1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PXA168 ethernet driver.
4  * Most of the code is derived from mv643xx ethernet driver.
5  *
6  * Copyright (C) 2010 Marvell International Ltd.
7  *		Sachin Sanap <ssanap@marvell.com>
8  *		Zhangfei Gao <zgao6@marvell.com>
9  *		Philip Rakity <prakity@marvell.com>
10  *		Mark Brown <markb@marvell.com>
11  */
12 
13 #include <linux/bitops.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/in.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/ip.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_net.h>
27 #include <linux/phy.h>
28 #include <linux/platform_device.h>
29 #include <linux/pxa168_eth.h>
30 #include <linux/tcp.h>
31 #include <linux/types.h>
32 #include <linux/udp.h>
33 #include <linux/workqueue.h>
34 
35 #include <asm/pgtable.h>
36 #include <asm/cacheflush.h>
37 
38 #define DRIVER_NAME	"pxa168-eth"
39 #define DRIVER_VERSION	"0.3"
40 
41 /*
42  * Registers
43  */
44 
45 #define PHY_ADDRESS		0x0000
46 #define SMI			0x0010
47 #define PORT_CONFIG		0x0400
48 #define PORT_CONFIG_EXT		0x0408
49 #define PORT_COMMAND		0x0410
50 #define PORT_STATUS		0x0418
51 #define HTPR			0x0428
52 #define MAC_ADDR_LOW		0x0430
53 #define MAC_ADDR_HIGH		0x0438
54 #define SDMA_CONFIG		0x0440
55 #define SDMA_CMD		0x0448
56 #define INT_CAUSE		0x0450
57 #define INT_W_CLEAR		0x0454
58 #define INT_MASK		0x0458
59 #define ETH_F_RX_DESC_0		0x0480
60 #define ETH_C_RX_DESC_0		0x04A0
61 #define ETH_C_TX_DESC_1		0x04E4
62 
63 /* smi register */
64 #define SMI_BUSY		(1 << 28)	/* 0 - Write, 1 - Read  */
65 #define SMI_R_VALID		(1 << 27)	/* 0 - Write, 1 - Read  */
66 #define SMI_OP_W		(0 << 26)	/* Write operation      */
67 #define SMI_OP_R		(1 << 26)	/* Read operation */
68 
69 #define PHY_WAIT_ITERATIONS	10
70 
71 #define PXA168_ETH_PHY_ADDR_DEFAULT	0
72 /* RX & TX descriptor command */
73 #define BUF_OWNED_BY_DMA	(1 << 31)
74 
75 /* RX descriptor status */
76 #define RX_EN_INT		(1 << 23)
77 #define RX_FIRST_DESC		(1 << 17)
78 #define RX_LAST_DESC		(1 << 16)
79 #define RX_ERROR		(1 << 15)
80 
81 /* TX descriptor command */
82 #define TX_EN_INT		(1 << 23)
83 #define TX_GEN_CRC		(1 << 22)
84 #define TX_ZERO_PADDING		(1 << 18)
85 #define TX_FIRST_DESC		(1 << 17)
86 #define TX_LAST_DESC		(1 << 16)
87 #define TX_ERROR		(1 << 15)
88 
89 /* SDMA_CMD */
90 #define SDMA_CMD_AT		(1 << 31)
91 #define SDMA_CMD_TXDL		(1 << 24)
92 #define SDMA_CMD_TXDH		(1 << 23)
93 #define SDMA_CMD_AR		(1 << 15)
94 #define SDMA_CMD_ERD		(1 << 7)
95 
96 /* Bit definitions of the Port Config Reg */
97 #define PCR_DUPLEX_FULL		(1 << 15)
98 #define PCR_HS			(1 << 12)
99 #define PCR_EN			(1 << 7)
100 #define PCR_PM			(1 << 0)
101 
102 /* Bit definitions of the Port Config Extend Reg */
103 #define PCXR_2BSM		(1 << 28)
104 #define PCXR_DSCP_EN		(1 << 21)
105 #define PCXR_RMII_EN		(1 << 20)
106 #define PCXR_AN_SPEED_DIS	(1 << 19)
107 #define PCXR_SPEED_100		(1 << 18)
108 #define PCXR_MFL_1518		(0 << 14)
109 #define PCXR_MFL_1536		(1 << 14)
110 #define PCXR_MFL_2048		(2 << 14)
111 #define PCXR_MFL_64K		(3 << 14)
112 #define PCXR_FLOWCTL_DIS	(1 << 12)
113 #define PCXR_FLP		(1 << 11)
114 #define PCXR_AN_FLOWCTL_DIS	(1 << 10)
115 #define PCXR_AN_DUPLEX_DIS	(1 << 9)
116 #define PCXR_PRIO_TX_OFF	3
117 #define PCXR_TX_HIGH_PRI	(7 << PCXR_PRIO_TX_OFF)
118 
119 /* Bit definitions of the SDMA Config Reg */
120 #define SDCR_BSZ_OFF		12
121 #define SDCR_BSZ8		(3 << SDCR_BSZ_OFF)
122 #define SDCR_BSZ4		(2 << SDCR_BSZ_OFF)
123 #define SDCR_BSZ2		(1 << SDCR_BSZ_OFF)
124 #define SDCR_BSZ1		(0 << SDCR_BSZ_OFF)
125 #define SDCR_BLMR		(1 << 6)
126 #define SDCR_BLMT		(1 << 7)
127 #define SDCR_RIFB		(1 << 9)
128 #define SDCR_RC_OFF		2
129 #define SDCR_RC_MAX_RETRANS	(0xf << SDCR_RC_OFF)
130 
131 /*
132  * Bit definitions of the Interrupt Cause Reg
133  * and Interrupt MASK Reg is the same
134  */
135 #define ICR_RXBUF		(1 << 0)
136 #define ICR_TXBUF_H		(1 << 2)
137 #define ICR_TXBUF_L		(1 << 3)
138 #define ICR_TXEND_H		(1 << 6)
139 #define ICR_TXEND_L		(1 << 7)
140 #define ICR_RXERR		(1 << 8)
141 #define ICR_TXERR_H		(1 << 10)
142 #define ICR_TXERR_L		(1 << 11)
143 #define ICR_TX_UDR		(1 << 13)
144 #define ICR_MII_CH		(1 << 28)
145 
146 #define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
147 				ICR_TXERR_H  | ICR_TXERR_L |\
148 				ICR_TXEND_H  | ICR_TXEND_L |\
149 				ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
150 
151 #define ETH_HW_IP_ALIGN		2	/* hw aligns IP header */
152 
153 #define NUM_RX_DESCS		64
154 #define NUM_TX_DESCS		64
155 
156 #define HASH_ADD		0
157 #define HASH_DELETE		1
158 #define HASH_ADDR_TABLE_SIZE	0x4000	/* 16K (1/2K address - PCR_HS == 1) */
159 #define HOP_NUMBER		12
160 
161 /* Bit definitions for Port status */
162 #define PORT_SPEED_100		(1 << 0)
163 #define FULL_DUPLEX		(1 << 1)
164 #define FLOW_CONTROL_DISABLED	(1 << 2)
165 #define LINK_UP			(1 << 3)
166 
167 /* Bit definitions for work to be done */
168 #define WORK_TX_DONE		(1 << 1)
169 
170 /*
171  * Misc definitions.
