE_DA = '010000C28001' (default) */ 1824 /* XM_MAC_PTIME = 0xffff (maximum) */ 1825 /* remember this value is defined in big endian (!) */ 1826 xm_write16(hw, port, XM_MAC_PTIME, 0xffff); 1827 1828 mode |= XM_PAUSE_MODE; 1829 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE); 1830 } else { 1831 /* 1832 * disable pause frame generation is required for 1000BT 1833 * because the XMAC is not reset if the link is going down 1834 */ 1835 /* Disable Pause Mode in Mode Register */ 1836 mode &= ~XM_PAUSE_MODE; 1837 1838 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE); 1839 } 1840 1841 xm_write32(hw, port, XM_MODE, mode); 1842 1843 /* Turn on detection of Tx underrun */ 1844 msk = xm_read16(hw, port, XM_IMSK); 1845 msk &= ~XM_IS_TXF_UR; 1846 xm_write16(hw, port, XM_IMSK, msk); 1847 1848 xm_read16(hw, port, XM_ISRC); 1849 1850 /* get MMU Command Reg. */ 1851 cmd = xm_read16(hw, port, XM_MMU_CMD); 1852 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL) 1853 cmd |= XM_MMU_GMII_FD; 1854 1855 /* 1856 * Workaround BCOM Errata (#10523) for all BCom Phys 1857 * Enable Power Management after link up 1858 */ 1859 if (hw->phy_type == SK_PHY_BCOM) { 1860 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, 1861 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL) 1862 & ~PHY_B_AC_DIS_PM); 1863 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK); 1864 } 1865 1866 /* enable Rx/Tx */ 1867 xm_write16(hw, port, XM_MMU_CMD, 1868 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX); 1869 skge_link_up(skge); 1870 } 1871 1872 1873 static inline void bcom_phy_intr(struct skge_port *skge) 1874 { 1875 struct skge_hw *hw = skge->hw; 1876 int port = skge->port; 1877 u16 isrc; 1878 1879 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT); 1880 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 1881 "phy interrupt status 0x%x\n", isrc); 1882 1883 if (isrc & PHY_B_IS_PSE) 1884 pr_err("%s: uncorrectable pair swap error\n", 1885 hw->dev[port]->name); 1886 1887 /* Workaround BCom Errata: 1888 * enable and disable loopback mode if "NO HCD" occurs. 1889 */ 1890 if (isrc & PHY_B_IS_NO_HDCL) { 1891 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL); 1892 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1893 ctrl | PHY_CT_LOOP); 1894 xm_phy_write(hw, port, PHY_BCOM_CTRL, 1895 ctrl & ~PHY_CT_LOOP); 1896 } 1897 1898 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) 1899 bcom_check_link(hw, port); 1900 1901 } 1902 1903 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val) 1904 { 1905 int i; 1906 1907 gma_write16(hw, port, GM_SMI_DATA, val); 1908 gma_write16(hw, port, GM_SMI_CTRL, 1909 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg)); 1910 for (i = 0; i < PHY_RETRIES; i++) { 1911 udelay(1); 1912 1913 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY)) 1914 return 0; 1915 } 1916 1917 pr_warn("%s: phy write timeout\n", hw->dev[port]->name); 1918 return -EIO; 1919 } 1920 1921 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val) 1922 { 1923 int i; 1924 1925 gma_write16(hw, port, GM_SMI_CTRL, 1926 GM_SMI_CT_PHY_AD(hw->phy_addr) 1927 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); 1928 1929 for (i = 0; i < PHY_RETRIES; i++) { 1930 udelay(1); 1931 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) 1932 goto ready; 1933 } 1934 1935 return -ETIMEDOUT; 1936 ready: 1937 *val = gma_read16(hw, port, GM_SMI_DATA); 1938 return 0; 1939 } 1940 1941 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg) 1942 { 1943 u16 v = 0; 1944 if (__gm_phy_read(hw, port, reg, &v)) 1945 pr_warn("%s: phy read timeout\n", hw->dev[port]->name); 1946 return v; 1947 } 1948 1949 /* Marvell Phy Initialization */ 1950 static void yukon_init(struct skge_hw *hw, int port) 1951 { 1952 struct skge_port *skge = netdev_priv(hw->dev[port]); 1953 u16 ctrl, ct1000, adv; 1954 1955 if (skge->autoneg == AUTONEG_ENABLE) { 1956 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); 1957 1958 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | 1959 PHY_M_EC_MAC_S_MSK); 1960 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); 1961 1962 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); 1963 1964 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); 1965 } 1966 1967 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 1968 if (skge->autoneg == AUTONEG_DISABLE) 1969 ctrl &= ~PHY_CT_ANE; 1970 1971 ctrl |= PHY_CT_RESET; 1972 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 1973 1974 ctrl = 0; 1975 ct1000 = 0; 1976 adv = PHY_AN_CSMA; 1977 1978 if (skge->autoneg == AUTONEG_ENABLE) { 1979 if (hw->copper) { 1980 if (skge->advertising & ADVERTISED_1000baseT_Full) 1981 ct1000 |= PHY_M_1000C_AFD; 1982 if (skge->advertising & ADVERTISED_1000baseT_Half) 1983 ct1000 |= PHY_M_1000C_AHD; 1984 if (skge->advertising & ADVERTISED_100baseT_Full) 1985 adv |= PHY_M_AN_100_FD; 1986 if (skge->advertising & ADVERTISED_100baseT_Half) 1987 adv |= PHY_M_AN_100_HD; 1988 if (skge->advertising & ADVERTISED_10baseT_Full) 1989 adv |= PHY_M_AN_10_FD; 1990 if (skge->advertising & ADVERTISED_10baseT_Half) 1991 adv |= PHY_M_AN_10_HD; 1992 1993 /* Set Flow-control capabilities */ 1994 adv |= phy_pause_map[skge->flow_control]; 1995 } else { 1996 if (skge->advertising & ADVERTISED_1000baseT_Full) 1997 adv |= PHY_M_AN_1000X_AFD; 1998 if (skge->advertising & ADVERTISED_1000baseT_Half) 1999 adv |= PHY_M_AN_1000X_AHD; 2000 2001 adv |= fiber_pause_map[skge->flow_control]; 2002 } 2003 2004 /* Restart Auto-negotiation */ 2005 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; 2006 } else { 2007 /* forced speed/duplex settings */ 2008 ct1000 = PHY_M_1000C_MSE; 2009 2010 if (skge->duplex == DUPLEX_FULL) 2011 ctrl |= PHY_CT_DUP_MD; 2012 2013 switch (skge->speed) { 2014 case SPEED_1000: 2015 ctrl |= PHY_CT_SP1000; 2016 break; 2017 case SPEED_100: 2018 ctrl |= PHY_CT_SP100; 2019 break; 2020 } 2021 2022 ctrl |= PHY_CT_RESET; 2023 } 2024 2025 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); 2026 2027 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); 2028 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2029 2030 /* Enable phy interrupt on autonegotiation complete (or link up) */ 2031 if (skge->autoneg == AUTONEG_ENABLE) 2032 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK); 2033 else 2034 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 2035 } 2036 2037 static void yukon_reset(struct skge_hw *hw, int port) 2038 { 2039 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */ 2040 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ 2041 gma_write16(hw, port, GM_MC_ADDR_H2, 0); 2042 gma_write16(hw, port, GM_MC_ADDR_H3, 0); 2043 gma_write16(hw, port, GM_MC_ADDR_H4, 0); 2044 2045 gma_write16(hw, port, GM_RX_CTRL, 2046 gma_read16(hw, port, GM_RX_CTRL) 2047 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2048 } 2049 2050 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */ 2051 static int is_yukon_lite_a0(struct skge_hw *hw) 2052 { 2053 u32 reg; 2054 int ret; 2055 2056 if (hw->chip_id != CHIP_ID_YUKON) 2057 return 0; 2058 2059 reg = skge_read32(hw, B2_FAR); 2060 skge_write8(hw, B2_FAR + 3, 0xff); 2061 ret = (skge_read8(hw, B2_FAR + 3) != 0); 2062 skge_write32(hw, B2_FAR, reg); 2063 return ret; 2064 } 2065 2066 static void yukon_mac_init(struct skge_hw *hw, int port) 2067 { 2068 struct skge_port *skge = netdev_priv(hw->dev[port]); 2069 int i; 2070 u32 reg; 2071 const u8 *addr = hw->dev[port]->dev_addr; 2072 2073 /* WA code for COMA mode -- set PHY reset */ 2074 if (hw->chip_id == CHIP_ID_YUKON_LITE && 2075 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 2076 reg = skge_read32(hw, B2_GP_IO); 2077 reg |= GP_DIR_9 | GP_IO_9; 2078 skge_write32(hw, B2_GP_IO, reg); 2079 } 2080 2081 /* hard reset */ 2082 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 2083 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 2084 2085 /* WA code for COMA mode -- clear PHY reset */ 2086 if (hw->chip_id == CHIP_ID_YUKON_LITE && 2087 hw->chip_rev >= CHIP_REV_YU_LITE_A3) { 2088 reg = skge_read32(hw, B2_GP_IO); 2089 reg |= GP_DIR_9; 2090 reg &= ~GP_IO_9; 2091 skge_write32(hw, B2_GP_IO, reg); 2092 } 2093 2094 /* Set hardware config mode */ 2095 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP | 2096 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE; 2097 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB; 2098 2099 /* Clear GMC reset */ 2100 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET); 2101 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR); 2102 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR); 2103 2104 if (skge->autoneg == AUTONEG_DISABLE) { 