1 /* 2 * PXA168 ethernet driver. 3 * Most of the code is derived from mv643xx ethernet driver. 4 * 5 * Copyright (C) 2010 Marvell International Ltd. 6 * Sachin Sanap <ssanap@marvell.com> 7 * Zhangfei Gao <zgao6@marvell.com> 8 * Philip Rakity <prakity@marvell.com> 9 * Mark Brown <markb@marvell.com> 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 2 14 * of the License, or (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/dma-mapping.h> 28 #include <linux/in.h> 29 #include <linux/ip.h> 30 #include <linux/tcp.h> 31 #include <linux/udp.h> 32 #include <linux/etherdevice.h> 33 #include <linux/bitops.h> 34 #include <linux/delay.h> 35 #include <linux/ethtool.h> 36 #include <linux/platform_device.h> 37 #include <linux/module.h> 38 #include <linux/kernel.h> 39 #include <linux/workqueue.h> 40 #include <linux/clk.h> 41 #include <linux/phy.h> 42 #include <linux/io.h> 43 #include <linux/interrupt.h> 44 #include <linux/types.h> 45 #include <asm/pgtable.h> 46 #include <asm/cacheflush.h> 47 #include <linux/pxa168_eth.h> 48 49 #define DRIVER_NAME "pxa168-eth" 50 #define DRIVER_VERSION "0.3" 51 52 /* 53 * Registers 54 */ 55 56 #define PHY_ADDRESS 0x0000 57 #define SMI 0x0010 58 #define PORT_CONFIG 0x0400 59 #define PORT_CONFIG_EXT 0x0408 60 #define PORT_COMMAND 0x0410 61 #define PORT_STATUS 0x0418 62 #define HTPR 0x0428 63 #define SDMA_CONFIG 0x0440 64 #define SDMA_CMD 0x0448 65 #define INT_CAUSE 0x0450 66 #define INT_W_CLEAR 0x0454 67 #define INT_MASK 0x0458 68 #define ETH_F_RX_DESC_0 0x0480 69 #define ETH_C_RX_DESC_0 0x04A0 70 #define ETH_C_TX_DESC_1 0x04E4 71 72 /* smi register */ 73 #define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */ 74 #define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */ 75 #define SMI_OP_W (0 << 26) /* Write operation */ 76 #define SMI_OP_R (1 << 26) /* Read operation */ 77 78 #define PHY_WAIT_ITERATIONS 10 79 80 #define PXA168_ETH_PHY_ADDR_DEFAULT 0 81 /* RX & TX descriptor command */ 82 #define BUF_OWNED_BY_DMA (1 << 31) 83 84 /* RX descriptor status */ 85 #define RX_EN_INT (1 << 23) 86 #define RX_FIRST_DESC (1 << 17) 87 #define RX_LAST_DESC (1 << 16) 88 #define RX_ERROR (1 << 15) 89 90 /* TX descriptor command */ 91 #define TX_EN_INT (1 << 23) 92 #define TX_GEN_CRC (1 << 22) 93 #define TX_ZERO_PADDING (1 << 18) 94 #define TX_FIRST_DESC (1 << 17) 95 #define TX_LAST_DESC (1 << 16) 96 #define TX_ERROR (1 << 15) 97 98 /* SDMA_CMD */ 99 #define SDMA_CMD_AT (1 << 31) 100 #define SDMA_CMD_TXDL (1 << 24) 101 #define SDMA_CMD_TXDH (1 << 23) 102 #define SDMA_CMD_AR (1 << 15) 103 #define SDMA_CMD_ERD (1 << 7) 104 105 /* Bit definitions of the Port Config Reg */ 106 #define PCR_HS (1 << 12) 107 #define PCR_EN (1 << 7) 108 #define PCR_PM (1 << 0) 109 110 /* Bit definitions of the Port Config Extend Reg */ 111 #define PCXR_2BSM (1 << 28) 112 #define PCXR_DSCP_EN (1 << 21) 113 #define PCXR_MFL_1518 (0 << 14) 114 #define PCXR_MFL_1536 (1 << 14) 115 #define PCXR_MFL_2048 (2 << 14) 116 #define PCXR_MFL_64K (3 << 14) 117 #define PCXR_FLP (1 << 11) 118 #define PCXR_PRIO_TX_OFF 3 119 #define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF) 120 121 /* Bit definitions of the SDMA Config Reg */ 122 #define SDCR_BSZ_OFF 12 123 #define SDCR_BSZ8 (3 << SDCR_BSZ_OFF) 124 #define SDCR_BSZ4 (2 << SDCR_BSZ_OFF) 125 #define SDCR_BSZ2 (1 << SDCR_BSZ_OFF) 126 #define SDCR_BSZ1 (0 << SDCR_BSZ_OFF) 127 #define SDCR_BLMR (1 << 6) 128 #define SDCR_BLMT (1 << 7) 129 #define SDCR_RIFB (1 << 9) 130 #define SDCR_RC_OFF 2 131 #define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF) 132 133 /* 134 * Bit definitions of the Interrupt Cause Reg 135 * and Interrupt MASK Reg is the same 136 */ 137 #define ICR_RXBUF (1 << 0) 138 #define ICR_TXBUF_H (1 << 2) 139 #define ICR_TXBUF_L (1 << 3) 140 #define ICR_TXEND_H (1 << 6) 141 #define ICR_TXEND_L (1 << 7) 142 #define ICR_RXERR (1 << 8) 143 #define ICR_TXERR_H (1 << 10) 144 #define ICR_TXERR_L (1 << 11) 145 #define ICR_TX_UDR (1 << 13) 146 #define ICR_MII_CH (1 << 28) 147 148 #define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\ 149 ICR_TXERR_H | ICR_TXERR_L |\ 150 ICR_TXEND_H | ICR_TXEND_L |\ 151 ICR_RXBUF | ICR_RXERR | ICR_MII_CH) 152 153 #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */ 154 155 #define NUM_RX_DESCS 64 156 #define NUM_TX_DESCS 64 157 158 #define HASH_ADD 0 159 #define HASH_DELETE 1 160 #define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */ 161 #define HOP_NUMBER 12 162 163 /* Bit definitions for Port status */ 164 #define PORT_SPEED_100 (1 << 0) 165 #define FULL_DUPLEX (1 << 1) 166 #define FLOW_CONTROL_ENABLED (1 << 2) 167 #define LINK_UP (1 << 3) 168 169 /* Bit definitions for work to be done */ 170 #define WORK_LINK (1 << 0) 171 #define WORK_TX_DONE (1 << 1) 172 173 /* 174 * Misc definitions. 