172  */
173 #define SKB_DMA_REALIGN		((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
174 
175 struct rx_desc {
176 	u32 cmd_sts;		/* Descriptor command status            */
177 	u16 byte_cnt;		/* Descriptor buffer byte count         */
178 	u16 buf_size;		/* Buffer size                          */
179 	u32 buf_ptr;		/* Descriptor buffer pointer            */
180 	u32 next_desc_ptr;	/* Next descriptor pointer              */
181 };
182 
183 struct tx_desc {
184 	u32 cmd_sts;		/* Command/status field                 */
185 	u16 reserved;
186 	u16 byte_cnt;		/* buffer byte count                    */
187 	u32 buf_ptr;		/* pointer to buffer for this descriptor */
188 	u32 next_desc_ptr;	/* Pointer to next descriptor           */
189 };
190 
191 struct pxa168_eth_private {
192 	struct platform_device *pdev;
193 	int port_num;		/* User Ethernet port number    */
194 	int phy_addr;
195 	int phy_speed;
196 	int phy_duplex;
197 	phy_interface_t phy_intf;
198 
199 	int rx_resource_err;	/* Rx ring resource error flag */
200 
201 	/* Next available and first returning Rx resource */
202 	int rx_curr_desc_q, rx_used_desc_q;
203 
204 	/* Next available and first returning Tx resource */
205 	int tx_curr_desc_q, tx_used_desc_q;
206 
207 	struct rx_desc *p_rx_desc_area;
208 	dma_addr_t rx_desc_dma;
209 	int rx_desc_area_size;
210 	struct sk_buff **rx_skb;
211 
212 	struct tx_desc *p_tx_desc_area;
213 	dma_addr_t tx_desc_dma;
214 	int tx_desc_area_size;
215 	struct sk_buff **tx_skb;
216 
217 	struct work_struct tx_timeout_task;
218 
219 	struct net_device *dev;
220 	struct napi_struct napi;
221 	u8 work_todo;
222 	int skb_size;
223 
224 	/* Size of Tx Ring per queue */
225 	int tx_ring_size;
226 	/* Number of tx descriptors in use */
227 	int tx_desc_count;
228 	/* Size of Rx Ring per queue */
229 	int rx_ring_size;
230 	/* Number of rx descriptors in use */
231 	int rx_desc_count;
232 
233 	/*
234 	 * Used in case RX Ring is empty, which can occur when
235 	 * system does not have resources (skb's)
236 	 */
237 	struct timer_list timeout;
238 	struct mii_bus *smi_bus;
239 
240 	/* clock */
241 	struct clk *clk;
242 	struct pxa168_eth_platform_data *pd;
243 	/*
244 	 * Ethernet controller base address.
245 	 */
246 	void __iomem *base;
247 
248 	/* Pointer to the hardware address filter table */
249 	void *htpr;
250 	dma_addr_t htpr_dma;
251 };
252 
253 struct addr_table_entry {
254 	__le32 lo;
255 	__le32 hi;
256 };
257 
258 /* Bit fields of a Hash Table Entry */
259 enum hash_table_entry {
260 	HASH_ENTRY_VALID = 1,
261 	SKIP = 2,
262 	HASH_ENTRY_RECEIVE_DISCARD = 4,
263 	HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
264 };
265 
266 static int pxa168_init_hw(struct pxa168_eth_private *pep);
267 static int pxa168_init_phy(struct net_device *dev);
268 static void eth_port_reset(struct net_device *dev);
269 static void eth_port_start(struct net_device *dev);
270 static int pxa168_eth_open(struct net_device *dev);
271 static int pxa168_eth_stop(struct net_device *dev);
272 
273 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
274 {
275 	return readl_relaxed(pep->base + offset);
276 }
277 
278 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
279 {
280 	writel_relaxed(data, pep->base + offset);
281 }
282 
283 static void abort_dma(struct pxa168_eth_private *pep)
284 {
285 	int delay;
286 	int max_retries = 40;
287 
288 	do {
289 		wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
290 		udelay(100);
291 
292 		delay = 10;
293 		while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
294 		       && delay-- > 0) {
295 			udelay(10);
296 		}
297 	} while (max_retries-- > 0 && delay <= 0);
298 
299 	if (max_retries <= 0)
300 		netdev_err(pep->dev, "%s : DMA Stuck\n", __func__);
301 }
302 
303 static void rxq_refill(struct net_device *dev)
304 {
305 	struct pxa168_eth_private *pep = netdev_priv(dev);
306 	struct sk_buff *skb;
307 	struct rx_desc *p_used_rx_desc;
308 	int used_rx_desc;
309 
310 	while (pep->rx_desc_count < pep->rx_ring_size) {
311 		int size;
312 
313 		skb = netdev_alloc_skb(dev, pep->skb_size);
314 		if (!skb)
315 			break;
316 		if (SKB_DMA_REALIGN)
317 			skb_reserve(skb, SKB_DMA_REALIGN);
318 		pep->rx_desc_count++;
319 		/* Get 'used' Rx descriptor */
320 		used_rx_desc = pep->rx_used_desc_q;
321 		p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
322 		size = skb_end_pointer(skb) - skb->data;
323 		p_used_rx_desc->buf_ptr = dma_map_single(&pep->pdev->dev,
324 							 skb->data,
325 							 size,
326 							 DMA_FROM_DEVICE);
327 		p_used_rx_desc->buf_size = size;
328 		pep->rx_skb[used_rx_desc] = skb;
329 
330 		/* Return the descriptor to DMA ownership */
331 		dma_wmb();
332 		p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
333 		dma_wmb();
334 
335 		/* Move the used descriptor pointer to the next descriptor */
336 		pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
337 
338 		/* Any Rx return cancels the Rx resource error status */
339 		pep->rx_resource_err = 0;
340 
341 		skb_reserve(skb, ETH_HW_IP_ALIGN);
342 	}
343 
344 	/*
345 	 * If RX ring is empty of SKB, set a timer to try allocating
346 	 * again at a later time.
347 	 */
348 	if (pep->rx_desc_count == 0) {
349 		pep->timeout.expires = jiffies + (HZ / 10);
350 		add_timer(&pep->timeout);
351 	}
352 }
353 
354 static inline void rxq_refill_timer_wrapper(struct timer_list *t)
355 {
356 	struct pxa168_eth_private *pep = from_timer(pep, t, timeout);
357 	napi_schedule(&pep->napi);
358 }
359 
360 static inline u8 flip_8_bits(u8 x)
361 {
362 	return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
363 	    | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
364 	    | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
365 	    | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
366 }
367 
368 static void nibble_swap_every_byte(unsigned char *mac_addr)
369 {
370 	int i;
371 	for (i = 0; i < ETH_ALEN; i++) {
372 		mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
373 				((mac_addr[i] & 0xf0) >> 4);
374 	}
375 }
376 
377 static void inverse_every_nibble(unsigned char *mac_addr)
378 {
379 	int i;
380 	for (i = 0; i < ETH_ALEN; i++)
381 		mac_addr[i] = flip_8_bits(mac_addr[i]);
382 }
383 
384 /*
385  * ----------------------------------------------------------------------------
386  * This function will calculate the hash function of the address.
387  * Inputs
388  * mac_addr_orig    - MAC address.
389  * Outputs
390  * return the calculated entry.
