xref: /openbmc/linux/drivers/net/ethernet/marvell/pxa168_eth.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * PXA168 ethernet driver.
3  * Most of the code is derived from mv643xx ethernet driver.
4  *
5  * Copyright (C) 2010 Marvell International Ltd.
6  *		Sachin Sanap <ssanap@marvell.com>
7  *		Zhangfei Gao <zgao6@marvell.com>
8  *		Philip Rakity <prakity@marvell.com>
9  *		Mark Brown <markb@marvell.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version 2
14  * of the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include <linux/bitops.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/in.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/ip.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/of_net.h>
39 #include <linux/phy.h>
40 #include <linux/platform_device.h>
41 #include <linux/pxa168_eth.h>
42 #include <linux/tcp.h>
43 #include <linux/types.h>
44 #include <linux/udp.h>
45 #include <linux/workqueue.h>
46 
47 #include <asm/pgtable.h>
48 #include <asm/cacheflush.h>
49 
50 #define DRIVER_NAME	"pxa168-eth"
51 #define DRIVER_VERSION	"0.3"
52 
53 /*
54  * Registers
55  */
56 
57 #define PHY_ADDRESS		0x0000
58 #define SMI			0x0010
59 #define PORT_CONFIG		0x0400
60 #define PORT_CONFIG_EXT		0x0408
61 #define PORT_COMMAND		0x0410
62 #define PORT_STATUS		0x0418
63 #define HTPR			0x0428
64 #define MAC_ADDR_LOW		0x0430
65 #define MAC_ADDR_HIGH		0x0438
66 #define SDMA_CONFIG		0x0440
67 #define SDMA_CMD		0x0448
68 #define INT_CAUSE		0x0450
69 #define INT_W_CLEAR		0x0454
70 #define INT_MASK		0x0458
71 #define ETH_F_RX_DESC_0		0x0480
72 #define ETH_C_RX_DESC_0		0x04A0
73 #define ETH_C_TX_DESC_1		0x04E4
74 
75 /* smi register */
76 #define SMI_BUSY		(1 << 28)	/* 0 - Write, 1 - Read  */
77 #define SMI_R_VALID		(1 << 27)	/* 0 - Write, 1 - Read  */
78 #define SMI_OP_W		(0 << 26)	/* Write operation      */
79 #define SMI_OP_R		(1 << 26)	/* Read operation */
80 
81 #define PHY_WAIT_ITERATIONS	10
82 
83 #define PXA168_ETH_PHY_ADDR_DEFAULT	0
84 /* RX & TX descriptor command */
85 #define BUF_OWNED_BY_DMA	(1 << 31)
86 
87 /* RX descriptor status */
88 #define RX_EN_INT		(1 << 23)
89 #define RX_FIRST_DESC		(1 << 17)
90 #define RX_LAST_DESC		(1 << 16)
91 #define RX_ERROR		(1 << 15)
92 
93 /* TX descriptor command */
94 #define TX_EN_INT		(1 << 23)
95 #define TX_GEN_CRC		(1 << 22)
96 #define TX_ZERO_PADDING		(1 << 18)
97 #define TX_FIRST_DESC		(1 << 17)
98 #define TX_LAST_DESC		(1 << 16)
99 #define TX_ERROR		(1 << 15)
100 
101 /* SDMA_CMD */
102 #define SDMA_CMD_AT		(1 << 31)
103 #define SDMA_CMD_TXDL		(1 << 24)
104 #define SDMA_CMD_TXDH		(1 << 23)
105 #define SDMA_CMD_AR		(1 << 15)
106 #define SDMA_CMD_ERD		(1 << 7)
107 
108 /* Bit definitions of the Port Config Reg */
109 #define PCR_DUPLEX_FULL		(1 << 15)
110 #define PCR_HS			(1 << 12)
111 #define PCR_EN			(1 << 7)
112 #define PCR_PM			(1 << 0)
113 
114 /* Bit definitions of the Port Config Extend Reg */
115 #define PCXR_2BSM		(1 << 28)
116 #define PCXR_DSCP_EN		(1 << 21)
117 #define PCXR_RMII_EN		(1 << 20)
118 #define PCXR_AN_SPEED_DIS	(1 << 19)
119 #define PCXR_SPEED_100		(1 << 18)
120 #define PCXR_MFL_1518		(0 << 14)
121 #define PCXR_MFL_1536		(1 << 14)
122 #define PCXR_MFL_2048		(2 << 14)
123 #define PCXR_MFL_64K		(3 << 14)
124 #define PCXR_FLOWCTL_DIS	(1 << 12)
125 #define PCXR_FLP		(1 << 11)
126 #define PCXR_AN_FLOWCTL_DIS	(1 << 10)
127 #define PCXR_AN_DUPLEX_DIS	(1 << 9)
128 #define PCXR_PRIO_TX_OFF	3
129 #define PCXR_TX_HIGH_PRI	(7 << PCXR_PRIO_TX_OFF)
130 
131 /* Bit definitions of the SDMA Config Reg */
132 #define SDCR_BSZ_OFF		12
133 #define SDCR_BSZ8		(3 << SDCR_BSZ_OFF)
134 #define SDCR_BSZ4		(2 << SDCR_BSZ_OFF)
135 #define SDCR_BSZ2		(1 << SDCR_BSZ_OFF)
136 #define SDCR_BSZ1		(0 << SDCR_BSZ_OFF)
137 #define SDCR_BLMR		(1 << 6)
138 #define SDCR_BLMT		(1 << 7)
139 #define SDCR_RIFB		(1 << 9)
140 #define SDCR_RC_OFF		2
141 #define SDCR_RC_MAX_RETRANS	(0xf << SDCR_RC_OFF)
142 
143 /*
144  * Bit definitions of the Interrupt Cause Reg
145  * and Interrupt MASK Reg is the same
146  */
147 #define ICR_RXBUF		(1 << 0)
148 #define ICR_TXBUF_H		(1 << 2)
149 #define ICR_TXBUF_L		(1 << 3)
150 #define ICR_TXEND_H		(1 << 6)
151 #define ICR_TXEND_L		(1 << 7)
152 #define ICR_RXERR		(1 << 8)
153 #define ICR_TXERR_H		(1 << 10)
154 #define ICR_TXERR_L		(1 << 11)
155 #define ICR_TX_UDR		(1 << 13)
156 #define ICR_MII_CH		(1 << 28)
157 
158 #define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
159 				ICR_TXERR_H  | ICR_TXERR_L |\
160 				ICR_TXEND_H  | ICR_TXEND_L |\
161 				ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
162 
163 #define ETH_HW_IP_ALIGN		2	/* hw aligns IP header */
164 
165 #define NUM_RX_DESCS		64
166 #define NUM_TX_DESCS		64
167 
168 #define HASH_ADD		0
169 #define HASH_DELETE		1
170 #define HASH_ADDR_TABLE_SIZE	0x4000	/* 16K (1/2K address - PCR_HS == 1) */
171 #define HOP_NUMBER		12
172 
173 /* Bit definitions for Port status */
174 #define PORT_SPEED_100		(1 << 0)
175 #define FULL_DUPLEX		(1 << 1)
176 #define FLOW_CONTROL_DISABLED	(1 << 2)
177 #define LINK_UP			(1 << 3)
178 
179 /* Bit definitions for work to be done */
180 #define WORK_TX_DONE		(1 << 1)
181 
182 /*
183  * Misc definitions.