2105 reg = GM_GPCR_AU_ALL_DIS; 2106 gma_write16(hw, port, GM_GP_CTRL, 2107 gma_read16(hw, port, GM_GP_CTRL) | reg); 2108 2109 switch (skge->speed) { 2110 case SPEED_1000: 2111 reg &= ~GM_GPCR_SPEED_100; 2112 reg |= GM_GPCR_SPEED_1000; 2113 break; 2114 case SPEED_100: 2115 reg &= ~GM_GPCR_SPEED_1000; 2116 reg |= GM_GPCR_SPEED_100; 2117 break; 2118 case SPEED_10: 2119 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100); 2120 break; 2121 } 2122 2123 if (skge->duplex == DUPLEX_FULL) 2124 reg |= GM_GPCR_DUP_FULL; 2125 } else 2126 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL; 2127 2128 switch (skge->flow_control) { 2129 case FLOW_MODE_NONE: 2130 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2131 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 2132 break; 2133 case FLOW_MODE_LOC_SEND: 2134 /* disable Rx flow-control */ 2135 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS; 2136 break; 2137 case FLOW_MODE_SYMMETRIC: 2138 case FLOW_MODE_SYM_OR_REM: 2139 /* enable Tx & Rx flow-control */ 2140 break; 2141 } 2142 2143 gma_write16(hw, port, GM_GP_CTRL, reg); 2144 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); 2145 2146 yukon_init(hw, port); 2147 2148 /* MIB clear */ 2149 reg = gma_read16(hw, port, GM_PHY_ADDR); 2150 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); 2151 2152 for (i = 0; i < GM_MIB_CNT_SIZE; i++) 2153 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i); 2154 gma_write16(hw, port, GM_PHY_ADDR, reg); 2155 2156 /* transmit control */ 2157 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); 2158 2159 /* receive control reg: unicast + multicast + no FCS */ 2160 gma_write16(hw, port, GM_RX_CTRL, 2161 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); 2162 2163 /* transmit flow control */ 2164 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); 2165 2166 /* transmit parameter */ 2167 gma_write16(hw, port, GM_TX_PARAM, 2168 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | 2169 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | 2170 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF)); 2171 2172 /* configure the Serial Mode Register */ 2173 reg = DATA_BLIND_VAL(DATA_BLIND_DEF) 2174 | GM_SMOD_VLAN_ENA 2175 | IPG_DATA_VAL(IPG_DATA_DEF); 2176 2177 if (hw->dev[port]->mtu > ETH_DATA_LEN) 2178 reg |= GM_SMOD_JUMBO_ENA; 2179 2180 gma_write16(hw, port, GM_SERIAL_MODE, reg); 2181 2182 /* physical address: used for pause frames */ 2183 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); 2184 /* virtual address for data */ 2185 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); 2186 2187 /* enable interrupt mask for counter overflows */ 2188 gma_write16(hw, port, GM_TX_IRQ_MSK, 0); 2189 gma_write16(hw, port, GM_RX_IRQ_MSK, 0); 2190 gma_write16(hw, port, GM_TR_IRQ_MSK, 0); 2191 2192 /* Initialize Mac Fifo */ 2193 2194 /* Configure Rx MAC FIFO */ 2195 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK); 2196 reg = GMF_OPER_ON | GMF_RX_F_FL_ON; 2197 2198 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ 2199 if (is_yukon_lite_a0(hw)) 2200 reg &= ~GMF_RX_F_FL_ON; 2201 2202 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); 2203 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg); 2204 /* 2205 * because Pause Packet Truncation in GMAC is not working 2206 * we have to increase the Flush Threshold to 64 bytes 2207 * in order to flush pause packets in Rx FIFO on Yukon-1 2208 */ 2209 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1); 2210 2211 /* Configure Tx MAC FIFO */ 2212 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); 2213 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); 2214 } 2215 2216 /* Go into power down mode */ 2217 static void yukon_suspend(struct skge_hw *hw, int port) 2218 { 2219 u16 ctrl; 2220 2221 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); 2222 ctrl |= PHY_M_PC_POL_R_DIS; 2223 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); 2224 2225 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 2226 ctrl |= PHY_CT_RESET; 2227 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2228 2229 /* switch IEEE compatible power down mode on */ 2230 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL); 2231 ctrl |= PHY_CT_PDOWN; 2232 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); 2233 } 2234 2235 static void yukon_stop(struct skge_port *skge) 2236 { 2237 struct skge_hw *hw = skge->hw; 2238 int port = skge->port; 2239 2240 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); 2241 yukon_reset(hw, port); 2242 2243 gma_write16(hw, port, GM_GP_CTRL, 2244 gma_read16(hw, port, GM_GP_CTRL) 2245 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA)); 2246 gma_read16(hw, port, GM_GP_CTRL); 2247 2248 yukon_suspend(hw, port); 2249 2250 /* set GPHY Control reset */ 2251 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); 2252 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); 2253 } 2254 2255 static void yukon_get_stats(struct skge_port *skge, u64 *data) 2256 { 2257 struct skge_hw *hw = skge->hw; 2258 int port = skge->port; 2259 int i; 2260 2261 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 2262 | gma_read32(hw, port, GM_TXO_OK_LO); 2263 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 2264 | gma_read32(hw, port, GM_RXO_OK_LO); 2265 2266 for (i = 2; i < ARRAY_SIZE(skge_stats); i++) 2267 data[i] = gma_read32(hw, port, 2268 skge_stats[i].gma_offset); 2269 } 2270 2271 static void yukon_mac_intr(struct skge_hw *hw, int port) 2272 { 2273 struct net_device *dev = hw->dev[port]; 2274 struct skge_port *skge = netdev_priv(dev); 2275 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); 2276 2277 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 2278 "mac interrupt status 0x%x\n", status); 2279 2280 if (status & GM_IS_RX_FF_OR) { 2281 ++dev->stats.rx_fifo_errors; 2282 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); 2283 } 2284 2285 if (status & GM_IS_TX_FF_UR) { 2286 ++dev->stats.tx_fifo_errors; 2287 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); 2288 } 2289 2290 } 2291 2292 static u16 yukon_speed(const struct skge_hw *hw, u16 aux) 2293 { 2294 switch (aux & PHY_M_PS_SPEED_MSK) { 2295 case PHY_M_PS_SPEED_1000: 2296 return SPEED_1000; 2297 case PHY_M_PS_SPEED_100: 2298 return SPEED_100; 2299 default: 2300 return SPEED_10; 2301 } 2302 } 2303 2304 static void yukon_link_up(struct skge_port *skge) 2305 { 2306 struct skge_hw *hw = skge->hw; 2307 int port = skge->port; 2308 u16 reg; 2309 2310 /* Enable Transmit FIFO Underrun */ 2311 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); 2312 2313 reg = gma_read16(hw, port, GM_GP_CTRL); 2314 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE) 2315 reg |= GM_GPCR_DUP_FULL; 2316 2317 /* enable Rx/Tx */ 2318 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; 2319 gma_write16(hw, port, GM_GP_CTRL, reg); 2320 2321 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK); 2322 skge_link_up(skge); 2323 } 2324 2325 static void yukon_link_down(struct skge_port *skge) 2326 { 2327 struct skge_hw *hw = skge->hw; 2328 int port = skge->port; 2329 u16 ctrl; 2330 2331 ctrl = gma_read16(hw, port, GM_GP_CTRL); 2332 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); 2333 gma_write16(hw, port, GM_GP_CTRL, ctrl); 2334 2335 if (skge->flow_status == FLOW_STAT_REM_SEND) { 2336 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV); 2337 ctrl |= PHY_M_AN_ASP; 2338 /* restore Asymmetric Pause bit */ 2339 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl); 2340 } 2341 2342 skge_link_down(skge); 2343 2344 yukon_init(hw, port); 2345 } 2346 2347 static void yukon_phy_intr(struct skge_port *skge) 2348 { 2349 struct skge_hw *hw = skge->hw; 2350 int port = skge->port; 2351 const char *reason = NULL; 2352 u16 istatus, phystat; 2353 2354 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); 2355 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); 2356 2357 netif_printk(skge, intr, KERN_DEBUG, skge->netdev, 2358 "phy interrupt status 0x%x 0x%x\n", istatus, phystat); 2359 2360 if (istatus & PHY_M_IS_AN_COMPL) { 2361 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP) 2362 & PHY_M_AN_RF) { 2363 reason = "remote fault"; 2364 goto failed; 2365 } 2366 2367 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) { 2368 reason = "master/slave fault"; 2369 goto failed; 2370 } 2371 2372 if (!