1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
4 * Ethernet adapters. Based on earlier sk98lin, e100 and
5 * FreeBSD if_sk drivers.
6 *
7 * This driver intentionally does not support all the features
8 * of the original driver such as link fail-over and link management because
9 * those should be done at higher levels.
10 *
11 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/in.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/ethtool.h>
23 #include <linux/pci.h>
24 #include <linux/if_vlan.h>
25 #include <linux/ip.h>
26 #include <linux/delay.h>
27 #include <linux/crc32.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/mii.h>
33 #include <linux/slab.h>
34 #include <linux/dmi.h>
35 #include <linux/prefetch.h>
36 #include <asm/irq.h>
37
38 #include "skge.h"
39
40 #define DRV_NAME "skge"
41 #define DRV_VERSION "1.14"
42
43 #define DEFAULT_TX_RING_SIZE 128
44 #define DEFAULT_RX_RING_SIZE 512
45 #define MAX_TX_RING_SIZE 1024
46 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
47 #define MAX_RX_RING_SIZE 4096
48 #define RX_COPY_THRESHOLD 128
49 #define RX_BUF_SIZE 1536
50 #define PHY_RETRIES 1000
51 #define ETH_JUMBO_MTU 9000
52 #define TX_WATCHDOG (5 * HZ)
53 #define BLINK_MS 250
54 #define LINK_HZ HZ
55
56 #define SKGE_EEPROM_MAGIC 0x9933aabb
57
58
59 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
60 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
61 MODULE_LICENSE("GPL");
62 MODULE_VERSION(DRV_VERSION);
63
64 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
65 NETIF_MSG_LINK | NETIF_MSG_IFUP |
66 NETIF_MSG_IFDOWN);
67
68 static int debug = -1; /* defaults above */
69 module_param(debug, int, 0);
70 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
71
72 static const struct pci_device_id skge_id_table[] = {
73 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) }, /* 3Com 3C940 */
74 { PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) }, /* 3Com 3C940B */
75 #ifdef CONFIG_SKGE_GENESIS
76 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
77 #endif
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
79 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) }, /* D-Link DGE-530T */
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) }, /* D-Link DGE-530T Rev C1 */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, /* CNet PowerG-2000 */
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) }, /* Linksys EG1064 v2 */
86 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
87 { 0 }
88 };
89 MODULE_DEVICE_TABLE(pci, skge_id_table);
90
91 static int skge_up(struct net_device *dev);
92 static int skge_down(struct net_device *dev);
93 static void skge_phy_reset(struct skge_port *skge);
94 static void skge_tx_clean(struct net_device *dev);
95 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
96 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
97 static void genesis_get_stats(struct skge_port *skge, u64 *data);
98 static void yukon_get_stats(struct skge_port *skge, u64 *data);
99 static void yukon_init(struct skge_hw *hw, int port);
100 static void genesis_mac_init(struct skge_hw *hw, int port);
101 static void genesis_link_up(struct skge_port *skge);
102 static void skge_set_multicast(struct net_device *dev);
103 static irqreturn_t skge_intr(int irq, void *dev_id);
104
105 /* Avoid conditionals by using array */
106 static const int txqaddr[] = { Q_XA1, Q_XA2 };
107 static const int rxqaddr[] = { Q_R1, Q_R2 };
108 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
109 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
110 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
111 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
112
is_genesis(const struct skge_hw * hw)113 static inline bool is_genesis(const struct skge_hw *hw)
114 {
115 #ifdef CONFIG_SKGE_GENESIS
116 return hw->chip_id == CHIP_ID_GENESIS;
117 #else
118 return false;
119 #endif
120 }
121
skge_get_regs_len(struct net_device * dev)122 static int skge_get_regs_len(struct net_device *dev)
123 {
124 return 0x4000;
125 }
126
127 /*
128 * Returns copy of whole control register region
129 * Note: skip RAM address register because accessing it will
130 * cause bus hangs!
131 */
skge_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)132 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
133 void *p)
134 {
135 const struct skge_port *skge = netdev_priv(dev);
136 const void __iomem *io = skge->hw->regs;
137
138 regs->version = 1;
139 memset(p, 0, regs->len);
140 memcpy_fromio(p, io, B3_RAM_ADDR);
141
142 if (regs->len > B3_RI_WTO_R1) {
143 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
144 regs->len - B3_RI_WTO_R1);
145 }
146 }
147
148 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
wol_supported(const struct skge_hw * hw)149 static u32 wol_supported(const struct skge_hw *hw)
150 {
151 if (is_genesis(hw))
152 return 0;
153
154 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
155 return 0;
156
157 return WAKE_MAGIC | WAKE_PHY;
158 }
159
skge_wol_init(struct skge_port * skge)160 static void skge_wol_init(struct skge_port *skge)
161 {
162 struct skge_hw *hw = skge->hw;
163 int port = skge->port;
164 u16 ctrl;
165
166 skge_write16(hw, B0_CTST, CS_RST_CLR);
167 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
168
169 /* Turn on Vaux */
170 skge_write8(hw, B0_POWER_CTRL,
171 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
172
173 /* WA code for COMA mode -- clear PHY reset */
174 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
175 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
176 u32 reg = skge_read32(hw, B2_GP_IO);
177 reg |= GP_DIR_9;
178 reg &= ~GP_IO_9;
179 skge_write32(hw, B2_GP_IO, reg);
180 }
181
182 skge_write32(hw, SK_REG(port, GPHY_CTRL),
183 GPC_DIS_SLEEP |
184 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
185 GPC_ANEG_1 | GPC_RST_SET);
186
187 skge_write32(hw, SK_REG(port, GPHY_CTRL),
188 GPC_DIS_SLEEP |
189 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
190 GPC_ANEG_1 | GPC_RST_CLR);
191
192 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
193
194 /* Force to 10/100 skge_reset will re-enable on resume */
195 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
196 (PHY_AN_100FULL | PHY_AN_100HALF |
197 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
198 /* no 1000 HD/FD */
199 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
200 gm_phy_write(hw, port, PHY_MARV_CTRL,
201 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
202 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
203
204
205 /* Set GMAC to no flow control and auto update for speed/duplex */
206 gma_write16(hw, port, GM_GP_CTRL,
207 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
208 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
209
210 /* Set WOL address */
211 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
212 skge->netdev->dev_addr, ETH_ALEN);
213
214 /* Turn on appropriate WOL control bits */
215 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
216 ctrl = 0;
217 if (skge->wol & WAKE_PHY)
218 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
219 else
220 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
221
222 if (skge->wol & WAKE_MAGIC)
223 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
224 else
225 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
226
227 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
228 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
229
230 /* block receiver */
231 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
232 }
233
skge_get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)234 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
235 {
236 struct skge_port *skge = netdev_priv(dev);
237
238 wol->supported = wol_supported(skge->hw);
239 wol->wolopts = skge->wol;
240 }
241
skge_set_wol(struct net_device * dev,struct ethtool_wolinfo * wol)242 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
243 {
244 struct skge_port *skge = netdev_priv(dev);
245 struct skge_hw *hw = skge->hw;
246
247 if ((wol->wolopts & ~wol_supported(hw)) ||
248 !device_can_wakeup(&hw->pdev->dev))
249 return -EOPNOTSUPP;
250
251 skge->wol = wol->wolopts;
252
253 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
254
255 return 0;
256 }
257
258 /* Determine supported/advertised modes based on hardware.
259 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
260 */
skge_supported_modes(const struct skge_hw * hw)261 static u32 skge_supported_modes(const struct skge_hw *hw)
262 {
263 u32 supported;
264
265 if (hw->copper) {
266 supported = (SUPPORTED_10baseT_Half |
267 SUPPORTED_10baseT_Full |
268 SUPPORTED_100baseT_Half |
269 SUPPORTED_100baseT_Full |
270 SUPPORTED_1000baseT_Half |
271 SUPPORTED_1000baseT_Full |
272 SUPPORTED_Autoneg |
273 SUPPORTED_TP);
274
275 if (is_genesis(hw))
276 supported &= ~(SUPPORTED_10baseT_Half |
277 SUPPORTED_10baseT_Full |
278 SUPPORTED_100baseT_Half |
279 SUPPORTED_100baseT_Full);
280
281 else if (hw->chip_id == CHIP_ID_YUKON)
282 supported &= ~SUPPORTED_1000baseT_Half;
283 } else
284 supported = (SUPPORTED_1000baseT_Full |
285 SUPPORTED_1000baseT_Half |
286 SUPPORTED_FIBRE |
287 SUPPORTED_Autoneg);
288
289 return supported;
290 }
291
skge_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)292 static int skge_get_link_ksettings(struct net_device *dev,
293 struct ethtool_link_ksettings *cmd)
294 {
295 struct skge_port *skge = netdev_priv(dev);
296 struct skge_hw *hw = skge->hw;
297 u32 supported, advertising;
298
299 supported = skge_supported_modes(hw);
300
301 if (hw->copper) {
302 cmd->base.port = PORT_TP;
303 cmd->base.phy_address = hw->phy_addr;
304 } else
305 cmd->base.port = PORT_FIBRE;
306
307 advertising = skge->advertising;
308 cmd->base.autoneg = skge->autoneg;
309 cmd->base.speed = skge->speed;
310 cmd->base.duplex = skge->duplex;
311
312 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
313 supported);
314 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
315 advertising);
316
317 return 0;
318 }
319
skge_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)320 static int skge_set_link_ksettings(struct net_device *dev,
321 const struct ethtool_link_ksettings *cmd)
322 {
323 struct skge_port *skge = netdev_priv(dev);
324 const struct skge_hw *hw = skge->hw;
325 u32 supported = skge_supported_modes(hw);
326 int err = 0;
327 u32 advertising;
328
329 ethtool_convert_link_mode_to_legacy_u32(&advertising,
330 cmd->link_modes.advertising);
331
332 if (cmd->base.autoneg == AUTONEG_ENABLE) {
333 advertising = supported;
334 skge->duplex = -1;
335 skge->speed = -1;
336 } else {
337 u32 setting;
338 u32 speed = cmd->base.speed;
339
340 switch (speed) {
341 case SPEED_1000:
342 if (cmd->base.duplex == DUPLEX_FULL)
343 setting = SUPPORTED_1000baseT_Full;
344 else if (cmd->base.duplex == DUPLEX_HALF)
345 setting = SUPPORTED_1000baseT_Half;
346 else
347 return -EINVAL;
348 break;
349 case SPEED_100:
350 if (cmd->base.duplex == DUPLEX_FULL)
351 setting = SUPPORTED_100baseT_Full;
352 else if (cmd->base.duplex == DUPLEX_HALF)
353 setting = SUPPORTED_100baseT_Half;
354 else
355 return -EINVAL;
356 break;
357
358 case SPEED_10:
359 if (cmd->base.duplex == DUPLEX_FULL)
360 setting = SUPPORTED_10baseT_Full;
361 else if (cmd->base.duplex == DUPLEX_HALF)
362 setting = SUPPORTED_10baseT_Half;
363 else
364 return -EINVAL;
365 break;
366 default:
367 return -EINVAL;
368 }
369
370 if ((setting & supported) == 0)
371 return -EINVAL;
372
373 skge->speed = speed;
374 skge->duplex = cmd->base.duplex;
375 }
376
377 skge->autoneg = cmd->base.autoneg;
378 skge->advertising = advertising;
379
380 if (netif_running(dev)) {
381 skge_down(dev);
382 err = skge_up(dev);
383 if (err) {
384 dev_close(dev);
385 return err;
386 }
387 }
388
389 return 0;
390 }
391
skge_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)392 static void skge_get_drvinfo(struct net_device *dev,
393 struct ethtool_drvinfo *info)
394 {
395 struct skge_port *skge = netdev_priv(dev);
396
397 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
398 strscpy(info->version, DRV_VERSION, sizeof(info->version));
399 strscpy(info->bus_info, pci_name(skge->hw->pdev),
400 sizeof(info->bus_info));
401 }
402
403 static const struct skge_stat {
404 char name[ETH_GSTRING_LEN];
405 u16 xmac_offset;
406 u16 gma_offset;
407 } skge_stats[] = {
408 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
409 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
410
411 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
412 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
413 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
414 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
415 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
416 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
417 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
418 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
419
420 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
421 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
422 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
423 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
424 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
425 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
426
427 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
428 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
429 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
430 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
431 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
432 };
433
skge_get_sset_count(struct net_device * dev,int sset)434 static int skge_get_sset_count(struct net_device *dev, int sset)
435 {
436 switch (sset) {
437 case ETH_SS_STATS:
438 return ARRAY_SIZE(skge_stats);
439 default:
440 return -EOPNOTSUPP;
441 }
442 }
443
skge_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)444 static void skge_get_ethtool_stats(struct net_device *dev,
445 struct ethtool_stats *stats, u64 *data)
446 {
447 struct skge_port *skge = netdev_priv(dev);
448
449 if (is_genesis(skge->hw))
450 genesis_get_stats(skge, data);
451 else
452 yukon_get_stats(skge, data);
453 }
454
455 /* Use hardware MIB variables for critical path statistics and
456 * transmit feedback not reported at interrupt.
457 * Other errors are accounted for in interrupt handler.