184  */
185 #define SKB_DMA_REALIGN		((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
186 
187 struct rx_desc {
188 	u32 cmd_sts;		/* Descriptor command status            */
189 	u16 byte_cnt;		/* Descriptor buffer byte count         */
190 	u16 buf_size;		/* Buffer size                          */
191 	u32 buf_ptr;		/* Descriptor buffer pointer            */
192 	u32 next_desc_ptr;	/* Next descriptor pointer              */
193 };
194 
195 struct tx_desc {
196 	u32 cmd_sts;		/* Command/status field                 */
197 	u16 reserved;
198 	u16 byte_cnt;		/* buffer byte count                    */
199 	u32 buf_ptr;		/* pointer to buffer for this descriptor */
200 	u32 next_desc_ptr;	/* Pointer to next descriptor           */
201 };
202 
203 struct pxa168_eth_private {
204 	int port_num;		/* User Ethernet port number    */
205 	int phy_addr;
206 	int phy_speed;
207 	int phy_duplex;
208 	phy_interface_t phy_intf;
209 
210 	int rx_resource_err;	/* Rx ring resource error flag */
211 
212 	/* Next available and first returning Rx resource */
213 	int rx_curr_desc_q, rx_used_desc_q;
214 
215 	/* Next available and first returning Tx resource */
216 	int tx_curr_desc_q, tx_used_desc_q;
217 
218 	struct rx_desc *p_rx_desc_area;
219 	dma_addr_t rx_desc_dma;
220 	int rx_desc_area_size;
221 	struct sk_buff **rx_skb;
222 
223 	struct tx_desc *p_tx_desc_area;
224 	dma_addr_t tx_desc_dma;
225 	int tx_desc_area_size;
226 	struct sk_buff **tx_skb;
227 
228 	struct work_struct tx_timeout_task;
229 
230 	struct net_device *dev;
231 	struct napi_struct napi;
232 	u8 work_todo;
233 	int skb_size;
234 
235 	/* Size of Tx Ring per queue */
236 	int tx_ring_size;
237 	/* Number of tx descriptors in use */
238 	int tx_desc_count;
239 	/* Size of Rx Ring per queue */
240 	int rx_ring_size;
241 	/* Number of rx descriptors in use */
242 	int rx_desc_count;
243 
244 	/*
245 	 * Used in case RX Ring is empty, which can occur when
246 	 * system does not have resources (skb's)
247 	 */
248 	struct timer_list timeout;
249 	struct mii_bus *smi_bus;
250 	struct phy_device *phy;
251 
252 	/* clock */
253 	struct clk *clk;
254 	struct pxa168_eth_platform_data *pd;
255 	/*
256 	 * Ethernet controller base address.
257 	 */
258 	void __iomem *base;
259 
260 	/* Pointer to the hardware address filter table */
261 	void *htpr;
262 	dma_addr_t htpr_dma;
263 };
264 
265 struct addr_table_entry {
266 	__le32 lo;
267 	__le32 hi;
268 };
269 
270 /* Bit fields of a Hash Table Entry */
271 enum hash_table_entry {
272 	HASH_ENTRY_VALID = 1,
273 	SKIP = 2,
274 	HASH_ENTRY_RECEIVE_DISCARD = 4,
275 	HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
276 };
277 
278 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
279 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
280 static int pxa168_init_hw(struct pxa168_eth_private *pep);
281 static int pxa168_init_phy(struct net_device *dev);
282 static void eth_port_reset(struct net_device *dev);
283 static void eth_port_start(struct net_device *dev);
284 static int pxa168_eth_open(struct net_device *dev);
285 static int pxa168_eth_stop(struct net_device *dev);
286 
287 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
288 {
289 	return readl(pep->base + offset);
290 }
291 
292 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
293 {
294 	writel(data, pep->base + offset);
295 }
296 
297 static void abort_dma(struct pxa168_eth_private *pep)
298 {
299 	int delay;
300 	int max_retries = 40;
301 
302 	do {
303 		wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
304 		udelay(100);
305 
306 		delay = 10;
307 		while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
308 		       && delay-- > 0) {
309 			udelay(10);
310 		}
311 	} while (max_retries-- > 0 && delay <= 0);
312 
313 	if (max_retries <= 0)
314 		netdev_err(pep->dev, "%s : DMA Stuck\n", __func__);
315 }
316 
317 static void rxq_refill(struct net_device *dev)
318 {
319 	struct pxa168_eth_private *pep = netdev_priv(dev);
320 	struct sk_buff *skb;
321 	struct rx_desc *p_used_rx_desc;
322 	int used_rx_desc;
323 
324 	while (pep->rx_desc_count < pep->rx_ring_size) {
325 		int size;
326 
327 		skb = netdev_alloc_skb(dev, pep->skb_size);
328 		if (!skb)
329 			break;
330 		if (SKB_DMA_REALIGN)
331 			skb_reserve(skb, SKB_DMA_REALIGN);
332 		pep->rx_desc_count++;
333 		/* Get 'used' Rx descriptor */
334 		used_rx_desc = pep->rx_used_desc_q;
335 		p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
336 		size = skb_end_pointer(skb) - skb->data;
337 		p_used_rx_desc->buf_ptr = dma_map_single(NULL,
338 							 skb->data,
339 							 size,
340 							 DMA_FROM_DEVICE);
341 		p_used_rx_desc->buf_size = size;
342 		pep->rx_skb[used_rx_desc] = skb;
343 
344 		/* Return the descriptor to DMA ownership */
345 		wmb();
346 		p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
347 		wmb();
348 
349 		/* Move the used descriptor pointer to the next descriptor */
350 		pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
351 
352 		/* Any Rx return cancels the Rx resource error status */
353 		pep->rx_resource_err = 0;
354 
355 		skb_reserve(skb, ETH_HW_IP_ALIGN);
356 	}
357 
358 	/*
359 	 * If RX ring is empty of SKB, set a timer to try allocating
360 	 * again at a later time.
361 	 */
362 	if (pep->rx_desc_count == 0) {
363 		pep->timeout.expires = jiffies + (HZ / 10);
364 		add_timer(&pep->timeout);
365 	}
366 }
367 
368 static inline void rxq_refill_timer_wrapper(unsigned long data)
369 {
370 	struct pxa168_eth_private *pep = (void *)data;
371 	napi_schedule(&pep->napi);
372 }
373 
374 static inline u8 flip_8_bits(u8 x)
375 {
376 	return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
377 	    | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
378 	    | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
379 	    | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
380 }
381 
382 static void nibble_swap_every_byte(unsigned char *mac_addr)
383 {
384 	int i;
385 	for (i = 0; i < ETH_ALEN; i++) {
386 		mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
387 				((mac_addr[i] & 0xf0) >> 4);
388 	}
389 }
390 
391 static void inverse_every_nibble(unsigned char *mac_addr)
392 {
393 	int i;
394 	for (i = 0; i < ETH_ALEN; i++)
395 		mac_addr[i] = flip_8_bits(mac_addr[i]);
396 }
397 
398 /*
399  * ----------------------------------------------------------------------------
400  * This function will calculate the hash function of the address.
401  * Inputs
402  * mac_addr_orig    - MAC address.
403  * Outputs
404  * return the calculated entry.
