1 /*
2  * PXA168 ethernet driver.
3  * Most of the code is derived from mv643xx ethernet driver.
4  *
5  * Copyright (C) 2010 Marvell International Ltd.
6  *		Sachin Sanap <ssanap@marvell.com>
7  *		Zhangfei Gao <zgao6@marvell.com>
8  *		Philip Rakity <prakity@marvell.com>
9  *		Mark Brown <markb@marvell.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version 2
14  * of the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/in.h>
29 #include <linux/ip.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/etherdevice.h>
33 #include <linux/bitops.h>
34 #include <linux/delay.h>
35 #include <linux/ethtool.h>
36 #include <linux/platform_device.h>
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/workqueue.h>
40 #include <linux/clk.h>
41 #include <linux/phy.h>
42 #include <linux/io.h>
43 #include <linux/interrupt.h>
44 #include <linux/types.h>
45 #include <asm/pgtable.h>
46 #include <asm/cacheflush.h>
47 #include <linux/pxa168_eth.h>
48 
49 #define DRIVER_NAME	"pxa168-eth"
50 #define DRIVER_VERSION	"0.3"
51 
52 /*
53  * Registers
54  */
55 
56 #define PHY_ADDRESS		0x0000
57 #define SMI			0x0010
58 #define PORT_CONFIG		0x0400
59 #define PORT_CONFIG_EXT		0x0408
60 #define PORT_COMMAND		0x0410
61 #define PORT_STATUS		0x0418
62 #define HTPR			0x0428
63 #define SDMA_CONFIG		0x0440
64 #define SDMA_CMD		0x0448
65 #define INT_CAUSE		0x0450
66 #define INT_W_CLEAR		0x0454
67 #define INT_MASK		0x0458
68 #define ETH_F_RX_DESC_0		0x0480
69 #define ETH_C_RX_DESC_0		0x04A0
70 #define ETH_C_TX_DESC_1		0x04E4
71 
72 /* smi register */
73 #define SMI_BUSY		(1 << 28)	/* 0 - Write, 1 - Read  */
74 #define SMI_R_VALID		(1 << 27)	/* 0 - Write, 1 - Read  */
75 #define SMI_OP_W		(0 << 26)	/* Write operation      */
76 #define SMI_OP_R		(1 << 26)	/* Read operation */
77 
78 #define PHY_WAIT_ITERATIONS	10
79 
80 #define PXA168_ETH_PHY_ADDR_DEFAULT	0
81 /* RX & TX descriptor command */
82 #define BUF_OWNED_BY_DMA	(1 << 31)
83 
84 /* RX descriptor status */
85 #define RX_EN_INT		(1 << 23)
86 #define RX_FIRST_DESC		(1 << 17)
87 #define RX_LAST_DESC		(1 << 16)
88 #define RX_ERROR		(1 << 15)
89 
90 /* TX descriptor command */
91 #define TX_EN_INT		(1 << 23)
92 #define TX_GEN_CRC		(1 << 22)
93 #define TX_ZERO_PADDING		(1 << 18)
94 #define TX_FIRST_DESC		(1 << 17)
95 #define TX_LAST_DESC		(1 << 16)
96 #define TX_ERROR		(1 << 15)
97 
98 /* SDMA_CMD */
99 #define SDMA_CMD_AT		(1 << 31)
100 #define SDMA_CMD_TXDL		(1 << 24)
101 #define SDMA_CMD_TXDH		(1 << 23)
102 #define SDMA_CMD_AR		(1 << 15)
103 #define SDMA_CMD_ERD		(1 << 7)
104 
105 /* Bit definitions of the Port Config Reg */
106 #define PCR_HS			(1 << 12)
107 #define PCR_EN			(1 << 7)
108 #define PCR_PM			(1 << 0)
109 
110 /* Bit definitions of the Port Config Extend Reg */
111 #define PCXR_2BSM		(1 << 28)
112 #define PCXR_DSCP_EN		(1 << 21)
113 #define PCXR_MFL_1518		(0 << 14)
114 #define PCXR_MFL_1536		(1 << 14)
115 #define PCXR_MFL_2048		(2 << 14)
116 #define PCXR_MFL_64K		(3 << 14)
117 #define PCXR_FLP		(1 << 11)
118 #define PCXR_PRIO_TX_OFF	3
119 #define PCXR_TX_HIGH_PRI	(7 << PCXR_PRIO_TX_OFF)
120 
121 /* Bit definitions of the SDMA Config Reg */
122 #define SDCR_BSZ_OFF		12
123 #define SDCR_BSZ8		(3 << SDCR_BSZ_OFF)
124 #define SDCR_BSZ4		(2 << SDCR_BSZ_OFF)
125 #define SDCR_BSZ2		(1 << SDCR_BSZ_OFF)
126 #define SDCR_BSZ1		(0 << SDCR_BSZ_OFF)
127 #define SDCR_BLMR		(1 << 6)
128 #define SDCR_BLMT		(1 << 7)
129 #define SDCR_RIFB		(1 << 9)
130 #define SDCR_RC_OFF		2
131 #define SDCR_RC_MAX_RETRANS	(0xf << SDCR_RC_OFF)
132 
133 /*
134  * Bit definitions of the Interrupt Cause Reg
135  * and Interrupt MASK Reg is the same
136  */
137 #define ICR_RXBUF		(1 << 0)
138 #define ICR_TXBUF_H		(1 << 2)
139 #define ICR_TXBUF_L		(1 << 3)
140 #define ICR_TXEND_H		(1 << 6)
141 #define ICR_TXEND_L		(1 << 7)
142 #define ICR_RXERR		(1 << 8)
143 #define ICR_TXERR_H		(1 << 10)
144 #define ICR_TXERR_L		(1 << 11)
145 #define ICR_TX_UDR		(1 << 13)
146 #define ICR_MII_CH		(1 << 28)
147 
148 #define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
149 				ICR_TXERR_H  | ICR_TXERR_L |\
150 				ICR_TXEND_H  | ICR_TXEND_L |\
151 				ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
152 
153 #define ETH_HW_IP_ALIGN		2	/* hw aligns IP header */
154 
155 #define NUM_RX_DESCS		64
156 #define NUM_TX_DESCS		64
157 
158 #define HASH_ADD		0
159 #define HASH_DELETE		1
160 #define HASH_ADDR_TABLE_SIZE	0x4000	/* 16K (1/2K address - PCR_HS == 1) */
161 #define HOP_NUMBER		12
162 
163 /* Bit definitions for Port status */
164 #define PORT_SPEED_100		(1 << 0)
165 #define FULL_DUPLEX		(1 << 1)
166 #define FLOW_CONTROL_ENABLED	(1 << 2)
167 #define LINK_UP			(1 << 3)
168 
169 /* Bit definitions for work to be done */
170 #define WORK_LINK		(1 << 0)
171 #define WORK_TX_DONE		(1 << 1)
172 
173 /*
174  * Misc definitions.