(phystat & PHY_M_PS_SPDUP_RES)) { 2373 reason = "speed/duplex"; 2374 goto failed; 2375 } 2376 2377 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) 2378 ? DUPLEX_FULL : DUPLEX_HALF; 2379 skge->speed = yukon_speed(hw, phystat); 2380 2381 /* We are using IEEE 802.3z/D5.0 Table 37-4 */ 2382 switch (phystat & PHY_M_PS_PAUSE_MSK) { 2383 case PHY_M_PS_PAUSE_MSK: 2384 skge->flow_status = FLOW_STAT_SYMMETRIC; 2385 break; 2386 case PHY_M_PS_RX_P_EN: 2387 skge->flow_status = FLOW_STAT_REM_SEND; 2388 break; 2389 case PHY_M_PS_TX_P_EN: 2390 skge->flow_status = FLOW_STAT_LOC_SEND; 2391 break; 2392 default: 2393 skge->flow_status = FLOW_STAT_NONE; 2394 } 2395 2396 if (skge->flow_status == FLOW_STAT_NONE || 2397 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF)) 2398 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); 2399 else 2400 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); 2401 yukon_link_up(skge); 2402 return; 2403 } 2404 2405 if (istatus & PHY_M_IS_LSP_CHANGE) 2406 skge->speed = yukon_speed(hw, phystat); 2407 2408 if (istatus & PHY_M_IS_DUP_CHANGE) 2409 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; 2410 if (istatus & PHY_M_IS_LST_CHANGE) { 2411 if (phystat & PHY_M_PS_LINK_UP) 2412 yukon_link_up(skge); 2413 else 2414 yukon_link_down(skge); 2415 } 2416 return; 2417 failed: 2418 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason); 2419 2420 /* XXX restart autonegotiation? */ 2421 } 2422 2423 static void skge_phy_reset(struct skge_port *skge) 2424 { 2425 struct skge_hw *hw = skge->hw; 2426 int port = skge->port; 2427 struct net_device *dev = hw->dev[port]; 2428 2429 netif_stop_queue(skge->netdev); 2430 netif_carrier_off(skge->netdev); 2431 2432 spin_lock_bh(&hw->phy_lock); 2433 if (is_genesis(hw)) { 2434 genesis_reset(hw, port); 2435 genesis_mac_init(hw, port); 2436 } else { 2437 yukon_reset(hw, port); 2438 yukon_init(hw, port); 2439 } 2440 spin_unlock_bh(&hw->phy_lock); 2441 2442 skge_set_multicast(dev); 2443 } 2444 2445 /* Basic MII support */ 2446 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 2447 { 2448 struct mii_ioctl_data *data = if_mii(ifr); 2449 struct skge_port *skge = netdev_priv(dev); 2450 struct skge_hw *hw = skge->hw; 2451 int err = -EOPNOTSUPP; 2452 2453 if (!netif_running(dev)) 2454 return -ENODEV; /* Phy still in reset */ 2455 2456 switch (cmd) { 2457 case SIOCGMIIPHY: 2458 data->phy_id = hw->phy_addr; 2459 2460 /* fallthru */ 2461 case SIOCGMIIREG: { 2462 u16 val = 0; 2463 spin_lock_bh(&hw->phy_lock); 2464 2465 if (is_genesis(hw)) 2466 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2467 else 2468 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val); 2469 spin_unlock_bh(&hw->phy_lock); 2470 data->val_out = val; 2471 break; 2472 } 2473 2474 case SIOCSMIIREG: 2475 spin_lock_bh(&hw->phy_lock); 2476 if (is_genesis(hw)) 2477 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2478 data->val_in); 2479 else 2480 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f, 2481 data->val_in); 2482 spin_unlock_bh(&hw->phy_lock); 2483 break; 2484 } 2485 return err; 2486 } 2487 2488 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len) 2489 { 2490 u32 end; 2491 2492 start /= 8; 2493 len /= 8; 2494 end = start + len - 1; 2495 2496 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); 2497 skge_write32(hw, RB_ADDR(q, RB_START), start); 2498 skge_write32(hw, RB_ADDR(q, RB_WP), start); 2499 skge_write32(hw, RB_ADDR(q, RB_RP), start); 2500 skge_write32(hw, RB_ADDR(q, RB_END), end); 2501 2502 if (q == Q_R1 || q == Q_R2) { 2503 /* Set thresholds on receive queue's */ 2504 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP), 2505 start + (2*len)/3); 2506 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP), 2507 start + (len/3)); 2508 } else { 2509 /* Enable store & forward on Tx queue's because 2510 * Tx FIFO is only 4K on Genesis and 1K on Yukon 2511 */ 2512 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); 2513 } 2514 2515 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); 2516 } 2517 2518 /* Setup Bus Memory Interface */ 2519 static void skge_qset(struct skge_port *skge, u16 q, 2520 const struct skge_element *e) 2521 { 2522 struct skge_hw *hw = skge->hw; 2523 u32 watermark = 0x600; 2524 u64 base = skge->dma + (e->desc - skge->mem); 2525 2526 /* optimization to reduce window on 32bit/33mhz */ 2527 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0) 2528 watermark /= 2; 2529 2530 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET); 2531 skge_write32(hw, Q_ADDR(q, Q_F), watermark); 2532 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32)); 2533 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base); 2534 } 2535 2536 static int skge_up(struct net_device *dev) 2537 { 2538 struct skge_port *skge = netdev_priv(dev); 2539 struct skge_hw *hw = skge->hw; 2540 int port = skge->port; 2541 u32 chunk, ram_addr; 2542 size_t rx_size, tx_size; 2543 int err; 2544 2545 if (!is_valid_ether_addr(dev->dev_addr)) 2546 return -EINVAL; 2547 2548 netif_info(skge, ifup, skge->netdev, "enabling interface\n"); 2549 2550 if (dev->mtu > RX_BUF_SIZE) 2551 skge->rx_buf_size = dev->mtu + ETH_HLEN; 2552 else 2553 skge->rx_buf_size = RX_BUF_SIZE; 2554 2555 2556 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc); 2557 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc); 2558 skge->mem_size = tx_size + rx_size; 2559 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma); 2560 if (!skge->mem) 2561 return -ENOMEM; 2562 2563 BUG_ON(skge->dma & 7); 2564 2565 if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) { 2566 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n"); 2567 err = -EINVAL; 2568 goto free_pci_mem; 2569 } 2570 2571 memset(skge->mem, 0, skge->mem_size); 2572 2573 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma); 2574 if (err) 2575 goto free_pci_mem; 2576 2577 err = skge_rx_fill(dev); 2578 if (err) 2579 goto free_rx_ring; 2580 2581 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size, 2582 skge->dma + rx_size); 2583 if (err) 2584 goto free_rx_ring; 2585 2586 if (hw->ports == 1) { 2587 err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED, 2588 dev->name, hw); 2589 if (err) { 2590 netdev_err(dev, "Unable to allocate interrupt %d error: %d\n", 2591 hw->pdev->irq, err); 2592 goto free_tx_ring; 2593 } 2594 } 2595 2596 /* Initialize MAC */ 2597 netif_carrier_off(dev); 2598 spin_lock_bh(&hw->phy_lock); 2599 if (is_genesis(hw)) 2600 genesis_mac_init(hw, port); 2601 else 2602 yukon_mac_init(hw, port); 2603 spin_unlock_bh(&hw->phy_lock); 2604 2605 /* Configure RAMbuffers - equally between ports and tx/rx */ 2606 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2); 2607 ram_addr = hw->ram_offset + 2 * chunk * port; 2608 2609 skge_ramset(hw, rxqaddr[port], ram_addr, chunk); 2610 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean); 2611 2612 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean); 2613 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk); 2614 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use); 2615 2616 /* Start receiver BMU */ 2617 wmb(); 2618 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F); 2619 skge_led(skge, LED_MODE_ON); 2620 2621 spin_lock_irq(&hw->hw_lock); 2622 hw->intr_mask |= portmask[port]; 2623 skge_write32(hw, B0_IMSK, hw->intr_mask); 2624 skge_read32(hw, B0_IMSK); 2625 spin_unlock_irq(&hw->hw_lock); 2626 2627 napi_enable(&skge->napi); 2628 2629 skge_set_multicast(dev); 2630 2631 return 0; 2632 2633 free_tx_ring: 2634 kfree(skge->tx_ring.start); 2635 free_rx_ring: 2636 skge_rx_clean(skge); 2637 kfree(skge->rx_ring.start); 2638 free_pci_mem: 2639 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); 2640 skge->mem = NULL; 2641 2642 return err; 2643 } 2644 2645 /* stop receiver */ 2646 static void skge_rx_stop(struct skge_hw *hw, int port) 2647 { 2648 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP); 2649 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL), 2650 RB_RST_SET|RB_DIS_OP_MD); 2651 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET); 2652 } 2653 2654 static int skge_down(struct net_device *dev) 2655 { 2656 struct skge_port *skge = netdev_priv(dev); 2657 struct skge_hw *hw = skge->hw; 2658 int port = skge->port; 2659 2660 if (!skge->mem) 2661 return 0; 2662 2663 netif_info(skge, ifdown, skge->netdev, "disabling interface\n"); 2664 2665 netif_tx_disable(dev); 2666 2667 if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC) 2668 del_timer_sync(&skge->link_timer); 2669 2670 napi_disable(&skge->napi); 2671 netif_carrier_off(dev); 2672 2673 spin_lock_irq(&hw->hw_lock); 2674 hw->intr_mask &= ~portmask[port]; 2675 skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask); 2676 skge_read32(hw, B0_IMSK); 2677 spin_unlock_irq(&hw->hw_lock); 2678 2679 if (hw->ports == 1) 2680 free_irq(hw->pdev->irq, hw); 2681 2682 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF); 