405  */
406 static u32 hash_function(unsigned char *mac_addr_orig)
407 {
408 	u32 hash_result;
409 	u32 addr0;
410 	u32 addr1;
411 	u32 addr2;
412 	u32 addr3;
413 	unsigned char mac_addr[ETH_ALEN];
414 
415 	/* Make a copy of MAC address since we are going to performe bit
416 	 * operations on it
417 	 */
418 	memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
419 
420 	nibble_swap_every_byte(mac_addr);
421 	inverse_every_nibble(mac_addr);
422 
423 	addr0 = (mac_addr[5] >> 2) & 0x3f;
424 	addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
425 	addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
426 	addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
427 
428 	hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
429 	hash_result = hash_result & 0x07ff;
430 	return hash_result;
431 }
432 
433 /*
434  * ----------------------------------------------------------------------------
435  * This function will add/del an entry to the address table.
436  * Inputs
437  * pep - ETHERNET .
438  * mac_addr - MAC address.
439  * skip - if 1, skip this address.Used in case of deleting an entry which is a
440  *	  part of chain in the hash table.We can't just delete the entry since
441  *	  that will break the chain.We need to defragment the tables time to
442  *	  time.
443  * rd   - 0 Discard packet upon match.
444  *	- 1 Receive packet upon match.
445  * Outputs
446  * address table entry is added/deleted.
447  * 0 if success.
448  * -ENOSPC if table full
449  */
450 static int add_del_hash_entry(struct pxa168_eth_private *pep,
451 			      unsigned char *mac_addr,
452 			      u32 rd, u32 skip, int del)
453 {
454 	struct addr_table_entry *entry, *start;
455 	u32 new_high;
456 	u32 new_low;
457 	u32 i;
458 
459 	new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
460 	    | (((mac_addr[1] >> 0) & 0xf) << 11)
461 	    | (((mac_addr[0] >> 4) & 0xf) << 7)
462 	    | (((mac_addr[0] >> 0) & 0xf) << 3)
463 	    | (((mac_addr[3] >> 4) & 0x1) << 31)
464 	    | (((mac_addr[3] >> 0) & 0xf) << 27)
465 	    | (((mac_addr[2] >> 4) & 0xf) << 23)
466 	    | (((mac_addr[2] >> 0) & 0xf) << 19)
467 	    | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
468 	    | HASH_ENTRY_VALID;
469 
470 	new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
471 	    | (((mac_addr[5] >> 0) & 0xf) << 11)
472 	    | (((mac_addr[4] >> 4) & 0xf) << 7)
473 	    | (((mac_addr[4] >> 0) & 0xf) << 3)
474 	    | (((mac_addr[3] >> 5) & 0x7) << 0);
475 
476 	/*
477 	 * Pick the appropriate table, start scanning for free/reusable
478 	 * entries at the index obtained by hashing the specified MAC address
479 	 */
480 	start = pep->htpr;
481 	entry = start + hash_function(mac_addr);
482 	for (i = 0; i < HOP_NUMBER; i++) {
483 		if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
484 			break;
485 		} else {
486 			/* if same address put in same position */
487 			if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
488 				(new_low & 0xfffffff8)) &&
489 				(le32_to_cpu(entry->hi) == new_high)) {
490 				break;
491 			}
492 		}
493 		if (entry == start + 0x7ff)
494 			entry = start;
495 		else
496 			entry++;
497 	}
498 
499 	if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
500 	    (le32_to_cpu(entry->hi) != new_high) && del)
501 		return 0;
502 
503 	if (i == HOP_NUMBER) {
504 		if (!del) {
505 			netdev_info(pep->dev,
506 				    "%s: table section is full, need to "
507 				    "move to 16kB implementation?\n",
508 				    __FILE__);
509 			return -ENOSPC;
510 		} else
511 			return 0;
512 	}
513 
514 	/*
515 	 * Update the selected entry
516 	 */
517 	if (del) {
518 		entry->hi = 0;
519 		entry->lo = 0;
520 	} else {
521 		entry->hi = cpu_to_le32(new_high);
522 		entry->lo = cpu_to_le32(new_low);
523 	}
524 
525 	return 0;
526 }
527 
528 /*
529  * ----------------------------------------------------------------------------
530  *  Create an addressTable entry from MAC address info
531  *  found in the specifed net_device struct
532  *
533  *  Input : pointer to ethernet interface network device structure
534  *  Output : N/A
535  */
536 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
537 					  unsigned char *oaddr,
538 					  unsigned char *addr)
539 {
540 	/* Delete old entry */
541 	if (oaddr)
542 		add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
543 	/* Add new entry */
544 	add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
545 }
546 
547 static int init_hash_table(struct pxa168_eth_private *pep)
548 {
549 	/*
550 	 * Hardware expects CPU to build a hash table based on a predefined
551 	 * hash function and populate it based on hardware address. The
552 	 * location of the hash table is identified by 32-bit pointer stored
553 	 * in HTPR internal register. Two possible sizes exists for the hash
554 	 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
555 	 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
556 	 * 1/2kB.
557 	 */
558 	/* TODO: Add support for 8kB hash table and alternative hash
559 	 * function.Driver can dynamically switch to them if the 1/2kB hash
560 	 * table is full.
561 	 */
562 	if (pep->htpr == NULL) {
563 		pep->htpr = dma_zalloc_coherent(pep->dev->dev.parent,
564 						HASH_ADDR_TABLE_SIZE,
565 						&pep->htpr_dma, GFP_KERNEL);
566 		if (pep->htpr == NULL)
567 			return -ENOMEM;
568 	} else {
569 		memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
570 	}
571 	wrl(pep, HTPR, pep->htpr_dma);
572 	return 0;
573 }
574 
575 static void pxa168_eth_set_rx_mode(struct net_device *dev)
576 {
577 	struct pxa168_eth_private *pep = netdev_priv(dev);
578 	struct netdev_hw_addr *ha;
579 	u32 val;
580 
581 	val = rdl(pep, PORT_CONFIG);
582 	if (dev->flags & IFF_PROMISC)
583 		val |= PCR_PM;
584 	else
585 		val &= ~PCR_PM;
586 	wrl(pep, PORT_CONFIG, val);
587 
588 	/*
589 	 * Remove the old list of MAC address and add dev->addr
590 	 * and multicast address.