175 */ 176 #define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES) 177 178 struct rx_desc { 179 u32 cmd_sts; /* Descriptor command status */ 180 u16 byte_cnt; /* Descriptor buffer byte count */ 181 u16 buf_size; /* Buffer size */ 182 u32 buf_ptr; /* Descriptor buffer pointer */ 183 u32 next_desc_ptr; /* Next descriptor pointer */ 184 }; 185 186 struct tx_desc { 187 u32 cmd_sts; /* Command/status field */ 188 u16 reserved; 189 u16 byte_cnt; /* buffer byte count */ 190 u32 buf_ptr; /* pointer to buffer for this descriptor */ 191 u32 next_desc_ptr; /* Pointer to next descriptor */ 192 }; 193 194 struct pxa168_eth_private { 195 int port_num; /* User Ethernet port number */ 196 197 int rx_resource_err; /* Rx ring resource error flag */ 198 199 /* Next available and first returning Rx resource */ 200 int rx_curr_desc_q, rx_used_desc_q; 201 202 /* Next available and first returning Tx resource */ 203 int tx_curr_desc_q, tx_used_desc_q; 204 205 struct rx_desc *p_rx_desc_area; 206 dma_addr_t rx_desc_dma; 207 int rx_desc_area_size; 208 struct sk_buff **rx_skb; 209 210 struct tx_desc *p_tx_desc_area; 211 dma_addr_t tx_desc_dma; 212 int tx_desc_area_size; 213 struct sk_buff **tx_skb; 214 215 struct work_struct tx_timeout_task; 216 217 struct net_device *dev; 218 struct napi_struct napi; 219 u8 work_todo; 220 int skb_size; 221 222 /* Size of Tx Ring per queue */ 223 int tx_ring_size; 224 /* Number of tx descriptors in use */ 225 int tx_desc_count; 226 /* Size of Rx Ring per queue */ 227 int rx_ring_size; 228 /* Number of rx descriptors in use */ 229 int rx_desc_count; 230 231 /* 232 * Used in case RX Ring is empty, which can occur when 233 * system does not have resources (skb's) 234 */ 235 struct timer_list timeout; 236 struct mii_bus *smi_bus; 237 struct phy_device *phy; 238 239 /* clock */ 240 struct clk *clk; 241 struct pxa168_eth_platform_data *pd; 242 /* 243 * Ethernet controller base address. 244 */ 245 void __iomem *base; 246 247 /* Pointer to the hardware address filter table */ 248 void *htpr; 249 dma_addr_t htpr_dma; 250 }; 251 252 struct addr_table_entry { 253 __le32 lo; 254 __le32 hi; 255 }; 256 257 /* Bit fields of a Hash Table Entry */ 258 enum hash_table_entry { 259 HASH_ENTRY_VALID = 1, 260 SKIP = 2, 261 HASH_ENTRY_RECEIVE_DISCARD = 4, 262 HASH_ENTRY_RECEIVE_DISCARD_BIT = 2 263 }; 264 265 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd); 266 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd); 267 static int pxa168_init_hw(struct pxa168_eth_private *pep); 268 static void eth_port_reset(struct net_device *dev); 269 static void eth_port_start(struct net_device *dev); 270 static int pxa168_eth_open(struct net_device *dev); 271 static int pxa168_eth_stop(struct net_device *dev); 272 static int ethernet_phy_setup(struct net_device *dev); 273 274 static inline u32 rdl(struct pxa168_eth_private *pep, int offset) 275 { 276 return readl(pep->base + offset); 277 } 278 279 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data) 280 { 281 writel(data, pep->base + offset); 282 } 283 284 static void abort_dma(struct pxa168_eth_private *pep) 285 { 286 int delay; 287 int max_retries = 40; 288 289 do { 290 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT); 291 udelay(100); 292 293 delay = 10; 294 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT)) 295 && delay-- > 0) { 296 udelay(10); 297 } 298 } while (max_retries-- > 0 && delay <= 0); 299 300 if (max_retries <= 0) 301 printk(KERN_ERR "%s : DMA Stuck\n", __func__); 302 } 303 304 static int ethernet_phy_get(struct pxa168_eth_private *pep) 305 { 306 unsigned int reg_data; 307 308 reg_data = rdl(pep, PHY_ADDRESS); 309 310 return (reg_data >> (5 * pep->port_num)) & 0x1f; 311 } 312 313 static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr) 314 { 315 u32 reg_data; 316 int addr_shift = 5 * pep->port_num; 317 318 reg_data = rdl(pep, PHY_ADDRESS); 319 reg_data &= ~(0x1f << addr_shift); 320 reg_data |= (phy_addr & 0x1f) << addr_shift; 321 wrl(pep, PHY_ADDRESS, reg_data); 322 } 323 324 static void ethernet_phy_reset(struct pxa168_eth_private *pep) 325 { 326 int data; 327 328 data = phy_read(pep->phy, MII_BMCR); 329 if (data < 0) 330 return; 331 332 data |= BMCR_RESET; 333 if (phy_write(pep->phy, MII_BMCR, data) < 0) 334 return; 335 336 do { 337 data = phy_read(pep->phy, MII_BMCR); 338 } while (data >= 0 && data & BMCR_RESET); 339 } 340 341 static void rxq_refill(struct net_device *dev) 342 { 343 struct pxa168_eth_private *pep = netdev_priv(dev); 344 struct sk_buff *skb; 345 struct rx_desc *p_used_rx_desc; 346 int used_rx_desc; 347 348 while (pep->rx_desc_count < pep->rx_ring_size) { 349 int size; 350 351 skb = netdev_alloc_skb(dev, pep->skb_size); 352 if (!skb) 353 break; 354 if (SKB_DMA_REALIGN) 355 skb_reserve(skb, SKB_DMA_REALIGN); 356 pep->rx_desc_count++; 357 /* Get 'used' Rx descriptor */ 358 used_rx_desc = pep->rx_used_desc_q; 359 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc]; 360 size = skb->end - skb->data; 361 p_used_rx_desc->buf_ptr = dma_map_single(NULL, 362 skb->data, 363 size, 364 DMA_FROM_DEVICE); 365 p_used_rx_desc->buf_size = size; 366 pep->rx_skb[used_rx_desc] = skb; 367 368 /* Return the descriptor to DMA ownership */ 369 wmb(); 370 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; 371 wmb(); 372 373 /* Move the used descriptor pointer to the next descriptor */ 374 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size; 375 376 /* Any Rx return cancels the Rx resource error status */ 377 pep->rx_resource_err = 0; 378 379 skb_reserve(skb, ETH_HW_IP_ALIGN); 380 } 381 382 /* 383 * If RX ring is empty of SKB, set a timer to try allocating 384 * again at a later time. 385 */ 386 if (pep->rx_desc_count == 0) { 387 pep->timeout.expires = jiffies + (HZ / 10); 388 add_timer(&pep->timeout); 389 } 390 } 391 392 static inline void rxq_refill_timer_wrapper(unsigned long data) 393 { 394 struct pxa168_eth_private *pep = (void *)data; 395 napi_schedule(&pep->napi); 396 } 397 398 static inline u8 flip_8_bits(u8 x) 399 { 400 return (((x) & 0x01) << 3) | (((x) & 0x02) << 1) 401 | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3) 402 | (((x) & 0x10) << 3) | (((x) & 0x20) << 1) 403 | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3); 404 } 405 406 static void nibble_swap_every_byte(unsigned char *mac_addr) 407 { 408 int i; 409 for (i = 0; i < ETH_ALEN; i++) { 410 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) | 411 ((mac_addr[i] & 0xf0) >> 4); 412 } 413 } 414 415 static void inverse_every_nibble(unsigned char *mac_addr) 416 { 417 int i; 418 for (i = 0; i < ETH_ALEN; i++) 419 mac_addr[i] = flip_8_bits(mac_addr[i]); 420 } 421 422 /* 423 * ---------------------------------------------------------------------------- 424 * This function will calculate the hash function of the address. 425 * Inputs 426 * mac_addr_orig - MAC address. 427 * Outputs 428 * return the calculated entry. 429 */ 430 static u32 hash_function(unsigned char *mac_addr_orig) 431 { 432 u32 hash_result; 433 u32 addr0; 434 u32 addr1; 435 u32 addr2; 436 u32 addr3; 437 unsigned char mac_addr[ETH_ALEN]; 438 439 /* Make a copy of MAC address since we are going to performe bit 440 * operations on it 441 */ 442 memcpy(mac_addr, mac_addr_orig, ETH_ALEN); 443 444 nibble_swap_every_byte(mac_addr); 445 inverse_every_nibble(mac_addr); 446 447 addr0 = (mac_addr[5] >> 2) & 0x3f; 448 addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2); 449 addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1; 450 addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8); 451 452 hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3); 453 hash_result = hash_result & 0x07ff; 454 return hash_result; 455 } 456 457 /* 458 * ---------------------------------------------------------------------------- 459 * This function will add/del an entry to the address table. 460 * Inputs 461 * pep - ETHERNET . 462 * mac_addr - MAC address. 463 * skip - if 1, skip this address.Used in case of deleting an entry which is a 464 * part of chain in the hash table.We can't just delete the entry since 465 * that will break the chain.We need to defragment the tables time to 466 * time. 467 * rd - 0 Discard packet upon match. 468 * - 1 Receive packet upon match. 469 * Outputs 470 * address table entry is added/deleted. 471 * 0 if success. 