175  */
176 #define SKB_DMA_REALIGN		((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
177 
178 struct rx_desc {
179 	u32 cmd_sts;		/* Descriptor command status            */
180 	u16 byte_cnt;		/* Descriptor buffer byte count         */
181 	u16 buf_size;		/* Buffer size                          */
182 	u32 buf_ptr;		/* Descriptor buffer pointer            */
183 	u32 next_desc_ptr;	/* Next descriptor pointer              */
184 };
185 
186 struct tx_desc {
187 	u32 cmd_sts;		/* Command/status field                 */
188 	u16 reserved;
189 	u16 byte_cnt;		/* buffer byte count                    */
190 	u32 buf_ptr;		/* pointer to buffer for this descriptor */
191 	u32 next_desc_ptr;	/* Pointer to next descriptor           */
192 };
193 
194 struct pxa168_eth_private {
195 	int port_num;		/* User Ethernet port number    */
196 
197 	int rx_resource_err;	/* Rx ring resource error flag */
198 
199 	/* Next available and first returning Rx resource */
200 	int rx_curr_desc_q, rx_used_desc_q;
201 
202 	/* Next available and first returning Tx resource */
203 	int tx_curr_desc_q, tx_used_desc_q;
204 
205 	struct rx_desc *p_rx_desc_area;
206 	dma_addr_t rx_desc_dma;
207 	int rx_desc_area_size;
208 	struct sk_buff **rx_skb;
209 
210 	struct tx_desc *p_tx_desc_area;
211 	dma_addr_t tx_desc_dma;
212 	int tx_desc_area_size;
213 	struct sk_buff **tx_skb;
214 
215 	struct work_struct tx_timeout_task;
216 
217 	struct net_device *dev;
218 	struct napi_struct napi;
219 	u8 work_todo;
220 	int skb_size;
221 
222 	/* Size of Tx Ring per queue */
223 	int tx_ring_size;
224 	/* Number of tx descriptors in use */
225 	int tx_desc_count;
226 	/* Size of Rx Ring per queue */
227 	int rx_ring_size;
228 	/* Number of rx descriptors in use */
229 	int rx_desc_count;
230 
231 	/*
232 	 * Used in case RX Ring is empty, which can occur when
233 	 * system does not have resources (skb's)
234 	 */
235 	struct timer_list timeout;
236 	struct mii_bus *smi_bus;
237 	struct phy_device *phy;
238 
239 	/* clock */
240 	struct clk *clk;
241 	struct pxa168_eth_platform_data *pd;
242 	/*
243 	 * Ethernet controller base address.
244 	 */
245 	void __iomem *base;
246 
247 	/* Pointer to the hardware address filter table */
248 	void *htpr;
249 	dma_addr_t htpr_dma;
250 };
251 
252 struct addr_table_entry {
253 	__le32 lo;
254 	__le32 hi;
255 };
256 
257 /* Bit fields of a Hash Table Entry */
258 enum hash_table_entry {
259 	HASH_ENTRY_VALID = 1,
260 	SKIP = 2,
261 	HASH_ENTRY_RECEIVE_DISCARD = 4,
262 	HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
263 };
264 
265 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
266 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
267 static int pxa168_init_hw(struct pxa168_eth_private *pep);
268 static void eth_port_reset(struct net_device *dev);
269 static void eth_port_start(struct net_device *dev);
270 static int pxa168_eth_open(struct net_device *dev);
271 static int pxa168_eth_stop(struct net_device *dev);
272 static int ethernet_phy_setup(struct net_device *dev);
273 
274 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
275 {
276 	return readl(pep->base + offset);
277 }
278 
279 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
280 {
281 	writel(data, pep->base + offset);
282 }
283 
284 static void abort_dma(struct pxa168_eth_private *pep)
285 {
286 	int delay;
287 	int max_retries = 40;
288 
289 	do {
290 		wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
291 		udelay(100);
292 
293 		delay = 10;
294 		while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
295 		       && delay-- > 0) {
296 			udelay(10);
297 		}
298 	} while (max_retries-- > 0 && delay <= 0);
299 
300 	if (max_retries <= 0)
301 		printk(KERN_ERR "%s : DMA Stuck\n", __func__);
302 }
303 
304 static int ethernet_phy_get(struct pxa168_eth_private *pep)
305 {
306 	unsigned int reg_data;
307 
308 	reg_data = rdl(pep, PHY_ADDRESS);
309 
310 	return (reg_data >> (5 * pep->port_num)) & 0x1f;
311 }
312 
313 static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
314 {
315 	u32 reg_data;
316 	int addr_shift = 5 * pep->port_num;
317 
318 	reg_data = rdl(pep, PHY_ADDRESS);
319 	reg_data &= ~(0x1f << addr_shift);
320 	reg_data |= (phy_addr & 0x1f) << addr_shift;
321 	wrl(pep, PHY_ADDRESS, reg_data);
322 }
323 
324 static void ethernet_phy_reset(struct pxa168_eth_private *pep)
325 {
326 	int data;
327 
328 	data = phy_read(pep->phy, MII_BMCR);
329 	if (data < 0)
330 		return;
331 
332 	data |= BMCR_RESET;
333 	if (phy_write(pep->phy, MII_BMCR, data) < 0)
334 		return;
335 
336 	do {
337 		data = phy_read(pep->phy, MII_BMCR);
338 	} while (data >= 0 && data & BMCR_RESET);
339 }
340 
341 static void rxq_refill(struct net_device *dev)
342 {
343 	struct pxa168_eth_private *pep = netdev_priv(dev);
344 	struct sk_buff *skb;
345 	struct rx_desc *p_used_rx_desc;
346 	int used_rx_desc;
347 
348 	while (pep->rx_desc_count < pep->rx_ring_size) {
349 		int size;
350 
351 		skb = netdev_alloc_skb(dev, pep->skb_size);
352 		if (!skb)
353 			break;
354 		if (SKB_DMA_REALIGN)
355 			skb_reserve(skb, SKB_DMA_REALIGN);
356 		pep->rx_desc_count++;
357 		/* Get 'used' Rx descriptor */
358 		used_rx_desc = pep->rx_used_desc_q;
359 		p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
360 		size = skb->end - skb->data;
361 		p_used_rx_desc->buf_ptr = dma_map_single(NULL,
362 							 skb->data,
363 							 size,
364 							 DMA_FROM_DEVICE);
365 		p_used_rx_desc->buf_size = size;
366 		pep->rx_skb[used_rx_desc] = skb;
367 
368 		/* Return the descriptor to DMA ownership */
369 		wmb();
370 		p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
371 		wmb();
372 
373 		/* Move the used descriptor pointer to the next descriptor */
374 		pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
375 
376 		/* Any Rx return cancels the Rx resource error status */
377 		pep->rx_resource_err = 0;
378 
379 		skb_reserve(skb, ETH_HW_IP_ALIGN);
380 	}
381 
382 	/*
383 	 * If RX ring is empty of SKB, set a timer to try allocating
384 	 * again at a later time.
385 	 */
386 	if (pep->rx_desc_count == 0) {
387 		pep->timeout.expires = jiffies + (HZ / 10);
388 		add_timer(&pep->timeout);
389 	}
390 }
391 
392 static inline void rxq_refill_timer_wrapper(unsigned long data)
393 {
394 	struct pxa168_eth_private *pep = (void *)data;
395 	napi_schedule(&pep->napi);
396 }
397 
398 static inline u8 flip_8_bits(u8 x)
399 {
400 	return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
401 	    | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
402 	    | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
403 	    | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
404 }
405 
406 static void nibble_swap_every_byte(unsigned char *mac_addr)
407 {
408 	int i;
409 	for (i = 0; i < ETH_ALEN; i++) {
410 		mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
411 				((mac_addr[i] & 0xf0) >> 4);
412 	}
413 }
414 
415 static void inverse_every_nibble(unsigned char *mac_addr)
416 {
417 	int i;
418 	for (i = 0; i < ETH_ALEN; i++)
419 		mac_addr[i] = flip_8_bits(mac_addr[i]);
420 }
421 
422 /*
423  * ----------------------------------------------------------------------------
424  * This function will calculate the hash function of the address.