591 	 */
592 	memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
593 	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
594 
595 	netdev_for_each_mc_addr(ha, dev)
596 		update_hash_table_mac_address(pep, NULL, ha->addr);
597 }
598 
599 static void pxa168_eth_get_mac_address(struct net_device *dev,
600 				       unsigned char *addr)
601 {
602 	struct pxa168_eth_private *pep = netdev_priv(dev);
603 	unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH);
604 	unsigned int mac_l = rdl(pep, MAC_ADDR_LOW);
605 
606 	addr[0] = (mac_h >> 24) & 0xff;
607 	addr[1] = (mac_h >> 16) & 0xff;
608 	addr[2] = (mac_h >> 8) & 0xff;
609 	addr[3] = mac_h & 0xff;
610 	addr[4] = (mac_l >> 8) & 0xff;
611 	addr[5] = mac_l & 0xff;
612 }
613 
614 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
615 {
616 	struct sockaddr *sa = addr;
617 	struct pxa168_eth_private *pep = netdev_priv(dev);
618 	unsigned char oldMac[ETH_ALEN];
619 	u32 mac_h, mac_l;
620 
621 	if (!is_valid_ether_addr(sa->sa_data))
622 		return -EADDRNOTAVAIL;
623 	memcpy(oldMac, dev->dev_addr, ETH_ALEN);
624 	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
625 
626 	mac_h = dev->dev_addr[0] << 24;
627 	mac_h |= dev->dev_addr[1] << 16;
628 	mac_h |= dev->dev_addr[2] << 8;
629 	mac_h |= dev->dev_addr[3];
630 	mac_l = dev->dev_addr[4] << 8;
631 	mac_l |= dev->dev_addr[5];
632 	wrl(pep, MAC_ADDR_HIGH, mac_h);
633 	wrl(pep, MAC_ADDR_LOW, mac_l);
634 
635 	netif_addr_lock_bh(dev);
636 	update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
637 	netif_addr_unlock_bh(dev);
638 	return 0;
639 }
640 
641 static void eth_port_start(struct net_device *dev)
642 {
643 	unsigned int val = 0;
644 	struct pxa168_eth_private *pep = netdev_priv(dev);
645 	int tx_curr_desc, rx_curr_desc;
646 
647 	phy_start(pep->phy);
648 
649 	/* Assignment of Tx CTRP of given queue */
650 	tx_curr_desc = pep->tx_curr_desc_q;
651 	wrl(pep, ETH_C_TX_DESC_1,
652 	    (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
653 
654 	/* Assignment of Rx CRDP of given queue */
655 	rx_curr_desc = pep->rx_curr_desc_q;
656 	wrl(pep, ETH_C_RX_DESC_0,
657 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
658 
659 	wrl(pep, ETH_F_RX_DESC_0,
660 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
661 
662 	/* Clear all interrupts */
663 	wrl(pep, INT_CAUSE, 0);
664 
665 	/* Enable all interrupts for receive, transmit and error. */
666 	wrl(pep, INT_MASK, ALL_INTS);
667 
668 	val = rdl(pep, PORT_CONFIG);
669 	val |= PCR_EN;
670 	wrl(pep, PORT_CONFIG, val);
671 
672 	/* Start RX DMA engine */
673 	val = rdl(pep, SDMA_CMD);
674 	val |= SDMA_CMD_ERD;
675 	wrl(pep, SDMA_CMD, val);
676 }
677 
678 static void eth_port_reset(struct net_device *dev)
679 {
680 	struct pxa168_eth_private *pep = netdev_priv(dev);
681 	unsigned int val = 0;
682 
683 	/* Stop all interrupts for receive, transmit and error. */
684 	wrl(pep, INT_MASK, 0);
685 
686 	/* Clear all interrupts */
687 	wrl(pep, INT_CAUSE, 0);
688 
689 	/* Stop RX DMA */
690 	val = rdl(pep, SDMA_CMD);
691 	val &= ~SDMA_CMD_ERD;	/* abort dma command */
692 
693 	/* Abort any transmit and receive operations and put DMA
694 	 * in idle state.
695 	 */
696 	abort_dma(pep);
697 
698 	/* Disable port */
699 	val = rdl(pep, PORT_CONFIG);
700 	val &= ~PCR_EN;
701 	wrl(pep, PORT_CONFIG, val);
702 
703 	phy_stop(pep->phy);
704 }
705 
706 /*
707  * txq_reclaim - Free the tx desc data for completed descriptors
708  * If force is non-zero, frees uncompleted descriptors as well
709  */
710 static int txq_reclaim(struct net_device *dev, int force)
711 {
712 	struct pxa168_eth_private *pep = netdev_priv(dev);
713 	struct tx_desc *desc;
714 	u32 cmd_sts;
715 	struct sk_buff *skb;
716 	int tx_index;
717 	dma_addr_t addr;
718 	int count;
719 	int released = 0;
720 
721 	netif_tx_lock(dev);
722 
723 	pep->work_todo &= ~WORK_TX_DONE;
724 	while (pep->tx_desc_count > 0) {
725 		tx_index = pep->tx_used_desc_q;
726 		desc = &pep->p_tx_desc_area[tx_index];
727 		cmd_sts = desc->cmd_sts;
728 		if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
729 			if (released > 0) {
730 				goto txq_reclaim_end;
731 			} else {
732 				released = -1;
733 				goto txq_reclaim_end;
734 			}
735 		}
736 		pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
737 		pep->tx_desc_count--;
738 		addr = desc->buf_ptr;
739 		count = desc->byte_cnt;
740 		skb = pep->tx_skb[tx_index];
741 		if (skb)
742 			pep->tx_skb[tx_index] = NULL;
743 
744 		if (cmd_sts & TX_ERROR) {
745 			if (net_ratelimit())
746 				netdev_err(dev, "Error in TX\n");
747 			dev->stats.tx_errors++;
748 		}
749 		dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
750 		if (skb)
751 			dev_kfree_skb_irq(skb);
752 		released++;
753 	}
754 txq_reclaim_end:
755 	netif_tx_unlock(dev);
756 	return released;
757 }
758 
759 static void pxa168_eth_tx_timeout(struct net_device *dev)
760 {
761 	struct pxa168_eth_private *pep = netdev_priv(dev);
762 
763 	netdev_info(dev, "TX timeout  desc_count %d\n", pep->tx_desc_count);
764 
765 	schedule_work(&pep->tx_timeout_task);
766 }
767 
768 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
769 {
770 	struct pxa168_eth_private *pep = container_of(work,
771 						 struct pxa168_eth_private,
772 						 tx_timeout_task);
773 	struct net_device *dev = pep->dev;
774 	pxa168_eth_stop(dev);
775 	pxa168_eth_open(dev);
776 }
777 
778 static int rxq_process(struct net_device *dev, int budget)
779 {
780 	struct pxa168_eth_private *pep = netdev_priv(dev);
781 	struct net_device_stats *stats = &dev->stats;
782 	unsigned int received_packets = 0;
783 	struct sk_buff *skb;
784 
785 	while (budget-- > 0) {
786 		int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
787 		struct rx_desc *rx_desc;
788 		unsigned int cmd_sts;
789 
790 		/* Do not process Rx ring in case of Rx ring resource error */
791 		if (pep->rx_resource_err)
792 			break;
793 		rx_curr_desc = pep->rx_curr_desc_q;
794 		rx_used_desc = pep->rx_used_desc_q;
795 		rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
796 		cmd_sts = rx_desc->cmd_sts;
797 		rmb();
798 		if (cmd_sts & (BUF_OWNED_BY_DMA))
799 			break;
800 		skb = pep->rx_skb[rx_curr_desc];
801 		pep->rx_skb[rx_curr_desc] = NULL;
802 
803 		rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
804 		pep->rx_curr_desc_q = rx_next_curr_desc;
805 
806 		/* Rx descriptors exhausted. */
807 		/* Set the Rx ring resource error flag */
808 		if (rx_next_curr_desc == rx_used_desc)
809 			pep->rx_resource_err = 1;
810 		pep->rx_desc_count--;
811 		dma_unmap_single(NULL, rx_desc->buf_ptr,
812 				 rx_desc->buf_size,
813 				 DMA_FROM_DEVICE);
814 		received_packets++;
815 		/*
816 		 * Update statistics.
817 		 * Note byte count includes 4 byte CRC count
818 		 */
819 		stats->rx_packets++;
820 		stats->rx_bytes += rx_desc->byte_cnt;
821 		/*
822 		 * In case received a packet without first / last bits on OR
823 		 * the error summary bit is on, the packets needs to be droped.