472 * -ENOSPC if table full 473 */ 474 static int add_del_hash_entry(struct pxa168_eth_private *pep, 475 unsigned char *mac_addr, 476 u32 rd, u32 skip, int del) 477 { 478 struct addr_table_entry *entry, *start; 479 u32 new_high; 480 u32 new_low; 481 u32 i; 482 483 new_low = (((mac_addr[1] >> 4) & 0xf) << 15) 484 | (((mac_addr[1] >> 0) & 0xf) << 11) 485 | (((mac_addr[0] >> 4) & 0xf) << 7) 486 | (((mac_addr[0] >> 0) & 0xf) << 3) 487 | (((mac_addr[3] >> 4) & 0x1) << 31) 488 | (((mac_addr[3] >> 0) & 0xf) << 27) 489 | (((mac_addr[2] >> 4) & 0xf) << 23) 490 | (((mac_addr[2] >> 0) & 0xf) << 19) 491 | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT) 492 | HASH_ENTRY_VALID; 493 494 new_high = (((mac_addr[5] >> 4) & 0xf) << 15) 495 | (((mac_addr[5] >> 0) & 0xf) << 11) 496 | (((mac_addr[4] >> 4) & 0xf) << 7) 497 | (((mac_addr[4] >> 0) & 0xf) << 3) 498 | (((mac_addr[3] >> 5) & 0x7) << 0); 499 500 /* 501 * Pick the appropriate table, start scanning for free/reusable 502 * entries at the index obtained by hashing the specified MAC address 503 */ 504 start = pep->htpr; 505 entry = start + hash_function(mac_addr); 506 for (i = 0; i < HOP_NUMBER; i++) { 507 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) { 508 break; 509 } else { 510 /* if same address put in same position */ 511 if (((le32_to_cpu(entry->lo) & 0xfffffff8) == 512 (new_low & 0xfffffff8)) && 513 (le32_to_cpu(entry->hi) == new_high)) { 514 break; 515 } 516 } 517 if (entry == start + 0x7ff) 518 entry = start; 519 else 520 entry++; 521 } 522 523 if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) && 524 (le32_to_cpu(entry->hi) != new_high) && del) 525 return 0; 526 527 if (i == HOP_NUMBER) { 528 if (!del) { 529 printk(KERN_INFO "%s: table section is full, need to " 530 "move to 16kB implementation?\n", 531 __FILE__); 532 return -ENOSPC; 533 } else 534 return 0; 535 } 536 537 /* 538 * Update the selected entry 539 */ 540 if (del) { 541 entry->hi = 0; 542 entry->lo = 0; 543 } else { 544 entry->hi = cpu_to_le32(new_high); 545 entry->lo = cpu_to_le32(new_low); 546 } 547 548 return 0; 549 } 550 551 /* 552 * ---------------------------------------------------------------------------- 553 * Create an addressTable entry from MAC address info 554 * found in the specifed net_device struct 555 * 556 * Input : pointer to ethernet interface network device structure 557 * Output : N/A 558 */ 559 static void update_hash_table_mac_address(struct pxa168_eth_private *pep, 560 unsigned char *oaddr, 561 unsigned char *addr) 562 { 563 /* Delete old entry */ 564 if (oaddr) 565 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE); 566 /* Add new entry */ 567 add_del_hash_entry(pep, addr, 1, 0, HASH_ADD); 568 } 569 570 static int init_hash_table(struct pxa168_eth_private *pep) 571 { 572 /* 573 * Hardware expects CPU to build a hash table based on a predefined 574 * hash function and populate it based on hardware address. The 575 * location of the hash table is identified by 32-bit pointer stored 576 * in HTPR internal register. Two possible sizes exists for the hash 577 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB 578 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support 579 * 1/2kB. 580 */ 581 /* TODO: Add support for 8kB hash table and alternative hash 582 * function.Driver can dynamically switch to them if the 1/2kB hash 583 * table is full. 584 */ 585 if (pep->htpr == NULL) { 586 pep->htpr = dma_alloc_coherent(pep->dev->dev.parent, 587 HASH_ADDR_TABLE_SIZE, 588 &pep->htpr_dma, GFP_KERNEL); 589 if (pep->htpr == NULL) 590 return -ENOMEM; 591 } 592 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE); 593 wrl(pep, HTPR, pep->htpr_dma); 594 return 0; 595 } 596 597 static void pxa168_eth_set_rx_mode(struct net_device *dev) 598 { 599 struct pxa168_eth_private *pep = netdev_priv(dev); 600 struct netdev_hw_addr *ha; 601 u32 val; 602 603 val = rdl(pep, PORT_CONFIG); 604 if (dev->flags & IFF_PROMISC) 605 val |= PCR_PM; 606 else 607 val &= ~PCR_PM; 608 wrl(pep, PORT_CONFIG, val); 609 610 /* 611 * Remove the old list of MAC address and add dev->addr 612 * and multicast address. 