391  */
392 static u32 hash_function(unsigned char *mac_addr_orig)
393 {
394 	u32 hash_result;
395 	u32 addr0;
396 	u32 addr1;
397 	u32 addr2;
398 	u32 addr3;
399 	unsigned char mac_addr[ETH_ALEN];
400 
401 	/* Make a copy of MAC address since we are going to performe bit
402 	 * operations on it
403 	 */
404 	memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
405 
406 	nibble_swap_every_byte(mac_addr);
407 	inverse_every_nibble(mac_addr);
408 
409 	addr0 = (mac_addr[5] >> 2) & 0x3f;
410 	addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
411 	addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
412 	addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
413 
414 	hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
415 	hash_result = hash_result & 0x07ff;
416 	return hash_result;
417 }
418 
419 /*
420  * ----------------------------------------------------------------------------
421  * This function will add/del an entry to the address table.
422  * Inputs
423  * pep - ETHERNET .
424  * mac_addr - MAC address.
425  * skip - if 1, skip this address.Used in case of deleting an entry which is a
426  *	  part of chain in the hash table.We can't just delete the entry since
427  *	  that will break the chain.We need to defragment the tables time to
428  *	  time.
429  * rd   - 0 Discard packet upon match.
430  *	- 1 Receive packet upon match.
431  * Outputs
432  * address table entry is added/deleted.
433  * 0 if success.
434  * -ENOSPC if table full
435  */
436 static int add_del_hash_entry(struct pxa168_eth_private *pep,
437 			      unsigned char *mac_addr,
438 			      u32 rd, u32 skip, int del)
439 {
440 	struct addr_table_entry *entry, *start;
441 	u32 new_high;
442 	u32 new_low;
443 	u32 i;
444 
445 	new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
446 	    | (((mac_addr[1] >> 0) & 0xf) << 11)
447 	    | (((mac_addr[0] >> 4) & 0xf) << 7)
448 	    | (((mac_addr[0] >> 0) & 0xf) << 3)
449 	    | (((mac_addr[3] >> 4) & 0x1) << 31)
450 	    | (((mac_addr[3] >> 0) & 0xf) << 27)
451 	    | (((mac_addr[2] >> 4) & 0xf) << 23)
452 	    | (((mac_addr[2] >> 0) & 0xf) << 19)
453 	    | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
454 	    | HASH_ENTRY_VALID;
455 
456 	new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
457 	    | (((mac_addr[5] >> 0) & 0xf) << 11)
458 	    | (((mac_addr[4] >> 4) & 0xf) << 7)
459 	    | (((mac_addr[4] >> 0) & 0xf) << 3)
460 	    | (((mac_addr[3] >> 5) & 0x7) << 0);
461 
462 	/*
463 	 * Pick the appropriate table, start scanning for free/reusable
464 	 * entries at the index obtained by hashing the specified MAC address
465 	 */
466 	start = pep->htpr;
467 	entry = start + hash_function(mac_addr);
468 	for (i = 0; i < HOP_NUMBER; i++) {
469 		if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
470 			break;
471 		} else {
472 			/* if same address put in same position */
473 			if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
474 				(new_low & 0xfffffff8)) &&
475 				(le32_to_cpu(entry->hi) == new_high)) {
476 				break;
477 			}
478 		}
479 		if (entry == start + 0x7ff)
480 			entry = start;
481 		else
482 			entry++;
483 	}
484 
485 	if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
486 	    (le32_to_cpu(entry->hi) != new_high) && del)
487 		return 0;
488 
489 	if (i == HOP_NUMBER) {
490 		if (!del) {
491 			netdev_info(pep->dev,
492 				    "%s: table section is full, need to "
493 				    "move to 16kB implementation?\n",
494 				    __FILE__);
495 			return -ENOSPC;
496 		} else
497 			return 0;
498 	}
499 
500 	/*
501 	 * Update the selected entry
502 	 */
503 	if (del) {
504 		entry->hi = 0;
505 		entry->lo = 0;
506 	} else {
507 		entry->hi = cpu_to_le32(new_high);
508 		entry->lo = cpu_to_le32(new_low);
509 	}
510 
511 	return 0;
512 }
513 
514 /*
515  * ----------------------------------------------------------------------------
516  *  Create an addressTable entry from MAC address info
517  *  found in the specifed net_device struct
518  *
519  *  Input : pointer to ethernet interface network device structure
520  *  Output : N/A
521  */
522 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
523 					  unsigned char *oaddr,
524 					  unsigned char *addr)
525 {
526 	/* Delete old entry */
527 	if (oaddr)
528 		add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
529 	/* Add new entry */
530 	add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
531 }
532 
533 static int init_hash_table(struct pxa168_eth_private *pep)
534 {
535 	/*
536 	 * Hardware expects CPU to build a hash table based on a predefined
537 	 * hash function and populate it based on hardware address. The
538 	 * location of the hash table is identified by 32-bit pointer stored
539 	 * in HTPR internal register. Two possible sizes exists for the hash
540 	 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
541 	 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
542 	 * 1/2kB.
543 	 */
544 	/* TODO: Add support for 8kB hash table and alternative hash
545 	 * function.Driver can dynamically switch to them if the 1/2kB hash
546 	 * table is full.
547 	 */
548 	if (!pep->htpr) {
549 		pep->htpr = dma_alloc_coherent(pep->dev->dev.parent,
550 					       HASH_ADDR_TABLE_SIZE,
551 					       &pep->htpr_dma, GFP_KERNEL);
552 		if (!pep->htpr)
553 			return -ENOMEM;
554 	} else {
555 		memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
556 	}
557 	wrl(pep, HTPR, pep->htpr_dma);
558 	return 0;
559 }
560 
561 static void pxa168_eth_set_rx_mode(struct net_device *dev)
562 {
563 	struct pxa168_eth_private *pep = netdev_priv(dev);
564 	struct netdev_hw_addr *ha;
565 	u32 val;
566 
567 	val = rdl(pep, PORT_CONFIG);
568 	if (dev->flags & IFF_PROMISC)
569 		val |= PCR_PM;
570 	else
571 		val &= ~PCR_PM;
572 	wrl(pep, PORT_CONFIG, val);
573 
574 	/*
575 	 * Remove the old list of MAC address and add dev->addr
576 	 * and multicast address.