458 */
skge_get_stats(struct net_device * dev)459 static struct net_device_stats *skge_get_stats(struct net_device *dev)
460 {
461 struct skge_port *skge = netdev_priv(dev);
462 u64 data[ARRAY_SIZE(skge_stats)];
463
464 if (is_genesis(skge->hw))
465 genesis_get_stats(skge, data);
466 else
467 yukon_get_stats(skge, data);
468
469 dev->stats.tx_bytes = data[0];
470 dev->stats.rx_bytes = data[1];
471 dev->stats.tx_packets = data[2] + data[4] + data[6];
472 dev->stats.rx_packets = data[3] + data[5] + data[7];
473 dev->stats.multicast = data[3] + data[5];
474 dev->stats.collisions = data[10];
475 dev->stats.tx_aborted_errors = data[12];
476
477 return &dev->stats;
478 }
479
skge_get_strings(struct net_device * dev,u32 stringset,u8 * data)480 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
481 {
482 int i;
483
484 switch (stringset) {
485 case ETH_SS_STATS:
486 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
487 memcpy(data + i * ETH_GSTRING_LEN,
488 skge_stats[i].name, ETH_GSTRING_LEN);
489 break;
490 }
491 }
492
skge_get_ring_param(struct net_device * dev,struct ethtool_ringparam * p,struct kernel_ethtool_ringparam * kernel_p,struct netlink_ext_ack * extack)493 static void skge_get_ring_param(struct net_device *dev,
494 struct ethtool_ringparam *p,
495 struct kernel_ethtool_ringparam *kernel_p,
496 struct netlink_ext_ack *extack)
497 {
498 struct skge_port *skge = netdev_priv(dev);
499
500 p->rx_max_pending = MAX_RX_RING_SIZE;
501 p->tx_max_pending = MAX_TX_RING_SIZE;
502
503 p->rx_pending = skge->rx_ring.count;
504 p->tx_pending = skge->tx_ring.count;
505 }
506
skge_set_ring_param(struct net_device * dev,struct ethtool_ringparam * p,struct kernel_ethtool_ringparam * kernel_p,struct netlink_ext_ack * extack)507 static int skge_set_ring_param(struct net_device *dev,
508 struct ethtool_ringparam *p,
509 struct kernel_ethtool_ringparam *kernel_p,
510 struct netlink_ext_ack *extack)
511 {
512 struct skge_port *skge = netdev_priv(dev);
513 int err = 0;
514
515 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
516 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
517 return -EINVAL;
518
519 skge->rx_ring.count = p->rx_pending;
520 skge->tx_ring.count = p->tx_pending;
521
522 if (netif_running(dev)) {
523 skge_down(dev);
524 err = skge_up(dev);
525 if (err)
526 dev_close(dev);
527 }
528
529 return err;
530 }
531
skge_get_msglevel(struct net_device * netdev)532 static u32 skge_get_msglevel(struct net_device *netdev)
533 {
534 struct skge_port *skge = netdev_priv(netdev);
535 return skge->msg_enable;
536 }
537
skge_set_msglevel(struct net_device * netdev,u32 value)538 static void skge_set_msglevel(struct net_device *netdev, u32 value)
539 {
540 struct skge_port *skge = netdev_priv(netdev);
541 skge->msg_enable = value;
542 }
543
skge_nway_reset(struct net_device * dev)544 static int skge_nway_reset(struct net_device *dev)
545 {
546 struct skge_port *skge = netdev_priv(dev);
547
548 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
549 return -EINVAL;
550
551 skge_phy_reset(skge);
552 return 0;
553 }
554
skge_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * ecmd)555 static void skge_get_pauseparam(struct net_device *dev,
556 struct ethtool_pauseparam *ecmd)
557 {
558 struct skge_port *skge = netdev_priv(dev);
559
560 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
561 (skge->flow_control == FLOW_MODE_SYM_OR_REM));
562 ecmd->tx_pause = (ecmd->rx_pause ||
563 (skge->flow_control == FLOW_MODE_LOC_SEND));
564
565 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
566 }
567
skge_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * ecmd)568 static int skge_set_pauseparam(struct net_device *dev,
569 struct ethtool_pauseparam *ecmd)
570 {
571 struct skge_port *skge = netdev_priv(dev);
572 struct ethtool_pauseparam old;
573 int err = 0;
574
575 skge_get_pauseparam(dev, &old);
576
577 if (ecmd->autoneg != old.autoneg)
578 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
579 else {
580 if (ecmd->rx_pause && ecmd->tx_pause)
581 skge->flow_control = FLOW_MODE_SYMMETRIC;
582 else if (ecmd->rx_pause && !ecmd->tx_pause)
583 skge->flow_control = FLOW_MODE_SYM_OR_REM;
584 else if (!ecmd->rx_pause && ecmd->tx_pause)
585 skge->flow_control = FLOW_MODE_LOC_SEND;
586 else
587 skge->flow_control = FLOW_MODE_NONE;
588 }
589
590 if (netif_running(dev)) {
591 skge_down(dev);
592 err = skge_up(dev);
593 if (err) {
594 dev_close(dev);
595 return err;
596 }
597 }
598
599 return 0;
600 }
601
602 /* Chip internal frequency for clock calculations */
hwkhz(const struct skge_hw * hw)603 static inline u32 hwkhz(const struct skge_hw *hw)
604 {
605 return is_genesis(hw) ? 53125 : 78125;
606 }
607
608 /* Chip HZ to microseconds */
skge_clk2usec(const struct skge_hw * hw,u32 ticks)609 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
610 {
611 return (ticks * 1000) / hwkhz(hw);
612 }
613
614 /* Microseconds to chip HZ */
skge_usecs2clk(const struct skge_hw * hw,u32 usec)615 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
616 {
617 return hwkhz(hw) * usec / 1000;
618 }
619
skge_get_coalesce(struct net_device * dev,struct ethtool_coalesce * ecmd,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)620 static int skge_get_coalesce(struct net_device *dev,
621 struct ethtool_coalesce *ecmd,
622 struct kernel_ethtool_coalesce *kernel_coal,
623 struct netlink_ext_ack *extack)
624 {
625 struct skge_port *skge = netdev_priv(dev);
626 struct skge_hw *hw = skge->hw;
627 int port = skge->port;
628
629 ecmd->rx_coalesce_usecs = 0;
630 ecmd->tx_coalesce_usecs = 0;
631
632 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
633 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
634 u32 msk = skge_read32(hw, B2_IRQM_MSK);
635
636 if (msk & rxirqmask[port])
637 ecmd->rx_coalesce_usecs = delay;
638 if (msk & txirqmask[port])
639 ecmd->tx_coalesce_usecs = delay;
640 }
641
642 return 0;
643 }
644
645 /* Note: interrupt timer is per board, but can turn on/off per port */
skge_set_coalesce(struct net_device * dev,struct ethtool_coalesce * ecmd,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)646 static int skge_set_coalesce(struct net_device *dev,
647 struct ethtool_coalesce *ecmd,
648 struct kernel_ethtool_coalesce *kernel_coal,
649 struct netlink_ext_ack *extack)
650 {
651 struct skge_port *skge = netdev_priv(dev);
652 struct skge_hw *hw = skge->hw;
653 int port = skge->port;
654 u32 msk = skge_read32(hw, B2_IRQM_MSK);
655 u32 delay = 25;
656
657 if (ecmd->rx_coalesce_usecs == 0)
658 msk &= ~rxirqmask[port];
659 else if (ecmd->rx_coalesce_usecs < 25 ||
660 ecmd->rx_coalesce_usecs > 33333)
661 return -EINVAL;
662 else {
663 msk |= rxirqmask[port];
664 delay = ecmd->rx_coalesce_usecs;
665 }
666
667 if (ecmd->tx_coalesce_usecs == 0)
668 msk &= ~txirqmask[port];
669 else if (ecmd->tx_coalesce_usecs < 25 ||
670 ecmd->tx_coalesce_usecs > 33333)
671 return -EINVAL;
672 else {
673 msk |= txirqmask[port];
674 delay = min(delay, ecmd->rx_coalesce_usecs);
675 }
676
677 skge_write32(hw, B2_IRQM_MSK, msk);
678 if (msk == 0)
679 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
680 else {
681 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
682 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
683 }
684 return 0;
685 }
686
687 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
skge_led(struct skge_port * skge,enum led_mode mode)688 static void skge_led(struct skge_port *skge, enum led_mode mode)
689 {
690 struct skge_hw *hw = skge->hw;
691 int port = skge->port;
692
693 spin_lock_bh(&hw->phy_lock);
694 if (is_genesis(hw)) {
695 switch (mode) {
696 case LED_MODE_OFF:
697 if (hw->phy_type == SK_PHY_BCOM)
698 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
699 else {
700 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
701 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
702 }
703 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
704 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
705 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
706 break;
707
708 case LED_MODE_ON:
709 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
710 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
711
712 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
713 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
714
715 break;
716
717 case LED_MODE_TST:
718 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
719 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
720 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
721
722 if (hw->phy_type == SK_PHY_BCOM)
723 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
724 else {
725 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
726 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
727 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
728 }
729
730 }
731 } else {
732 switch (mode) {
733 case LED_MODE_OFF:
734 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
735 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
736 PHY_M_LED_MO_DUP(MO_LED_OFF) |
737 PHY_M_LED_MO_10(MO_LED_OFF) |
738 PHY_M_LED_MO_100(MO_LED_OFF) |
739 PHY_M_LED_MO_1000(MO_LED_OFF) |
740 PHY_M_LED_MO_RX(MO_LED_OFF));
741 break;
742 case LED_MODE_ON:
743 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
744 PHY_M_LED_PULS_DUR(PULS_170MS) |
745 PHY_M_LED_BLINK_RT(BLINK_84MS) |
746 PHY_M_LEDC_TX_CTRL |
747 PHY_M_LEDC_DP_CTRL);
748
749 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
750 PHY_M_LED_MO_RX(MO_LED_OFF) |
751 (skge->speed == SPEED_100 ?
752 PHY_M_LED_MO_100(MO_LED_ON) : 0));
753 break;
754 case LED_MODE_TST:
755 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
756 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
757 PHY_M_LED_MO_DUP(MO_LED_ON) |
758 PHY_M_LED_MO_10(MO_LED_ON) |
759 PHY_M_LED_MO_100(MO_LED_ON) |
760 PHY_M_LED_MO_1000(MO_LED_ON) |
761 PHY_M_LED_MO_RX(MO_LED_ON));
762 }
763 }
764 spin_unlock_bh(&hw->phy_lock);
765 }
766
767 /* blink LED's for finding board */
skge_set_phys_id(struct net_device * dev,enum ethtool_phys_id_state state)768 static int skge_set_phys_id(struct net_device *dev,
769 enum ethtool_phys_id_state state)
770 {
771 struct skge_port *skge = netdev_priv(dev);
772
773 switch (state) {
774 case ETHTOOL_ID_ACTIVE:
775 return 2; /* cycle on/off twice per second */
776
777 case ETHTOOL_ID_ON:
778 skge_led(skge, LED_MODE_TST);
779 break;
780
781 case ETHTOOL_ID_OFF:
782 skge_led(skge, LED_MODE_OFF);
783 break;
784
785 case ETHTOOL_ID_INACTIVE:
786 /* back to regular LED state */
787 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
788 }
789
790 return 0;
791 }
792
skge_get_eeprom_len(struct net_device * dev)793 static int skge_get_eeprom_len(struct net_device *dev)
794 {
795 struct skge_port *skge = netdev_priv(dev);
796 u32 reg2;
797
798 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, ®2);
799 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
800 }
801
skge_vpd_read(struct pci_dev * pdev,int cap,u16 offset)802 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
803 {
804 u32 val;
805
806 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
807
808 do {
809 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
810 } while (!(offset & PCI_VPD_ADDR_F));
811
812 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
813 return val;
814 }
815
skge_vpd_write(struct pci_dev * pdev,int cap,u16 offset,u32 val)816 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
817 {
818 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
819 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
820 offset | PCI_VPD_ADDR_F);
821
822 do {
823 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
824 } while (offset & PCI_VPD_ADDR_F);
825 }
826
skge_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)827 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
828 u8 *data)
829 {
830 struct skge_port *skge = netdev_priv(dev);
831 struct pci_dev *pdev = skge->hw->pdev;
832 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
833 int length = eeprom->len;
834 u16 offset = eeprom->offset;
835
836 if (!cap)
837 return -EINVAL;
838
839 eeprom->magic = SKGE_EEPROM_MAGIC;
840
841 while (length > 0) {
842 u32 val = skge_vpd_read(pdev, cap, offset);
843 int n = min_t(int, length, sizeof(val));
844
845 memcpy(data, &val, n);
846 length -= n;
847 data += n;
848 offset += n;
849 }
850 return 0;
851 }
852
skge_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)853 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
854 u8 *data)
855 {
856 struct skge_port *skge = netdev_priv(dev);
857 struct pci_dev *pdev = skge->hw->pdev;
858 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
859 int length = eeprom->len;
860 u16 offset = eeprom->offset;
861
862 if (!cap)
863 return -EINVAL;
864
865 if (eeprom->magic != SKGE_EEPROM_MAGIC)
866 return -EINVAL;
867
868 while (length > 0) {
869 u32 val;
870 int n = min_t(int, length, sizeof(val));
871
872 if (n < sizeof(val))
873 val = skge_vpd_read(pdev, cap, offset);
874 memcpy(&val, data, n);
875
876 skge_vpd_write(pdev, cap, offset, val);
877
878 length -= n;
879 data += n;
880 offset += n;
881 }
882 return 0;
883 }
884
885 static const struct ethtool_ops skge_ethtool_ops = {
886 .supported_coalesce_params = ETHTOOL_COALESCE_USECS,
887 .get_drvinfo = skge_get_drvinfo,
888 .get_regs_len = skge_get_regs_len,
889 .get_regs = skge_get_regs,
890 .get_wol = skge_get_wol,
891 .set_wol = skge_set_wol,
892 .get_msglevel = skge_get_msglevel,
893 .set_msglevel = skge_set_msglevel,
894 .nway_reset = skge_nway_reset,
895 .get_link = ethtool_op_get_link,
896 .get_eeprom_len = skge_get_eeprom_len,
897 .get_eeprom = skge_get_eeprom,
898 .set_eeprom = skge_set_eeprom,
899 .get_ringparam = skge_get_ring_param,
900 .set_ringparam = skge_set_ring_param,
901 .get_pauseparam = skge_get_pauseparam,
902 .set_pauseparam = skge_set_pauseparam,
903 .get_coalesce = skge_get_coalesce,
904 .set_coalesce = skge_set_coalesce,
905 .get_strings = skge_get_strings,
906 .set_phys_id = skge_set_phys_id,
907 .get_sset_count = skge_get_sset_count,
908 .get_ethtool_stats = skge_get_ethtool_stats,
909 .get_link_ksettings = skge_get_link_ksettings,
910 .set_link_ksettings = skge_set_link_ksettings,
911 };
912
913 /*
914 * Allocate ring elements and chain them together
915 * One-to-one association of board descriptors with ring elements
916 */
skge_ring_alloc(struct skge_ring * ring,void * vaddr,u32 base)917 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
918 {
919 struct skge_tx_desc *d;
920 struct skge_element *e;
921 int i;
922
923 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
924 if (!ring->start)
925 return -ENOMEM;
926
927 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
928 e->desc = d;
929 if (i == ring->count - 1) {
930 e->next = ring->start;
931 d->next_offset = base;
932 } else {
933 e->next = e + 1;
934 d->next_offset = base + (i+1) * sizeof(*d);
935 }
936 }
937 ring->to_use = ring->to_clean = ring->start;
938
939 return 0;
940 }
941
942 /* Allocate and setup a new buffer for receiving */
skge_rx_setup(struct skge_port * skge,struct skge_element * e,struct sk_buff * skb,unsigned int bufsize)943 static int skge_rx_setup(struct skge_port *skge, struct skge_element *e,
944 struct sk_buff *skb, unsigned int bufsize)
945 {
946 struct skge_rx_desc *rd = e->desc;
947 dma_addr_t map;
948
949 map = dma_map_single(&skge->hw->pdev->dev, skb->data, bufsize,
950 DMA_FROM_DEVICE);
951
952 if (dma_mapping_error(&skge->hw->pdev->dev, map))
953 return -1;
954
955 rd->dma_lo = lower_32_bits(map);
956 rd->dma_hi = upper_32_bits(map);
957 e->skb = skb;
958 rd->csum1_start = ETH_HLEN;
959 rd->csum2_start = ETH_HLEN;
960 rd->csum1 = 0;
961 rd->csum2 = 0;
962
963 wmb();
964
965 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
966 dma_unmap_addr_set(e, mapaddr, map);
967 dma_unmap_len_set(e, maplen, bufsize);
968 return 0;
969 }
970
971 /* Resume receiving using existing skb,
972 * Note: DMA address is not changed by chip.
973 * MTU not changed while receiver active.
974 */
skge_rx_reuse(struct skge_element * e,unsigned int size)975 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
976 {
977 struct skge_rx_desc *rd = e->desc;
978
979 rd->csum2 = 0;
980 rd->csum2_start = ETH_HLEN;
981
982 wmb();
983
984 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
985 }
986
987
988 /* Free all buffers in receive ring, assumes receiver stopped */
skge_rx_clean(struct skge_port * skge)989 static void skge_rx_clean(struct skge_port *skge)
990 {
991 struct skge_hw *hw = skge->hw;
992 struct skge_ring *ring = &skge->rx_ring;
993 struct skge_element *e;
994
995 e = ring->start;
996 do {
997 struct skge_rx_desc *rd = e->desc;
998 rd->control = 0;
999 if (e->skb) {
1000 dma_unmap_single(&hw->pdev->dev,
1001 dma_unmap_addr(e, mapaddr),
1002 dma_unmap_len(e, maplen),
1003 DMA_FROM_DEVICE);
1004 dev_kfree_skb(e->skb);
1005 e->skb = NULL;
1006 }
1007 } while ((e = e->next) != ring->start);
1008 }
1009
1010
1011 /* Allocate buffers for receive ring
1012 * For receive: to_clean is next received frame.