2683 if (is_genesis(hw)) 2684 genesis_stop(skge); 2685 else 2686 yukon_stop(skge); 2687 2688 /* Stop transmitter */ 2689 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP); 2690 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), 2691 RB_RST_SET|RB_DIS_OP_MD); 2692 2693 2694 /* Disable Force Sync bit and Enable Alloc bit */ 2695 skge_write8(hw, SK_REG(port, TXA_CTRL), 2696 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); 2697 2698 /* Stop Interval Timer and Limit Counter of Tx Arbiter */ 2699 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); 2700 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); 2701 2702 /* Reset PCI FIFO */ 2703 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET); 2704 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); 2705 2706 /* Reset the RAM Buffer async Tx queue */ 2707 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET); 2708 2709 skge_rx_stop(hw, port); 2710 2711 if (is_genesis(hw)) { 2712 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET); 2713 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET); 2714 } else { 2715 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); 2716 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); 2717 } 2718 2719 skge_led(skge, LED_MODE_OFF); 2720 2721 netif_tx_lock_bh(dev); 2722 skge_tx_clean(dev); 2723 netif_tx_unlock_bh(dev); 2724 2725 skge_rx_clean(skge); 2726 2727 kfree(skge->rx_ring.start); 2728 kfree(skge->tx_ring.start); 2729 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma); 2730 skge->mem = NULL; 2731 return 0; 2732 } 2733 2734 static inline int skge_avail(const struct skge_ring *ring) 2735 { 2736 smp_mb(); 2737 return ((ring->to_clean > ring->to_use) ? 0 : ring->count) 2738 + (ring->to_clean - ring->to_use) - 1; 2739 } 2740 2741 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb, 2742 struct net_device *dev) 2743 { 2744 struct skge_port *skge = netdev_priv(dev); 2745 struct skge_hw *hw = skge->hw; 2746 struct skge_element *e; 2747 struct skge_tx_desc *td; 2748 int i; 2749 u32 control, len; 2750 dma_addr_t map; 2751 2752 if (skb_padto(skb, ETH_ZLEN)) 2753 return NETDEV_TX_OK; 2754 2755 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1)) 2756 return NETDEV_TX_BUSY; 2757 2758 e = skge->tx_ring.to_use; 2759 td = e->desc; 2760 BUG_ON(td->control & BMU_OWN); 2761 e->skb = skb; 2762 len = skb_headlen(skb); 2763 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); 2764 if (pci_dma_mapping_error(hw->pdev, map)) 2765 goto mapping_error; 2766 2767 dma_unmap_addr_set(e, mapaddr, map); 2768 dma_unmap_len_set(e, maplen, len); 2769 2770 td->dma_lo = lower_32_bits(map); 2771 td->dma_hi = upper_32_bits(map); 2772 2773 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2774 const int offset = skb_checksum_start_offset(skb); 2775 2776 /* This seems backwards, but it is what the sk98lin 2777 * does. Looks like hardware is wrong? 2778 */ 2779 if (ipip_hdr(skb)->protocol == IPPROTO_UDP && 2780 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON) 2781 control = BMU_TCP_CHECK; 2782 else 2783 control = BMU_UDP_CHECK; 2784 2785 td->csum_offs = 0; 2786 td->csum_start = offset; 2787 td->csum_write = offset + skb->csum_offset; 2788 } else 2789 control = BMU_CHECK; 2790 2791 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */ 2792 control |= BMU_EOF | BMU_IRQ_EOF; 2793 else { 2794 struct skge_tx_desc *tf = td; 2795 2796 control |= BMU_STFWD; 2797 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2798 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2799 2800 map = skb_frag_dma_map(&hw->pdev->dev, frag, 0, 2801 skb_frag_size(frag), DMA_TO_DEVICE); 2802 if (dma_mapping_error(&hw->pdev->dev, map)) 2803 goto mapping_unwind; 2804 2805 e = e->next; 2806 e->skb = skb; 2807 tf = e->desc; 2808 BUG_ON(tf->control & BMU_OWN); 2809 2810 tf->dma_lo = lower_32_bits(map); 2811 tf->dma_hi = upper_32_bits(map); 2812 dma_unmap_addr_set(e, mapaddr, map); 2813 dma_unmap_len_set(e, maplen, skb_frag_size(frag)); 2814 2815 tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag); 2816 } 2817 tf->control |= BMU_EOF | BMU_IRQ_EOF; 2818 } 2819 /* Make sure all the descriptors written */ 2820 wmb(); 2821 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len; 2822 wmb(); 2823 2824 netdev_sent_queue(dev, skb->len); 2825 2826 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START); 2827 2828 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev, 2829 "tx queued, slot %td, len %d\n", 2830 e - skge->tx_ring.start, skb->len); 2831 2832 skge->tx_ring.to_use = e->next; 2833 smp_wmb(); 2834 2835 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) { 2836 netdev_dbg(dev, "transmit queue full\n"); 2837 netif_stop_queue(dev); 2838 } 2839 2840 return NETDEV_TX_OK; 2841 2842 mapping_unwind: 2843 e = skge->tx_ring.to_use; 2844 pci_unmap_single(hw->pdev, 2845 dma_unmap_addr(e, mapaddr), 2846 dma_unmap_len(e, maplen), 2847 PCI_DMA_TODEVICE); 2848 while (i-- > 0) { 2849 e = e->next; 2850 pci_unmap_page(hw->pdev, 2851 dma_unmap_addr(e, mapaddr), 2852 dma_unmap_len(e, maplen), 2853 PCI_DMA_TODEVICE); 2854 } 2855 2856 mapping_error: 2857 if (net_ratelimit()) 2858 dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name); 2859 dev_kfree_skb_any(skb); 2860 return NETDEV_TX_OK; 2861 } 2862 2863 2864 /* Free resources associated with this reing element */ 2865 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e, 2866 u32 control) 2867 { 2868 /* skb header vs. fragment */ 2869 if (control & BMU_STF) 2870 pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr), 2871 dma_unmap_len(e, maplen), 2872 PCI_DMA_TODEVICE); 2873 else 2874 pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr), 2875 dma_unmap_len(e, maplen), 2876 PCI_DMA_TODEVICE); 2877 } 2878 2879 /* Free all buffers in transmit ring */ 2880 static void skge_tx_clean(struct net_device *dev) 2881 { 2882 struct skge_port *skge = netdev_priv(dev); 2883 struct skge_element *e; 2884 2885 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { 2886 struct skge_tx_desc *td = e->desc; 2887 2888 skge_tx_unmap(skge->hw->pdev, e, td->control); 2889 2890 if (td->control & BMU_EOF) 2891 dev_kfree_skb(e->skb); 2892 td->control = 0; 2893 } 2894 2895 netdev_reset_queue(dev); 2896 skge->tx_ring.to_clean = e; 2897 } 2898 2899 static void skge_tx_timeout(struct net_device *dev) 2900 { 2901 struct skge_port *skge = netdev_priv(dev); 2902 2903 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n"); 2904 2905 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP); 2906 skge_tx_clean(dev); 2907 netif_wake_queue(dev); 2908 } 2909 2910 static int skge_change_mtu(struct net_device *dev, int new_mtu) 2911 { 2912 int err; 2913 2914 if (!netif_running(dev)) { 2915 dev->mtu = new_mtu; 2916 return 0; 2917 } 2918 2919 skge_down(dev); 2920 2921 dev->mtu = new_mtu; 2922 2923 err = skge_up(dev); 2924 if (err) 2925 dev_close(dev); 2926 2927 return err; 2928 } 2929 2930 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 }; 2931 2932 static void genesis_add_filter(u8 filter[8], const u8 *addr) 2933 { 2934 u32 crc, bit; 2935 2936 crc = ether_crc_le(ETH_ALEN, addr); 2937 bit = ~crc & 0x3f; 2938 filter[bit/8] |= 1 << (bit%8); 2939 } 2940 2941 static void genesis_set_multicast(struct net_device *dev) 2942 { 2943 struct skge_port *skge = netdev_priv(dev); 2944 struct skge_hw *hw = skge->hw; 2945 int port = skge->port; 2946 struct netdev_hw_addr *ha; 2947 u32 mode; 2948 u8 filter[8]; 2949 2950 mode = xm_read32(hw, port, XM_MODE); 2951 mode |= XM_MD_ENA_HASH; 2952 if (dev->flags & IFF_PROMISC) 2953 mode |= XM_MD_ENA_PROM; 2954 else 2955 mode &= ~XM_MD_ENA_PROM; 2956 2957 if (dev->flags & IFF_ALLMULTI) 2958 memset(filter, 0xff, sizeof(filter)); 2959 else { 2960 memset(filter, 0, sizeof(filter)); 2961 2962 if (skge->flow_status == FLOW_STAT_REM_SEND || 2963 skge->flow_status == FLOW_STAT_SYMMETRIC) 2964 genesis_add_filter(filter, pause_mc_addr); 2965 2966 netdev_for_each_mc_addr(ha, dev) 2967 genesis_add_filter(filter, ha->addr); 2968 } 2969 2970 xm_write32(hw, port, XM_MODE, mode); 2971 xm_outhash(hw, port, XM_HSM, filter); 2972 } 2973 2974 static void yukon_add_filter(u8 filter[8], const u8 *addr) 2975 { 2976 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f; 2977 filter[bit/8] |= 1 << (bit%8); 2978 } 2979 2980 static void yukon_set_multicast(struct net_device *dev) 2981 { 2982 struct skge_port *skge = netdev_priv(dev); 2983 struct skge_hw *hw = skge->hw; 2984 int port = skge->port; 2985 struct netdev_hw_addr *ha; 2986 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND || 2987 skge->flow_status == FLOW_STAT_SYMMETRIC); 2988 u16 reg; 2989 u8 filter[8]; 2990 2991 memset(filter, 0, sizeof(filter)); 2992 2993 reg = gma_read16(hw, port, GM_RX_CTRL); 2994 reg |= GM_RXCR_UCF_ENA; 2995 2996 if (dev->flags & IFF_PROMISC) /* promiscuous */ 2997 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); 2998 else if (dev->flags & IFF_ALLMULTI) /* all multicast */ 2999 memset(filter, 0xff, sizeof(filter)); 3000 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */ 3001 reg &= ~GM_RXCR_MCF_ENA; 3002 else { 3003 reg |= GM_RXCR_MCF_ENA; 3004 3005 if (rx_pause) 3006 yukon_add_filter(filter, pause_mc_addr); 3007 3008 netdev_for_each_mc_addr(ha, dev) 3009 yukon_add_filter(filter, ha->addr); 3010 } 3011 3012 3013 gma_write16(hw, port, GM_MC_ADDR_H1, 3014 (u16)filter[0] | ((u16)filter[1] << 8)); 3015 gma_write16(hw, port, GM_MC_ADDR_H2, 3016 (u16)filter[2] | ((u16)filter[3] << 8)); 3017 gma_write16(hw, port, GM_MC_ADDR_H3, 3018 (u16)filter[4] | ((u16)filter[5] << 8)); 3019 gma_write16(hw, port, GM_MC_ADDR_H4, 3020 (u16)filter[6] | ((u16)filter[7] << 8)); 3021 3022 gma_write16(hw, port, GM_RX_CTRL, reg); 3023 } 3024 3025 static inline u16 phy_length(const struct skge_hw *hw, u32 status) 3026 { 3027 if (is_genesis(hw)) 3028 return status >> XMR_FS_LEN_SHIFT; 3029 else 3030 return status >> GMR_FS_LEN_SHIFT; 3031 } 3032 3033 static inline int bad_phy_status(const struct skge_hw *hw, u32 status) 3034 { 3035 if (is_genesis(hw)) 3036 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0; 3037 else 3038 return (status & GMR_FS_ANY_ERR) || 3039 (status & GMR_FS_RX_OK) == 0; 3040 } 3041 3042 static void skge_set_multicast(struct net_device *dev) 3043 { 3044 struct skge_port *skge = netdev_priv(dev); 3045 3046 if (is_genesis(skge->hw)) 3047 genesis_set_multicast(dev); 3048 else 3049 yukon_set_multicast(dev); 3050 3051 } 3052 3053 3054 /* Get receive buffer from descriptor. 3055 * Handles copy of small buffers and reallocation failures 3056 */ 3057 static struct sk_buff *skge_rx_get(struct net_device *dev, 3058 struct skge_element *e, 3059 u32 control, u32 status, u16 csum) 3060 { 3061 struct skge_port *skge = netdev_priv(dev); 3062 struct sk_buff *skb; 3063 u16 len = control & BMU_BBC; 3064 3065 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev, 3066 "rx slot %td status 0x%x len %d\n", 3067 e - skge->rx_ring.start, status, len); 3068 3069 if (len > skge->rx_buf_size) 3070 goto error; 3071 3072 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)) 3073 goto error; 3074 3075 if (bad_phy_status(skge->hw, status)) 3076 goto error; 3077 3078 if (phy_length(skge->hw, status) != len) 3079 goto error; 3080 3081 if (len < RX_COPY_THRESHOLD) { 3082 skb = netdev_alloc_skb_ip_align(dev, len); 3083 if (!skb) 3084 goto resubmit; 3085 3086 pci_dma_sync_single_for_cpu(skge->hw->pdev, 3087 dma_unmap_addr(e, mapaddr), 3088 dma_unmap_len(e, maplen), 3089 PCI_DMA_FROMDEVICE); 3090 skb_copy_from_linear_data(e->skb, skb->data, len); 3091 pci_dma_sync_single_for_device(skge->hw->pdev, 3092 dma_unmap_addr(e, mapaddr), 3093 dma_unmap_len(e, maplen), 3094 PCI_DMA_FROMDEVICE); 3095 skge_rx_reuse(e, skge->rx_buf_size); 3096 } else { 3097 struct skge_element ee; 3098 struct sk_buff *nskb; 3099 3100 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size); 3101 if (!nskb) 3102 goto resubmit; 3103 3104 ee = *e; 3105 3106 skb = ee.skb; 3107 prefetch(skb->data); 3108 3109 if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) { 3110 dev_kfree_skb(nskb); 3111 goto resubmit; 3112 } 3113 3114 pci_unmap_single(skge->hw->pdev, 3115 dma_unmap_addr(&ee, mapaddr), 3116 dma_unmap_len(&ee, maplen), 3117 PCI_DMA_FROMDEVICE); 3118 } 3119 3120 skb_put(skb, len); 3121 3122 if (dev->features & NETIF_F_RXCSUM) { 3123 skb->csum = csum; 3124 skb->ip_summed = CHECKSUM_COMPLETE; 3125 } 3126 3127 skb->protocol = eth_type_trans(skb, dev); 3128 3129 return skb; 3130 error: 3131 3132 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev, 3133 "rx err, slot %td control 0x%x status 0x%x\n", 3134 e - skge->rx_ring.start, control, status); 3135 3136 if (is_genesis(skge->hw)) { 3137 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR)) 3138 dev->stats.rx_length_errors++; 3139 if (status & XMR_FS_FRA_ERR) 3140 dev->stats.rx_frame_errors++; 3141 if (status & XMR_FS_FCS_ERR) 3142 dev->stats.rx_crc_errors++; 3143 } else { 3144 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE)) 3145 dev->stats.rx_length_errors++; 3146 if (status & GMR_FS_FRAGMENT) 3147 dev->stats.rx_frame_errors++; 3148 if (status & GMR_FS_CRC_ERR) 3149 dev->stats.rx_crc_errors++; 3150 } 3151 3152 resubmit: 3153 skge_rx_reuse(e, skge->rx_buf_size); 3154 return NULL; 3155 } 3156 3157 /* Free all buffers in Tx ring which are no longer owned by device */ 3158 static void skge_tx_done(struct net_device *dev) 3159 { 3160 struct skge_port *skge = netdev_priv(dev); 3161 struct skge_ring *ring = &skge->tx_ring; 3162 struct skge_element *e; 3163 unsigned int bytes_compl = 0, pkts_compl = 0; 3164 3165 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 3166 3167 for (e = ring->to_clean; e != ring->to_use; e = e->next) { 3168 u32 control = ((const struct skge_tx_desc *) e->desc)->control; 3169 3170 if (control & BMU_OWN) 3171 break; 3172 3173 skge_tx_unmap(skge->hw->pdev, e, control); 3174 3175 if (control & BMU_EOF) { 3176 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev, 3177 "tx done slot %td\n", 3178 e - skge->tx_ring.start); 3179 3180 pkts_compl++; 3181 bytes_compl += e->skb->len; 3182 3183 dev_consume_skb_any(e->skb); 3184 } 3185 } 3186 netdev_completed_queue(dev, pkts_compl, bytes_compl); 3187 skge->tx_ring.to_clean = e; 3188 3189 /* Can run lockless until we need to synchronize to restart queue. */ 3190 smp_mb(); 3191 3192 if (unlikely(netif_queue_stopped(dev) && 3193 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { 3194 netif_tx_lock(dev); 3195 if (unlikely(netif_queue_stopped(dev) && 3196 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) { 3197 netif_wake_queue(dev); 3198 3199 } 3200 netif_tx_unlock(dev); 3201 } 3202 } 3203 3204 static int skge_poll(struct napi_struct *napi, int budget) 3205 { 3206 struct skge_port *skge = container_of(napi, struct skge_port, napi); 3207 struct net_device *dev = skge->netdev; 3208 struct skge_hw *hw = skge->hw; 3209 struct skge_ring *ring = &skge->rx_ring; 3210 struct skge_element *e; 3211 int work_done = 0; 3212 3213 skge_tx_done(dev); 3214 3215 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F); 3216 3217 for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) { 3218 struct skge_rx_desc *rd = e->desc; 3219 struct sk_buff *skb; 3220 u32 control; 3221 3222 rmb(); 3223 control = rd->control; 3224 if (control & BMU_OWN) 3225 break; 3226 3227 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2); 3228 if (likely(skb)) { 3229 napi_gro_receive(napi, skb); 3230 ++work_done; 3231 } 3232 } 3233 ring->to_clean = e; 3234 3235 /* restart receiver */ 3236 wmb(); 3237 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START); 3238 3239 if (work_done < budget && napi_complete_done(napi, work_done)) { 3240 unsigned long flags; 3241 3242 spin_lock_irqsave(&hw->hw_lock, flags); 3243 hw->intr_mask |= napimask[skge->port]; 3244 skge_write32(hw, B0_IMSK, hw->intr_mask); 3245 skge_read32(hw, B0_IMSK); 3246 spin_unlock_irqrestore(&hw->hw_lock, flags); 3247 } 3248 3249 return work_done; 3250 } 3251 3252 /* Parity errors seem to happen when Genesis is connected to a switch 3253 * with no other ports present. Heartbeat error?? 