613 */ 614 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE); 615 update_hash_table_mac_address(pep, NULL, dev->dev_addr); 616 617 netdev_for_each_mc_addr(ha, dev) 618 update_hash_table_mac_address(pep, NULL, ha->addr); 619 } 620 621 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr) 622 { 623 struct sockaddr *sa = addr; 624 struct pxa168_eth_private *pep = netdev_priv(dev); 625 unsigned char oldMac[ETH_ALEN]; 626 627 if (!is_valid_ether_addr(sa->sa_data)) 628 return -EADDRNOTAVAIL; 629 memcpy(oldMac, dev->dev_addr, ETH_ALEN); 630 dev->addr_assign_type &= ~NET_ADDR_RANDOM; 631 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN); 632 netif_addr_lock_bh(dev); 633 update_hash_table_mac_address(pep, oldMac, dev->dev_addr); 634 netif_addr_unlock_bh(dev); 635 return 0; 636 } 637 638 static void eth_port_start(struct net_device *dev) 639 { 640 unsigned int val = 0; 641 struct pxa168_eth_private *pep = netdev_priv(dev); 642 int tx_curr_desc, rx_curr_desc; 643 644 /* Perform PHY reset, if there is a PHY. */ 645 if (pep->phy != NULL) { 646 struct ethtool_cmd cmd; 647 648 pxa168_get_settings(pep->dev, &cmd); 649 ethernet_phy_reset(pep); 650 pxa168_set_settings(pep->dev, &cmd); 651 } 652 653 /* Assignment of Tx CTRP of given queue */ 654 tx_curr_desc = pep->tx_curr_desc_q; 655 wrl(pep, ETH_C_TX_DESC_1, 656 (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc))); 657 658 /* Assignment of Rx CRDP of given queue */ 659 rx_curr_desc = pep->rx_curr_desc_q; 660 wrl(pep, ETH_C_RX_DESC_0, 661 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc))); 662 663 wrl(pep, ETH_F_RX_DESC_0, 664 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc))); 665 666 /* Clear all interrupts */ 667 wrl(pep, INT_CAUSE, 0); 668 669 /* Enable all interrupts for receive, transmit and error. */ 670 wrl(pep, INT_MASK, ALL_INTS); 671 672 val = rdl(pep, PORT_CONFIG); 673 val |= PCR_EN; 674 wrl(pep, PORT_CONFIG, val); 675 676 /* Start RX DMA engine */ 677 val = rdl(pep, SDMA_CMD); 678 val |= SDMA_CMD_ERD; 679 wrl(pep, SDMA_CMD, val); 680 } 681 682 static void eth_port_reset(struct net_device *dev) 683 { 684 struct pxa168_eth_private *pep = netdev_priv(dev); 685 unsigned int val = 0; 686 687 /* Stop all interrupts for receive, transmit and error. */ 688 wrl(pep, INT_MASK, 0); 689 690 /* Clear all interrupts */ 691 wrl(pep, INT_CAUSE, 0); 692 693 /* Stop RX DMA */ 694 val = rdl(pep, SDMA_CMD); 695 val &= ~SDMA_CMD_ERD; /* abort dma command */ 696 697 /* Abort any transmit and receive operations and put DMA 698 * in idle state. 699 */ 700 abort_dma(pep); 701 702 /* Disable port */ 703 val = rdl(pep, PORT_CONFIG); 704 val &= ~PCR_EN; 705 wrl(pep, PORT_CONFIG, val); 706 } 707 708 /* 709 * txq_reclaim - Free the tx desc data for completed descriptors 710 * If force is non-zero, frees uncompleted descriptors as well 711 */ 712 static int txq_reclaim(struct net_device *dev, int force) 713 { 714 struct pxa168_eth_private *pep = netdev_priv(dev); 715 struct tx_desc *desc; 716 u32 cmd_sts; 717 struct sk_buff *skb; 718 int tx_index; 719 dma_addr_t addr; 720 int count; 721 int released = 0; 722 723 netif_tx_lock(dev); 724 725 pep->work_todo &= ~WORK_TX_DONE; 726 while (pep->tx_desc_count > 0) { 727 tx_index = pep->tx_used_desc_q; 728 desc = &pep->p_tx_desc_area[tx_index]; 729 cmd_sts = desc->cmd_sts; 730 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) { 731 if (released > 0) { 732 goto txq_reclaim_end; 733 } else { 734 released = -1; 735 goto txq_reclaim_end; 736 } 737 } 738 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size; 739 pep->tx_desc_count--; 740 addr = desc->buf_ptr; 741 count = desc->byte_cnt; 742 skb = pep->tx_skb[tx_index]; 743 if (skb) 744 pep->tx_skb[tx_index] = NULL; 745 746 if (cmd_sts & TX_ERROR) { 747 if (net_ratelimit()) 748 printk(KERN_ERR "%s: Error in TX\n", dev->name); 749 dev->stats.tx_errors++; 750 } 751 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE); 752 if (skb) 753 dev_kfree_skb_irq(skb); 754 released++; 755 } 756 txq_reclaim_end: 757 netif_tx_unlock(dev); 758 return released; 759 } 760 761 static void pxa168_eth_tx_timeout(struct net_device *dev) 762 { 763 struct pxa168_eth_private *pep = netdev_priv(dev); 764 765 printk(KERN_INFO "%s: TX timeout desc_count %d\n", 766 dev->name, pep->tx_desc_count); 767 768 schedule_work(&pep->tx_timeout_task); 769 } 770 771 static void pxa168_eth_tx_timeout_task(struct work_struct *work) 772 { 773 struct pxa168_eth_private *pep = container_of(work, 774 struct pxa168_eth_private, 775 tx_timeout_task); 776 struct net_device *dev = pep->dev; 777 pxa168_eth_stop(dev); 778 pxa168_eth_open(dev); 779 } 780 781 static int rxq_process(struct net_device *dev, int budget) 782 { 783 struct pxa168_eth_private *pep = netdev_priv(dev); 784 struct net_device_stats *stats = &dev->stats; 785 unsigned int received_packets = 0; 786 struct sk_buff *skb; 787 788 while (budget-- > 0) { 789 int rx_next_curr_desc, rx_curr_desc, rx_used_desc; 790 struct rx_desc *rx_desc; 791 unsigned int cmd_sts; 792 793 /* Do not process Rx ring