577 	 */
578 	memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
579 	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
580 
581 	netdev_for_each_mc_addr(ha, dev)
582 		update_hash_table_mac_address(pep, NULL, ha->addr);
583 }
584 
585 static void pxa168_eth_get_mac_address(struct net_device *dev,
586 				       unsigned char *addr)
587 {
588 	struct pxa168_eth_private *pep = netdev_priv(dev);
589 	unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH);
590 	unsigned int mac_l = rdl(pep, MAC_ADDR_LOW);
591 
592 	addr[0] = (mac_h >> 24) & 0xff;
593 	addr[1] = (mac_h >> 16) & 0xff;
594 	addr[2] = (mac_h >> 8) & 0xff;
595 	addr[3] = mac_h & 0xff;
596 	addr[4] = (mac_l >> 8) & 0xff;
597 	addr[5] = mac_l & 0xff;
598 }
599 
600 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
601 {
602 	struct sockaddr *sa = addr;
603 	struct pxa168_eth_private *pep = netdev_priv(dev);
604 	unsigned char oldMac[ETH_ALEN];
605 	u32 mac_h, mac_l;
606 
607 	if (!is_valid_ether_addr(sa->sa_data))
608 		return -EADDRNOTAVAIL;
609 	memcpy(oldMac, dev->dev_addr, ETH_ALEN);
610 	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
611 
612 	mac_h = dev->dev_addr[0] << 24;
613 	mac_h |= dev->dev_addr[1] << 16;
614 	mac_h |= dev->dev_addr[2] << 8;
615 	mac_h |= dev->dev_addr[3];
616 	mac_l = dev->dev_addr[4] << 8;
617 	mac_l |= dev->dev_addr[5];
618 	wrl(pep, MAC_ADDR_HIGH, mac_h);
619 	wrl(pep, MAC_ADDR_LOW, mac_l);
620 
621 	netif_addr_lock_bh(dev);
622 	update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
623 	netif_addr_unlock_bh(dev);
624 	return 0;
625 }
626 
627 static void eth_port_start(struct net_device *dev)
628 {
629 	unsigned int val = 0;
630 	struct pxa168_eth_private *pep = netdev_priv(dev);
631 	int tx_curr_desc, rx_curr_desc;
632 
633 	phy_start(dev->phydev);
634 
635 	/* Assignment of Tx CTRP of given queue */
636 	tx_curr_desc = pep->tx_curr_desc_q;
637 	wrl(pep, ETH_C_TX_DESC_1,
638 	    (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
639 
640 	/* Assignment of Rx CRDP of given queue */
641 	rx_curr_desc = pep->rx_curr_desc_q;
642 	wrl(pep, ETH_C_RX_DESC_0,
643 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
644 
645 	wrl(pep, ETH_F_RX_DESC_0,
646 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
647 
648 	/* Clear all interrupts */
649 	wrl(pep, INT_CAUSE, 0);
650 
651 	/* Enable all interrupts for receive, transmit and error. */
652 	wrl(pep, INT_MASK, ALL_INTS);
653 
654 	val = rdl(pep, PORT_CONFIG);
655 	val |= PCR_EN;
656 	wrl(pep, PORT_CONFIG, val);
657 
658 	/* Start RX DMA engine */
659 	val = rdl(pep, SDMA_CMD);
660 	val |= SDMA_CMD_ERD;
661 	wrl(pep, SDMA_CMD, val);
662 }
663 
664 static void eth_port_reset(struct net_device *dev)
665 {
666 	struct pxa168_eth_private *pep = netdev_priv(dev);
667 	unsigned int val = 0;
668 
669 	/* Stop all interrupts for receive, transmit and error. */
670 	wrl(pep, INT_MASK, 0);
671 
672 	/* Clear all interrupts */
673 	wrl(pep, INT_CAUSE, 0);
674 
675 	/* Stop RX DMA */
676 	val = rdl(pep, SDMA_CMD);
677 	val &= ~SDMA_CMD_ERD;	/* abort dma command */
678 
679 	/* Abort any transmit and receive operations and put DMA
680 	 * in idle state.
681 	 */
682 	abort_dma(pep);
683 
684 	/* Disable port */
685 	val = rdl(pep, PORT_CONFIG);
686 	val &= ~PCR_EN;
687 	wrl(pep, PORT_CONFIG, val);
688 
689 	phy_stop(dev->phydev);
690 }
691 
692 /*
693  * txq_reclaim - Free the tx desc data for completed descriptors
694  * If force is non-zero, frees uncompleted descriptors as well
695  */
696 static int txq_reclaim(struct net_device *dev, int force)
697 {
698 	struct pxa168_eth_private *pep = netdev_priv(dev);
699 	struct tx_desc *desc;
700 	u32 cmd_sts;
701 	struct sk_buff *skb;
702 	int tx_index;
703 	dma_addr_t addr;
704 	int count;
705 	int released = 0;
706 
707 	netif_tx_lock(dev);
708 
709 	pep->work_todo &= ~WORK_TX_DONE;
710 	while (pep->tx_desc_count > 0) {
711 		tx_index = pep->tx_used_desc_q;
712 		desc = &pep->p_tx_desc_area[tx_index];
713 		cmd_sts = desc->cmd_sts;
714 		if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
715 			if (released > 0) {
716 				goto txq_reclaim_end;
717 			} else {
718 				released = -1;
719 				goto txq_reclaim_end;
720 			}
721 		}
722 		pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
723 		pep->tx_desc_count--;
724 		addr = desc->buf_ptr;
725 		count = desc->byte_cnt;
726 		skb = pep->tx_skb[tx_index];
727 		if (skb)
728 			pep->tx_skb[tx_index] = NULL;
729 
730 		if (cmd_sts & TX_ERROR) {
731 			if (net_ratelimit())
732 				netdev_err(dev, "Error in TX\n");
733 			dev->stats.tx_errors++;
734 		}
735 		dma_unmap_single(&pep->pdev->dev, addr, count, DMA_TO_DEVICE);
736 		if (skb)
737 			dev_kfree_skb_irq(skb);
738 		released++;
739 	}
740 txq_reclaim_end:
741 	netif_tx_unlock(dev);
742 	return released;
743 }
744 
745 static void pxa168_eth_tx_timeout(struct net_device *dev, unsigned int txqueue)
746 {
747 	struct pxa168_eth_private *pep = netdev_priv(dev);
748 
749 	netdev_info(dev, "TX timeout  desc_count %d\n", pep->tx_desc_count);
750 
751 	schedule_work(&pep->tx_timeout_task);
752 }
753 
754 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
755 {
756 	struct pxa168_eth_private *pep = container_of(work,
757 						 struct pxa168_eth_private,
758 						 tx_timeout_task);
759 	struct net_device *dev = pep->dev;
760 	pxa168_eth_stop(dev);
761 	pxa168_eth_open(dev);
762 }
763 
764 static int rxq_process(struct net_device *dev, int budget)
765 {
766 	struct pxa168_eth_private *pep = netdev_priv(dev);
767 	struct net_device_stats *stats = &dev->stats;
768 	unsigned int received_packets = 0;
769 	struct sk_buff *skb;
770 
771 	while (budget-- > 0) {
772 		int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
773 		struct rx_desc *rx_desc;
774 		unsigned int cmd_sts;
775 
776 		/* Do not process Rx ring in case of Rx ring resource error */
777 		if (pep->rx_resource_err)
778 			break;
779 		rx_curr_desc = pep->rx_curr_desc_q;
780 		rx_used_desc = pep->rx_used_desc_q;
781 		rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
782 		cmd_sts = rx_desc->cmd_sts;
783 		dma_rmb();
784 		if (cmd_sts & (BUF_OWNED_BY_DMA))
785 			break;
786 		skb = pep->rx_skb[rx_curr_desc];
787 		pep->rx_skb[rx_curr_desc] = NULL;
788 
789 		rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
790 		pep->rx_curr_desc_q = rx_next_curr_desc;
791 
792 		/* Rx descriptors exhausted. */
793 		/* Set the Rx ring resource error flag */
794 		if (rx_next_curr_desc == rx_used_desc)
795 			pep->rx_resource_err = 1;
796 		pep->rx_desc_count--;
797 		dma_unmap_single(&pep->pdev->dev, rx_desc->buf_ptr,
798 				 rx_desc->buf_size,
799 				 DMA_FROM_DEVICE);
800 		received_packets++;
801 		/*
802 		 * Update statistics.
803 		 * Note byte count includes 4 byte CRC count
804 		 */
805 		stats->rx_packets++;
806 		stats->rx_bytes += rx_desc->byte_cnt;
807 		/*
808 		 * In case received a packet without first / last bits on OR
809 		 * the error summary bit is on, the packets needs to be droped.