425  * Inputs
426  * mac_addr_orig    - MAC address.
427  * Outputs
428  * return the calculated entry.
429  */
430 static u32 hash_function(unsigned char *mac_addr_orig)
431 {
432 	u32 hash_result;
433 	u32 addr0;
434 	u32 addr1;
435 	u32 addr2;
436 	u32 addr3;
437 	unsigned char mac_addr[ETH_ALEN];
438 
439 	/* Make a copy of MAC address since we are going to performe bit
440 	 * operations on it
441 	 */
442 	memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
443 
444 	nibble_swap_every_byte(mac_addr);
445 	inverse_every_nibble(mac_addr);
446 
447 	addr0 = (mac_addr[5] >> 2) & 0x3f;
448 	addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
449 	addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
450 	addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
451 
452 	hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
453 	hash_result = hash_result & 0x07ff;
454 	return hash_result;
455 }
456 
457 /*
458  * ----------------------------------------------------------------------------
459  * This function will add/del an entry to the address table.
460  * Inputs
461  * pep - ETHERNET .
462  * mac_addr - MAC address.
463  * skip - if 1, skip this address.Used in case of deleting an entry which is a
464  *	  part of chain in the hash table.We can't just delete the entry since
465  *	  that will break the chain.We need to defragment the tables time to
466  *	  time.
467  * rd   - 0 Discard packet upon match.
468  *	- 1 Receive packet upon match.
469  * Outputs
470  * address table entry is added/deleted.
471  * 0 if success.
472  * -ENOSPC if table full
473  */
474 static int add_del_hash_entry(struct pxa168_eth_private *pep,
475 			      unsigned char *mac_addr,
476 			      u32 rd, u32 skip, int del)
477 {
478 	struct addr_table_entry *entry, *start;
479 	u32 new_high;
480 	u32 new_low;
481 	u32 i;
482 
483 	new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
484 	    | (((mac_addr[1] >> 0) & 0xf) << 11)
485 	    | (((mac_addr[0] >> 4) & 0xf) << 7)
486 	    | (((mac_addr[0] >> 0) & 0xf) << 3)
487 	    | (((mac_addr[3] >> 4) & 0x1) << 31)
488 	    | (((mac_addr[3] >> 0) & 0xf) << 27)
489 	    | (((mac_addr[2] >> 4) & 0xf) << 23)
490 	    | (((mac_addr[2] >> 0) & 0xf) << 19)
491 	    | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
492 	    | HASH_ENTRY_VALID;
493 
494 	new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
495 	    | (((mac_addr[5] >> 0) & 0xf) << 11)
496 	    | (((mac_addr[4] >> 4) & 0xf) << 7)
497 	    | (((mac_addr[4] >> 0) & 0xf) << 3)
498 	    | (((mac_addr[3] >> 5) & 0x7) << 0);
499 
500 	/*
501 	 * Pick the appropriate table, start scanning for free/reusable
502 	 * entries at the index obtained by hashing the specified MAC address
503 	 */
504 	start = pep->htpr;
505 	entry = start + hash_function(mac_addr);
506 	for (i = 0; i < HOP_NUMBER; i++) {
507 		if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
508 			break;
509 		} else {
510 			/* if same address put in same position */
511 			if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
512 				(new_low & 0xfffffff8)) &&
513 				(le32_to_cpu(entry->hi) == new_high)) {
514 				break;
515 			}
516 		}
517 		if (entry == start + 0x7ff)
518 			entry = start;
519 		else
520 			entry++;
521 	}
522 
523 	if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
524 	    (le32_to_cpu(entry->hi) != new_high) && del)
525 		return 0;
526 
527 	if (i == HOP_NUMBER) {
528 		if (!del) {
529 			printk(KERN_INFO "%s: table section is full, need to "
530 					"move to 16kB implementation?\n",
531 					 __FILE__);
532 			return -ENOSPC;
533 		} else
534 			return 0;
535 	}
536 
537 	/*
538 	 * Update the selected entry
539 	 */
540 	if (del) {
541 		entry->hi = 0;
542 		entry->lo = 0;
543 	} else {
544 		entry->hi = cpu_to_le32(new_high);
545 		entry->lo = cpu_to_le32(new_low);
546 	}
547 
548 	return 0;
549 }
550 
551 /*
552  * ----------------------------------------------------------------------------
553  *  Create an addressTable entry from MAC address info
554  *  found in the specifed net_device struct
555  *
556  *  Input : pointer to ethernet interface network device structure
557  *  Output : N/A
558  */
559 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
560 					  unsigned char *oaddr,
561 					  unsigned char *addr)
562 {
563 	/* Delete old entry */
564 	if (oaddr)
565 		add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
566 	/* Add new entry */
567 	add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
568 }
569 
570 static int init_hash_table(struct pxa168_eth_private *pep)
571 {
572 	/*
573 	 * Hardware expects CPU to build a hash table based on a predefined
574 	 * hash function and populate it based on hardware address. The
575 	 * location of the hash table is identified by 32-bit pointer stored
576 	 * in HTPR internal register. Two possible sizes exists for the hash
577 	 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
578 	 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
579 	 * 1/2kB.
580 	 */
581 	/* TODO: Add support for 8kB hash table and alternative hash
582 	 * function.Driver can dynamically switch to them if the 1/2kB hash
583 	 * table is full.
584 	 */
585 	if (pep->htpr == NULL) {
586 		pep->htpr = dma_alloc_coherent(pep->dev->dev.parent,
587 					      HASH_ADDR_TABLE_SIZE,
588 					      &pep->htpr_dma, GFP_KERNEL);
589 		if (pep->htpr == NULL)
590 			return -ENOMEM;
591 	}
592 	memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
593 	wrl(pep, HTPR, pep->htpr_dma);
594 	return 0;
595 }
596 
597 static void pxa168_eth_set_rx_mode(struct net_device *dev)
598 {
599 	struct pxa168_eth_private *pep = netdev_priv(dev);
600 	struct netdev_hw_addr *ha;
601 	u32 val;
602 
603 	val = rdl(pep, PORT_CONFIG);
604 	if (dev->flags & IFF_PROMISC)
605 		val |= PCR_PM;
606 	else
607 		val &= ~PCR_PM;
608 	wrl(pep, PORT_CONFIG, val);
609 
610 	/*
611 	 * Remove the old list of MAC address and add dev->addr
612 	 * and multicast address.