3254 */ 3255 static void skge_mac_parity(struct skge_hw *hw, int port) 3256 { 3257 struct net_device *dev = hw->dev[port]; 3258 3259 ++dev->stats.tx_heartbeat_errors; 3260 3261 if (is_genesis(hw)) 3262 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), 3263 MFF_CLR_PERR); 3264 else 3265 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */ 3266 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), 3267 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0) 3268 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE); 3269 } 3270 3271 static void skge_mac_intr(struct skge_hw *hw, int port) 3272 { 3273 if (is_genesis(hw)) 3274 genesis_mac_intr(hw, port); 3275 else 3276 yukon_mac_intr(hw, port); 3277 } 3278 3279 /* Handle device specific framing and timeout interrupts */ 3280 static void skge_error_irq(struct skge_hw *hw) 3281 { 3282 struct pci_dev *pdev = hw->pdev; 3283 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC); 3284 3285 if (is_genesis(hw)) { 3286 /* clear xmac errors */ 3287 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1)) 3288 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT); 3289 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2)) 3290 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT); 3291 } else { 3292 /* Timestamp (unused) overflow */ 3293 if (hwstatus & IS_IRQ_TIST_OV) 3294 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); 3295 } 3296 3297 if (hwstatus & IS_RAM_RD_PAR) { 3298 dev_err(&pdev->dev, "Ram read data parity error\n"); 3299 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR); 3300 } 3301 3302 if (hwstatus & IS_RAM_WR_PAR) { 3303 dev_err(&pdev->dev, "Ram write data parity error\n"); 3304 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR); 3305 } 3306 3307 if (hwstatus & IS_M1_PAR_ERR) 3308 skge_mac_parity(hw, 0); 3309 3310 if (hwstatus & IS_M2_PAR_ERR) 3311 skge_mac_parity(hw, 1); 3312 3313 if (hwstatus & IS_R1_PAR_ERR) { 3314 dev_err(&pdev->dev, "%s: receive queue parity error\n", 3315 hw->dev[0]->name); 3316 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P); 3317 } 3318 3319 if (hwstatus & IS_R2_PAR_ERR) { 3320 dev_err(&pdev->dev, "%s: receive queue parity error\n", 3321 hw->dev[1]->name); 3322 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P); 3323 } 3324 3325 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) { 3326 u16 pci_status, pci_cmd; 3327 3328 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd); 3329 pci_read_config_word(pdev, PCI_STATUS, &pci_status); 3330 3331 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n", 3332 pci_cmd, pci_status); 3333 3334 /* Write the error bits back to clear them. */ 3335 pci_status &= PCI_STATUS_ERROR_BITS; 3336 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3337 pci_write_config_word(pdev, PCI_COMMAND, 3338 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY); 3339 pci_write_config_word(pdev, PCI_STATUS, pci_status); 3340 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3341 3342 /* if error still set then just ignore it */ 3343 hwstatus = skge_read32(hw, B0_HWE_ISRC); 3344 if (hwstatus & IS_IRQ_STAT) { 3345 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n"); 3346 hw->intr_mask &= ~IS_HW_ERR; 3347 } 3348 } 3349 } 3350 3351 /* 3352 * Interrupt from PHY are handled in tasklet (softirq) 3353 * because accessing phy registers requires spin wait which might 3354 * cause excess interrupt latency. 3355 */ 3356 static void skge_extirq(unsigned long arg) 3357 { 3358 struct skge_hw *hw = (struct skge_hw *) arg; 3359 int port; 3360 3361 for (port = 0; port < hw->ports; port++) { 3362 struct net_device *dev = hw->dev[port]; 3363 3364 if (netif_running(dev)) { 3365 struct skge_port *skge = netdev_priv(dev); 3366 3367 spin_lock(&hw->phy_lock); 3368 if (!is_genesis(hw)) 3369 yukon_phy_intr(skge); 3370 else if (hw->phy_type == SK_PHY_BCOM) 3371 bcom_phy_intr(skge); 3372 spin_unlock(&hw->phy_lock); 3373 } 3374 } 3375 3376 spin_lock_irq(&hw->hw_lock); 3377 hw->intr_mask |= IS_EXT_REG; 3378 skge_write32(hw, B0_IMSK, hw->intr_mask); 3379 skge_read32(hw, B0_IMSK); 3380 spin_unlock_irq(&hw->hw_lock); 3381 } 3382 3383 static irqreturn_t skge_intr(int irq, void *dev_id) 3384 { 3385 struct skge_hw *hw = dev_id; 3386 u32 status; 3387 int handled = 0; 3388 3389 spin_lock(&hw->hw_lock); 3390 /* Reading this register masks IRQ */ 3391 status = skge_read32(hw, B0_SP_ISRC); 3392 if (status == 0 || status == ~0) 3393 goto out; 3394 3395 handled = 1; 3396 status &= hw->intr_mask; 3397 if (status & IS_EXT_REG) { 3398 hw->intr_mask &= ~IS_EXT_REG; 3399 tasklet_schedule(&hw->phy_task); 3400 } 3401 3402 if (status & (IS_XA1_F|IS_R1_F)) { 3403 struct skge_port *skge = netdev_priv(hw->dev[0]); 3404 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F); 3405 napi_schedule(&skge->napi); 3406 } 3407 3408 if (status & IS_PA_TO_TX1) 3409 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1); 3410 3411 if (status & IS_PA_TO_RX1) { 3412 ++hw->dev[0]->stats.rx_over_errors; 3413 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1); 3414 } 3415 3416 3417 if (status & IS_MAC1) 3418 skge_mac_intr(hw, 0); 3419 3420 if (hw->dev[1]) { 3421 struct skge_port *skge = netdev_priv(hw->dev[1]); 3422 3423 if (status & (IS_XA2_F|IS_R2_F)) { 3424 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F); 3425 napi_schedule(&skge->napi); 3426 } 3427 3428 if (status & IS_PA_TO_RX2) { 3429 ++hw->dev[1]->stats.rx_over_errors; 3430 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2); 3431 } 3432 3433 if (status & IS_PA_TO_TX2) 3434 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2); 3435 3436 if (status & IS_MAC2) 3437 skge_mac_intr(hw, 1); 3438 } 3439 3440 if (status & IS_HW_ERR) 3441 skge_error_irq(hw); 3442 out: 3443 skge_write32(hw, B0_IMSK, hw->intr_mask); 3444 skge_read32(hw, B0_IMSK); 3445 spin_unlock(&hw->hw_lock); 3446 3447 return IRQ_RETVAL(handled); 3448 } 3449 3450 #ifdef CONFIG_NET_POLL_CONTROLLER 3451 static void skge_netpoll(struct net_device *dev) 3452 { 3453 struct skge_port *skge = netdev_priv(dev); 3454 3455 disable_irq(dev->irq); 3456 skge_intr(dev->irq, skge->hw); 3457 enable_irq(dev->irq); 3458 } 3459 #endif 3460 3461 static int skge_set_mac_address(struct net_device *dev, void *p) 3462 { 3463 struct skge_port *skge = netdev_priv(dev); 3464 struct skge_hw *hw = skge->hw; 3465 unsigned port = skge->port; 3466 const struct sockaddr *addr = p; 3467 u16 ctrl; 3468 3469 if (!is_valid_ether_addr(addr->sa_data)) 3470 return -EADDRNOTAVAIL; 3471 3472 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 3473 3474 if (!netif_running(dev)) { 3475 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); 3476 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); 3477 } else { 3478 /* disable Rx */ 3479 spin_lock_bh(&hw->phy_lock); 3480 ctrl = gma_read16(hw, port, GM_GP_CTRL); 3481 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA); 3482 3483 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN); 3484 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN); 3485 3486 if (is_genesis(hw)) 3487 xm_outaddr(hw, port, XM_SA, dev->dev_addr); 3488 else { 3489 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); 3490 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); 3491 } 3492 3493 gma_write16(hw, port, GM_GP_CTRL, ctrl); 3494 spin_unlock_bh(&hw->phy_lock); 3495 } 3496 3497 return 0; 3498 } 3499 3500 static const struct { 3501 u8 id; 3502 const char *name; 3503 } skge_chips[] = { 3504 { CHIP_ID_GENESIS, "Genesis" }, 3505 { CHIP_ID_YUKON, "Yukon" }, 3506 { CHIP_ID_YUKON_LITE, "Yukon-Lite"}, 3507 { CHIP_ID_YUKON_LP, "Yukon-LP"}, 3508 }; 3509 3510 static const char *skge_board_name(const struct skge_hw *hw) 3511 { 3512 int i; 3513 static char buf[16]; 3514 3515 for (i = 0; i < ARRAY_SIZE(skge_chips); i++) 3516 if (skge_chips[i].id == hw->chip_id) 3517 return skge_chips[i].name; 3518 3519 snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id); 3520 return buf; 3521 } 3522 3523 3524 /* 3525 * Setup the board data structure, but don't bring up 3526 * the port(s) 3527 */ 3528 static int skge_reset(struct skge_hw *hw) 3529 { 3530 u32 reg; 3531 u16 ctst, pci_status; 3532 u8 t8, mac_cfg, pmd_type; 3533 int i; 3534 3535 ctst = skge_read16(hw, B0_CTST); 3536 3537 /* do a SW reset */ 3538 skge_write8(hw, B0_CTST, CS_RST_SET); 3539 skge_write8(hw, B0_CTST, CS_RST_CLR); 3540 3541 /* clear PCI errors, if any */ 3542 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3543 skge_write8(hw, B2_TST_CTRL2, 0); 3544 3545 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status); 3546 pci_write_config_word(hw->pdev, PCI_STATUS, 3547 pci_status | PCI_STATUS_ERROR_BITS); 3548 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3549 skge_write8(hw, B0_CTST, CS_MRST_CLR); 3550 3551 /* restore CLK_RUN bits (for Yukon-Lite) */ 3552 skge_write16(hw, B0_CTST, 3553 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA)); 3554 3555 hw->chip_id = skge_read8(hw, B2_CHIP_ID); 3556 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf; 3557 pmd_type = skge_read8(hw, B2_PMD_TYP); 3558 hw->copper = (pmd_type == 'T' || pmd_type == '1'); 3559 3560 switch (hw->chip_id) { 3561 case CHIP_ID_GENESIS: 3562 #ifdef CONFIG_SKGE_GENESIS 3563 switch (hw->phy_type) { 3564 case SK_PHY_XMAC: 3565 hw->phy_addr = PHY_ADDR_XMAC; 3566 break; 3567 case SK_PHY_BCOM: 3568 hw->phy_addr = PHY_ADDR_BCOM; 3569 break; 3570 default: 3571 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n", 3572 hw->phy_type); 3573 return -EOPNOTSUPP; 3574 } 3575 break; 3576 #else 3577 dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n"); 3578 return -EOPNOTSUPP; 3579 #endif 3580 3581 case CHIP_ID_YUKON: 3582 case CHIP_ID_YUKON_LITE: 3583 case CHIP_ID_YUKON_LP: 3584 