824 		 */
825 		if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
826 		     (RX_FIRST_DESC | RX_LAST_DESC))
827 		    || (cmd_sts & RX_ERROR)) {
828 
829 			stats->rx_dropped++;
830 			if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
831 			    (RX_FIRST_DESC | RX_LAST_DESC)) {
832 				if (net_ratelimit())
833 					netdev_err(dev,
834 						   "Rx pkt on multiple desc\n");
835 			}
836 			if (cmd_sts & RX_ERROR)
837 				stats->rx_errors++;
838 			dev_kfree_skb_irq(skb);
839 		} else {
840 			/*
841 			 * The -4 is for the CRC in the trailer of the
842 			 * received packet
843 			 */
844 			skb_put(skb, rx_desc->byte_cnt - 4);
845 			skb->protocol = eth_type_trans(skb, dev);
846 			netif_receive_skb(skb);
847 		}
848 	}
849 	/* Fill RX ring with skb's */
850 	rxq_refill(dev);
851 	return received_packets;
852 }
853 
854 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
855 				     struct net_device *dev)
856 {
857 	u32 icr;
858 	int ret = 0;
859 
860 	icr = rdl(pep, INT_CAUSE);
861 	if (icr == 0)
862 		return IRQ_NONE;
863 
864 	wrl(pep, INT_CAUSE, ~icr);
865 	if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
866 		pep->work_todo |= WORK_TX_DONE;
867 		ret = 1;
868 	}
869 	if (icr & ICR_RXBUF)
870 		ret = 1;
871 	return ret;
872 }
873 
874 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
875 {
876 	struct net_device *dev = (struct net_device *)dev_id;
877 	struct pxa168_eth_private *pep = netdev_priv(dev);
878 
879 	if (unlikely(!pxa168_eth_collect_events(pep, dev)))
880 		return IRQ_NONE;
881 	/* Disable interrupts */
882 	wrl(pep, INT_MASK, 0);
883 	napi_schedule(&pep->napi);
884 	return IRQ_HANDLED;
885 }
886 
887 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
888 {
889 	int skb_size;
890 
891 	/*
892 	 * Reserve 2+14 bytes for an ethernet header (the hardware
893 	 * automatically prepends 2 bytes of dummy data to each
894 	 * received packet), 16 bytes for up to four VLAN tags, and
895 	 * 4 bytes for the trailing FCS -- 36 bytes total.
896 	 */
897 	skb_size = pep->dev->mtu + 36;
898 
899 	/*
900 	 * Make sure that the skb size is a multiple of 8 bytes, as
901 	 * the lower three bits of the receive descriptor's buffer
902 	 * size field are ignored by the hardware.
903 	 */
904 	pep->skb_size = (skb_size + 7) & ~7;
905 
906 	/*
907 	 * If NET_SKB_PAD is smaller than a cache line,
908 	 * netdev_alloc_skb() will cause skb->data to be misaligned
909 	 * to a cache line boundary.  If this is the case, include
910 	 * some extra space to allow re-aligning the data area.
911 	 */
912 	pep->skb_size += SKB_DMA_REALIGN;
913 
914 }
915 
916 static int set_port_config_ext(struct pxa168_eth_private *pep)
917 {
918 	int skb_size;
919 
920 	pxa168_eth_recalc_skb_size(pep);
921 	if  (pep->skb_size <= 1518)
922 		skb_size = PCXR_MFL_1518;
923 	else if (pep->skb_size <= 1536)
924 		skb_size = PCXR_MFL_1536;
925 	else if (pep->skb_size <= 2048)
926 		skb_size = PCXR_MFL_2048;
927 	else
928 		skb_size = PCXR_MFL_64K;
929 
930 	/* Extended Port Configuration */
931 	wrl(pep, PORT_CONFIG_EXT,
932 	    PCXR_AN_SPEED_DIS |		 /* Disable HW AN */
933 	    PCXR_AN_DUPLEX_DIS |
934 	    PCXR_AN_FLOWCTL_DIS |
935 	    PCXR_2BSM |			 /* Two byte prefix aligns IP hdr */
936 	    PCXR_DSCP_EN |		 /* Enable DSCP in IP */
937 	    skb_size | PCXR_FLP |	 /* do not force link pass */
938 	    PCXR_TX_HIGH_PRI);		 /* Transmit - high priority queue */
939 
940 	return 0;
941 }
942 
943 static void pxa168_eth_adjust_link(struct net_device *dev)
944 {
945 	struct pxa168_eth_private *pep = netdev_priv(dev);
946 	struct phy_device *phy = pep->phy;
947 	u32 cfg, cfg_o = rdl(pep, PORT_CONFIG);
948 	u32 cfgext, cfgext_o = rdl(pep, PORT_CONFIG_EXT);
949 
950 	cfg = cfg_o & ~PCR_DUPLEX_FULL;
951 	cfgext = cfgext_o & ~(PCXR_SPEED_100 | PCXR_FLOWCTL_DIS | PCXR_RMII_EN);
952 
953 	if (phy->interface == PHY_INTERFACE_MODE_RMII)
954 		cfgext |= PCXR_RMII_EN;
955 	if (phy->speed == SPEED_100)
956 		cfgext |= PCXR_SPEED_100;
957 	if (phy->duplex)
958 		cfg |= PCR_DUPLEX_FULL;
959 	if (!phy->pause)
960 		cfgext |= PCXR_FLOWCTL_DIS;
961 
962 	/* Bail out if there has nothing changed */
963 	if (cfg == cfg_o && cfgext == cfgext_o)
964 		return;
965 
966 	wrl(pep, PORT_CONFIG, cfg);
967 	wrl(pep, PORT_CONFIG_EXT, cfgext);
968 
969 	phy_print_status(phy);
970 }
971 
972 static int pxa168_init_phy(struct net_device *dev)
973 {
974 	struct pxa168_eth_private *pep = netdev_priv(dev);
975 	struct ethtool_cmd cmd;
976 	int err;
977 
978 	if (pep->phy)
979 		return 0;
980 
981 	pep->phy = mdiobus_scan(pep->smi_bus, pep->phy_addr);
982 	if (!pep->phy)
983 		return -ENODEV;
984 
985 	err = phy_connect_direct(dev, pep->phy, pxa168_eth_adjust_link,
986 				 pep->phy_intf);
987 	if (err)
988 		return err;
989 
990 	err = pxa168_get_settings(dev, &cmd);
991 	if (err)
992 		return err;
993 
994 	cmd.phy_address = pep->phy_addr;
995 	cmd.speed = pep->phy_speed;
996 	cmd.duplex = pep->phy_duplex;
997 	cmd.advertising = PHY_BASIC_FEATURES;
998 	cmd.autoneg = AUTONEG_ENABLE;
999 
1000 	if (cmd.speed != 0)
1001 		cmd.autoneg = AUTONEG_DISABLE;
1002 
1003 	return pxa168_set_settings(dev, &cmd);
1004 }
1005 
1006 static int pxa168_init_hw(struct pxa168_eth_private *pep)
1007 {
1008 	int err = 0;
1009 
1010 	/* Disable interrupts */
1011 	wrl(pep, INT_MASK, 0);
1012 	wrl(pep, INT_CAUSE, 0);
1013 	/* Write to ICR to clear interrupts. */
1014 	wrl(pep, INT_W_CLEAR, 0);
1015 	/* Abort any transmit and receive operations and put DMA
1016 	 * in idle state.