613 	 */
614 	memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
615 	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
616 
617 	netdev_for_each_mc_addr(ha, dev)
618 		update_hash_table_mac_address(pep, NULL, ha->addr);
619 }
620 
621 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
622 {
623 	struct sockaddr *sa = addr;
624 	struct pxa168_eth_private *pep = netdev_priv(dev);
625 	unsigned char oldMac[ETH_ALEN];
626 
627 	if (!is_valid_ether_addr(sa->sa_data))
628 		return -EADDRNOTAVAIL;
629 	memcpy(oldMac, dev->dev_addr, ETH_ALEN);
630 	dev->addr_assign_type &= ~NET_ADDR_RANDOM;
631 	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
632 	netif_addr_lock_bh(dev);
633 	update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
634 	netif_addr_unlock_bh(dev);
635 	return 0;
636 }
637 
638 static void eth_port_start(struct net_device *dev)
639 {
640 	unsigned int val = 0;
641 	struct pxa168_eth_private *pep = netdev_priv(dev);
642 	int tx_curr_desc, rx_curr_desc;
643 
644 	/* Perform PHY reset, if there is a PHY. */
645 	if (pep->phy != NULL) {
646 		struct ethtool_cmd cmd;
647 
648 		pxa168_get_settings(pep->dev, &cmd);
649 		ethernet_phy_reset(pep);
650 		pxa168_set_settings(pep->dev, &cmd);
651 	}
652 
653 	/* Assignment of Tx CTRP of given queue */
654 	tx_curr_desc = pep->tx_curr_desc_q;
655 	wrl(pep, ETH_C_TX_DESC_1,
656 	    (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
657 
658 	/* Assignment of Rx CRDP of given queue */
659 	rx_curr_desc = pep->rx_curr_desc_q;
660 	wrl(pep, ETH_C_RX_DESC_0,
661 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
662 
663 	wrl(pep, ETH_F_RX_DESC_0,
664 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
665 
666 	/* Clear all interrupts */
667 	wrl(pep, INT_CAUSE, 0);
668 
669 	/* Enable all interrupts for receive, transmit and error. */
670 	wrl(pep, INT_MASK, ALL_INTS);
671 
672 	val = rdl(pep, PORT_CONFIG);
673 	val |= PCR_EN;
674 	wrl(pep, PORT_CONFIG, val);
675 
676 	/* Start RX DMA engine */
677 	val = rdl(pep, SDMA_CMD);
678 	val |= SDMA_CMD_ERD;
679 	wrl(pep, SDMA_CMD, val);
680 }
681 
682 static void eth_port_reset(struct net_device *dev)
683 {
684 	struct pxa168_eth_private *pep = netdev_priv(dev);
685 	unsigned int val = 0;
686 
687 	/* Stop all interrupts for receive, transmit and error. */
688 	wrl(pep, INT_MASK, 0);
689 
690 	/* Clear all interrupts */
691 	wrl(pep, INT_CAUSE, 0);
692 
693 	/* Stop RX DMA */
694 	val = rdl(pep, SDMA_CMD);
695 	val &= ~SDMA_CMD_ERD;	/* abort dma command */
696 
697 	/* Abort any transmit and receive operations and put DMA
698 	 * in idle state.
699 	 */
700 	abort_dma(pep);
701 
702 	/* Disable port */
703 	val = rdl(pep, PORT_CONFIG);
704 	val &= ~PCR_EN;
705 	wrl(pep, PORT_CONFIG, val);
706 }
707 
708 /*
709  * txq_reclaim - Free the tx desc data for completed descriptors
710  * If force is non-zero, frees uncompleted descriptors as well
711  */
712 static int txq_reclaim(struct net_device *dev, int force)
713 {
714 	struct pxa168_eth_private *pep = netdev_priv(dev);
715 	struct tx_desc *desc;
716 	u32 cmd_sts;
717 	struct sk_buff *skb;
718 	int tx_index;
719 	dma_addr_t addr;
720 	int count;
721 	int released = 0;
722 
723 	netif_tx_lock(dev);
724 
725 	pep->work_todo &= ~WORK_TX_DONE;
726 	while (pep->tx_desc_count > 0) {
727 		tx_index = pep->tx_used_desc_q;
728 		desc = &pep->p_tx_desc_area[tx_index];
729 		cmd_sts = desc->cmd_sts;
730 		if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
731 			if (released > 0) {
732 				goto txq_reclaim_end;
733 			} else {
734 				released = -1;
735 				goto txq_reclaim_end;
736 			}
737 		}
738 		pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
739 		pep->tx_desc_count--;
740 		addr = desc->buf_ptr;
741 		count = desc->byte_cnt;
742 		skb = pep->tx_skb[tx_index];
743 		if (skb)
744 			pep->tx_skb[tx_index] = NULL;
745 
746 		if (cmd_sts & TX_ERROR) {
747 			if (net_ratelimit())
748 				printk(KERN_ERR "%s: Error in TX\n", dev->name);
749 			dev->stats.tx_errors++;
750 		}
751 		dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
752 		if (skb)
753 			dev_kfree_skb_irq(skb);
754 		released++;
755 	}
756 txq_reclaim_end:
757 	netif_tx_unlock(dev);
758 	return released;
759 }
760 
761 static void pxa168_eth_tx_timeout(struct net_device *dev)
762 {
763 	struct pxa168_eth_private *pep = netdev_priv(dev);
764 
765 	printk(KERN_INFO "%s: TX timeout  desc_count %d\n",
766 	       dev->name, pep->tx_desc_count);
767 
768 	schedule_work(&pep->tx_timeout_task);
769 }
770 
771 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
772 {
773 	struct pxa168_eth_private *pep = container_of(work,
774 						 struct pxa168_eth_private,
775 						 tx_timeout_task);
776 	struct net_device *dev = pep->dev;
777 	pxa168_eth_stop(dev);
778 	pxa168_eth_open(dev);
779 }
780 
781 static int rxq_process(struct net_device *dev, int budget)
782 {
783 	struct pxa168_eth_private *pep = netdev_priv(dev);
784 	struct net_device_stats *stats = &dev->stats;
785 	unsigned int received_packets = 0;
786 	struct sk_buff *skb;
787 
788 	while (budget-- > 0) {
789 		int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
790 		struct rx_desc *rx_desc;
791 		unsigned int cmd_sts;
792 
793 		/* Do not process Rx ring in case of Rx ring resource error */
794 		if (pep->rx_resource_err)
795 			break;
796 		rx_curr_desc = pep->rx_curr_desc_q;
797 		rx_used_desc = pep->rx_used_desc_q;
798 		rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
799 		cmd_sts = rx_desc->cmd_sts;
800 		rmb();
801 		if (cmd_sts & (BUF_OWNED_BY_DMA))
802 			break;
803 		skb = pep->rx_skb[rx_curr_desc];
804 		pep->rx_skb[rx_curr_desc] = NULL;
805 
806 		rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
807 		pep->rx_curr_desc_q = rx_next_curr_desc;
808 
809 		/* Rx descriptors exhausted. */
810 		/* Set the Rx ring resource error flag */
811 		if (rx_next_curr_desc == rx_used_desc)
812 			pep->rx_resource_err = 1;
813 		pep->rx_desc_count--;
814 		dma_unmap_single(NULL, rx_desc->buf_ptr,
815 				 rx_desc->buf_size,
816 				 DMA_FROM_DEVICE);
817 		received_packets++;
818 		/*
819 		 * Update statistics.
820 		 * Note byte count includes 4 byte CRC count
821 		 */
822 		stats->rx_packets++;
823 		stats->rx_bytes += rx_desc->byte_cnt;
824 		/*
825 		 * In case received a packet without first / last bits on OR
826 		 * the error summary bit is on, the packets needs to be droped.