1013 */
skge_rx_fill(struct net_device * dev)1014 static int skge_rx_fill(struct net_device *dev)
1015 {
1016 struct skge_port *skge = netdev_priv(dev);
1017 struct skge_ring *ring = &skge->rx_ring;
1018 struct skge_element *e;
1019
1020 e = ring->start;
1021 do {
1022 struct sk_buff *skb;
1023
1024 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1025 GFP_KERNEL);
1026 if (!skb)
1027 return -ENOMEM;
1028
1029 skb_reserve(skb, NET_IP_ALIGN);
1030 if (skge_rx_setup(skge, e, skb, skge->rx_buf_size) < 0) {
1031 dev_kfree_skb(skb);
1032 return -EIO;
1033 }
1034 } while ((e = e->next) != ring->start);
1035
1036 ring->to_clean = ring->start;
1037 return 0;
1038 }
1039
skge_pause(enum pause_status status)1040 static const char *skge_pause(enum pause_status status)
1041 {
1042 switch (status) {
1043 case FLOW_STAT_NONE:
1044 return "none";
1045 case FLOW_STAT_REM_SEND:
1046 return "rx only";
1047 case FLOW_STAT_LOC_SEND:
1048 return "tx_only";
1049 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1050 return "both";
1051 default:
1052 return "indeterminated";
1053 }
1054 }
1055
1056
skge_link_up(struct skge_port * skge)1057 static void skge_link_up(struct skge_port *skge)
1058 {
1059 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1060 LED_BLK_OFF|LED_SYNC_OFF|LED_REG_ON);
1061
1062 netif_carrier_on(skge->netdev);
1063 netif_wake_queue(skge->netdev);
1064
1065 netif_info(skge, link, skge->netdev,
1066 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1067 skge->speed,
1068 skge->duplex == DUPLEX_FULL ? "full" : "half",
1069 skge_pause(skge->flow_status));
1070 }
1071
skge_link_down(struct skge_port * skge)1072 static void skge_link_down(struct skge_port *skge)
1073 {
1074 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
1075 netif_carrier_off(skge->netdev);
1076 netif_stop_queue(skge->netdev);
1077
1078 netif_info(skge, link, skge->netdev, "Link is down\n");
1079 }
1080
xm_link_down(struct skge_hw * hw,int port)1081 static void xm_link_down(struct skge_hw *hw, int port)
1082 {
1083 struct net_device *dev = hw->dev[port];
1084 struct skge_port *skge = netdev_priv(dev);
1085
1086 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1087
1088 if (netif_carrier_ok(dev))
1089 skge_link_down(skge);
1090 }
1091
__xm_phy_read(struct skge_hw * hw,int port,u16 reg,u16 * val)1092 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1093 {
1094 int i;
1095
1096 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1097 *val = xm_read16(hw, port, XM_PHY_DATA);
1098
1099 if (hw->phy_type == SK_PHY_XMAC)
1100 goto ready;
1101
1102 for (i = 0; i < PHY_RETRIES; i++) {
1103 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1104 goto ready;
1105 udelay(1);
1106 }
1107
1108 return -ETIMEDOUT;
1109 ready:
1110 *val = xm_read16(hw, port, XM_PHY_DATA);
1111
1112 return 0;
1113 }
1114
xm_phy_read(struct skge_hw * hw,int port,u16 reg)1115 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1116 {
1117 u16 v = 0;
1118 if (__xm_phy_read(hw, port, reg, &v))
1119 pr_warn("%s: phy read timed out\n", hw->dev[port]->name);
1120 return v;
1121 }
1122
xm_phy_write(struct skge_hw * hw,int port,u16 reg,u16 val)1123 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1124 {
1125 int i;
1126
1127 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1128 for (i = 0; i < PHY_RETRIES; i++) {
1129 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1130 goto ready;
1131 udelay(1);
1132 }
1133 return -EIO;
1134
1135 ready:
1136 xm_write16(hw, port, XM_PHY_DATA, val);
1137 for (i = 0; i < PHY_RETRIES; i++) {
1138 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1139 return 0;
1140 udelay(1);
1141 }
1142 return -ETIMEDOUT;
1143 }
1144
genesis_init(struct skge_hw * hw)1145 static void genesis_init(struct skge_hw *hw)
1146 {
1147 /* set blink source counter */
1148 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1149 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1150
1151 /* configure mac arbiter */
1152 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1153
1154 /* configure mac arbiter timeout values */
1155 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1156 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1157 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1158 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1159
1160 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1161 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1162 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1163 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1164
1165 /* configure packet arbiter timeout */
1166 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1167 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1168 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1169 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1170 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1171 }
1172
genesis_reset(struct skge_hw * hw,int port)1173 static void genesis_reset(struct skge_hw *hw, int port)
1174 {
1175 static const u8 zero[8] = { 0 };
1176 u32 reg;
1177
1178 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1179
1180 /* reset the statistics module */
1181 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1182 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1183 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1184 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1185 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1186
1187 /* disable Broadcom PHY IRQ */
1188 if (hw->phy_type == SK_PHY_BCOM)
1189 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1190
1191 xm_outhash(hw, port, XM_HSM, zero);
1192
1193 /* Flush TX and RX fifo */
1194 reg = xm_read32(hw, port, XM_MODE);
1195 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1196 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1197 }
1198
1199 /* Convert mode to MII values */
1200 static const u16 phy_pause_map[] = {
1201 [FLOW_MODE_NONE] = 0,
1202 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1203 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1204 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1205 };
1206
1207 /* special defines for FIBER (88E1011S only) */
1208 static const u16 fiber_pause_map[] = {
1209 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1210 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1211 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1212 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1213 };
1214
1215
1216 /* Check status of Broadcom phy link */
bcom_check_link(struct skge_hw * hw,int port)1217 static void bcom_check_link(struct skge_hw *hw, int port)
1218 {
1219 struct net_device *dev = hw->dev[port];
1220 struct skge_port *skge = netdev_priv(dev);
1221 u16 status;
1222
1223 /* read twice because of latch */
1224 xm_phy_read(hw, port, PHY_BCOM_STAT);
1225 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1226
1227 if ((status & PHY_ST_LSYNC) == 0) {
1228 xm_link_down(hw, port);
1229 return;
1230 }
1231
1232 if (skge->autoneg == AUTONEG_ENABLE) {
1233 u16 lpa, aux;
1234
1235 if (!(status & PHY_ST_AN_OVER))
1236 return;
1237
1238 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1239 if (lpa & PHY_B_AN_RF) {
1240 netdev_notice(dev, "remote fault\n");
1241 return;
1242 }
1243
1244 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1245
1246 /* Check Duplex mismatch */
1247 switch (aux & PHY_B_AS_AN_RES_MSK) {
1248 case PHY_B_RES_1000FD:
1249 skge->duplex = DUPLEX_FULL;
1250 break;
1251 case PHY_B_RES_1000HD:
1252 skge->duplex = DUPLEX_HALF;
1253 break;
1254 default:
1255 netdev_notice(dev, "duplex mismatch\n");
1256 return;
1257 }
1258
1259 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1260 switch (aux & PHY_B_AS_PAUSE_MSK) {
1261 case PHY_B_AS_PAUSE_MSK:
1262 skge->flow_status = FLOW_STAT_SYMMETRIC;
1263 break;
1264 case PHY_B_AS_PRR:
1265 skge->flow_status = FLOW_STAT_REM_SEND;
1266 break;
1267 case PHY_B_AS_PRT:
1268 skge->flow_status = FLOW_STAT_LOC_SEND;
1269 break;
1270 default:
1271 skge->flow_status = FLOW_STAT_NONE;
1272 }
1273 skge->speed = SPEED_1000;
1274 }
1275
1276 if (!netif_carrier_ok(dev))
1277 genesis_link_up(skge);
1278 }
1279
1280 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1281 * Phy on for 100 or 10Mbit operation
1282 */
bcom_phy_init(struct skge_port * skge)1283 static void bcom_phy_init(struct skge_port *skge)
1284 {
1285 struct skge_hw *hw = skge->hw;
1286 int port = skge->port;
1287 int i;
1288 u16 id1, r, ext, ctl;
1289
1290 /* magic workaround patterns for Broadcom */
1291 static const struct {
1292 u16 reg;
1293 u16 val;
1294 } A1hack[] = {
1295 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1296 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1297 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1298 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1299 }, C0hack[] = {
1300 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1301 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1302 };
1303
1304 /* read Id from external PHY (all have the same address) */
1305 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1306
1307 /* Optimize MDIO transfer by suppressing preamble. */
1308 r = xm_read16(hw, port, XM_MMU_CMD);
1309 r |= XM_MMU_NO_PRE;
1310 xm_write16(hw, port, XM_MMU_CMD, r);
1311
1312 switch (id1) {
1313 case PHY_BCOM_ID1_C0:
1314 /*
1315 * Workaround BCOM Errata for the C0 type.
1316 * Write magic patterns to reserved registers.
1317 */
1318 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1319 xm_phy_write(hw, port,
1320 C0hack[i].reg, C0hack[i].val);
1321
1322 break;
1323 case PHY_BCOM_ID1_A1:
1324 /*
1325 * Workaround BCOM Errata for the A1 type.
1326 * Write magic patterns to reserved registers.
1327 */
1328 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1329 xm_phy_write(hw, port,
1330 A1hack[i].reg, A1hack[i].val);
1331 break;
1332 }
1333
1334 /*
1335 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1336 * Disable Power Management after reset.
1337 */
1338 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1339 r |= PHY_B_AC_DIS_PM;
1340 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1341
1342 /* Dummy read */
1343 xm_read16(hw, port, XM_ISRC);
1344
1345 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1346 ctl = PHY_CT_SP1000; /* always 1000mbit */
1347
1348 if (skge->autoneg == AUTONEG_ENABLE) {
1349 /*
1350 * Workaround BCOM Errata #1 for the C5 type.
1351 * 1000Base-T Link Acquisition Failure in Slave Mode
1352 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1353 */
1354 u16 adv = PHY_B_1000C_RD;
1355 if (skge->advertising & ADVERTISED_1000baseT_Half)
1356 adv |= PHY_B_1000C_AHD;
1357 if (skge->advertising & ADVERTISED_1000baseT_Full)
1358 adv |= PHY_B_1000C_AFD;
1359 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1360
1361 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1362 } else {
1363 if (skge->duplex == DUPLEX_FULL)
1364 ctl |= PHY_CT_DUP_MD;
1365 /* Force to slave */
1366 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1367 }
1368
1369 /* Set autonegotiation pause parameters */
1370 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1371 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1372
1373 /* Handle Jumbo frames */
1374 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1375 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1376 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1377
1378 ext |= PHY_B_PEC_HIGH_LA;
1379
1380 }
1381
1382 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1383 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1384
1385 /* Use link status change interrupt */
1386 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1387 }
1388
xm_phy_init(struct skge_port * skge)1389 static void xm_phy_init(struct skge_port *skge)
1390 {
1391 struct skge_hw *hw = skge->hw;
1392 int port = skge->port;
1393 u16 ctrl = 0;
1394
1395 if (skge->autoneg == AUTONEG_ENABLE) {
1396 if (skge->advertising & ADVERTISED_1000baseT_Half)
1397 ctrl |= PHY_X_AN_HD;
1398 if (skge->advertising & ADVERTISED_1000baseT_Full)
1399 ctrl |= PHY_X_AN_FD;
1400
1401 ctrl |= fiber_pause_map[skge->flow_control];
1402
1403 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1404
1405 /* Restart Auto-negotiation */
1406 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1407 } else {
1408 /* Set DuplexMode in Config register */
1409 if (skge->duplex == DUPLEX_FULL)
1410 ctrl |= PHY_CT_DUP_MD;
1411 /*
1412 * Do NOT enable Auto-negotiation here. This would hold
1413 * the link down because no IDLEs are transmitted
1414 */
1415 }
1416
1417 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1418
1419 /* Poll PHY for status changes */
1420 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1421 }
1422
xm_check_link(struct net_device * dev)1423 static int xm_check_link(struct net_device *dev)
1424 {
1425 struct skge_port *skge = netdev_priv(dev);
1426 struct skge_hw *hw = skge->hw;
1427 int port = skge->port;
1428 u16 status;
1429
1430 /* read twice because of latch */
1431 xm_phy_read(hw, port, PHY_XMAC_STAT);
1432 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1433
1434 if ((status & PHY_ST_LSYNC) == 0) {
1435 xm_link_down(hw, port);
1436 return 0;
1437 }
1438
1439 if (skge->autoneg == AUTONEG_ENABLE) {
1440 u16 lpa, res;
1441
1442 if (!(status & PHY_ST_AN_OVER))
1443 return 0;
1444
1445 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1446 if (lpa & PHY_B_AN_RF) {
1447 netdev_notice(dev, "remote fault\n");
1448 return 0;
1449 }
1450
1451 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1452
1453 /* Check Duplex mismatch */
1454 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1455 case PHY_X_RS_FD:
1456 skge->duplex = DUPLEX_FULL;
1457 break;
1458 case PHY_X_RS_HD:
1459 skge->duplex = DUPLEX_HALF;
1460 break;
1461 default:
1462 netdev_notice(dev, "duplex mismatch\n");
1463 return 0;
1464 }
1465
1466 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1467 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1468 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1469 (lpa & PHY_X_P_SYM_MD))
1470 skge->flow_status = FLOW_STAT_SYMMETRIC;
1471 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1472 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1473 /* Enable PAUSE receive, disable PAUSE transmit */
1474 skge->flow_status = FLOW_STAT_REM_SEND;
1475 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1476 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1477 /* Disable PAUSE receive, enable PAUSE transmit */
1478 skge->flow_status = FLOW_STAT_LOC_SEND;
1479 else
1480 skge->flow_status = FLOW_STAT_NONE;
1481
1482 skge->speed = SPEED_1000;
1483 }
1484
1485 if (!netif_carrier_ok(dev))
1486 genesis_link_up(skge);
1487 return 1;
1488 }
1489
1490 /* Poll to check for link coming up.
1491 *
1492 * Since internal PHY is wired to a level triggered pin, can't
1493 * get an interrupt when carrier is detected, need to poll for
1494 * link coming up.
1495 */
xm_link_timer(struct timer_list * t)1496 static void xm_link_timer(struct timer_list *t)
1497 {
1498 struct skge_port *skge = from_timer(skge, t, link_timer);
1499 struct net_device *dev = skge->netdev;
1500 struct skge_hw *hw = skge->hw;
1501 int port = skge->port;
1502 int i;
1503 unsigned long flags;
1504
1505 if (!netif_running(dev))
1506 return;
1507
1508 spin_lock_irqsave(&hw->phy_lock, flags);
1509
1510 /*
1511 * Verify that the link by checking GPIO register three times.
1512 * This pin has the signal from the link_sync pin connected to it.
1513 */
1514 for (i = 0; i < 3; i++) {
1515 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1516 goto link_down;
1517 }
1518
1519 /* Re-enable interrupt to detect link down */
1520 if (xm_check_link(dev)) {
1521 u16 msk = xm_read16(hw, port, XM_IMSK);
1522 msk &= ~XM_IS_INP_ASS;
1523 xm_write16(hw, port, XM_IMSK, msk);
1524 xm_read16(hw, port, XM_ISRC);
1525 } else {
1526 link_down:
1527 mod_timer(&skge->link_timer,
1528 round_jiffies(jiffies + LINK_HZ));
1529 }
1530 spin_unlock_irqrestore(&hw->phy_lock, flags);
1531 }
1532
genesis_mac_init(struct skge_hw * hw,int port)1533 static void genesis_mac_init(struct skge_hw *hw, int port)
1534 {
1535 struct net_device *dev = hw->dev[port];
1536 struct skge_port *skge = netdev_priv(dev);
1537 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1538 int i;
1539 u32 r;
1540 static const u8 zero[6] = { 0 };
1541
1542 for (i = 0; i < 10; i++) {
1543 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1544 MFF_SET_MAC_RST);
1545 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1546 goto reset_ok;
1547 udelay(1);
1548 }
1549
1550 netdev_warn(dev, "genesis reset failed\n");
1551
1552 reset_ok:
1553 /* Unreset the XMAC. */
1554 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1555
1556 /*
1557 * Perform additional initialization for external PHYs,
1558 * namely for the 1000baseTX cards that use the XMAC's
1559 * GMII mode.