1017 	 */
1018 	abort_dma(pep);
1019 	/* Initialize address hash table */
1020 	err = init_hash_table(pep);
1021 	if (err)
1022 		return err;
1023 	/* SDMA configuration */
1024 	wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |	/* Burst size = 32 bytes */
1025 	    SDCR_RIFB |				/* Rx interrupt on frame */
1026 	    SDCR_BLMT |				/* Little endian transmit */
1027 	    SDCR_BLMR |				/* Little endian receive */
1028 	    SDCR_RC_MAX_RETRANS);		/* Max retransmit count */
1029 	/* Port Configuration */
1030 	wrl(pep, PORT_CONFIG, PCR_HS);		/* Hash size is 1/2kb */
1031 	set_port_config_ext(pep);
1032 
1033 	return err;
1034 }
1035 
1036 static int rxq_init(struct net_device *dev)
1037 {
1038 	struct pxa168_eth_private *pep = netdev_priv(dev);
1039 	struct rx_desc *p_rx_desc;
1040 	int size = 0, i = 0;
1041 	int rx_desc_num = pep->rx_ring_size;
1042 
1043 	/* Allocate RX skb rings */
1044 	pep->rx_skb = kzalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1045 			     GFP_KERNEL);
1046 	if (!pep->rx_skb)
1047 		return -ENOMEM;
1048 
1049 	/* Allocate RX ring */
1050 	pep->rx_desc_count = 0;
1051 	size = pep->rx_ring_size * sizeof(struct rx_desc);
1052 	pep->rx_desc_area_size = size;
1053 	pep->p_rx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1054 						  &pep->rx_desc_dma,
1055 						  GFP_KERNEL);
1056 	if (!pep->p_rx_desc_area)
1057 		goto out;
1058 
1059 	/* initialize the next_desc_ptr links in the Rx descriptors ring */
1060 	p_rx_desc = pep->p_rx_desc_area;
1061 	for (i = 0; i < rx_desc_num; i++) {
1062 		p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1063 		    ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1064 	}
1065 	/* Save Rx desc pointer to driver struct. */
1066 	pep->rx_curr_desc_q = 0;
1067 	pep->rx_used_desc_q = 0;
1068 	pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1069 	return 0;
1070 out:
1071 	kfree(pep->rx_skb);
1072 	return -ENOMEM;
1073 }
1074 
1075 static void rxq_deinit(struct net_device *dev)
1076 {
1077 	struct pxa168_eth_private *pep = netdev_priv(dev);
1078 	int curr;
1079 
1080 	/* Free preallocated skb's on RX rings */
1081 	for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1082 		if (pep->rx_skb[curr]) {
1083 			dev_kfree_skb(pep->rx_skb[curr]);
1084 			pep->rx_desc_count--;
1085 		}
1086 	}
1087 	if (pep->rx_desc_count)
1088 		netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n",
1089 			   pep->rx_desc_count);
1090 	/* Free RX ring */
1091 	if (pep->p_rx_desc_area)
1092 		dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1093 				  pep->p_rx_desc_area, pep->rx_desc_dma);
1094 	kfree(pep->rx_skb);
1095 }
1096 
1097 static int txq_init(struct net_device *dev)
1098 {
1099 	struct pxa168_eth_private *pep = netdev_priv(dev);
1100 	struct tx_desc *p_tx_desc;
1101 	int size = 0, i = 0;
1102 	int tx_desc_num = pep->tx_ring_size;
1103 
1104 	pep->tx_skb = kzalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1105 			     GFP_KERNEL);
1106 	if (!pep->tx_skb)
1107 		return -ENOMEM;
1108 
1109 	/* Allocate TX ring */
1110 	pep->tx_desc_count = 0;
1111 	size = pep->tx_ring_size * sizeof(struct tx_desc);
1112 	pep->tx_desc_area_size = size;
1113 	pep->p_tx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1114 						  &pep->tx_desc_dma,
1115 						  GFP_KERNEL);
1116 	if (!pep->p_tx_desc_area)
1117 		goto out;
1118 	/* Initialize the next_desc_ptr links in the Tx descriptors ring */
1119 	p_tx_desc = pep->p_tx_desc_area;
1120 	for (i = 0; i < tx_desc_num; i++) {
1121 		p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1122 		    ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1123 	}
1124 	pep->tx_curr_desc_q = 0;
1125 	pep->tx_used_desc_q = 0;
1126 	pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1127 	return 0;
1128 out:
1129 	kfree(pep->tx_skb);
1130 	return -ENOMEM;
1131 }
1132 
1133 static void txq_deinit(struct net_device *dev)
1134 {
1135 	struct pxa168_eth_private *pep = netdev_priv(dev);
1136 
1137 	/* Free outstanding skb's on TX ring */
1138 	txq_reclaim(dev, 1);
1139 	BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1140 	/* Free TX ring */
1141 	if (pep->p_tx_desc_area)
1142 		dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1143 				  pep->p_tx_desc_area, pep->tx_desc_dma);
1144 	kfree(pep->tx_skb);
1145 }
1146 
1147 static int pxa168_eth_open(struct net_device *dev)
1148 {
1149 	struct pxa168_eth_private *pep = netdev_priv(dev);
1150 	int err;
1151 
1152 	err = pxa168_init_phy(dev);
1153 	if (err)
1154 		return err;
1155 
1156 	err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1157 	if (err) {
1158 		dev_err(&dev->dev, "can't assign irq\n");
1159 		return -EAGAIN;
1160 	}
1161 	pep->rx_resource_err = 0;
1162 	err = rxq_init(dev);
1163 	if (err != 0)
1164 		goto out_free_irq;
1165 	err = txq_init(dev);
1166 	if (err != 0)
1167 		goto out_free_rx_skb;
1168 	pep->rx_used_desc_q = 0;
1169 	pep->rx_curr_desc_q = 0;
1170 
1171 	/* Fill RX ring with skb's */
1172 	rxq_refill(dev);
1173 	pep->rx_used_desc_q = 0;
1174 	pep->rx_curr_desc_q = 0;
1175 	netif_carrier_off(dev);
1176 	napi_enable(&pep->napi);
1177 	eth_port_start(dev);
1178 	return 0;
1179 out_free_rx_skb:
1180 	rxq_deinit(dev);
1181 out_free_irq:
1182 	free_irq(dev->irq, dev);
1183 	return err;
1184 }
1185 
1186 static int pxa168_eth_stop(struct net_device *dev)
1187 {
1188 	struct pxa168_eth_private *pep = netdev_priv(dev);
1189 	eth_port_reset(dev);
1190 
1191 	/* Disable interrupts */
1192 	wrl(pep, INT_MASK, 0);
1193 	wrl(pep, INT_CAUSE, 0);
1194 	/* Write to ICR to clear interrupts. */
1195 	wrl(pep, INT_W_CLEAR, 0);
1196 	napi_disable(&pep->napi);
1197 	del_timer_sync(&pep->timeout);
1198 	netif_carrier_off(dev);
1199 	free_irq(dev->irq, dev);
1200 	rxq_deinit(dev);
1201 	txq_deinit(dev);
1202 
1203 	return 0;
1204 }
1205 
1206 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1207 {
1208 	int retval;
1209 	struct pxa168_eth_private *pep = netdev_priv(dev);
1210 
1211 	if ((mtu > 9500) || (mtu < 68))
1212 		return -EINVAL;
1213 
1214 	dev->mtu = mtu;
1215 	retval = set_port_config_ext(pep);
1216 
1217 	if (!netif_running(dev))
1218 		return 0;
1219 
1220 	/*
1221 	 * Stop and then re-open the interface. This will allocate RX
1222 	 * skbs of the new MTU.