827 		 */
828 		if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
829 		     (RX_FIRST_DESC | RX_LAST_DESC))
830 		    || (cmd_sts & RX_ERROR)) {
831 
832 			stats->rx_dropped++;
833 			if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
834 			    (RX_FIRST_DESC | RX_LAST_DESC)) {
835 				if (net_ratelimit())
836 					printk(KERN_ERR
837 					       "%s: Rx pkt on multiple desc\n",
838 					       dev->name);
839 			}
840 			if (cmd_sts & RX_ERROR)
841 				stats->rx_errors++;
842 			dev_kfree_skb_irq(skb);
843 		} else {
844 			/*
845 			 * The -4 is for the CRC in the trailer of the
846 			 * received packet
847 			 */
848 			skb_put(skb, rx_desc->byte_cnt - 4);
849 			skb->protocol = eth_type_trans(skb, dev);
850 			netif_receive_skb(skb);
851 		}
852 	}
853 	/* Fill RX ring with skb's */
854 	rxq_refill(dev);
855 	return received_packets;
856 }
857 
858 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
859 				     struct net_device *dev)
860 {
861 	u32 icr;
862 	int ret = 0;
863 
864 	icr = rdl(pep, INT_CAUSE);
865 	if (icr == 0)
866 		return IRQ_NONE;
867 
868 	wrl(pep, INT_CAUSE, ~icr);
869 	if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
870 		pep->work_todo |= WORK_TX_DONE;
871 		ret = 1;
872 	}
873 	if (icr & ICR_RXBUF)
874 		ret = 1;
875 	if (icr & ICR_MII_CH) {
876 		pep->work_todo |= WORK_LINK;
877 		ret = 1;
878 	}
879 	return ret;
880 }
881 
882 static void handle_link_event(struct pxa168_eth_private *pep)
883 {
884 	struct net_device *dev = pep->dev;
885 	u32 port_status;
886 	int speed;
887 	int duplex;
888 	int fc;
889 
890 	port_status = rdl(pep, PORT_STATUS);
891 	if (!(port_status & LINK_UP)) {
892 		if (netif_carrier_ok(dev)) {
893 			printk(KERN_INFO "%s: link down\n", dev->name);
894 			netif_carrier_off(dev);
895 			txq_reclaim(dev, 1);
896 		}
897 		return;
898 	}
899 	if (port_status & PORT_SPEED_100)
900 		speed = 100;
901 	else
902 		speed = 10;
903 
904 	duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
905 	fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0;
906 	printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
907 	       "flow control %sabled\n", dev->name,
908 	       speed, duplex ? "full" : "half", fc ? "en" : "dis");
909 	if (!netif_carrier_ok(dev))
910 		netif_carrier_on(dev);
911 }
912 
913 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
914 {
915 	struct net_device *dev = (struct net_device *)dev_id;
916 	struct pxa168_eth_private *pep = netdev_priv(dev);
917 
918 	if (unlikely(!pxa168_eth_collect_events(pep, dev)))
919 		return IRQ_NONE;
920 	/* Disable interrupts */
921 	wrl(pep, INT_MASK, 0);
922 	napi_schedule(&pep->napi);
923 	return IRQ_HANDLED;
924 }
925 
926 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
927 {
928 	int skb_size;
929 
930 	/*
931 	 * Reserve 2+14 bytes for an ethernet header (the hardware
932 	 * automatically prepends 2 bytes of dummy data to each
933 	 * received packet), 16 bytes for up to four VLAN tags, and
934 	 * 4 bytes for the trailing FCS -- 36 bytes total.
935 	 */
936 	skb_size = pep->dev->mtu + 36;
937 
938 	/*
939 	 * Make sure that the skb size is a multiple of 8 bytes, as
940 	 * the lower three bits of the receive descriptor's buffer
941 	 * size field are ignored by the hardware.
942 	 */
943 	pep->skb_size = (skb_size + 7) & ~7;
944 
945 	/*
946 	 * If NET_SKB_PAD is smaller than a cache line,
947 	 * netdev_alloc_skb() will cause skb->data to be misaligned
948 	 * to a cache line boundary.  If this is the case, include
949 	 * some extra space to allow re-aligning the data area.
950 	 */
951 	pep->skb_size += SKB_DMA_REALIGN;
952 
953 }
954 
955 static int set_port_config_ext(struct pxa168_eth_private *pep)
956 {
957 	int skb_size;
958 
959 	pxa168_eth_recalc_skb_size(pep);
960 	if  (pep->skb_size <= 1518)
961 		skb_size = PCXR_MFL_1518;
962 	else if (pep->skb_size <= 1536)
963 		skb_size = PCXR_MFL_1536;
964 	else if (pep->skb_size <= 2048)
965 		skb_size = PCXR_MFL_2048;
966 	else
967 		skb_size = PCXR_MFL_64K;
968 
969 	/* Extended Port Configuration */
970 	wrl(pep,
971 	    PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
972 	    PCXR_DSCP_EN |		 /* Enable DSCP in IP */
973 	    skb_size | PCXR_FLP |	 /* do not force link pass */
974 	    PCXR_TX_HIGH_PRI);		 /* Transmit - high priority queue */
975 
976 	return 0;
977 }
978 
979 static int pxa168_init_hw(struct pxa168_eth_private *pep)
980 {
981 	int err = 0;
982 
983 	/* Disable interrupts */
984 	wrl(pep, INT_MASK, 0);
985 	wrl(pep, INT_CAUSE, 0);
986 	/* Write to ICR to clear interrupts. */
987 	wrl(pep, INT_W_CLEAR, 0);
988 	/* Abort any transmit and receive operations and put DMA
989 	 * in idle state.