1560 */
1561 if (hw->phy_type != SK_PHY_XMAC) {
1562 /* Take external Phy out of reset */
1563 r = skge_read32(hw, B2_GP_IO);
1564 if (port == 0)
1565 r |= GP_DIR_0|GP_IO_0;
1566 else
1567 r |= GP_DIR_2|GP_IO_2;
1568
1569 skge_write32(hw, B2_GP_IO, r);
1570
1571 /* Enable GMII interface */
1572 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1573 }
1574
1575
1576 switch (hw->phy_type) {
1577 case SK_PHY_XMAC:
1578 xm_phy_init(skge);
1579 break;
1580 case SK_PHY_BCOM:
1581 bcom_phy_init(skge);
1582 bcom_check_link(hw, port);
1583 }
1584
1585 /* Set Station Address */
1586 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1587
1588 /* We don't use match addresses so clear */
1589 for (i = 1; i < 16; i++)
1590 xm_outaddr(hw, port, XM_EXM(i), zero);
1591
1592 /* Clear MIB counters */
1593 xm_write16(hw, port, XM_STAT_CMD,
1594 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1595 /* Clear two times according to Errata #3 */
1596 xm_write16(hw, port, XM_STAT_CMD,
1597 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1598
1599 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1600 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1601
1602 /* We don't need the FCS appended to the packet. */
1603 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1604 if (jumbo)
1605 r |= XM_RX_BIG_PK_OK;
1606
1607 if (skge->duplex == DUPLEX_HALF) {
1608 /*
1609 * If in manual half duplex mode the other side might be in
1610 * full duplex mode, so ignore if a carrier extension is not seen
1611 * on frames received
1612 */
1613 r |= XM_RX_DIS_CEXT;
1614 }
1615 xm_write16(hw, port, XM_RX_CMD, r);
1616
1617 /* We want short frames padded to 60 bytes. */
1618 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1619
1620 /* Increase threshold for jumbo frames on dual port */
1621 if (hw->ports > 1 && jumbo)
1622 xm_write16(hw, port, XM_TX_THR, 1020);
1623 else
1624 xm_write16(hw, port, XM_TX_THR, 512);
1625
1626 /*
1627 * Enable the reception of all error frames. This is
1628 * a necessary evil due to the design of the XMAC. The
1629 * XMAC's receive FIFO is only 8K in size, however jumbo
1630 * frames can be up to 9000 bytes in length. When bad
1631 * frame filtering is enabled, the XMAC's RX FIFO operates
1632 * in 'store and forward' mode. For this to work, the
1633 * entire frame has to fit into the FIFO, but that means
1634 * that jumbo frames larger than 8192 bytes will be
1635 * truncated. Disabling all bad frame filtering causes
1636 * the RX FIFO to operate in streaming mode, in which
1637 * case the XMAC will start transferring frames out of the
1638 * RX FIFO as soon as the FIFO threshold is reached.
1639 */
1640 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1641
1642
1643 /*
1644 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1645 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1646 * and 'Octets Rx OK Hi Cnt Ov'.
1647 */
1648 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1649
1650 /*
1651 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1652 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1653 * and 'Octets Tx OK Hi Cnt Ov'.
1654 */
1655 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1656
1657 /* Configure MAC arbiter */
1658 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1659
1660 /* configure timeout values */
1661 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1662 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1663 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1664 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1665
1666 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1667 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1668 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1669 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1670
1671 /* Configure Rx MAC FIFO */
1672 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1673 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1674 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1675
1676 /* Configure Tx MAC FIFO */
1677 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1678 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1679 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1680
1681 if (jumbo) {
1682 /* Enable frame flushing if jumbo frames used */
1683 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1684 } else {
1685 /* enable timeout timers if normal frames */
1686 skge_write16(hw, B3_PA_CTRL,
1687 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1688 }
1689 }
1690
genesis_stop(struct skge_port * skge)1691 static void genesis_stop(struct skge_port *skge)
1692 {
1693 struct skge_hw *hw = skge->hw;
1694 int port = skge->port;
1695 unsigned retries = 1000;
1696 u16 cmd;
1697
1698 /* Disable Tx and Rx */
1699 cmd = xm_read16(hw, port, XM_MMU_CMD);
1700 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1701 xm_write16(hw, port, XM_MMU_CMD, cmd);
1702
1703 genesis_reset(hw, port);
1704
1705 /* Clear Tx packet arbiter timeout IRQ */
1706 skge_write16(hw, B3_PA_CTRL,
1707 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1708
1709 /* Reset the MAC */
1710 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1711 do {
1712 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1713 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1714 break;
1715 } while (--retries > 0);
1716
1717 /* For external PHYs there must be special handling */
1718 if (hw->phy_type != SK_PHY_XMAC) {
1719 u32 reg = skge_read32(hw, B2_GP_IO);
1720 if (port == 0) {
1721 reg |= GP_DIR_0;
1722 reg &= ~GP_IO_0;
1723 } else {
1724 reg |= GP_DIR_2;
1725 reg &= ~GP_IO_2;
1726 }
1727 skge_write32(hw, B2_GP_IO, reg);
1728 skge_read32(hw, B2_GP_IO);
1729 }
1730
1731 xm_write16(hw, port, XM_MMU_CMD,
1732 xm_read16(hw, port, XM_MMU_CMD)
1733 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1734
1735 xm_read16(hw, port, XM_MMU_CMD);
1736 }
1737
1738
genesis_get_stats(struct skge_port * skge,u64 * data)1739 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1740 {
1741 struct skge_hw *hw = skge->hw;
1742 int port = skge->port;
1743 int i;
1744 unsigned long timeout = jiffies + HZ;
1745
1746 xm_write16(hw, port,
1747 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1748
1749 /* wait for update to complete */
1750 while (xm_read16(hw, port, XM_STAT_CMD)
1751 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1752 if (time_after(jiffies, timeout))
1753 break;
1754 udelay(10);
1755 }
1756
1757 /* special case for 64 bit octet counter */
1758 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1759 | xm_read32(hw, port, XM_TXO_OK_LO);
1760 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1761 | xm_read32(hw, port, XM_RXO_OK_LO);
1762
1763 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1764 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1765 }
1766
genesis_mac_intr(struct skge_hw * hw,int port)1767 static void genesis_mac_intr(struct skge_hw *hw, int port)
1768 {
1769 struct net_device *dev = hw->dev[port];
1770 struct skge_port *skge = netdev_priv(dev);
1771 u16 status = xm_read16(hw, port, XM_ISRC);
1772
1773 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1774 "mac interrupt status 0x%x\n", status);
1775
1776 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1777 xm_link_down(hw, port);
1778 mod_timer(&skge->link_timer, jiffies + 1);
1779 }
1780
1781 if (status & XM_IS_TXF_UR) {
1782 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1783 ++dev->stats.tx_fifo_errors;
1784 }
1785 }
1786
genesis_link_up(struct skge_port * skge)1787 static void genesis_link_up(struct skge_port *skge)
1788 {
1789 struct skge_hw *hw = skge->hw;
1790 int port = skge->port;
1791 u16 cmd, msk;
1792 u32 mode;
1793
1794 cmd = xm_read16(hw, port, XM_MMU_CMD);
1795
1796 /*
1797 * enabling pause frame reception is required for 1000BT
1798 * because the XMAC is not reset if the link is going down
1799 */
1800 if (skge->flow_status == FLOW_STAT_NONE ||
1801 skge->flow_status == FLOW_STAT_LOC_SEND)
1802 /* Disable Pause Frame Reception */
1803 cmd |= XM_MMU_IGN_PF;
1804 else
1805 /* Enable Pause Frame Reception */
1806 cmd &= ~XM_MMU_IGN_PF;
1807
1808 xm_write16(hw, port, XM_MMU_CMD, cmd);
1809
1810 mode = xm_read32(hw, port, XM_MODE);
1811 if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1812 skge->flow_status == FLOW_STAT_LOC_SEND) {
1813 /*
1814 * Configure Pause Frame Generation
1815 * Use internal and external Pause Frame Generation.
1816 * Sending pause frames is edge triggered.
1817 * Send a Pause frame with the maximum pause time if
1818 * internal oder external FIFO full condition occurs.
1819 * Send a zero pause time frame to re-start transmission.
1820 */
1821 /* XM_PAUSE_DA = '010000C28001' (default) */
1822 /* XM_MAC_PTIME = 0xffff (maximum) */
1823 /* remember this value is defined in big endian (!) */
1824 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1825
1826 mode |= XM_PAUSE_MODE;
1827 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1828 } else {
1829 /*
1830 * disable pause frame generation is required for 1000BT
1831 * because the XMAC is not reset if the link is going down
1832 */
1833 /* Disable Pause Mode in Mode Register */
1834 mode &= ~XM_PAUSE_MODE;
1835
1836 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1837 }
1838
1839 xm_write32(hw, port, XM_MODE, mode);
1840
1841 /* Turn on detection of Tx underrun */
1842 msk = xm_read16(hw, port, XM_IMSK);
1843 msk &= ~XM_IS_TXF_UR;
1844 xm_write16(hw, port, XM_IMSK, msk);
1845
1846 xm_read16(hw, port, XM_ISRC);
1847
1848 /* get MMU Command Reg. */
1849 cmd = xm_read16(hw, port, XM_MMU_CMD);
1850 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1851 cmd |= XM_MMU_GMII_FD;
1852
1853 /*
1854 * Workaround BCOM Errata (#10523) for all BCom Phys
1855 * Enable Power Management after link up
1856 */
1857 if (hw->phy_type == SK_PHY_BCOM) {
1858 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1859 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1860 & ~PHY_B_AC_DIS_PM);
1861 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1862 }
1863
1864 /* enable Rx/Tx */
1865 xm_write16(hw, port, XM_MMU_CMD,
1866 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1867 skge_link_up(skge);
1868 }
1869
1870
bcom_phy_intr(struct skge_port * skge)1871 static inline void bcom_phy_intr(struct skge_port *skge)
1872 {
1873 struct skge_hw *hw = skge->hw;
1874 int port = skge->port;
1875 u16 isrc;
1876
1877 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1878 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1879 "phy interrupt status 0x%x\n", isrc);
1880
1881 if (isrc & PHY_B_IS_PSE)
1882 pr_err("%s: uncorrectable pair swap error\n",
1883 hw->dev[port]->name);
1884
1885 /* Workaround BCom Errata:
1886 * enable and disable loopback mode if "NO HCD" occurs.
1887 */
1888 if (isrc & PHY_B_IS_NO_HDCL) {
1889 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1890 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1891 ctrl | PHY_CT_LOOP);
1892 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1893 ctrl & ~PHY_CT_LOOP);
1894 }
1895
1896 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1897 bcom_check_link(hw, port);
1898
1899 }
1900
gm_phy_write(struct skge_hw * hw,int port,u16 reg,u16 val)1901 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1902 {
1903 int i;
1904
1905 gma_write16(hw, port, GM_SMI_DATA, val);
1906 gma_write16(hw, port, GM_SMI_CTRL,
1907 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1908 for (i = 0; i < PHY_RETRIES; i++) {
1909 udelay(1);
1910
1911 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1912 return 0;
1913 }
1914
1915 pr_warn("%s: phy write timeout\n", hw->dev[port]->name);
1916 return -EIO;
1917 }
1918
__gm_phy_read(struct skge_hw * hw,int port,u16 reg,u16 * val)1919 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1920 {
1921 int i;
1922
1923 gma_write16(hw, port, GM_SMI_CTRL,
1924 GM_SMI_CT_PHY_AD(hw->phy_addr)
1925 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1926
1927 for (i = 0; i < PHY_RETRIES; i++) {
1928 udelay(1);
1929 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1930 goto ready;
1931 }
1932
1933 return -ETIMEDOUT;
1934 ready:
1935 *val = gma_read16(hw, port, GM_SMI_DATA);
1936 return 0;
1937 }
1938
gm_phy_read(struct skge_hw * hw,int port,u16 reg)1939 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1940 {
1941 u16 v = 0;
1942 if (__gm_phy_read(hw, port, reg, &v))
1943 pr_warn("%s: phy read timeout\n", hw->dev[port]->name);
1944 return v;
1945 }
1946
1947 /* Marvell Phy Initialization */
yukon_init(struct skge_hw * hw,int port)1948 static void yukon_init(struct skge_hw *hw, int port)
1949 {
1950 struct skge_port *skge = netdev_priv(hw->dev[port]);
1951 u16 ctrl, ct1000, adv;
1952
1953 if (skge->autoneg == AUTONEG_ENABLE) {
1954 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1955
1956 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1957 PHY_M_EC_MAC_S_MSK);
1958 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1959
1960 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1961
1962 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1963 }
1964
1965 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1966 if (skge->autoneg == AUTONEG_DISABLE)
1967 ctrl &= ~PHY_CT_ANE;
1968
1969 ctrl |= PHY_CT_RESET;
1970 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1971
1972 ctrl = 0;
1973 ct1000 = 0;
1974 adv = PHY_AN_CSMA;
1975
1976 if (skge->autoneg == AUTONEG_ENABLE) {
1977 if (hw->copper) {
1978 if (skge->advertising & ADVERTISED_1000baseT_Full)
1979 ct1000 |= PHY_M_1000C_AFD;
1980 if (skge->advertising & ADVERTISED_1000baseT_Half)
1981 ct1000 |= PHY_M_1000C_AHD;
1982 if (skge->advertising & ADVERTISED_100baseT_Full)
1983 adv |= PHY_M_AN_100_FD;
1984 if (skge->advertising & ADVERTISED_100baseT_Half)
1985 adv |= PHY_M_AN_100_HD;
1986 if (skge->advertising & ADVERTISED_10baseT_Full)
1987 adv |= PHY_M_AN_10_FD;
1988 if (skge->advertising & ADVERTISED_10baseT_Half)
1989 adv |= PHY_M_AN_10_HD;
1990
1991 /* Set Flow-control capabilities */
1992 adv |= phy_pause_map[skge->flow_control];
1993 } else {
1994 if (skge->advertising & ADVERTISED_1000baseT_Full)
1995 adv |= PHY_M_AN_1000X_AFD;
1996 if (skge->advertising & ADVERTISED_1000baseT_Half)
1997 adv |= PHY_M_AN_1000X_AHD;
1998
1999 adv |= fiber_pause_map[skge->flow_control];
2000 }
2001
2002 /* Restart Auto-negotiation */
2003 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
2004 } else {
2005 /* forced speed/duplex settings */
2006 ct1000 = PHY_M_1000C_MSE;
2007
2008 if (skge->duplex == DUPLEX_FULL)
2009 ctrl |= PHY_CT_DUP_MD;
2010
2011 switch (skge->speed) {
2012 case SPEED_1000:
2013 ctrl |= PHY_CT_SP1000;
2014 break;
2015 case SPEED_100:
2016 ctrl |= PHY_CT_SP100;
2017 break;
2018 }
2019
2020 ctrl |= PHY_CT_RESET;
2021 }
2022
2023 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2024
2025 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2026 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2027
2028 /* Enable phy interrupt on autonegotiation complete (or link up) */
2029 if (skge->autoneg == AUTONEG_ENABLE)
2030 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2031 else
2032 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2033 }
2034
yukon_reset(struct skge_hw * hw,int port)2035 static void yukon_reset(struct skge_hw *hw, int port)
2036 {
2037 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2038 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2039 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2040 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2041 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2042
2043 gma_write16(hw, port, GM_RX_CTRL,
2044 gma_read16(hw, port, GM_RX_CTRL)
2045 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2046 }
2047
2048 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
is_yukon_lite_a0(struct skge_hw * hw)2049 static int is_yukon_lite_a0(struct skge_hw *hw)
2050 {
2051 u32 reg;
2052 int ret;
2053
2054 if (hw->chip_id != CHIP_ID_YUKON)
2055 return 0;
2056
2057 reg = skge_read32(hw, B2_FAR);
2058 skge_write8(hw, B2_FAR + 3, 0xff);
2059 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2060 skge_write32(hw, B2_FAR, reg);
2061 return ret;
2062 }
2063
yukon_mac_init(struct skge_hw * hw,int port)2064 static void yukon_mac_init(struct skge_hw *hw, int port)
2065 {
2066 struct skge_port *skge = netdev_priv(hw->dev[port]);
2067 int i;
2068 u32 reg;
2069 const u8 *addr = hw->dev[port]->dev_addr;
2070
2071 /* WA code for COMA mode -- set PHY reset */
2072 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2073 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2074 reg = skge_read32(hw, B2_GP_IO);
2075 reg |= GP_DIR_9 | GP_IO_9;
2076 skge_write32(hw, B2_GP_IO, reg);
2077 }
2078
2079 /* hard reset */
2080 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2081 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2082
2083 /* WA code for COMA mode -- clear PHY reset */
2084 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2085 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2086 reg = skge_read32(hw, B2_GP_IO);
2087 reg |= GP_DIR_9;
2088 reg &= ~GP_IO_9;
2089 skge_write32(hw, B2_GP_IO, reg);
2090 }
2091
2092 /* Set hardware config mode */
2093 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2094 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2095 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2096
2097 /* Clear GMC reset */
2098 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2099 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2100 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2101
2102 if (skge->autoneg == AUTONEG_DISABLE) {
2103 reg = GM_GPCR_AU_ALL_DIS;
2104 gma_write16(hw, port, GM_GP_CTRL,
2105 gma_read16(hw, port, GM_GP_CTRL) | reg);
2106
2107 switch (skge->speed) {
2108 case SPEED_1000:
2109 reg &= ~GM_GPCR_SPEED_100;
2110 reg |= GM_GPCR_SPEED_1000;
2111 break;
2112 case SPEED_100:
2113 reg &= ~GM_GPCR_SPEED_1000;
2114 reg |= GM_GPCR_SPEED_100;
2115 break;
2116 case SPEED_10:
2117 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2118 break;
2119 }
2120
2121 if (skge->duplex == DUPLEX_FULL)
2122 reg |= GM_GPCR_DUP_FULL;
2123 } else
2124 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2125
2126 switch (skge->flow_control) {
2127 case FLOW_MODE_NONE:
2128 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2129 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2130 break;
2131 case FLOW_MODE_LOC_SEND:
2132 /* disable Rx flow-control */
2133 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2134 break;
2135 case FLOW_MODE_SYMMETRIC:
2136 case FLOW_MODE_SYM_OR_REM:
2137 /* enable Tx & Rx flow-control */
2138 break;
2139 }
2140
2141 gma_write16(hw, port, GM_GP_CTRL, reg);
2142 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2143
2144 yukon_init(hw, port);
2145
2146 /* MIB clear */
2147 reg = gma_read16(hw, port, GM_PHY_ADDR);
2148 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2149
2150 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2151 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2152 gma_write16(hw, port, GM_PHY_ADDR, reg);
2153
2154 /* transmit control */
2155 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2156