810 		 */
811 		if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
812 		     (RX_FIRST_DESC | RX_LAST_DESC))
813 		    || (cmd_sts & RX_ERROR)) {
814 
815 			stats->rx_dropped++;
816 			if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
817 			    (RX_FIRST_DESC | RX_LAST_DESC)) {
818 				if (net_ratelimit())
819 					netdev_err(dev,
820 						   "Rx pkt on multiple desc\n");
821 			}
822 			if (cmd_sts & RX_ERROR)
823 				stats->rx_errors++;
824 			dev_kfree_skb_irq(skb);
825 		} else {
826 			/*
827 			 * The -4 is for the CRC in the trailer of the
828 			 * received packet
829 			 */
830 			skb_put(skb, rx_desc->byte_cnt - 4);
831 			skb->protocol = eth_type_trans(skb, dev);
832 			netif_receive_skb(skb);
833 		}
834 	}
835 	/* Fill RX ring with skb's */
836 	rxq_refill(dev);
837 	return received_packets;
838 }
839 
840 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
841 				     struct net_device *dev)
842 {
843 	u32 icr;
844 	int ret = 0;
845 
846 	icr = rdl(pep, INT_CAUSE);
847 	if (icr == 0)
848 		return IRQ_NONE;
849 
850 	wrl(pep, INT_CAUSE, ~icr);
851 	if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
852 		pep->work_todo |= WORK_TX_DONE;
853 		ret = 1;
854 	}
855 	if (icr & ICR_RXBUF)
856 		ret = 1;
857 	return ret;
858 }
859 
860 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
861 {
862 	struct net_device *dev = (struct net_device *)dev_id;
863 	struct pxa168_eth_private *pep = netdev_priv(dev);
864 
865 	if (unlikely(!pxa168_eth_collect_events(pep, dev)))
866 		return IRQ_NONE;
867 	/* Disable interrupts */
868 	wrl(pep, INT_MASK, 0);
869 	napi_schedule(&pep->napi);
870 	return IRQ_HANDLED;
871 }
872 
873 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
874 {
875 	int skb_size;
876 
877 	/*
878 	 * Reserve 2+14 bytes for an ethernet header (the hardware
879 	 * automatically prepends 2 bytes of dummy data to each
880 	 * received packet), 16 bytes for up to four VLAN tags, and
881 	 * 4 bytes for the trailing FCS -- 36 bytes total.
882 	 */
883 	skb_size = pep->dev->mtu + 36;
884 
885 	/*
886 	 * Make sure that the skb size is a multiple of 8 bytes, as
887 	 * the lower three bits of the receive descriptor's buffer
888 	 * size field are ignored by the hardware.
889 	 */
890 	pep->skb_size = (skb_size + 7) & ~7;
891 
892 	/*
893 	 * If NET_SKB_PAD is smaller than a cache line,
894 	 * netdev_alloc_skb() will cause skb->data to be misaligned
895 	 * to a cache line boundary.  If this is the case, include
896 	 * some extra space to allow re-aligning the data area.
897 	 */
898 	pep->skb_size += SKB_DMA_REALIGN;
899 
900 }
901 
902 static int set_port_config_ext(struct pxa168_eth_private *pep)
903 {
904 	int skb_size;
905 
906 	pxa168_eth_recalc_skb_size(pep);
907 	if  (pep->skb_size <= 1518)
908 		skb_size = PCXR_MFL_1518;
909 	else if (pep->skb_size <= 1536)
910 		skb_size = PCXR_MFL_1536;
911 	else if (pep->skb_size <= 2048)
912 		skb_size = PCXR_MFL_2048;
913 	else
914 		skb_size = PCXR_MFL_64K;
915 
916 	/* Extended Port Configuration */
917 	wrl(pep, PORT_CONFIG_EXT,
918 	    PCXR_AN_SPEED_DIS |		 /* Disable HW AN */
919 	    PCXR_AN_DUPLEX_DIS |
920 	    PCXR_AN_FLOWCTL_DIS |
921 	    PCXR_2BSM |			 /* Two byte prefix aligns IP hdr */
922 	    PCXR_DSCP_EN |		 /* Enable DSCP in IP */
923 	    skb_size | PCXR_FLP |	 /* do not force link pass */
924 	    PCXR_TX_HIGH_PRI);		 /* Transmit - high priority queue */
925 
926 	return 0;
927 }
928 
929 static void pxa168_eth_adjust_link(struct net_device *dev)
930 {
931 	struct pxa168_eth_private *pep = netdev_priv(dev);
932 	struct phy_device *phy = dev->phydev;
933 	u32 cfg, cfg_o = rdl(pep, PORT_CONFIG);
934 	u32 cfgext, cfgext_o = rdl(pep, PORT_CONFIG_EXT);
935 
936 	cfg = cfg_o & ~PCR_DUPLEX_FULL;
937 	cfgext = cfgext_o & ~(PCXR_SPEED_100 | PCXR_FLOWCTL_DIS | PCXR_RMII_EN);
938 
939 	if (phy->interface == PHY_INTERFACE_MODE_RMII)
940 		cfgext |= PCXR_RMII_EN;
941 	if (phy->speed == SPEED_100)
942 		cfgext |= PCXR_SPEED_100;
943 	if (phy->duplex)
944 		cfg |= PCR_DUPLEX_FULL;
945 	if (!phy->pause)
946 		cfgext |= PCXR_FLOWCTL_DIS;
947 
948 	/* Bail out if there has nothing changed */
949 	if (cfg == cfg_o && cfgext == cfgext_o)
950 		return;
951 
952 	wrl(pep, PORT_CONFIG, cfg);
953 	wrl(pep, PORT_CONFIG_EXT, cfgext);
954 
955 	phy_print_status(phy);
956 }
957 
958 static int pxa168_init_phy(struct net_device *dev)
959 {
960 	struct pxa168_eth_private *pep = netdev_priv(dev);
961 	struct ethtool_link_ksettings cmd;
962 	struct phy_device *phy = NULL;
963 	int err;
964 
965 	if (dev->phydev)
966 		return 0;
967 
968 	phy = mdiobus_scan(pep->smi_bus, pep->phy_addr);
969 	if (IS_ERR(phy))
970 		return PTR_ERR(phy);
971 
972 	err = phy_connect_direct(dev, phy, pxa168_eth_adjust_link,
973 				 pep->phy_intf);
974 	if (err)
975 		return err;
976 
977 	cmd.base.phy_address = pep->phy_addr;
978 	cmd.base.speed = pep->phy_speed;
979 	cmd.base.duplex = pep->phy_duplex;
980 	bitmap_copy(cmd.link_modes.advertising, PHY_BASIC_FEATURES,
981 		    __ETHTOOL_LINK_MODE_MASK_NBITS);
982 	cmd.base.autoneg = AUTONEG_ENABLE;
983 
984 	if (cmd.base.speed != 0)
985 		cmd.base.autoneg = AUTONEG_DISABLE;
986 
987 	return phy_ethtool_set_link_ksettings(dev, &cmd);
988 }
989 
990 static int pxa168_init_hw(struct pxa168_eth_private *pep)
991 {
992 	int err = 0;
993 
994 	/* Disable interrupts */
995 	wrl(pep, INT_MASK, 0);
996 	wrl(pep, INT_CAUSE, 0);
997 	/* Write to ICR to clear interrupts. */
998 	wrl(pep, INT_W_CLEAR, 0);
999 	/* Abort any transmit and receive operations and put DMA
1000 	 * in idle state.