1223 	 * There is a possible danger that the open will not succeed,
1224 	 * due to memory being full.
1225 	 */
1226 	pxa168_eth_stop(dev);
1227 	if (pxa168_eth_open(dev)) {
1228 		dev_err(&dev->dev,
1229 			"fatal error on re-opening device after MTU change\n");
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1236 {
1237 	int tx_desc_curr;
1238 
1239 	tx_desc_curr = pep->tx_curr_desc_q;
1240 	pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1241 	BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1242 	pep->tx_desc_count++;
1243 
1244 	return tx_desc_curr;
1245 }
1246 
1247 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1248 {
1249 	struct pxa168_eth_private *pep =
1250 	    container_of(napi, struct pxa168_eth_private, napi);
1251 	struct net_device *dev = pep->dev;
1252 	int work_done = 0;
1253 
1254 	/*
1255 	 * We call txq_reclaim every time since in NAPI interupts are disabled
1256 	 * and due to this we miss the TX_DONE interrupt,which is not updated in
1257 	 * interrupt status register.
1258 	 */
1259 	txq_reclaim(dev, 0);
1260 	if (netif_queue_stopped(dev)
1261 	    && pep->tx_ring_size - pep->tx_desc_count > 1) {
1262 		netif_wake_queue(dev);
1263 	}
1264 	work_done = rxq_process(dev, budget);
1265 	if (work_done < budget) {
1266 		napi_complete(napi);
1267 		wrl(pep, INT_MASK, ALL_INTS);
1268 	}
1269 
1270 	return work_done;
1271 }
1272 
1273 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1274 {
1275 	struct pxa168_eth_private *pep = netdev_priv(dev);
1276 	struct net_device_stats *stats = &dev->stats;
1277 	struct tx_desc *desc;
1278 	int tx_index;
1279 	int length;
1280 
1281 	tx_index = eth_alloc_tx_desc_index(pep);
1282 	desc = &pep->p_tx_desc_area[tx_index];
1283 	length = skb->len;
1284 	pep->tx_skb[tx_index] = skb;
1285 	desc->byte_cnt = length;
1286 	desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1287 
1288 	skb_tx_timestamp(skb);
1289 
1290 	wmb();
1291 	desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1292 			TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1293 	wmb();
1294 	wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1295 
1296 	stats->tx_bytes += length;
1297 	stats->tx_packets++;
1298 	dev->trans_start = jiffies;
1299 	if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1300 		/* We handled the current skb, but now we are out of space.*/
1301 		netif_stop_queue(dev);
1302 	}
1303 
1304 	return NETDEV_TX_OK;
1305 }
1306 
1307 static int smi_wait_ready(struct pxa168_eth_private *pep)
1308 {
1309 	int i = 0;
1310 
1311 	/* wait for the SMI register to become available */
1312 	for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1313 		if (i == PHY_WAIT_ITERATIONS)
1314 			return -ETIMEDOUT;
1315 		msleep(10);
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1322 {
1323 	struct pxa168_eth_private *pep = bus->priv;
1324 	int i = 0;
1325 	int val;
1326 
1327 	if (smi_wait_ready(pep)) {
1328 		netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1329 		return -ETIMEDOUT;
1330 	}
1331 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1332 	/* now wait for the data to be valid */
1333 	for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1334 		if (i == PHY_WAIT_ITERATIONS) {
1335 			netdev_warn(pep->dev,
1336 				    "pxa168_eth: SMI bus read not valid\n");
1337 			return -ENODEV;
1338 		}
1339 		msleep(10);
1340 	}
1341 
1342 	return val & 0xffff;
1343 }
1344 
1345 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1346 			    u16 value)
1347 {
1348 	struct pxa168_eth_private *pep = bus->priv;
1349 
1350 	if (smi_wait_ready(pep)) {
1351 		netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1352 		return -ETIMEDOUT;
1353 	}
1354 
1355 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1356 	    SMI_OP_W | (value & 0xffff));
1357 
1358 	if (smi_wait_ready(pep)) {
1359 		netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1360 		return -ETIMEDOUT;
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1367 			       int cmd)
1368 {
1369 	struct pxa168_eth_private *pep = netdev_priv(dev);
1370 	if (pep->phy != NULL)
1371 		return phy_mii_ioctl(pep->phy, ifr, cmd);
1372 
1373 	return -EOPNOTSUPP;
1374 }
1375 
1376 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1377 {
1378 	struct pxa168_eth_private *pep = netdev_priv(dev);
1379 	int err;
1380 
1381 	err = phy_read_status(pep->phy);
1382 	if (err == 0)
1383 		err = phy_ethtool_gset(pep->phy, cmd);
1384 
1385 	return err;
1386 }
1387 
1388 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1389 {
1390 	struct pxa168_eth_private *pep = netdev_priv(dev);
1391 
1392 	return phy_ethtool_sset(pep->phy, cmd);
1393 }
1394 
1395 static void pxa168_get_drvinfo(struct net_device *dev,
1396 			       struct ethtool_drvinfo *info)
1397 {
1398 	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1399 	strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1400 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1401 	strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1402 }
1403 
1404 static const struct ethtool_ops pxa168_ethtool_ops = {
1405 	.get_settings	= pxa168_get_settings,
1406 	.set_settings	= pxa168_set_settings,
1407 	.get_drvinfo	= pxa168_get_drvinfo,
1408 	.get_link	= ethtool_op_get_link,
1409 	.get_ts_info	= ethtool_op_get_ts_info,
1410 };
1411 
1412 static const struct net_device_ops pxa168_eth_netdev_ops = {
1413 	.ndo_open		= pxa168_eth_open,
1414 	.ndo_stop		= pxa168_eth_stop,
1415 	.ndo_start_xmit		= pxa168_eth_start_xmit,
1416 	.ndo_set_rx_mode	= pxa168_eth_set_rx_mode,
1417 	.ndo_set_mac_address	= pxa168_eth_set_mac_address,
1418 	.ndo_validate_addr	= eth_validate_addr,
1419 	.ndo_do_ioctl		= pxa168_eth_do_ioctl,
1420 	.ndo_change_mtu		= pxa168_eth_change_mtu,
1421 	.ndo_tx_timeout		= pxa168_eth_tx_timeout,
1422 };
1423 
1424 static int pxa168_eth_probe(struct platform_device *pdev)
1425 {
1426 	struct pxa168_eth_private *pep = NULL;
1427 	struct net_device *dev = NULL;
1428 	struct resource *res;