2157 /* receive control reg: unicast + multicast + no FCS */
2158 gma_write16(hw, port, GM_RX_CTRL,
2159 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2160
2161 /* transmit flow control */
2162 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2163
2164 /* transmit parameter */
2165 gma_write16(hw, port, GM_TX_PARAM,
2166 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2167 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2168 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2169
2170 /* configure the Serial Mode Register */
2171 reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2172 | GM_SMOD_VLAN_ENA
2173 | IPG_DATA_VAL(IPG_DATA_DEF);
2174
2175 if (hw->dev[port]->mtu > ETH_DATA_LEN)
2176 reg |= GM_SMOD_JUMBO_ENA;
2177
2178 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2179
2180 /* physical address: used for pause frames */
2181 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2182 /* virtual address for data */
2183 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2184
2185 /* enable interrupt mask for counter overflows */
2186 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2187 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2188 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2189
2190 /* Initialize Mac Fifo */
2191
2192 /* Configure Rx MAC FIFO */
2193 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2194 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2195
2196 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2197 if (is_yukon_lite_a0(hw))
2198 reg &= ~GMF_RX_F_FL_ON;
2199
2200 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2201 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2202 /*
2203 * because Pause Packet Truncation in GMAC is not working
2204 * we have to increase the Flush Threshold to 64 bytes
2205 * in order to flush pause packets in Rx FIFO on Yukon-1
2206 */
2207 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2208
2209 /* Configure Tx MAC FIFO */
2210 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2211 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2212 }
2213
2214 /* Go into power down mode */
yukon_suspend(struct skge_hw * hw,int port)2215 static void yukon_suspend(struct skge_hw *hw, int port)
2216 {
2217 u16 ctrl;
2218
2219 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2220 ctrl |= PHY_M_PC_POL_R_DIS;
2221 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2222
2223 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2224 ctrl |= PHY_CT_RESET;
2225 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2226
2227 /* switch IEEE compatible power down mode on */
2228 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2229 ctrl |= PHY_CT_PDOWN;
2230 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2231 }
2232
yukon_stop(struct skge_port * skge)2233 static void yukon_stop(struct skge_port *skge)
2234 {
2235 struct skge_hw *hw = skge->hw;
2236 int port = skge->port;
2237
2238 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2239 yukon_reset(hw, port);
2240
2241 gma_write16(hw, port, GM_GP_CTRL,
2242 gma_read16(hw, port, GM_GP_CTRL)
2243 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2244 gma_read16(hw, port, GM_GP_CTRL);
2245
2246 yukon_suspend(hw, port);
2247
2248 /* set GPHY Control reset */
2249 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2250 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2251 }
2252
yukon_get_stats(struct skge_port * skge,u64 * data)2253 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2254 {
2255 struct skge_hw *hw = skge->hw;
2256 int port = skge->port;
2257 int i;
2258
2259 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2260 | gma_read32(hw, port, GM_TXO_OK_LO);
2261 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2262 | gma_read32(hw, port, GM_RXO_OK_LO);
2263
2264 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2265 data[i] = gma_read32(hw, port,
2266 skge_stats[i].gma_offset);
2267 }
2268
yukon_mac_intr(struct skge_hw * hw,int port)2269 static void yukon_mac_intr(struct skge_hw *hw, int port)
2270 {
2271 struct net_device *dev = hw->dev[port];
2272 struct skge_port *skge = netdev_priv(dev);
2273 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2274
2275 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2276 "mac interrupt status 0x%x\n", status);
2277
2278 if (status & GM_IS_RX_FF_OR) {
2279 ++dev->stats.rx_fifo_errors;
2280 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2281 }
2282
2283 if (status & GM_IS_TX_FF_UR) {
2284 ++dev->stats.tx_fifo_errors;
2285 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2286 }
2287
2288 }
2289
yukon_speed(const struct skge_hw * hw,u16 aux)2290 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2291 {
2292 switch (aux & PHY_M_PS_SPEED_MSK) {
2293 case PHY_M_PS_SPEED_1000:
2294 return SPEED_1000;
2295 case PHY_M_PS_SPEED_100:
2296 return SPEED_100;
2297 default:
2298 return SPEED_10;
2299 }
2300 }
2301
yukon_link_up(struct skge_port * skge)2302 static void yukon_link_up(struct skge_port *skge)
2303 {
2304 struct skge_hw *hw = skge->hw;
2305 int port = skge->port;
2306 u16 reg;
2307
2308 /* Enable Transmit FIFO Underrun */
2309 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2310
2311 reg = gma_read16(hw, port, GM_GP_CTRL);
2312 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2313 reg |= GM_GPCR_DUP_FULL;
2314
2315 /* enable Rx/Tx */
2316 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2317 gma_write16(hw, port, GM_GP_CTRL, reg);
2318
2319 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2320 skge_link_up(skge);
2321 }
2322
yukon_link_down(struct skge_port * skge)2323 static void yukon_link_down(struct skge_port *skge)
2324 {
2325 struct skge_hw *hw = skge->hw;
2326 int port = skge->port;
2327 u16 ctrl;
2328
2329 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2330 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2331 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2332
2333 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2334 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2335 ctrl |= PHY_M_AN_ASP;
2336 /* restore Asymmetric Pause bit */
2337 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2338 }
2339
2340 skge_link_down(skge);
2341
2342 yukon_init(hw, port);
2343 }
2344
yukon_phy_intr(struct skge_port * skge)2345 static void yukon_phy_intr(struct skge_port *skge)
2346 {
2347 struct skge_hw *hw = skge->hw;
2348 int port = skge->port;
2349 const char *reason = NULL;
2350 u16 istatus, phystat;
2351
2352 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2353 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2354
2355 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2356 "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2357
2358 if (istatus & PHY_M_IS_AN_COMPL) {
2359 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2360 & PHY_M_AN_RF) {
2361 reason = "remote fault";
2362 goto failed;
2363 }
2364
2365 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2366 reason = "master/slave fault";
2367 goto failed;
2368 }
2369
2370 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2371 reason = "speed/duplex";
2372 goto failed;
2373 }
2374
2375 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2376 ? DUPLEX_FULL : DUPLEX_HALF;
2377 skge->speed = yukon_speed(hw, phystat);
2378
2379 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2380 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2381 case PHY_M_PS_PAUSE_MSK:
2382 skge->flow_status = FLOW_STAT_SYMMETRIC;
2383 break;
2384 case PHY_M_PS_RX_P_EN:
2385 skge->flow_status = FLOW_STAT_REM_SEND;
2386 break;
2387 case PHY_M_PS_TX_P_EN:
2388 skge->flow_status = FLOW_STAT_LOC_SEND;
2389 break;
2390 default:
2391 skge->flow_status = FLOW_STAT_NONE;
2392 }
2393
2394 if (skge->flow_status == FLOW_STAT_NONE ||
2395 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2396 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2397 else
2398 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2399 yukon_link_up(skge);
2400 return;
2401 }
2402
2403 if (istatus & PHY_M_IS_LSP_CHANGE)
2404 skge->speed = yukon_speed(hw, phystat);
2405
2406 if (istatus & PHY_M_IS_DUP_CHANGE)
2407 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2408 if (istatus & PHY_M_IS_LST_CHANGE) {
2409 if (phystat & PHY_M_PS_LINK_UP)
2410 yukon_link_up(skge);
2411 else
2412 yukon_link_down(skge);
2413 }
2414 return;
2415 failed:
2416 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2417
2418 /* XXX restart autonegotiation? */
2419 }
2420
skge_phy_reset(struct skge_port * skge)2421 static void skge_phy_reset(struct skge_port *skge)
2422 {
2423 struct skge_hw *hw = skge->hw;
2424 int port = skge->port;
2425 struct net_device *dev = hw->dev[port];
2426
2427 netif_stop_queue(skge->netdev);
2428 netif_carrier_off(skge->netdev);
2429
2430 spin_lock_bh(&hw->phy_lock);
2431 if (is_genesis(hw)) {
2432 genesis_reset(hw, port);
2433 genesis_mac_init(hw, port);
2434 } else {
2435 yukon_reset(hw, port);
2436 yukon_init(hw, port);
2437 }
2438 spin_unlock_bh(&hw->phy_lock);
2439
2440 skge_set_multicast(dev);
2441 }
2442
2443 /* Basic MII support */
skge_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)2444 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2445 {
2446 struct mii_ioctl_data *data = if_mii(ifr);
2447 struct skge_port *skge = netdev_priv(dev);
2448 struct skge_hw *hw = skge->hw;
2449 int err = -EOPNOTSUPP;
2450
2451 if (!netif_running(dev))
2452 return -ENODEV; /* Phy still in reset */
2453
2454 switch (cmd) {
2455 case SIOCGMIIPHY:
2456 data->phy_id = hw->phy_addr;
2457
2458 fallthrough;
2459 case SIOCGMIIREG: {
2460 u16 val = 0;
2461 spin_lock_bh(&hw->phy_lock);
2462
2463 if (is_genesis(hw))
2464 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2465 else
2466 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2467 spin_unlock_bh(&hw->phy_lock);
2468 data->val_out = val;
2469 break;
2470 }
2471
2472 case SIOCSMIIREG:
2473 spin_lock_bh(&hw->phy_lock);
2474 if (is_genesis(hw))
2475 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2476 data->val_in);
2477 else
2478 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2479 data->val_in);
2480 spin_unlock_bh(&hw->phy_lock);
2481 break;
2482 }
2483 return err;
2484 }
2485
skge_ramset(struct skge_hw * hw,u16 q,u32 start,size_t len)2486 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2487 {
2488 u32 end;
2489
2490 start /= 8;
2491 len /= 8;
2492 end = start + len - 1;
2493
2494 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2495 skge_write32(hw, RB_ADDR(q, RB_START), start);
2496 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2497 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2498 skge_write32(hw, RB_ADDR(q, RB_END), end);
2499
2500 if (q == Q_R1 || q == Q_R2) {
2501 /* Set thresholds on receive queue's */
2502 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2503 start + (2*len)/3);
2504 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2505 start + (len/3));
2506 } else {
2507 /* Enable store & forward on Tx queue's because
2508 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2509 */
2510 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2511 }
2512
2513 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2514 }
2515
2516 /* Setup Bus Memory Interface */
skge_qset(struct skge_port * skge,u16 q,const struct skge_element * e)2517 static void skge_qset(struct skge_port *skge, u16 q,
2518 const struct skge_element *e)
2519 {
2520 struct skge_hw *hw = skge->hw;
2521 u32 watermark = 0x600;
2522 u64 base = skge->dma + (e->desc - skge->mem);
2523
2524 /* optimization to reduce window on 32bit/33mhz */
2525 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2526 watermark /= 2;
2527
2528 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2529 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2530 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2531 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2532 }
2533
skge_up(struct net_device * dev)2534 static int skge_up(struct net_device *dev)
2535 {
2536 struct skge_port *skge = netdev_priv(dev);
2537 struct skge_hw *hw = skge->hw;
2538 int port = skge->port;
2539 u32 chunk, ram_addr;
2540 size_t rx_size, tx_size;
2541 int err;
2542
2543 if (!is_valid_ether_addr(dev->dev_addr))
2544 return -EINVAL;
2545
2546 netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2547
2548 if (dev->mtu > RX_BUF_SIZE)
2549 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2550 else
2551 skge->rx_buf_size = RX_BUF_SIZE;
2552
2553
2554 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2555 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2556 skge->mem_size = tx_size + rx_size;
2557 skge->mem = dma_alloc_coherent(&hw->pdev->dev, skge->mem_size,
2558 &skge->dma, GFP_KERNEL);
2559 if (!skge->mem)
2560 return -ENOMEM;
2561
2562 BUG_ON(skge->dma & 7);
2563
2564 if (upper_32_bits(skge->dma) != upper_32_bits(skge->dma + skge->mem_size)) {
2565 dev_err(&hw->pdev->dev, "dma_alloc_coherent region crosses 4G boundary\n");
2566 err = -EINVAL;
2567 goto free_pci_mem;
2568 }
2569
2570 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2571 if (err)
2572 goto free_pci_mem;
2573
2574 err = skge_rx_fill(dev);
2575 if (err)
2576 goto free_rx_ring;
2577
2578 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2579 skge->dma + rx_size);
2580 if (err)
2581 goto free_rx_ring;
2582
2583 if (hw->ports == 1) {
2584 err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2585 dev->name, hw);
2586 if (err) {
2587 netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2588 hw->pdev->irq, err);
2589 goto free_tx_ring;
2590 }
2591 }
2592
2593 /* Initialize MAC */
2594 netif_carrier_off(dev);
2595 spin_lock_bh(&hw->phy_lock);
2596 if (is_genesis(hw))
2597 genesis_mac_init(hw, port);
2598 else
2599 yukon_mac_init(hw, port);
2600 spin_unlock_bh(&hw->phy_lock);
2601
2602 /* Configure RAMbuffers - equally between ports and tx/rx */
2603 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2604 ram_addr = hw->ram_offset + 2 * chunk * port;
2605
2606 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2607 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2608
2609 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2610 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2611 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2612
2613 /* Start receiver BMU */
2614 wmb();
2615 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2616 skge_led(skge, LED_MODE_ON);
2617
2618 spin_lock_irq(&hw->hw_lock);
2619 hw->intr_mask |= portmask[port];
2620 skge_write32(hw, B0_IMSK, hw->intr_mask);
2621 skge_read32(hw, B0_IMSK);
2622 spin_unlock_irq(&hw->hw_lock);
2623
2624 napi_enable(&skge->napi);
2625
2626 skge_set_multicast(dev);
2627
2628 return 0;
2629
2630 free_tx_ring:
2631 kfree(skge->tx_ring.start);
2632 free_rx_ring:
2633 skge_rx_clean(skge);
2634 kfree(skge->rx_ring.start);
2635 free_pci_mem:
2636 dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2637 skge->dma);
2638 skge->mem = NULL;
2639
2640 return err;
2641 }
2642
2643 /* stop receiver */
skge_rx_stop(struct skge_hw * hw,int port)2644 static void skge_rx_stop(struct skge_hw *hw, int port)
2645 {
2646 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2647 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2648 RB_RST_SET|RB_DIS_OP_MD);
2649 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2650 }
2651
skge_down(struct net_device * dev)2652 static int skge_down(struct net_device *dev)
2653 {
2654 struct skge_port *skge = netdev_priv(dev);
2655 struct skge_hw *hw = skge->hw;
2656 int port = skge->port;
2657
2658 if (!skge->mem)
2659 return 0;
2660
2661 netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2662
2663 netif_tx_disable(dev);
2664
2665 if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2666 del_timer_sync(&skge->link_timer);
2667
2668 napi_disable(&skge->napi);
2669 netif_carrier_off(dev);
2670
2671 spin_lock_irq(&hw->hw_lock);
2672 hw->intr_mask &= ~portmask[port];
2673 skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2674 skge_read32(hw, B0_IMSK);
2675 spin_unlock_irq(&hw->hw_lock);
2676
2677 if (hw->ports == 1)
2678 free_irq(hw->pdev->irq, hw);
2679
2680 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_REG_OFF);
2681 if (is_genesis(hw))
2682 genesis_stop(skge);
2683 else
2684 yukon_stop(skge);
2685
2686 /* Stop transmitter */
2687 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2688 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2689 RB_RST_SET|RB_DIS_OP_MD);
2690
2691
2692 /* Disable Force Sync bit and Enable Alloc bit */
2693 skge_write8(hw, SK_REG(port, TXA_CTRL),
2694 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2695
2696 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2697 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2698 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2699
2700 /* Reset PCI FIFO */
2701 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2702 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2703
2704 /* Reset the RAM Buffer async Tx queue */
2705 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2706
2707 skge_rx_stop(hw, port);
2708
2709 if (is_genesis(hw)) {
2710 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2711 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2712 } else {
2713 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2714 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2715 }
2716
2717 skge_led(skge, LED_MODE_OFF);
2718
2719 netif_tx_lock_bh(dev);
2720 skge_tx_clean(dev);
2721 netif_tx_unlock_bh(dev);
2722
2723 skge_rx_clean(skge);
2724
2725 kfree(skge->rx_ring.start);
2726 kfree(skge->tx_ring.start);
2727 dma_free_coherent(&hw->pdev->dev, skge->mem_size, skge->mem,
2728 skge->dma);
2729 skge->mem = NULL;
2730 return 0;
2731 }
2732
skge_avail(const struct skge_ring * ring)2733 static inline int skge_avail(const struct skge_ring *ring)
2734 {
2735 smp_mb();
2736 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2737 + (ring->to_clean - ring->to_use) - 1;
2738 }
2739
skge_xmit_frame(struct sk_buff * skb,struct net_device * dev)2740 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2741 struct net_device *dev)
2742 {
2743 struct skge_port *skge = netdev_priv(dev);
2744 struct skge_hw *hw = skge->hw;
2745 struct skge_element *e;
2746 struct skge_tx_desc *td;
2747 int i;
2748 u32 control, len;
2749 dma_addr_t map;
2750
2751 if (skb_padto(skb, ETH_ZLEN))
2752 return NETDEV_TX_OK;
2753
2754 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2755 return NETDEV_TX_BUSY;
2756
2757 e = skge->tx_ring.to_use;
2758 td = e->desc;
2759 BUG_ON(td->control & BMU_OWN);
2760 e->skb = skb;
2761 len = skb_headlen(skb);
2762 map = dma_map_single(&hw->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2763 if (dma_mapping_error(&hw->pdev->dev, map))
2764 goto mapping_error;
2765
2766 dma_unmap_addr_set(e, mapaddr, map);
2767 dma_unmap_len_set(e, maplen, len);
2768
2769 td->dma_lo = lower_32_bits(map);
2770 td->dma_hi = upper_32_bits(map);
2771
2772 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2773 const int offset = skb_checksum_start_offset(skb);
2774
2775 /* This seems backwards, but it is what the sk98lin
2776 * does. Looks like hardware is wrong?