990 	 */
991 	abort_dma(pep);
992 	/* Initialize address hash table */
993 	err = init_hash_table(pep);
994 	if (err)
995 		return err;
996 	/* SDMA configuration */
997 	wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |	/* Burst size = 32 bytes */
998 	    SDCR_RIFB |				/* Rx interrupt on frame */
999 	    SDCR_BLMT |				/* Little endian transmit */
1000 	    SDCR_BLMR |				/* Little endian receive */
1001 	    SDCR_RC_MAX_RETRANS);		/* Max retransmit count */
1002 	/* Port Configuration */
1003 	wrl(pep, PORT_CONFIG, PCR_HS);		/* Hash size is 1/2kb */
1004 	set_port_config_ext(pep);
1005 
1006 	return err;
1007 }
1008 
1009 static int rxq_init(struct net_device *dev)
1010 {
1011 	struct pxa168_eth_private *pep = netdev_priv(dev);
1012 	struct rx_desc *p_rx_desc;
1013 	int size = 0, i = 0;
1014 	int rx_desc_num = pep->rx_ring_size;
1015 
1016 	/* Allocate RX skb rings */
1017 	pep->rx_skb = kmalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1018 			     GFP_KERNEL);
1019 	if (!pep->rx_skb)
1020 		return -ENOMEM;
1021 
1022 	/* Allocate RX ring */
1023 	pep->rx_desc_count = 0;
1024 	size = pep->rx_ring_size * sizeof(struct rx_desc);
1025 	pep->rx_desc_area_size = size;
1026 	pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1027 						&pep->rx_desc_dma, GFP_KERNEL);
1028 	if (!pep->p_rx_desc_area) {
1029 		printk(KERN_ERR "%s: Cannot alloc RX ring (size %d bytes)\n",
1030 		       dev->name, size);
1031 		goto out;
1032 	}
1033 	memset((void *)pep->p_rx_desc_area, 0, size);
1034 	/* initialize the next_desc_ptr links in the Rx descriptors ring */
1035 	p_rx_desc = pep->p_rx_desc_area;
1036 	for (i = 0; i < rx_desc_num; i++) {
1037 		p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1038 		    ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1039 	}
1040 	/* Save Rx desc pointer to driver struct. */
1041 	pep->rx_curr_desc_q = 0;
1042 	pep->rx_used_desc_q = 0;
1043 	pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1044 	return 0;
1045 out:
1046 	kfree(pep->rx_skb);
1047 	return -ENOMEM;
1048 }
1049 
1050 static void rxq_deinit(struct net_device *dev)
1051 {
1052 	struct pxa168_eth_private *pep = netdev_priv(dev);
1053 	int curr;
1054 
1055 	/* Free preallocated skb's on RX rings */
1056 	for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1057 		if (pep->rx_skb[curr]) {
1058 			dev_kfree_skb(pep->rx_skb[curr]);
1059 			pep->rx_desc_count--;
1060 		}
1061 	}
1062 	if (pep->rx_desc_count)
1063 		printk(KERN_ERR
1064 		       "Error in freeing Rx Ring. %d skb's still\n",
1065 		       pep->rx_desc_count);
1066 	/* Free RX ring */
1067 	if (pep->p_rx_desc_area)
1068 		dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1069 				  pep->p_rx_desc_area, pep->rx_desc_dma);
1070 	kfree(pep->rx_skb);
1071 }
1072 
1073 static int txq_init(struct net_device *dev)
1074 {
1075 	struct pxa168_eth_private *pep = netdev_priv(dev);
1076 	struct tx_desc *p_tx_desc;
1077 	int size = 0, i = 0;
1078 	int tx_desc_num = pep->tx_ring_size;
1079 
1080 	pep->tx_skb = kmalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1081 			     GFP_KERNEL);
1082 	if (!pep->tx_skb)
1083 		return -ENOMEM;
1084 
1085 	/* Allocate TX ring */
1086 	pep->tx_desc_count = 0;
1087 	size = pep->tx_ring_size * sizeof(struct tx_desc);
1088 	pep->tx_desc_area_size = size;
1089 	pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1090 						&pep->tx_desc_dma, GFP_KERNEL);
1091 	if (!pep->p_tx_desc_area) {
1092 		printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
1093 		       dev->name, size);
1094 		goto out;
1095 	}
1096 	memset((void *)pep->p_tx_desc_area, 0, pep->tx_desc_area_size);
1097 	/* Initialize the next_desc_ptr links in the Tx descriptors ring */
1098 	p_tx_desc = pep->p_tx_desc_area;
1099 	for (i = 0; i < tx_desc_num; i++) {
1100 		p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1101 		    ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1102 	}
1103 	pep->tx_curr_desc_q = 0;
1104 	pep->tx_used_desc_q = 0;
1105 	pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1106 	return 0;
1107 out:
1108 	kfree(pep->tx_skb);
1109 	return -ENOMEM;
1110 }
1111 
1112 static void txq_deinit(struct net_device *dev)
1113 {
1114 	struct pxa168_eth_private *pep = netdev_priv(dev);
1115 
1116 	/* Free outstanding skb's on TX ring */
1117 	txq_reclaim(dev, 1);
1118 	BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1119 	/* Free TX ring */
1120 	if (pep->p_tx_desc_area)
1121 		dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1122 				  pep->p_tx_desc_area, pep->tx_desc_dma);
1123 	kfree(pep->tx_skb);
1124 }
1125 
1126 static int pxa168_eth_open(struct net_device *dev)
1127 {
1128 	struct pxa168_eth_private *pep = netdev_priv(dev);
1129 	int err;
1130 
1131 	err = request_irq(dev->irq, pxa168_eth_int_handler,
1132 			  IRQF_DISABLED, dev->name, dev);
1133 	if (err) {
1134 		dev_err(&dev->dev, "can't assign irq\n");
1135 		return -EAGAIN;
1136 	}
1137 	pep->rx_resource_err = 0;
1138 	err = rxq_init(dev);
1139 	if (err != 0)
1140 		goto out_free_irq;
1141 	err = txq_init(dev);
1142 	if (err != 0)
1143 		goto out_free_rx_skb;
1144 	pep->rx_used_desc_q = 0;
1145 	pep->rx_curr_desc_q = 0;
1146 
1147 	/* Fill RX ring with skb's */
1148 	rxq_refill(dev);
1149 	pep->rx_used_desc_q = 0;
1150 	pep->rx_curr_desc_q = 0;
1151 	netif_carrier_off(dev);
1152 	eth_port_start(dev);
1153 	napi_enable(&pep->napi);
1154 	return 0;
1155 out_free_rx_skb:
1156 	rxq_deinit(dev);
1157 out_free_irq:
1158 	free_irq(dev->irq, dev);
1159 	return err;
1160 }
1161 
1162 static int pxa168_eth_stop(struct net_device *dev)
1163 {
1164 	struct pxa168_eth_private *pep = netdev_priv(dev);
1165 	eth_port_reset(dev);
1166 
1167 	/* Disable interrupts */
1168 	wrl(pep, INT_MASK, 0);
1169 	wrl(pep, INT_CAUSE, 0);
1170 	/* Write to ICR to clear interrupts. */
1171 	wrl(pep, INT_W_CLEAR, 0);
1172 	napi_disable(&pep->napi);
1173 	del_timer_sync(&pep->timeout);
1174 	netif_carrier_off(dev);
1175 	free_irq(dev->irq, dev);
1176 	rxq_deinit(dev);
1177 	txq_deinit(dev);
1178 
1179 	return 0;
1180 }
1181 
1182 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1183 {
1184 	int retval;
1185 	struct pxa168_eth_private *pep = netdev_priv(dev);
1186 
1187 	if ((mtu > 9500) || (mtu < 68))
1188 		return -EINVAL;
1189 
1190 	dev->mtu = mtu;
1191 	retval = set_port_config_ext(pep);
1192 
1193 	if (!netif_running(dev))
1194 		return 0;
1195 
1196 	/*
1197 	 * Stop and then re-open the interface. This will allocate RX
1198 	 * skbs of the new MTU.
1199 	 * There is a possible danger that the open will not succeed,
1200 	 * due to memory being full.
1201 	 */
1202 	pxa168_eth_stop(dev);
1203 	if (pxa168_eth_open(dev)) {
1204 		dev_err(&dev->dev,
1205 			"fatal error on re-opening device after MTU change\n");
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1212 {
1213 	int tx_desc_curr;
1214 
1215 	tx_desc_curr = pep->tx_curr_desc_q;
1216 	pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1217 	BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1218 	pep->tx_desc_count++;
1219 
1220 	return tx_desc_curr;
1221 }
1222 
1223 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1224 {
1225 	struct pxa168_eth_private *pep =
1226 	    container_of(napi, struct pxa168_eth_private, napi);
1227 	struct net_device *dev = pep->dev;
1228 	int work_done = 0;
1229 
1230 	if (unlikely(pep->work_todo & WORK_LINK)) {
1231 		pep->work_todo &= ~(WORK_LINK);
1232 		handle_link_event(pep);
1233 	}
1234 	/*
1235 	 * We call txq_reclaim every time since in NAPI interupts are disabled
1236 	 * and due to this we miss the TX_DONE interrupt,which is not updated in
1237 	 * interrupt status register.