in case of Rx ring resource error */ 794 if (pep->rx_resource_err) 795 break; 796 rx_curr_desc = pep->rx_curr_desc_q; 797 rx_used_desc = pep->rx_used_desc_q; 798 rx_desc = &pep->p_rx_desc_area[rx_curr_desc]; 799 cmd_sts = rx_desc->cmd_sts; 800 rmb(); 801 if (cmd_sts & (BUF_OWNED_BY_DMA)) 802 break; 803 skb = pep->rx_skb[rx_curr_desc]; 804 pep->rx_skb[rx_curr_desc] = NULL; 805 806 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size; 807 pep->rx_curr_desc_q = rx_next_curr_desc; 808 809 /* Rx descriptors exhausted. */ 810 /* Set the Rx ring resource error flag */ 811 if (rx_next_curr_desc == rx_used_desc) 812 pep->rx_resource_err = 1; 813 pep->rx_desc_count--; 814 dma_unmap_single(NULL, rx_desc->buf_ptr, 815 rx_desc->buf_size, 816 DMA_FROM_DEVICE); 817 received_packets++; 818 /* 819 * Update statistics. 820 * Note byte count includes 4 byte CRC count 821 */ 822 stats->rx_packets++; 823 stats->rx_bytes += rx_desc->byte_cnt; 824 /* 825 * In case received a packet without first / last bits on OR 826 * the error summary bit is on, the packets needs to be droped. 827 */ 828 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != 829 (RX_FIRST_DESC | RX_LAST_DESC)) 830 || (cmd_sts & RX_ERROR)) { 831 832 stats->rx_dropped++; 833 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != 834 (RX_FIRST_DESC | RX_LAST_DESC)) { 835 if (net_ratelimit()) 836 printk(KERN_ERR 837 "%s: Rx pkt on multiple desc\n", 838 dev->name); 839 } 840 if (cmd_sts & RX_ERROR) 841 stats->rx_errors++; 842 dev_kfree_skb_irq(skb); 843 } else { 844 /* 845 * The -4 is for the CRC in the trailer of the 846 * received packet 847 */ 848 skb_put(skb, rx_desc->byte_cnt - 4); 849 skb->protocol = eth_type_trans(skb, dev); 850 netif_receive_skb(skb); 851 } 852 } 853 /* Fill RX ring with skb's */ 854 rxq_refill(dev); 855 return received_packets; 856 } 857 858 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep, 859 struct net_device *dev) 860 { 861 u32 icr; 862 int ret = 0; 863 864 icr = rdl(pep, INT_CAUSE); 865 if (icr == 0) 866 return IRQ_NONE; 867 868 wrl(pep, INT_CAUSE, ~icr); 869 if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) { 870 pep->work_todo |= WORK_TX_DONE; 871 ret = 1; 872 } 873 if (icr & ICR_RXBUF) 874 ret = 1; 875 if (icr & ICR_MII_CH) { 876 pep->work_todo |= WORK_LINK; 877 ret = 1; 878 } 879 return ret; 880 } 881 882 static void handle_link_event(struct pxa168_eth_private *pep) 883 { 884 struct net_device *dev = pep->dev; 885 u32 port_status; 886 int speed; 887 int duplex; 888 int fc; 889 890 port_status = rdl(pep, PORT_STATUS); 891 if (!(port_status & LINK_UP)) { 892 if (netif_carrier_ok(dev)) { 893 printk(KERN_INFO "%s: link down\n", dev->name); 894 netif_carrier_off(dev); 895 txq_reclaim(dev, 1); 896 } 897 return; 898 } 899 if (port_status & PORT_SPEED_100) 900 speed = 100; 901 else 902 speed = 10; 903 904 duplex = (port_status & FULL_DUPLEX) ? 1 : 0; 905 fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0; 906 printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, " 907 "flow control %sabled\n", dev->name, 908 speed, duplex ? "full" : "half", fc ? "en" : "dis"); 909 if (!netif_carrier_ok(dev)) 910 netif_carrier_on(dev); 911 } 912 913 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id) 914 { 915 struct net_device *dev = (struct net_device *)dev_id; 916 struct pxa168_eth_private *pep = netdev_priv(dev); 917 918 if (unlikely(!pxa168_eth_collect_events(pep, dev))) 919 return IRQ_NONE; 920 /* Disable interrupts */ 921 wrl(pep, INT_MASK, 0); 922 napi_schedule(&pep->napi); 923 return IRQ_HANDLED; 924 } 925 926 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep) 927 { 928 int skb_size; 929 930 /* 931 * Reserve 2+14 bytes for an ethernet header (the hardware 932 * automatically prepends 2 bytes of dummy data to each 933 * received packet), 16 bytes for up to four VLAN tags, and 934 * 4 bytes for the trailing FCS -- 36 bytes total. 935 */ 936 skb_size = pep->dev->mtu + 36; 937 938 /* 939 * Make sure that the skb size is a multiple of 8 bytes, as 940 * the lower three bits of the receive descriptor's buffer 941 * size field are ignored by the hardware. 