1001 	 */
1002 	abort_dma(pep);
1003 	/* Initialize address hash table */
1004 	err = init_hash_table(pep);
1005 	if (err)
1006 		return err;
1007 	/* SDMA configuration */
1008 	wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |	/* Burst size = 32 bytes */
1009 	    SDCR_RIFB |				/* Rx interrupt on frame */
1010 	    SDCR_BLMT |				/* Little endian transmit */
1011 	    SDCR_BLMR |				/* Little endian receive */
1012 	    SDCR_RC_MAX_RETRANS);		/* Max retransmit count */
1013 	/* Port Configuration */
1014 	wrl(pep, PORT_CONFIG, PCR_HS);		/* Hash size is 1/2kb */
1015 	set_port_config_ext(pep);
1016 
1017 	return err;
1018 }
1019 
1020 static int rxq_init(struct net_device *dev)
1021 {
1022 	struct pxa168_eth_private *pep = netdev_priv(dev);
1023 	struct rx_desc *p_rx_desc;
1024 	int size = 0, i = 0;
1025 	int rx_desc_num = pep->rx_ring_size;
1026 
1027 	/* Allocate RX skb rings */
1028 	pep->rx_skb = kcalloc(rx_desc_num, sizeof(*pep->rx_skb), GFP_KERNEL);
1029 	if (!pep->rx_skb)
1030 		return -ENOMEM;
1031 
1032 	/* Allocate RX ring */
1033 	pep->rx_desc_count = 0;
1034 	size = pep->rx_ring_size * sizeof(struct rx_desc);
1035 	pep->rx_desc_area_size = size;
1036 	pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1037 						 &pep->rx_desc_dma,
1038 						 GFP_KERNEL);
1039 	if (!pep->p_rx_desc_area)
1040 		goto out;
1041 
1042 	/* initialize the next_desc_ptr links in the Rx descriptors ring */
1043 	p_rx_desc = pep->p_rx_desc_area;
1044 	for (i = 0; i < rx_desc_num; i++) {
1045 		p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1046 		    ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1047 	}
1048 	/* Save Rx desc pointer to driver struct. */
1049 	pep->rx_curr_desc_q = 0;
1050 	pep->rx_used_desc_q = 0;
1051 	pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1052 	return 0;
1053 out:
1054 	kfree(pep->rx_skb);
1055 	return -ENOMEM;
1056 }
1057 
1058 static void rxq_deinit(struct net_device *dev)
1059 {
1060 	struct pxa168_eth_private *pep = netdev_priv(dev);
1061 	int curr;
1062 
1063 	/* Free preallocated skb's on RX rings */
1064 	for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1065 		if (pep->rx_skb[curr]) {
1066 			dev_kfree_skb(pep->rx_skb[curr]);
1067 			pep->rx_desc_count--;
1068 		}
1069 	}
1070 	if (pep->rx_desc_count)
1071 		netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n",
1072 			   pep->rx_desc_count);
1073 	/* Free RX ring */
1074 	if (pep->p_rx_desc_area)
1075 		dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1076 				  pep->p_rx_desc_area, pep->rx_desc_dma);
1077 	kfree(pep->rx_skb);
1078 }
1079 
1080 static int txq_init(struct net_device *dev)
1081 {
1082 	struct pxa168_eth_private *pep = netdev_priv(dev);
1083 	struct tx_desc *p_tx_desc;
1084 	int size = 0, i = 0;
1085 	int tx_desc_num = pep->tx_ring_size;
1086 
1087 	pep->tx_skb = kcalloc(tx_desc_num, sizeof(*pep->tx_skb), GFP_KERNEL);
1088 	if (!pep->tx_skb)
1089 		return -ENOMEM;
1090 
1091 	/* Allocate TX ring */
1092 	pep->tx_desc_count = 0;
1093 	size = pep->tx_ring_size * sizeof(struct tx_desc);
1094 	pep->tx_desc_area_size = size;
1095 	pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1096 						 &pep->tx_desc_dma,
1097 						 GFP_KERNEL);
1098 	if (!pep->p_tx_desc_area)
1099 		goto out;
1100 	/* Initialize the next_desc_ptr links in the Tx descriptors ring */
1101 	p_tx_desc = pep->p_tx_desc_area;
1102 	for (i = 0; i < tx_desc_num; i++) {
1103 		p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1104 		    ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1105 	}
1106 	pep->tx_curr_desc_q = 0;
1107 	pep->tx_used_desc_q = 0;
1108 	pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1109 	return 0;
1110 out:
1111 	kfree(pep->tx_skb);
1112 	return -ENOMEM;
1113 }
1114 
1115 static void txq_deinit(struct net_device *dev)
1116 {
1117 	struct pxa168_eth_private *pep = netdev_priv(dev);
1118 
1119 	/* Free outstanding skb's on TX ring */
1120 	txq_reclaim(dev, 1);
1121 	BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1122 	/* Free TX ring */
1123 	if (pep->p_tx_desc_area)
1124 		dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1125 				  pep->p_tx_desc_area, pep->tx_desc_dma);
1126 	kfree(pep->tx_skb);
1127 }
1128 
1129 static int pxa168_eth_open(struct net_device *dev)
1130 {
1131 	struct pxa168_eth_private *pep = netdev_priv(dev);
1132 	int err;
1133 
1134 	err = pxa168_init_phy(dev);
1135 	if (err)
1136 		return err;
1137 
1138 	err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1139 	if (err) {
1140 		dev_err(&dev->dev, "can't assign irq\n");
1141 		return -EAGAIN;
1142 	}
1143 	pep->rx_resource_err = 0;
1144 	err = rxq_init(dev);
1145 	if (err != 0)
1146 		goto out_free_irq;
1147 	err = txq_init(dev);
1148 	if (err != 0)
1149 		goto out_free_rx_skb;
1150 	pep->rx_used_desc_q = 0;
1151 	pep->rx_curr_desc_q = 0;
1152 
1153 	/* Fill RX ring with skb's */
1154 	rxq_refill(dev);
1155 	pep->rx_used_desc_q = 0;
1156 	pep->rx_curr_desc_q = 0;
1157 	netif_carrier_off(dev);
1158 	napi_enable(&pep->napi);
1159 	eth_port_start(dev);
1160 	return 0;
1161 out_free_rx_skb:
1162 	rxq_deinit(dev);
1163 out_free_irq:
1164 	free_irq(dev->irq, dev);
1165 	return err;
1166 }
1167 
1168 static int pxa168_eth_stop(struct net_device *dev)
1169 {
1170 	struct pxa168_eth_private *pep = netdev_priv(dev);
1171 	eth_port_reset(dev);
1172 
1173 	/* Disable interrupts */
1174 	wrl(pep, INT_MASK, 0);
1175 	wrl(pep, INT_CAUSE, 0);
1176 	/* Write to ICR to clear interrupts. */
1177 	wrl(pep, INT_W_CLEAR, 0);
1178 	napi_disable(&pep->napi);
1179 	del_timer_sync(&pep->timeout);
1180 	netif_carrier_off(dev);
1181 	free_irq(dev->irq, dev);
1182 	rxq_deinit(dev);
1183 	txq_deinit(dev);
1184 
1185 	return 0;
1186 }
1187 
1188 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1189 {
1190 	int retval;
1191 	struct pxa168_eth_private *pep = netdev_priv(dev);
1192 
1193 	dev->mtu = mtu;
1194 	retval = set_port_config_ext(pep);
1195 
1196 	if (!netif_running(dev))
1197 		return 0;
1198 
1199 	/*
1200 	 * Stop and then re-open the interface. This will allocate RX
1201 	 * skbs of the new MTU.