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S') 3585 hw->copper = 1; 3586 3587 hw->phy_addr = PHY_ADDR_MARV; 3588 break; 3589 3590 default: 3591 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n", 3592 hw->chip_id); 3593 return -EOPNOTSUPP; 3594 } 3595 3596 mac_cfg = skge_read8(hw, B2_MAC_CFG); 3597 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2; 3598 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4; 3599 3600 /* read the adapters RAM size */ 3601 t8 = skge_read8(hw, B2_E_0); 3602 if (is_genesis(hw)) { 3603 if (t8 == 3) { 3604 /* special case: 4 x 64k x 36, offset = 0x80000 */ 3605 hw->ram_size = 0x100000; 3606 hw->ram_offset = 0x80000; 3607 } else 3608 hw->ram_size = t8 * 512; 3609 } else if (t8 == 0) 3610 hw->ram_size = 0x20000; 3611 else 3612 hw->ram_size = t8 * 4096; 3613 3614 hw->intr_mask = IS_HW_ERR; 3615 3616 /* Use PHY IRQ for all but fiber based Genesis board */ 3617 if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)) 3618 hw->intr_mask |= IS_EXT_REG; 3619 3620 if (is_genesis(hw)) 3621 genesis_init(hw); 3622 else { 3623 /* switch power to VCC (WA for VAUX problem) */ 3624 skge_write8(hw, B0_POWER_CTRL, 3625 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); 3626 3627 /* avoid boards with stuck Hardware error bits */ 3628 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) && 3629 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) { 3630 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n"); 3631 hw->intr_mask &= ~IS_HW_ERR; 3632 } 3633 3634 /* Clear PHY COMA */ 3635 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); 3636 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®); 3637 reg &= ~PCI_PHY_COMA; 3638 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg); 3639 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); 3640 3641 3642 for (i = 0; i < hw->ports; i++) { 3643 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); 3644 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); 3645 } 3646 } 3647 3648 /* turn off hardware timer (unused) */ 3649 skge_write8(hw, B2_TI_CTRL, TIM_STOP); 3650 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); 3651 skge_write8(hw, B0_LED, LED_STAT_ON); 3652 3653 /* enable the Tx Arbiters */ 3654 for (i = 0; i < hw->ports; i++) 3655 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); 3656 3657 /* Initialize ram interface */ 3658 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR); 3659 3660 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53); 3661 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53); 3662 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53); 3663 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53); 3664 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53); 3665 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53); 3666 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53); 3667 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53); 3668 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53); 3669 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53); 3670 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53); 3671 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53); 3672 3673 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK); 3674 3675 /* Set interrupt moderation for Transmit only 3676 * Receive interrupts avoided by NAPI 3677 */ 3678 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F); 3679 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100)); 3680 skge_write32(hw, B2_IRQM_CTRL, TIM_START); 3681 3682 /* Leave irq disabled until first port is brought up. */ 3683 skge_write32(hw, B0_IMSK, 0); 3684 3685 for (i = 0; i < hw->ports; i++) { 3686 if (is_genesis(hw)) 3687 genesis_reset(hw, i); 3688 else 3689 yukon_reset(hw, i); 3690 } 3691 3692 return 0; 3693 } 3694 3695 3696 #ifdef CONFIG_SKGE_DEBUG 3697 3698 static struct dentry *skge_debug; 3699 3700 static int skge_debug_show(struct seq_file *seq, void *v) 3701 { 3702 struct net_device *dev = seq->private; 3703 const struct skge_port *skge = netdev_priv(dev); 3704 const struct skge_hw *hw = skge->hw; 3705 const struct skge_element *e; 3706 3707 if (!netif_running(dev)) 3708 return -ENETDOWN; 3709 3710 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC), 3711 skge_read32(hw, B0_IMSK)); 3712 3713 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring)); 3714 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) { 3715 const struct skge_tx_desc *t = e->desc; 3716 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n", 3717 t->control, t->dma_hi, t->dma_lo, t->status, 3718 t->csum_offs, t->csum_write, t->csum_start); 3719 } 3720 3721 seq_puts(seq, "\nRx Ring:\n"); 3722 for (e = skge->rx_ring.to_clean; ; e = e->next) { 3723 const struct skge_rx_desc *r = e->desc; 3724 3725 if (r->control & BMU_OWN) 3726 break; 3727 3728 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n", 3729 r->control, r->dma_hi, r->dma_lo, r->status, 3730 r->timestamp, r->csum1, r->csum1_start); 3731 } 3732 3733 return 0; 3734 } 3735 DEFINE_SHOW_ATTRIBUTE(skge_debug); 3736 3737 /* 3738 * Use network device events to create/remove/rename 3739 * debugfs file entries 3740 */ 3741 static int skge_device_event(struct notifier_block *unused, 3742 unsigned long event, void *ptr) 3743 { 3744 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 3745 struct skge_port *skge; 3746 struct dentry *d; 3747 3748 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug) 3749 goto done; 3750 3751 skge = netdev_priv(dev); 3752 switch (event) { 3753 case NETDEV_CHANGENAME: 3754 if (skge->debugfs) { 3755 d = debugfs_rename(skge_debug, skge->debugfs, 3756 skge_debug, dev->name); 3757 if (d) 3758 skge->debugfs = d; 3759 else { 3760 netdev_info(dev, "rename failed\n"); 3761 debugfs_remove(skge->debugfs); 3762 } 3763 } 3764 break; 3765 3766 case NETDEV_GOING_DOWN: 3767 if (skge->debugfs) { 3768 debugfs_remove(skge->debugfs); 3769 skge->debugfs = NULL; 3770 } 3771 break; 3772 3773 case NETDEV_UP: 3774 d = debugfs_create_file(dev->name, 0444, 3775 skge_debug, dev, 3776 &skge_debug_fops); 3777 if (!d || IS_ERR(d)) 3778 netdev_info(dev, "debugfs create failed\n"); 3779 else 3780 skge->debugfs = d; 3781 break; 3782 } 3783 3784 done: 3785 return NOTIFY_DONE; 3786 } 3787 3788 static struct notifier_block skge_notifier = { 3789 .notifier_call = skge_device_event, 3790 }; 3791 3792 3793 static __init void skge_debug_init(void) 3794 { 3795 struct dentry *ent; 3796 3797 ent = debugfs_create_dir("skge", NULL); 3798 if (!ent || IS_ERR(ent)) { 3799 pr_info("debugfs create directory failed\n"); 3800 return; 3801 } 3802 3803 skge_debug = ent; 3804 register_netdevice_notifier(&skge_notifier); 3805 } 3806 3807 static __exit void skge_debug_cleanup(void) 3808 { 3809 if (skge_debug) { 3810 unregister_netdevice_notifier(&skge_notifier); 3811 debugfs_remove(skge_debug); 3812 skge_debug = NULL; 3813 } 3814 } 3815 3816 #else 3817 #define skge_debug_init() 3818 #define skge_debug_cleanup() 3819 #endif 3820 3821 static const struct net_device_ops skge_netdev_ops = { 3822 .ndo_open = skge_up, 3823 .ndo_stop = skge_down, 3824 .ndo_start_xmit = skge_xmit_frame, 3825 .ndo_do_ioctl = skge_ioctl, 3826 .ndo_get_stats = skge_get_stats, 3827 .ndo_tx_timeout = skge_tx_timeout, 3828 .ndo_change_mtu = skge_change_mtu, 3829 .ndo_validate_addr = eth_validate_addr, 3830 .ndo_set_rx_mode = skge_set_multicast, 3831 .ndo_set_mac_address = skge_set_mac_address, 3832 #ifdef CONFIG_NET_POLL_CONTROLLER 3833 .ndo_poll_controller = skge_netpoll, 3834 #endif 3835 }; 3836 3837 3838 /* Initialize network device */ 3839 static struct net_device *skge_devinit(struct skge_hw *hw, int port, 3840 int highmem) 3841 { 3842 struct skge_port *skge; 3843 struct net_device *dev = alloc_etherdev(sizeof(*skge)); 3844 3845 if (!dev) 3846 return NULL; 3847 3848 SET_NETDEV_DEV(dev, &hw->pdev->dev); 3849 dev->netdev_ops = &skge_netdev_ops; 3850 dev->ethtool_ops = &skge_ethtool_ops; 3851 dev->watchdog_timeo = TX_WATCHDOG; 3852 dev->irq = hw->pdev->irq; 3853 3854 /* MTU range: 60 - 9000 */ 3855 dev->min_mtu = ETH_ZLEN; 3856 dev->max_mtu = ETH_JUMBO_MTU; 3857 3858 if (highmem) 3859 dev->features |= NETIF_F_HIGHDMA; 3860 3861 skge = netdev_priv(dev); 3862 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT); 3863 skge->netdev = dev; 3864 skge->hw = hw; 3865 skge->msg_enable = netif_msg_init(debug, default_msg); 3866 3867 skge->tx_ring.count = DEFAULT_TX_RING_SIZE; 3868 skge->rx_ring.count = DEFAULT_RX_RING_SIZE; 3869 3870 /* Auto speed and flow control */ 3871 skge->autoneg = AUTONEG_ENABLE; 3872 skge->flow_control = FLOW_MODE_SYM_OR_REM; 3873 skge->duplex = -1; 3874 skge->speed = -1; 3875 skge->advertising = skge_supported_modes(hw); 3876 3877 if (device_can_wakeup(&hw->pdev->dev)) { 3878 skge->wol = wol_supported(hw) & WAKE_MAGIC; 3879 device_set_wakeup_enable(&hw->pdev->dev, skge->wol); 3880 } 3881 3882 hw->dev[port] = dev; 3883 3884 skge->port = port; 3885 3886 /* Only used for Genesis XMAC */ 3887 if (is_genesis(hw)) 3888 timer_setup(&skge->link_timer, xm_link_timer, 0); 3889 else { 3890 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | 3891 NETIF_F_RXCSUM; 3892 dev->features |= dev->hw_features; 3893 } 3894 3895 /* read the mac address */ 3896 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN); 3897 3898 return dev; 3899 } 3900 3901 static void skge_show_addr(struct net_device *dev) 3902 { 3903 const struct skge_port *skge = netdev_priv(dev); 3904 3905 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr); 3906 } 3907 3908 static int only_32bit_dma; 3909 3910 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3911 { 3912 struct net_device *dev, *dev1; 3913 struct skge_hw *hw; 3914 int err, using_dac = 0; 3915 3916 err = pci_enable_device(pdev); 3917 if (err) { 3918 dev_err(&pdev->dev, "cannot enable PCI device\n"); 3919 goto err_out; 3920 } 3921 3922 err = pci_request_regions(pdev, DRV_NAME); 3923 if (err) { 3924 dev_err(&pdev->dev, "cannot obtain PCI resources\n"); 3925 goto err_out_disable_pdev; 3926 } 3927 3928 pci_set_master(pdev); 3929 3930 if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 3931 using_dac = 1; 3932 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); 3933 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) { 3934 using_dac = 0; 3935 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); 3936 } 3937 3938 if (err) { 3939 dev_err(&pdev->dev, "no usable DMA configuration\n"); 3940 goto err_out_free_regions; 3941 } 3942 3943 #ifdef __BIG_ENDIAN 3944 /* byte swap descriptors in hardware */ 3945 { 3946 u32 reg; 3947 3948 pci_read_config_dword(pdev, PCI_DEV_REG2, ®); 3949 reg |= PCI_REV_DESC; 3950 pci_write_config_dword(pdev, PCI_DEV_REG2, reg); 3951 } 3952 #endif 3953 3954 err = -ENOMEM; 3955 /* space for skge@pci:0000:04:00.0 */ 3956 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:") 3957 + strlen(pci_name(pdev)) + 1, GFP_KERNEL); 3958 if (!hw) 3959 goto err_out_free_regions; 3960 3961 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev)); 3962 3963 hw->pdev = pdev; 3964 spin_lock_init(&hw->hw_lock); 3965 spin_lock_init(&hw->phy_lock); 3966 tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw); 3967 3968 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); 3969 if (!hw->regs) { 3970 dev_err(&pdev->dev, "cannot map device registers\n"); 3971 goto err_out_free_hw; 3972 } 3973 3974 err = skge_reset(hw); 3975 if (err) 3976 goto err_out_iounmap; 3977 3978 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n", 3979 DRV_VERSION, 3980 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq, 3981 skge_board_name(hw), hw->chip_rev); 3982 3983 dev = skge_devinit(hw, 0, using_dac); 3984 if (!dev) { 3985 err = -ENOMEM; 3986 goto err_out_led_off; 3987 } 3988 3989 /* Some motherboards are broken and has zero in ROM. */ 3990 if (!is_valid_ether_addr(dev->dev_addr)) 3991 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n"); 3992 3993 err = register_netdev(dev); 3994 if (err) { 3995 dev_err(&pdev->dev, "cannot register net device\n"); 3996 goto err_out_free_netdev; 3997 } 3998 3999 skge_show_addr(dev); 4000 4001 if (hw->ports > 1) { 4002 dev1 = skge_devinit(hw, 1, using_dac); 4003 if (!dev1) { 4004 err = -ENOMEM; 4005 goto err_out_unregister; 4006 } 4007 4008 err = register_netdev(dev1); 4009 if (err) { 4010 dev_err(&pdev->dev, "cannot register second net device\n"); 4011 goto err_out_free_dev1; 4012 } 4013 4014 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, 4015 hw->irq_name, hw); 4016 if (err) { 4017 dev_err(&pdev->dev, "cannot assign irq %d\n", 4018 pdev->irq); 4019 goto err_out_unregister_dev1; 4020 } 4021 4022 skge_show_addr(dev1); 4023 } 4024 pci_set_drvdata(pdev, hw); 4025 4026 return 0; 4027 4028 err_out_unregister_dev1: 4029 unregister_netdev(dev1); 4030 err_out_free_dev1: 4031 free_netdev(dev1); 4032 err_out_unregister: 4033 unregister_netdev(dev); 4034 err_out_free_netdev: 4035 free_netdev(dev); 4036 err_out_led_off: 4037 skge_write16(hw, B0_LED, LED_STAT_OFF); 4038 err_out_iounmap: 4039 iounmap(hw->regs); 4040 err_out_free_hw: 4041 kfree(hw); 4042 err_out_free_regions: 4043 pci_release_regions(pdev); 4044 err_out_disable_pdev: 4045 pci_disable_device(pdev); 4046 err_out: 4047 return err; 4048 } 4049 4050 static void skge_remove(struct pci_dev *pdev) 4051 { 4052 struct skge_hw *hw = pci_get_drvdata(pdev); 4053 struct net_device *dev0, *dev1; 4054 4055 if (!hw) 4056 return; 4057 4058 dev1 = hw->dev[1]; 4059 if (dev1) 4060 unregister_netdev(dev1); 4061 dev0 = hw->dev[0]; 4062 unregister_netdev(dev0); 4063 4064 tasklet_kill(&hw->phy_task); 4065 4066 spin_lock_irq(&hw->hw_lock); 4067 hw->intr_mask = 0; 4068 4069 if (hw->ports > 1) { 4070 skge_write32(hw, B0_IMSK, 0); 4071 skge_read32(hw, B0_IMSK); 4072 } 4073 spin_unlock_irq(&hw->hw_lock); 4074 4075 skge_write16(hw, B0_LED, LED_STAT_OFF); 4076 skge_write8(hw, B0_CTST, CS_RST_SET); 4077 4078 if (hw->ports > 1) 4079 free_irq(pdev->irq, hw); 4080 pci_release_regions(pdev); 4081 pci_disable_device(pdev); 4082 if (dev1) 4083 free_netdev(dev1); 4084 free_netdev(dev0); 4085 4086 iounmap(hw->regs); 4087 kfree(hw); 4088 } 4089 4090 #ifdef CONFIG_PM_SLEEP 4091 static int skge_suspend(struct device *dev) 4092 { 4093 struct pci_dev *pdev = to_pci_dev(dev); 4094 struct skge_hw *hw = pci_get_drvdata(pdev); 4095 int i; 4096 4097 if (!hw) 4098 return 0; 4099 4100 for (i = 0; i < hw->ports; i++) { 4101 struct net_device *dev = hw->dev[i]; 4102 struct skge_port *skge = netdev_priv(dev); 4103 4104 if (netif_running(dev)) 4105 skge_down(dev); 4106 4107 if (skge->wol) 4108 skge_wol_init(skge); 4109 } 4110 4111 skge_write32(hw, B0_IMSK, 0); 4112 4113 return 0; 4114 } 4115 4116 static int skge_resume(struct device *dev) 4117 { 4118 struct pci_dev *pdev = to_pci_dev(dev); 4119 struct skge_hw *hw = pci_get_drvdata(pdev); 4120 int i, err; 4121 4122 if (!hw) 4123 return 0; 4124 4125 err = skge_reset(hw); 4126 if (err) 4127 goto out; 4128 4129 for (i = 0; i < hw->ports; i++) { 4130 struct net_device *dev = hw->dev[i]; 4131 4132 if (netif_running(dev)) { 4133 err = skge_up(dev); 4134 4135 if (err) { 4136 netdev_err(dev, "could not up: %d\n", err); 4137 dev_close(dev); 4138 goto out; 4139 } 4140 } 4141 } 4142 out: 4143 return err; 4144 } 4145 4146 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume); 4147 #define SKGE_PM_OPS (&skge_pm_ops) 4148 4149 #else 4150 4151 #define SKGE_PM_OPS NULL 4152 #endif /* CONFIG_PM_SLEEP */ 4153 4154 static void skge_shutdown(struct pci_dev *pdev) 4155 { 4156 struct skge_hw *hw = pci_get_drvdata(pdev); 4157 int i; 4158 4159 if (!hw) 4160 return; 4161 4162 for (i = 0; i < hw->ports; i++) { 4163 struct net_device *dev = hw->dev[i]; 4164 struct skge_port *skge = netdev_priv(dev); 4165 4166 if (skge->wol) 4167 skge_wol_init(skge); 4168 } 4169 4170 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev)); 4171 pci_set_power_state(pdev, PCI_D3hot); 4172 } 4173 4174 static struct pci_driver skge_driver = { 4175 .name = DRV_NAME, 4176 .id_table = skge_id_table, 4177 .probe = skge_probe, 4178 .remove = skge_remove, 4179 .shutdown = skge_shutdown, 4180 .driver.pm = SKGE_PM_OPS, 4181 }; 4182 4183 static const struct dmi_system_id skge_32bit_dma_boards[] = { 4184 { 4185 .ident = "Gigabyte nForce boards", 4186 .matches = { 4187 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"), 4188 DMI_MATCH(DMI_BOARD_NAME, "nForce"), 4189 }, 4190 }, 4191 { 4192 .ident = "ASUS P5NSLI", 4193 .matches = { 4194 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), 4195 DMI_MATCH(DMI_BOARD_NAME, "P5NSLI") 4196 }, 4197 }, 4198 { 4199 .ident = "FUJITSU SIEMENS A8NE-FM", 4200 .matches = { 4201 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."), 4202 DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM") 4203 }, 4204 }, 4205 {} 4206 }; 4207 4208 static int __init skge_init_module(void) 4209 { 4210 if (dmi_check_system(skge_32bit_dma_boards)) 4211 only_32bit_dma = 1; 4212 skge_debug_init(); 4213 return pci_register_driver(&skge_driver); 4214 } 4215 4216 static void __exit skge_cleanup_module(void) 4217 { 4218 pci_unregister_driver(&skge_driver); 4219 skge_debug_cleanup(); 4220 } 4221 4222 module_init(skge_init_module); 4223 module_exit(skge_cleanup_module); 4224