2777 */
2778 if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2779 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2780 control = BMU_TCP_CHECK;
2781 else
2782 control = BMU_UDP_CHECK;
2783
2784 td->csum_offs = 0;
2785 td->csum_start = offset;
2786 td->csum_write = offset + skb->csum_offset;
2787 } else
2788 control = BMU_CHECK;
2789
2790 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2791 control |= BMU_EOF | BMU_IRQ_EOF;
2792 else {
2793 struct skge_tx_desc *tf = td;
2794
2795 control |= BMU_STFWD;
2796 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2797 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2798
2799 map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2800 skb_frag_size(frag), DMA_TO_DEVICE);
2801 if (dma_mapping_error(&hw->pdev->dev, map))
2802 goto mapping_unwind;
2803
2804 e = e->next;
2805 e->skb = skb;
2806 tf = e->desc;
2807 BUG_ON(tf->control & BMU_OWN);
2808
2809 tf->dma_lo = lower_32_bits(map);
2810 tf->dma_hi = upper_32_bits(map);
2811 dma_unmap_addr_set(e, mapaddr, map);
2812 dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2813
2814 tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2815 }
2816 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2817 }
2818 /* Make sure all the descriptors written */
2819 wmb();
2820 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2821 wmb();
2822
2823 netdev_sent_queue(dev, skb->len);
2824
2825 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2826
2827 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2828 "tx queued, slot %td, len %d\n",
2829 e - skge->tx_ring.start, skb->len);
2830
2831 skge->tx_ring.to_use = e->next;
2832 smp_wmb();
2833
2834 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2835 netdev_dbg(dev, "transmit queue full\n");
2836 netif_stop_queue(dev);
2837 }
2838
2839 return NETDEV_TX_OK;
2840
2841 mapping_unwind:
2842 e = skge->tx_ring.to_use;
2843 dma_unmap_single(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2844 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2845 while (i-- > 0) {
2846 e = e->next;
2847 dma_unmap_page(&hw->pdev->dev, dma_unmap_addr(e, mapaddr),
2848 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2849 }
2850
2851 mapping_error:
2852 if (net_ratelimit())
2853 dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name);
2854 dev_kfree_skb_any(skb);
2855 return NETDEV_TX_OK;
2856 }
2857
2858
2859 /* Free resources associated with this reing element */
skge_tx_unmap(struct pci_dev * pdev,struct skge_element * e,u32 control)2860 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2861 u32 control)
2862 {
2863 /* skb header vs. fragment */
2864 if (control & BMU_STF)
2865 dma_unmap_single(&pdev->dev, dma_unmap_addr(e, mapaddr),
2866 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2867 else
2868 dma_unmap_page(&pdev->dev, dma_unmap_addr(e, mapaddr),
2869 dma_unmap_len(e, maplen), DMA_TO_DEVICE);
2870 }
2871
2872 /* Free all buffers in transmit ring */
skge_tx_clean(struct net_device * dev)2873 static void skge_tx_clean(struct net_device *dev)
2874 {
2875 struct skge_port *skge = netdev_priv(dev);
2876 struct skge_element *e;
2877
2878 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2879 struct skge_tx_desc *td = e->desc;
2880
2881 skge_tx_unmap(skge->hw->pdev, e, td->control);
2882
2883 if (td->control & BMU_EOF)
2884 dev_kfree_skb(e->skb);
2885 td->control = 0;
2886 }
2887
2888 netdev_reset_queue(dev);
2889 skge->tx_ring.to_clean = e;
2890 }
2891
skge_tx_timeout(struct net_device * dev,unsigned int txqueue)2892 static void skge_tx_timeout(struct net_device *dev, unsigned int txqueue)
2893 {
2894 struct skge_port *skge = netdev_priv(dev);
2895
2896 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2897
2898 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2899 skge_tx_clean(dev);
2900 netif_wake_queue(dev);
2901 }
2902
skge_change_mtu(struct net_device * dev,int new_mtu)2903 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2904 {
2905 int err;
2906
2907 if (!netif_running(dev)) {
2908 dev->mtu = new_mtu;
2909 return 0;
2910 }
2911
2912 skge_down(dev);
2913
2914 dev->mtu = new_mtu;
2915
2916 err = skge_up(dev);
2917 if (err)
2918 dev_close(dev);
2919
2920 return err;
2921 }
2922
2923 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2924
genesis_add_filter(u8 filter[8],const u8 * addr)2925 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2926 {
2927 u32 crc, bit;
2928
2929 crc = ether_crc_le(ETH_ALEN, addr);
2930 bit = ~crc & 0x3f;
2931 filter[bit/8] |= 1 << (bit%8);
2932 }
2933
genesis_set_multicast(struct net_device * dev)2934 static void genesis_set_multicast(struct net_device *dev)
2935 {
2936 struct skge_port *skge = netdev_priv(dev);
2937 struct skge_hw *hw = skge->hw;
2938 int port = skge->port;
2939 struct netdev_hw_addr *ha;
2940 u32 mode;
2941 u8 filter[8];
2942
2943 mode = xm_read32(hw, port, XM_MODE);
2944 mode |= XM_MD_ENA_HASH;
2945 if (dev->flags & IFF_PROMISC)
2946 mode |= XM_MD_ENA_PROM;
2947 else
2948 mode &= ~XM_MD_ENA_PROM;
2949
2950 if (dev->flags & IFF_ALLMULTI)
2951 memset(filter, 0xff, sizeof(filter));
2952 else {
2953 memset(filter, 0, sizeof(filter));
2954
2955 if (skge->flow_status == FLOW_STAT_REM_SEND ||
2956 skge->flow_status == FLOW_STAT_SYMMETRIC)
2957 genesis_add_filter(filter, pause_mc_addr);
2958
2959 netdev_for_each_mc_addr(ha, dev)
2960 genesis_add_filter(filter, ha->addr);
2961 }
2962
2963 xm_write32(hw, port, XM_MODE, mode);
2964 xm_outhash(hw, port, XM_HSM, filter);
2965 }
2966
yukon_add_filter(u8 filter[8],const u8 * addr)2967 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2968 {
2969 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2970
2971 filter[bit / 8] |= 1 << (bit % 8);
2972 }
2973
yukon_set_multicast(struct net_device * dev)2974 static void yukon_set_multicast(struct net_device *dev)
2975 {
2976 struct skge_port *skge = netdev_priv(dev);
2977 struct skge_hw *hw = skge->hw;
2978 int port = skge->port;
2979 struct netdev_hw_addr *ha;
2980 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2981 skge->flow_status == FLOW_STAT_SYMMETRIC);
2982 u16 reg;
2983 u8 filter[8];
2984
2985 memset(filter, 0, sizeof(filter));
2986
2987 reg = gma_read16(hw, port, GM_RX_CTRL);
2988 reg |= GM_RXCR_UCF_ENA;
2989
2990 if (dev->flags & IFF_PROMISC) /* promiscuous */
2991 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2992 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2993 memset(filter, 0xff, sizeof(filter));
2994 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2995 reg &= ~GM_RXCR_MCF_ENA;
2996 else {
2997 reg |= GM_RXCR_MCF_ENA;
2998
2999 if (rx_pause)
3000 yukon_add_filter(filter, pause_mc_addr);
3001
3002 netdev_for_each_mc_addr(ha, dev)
3003 yukon_add_filter(filter, ha->addr);
3004 }
3005
3006
3007 gma_write16(hw, port, GM_MC_ADDR_H1,
3008 (u16)filter[0] | ((u16)filter[1] << 8));
3009 gma_write16(hw, port, GM_MC_ADDR_H2,
3010 (u16)filter[2] | ((u16)filter[3] << 8));
3011 gma_write16(hw, port, GM_MC_ADDR_H3,
3012 (u16)filter[4] | ((u16)filter[5] << 8));
3013 gma_write16(hw, port, GM_MC_ADDR_H4,
3014 (u16)filter[6] | ((u16)filter[7] << 8));
3015
3016 gma_write16(hw, port, GM_RX_CTRL, reg);
3017 }
3018
phy_length(const struct skge_hw * hw,u32 status)3019 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
3020 {
3021 if (is_genesis(hw))
3022 return status >> XMR_FS_LEN_SHIFT;
3023 else
3024 return status >> GMR_FS_LEN_SHIFT;
3025 }
3026
bad_phy_status(const struct skge_hw * hw,u32 status)3027 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
3028 {
3029 if (is_genesis(hw))
3030 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
3031 else
3032 return (status & GMR_FS_ANY_ERR) ||
3033 (status & GMR_FS_RX_OK) == 0;
3034 }
3035
skge_set_multicast(struct net_device * dev)3036 static void skge_set_multicast(struct net_device *dev)
3037 {
3038 struct skge_port *skge = netdev_priv(dev);
3039
3040 if (is_genesis(skge->hw))
3041 genesis_set_multicast(dev);
3042 else
3043 yukon_set_multicast(dev);
3044
3045 }
3046
3047
3048 /* Get receive buffer from descriptor.