1238 	 */
1239 	txq_reclaim(dev, 0);
1240 	if (netif_queue_stopped(dev)
1241 	    && pep->tx_ring_size - pep->tx_desc_count > 1) {
1242 		netif_wake_queue(dev);
1243 	}
1244 	work_done = rxq_process(dev, budget);
1245 	if (work_done < budget) {
1246 		napi_complete(napi);
1247 		wrl(pep, INT_MASK, ALL_INTS);
1248 	}
1249 
1250 	return work_done;
1251 }
1252 
1253 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1254 {
1255 	struct pxa168_eth_private *pep = netdev_priv(dev);
1256 	struct net_device_stats *stats = &dev->stats;
1257 	struct tx_desc *desc;
1258 	int tx_index;
1259 	int length;
1260 
1261 	tx_index = eth_alloc_tx_desc_index(pep);
1262 	desc = &pep->p_tx_desc_area[tx_index];
1263 	length = skb->len;
1264 	pep->tx_skb[tx_index] = skb;
1265 	desc->byte_cnt = length;
1266 	desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1267 
1268 	skb_tx_timestamp(skb);
1269 
1270 	wmb();
1271 	desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1272 			TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1273 	wmb();
1274 	wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1275 
1276 	stats->tx_bytes += length;
1277 	stats->tx_packets++;
1278 	dev->trans_start = jiffies;
1279 	if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1280 		/* We handled the current skb, but now we are out of space.*/
1281 		netif_stop_queue(dev);
1282 	}
1283 
1284 	return NETDEV_TX_OK;
1285 }
1286 
1287 static int smi_wait_ready(struct pxa168_eth_private *pep)
1288 {
1289 	int i = 0;
1290 
1291 	/* wait for the SMI register to become available */
1292 	for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1293 		if (i == PHY_WAIT_ITERATIONS)
1294 			return -ETIMEDOUT;
1295 		msleep(10);
1296 	}
1297 
1298 	return 0;
1299 }
1300 
1301 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1302 {
1303 	struct pxa168_eth_private *pep = bus->priv;
1304 	int i = 0;
1305 	int val;
1306 
1307 	if (smi_wait_ready(pep)) {
1308 		printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1309 		return -ETIMEDOUT;
1310 	}
1311 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1312 	/* now wait for the data to be valid */
1313 	for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1314 		if (i == PHY_WAIT_ITERATIONS) {
1315 			printk(KERN_WARNING
1316 				"pxa168_eth: SMI bus read not valid\n");
1317 			return -ENODEV;
1318 		}
1319 		msleep(10);
1320 	}
1321 
1322 	return val & 0xffff;
1323 }
1324 
1325 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1326 			    u16 value)
1327 {
1328 	struct pxa168_eth_private *pep = bus->priv;
1329 
1330 	if (smi_wait_ready(pep)) {
1331 		printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1332 		return -ETIMEDOUT;
1333 	}
1334 
1335 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1336 	    SMI_OP_W | (value & 0xffff));
1337 
1338 	if (smi_wait_ready(pep)) {
1339 		printk(KERN_ERR "pxa168_eth: SMI bus busy timeout\n");
1340 		return -ETIMEDOUT;
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1347 			       int cmd)
1348 {
1349 	struct pxa168_eth_private *pep = netdev_priv(dev);
1350 	if (pep->phy != NULL)
1351 		return phy_mii_ioctl(pep->phy, ifr, cmd);
1352 
1353 	return -EOPNOTSUPP;
1354 }
1355 
1356 static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
1357 {
1358 	struct mii_bus *bus = pep->smi_bus;
1359 	struct phy_device *phydev;
1360 	int start;
1361 	int num;
1362 	int i;
1363 
1364 	if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
1365 		/* Scan entire range */
1366 		start = ethernet_phy_get(pep);
1367 		num = 32;
1368 	} else {
1369 		/* Use phy addr specific to platform */
1370 		start = phy_addr & 0x1f;
1371 		num = 1;
1372 	}
1373 	phydev = NULL;
1374 	for (i = 0; i < num; i++) {
1375 		int addr = (start + i) & 0x1f;
1376 		if (bus->phy_map[addr] == NULL)
1377 			mdiobus_scan(bus, addr);
1378 
1379 		if (phydev == NULL) {
1380 			phydev = bus->phy_map[addr];
1381 			if (phydev != NULL)
1382 				ethernet_phy_set_addr(pep, addr);
1383 		}
1384 	}
1385 
1386 	return phydev;
1387 }
1388 
1389 static void phy_init(struct pxa168_eth_private *pep, int speed, int duplex)
1390 {
1391 	struct phy_device *phy = pep->phy;
1392 	ethernet_phy_reset(pep);
1393 
1394 	phy_attach(pep->dev, dev_name(&phy->dev), 0, PHY_INTERFACE_MODE_MII);
1395 
1396 	if (speed == 0) {
1397 		phy->autoneg = AUTONEG_ENABLE;
1398 		phy->speed = 0;
1399 		phy->duplex = 0;
1400 		phy->supported &= PHY_BASIC_FEATURES;
1401 		phy->advertising = phy->supported | ADVERTISED_Autoneg;
1402 	} else {
1403 		phy->autoneg = AUTONEG_DISABLE;
1404 		phy->advertising = 0;
1405 		phy->speed = speed;
1406 		phy->duplex = duplex;
1407 	}
1408 	phy_start_aneg(phy);
1409 }
1410 
1411 static int ethernet_phy_setup(struct net_device *dev)
1412 {
1413 	struct pxa168_eth_private *pep = netdev_priv(dev);
1414 
1415 	if (pep->pd->init)
1416 		pep->pd->init();
1417 	pep->phy = phy_scan(pep, pep->pd->phy_addr & 0x1f);
1418 	if (pep->phy != NULL)
1419 		phy_init(pep, pep->pd->speed, pep->pd->duplex);
1420 	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
1421 
1422 	return 0;
1423 }
1424 
1425 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1426 {
1427 	struct pxa168_eth_private *pep = netdev_priv(dev);
1428 	int err;
1429 
1430 	err = phy_read_status(pep->phy);
1431 	if (err == 0)
1432 		err = phy_ethtool_gset(pep->phy, cmd);
1433 
1434 	return err;
1435 }
1436 
1437 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1438 {
1439 	struct pxa168_eth_private *pep = netdev_priv(dev);
1440 
1441 	return phy_ethtool_sset(pep->phy, cmd);
1442 }
1443 
1444 static void pxa168_get_drvinfo(struct net_device *dev,
1445 			       struct ethtool_drvinfo *info)
1446 {
1447 	strncpy(info->driver, DRIVER_NAME, 32);
1448 	strncpy(info->version, DRIVER_VERSION, 32);
1449 	strncpy(info->fw_version, "N/A", 32);
1450 	strncpy(info->bus_info, "N/A", 32);