942 */ 943 pep->skb_size = (skb_size + 7) & ~7; 944 945 /* 946 * If NET_SKB_PAD is smaller than a cache line, 947 * netdev_alloc_skb() will cause skb->data to be misaligned 948 * to a cache line boundary. If this is the case, include 949 * some extra space to allow re-aligning the data area. 950 */ 951 pep->skb_size += SKB_DMA_REALIGN; 952 953 } 954 955 static int set_port_config_ext(struct pxa168_eth_private *pep) 956 { 957 int skb_size; 958 959 pxa168_eth_recalc_skb_size(pep); 960 if (pep->skb_size <= 1518) 961 skb_size = PCXR_MFL_1518; 962 else if (pep->skb_size <= 1536) 963 skb_size = PCXR_MFL_1536; 964 else if (pep->skb_size <= 2048) 965 skb_size = PCXR_MFL_2048; 966 else 967 skb_size = PCXR_MFL_64K; 968 969 /* Extended Port Configuration */ 970 wrl(pep, 971 PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */ 972 PCXR_DSCP_EN | /* Enable DSCP in IP */ 973 skb_size | PCXR_FLP | /* do not force link pass */ 974 PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */ 975 976 return 0; 977 } 978 979 static int pxa168_init_hw(struct pxa168_eth_private *pep) 980 { 981 int err = 0; 982 983 /* Disable interrupts */ 984 wrl(pep, INT_MASK, 0); 985 wrl(pep, INT_CAUSE, 0); 986 /* Write to ICR to clear interrupts. */ 987 wrl(pep, INT_W_CLEAR, 0); 988 /* Abort any transmit and receive operations and put DMA 989 * in idle state. 990 */ 991 abort_dma(pep); 992 /* Initialize address hash table */ 993 err = init_hash_table(pep); 994 if (err) 995 return err; 996 /* SDMA configuration */ 997 wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */ 998 SDCR_RIFB | /* Rx interrupt on frame */ 999 SDCR_BLMT | /* Little endian transmit */ 1000 SDCR_BLMR | /* Little endian receive */ 1001 SDCR_RC_MAX_RETRANS); /* Max retransmit count */ 1002 /* Port Configuration */ 1003 wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */ 1004 set_port_config_ext(pep); 1005 1006 return err; 1007 } 1008 1009 static int rxq_init(struct net_device *dev) 1010 { 1011 struct pxa168_eth_private *pep = netdev_priv(dev); 1012 struct rx_desc *p_rx_desc; 1013 int size = 0, i = 0; 1014 int rx_desc_num = pep->rx_ring_size; 1015 1016 /* Allocate RX skb rings */ 1017 pep->rx_skb = kmalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size, 1018 GFP_KERNEL); 1019 if (!pep->rx_skb) 1020 return -ENOMEM; 1021 1022 /* Allocate RX ring */ 1023 pep->rx_desc_count = 0; 1024 size = pep->rx_ring_size * sizeof(struct rx_desc); 1025 pep->rx_desc_area_size = size; 1026 pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size, 1027 &pep->rx_desc_dma, GFP_KERNEL); 1028 if (!pep->p_rx_desc_area) { 1029 printk(KERN_ERR "%s: Cannot alloc RX ring (size %d bytes)\n", 1030 dev->name, size); 1031 goto out; 1032 } 1033 memset((void *)pep->p_rx_desc_area, 0, size); 1034 /* initialize the next_desc_ptr links in the Rx descriptors ring */ 1035 p_rx_desc = pep->p_rx_desc_area; 1036 for (i = 0; i < rx_desc_num; i++) { 1037 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma + 1038 ((i + 1) % rx_desc_num) * sizeof(struct rx_desc); 1039 } 1040 /* Save Rx desc pointer to driver struct. */ 1041 pep->rx_curr_desc_q = 0; 1042 pep->rx_used_desc_q = 0; 1043 pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc); 1044 return 0; 1045 out: 1046 kfree(pep->rx_skb); 1047 return -ENOMEM; 1048 } 1049 1050 static void rxq_deinit(struct net_device *dev) 1051 { 1052 struct pxa168_eth_private *pep = netdev_priv(dev); 1053 int curr; 1054 1055 /* Free preallocated skb's on RX rings */ 1056 for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) { 1057 if (pep->rx_skb[curr]) { 1058 dev_kfree_skb(pep->rx_skb[curr]); 1059 pep->rx_desc_count--; 1060 } 1061 } 1062 if (pep->rx_desc_count) 1063 printk(KERN_ERR 1064 "Error in freeing Rx Ring. %d skb's still\n", 1065 pep->rx_desc_count); 1066 /* Free RX ring */ 1067 if (pep->p_rx_desc_area) 1068 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size, 1069 pep->p_rx_desc_area, pep->rx_desc_dma); 1070 kfree(pep->rx_skb); 1071 } 1072 1073 static int txq_init(struct net_device *dev) 1074 { 1075 struct pxa168_eth_private *pep = netdev_priv(dev); 1076 struct tx_desc *p_tx_desc; 1077 int size = 0, i = 0; 1078 int tx_desc_num = pep->tx_ring_size; 1079 1080 pep->tx_skb = kmalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size, 1081 GFP_KERNEL); 1082 if (!pep->tx_skb) 1083 return -ENOMEM; 1084 1085 /* Allocate TX ring */ 1086 pep->tx_desc_count = 0; 1087 size = pep->tx_ring_size * sizeof(struct tx_desc); 1088 pep->tx_desc_area_size = size; 1089 pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size, 1090 &pep->tx_desc_dma, GFP_KERNEL); 1091 if (!pep->p_tx_desc_area) { 1092 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n", 1093 dev->name, size); 1094 goto out; 1095 } 1096 memset((void *)pep->p_tx_desc_area, 