3049 * Handles copy of small buffers and reallocation failures
3050 */
skge_rx_get(struct net_device * dev,struct skge_element * e,u32 control,u32 status,u16 csum)3051 static struct sk_buff *skge_rx_get(struct net_device *dev,
3052 struct skge_element *e,
3053 u32 control, u32 status, u16 csum)
3054 {
3055 struct skge_port *skge = netdev_priv(dev);
3056 struct sk_buff *skb;
3057 u16 len = control & BMU_BBC;
3058
3059 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3060 "rx slot %td status 0x%x len %d\n",
3061 e - skge->rx_ring.start, status, len);
3062
3063 if (len > skge->rx_buf_size)
3064 goto error;
3065
3066 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3067 goto error;
3068
3069 if (bad_phy_status(skge->hw, status))
3070 goto error;
3071
3072 if (phy_length(skge->hw, status) != len)
3073 goto error;
3074
3075 if (len < RX_COPY_THRESHOLD) {
3076 skb = netdev_alloc_skb_ip_align(dev, len);
3077 if (!skb)
3078 goto resubmit;
3079
3080 dma_sync_single_for_cpu(&skge->hw->pdev->dev,
3081 dma_unmap_addr(e, mapaddr),
3082 dma_unmap_len(e, maplen),
3083 DMA_FROM_DEVICE);
3084 skb_copy_from_linear_data(e->skb, skb->data, len);
3085 dma_sync_single_for_device(&skge->hw->pdev->dev,
3086 dma_unmap_addr(e, mapaddr),
3087 dma_unmap_len(e, maplen),
3088 DMA_FROM_DEVICE);
3089 skge_rx_reuse(e, skge->rx_buf_size);
3090 } else {
3091 struct skge_element ee;
3092 struct sk_buff *nskb;
3093
3094 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3095 if (!nskb)
3096 goto resubmit;
3097
3098 ee = *e;
3099
3100 skb = ee.skb;
3101 prefetch(skb->data);
3102
3103 if (skge_rx_setup(skge, e, nskb, skge->rx_buf_size) < 0) {
3104 dev_kfree_skb(nskb);
3105 goto resubmit;
3106 }
3107
3108 dma_unmap_single(&skge->hw->pdev->dev,
3109 dma_unmap_addr(&ee, mapaddr),
3110 dma_unmap_len(&ee, maplen), DMA_FROM_DEVICE);
3111 }
3112
3113 skb_put(skb, len);
3114
3115 if (dev->features & NETIF_F_RXCSUM) {
3116 skb->csum = le16_to_cpu(csum);
3117 skb->ip_summed = CHECKSUM_COMPLETE;
3118 }
3119
3120 skb->protocol = eth_type_trans(skb, dev);
3121
3122 return skb;
3123 error:
3124
3125 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3126 "rx err, slot %td control 0x%x status 0x%x\n",
3127 e - skge->rx_ring.start, control, status);
3128
3129 if (is_genesis(skge->hw)) {
3130 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3131 dev->stats.rx_length_errors++;
3132 if (status & XMR_FS_FRA_ERR)
3133 dev->stats.rx_frame_errors++;
3134 if (status & XMR_FS_FCS_ERR)
3135 dev->stats.rx_crc_errors++;
3136 } else {
3137 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3138 dev->stats.rx_length_errors++;
3139 if (status & GMR_FS_FRAGMENT)
3140 dev->stats.rx_frame_errors++;
3141 if (status & GMR_FS_CRC_ERR)
3142 dev->stats.rx_crc_errors++;
3143 }
3144
3145 resubmit:
3146 skge_rx_reuse(e, skge->rx_buf_size);
3147 return NULL;
3148 }
3149
3150 /* Free all buffers in Tx ring which are no longer owned by device */
skge_tx_done(struct net_device * dev)3151 static void skge_tx_done(struct net_device *dev)
3152 {
3153 struct skge_port *skge = netdev_priv(dev);
3154 struct skge_ring *ring = &skge->tx_ring;
3155 struct skge_element *e;
3156 unsigned int bytes_compl = 0, pkts_compl = 0;
3157
3158 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3159
3160 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3161 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3162
3163 if (control & BMU_OWN)
3164 break;
3165
3166 skge_tx_unmap(skge->hw->pdev, e, control);
3167
3168 if (control & BMU_EOF) {
3169 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3170 "tx done slot %td\n",
3171 e - skge->tx_ring.start);
3172
3173 pkts_compl++;
3174 bytes_compl += e->skb->len;
3175
3176 dev_consume_skb_any(e->skb);
3177 }
3178 }
3179 netdev_completed_queue(dev, pkts_compl, bytes_compl);
3180 skge->tx_ring.to_clean = e;
3181
3182 /* Can run lockless until we need to synchronize to restart queue. */
3183 smp_mb();
3184
3185 if (unlikely(netif_queue_stopped(dev) &&
3186 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3187 netif_tx_lock(dev);
3188 if (unlikely(netif_queue_stopped(dev) &&
3189 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3190 netif_wake_queue(dev);
3191
3192 }
3193 netif_tx_unlock(dev);
3194 }
3195 }
3196
skge_poll(struct napi_struct * napi,int budget)3197 static int skge_poll(struct napi_struct *napi, int budget)
3198 {
3199 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3200 struct net_device *dev = skge->netdev;
3201 struct skge_hw *hw = skge->hw;
3202 struct skge_ring *ring = &skge->rx_ring;
3203 struct skge_element *e;
3204 int work_done = 0;
3205
3206 skge_tx_done(dev);
3207
3208 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3209
3210 for (e = ring->to_clean; prefetch(e->next), work_done < budget; e = e->next) {
3211 struct skge_rx_desc *rd = e->desc;
3212 struct sk_buff *skb;
3213 u32 control;
3214
3215 rmb();
3216 control = rd->control;
3217 if (control & BMU_OWN)
3218 break;
3219
3220 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3221 if (likely(skb)) {
3222 napi_gro_receive(napi, skb);
3223 ++work_done;
3224 }
3225 }
3226 ring->to_clean = e;
3227
3228 /* restart receiver */
3229 wmb();
3230 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3231
3232 if (work_done < budget && napi_complete_done(napi, work_done)) {
3233 unsigned long flags;
3234
3235 spin_lock_irqsave(&hw->hw_lock, flags);
3236 hw->intr_mask |= napimask[skge->port];
3237 skge_write32(hw, B0_IMSK, hw->intr_mask);
3238 skge_read32(hw, B0_IMSK);
3239 spin_unlock_irqrestore(&hw->hw_lock, flags);
3240 }
3241
3242 return work_done;
3243 }
3244
3245 /* Parity errors seem to happen when Genesis is connected to a switch
3246 * with no other ports present. Heartbeat error??
3247 */
skge_mac_parity(struct skge_hw * hw,int port)3248 static void skge_mac_parity(struct skge_hw *hw, int port)
3249 {
3250 struct net_device *dev = hw->dev[port];
3251
3252 ++dev->stats.tx_heartbeat_errors;
3253
3254 if (is_genesis(hw))
3255 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3256 MFF_CLR_PERR);
3257 else
3258 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3259 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3260 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3261 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3262 }
3263
skge_mac_intr(struct skge_hw * hw,int port)3264 static void skge_mac_intr(struct skge_hw *hw, int port)
3265 {
3266 if (is_genesis(hw))
3267 genesis_mac_intr(hw, port);
3268 else
3269 yukon_mac_intr(hw, port);
3270 }
3271
3272 /* Handle device specific framing and timeout interrupts */
skge_error_irq(struct skge_hw * hw)3273 static void skge_error_irq(struct skge_hw *hw)
3274 {
3275 struct pci_dev *pdev = hw->pdev;
3276 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3277
3278 if (is_genesis(hw)) {
3279 /* clear xmac errors */
3280 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3281 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3282 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3283 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3284 } else {
3285 /* Timestamp (unused) overflow */
3286 if (hwstatus & IS_IRQ_TIST_OV)
3287 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3288 }
3289
3290 if (hwstatus & IS_RAM_RD_PAR) {
3291 dev_err(&pdev->dev, "Ram read data parity error\n");
3292 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3293 }
3294
3295 if (hwstatus & IS_RAM_WR_PAR) {
3296 dev_err(&pdev->dev, "Ram write data parity error\n");
3297 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3298 }
3299
3300 if (hwstatus & IS_M1_PAR_ERR)
3301 skge_mac_parity(hw, 0);
3302
3303 if (hwstatus & IS_M2_PAR_ERR)
3304 skge_mac_parity(hw, 1);
3305
3306 if (hwstatus & IS_R1_PAR_ERR) {
3307 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3308 hw->dev[0]->name);
3309 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3310 }
3311
3312 if (hwstatus & IS_R2_PAR_ERR) {
3313 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3314 hw->dev[1]->name);
3315 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3316 }
3317
3318 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3319 u16 pci_status, pci_cmd;
3320
3321 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3322 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3323
3324 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3325 pci_cmd, pci_status);
3326
3327 /* Write the error bits back to clear them. */
3328 pci_status &= PCI_STATUS_ERROR_BITS;
3329 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3330 pci_write_config_word(pdev, PCI_COMMAND,
3331 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3332 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3333 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3334
3335 /* if error still set then just ignore it */
3336 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3337 if (hwstatus & IS_IRQ_STAT) {
3338 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3339 hw->intr_mask &= ~IS_HW_ERR;
3340 }
3341 }
3342 }
3343
3344 /*
3345 * Interrupt from PHY are handled in tasklet (softirq)
3346 * because accessing phy registers requires spin wait which might
3347 * cause excess interrupt latency.
3348 */
skge_extirq(struct tasklet_struct * t)3349 static void skge_extirq(struct tasklet_struct *t)
3350 {
3351 struct skge_hw *hw = from_tasklet(hw, t, phy_task);
3352 int port;
3353
3354 for (port = 0; port < hw->ports; port++) {
3355 struct net_device *dev = hw->dev[port];
3356
3357 if (netif_running(dev)) {
3358 struct skge_port *skge = netdev_priv(dev);
3359
3360 spin_lock(&hw->phy_lock);
3361 if (!is_genesis(hw))
3362 yukon_phy_intr(skge);
3363 else if (hw->phy_type == SK_PHY_BCOM)
3364 bcom_phy_intr(skge);
3365 spin_unlock(&hw->phy_lock);
3366 }
3367 }
3368
3369 spin_lock_irq(&hw->hw_lock);
3370 hw->intr_mask |= IS_EXT_REG;
3371 skge_write32(hw, B0_IMSK, hw->intr_mask);
3372 skge_read32(hw, B0_IMSK);
3373 spin_unlock_irq(&hw->hw_lock);
3374 }
3375
skge_intr(int irq,void * dev_id)3376 static irqreturn_t skge_intr(int irq, void *dev_id)
3377 {
3378 struct skge_hw *hw = dev_id;
3379 u32 status;
3380 int handled = 0;
3381
3382 spin_lock(&hw->hw_lock);
3383 /* Reading this register masks IRQ */
3384 status = skge_read32(hw, B0_SP_ISRC);
3385 if (status == 0 || status == ~0)
3386 goto out;
3387
3388 handled = 1;
3389 status &= hw->intr_mask;
3390 if (status & IS_EXT_REG) {
3391 hw->intr_mask &= ~IS_EXT_REG;
3392 tasklet_schedule(&hw->phy_task);
3393 }
3394
3395 if (status & (IS_XA1_F|IS_R1_F)) {
3396 struct skge_port *skge = netdev_priv(hw->dev[0]);
3397 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3398 napi_schedule(&skge->napi);
3399 }
3400
3401 if (status & IS_PA_TO_TX1)
3402 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3403
3404 if (status & IS_PA_TO_RX1) {
3405 ++hw->dev[0]->stats.rx_over_errors;
3406 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3407 }
3408
3409
3410 if (status & IS_MAC1)
3411 skge_mac_intr(hw, 0);
3412
3413 if (hw->dev[1]) {
3414 struct skge_port *skge = netdev_priv(hw->dev[1]);
3415
3416 if (status & (IS_XA2_F|IS_R2_F)) {
3417 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3418 napi_schedule(&skge->napi);
3419 }
3420
3421 if (status & IS_PA_TO_RX2) {
3422 ++hw->dev[1]->stats.rx_over_errors;
3423 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3424 }
3425
3426 if (status & IS_PA_TO_TX2)
3427 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3428
3429 if (status & IS_MAC2)
3430 skge_mac_intr(hw, 1);
3431 }
3432
3433 if (status & IS_HW_ERR)
3434 skge_error_irq(hw);
3435 out:
3436 skge_write32(hw, B0_IMSK, hw->intr_mask);
3437 skge_read32(hw, B0_IMSK);
3438 spin_unlock(&hw->hw_lock);
3439
3440 return IRQ_RETVAL(handled);
3441 }
3442
3443 #ifdef CONFIG_NET_POLL_CONTROLLER
skge_netpoll(struct net_device * dev)3444 static void skge_netpoll(struct net_device *dev)
3445 {
3446 struct skge_port *skge = netdev_priv(dev);
3447
3448 disable_irq(dev->irq);
3449 skge_intr(dev->irq, skge->hw);
3450 enable_irq(dev->irq);
3451 }
3452 #endif
3453
skge_set_mac_address(struct net_device * dev,void * p)3454 static int skge_set_mac_address(struct net_device *dev, void *p)
3455 {
3456 struct skge_port *skge = netdev_priv(dev);
3457 struct skge_hw *hw = skge->hw;
3458 unsigned port = skge->port;
3459 const struct sockaddr *addr = p;
3460 u16 ctrl;
3461
3462 if (!is_valid_ether_addr(addr->sa_data))
3463 return -EADDRNOTAVAIL;
3464
3465 eth_hw_addr_set(dev, addr->sa_data);
3466
3467 if (!netif_running(dev)) {
3468 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3469 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3470 } else {
3471 /* disable Rx */
3472 spin_lock_bh(&hw->phy_lock);
3473 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3474 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3475
3476 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3477 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3478
3479 if (is_genesis(hw))
3480 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3481 else {
3482 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3483 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3484 }
3485
3486 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3487 spin_unlock_bh(&hw->phy_lock);
3488 }
3489
3490 return 0;
3491 }
3492
3493 static const struct {
3494 u8 id;
3495 const char *name;
3496 } skge_chips[] = {
3497 { CHIP_ID_GENESIS, "Genesis" },
3498 { CHIP_ID_YUKON, "Yukon" },
3499 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3500 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3501 };
3502
skge_board_name(const struct skge_hw * hw)3503 static const char *skge_board_name(const struct skge_hw *hw)
3504 {
3505 int i;
3506 static char buf[16];
3507
3508 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3509 if (skge_chips[i].id == hw->chip_id)
3510 return skge_chips[i].name;
3511
3512 snprintf(buf, sizeof(buf), "chipid 0x%x", hw->chip_id);
3513 return buf;
3514 }
3515
3516
3517 /*
3518 * Setup the board data structure, but don't bring up
3519 * the port(s)
3520 */
skge_reset(struct skge_hw * hw)3521 static int skge_reset(struct skge_hw *hw)
3522 {
3523 u32 reg;
3524 u16 ctst, pci_status;
3525 u8 t8, mac_cfg, pmd_type;
3526 int i;
3527
3528 ctst = skge_read16(hw, B0_CTST);
3529
3530 /* do a SW reset */
3531 skge_write8(hw, B0_CTST, CS_RST_SET);
3532 skge_write8(hw, B0_CTST, CS_RST_CLR);
3533
3534 /* clear PCI errors, if any */
3535 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3536 skge_write8(hw, B2_TST_CTRL2, 0);
3537
3538 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3539 pci_write_config_word(hw->pdev, PCI_STATUS,
3540 pci_status | PCI_STATUS_ERROR_BITS);
3541 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3542 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3543
3544 /* restore CLK_RUN bits (for Yukon-Lite) */
3545 skge_write16(hw, B0_CTST,
3546 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3547
3548 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3549 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3550 pmd_type = skge_read8(hw, B2_PMD_TYP);
3551 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3552
3553 switch (hw->chip_id) {
3554 case CHIP_ID_GENESIS:
3555 #ifdef CONFIG_SKGE_GENESIS
3556 switch (hw->phy_type) {
3557 case SK_PHY_XMAC:
3558 hw->phy_addr = PHY_ADDR_XMAC;
3559 break;
3560 case SK_PHY_BCOM:
3561 hw->phy_addr = PHY_ADDR_BCOM;
3562 break;
3563 default:
3564 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3565 hw->phy_type);
3566 return -EOPNOTSUPP;
3567 }
3568 break;
3569 #else
3570 dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3571 return -EOPNOTSUPP;
3572 #endif
3573
3574 case CHIP_ID_YUKON:
3575 case CHIP_ID_YUKON_LITE:
3576 case CHIP_ID_YUKON_LP:
3577 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3578 hw->copper = 1;
3579
3580 hw->phy_addr = PHY_ADDR_MARV;
3581 break;
3582
3583 default:
3584 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3585 hw->chip_id);
3586 return -EOPNOTSUPP;
3587 }
3588
3589 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3590 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3591 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3592
3593 /* read the adapters RAM size */
3594 t8 = skge_read8(hw, B2_E_0);
3595 if (is_genesis(hw)) {
3596 if (t8 == 3) {
3597 /* special case: 4 x 64k x 36, offset = 0x80000 */
3598 hw->ram_size = 0x100000;
3599 hw->ram_offset = 0x80000;
3600 } else
3601 hw->ram_size = t8 * 512;