1451 }
1452 
1453 static const struct ethtool_ops pxa168_ethtool_ops = {
1454 	.get_settings = pxa168_get_settings,
1455 	.set_settings = pxa168_set_settings,
1456 	.get_drvinfo = pxa168_get_drvinfo,
1457 	.get_link = ethtool_op_get_link,
1458 	.get_ts_info = ethtool_op_get_ts_info,
1459 };
1460 
1461 static const struct net_device_ops pxa168_eth_netdev_ops = {
1462 	.ndo_open = pxa168_eth_open,
1463 	.ndo_stop = pxa168_eth_stop,
1464 	.ndo_start_xmit = pxa168_eth_start_xmit,
1465 	.ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1466 	.ndo_set_mac_address = pxa168_eth_set_mac_address,
1467 	.ndo_validate_addr = eth_validate_addr,
1468 	.ndo_do_ioctl = pxa168_eth_do_ioctl,
1469 	.ndo_change_mtu = pxa168_eth_change_mtu,
1470 	.ndo_tx_timeout = pxa168_eth_tx_timeout,
1471 };
1472 
1473 static int pxa168_eth_probe(struct platform_device *pdev)
1474 {
1475 	struct pxa168_eth_private *pep = NULL;
1476 	struct net_device *dev = NULL;
1477 	struct resource *res;
1478 	struct clk *clk;
1479 	int err;
1480 
1481 	printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1482 
1483 	clk = clk_get(&pdev->dev, "MFUCLK");
1484 	if (IS_ERR(clk)) {
1485 		printk(KERN_ERR "%s: Fast Ethernet failed to get clock\n",
1486 			DRIVER_NAME);
1487 		return -ENODEV;
1488 	}
1489 	clk_enable(clk);
1490 
1491 	dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1492 	if (!dev) {
1493 		err = -ENOMEM;
1494 		goto err_clk;
1495 	}
1496 
1497 	platform_set_drvdata(pdev, dev);
1498 	pep = netdev_priv(dev);
1499 	pep->dev = dev;
1500 	pep->clk = clk;
1501 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1502 	if (res == NULL) {
1503 		err = -ENODEV;
1504 		goto err_netdev;
1505 	}
1506 	pep->base = ioremap(res->start, resource_size(res));
1507 	if (pep->base == NULL) {
1508 		err = -ENOMEM;
1509 		goto err_netdev;
1510 	}
1511 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1512 	BUG_ON(!res);
1513 	dev->irq = res->start;
1514 	dev->netdev_ops = &pxa168_eth_netdev_ops;
1515 	dev->watchdog_timeo = 2 * HZ;
1516 	dev->base_addr = 0;
1517 	SET_ETHTOOL_OPS(dev, &pxa168_ethtool_ops);
1518 
1519 	INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1520 
1521 	printk(KERN_INFO "%s:Using random mac address\n", DRIVER_NAME);
1522 	eth_hw_addr_random(dev);
1523 
1524 	pep->pd = pdev->dev.platform_data;
1525 	pep->rx_ring_size = NUM_RX_DESCS;
1526 	if (pep->pd->rx_queue_size)
1527 		pep->rx_ring_size = pep->pd->rx_queue_size;
1528 
1529 	pep->tx_ring_size = NUM_TX_DESCS;
1530 	if (pep->pd->tx_queue_size)
1531 		pep->tx_ring_size = pep->pd->tx_queue_size;
1532 
1533 	pep->port_num = pep->pd->port_number;
1534 	/* Hardware supports only 3 ports */
1535 	BUG_ON(pep->port_num > 2);
1536 	netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1537 
1538 	memset(&pep->timeout, 0, sizeof(struct timer_list));
1539 	init_timer(&pep->timeout);
1540 	pep->timeout.function = rxq_refill_timer_wrapper;
1541 	pep->timeout.data = (unsigned long)pep;
1542 
1543 	pep->smi_bus = mdiobus_alloc();
1544 	if (pep->smi_bus == NULL) {
1545 		err = -ENOMEM;
1546 		goto err_base;
1547 	}
1548 	pep->smi_bus->priv = pep;
1549 	pep->smi_bus->name = "pxa168_eth smi";
1550 	pep->smi_bus->read = pxa168_smi_read;
1551 	pep->smi_bus->write = pxa168_smi_write;
1552 	snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1553 		pdev->name, pdev->id);
1554 	pep->smi_bus->parent = &pdev->dev;
1555 	pep->smi_bus->phy_mask = 0xffffffff;
1556 	err = mdiobus_register(pep->smi_bus);
1557 	if (err)
1558 		goto err_free_mdio;
1559 
1560 	pxa168_init_hw(pep);
1561 	err = ethernet_phy_setup(dev);
1562 	if (err)
1563 		goto err_mdiobus;
1564 	SET_NETDEV_DEV(dev, &pdev->dev);
1565 	err = register_netdev(dev);
1566 	if (err)
1567 		goto err_mdiobus;
1568 	return 0;
1569 
1570 err_mdiobus:
1571 	mdiobus_unregister(pep->smi_bus);
1572 err_free_mdio:
1573 	mdiobus_free(pep->smi_bus);
1574 err_base:
1575 	iounmap(pep->base);
1576 err_netdev:
1577 	free_netdev(dev);
1578 err_clk:
1579 	clk_disable(clk);
1580 	clk_put(clk);
1581 	return err;
1582 }
1583 
1584 static int pxa168_eth_remove(struct platform_device *pdev)
1585 {
1586 	struct net_device *dev = platform_get_drvdata(pdev);
1587 	struct pxa168_eth_private *pep = netdev_priv(dev);
1588 
1589 	if (pep->htpr) {
1590 		dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1591 				  pep->htpr, pep->htpr_dma);
1592 		pep->htpr = NULL;
1593 	}
1594 	if (pep->clk) {
1595 		clk_disable(pep->clk);
1596 		clk_put(pep->clk);
1597 		pep->clk = NULL;
1598 	}
1599 	if (pep->phy != NULL)
1600 		phy_detach(pep->phy);
1601 
1602 	iounmap(pep->base);
1603 	pep->base = NULL;
1604 	mdiobus_unregister(pep->smi_bus);
1605 	mdiobus_free(pep->smi_bus);
1606 	unregister_netdev(dev);
1607 	cancel_work_sync(&pep->tx_timeout_task);
1608 	free_netdev(dev);
1609 	platform_set_drvdata(pdev, NULL);
1610 	return 0;
1611 }
1612 
1613 static void pxa168_eth_shutdown(struct platform_device *pdev)
1614 {
1615 	struct net_device *dev = platform_get_drvdata(pdev);
1616 	eth_port_reset(dev);
1617 }
1618 
1619 #ifdef CONFIG_PM
1620 static int pxa168_eth_resume(struct platform_device *pdev)
1621 {
1622 	return -ENOSYS;
1623 }
1624 
1625 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1626 {
1627 	return -ENOSYS;
1628 }
1629 
1630 #else
1631 #define pxa168_eth_resume NULL
1632 #define pxa168_eth_suspend NULL
1633 #endif
1634 
1635 static struct platform_driver pxa168_eth_driver = {
1636 	.probe = pxa168_eth_probe,
1637 	.remove = pxa168_eth_remove,
1638 	.shutdown = pxa168_eth_shutdown,
1639 	.resume = pxa168_eth_resume,
1640 	.suspend = pxa168_eth_suspend,
1641 	.driver = {
1642 		   .name = DRIVER_NAME,
1643 		   },
1644 };
1645 
1646 module_platform_driver(pxa168_eth_driver);
1647 
1648 MODULE_LICENSE("GPL");
1649 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1650 MODULE_ALIAS("platform:pxa168_eth");
1651