1429 	struct clk *clk;
1430 	struct device_node *np;
1431 	const unsigned char *mac_addr = NULL;
1432 	int err;
1433 
1434 	printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1435 
1436 	clk = devm_clk_get(&pdev->dev, NULL);
1437 	if (IS_ERR(clk)) {
1438 		dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n");
1439 		return -ENODEV;
1440 	}
1441 	clk_prepare_enable(clk);
1442 
1443 	dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1444 	if (!dev) {
1445 		err = -ENOMEM;
1446 		goto err_clk;
1447 	}
1448 
1449 	platform_set_drvdata(pdev, dev);
1450 	pep = netdev_priv(dev);
1451 	pep->dev = dev;
1452 	pep->clk = clk;
1453 
1454 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1455 	pep->base = devm_ioremap_resource(&pdev->dev, res);
1456 	if (IS_ERR(pep->base)) {
1457 		err = -ENOMEM;
1458 		goto err_netdev;
1459 	}
1460 
1461 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1462 	BUG_ON(!res);
1463 	dev->irq = res->start;
1464 	dev->netdev_ops = &pxa168_eth_netdev_ops;
1465 	dev->watchdog_timeo = 2 * HZ;
1466 	dev->base_addr = 0;
1467 	dev->ethtool_ops = &pxa168_ethtool_ops;
1468 
1469 	INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1470 
1471 	if (pdev->dev.of_node)
1472 		mac_addr = of_get_mac_address(pdev->dev.of_node);
1473 
1474 	if (mac_addr && is_valid_ether_addr(mac_addr)) {
1475 		ether_addr_copy(dev->dev_addr, mac_addr);
1476 	} else {
1477 		/* try reading the mac address, if set by the bootloader */
1478 		pxa168_eth_get_mac_address(dev, dev->dev_addr);
1479 		if (!is_valid_ether_addr(dev->dev_addr)) {
1480 			dev_info(&pdev->dev, "Using random mac address\n");
1481 			eth_hw_addr_random(dev);
1482 		}
1483 	}
1484 
1485 	pep->rx_ring_size = NUM_RX_DESCS;
1486 	pep->tx_ring_size = NUM_TX_DESCS;
1487 
1488 	pep->pd = dev_get_platdata(&pdev->dev);
1489 	if (pep->pd) {
1490 		if (pep->pd->rx_queue_size)
1491 			pep->rx_ring_size = pep->pd->rx_queue_size;
1492 
1493 		if (pep->pd->tx_queue_size)
1494 			pep->tx_ring_size = pep->pd->tx_queue_size;
1495 
1496 		pep->port_num = pep->pd->port_number;
1497 		pep->phy_addr = pep->pd->phy_addr;
1498 		pep->phy_speed = pep->pd->speed;
1499 		pep->phy_duplex = pep->pd->duplex;
1500 		pep->phy_intf = pep->pd->intf;
1501 
1502 		if (pep->pd->init)
1503 			pep->pd->init();
1504 	} else if (pdev->dev.of_node) {
1505 		of_property_read_u32(pdev->dev.of_node, "port-id",
1506 				     &pep->port_num);
1507 
1508 		np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1509 		if (!np) {
1510 			dev_err(&pdev->dev, "missing phy-handle\n");
1511 			err = -EINVAL;
1512 			goto err_netdev;
1513 		}
1514 		of_property_read_u32(np, "reg", &pep->phy_addr);
1515 		pep->phy_intf = of_get_phy_mode(pdev->dev.of_node);
1516 	}
1517 
1518 	/* Hardware supports only 3 ports */
1519 	BUG_ON(pep->port_num > 2);
1520 	netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1521 
1522 	memset(&pep->timeout, 0, sizeof(struct timer_list));
1523 	init_timer(&pep->timeout);
1524 	pep->timeout.function = rxq_refill_timer_wrapper;
1525 	pep->timeout.data = (unsigned long)pep;
1526 
1527 	pep->smi_bus = mdiobus_alloc();
1528 	if (pep->smi_bus == NULL) {
1529 		err = -ENOMEM;
1530 		goto err_netdev;
1531 	}
1532 	pep->smi_bus->priv = pep;
1533 	pep->smi_bus->name = "pxa168_eth smi";
1534 	pep->smi_bus->read = pxa168_smi_read;
1535 	pep->smi_bus->write = pxa168_smi_write;
1536 	snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1537 		pdev->name, pdev->id);
1538 	pep->smi_bus->parent = &pdev->dev;
1539 	pep->smi_bus->phy_mask = 0xffffffff;
1540 	err = mdiobus_register(pep->smi_bus);
1541 	if (err)
1542 		goto err_free_mdio;
1543 
1544 	SET_NETDEV_DEV(dev, &pdev->dev);
1545 	pxa168_init_hw(pep);
1546 	err = register_netdev(dev);
1547 	if (err)
1548 		goto err_mdiobus;
1549 	return 0;
1550 
1551 err_mdiobus:
1552 	mdiobus_unregister(pep->smi_bus);
1553 err_free_mdio:
1554 	mdiobus_free(pep->smi_bus);
1555 err_netdev:
1556 	free_netdev(dev);
1557 err_clk:
1558 	clk_disable_unprepare(clk);
1559 	return err;
1560 }
1561 
1562 static int pxa168_eth_remove(struct platform_device *pdev)
1563 {
1564 	struct net_device *dev = platform_get_drvdata(pdev);
1565 	struct pxa168_eth_private *pep = netdev_priv(dev);
1566 
1567 	if (pep->htpr) {
1568 		dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1569 				  pep->htpr, pep->htpr_dma);
1570 		pep->htpr = NULL;
1571 	}
1572 	if (pep->phy)
1573 		phy_disconnect(pep->phy);
1574 	if (pep->clk) {
1575 		clk_disable_unprepare(pep->clk);
1576 	}
1577 
1578 	mdiobus_unregister(pep->smi_bus);
1579 	mdiobus_free(pep->smi_bus);
1580 	unregister_netdev(dev);
1581 	cancel_work_sync(&pep->tx_timeout_task);
1582 	free_netdev(dev);
1583 	return 0;
1584 }
1585 
1586 static void pxa168_eth_shutdown(struct platform_device *pdev)
1587 {
1588 	struct net_device *dev = platform_get_drvdata(pdev);
1589 	eth_port_reset(dev);
1590 }
1591 
1592 #ifdef CONFIG_PM
1593 static int pxa168_eth_resume(struct platform_device *pdev)
1594 {
1595 	return -ENOSYS;
1596 }
1597 
1598 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1599 {
1600 	return -ENOSYS;
1601 }
1602 
1603 #else
1604 #define pxa168_eth_resume NULL
1605 #define pxa168_eth_suspend NULL
1606 #endif
1607 
1608 static const struct of_device_id pxa168_eth_of_match[] = {
1609 	{ .compatible = "marvell,pxa168-eth" },
1610 	{ },
1611 };
1612 MODULE_DEVICE_TABLE(of, pxa168_eth_of_match);
1613 
1614 static struct platform_driver pxa168_eth_driver = {
1615 	.probe = pxa168_eth_probe,
1616 	.remove = pxa168_eth_remove,
1617 	.shutdown = pxa168_eth_shutdown,
1618 	.resume = pxa168_eth_resume,
1619 	.suspend = pxa168_eth_suspend,
1620 	.driver = {
1621 		.name		= DRIVER_NAME,
1622 		.of_match_table	= of_match_ptr(pxa168_eth_of_match),
1623 	},
1624 };
1625 
1626 module_platform_driver(pxa168_eth_driver);
1627 
1628 MODULE_LICENSE("GPL");
1629 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1630 MODULE_ALIAS("platform:pxa168_eth");
1631