3602 } else if (t8 == 0)
3603 hw->ram_size = 0x20000;
3604 else
3605 hw->ram_size = t8 * 4096;
3606
3607 hw->intr_mask = IS_HW_ERR;
3608
3609 /* Use PHY IRQ for all but fiber based Genesis board */
3610 if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3611 hw->intr_mask |= IS_EXT_REG;
3612
3613 if (is_genesis(hw))
3614 genesis_init(hw);
3615 else {
3616 /* switch power to VCC (WA for VAUX problem) */
3617 skge_write8(hw, B0_POWER_CTRL,
3618 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3619
3620 /* avoid boards with stuck Hardware error bits */
3621 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3622 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3623 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3624 hw->intr_mask &= ~IS_HW_ERR;
3625 }
3626
3627 /* Clear PHY COMA */
3628 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3629 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, ®);
3630 reg &= ~PCI_PHY_COMA;
3631 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3632 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3633
3634
3635 for (i = 0; i < hw->ports; i++) {
3636 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3637 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3638 }
3639 }
3640
3641 /* turn off hardware timer (unused) */
3642 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3643 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3644 skge_write8(hw, B0_LED, LED_STAT_ON);
3645
3646 /* enable the Tx Arbiters */
3647 for (i = 0; i < hw->ports; i++)
3648 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3649
3650 /* Initialize ram interface */
3651 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3652
3653 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3654 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3655 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3656 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3657 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3658 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3659 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3660 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3661 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3662 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3663 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3664 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3665
3666 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3667
3668 /* Set interrupt moderation for Transmit only
3669 * Receive interrupts avoided by NAPI
3670 */
3671 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3672 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3673 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3674
3675 /* Leave irq disabled until first port is brought up. */
3676 skge_write32(hw, B0_IMSK, 0);
3677
3678 for (i = 0; i < hw->ports; i++) {
3679 if (is_genesis(hw))
3680 genesis_reset(hw, i);
3681 else
3682 yukon_reset(hw, i);
3683 }
3684
3685 return 0;
3686 }
3687
3688
3689 #ifdef CONFIG_SKGE_DEBUG
3690
3691 static struct dentry *skge_debug;
3692
skge_debug_show(struct seq_file * seq,void * v)3693 static int skge_debug_show(struct seq_file *seq, void *v)
3694 {
3695 struct net_device *dev = seq->private;
3696 const struct skge_port *skge = netdev_priv(dev);
3697 const struct skge_hw *hw = skge->hw;
3698 const struct skge_element *e;
3699
3700 if (!netif_running(dev))
3701 return -ENETDOWN;
3702
3703 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3704 skge_read32(hw, B0_IMSK));
3705
3706 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3707 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3708 const struct skge_tx_desc *t = e->desc;
3709 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3710 t->control, t->dma_hi, t->dma_lo, t->status,
3711 t->csum_offs, t->csum_write, t->csum_start);
3712 }
3713
3714 seq_puts(seq, "\nRx Ring:\n");
3715 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3716 const struct skge_rx_desc *r = e->desc;
3717
3718 if (r->control & BMU_OWN)
3719 break;
3720
3721 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3722 r->control, r->dma_hi, r->dma_lo, r->status,
3723 r->timestamp, r->csum1, r->csum1_start);
3724 }
3725
3726 return 0;
3727 }
3728 DEFINE_SHOW_ATTRIBUTE(skge_debug);
3729
3730 /*
3731 * Use network device events to create/remove/rename
3732 * debugfs file entries
3733 */
skge_device_event(struct notifier_block * unused,unsigned long event,void * ptr)3734 static int skge_device_event(struct notifier_block *unused,
3735 unsigned long event, void *ptr)
3736 {
3737 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3738 struct skge_port *skge;
3739
3740 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3741 goto done;
3742
3743 skge = netdev_priv(dev);
3744 switch (event) {
3745 case NETDEV_CHANGENAME:
3746 if (skge->debugfs)
3747 skge->debugfs = debugfs_rename(skge_debug,
3748 skge->debugfs,
3749 skge_debug, dev->name);
3750 break;
3751
3752 case NETDEV_GOING_DOWN:
3753 debugfs_remove(skge->debugfs);
3754 skge->debugfs = NULL;
3755 break;
3756
3757 case NETDEV_UP:
3758 skge->debugfs = debugfs_create_file(dev->name, 0444, skge_debug,
3759 dev, &skge_debug_fops);
3760 break;
3761 }
3762
3763 done:
3764 return NOTIFY_DONE;
3765 }
3766
3767 static struct notifier_block skge_notifier = {
3768 .notifier_call = skge_device_event,
3769 };
3770
3771
skge_debug_init(void)3772 static __init void skge_debug_init(void)
3773 {
3774 skge_debug = debugfs_create_dir("skge", NULL);
3775
3776 register_netdevice_notifier(&skge_notifier);
3777 }
3778
skge_debug_cleanup(void)3779 static __exit void skge_debug_cleanup(void)
3780 {
3781 if (skge_debug) {
3782 unregister_netdevice_notifier(&skge_notifier);
3783 debugfs_remove(skge_debug);
3784 skge_debug = NULL;
3785 }
3786 }
3787
3788 #else
3789 #define skge_debug_init()
3790 #define skge_debug_cleanup()
3791 #endif
3792
3793 static const struct net_device_ops skge_netdev_ops = {
3794 .ndo_open = skge_up,
3795 .ndo_stop = skge_down,
3796 .ndo_start_xmit = skge_xmit_frame,
3797 .ndo_eth_ioctl = skge_ioctl,
3798 .ndo_get_stats = skge_get_stats,
3799 .ndo_tx_timeout = skge_tx_timeout,
3800 .ndo_change_mtu = skge_change_mtu,
3801 .ndo_validate_addr = eth_validate_addr,
3802 .ndo_set_rx_mode = skge_set_multicast,
3803 .ndo_set_mac_address = skge_set_mac_address,
3804 #ifdef CONFIG_NET_POLL_CONTROLLER
3805 .ndo_poll_controller = skge_netpoll,
3806 #endif
3807 };
3808
3809
3810 /* Initialize network device */
skge_devinit(struct skge_hw * hw,int port,int highmem)3811 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3812 int highmem)
3813 {
3814 struct skge_port *skge;
3815 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3816 u8 addr[ETH_ALEN];
3817
3818 if (!dev)
3819 return NULL;
3820
3821 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3822 dev->netdev_ops = &skge_netdev_ops;
3823 dev->ethtool_ops = &skge_ethtool_ops;
3824 dev->watchdog_timeo = TX_WATCHDOG;
3825 dev->irq = hw->pdev->irq;
3826
3827 /* MTU range: 60 - 9000 */
3828 dev->min_mtu = ETH_ZLEN;
3829 dev->max_mtu = ETH_JUMBO_MTU;
3830
3831 if (highmem)
3832 dev->features |= NETIF_F_HIGHDMA;
3833
3834 skge = netdev_priv(dev);
3835 netif_napi_add(dev, &skge->napi, skge_poll);
3836 skge->netdev = dev;
3837 skge->hw = hw;
3838 skge->msg_enable = netif_msg_init(debug, default_msg);
3839
3840 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3841 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3842
3843 /* Auto speed and flow control */
3844 skge->autoneg = AUTONEG_ENABLE;
3845 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3846 skge->duplex = -1;
3847 skge->speed = -1;
3848 skge->advertising = skge_supported_modes(hw);
3849
3850 if (device_can_wakeup(&hw->pdev->dev)) {
3851 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3852 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3853 }
3854
3855 hw->dev[port] = dev;
3856
3857 skge->port = port;
3858
3859 /* Only used for Genesis XMAC */
3860 if (is_genesis(hw))
3861 timer_setup(&skge->link_timer, xm_link_timer, 0);
3862 else {
3863 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3864 NETIF_F_RXCSUM;
3865 dev->features |= dev->hw_features;
3866 }
3867
3868 /* read the mac address */
3869 memcpy_fromio(addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3870 eth_hw_addr_set(dev, addr);
3871
3872 return dev;
3873 }
3874
skge_show_addr(struct net_device * dev)3875 static void skge_show_addr(struct net_device *dev)
3876 {
3877 const struct skge_port *skge = netdev_priv(dev);
3878
3879 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3880 }
3881
3882 static int only_32bit_dma;
3883
skge_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3884 static int skge_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3885 {
3886 struct net_device *dev, *dev1;
3887 struct skge_hw *hw;
3888 int err, using_dac = 0;
3889
3890 err = pci_enable_device(pdev);
3891 if (err) {
3892 dev_err(&pdev->dev, "cannot enable PCI device\n");
3893 goto err_out;
3894 }
3895
3896 err = pci_request_regions(pdev, DRV_NAME);
3897 if (err) {
3898 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3899 goto err_out_disable_pdev;
3900 }
3901
3902 pci_set_master(pdev);
3903
3904 if (!only_32bit_dma && !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3905 using_dac = 1;
3906 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
3907 } else if (!(err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))) {
3908 using_dac = 0;
3909 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3910 }
3911
3912 if (err) {
3913 dev_err(&pdev->dev, "no usable DMA configuration\n");
3914 goto err_out_free_regions;
3915 }
3916
3917 #ifdef __BIG_ENDIAN
3918 /* byte swap descriptors in hardware */
3919 {
3920 u32 reg;
3921
3922 pci_read_config_dword(pdev, PCI_DEV_REG2, ®);
3923 reg |= PCI_REV_DESC;
3924 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3925 }
3926 #endif
3927
3928 err = -ENOMEM;
3929 /* space for skge@pci:0000:04:00.0 */
3930 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3931 + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3932 if (!hw)
3933 goto err_out_free_regions;
3934
3935 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3936
3937 hw->pdev = pdev;
3938 spin_lock_init(&hw->hw_lock);
3939 spin_lock_init(&hw->phy_lock);
3940 tasklet_setup(&hw->phy_task, skge_extirq);
3941
3942 hw->regs = ioremap(pci_resource_start(pdev, 0), 0x4000);
3943 if (!hw->regs) {
3944 dev_err(&pdev->dev, "cannot map device registers\n");
3945 goto err_out_free_hw;
3946 }
3947
3948 err = skge_reset(hw);
3949 if (err)
3950 goto err_out_iounmap;
3951
3952 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3953 DRV_VERSION,
3954 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3955 skge_board_name(hw), hw->chip_rev);
3956
3957 dev = skge_devinit(hw, 0, using_dac);
3958 if (!dev) {
3959 err = -ENOMEM;
3960 goto err_out_led_off;
3961 }
3962
3963 /* Some motherboards are broken and has zero in ROM. */
3964 if (!is_valid_ether_addr(dev->dev_addr))
3965 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3966
3967 err = register_netdev(dev);
3968 if (err) {
3969 dev_err(&pdev->dev, "cannot register net device\n");
3970 goto err_out_free_netdev;
3971 }
3972
3973 skge_show_addr(dev);
3974
3975 if (hw->ports > 1) {
3976 dev1 = skge_devinit(hw, 1, using_dac);
3977 if (!dev1) {
3978 err = -ENOMEM;
3979 goto err_out_unregister;
3980 }
3981
3982 err = register_netdev(dev1);
3983 if (err) {
3984 dev_err(&pdev->dev, "cannot register second net device\n");
3985 goto err_out_free_dev1;
3986 }
3987
3988 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3989 hw->irq_name, hw);
3990 if (err) {
3991 dev_err(&pdev->dev, "cannot assign irq %d\n",
3992 pdev->irq);
3993 goto err_out_unregister_dev1;
3994 }
3995
3996 skge_show_addr(dev1);
3997 }
3998 pci_set_drvdata(pdev, hw);
3999
4000 return 0;
4001
4002 err_out_unregister_dev1:
4003 unregister_netdev(dev1);
4004 err_out_free_dev1:
4005 free_netdev(dev1);
4006 err_out_unregister:
4007 unregister_netdev(dev);
4008 err_out_free_netdev:
4009 free_netdev(dev);
4010 err_out_led_off:
4011 skge_write16(hw, B0_LED, LED_STAT_OFF);
4012 err_out_iounmap:
4013 iounmap(hw->regs);
4014 err_out_free_hw:
4015 kfree(hw);
4016 err_out_free_regions:
4017 pci_release_regions(pdev);
4018 err_out_disable_pdev:
4019 pci_disable_device(pdev);
4020 err_out:
4021 return err;
4022 }
4023
skge_remove(struct pci_dev * pdev)4024 static void skge_remove(struct pci_dev *pdev)
4025 {
4026 struct skge_hw *hw = pci_get_drvdata(pdev);
4027 struct net_device *dev0, *dev1;
4028
4029 if (!hw)
4030 return;
4031
4032 dev1 = hw->dev[1];
4033 if (dev1)
4034 unregister_netdev(dev1);
4035 dev0 = hw->dev[0];
4036 unregister_netdev(dev0);
4037
4038 tasklet_kill(&hw->phy_task);
4039
4040 spin_lock_irq(&hw->hw_lock);
4041 hw->intr_mask = 0;
4042
4043 if (hw->ports > 1) {
4044 skge_write32(hw, B0_IMSK, 0);
4045 skge_read32(hw, B0_IMSK);
4046 }
4047 spin_unlock_irq(&hw->hw_lock);
4048
4049 skge_write16(hw, B0_LED, LED_STAT_OFF);
4050 skge_write8(hw, B0_CTST, CS_RST_SET);
4051
4052 if (hw->ports > 1)
4053 free_irq(pdev->irq, hw);
4054 pci_release_regions(pdev);
4055 pci_disable_device(pdev);
4056 if (dev1)
4057 free_netdev(dev1);
4058 free_netdev(dev0);
4059
4060 iounmap(hw->regs);
4061 kfree(hw);
4062 }
4063
4064 #ifdef CONFIG_PM_SLEEP
skge_suspend(struct device * dev)4065 static int skge_suspend(struct device *dev)
4066 {
4067 struct skge_hw *hw = dev_get_drvdata(dev);
4068 int i;
4069
4070 if (!hw)
4071 return 0;
4072
4073 for (i = 0; i < hw->ports; i++) {
4074 struct net_device *dev = hw->dev[i];
4075 struct skge_port *skge = netdev_priv(dev);
4076
4077 if (netif_running(dev))
4078 skge_down(dev);
4079
4080 if (skge->wol)
4081 skge_wol_init(skge);
4082 }
4083
4084 skge_write32(hw, B0_IMSK, 0);
4085
4086 return 0;
4087 }
4088
skge_resume(struct device * dev)4089 static int skge_resume(struct device *dev)
4090 {
4091 struct skge_hw *hw = dev_get_drvdata(dev);
4092 int i, err;
4093
4094 if (!hw)
4095 return 0;
4096
4097 err = skge_reset(hw);
4098 if (err)
4099 goto out;
4100
4101 for (i = 0; i < hw->ports; i++) {
4102 struct net_device *dev = hw->dev[i];
4103
4104 if (netif_running(dev)) {
4105 err = skge_up(dev);
4106
4107 if (err) {
4108 netdev_err(dev, "could not up: %d\n", err);
4109 dev_close(dev);
4110 goto out;
4111 }
4112 }
4113 }
4114 out:
4115 return err;
4116 }
4117
4118 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4119 #define SKGE_PM_OPS (&skge_pm_ops)
4120
4121 #else
4122
4123 #define SKGE_PM_OPS NULL
4124 #endif /* CONFIG_PM_SLEEP */
4125
skge_shutdown(struct pci_dev * pdev)4126 static void skge_shutdown(struct pci_dev *pdev)
4127 {
4128 struct skge_hw *hw = pci_get_drvdata(pdev);
4129 int i;
4130
4131 if (!hw)
4132 return;
4133
4134 for (i = 0; i < hw->ports; i++) {
4135 struct net_device *dev = hw->dev[i];
4136 struct skge_port *skge = netdev_priv(dev);
4137
4138 if (skge->wol)
4139 skge_wol_init(skge);
4140 }
4141
4142 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4143 pci_set_power_state(pdev, PCI_D3hot);
4144 }
4145
4146 static struct pci_driver skge_driver = {
4147 .name = DRV_NAME,
4148 .id_table = skge_id_table,
4149 .probe = skge_probe,
4150 .remove = skge_remove,
4151 .shutdown = skge_shutdown,
4152 .driver.pm = SKGE_PM_OPS,
4153 };
4154
4155 static const struct dmi_system_id skge_32bit_dma_boards[] = {
4156 {
4157 .ident = "Gigabyte nForce boards",
4158 .matches = {
4159 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4160 DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4161 },
4162 },
4163 {
4164 .ident = "ASUS P5NSLI",
4165 .matches = {
4166 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."),
4167 DMI_MATCH(DMI_BOARD_NAME, "P5NSLI")
4168 },
4169 },
4170 {
4171 .ident = "FUJITSU SIEMENS A8NE-FM",
4172 .matches = {
4173 DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."),
4174 DMI_MATCH(DMI_BOARD_NAME, "A8NE-FM")
4175 },
4176 },
4177 {}
4178 };
4179
skge_init_module(void)4180 static int __init skge_init_module(void)
4181 {
4182 if (dmi_check_system(skge_32bit_dma_boards))
4183 only_32bit_dma = 1;
4184 skge_debug_init();
4185 return pci_register_driver(&skge_driver);
4186 }
4187
skge_cleanup_module(void)4188 static void __exit skge_cleanup_module(void)
4189 {
4190 pci_unregister_driver(&skge_driver);
4191 skge_debug_cleanup();
4192 }
4193
4194 module_init(skge_init_module);
4195 module_exit(skge_cleanup_module);
4196