1202 	 * There is a possible danger that the open will not succeed,
1203 	 * due to memory being full.
1204 	 */
1205 	pxa168_eth_stop(dev);
1206 	if (pxa168_eth_open(dev)) {
1207 		dev_err(&dev->dev,
1208 			"fatal error on re-opening device after MTU change\n");
1209 	}
1210 
1211 	return 0;
1212 }
1213 
1214 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1215 {
1216 	int tx_desc_curr;
1217 
1218 	tx_desc_curr = pep->tx_curr_desc_q;
1219 	pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1220 	BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1221 	pep->tx_desc_count++;
1222 
1223 	return tx_desc_curr;
1224 }
1225 
1226 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1227 {
1228 	struct pxa168_eth_private *pep =
1229 	    container_of(napi, struct pxa168_eth_private, napi);
1230 	struct net_device *dev = pep->dev;
1231 	int work_done = 0;
1232 
1233 	/*
1234 	 * We call txq_reclaim every time since in NAPI interupts are disabled
1235 	 * and due to this we miss the TX_DONE interrupt,which is not updated in
1236 	 * interrupt status register.
1237 	 */
1238 	txq_reclaim(dev, 0);
1239 	if (netif_queue_stopped(dev)
1240 	    && pep->tx_ring_size - pep->tx_desc_count > 1) {
1241 		netif_wake_queue(dev);
1242 	}
1243 	work_done = rxq_process(dev, budget);
1244 	if (work_done < budget) {
1245 		napi_complete_done(napi, work_done);
1246 		wrl(pep, INT_MASK, ALL_INTS);
1247 	}
1248 
1249 	return work_done;
1250 }
1251 
1252 static netdev_tx_t
1253 pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1254 {
1255 	struct pxa168_eth_private *pep = netdev_priv(dev);
1256 	struct net_device_stats *stats = &dev->stats;
1257 	struct tx_desc *desc;
1258 	int tx_index;
1259 	int length;
1260 
1261 	tx_index = eth_alloc_tx_desc_index(pep);
1262 	desc = &pep->p_tx_desc_area[tx_index];
1263 	length = skb->len;
1264 	pep->tx_skb[tx_index] = skb;
1265 	desc->byte_cnt = length;
1266 	desc->buf_ptr = dma_map_single(&pep->pdev->dev, skb->data, length,
1267 					DMA_TO_DEVICE);
1268 
1269 	skb_tx_timestamp(skb);
1270 
1271 	dma_wmb();
1272 	desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1273 			TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1274 	wmb();
1275 	wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1276 
1277 	stats->tx_bytes += length;
1278 	stats->tx_packets++;
1279 	netif_trans_update(dev);
1280 	if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1281 		/* We handled the current skb, but now we are out of space.*/
1282 		netif_stop_queue(dev);
1283 	}
1284 
1285 	return NETDEV_TX_OK;
1286 }
1287 
1288 static int smi_wait_ready(struct pxa168_eth_private *pep)
1289 {
1290 	int i = 0;
1291 
1292 	/* wait for the SMI register to become available */
1293 	for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1294 		if (i == PHY_WAIT_ITERATIONS)
1295 			return -ETIMEDOUT;
1296 		msleep(10);
1297 	}
1298 
1299 	return 0;
1300 }
1301 
1302 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1303 {
1304 	struct pxa168_eth_private *pep = bus->priv;
1305 	int i = 0;
1306 	int val;
1307 
1308 	if (smi_wait_ready(pep)) {
1309 		netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1310 		return -ETIMEDOUT;
1311 	}
1312 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1313 	/* now wait for the data to be valid */
1314 	for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1315 		if (i == PHY_WAIT_ITERATIONS) {
1316 			netdev_warn(pep->dev,
1317 				    "pxa168_eth: SMI bus read not valid\n");
1318 			return -ENODEV;
1319 		}
1320 		msleep(10);
1321 	}
1322 
1323 	return val & 0xffff;
1324 }
1325 
1326 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1327 			    u16 value)
1328 {
1329 	struct pxa168_eth_private *pep = bus->priv;
1330 
1331 	if (smi_wait_ready(pep)) {
1332 		netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1333 		return -ETIMEDOUT;
1334 	}
1335 
1336 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1337 	    SMI_OP_W | (value & 0xffff));
1338 
1339 	if (smi_wait_ready(pep)) {
1340 		netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1341 		return -ETIMEDOUT;
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 #ifdef CONFIG_NET_POLL_CONTROLLER
1348 static void pxa168_eth_netpoll(struct net_device *dev)
1349 {
1350 	disable_irq(dev->irq);
1351 	pxa168_eth_int_handler(dev->irq, dev);
1352 	enable_irq(dev->irq);
1353 }
1354 #endif
1355 
1356 static void pxa168_get_drvinfo(struct net_device *dev,
1357 			       struct ethtool_drvinfo *info)
1358 {
1359 	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1360 	strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1361 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1362 	strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1363 }
1364 
1365 static const struct ethtool_ops pxa168_ethtool_ops = {
1366 	.get_drvinfo	= pxa168_get_drvinfo,
1367 	.nway_reset	= phy_ethtool_nway_reset,
1368 	.get_link	= ethtool_op_get_link,
1369 	.get_ts_info	= ethtool_op_get_ts_info,
1370 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
1371 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
1372 };
1373 
1374 static const struct net_device_ops pxa168_eth_netdev_ops = {
1375 	.ndo_open		= pxa168_eth_open,
1376 	.ndo_stop		= pxa168_eth_stop,
1377 	.ndo_start_xmit		= pxa168_eth_start_xmit,
1378 	.ndo_set_rx_mode	= pxa168_eth_set_rx_mode,
1379 	.ndo_set_mac_address	= pxa168_eth_set_mac_address,
1380 	.ndo_validate_addr	= eth_validate_addr,
1381 	.ndo_do_ioctl		= phy_do_ioctl,
1382 	.ndo_change_mtu		= pxa168_eth_change_mtu,
1383 	.ndo_tx_timeout		= pxa168_eth_tx_timeout,
1384 #ifdef CONFIG_NET_POLL_CONTROLLER
1385 	.ndo_poll_controller    = pxa168_eth_netpoll,
1386 #endif
1387 };
1388 
1389 static int pxa168_eth_probe(struct platform_device *pdev)
1390 {
1391 	struct pxa168_eth_private *pep = NULL;
1392 	struct net_device *dev = NULL;
1393 	struct resource *res;
1394 	struct clk *clk;
1395 	struct device_node *np;
1396 	const unsigned char *mac_addr = NULL;
1397 	int err;
1398 
1399 	printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1400 
1401 	clk = devm_clk_get(&pdev->dev, NULL);
1402 	if (IS_ERR(clk)) {
1403 		dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n");
1404 		return -ENODEV;
1405 	}
1406 	clk_prepare_enable(clk);
1407 
1408 	dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1409 	if (!dev) {
1410 		err = -ENOMEM;
1411 		goto err_clk;
1412 	}
1413 
1414 	platform_set_drvdata(pdev, dev);
1415 	pep = netdev_priv(dev);
1416 	pep->dev = dev;
1417 	pep->clk = clk;
1418 
1419 	pep->base = devm_platform_ioremap_resource(pdev, 0);
1420 	if (IS_ERR(pep->base)) {
1421 		err = -ENOMEM;
1422 		goto err_netdev;
1423 	}
1424 
1425 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1426 	BUG_ON(!res);
1427 	dev->irq = res->start;
1428 	dev->netdev_ops = &pxa168_eth_netdev_ops;
1429 	dev->watchdog_timeo = 2 * HZ;
1430 	dev->base_addr = 0;
1431 	dev->ethtool_ops = &pxa168_ethtool_ops;
1432 
1433 	/* MTU range: 68 - 9500 */
1434 	dev->min_mtu = ETH_MIN_MTU;
1435 	dev->max_mtu = 9500;
1436 
1437 	INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1438 
1439 	if (pdev->dev.of_node)
1440 		mac_addr = of_get_mac_address(pdev->dev.of_node);
1441 
1442 	if (!IS_ERR_OR_NULL(mac_addr)) {
1443 		ether_addr_copy(dev->dev_addr, mac_addr);
1444 	} else {
1445 		/* try reading the mac address, if set by the bootloader */
1446 		pxa168_eth_get_mac_address(dev, dev->dev_addr);
1447 		if (!is_valid_ether_addr(dev->dev_addr)) {
1448 			dev_info(&pdev->dev, "Using random mac address\n");
1449 			eth_hw_addr_random(dev);
1450 		}
1451 	}
1452 
1453 	pep->rx_ring_size = NUM_RX_DESCS;
1454 	pep->tx_ring_size = NUM_TX_DESCS;
1455 
1456 	pep->pd = dev_get_platdata(&pdev->dev);
1457 	if (pep->pd) {
1458 		if (pep->pd->rx_queue_size)
1459 			pep->rx_ring_size = pep->pd->rx_queue_size;
1460 
1461 		if (pep->pd->tx_queue_size)
1462 			pep->tx_ring_size = pep->pd->tx_queue_size;
1463 
1464 		pep->port_num = pep->pd->port_number;
1465 		pep->phy_addr = pep->pd->phy_addr;
1466 		pep->phy_speed = pep->pd->speed;
1467 		pep->phy_duplex = pep->pd->duplex;
1468 		pep->phy_intf = pep->pd->intf;
1469 
1470 		if (pep->pd->init)
1471 			pep->pd->init();
1472 	} else if (pdev->dev.of_node) {
1473 		of_property_read_u32(pdev->dev.of_node, "port-id",
1474 				     &pep->port_num);
1475 
1476 		np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1477 		if (!np) {
1478 			dev_err(&pdev->dev, "missing phy-handle\n");
1479 			err = -EINVAL;
1480 			goto err_netdev;
1481 		}
1482 		of_property_read_u32(np, "reg", &pep->phy_addr);
1483 		of_node_put(np);
1484 		err = of_get_phy_mode(pdev->dev.of_node, &pep->phy_intf);
1485 		if (err && err != -ENODEV)
1486 			goto err_netdev;
1487 	}
1488 
1489 	/* Hardware supports only 3 ports */
1490 	BUG_ON(pep->port_num > 2);
1491 	netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1492 
1493 	memset(&pep->timeout, 0, sizeof(struct timer_list));
1494 	timer_setup(&pep->timeout, rxq_refill_timer_wrapper, 0);
1495 
1496 	pep->smi_bus = mdiobus_alloc();
1497 	if (!pep->smi_bus) {
1498 		err = -ENOMEM;
1499 		goto err_netdev;
1500 	}
1501 	pep->smi_bus->priv = pep;
1502 	pep->smi_bus->name = "pxa168_eth smi";
1503 	pep->smi_bus->read = pxa168_smi_read;
1504 	pep->smi_bus->write = pxa168_smi_write;
1505 	snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1506 		pdev->name, pdev->id);
1507 	pep->smi_bus->parent = &pdev->dev;
1508 	pep->smi_bus->phy_mask = 0xffffffff;
1509 	err = mdiobus_register(pep->smi_bus);
1510 	if (err)
1511 		goto err_free_mdio;
1512 
1513 	pep->pdev = pdev;
1514 	SET_NETDEV_DEV(dev, &pdev->dev);
1515 	pxa168_init_hw(pep);
1516 	err = register_netdev(dev);
1517 	if (err)
1518 		goto err_mdiobus;
1519 	return 0;
1520 
1521 err_mdiobus:
1522 	mdiobus_unregister(pep->smi_bus);
1523 err_free_mdio:
1524 	mdiobus_free(pep->smi_bus);
1525 err_netdev:
1526 	free_netdev(dev);
1527 err_clk:
1528 	clk_disable_unprepare(clk);
1529 	return err;
1530 }
1531 
1532 static int pxa168_eth_remove(struct platform_device *pdev)
1533 {
1534 	struct net_device *dev = platform_get_drvdata(pdev);
1535 	struct pxa168_eth_private *pep = netdev_priv(dev);
1536 
1537 	if (pep->htpr) {
1538 		dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1539 				  pep->htpr, pep->htpr_dma);
1540 		pep->htpr = NULL;
1541 	}
1542 	if (dev->phydev)
1543 		phy_disconnect(dev->phydev);
1544 	if (pep->clk) {
1545 		clk_disable_unprepare(pep->clk);
1546 	}
1547 
1548 	mdiobus_unregister(pep->smi_bus);
1549 	mdiobus_free(pep->smi_bus);
1550 	unregister_netdev(dev);
1551 	cancel_work_sync(&pep->tx_timeout_task);
1552 	free_netdev(dev);
1553 	return 0;
1554 }
1555 
1556 static void pxa168_eth_shutdown(struct platform_device *pdev)
1557 {
1558 	struct net_device *dev = platform_get_drvdata(pdev);
1559 	eth_port_reset(dev);
1560 }
1561 
1562 #ifdef CONFIG_PM
1563 static int pxa168_eth_resume(struct platform_device *pdev)
1564 {
1565 	return -ENOSYS;
1566 }
1567 
1568 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1569 {
1570 	return -ENOSYS;
1571 }
1572 
1573 #else
1574 #define pxa168_eth_resume NULL
1575 #define pxa168_eth_suspend NULL
1576 #endif
1577 
1578 static const struct of_device_id pxa168_eth_of_match[] = {
1579 	{ .compatible = "marvell,pxa168-eth" },
1580 	{ },
1581 };
1582 MODULE_DEVICE_TABLE(of, pxa168_eth_of_match);
1583 
1584 static struct platform_driver pxa168_eth_driver = {
1585 	.probe = pxa168_eth_probe,
1586 	.remove = pxa168_eth_remove,
1587 	.shutdown = pxa168_eth_shutdown,
1588 	.resume = pxa168_eth_resume,
1589 	.suspend = pxa168_eth_suspend,
1590 	.driver = {
1591 		.name		= DRIVER_NAME,
1592 		.of_match_table	= of_match_ptr(pxa168_eth_of_match),
1593 	},
1594 };
1595 
1596 module_platform_driver(pxa168_eth_driver);
1597 
1598 MODULE_LICENSE("GPL");
1599 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1600 MODULE_ALIAS("platform:pxa168_eth");
1601