0, pep->tx_desc_area_size); 1097 /* Initialize the next_desc_ptr links in the Tx descriptors ring */ 1098 p_tx_desc = pep->p_tx_desc_area; 1099 for (i = 0; i < tx_desc_num; i++) { 1100 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma + 1101 ((i + 1) % tx_desc_num) * sizeof(struct tx_desc); 1102 } 1103 pep->tx_curr_desc_q = 0; 1104 pep->tx_used_desc_q = 0; 1105 pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc); 1106 return 0; 1107 out: 1108 kfree(pep->tx_skb); 1109 return -ENOMEM; 1110 } 1111 1112 static void txq_deinit(struct net_device *dev) 1113 { 1114 struct pxa168_eth_private *pep = netdev_priv(dev); 1115 1116 /* Free outstanding skb's on TX ring */ 1117 txq_reclaim(dev, 1); 1118 BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q); 1119 /* Free TX ring */ 1120 if (pep->p_tx_desc_area) 1121 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size, 1122 pep->p_tx_desc_area, pep->tx_desc_dma); 1123 kfree(pep->tx_skb); 1124 } 1125 1126 static int pxa168_eth_open(struct net_device *dev) 1127 { 1128 struct pxa168_eth_private *pep = netdev_priv(dev); 1129 int err; 1130 1131 err = request_irq(dev->irq, pxa168_eth_int_handler, 1132 IRQF_DISABLED, dev->name, dev); 1133 if (err) { 1134 dev_err(&dev->dev, "can't assign irq\n"); 1135 return -EAGAIN; 1136 } 1137 pep->rx_resource_err = 0; 1138 err = rxq_init(dev); 1139 if (err != 0) 1140 goto out_free_irq; 1141 err = txq_init(dev); 1142 if (err != 0) 1143 goto out_free_rx_skb; 1144 pep->rx_used_desc_q = 0; 1145 pep->rx_curr_desc_q = 0; 1146 1147 /* Fill RX ring with skb's */ 1148 rxq_refill(dev); 1149 pep->rx_used_desc_q = 0; 1150 pep->rx_curr_desc_q = 0; 1151 netif_carrier_off(dev); 1152 eth_port_start(dev); 1153 napi_enable(&pep->napi); 1154 return 0; 1155 out_free_rx_skb: 1156 rxq_deinit(dev); 1157 out_free_irq: 1158 free_irq(dev->irq, dev); 1159 return err; 1160 } 1161 1162 static int pxa168_eth_stop(struct net_device *dev) 1163 { 1164 struct pxa168_eth_private *pep = netdev_priv(dev); 1165 eth_port_reset(dev); 1166 1167 /* Disable interrupts */ 1168 wrl(pep, INT_MASK, 0); 1169 wrl(pep, INT_CAUSE, 0); 1170 /* Write to ICR to clear interrupts. */ 1171 wrl(pep, INT_W_CLEAR, 0); 1172 napi_disable(&pep->napi); 1173 del_timer_sync(&pep->timeout); 1174 netif_carrier_off(dev); 1175 free_irq(dev->irq, dev); 1176 rxq_deinit(dev); 1177 txq_deinit(dev); 1178 1179 return 0; 1180 } 1181 1182 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu) 1183 { 1184 int retval; 1185 struct pxa168_eth_private *pep = netdev_priv(dev); 1186 1187 if ((mtu > 9500) || (mtu < 68)) 1188 return -EINVAL; 1189 1190 dev->mtu = mtu; 1191 retval = set_port_config_ext(pep); 1192 1193 if (!netif_running(dev)) 1194 return 0; 1195 1196 /* 1197 * Stop and then re-open the interface. This will allocate RX 1198 * skbs of the new MTU. 1199 * There is a possible danger that the open will not succeed, 1200 * due to memory being full. 1201 */ 1202 pxa168_eth_stop(dev); 1203 if (pxa168_eth_open(dev)) { 1204 dev_err(&dev->dev, 1205 "fatal error on re-opening device after MTU change\n"); 1206 } 1207 1208 return 0; 1209 } 1210 1211 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep) 1212 { 1213 int tx_desc_curr; 1214 1215 tx_desc_curr = pep->tx_curr_desc_q; 1216 pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size; 1217 BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q); 1218 pep->tx_desc_count++; 1219 1220 return tx_desc_curr; 1221 } 1222 1223 static int pxa168_rx_poll(struct napi_struct *napi, int budget) 1224 { 1225 struct pxa168_eth_private *pep = 1226 container_of(napi, struct pxa168_eth_private, napi); 1227 struct net_device *dev = pep->dev; 1228 int work_done = 0; 1229 1230 if (unlikely(pep->work_todo & WORK_LINK)) { 1231 pep->work_todo &= ~(WORK_LINK); 1232 handle_link_event(pep); 1233 } 1234 /* 1235 * We call txq_reclaim every time since in NAPI interupts are disabled 1236 * and due to this we miss the TX_DONE interrupt,which is not updated in 1237 * interrupt status register. 1238 */ 1239 txq_reclaim(dev, 0); 1240 if (netif_queue_stopped(dev) 1241 && pep->tx_ring_size - pep->tx_desc_count > 1) { 1242 netif_wake_queue(dev); 1243 } 1244 work_done = rxq_process(dev, budget); 1245 if (work_done < budget) { 1246 napi_complete(napi); 1247 wrl(pep, INT_MASK, ALL_INTS); 1248 } 1249 1250 return work_done; 1251 } 1252 1253 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev) 1254 { 1255 struct pxa168_eth_private *pep = netdev_priv(dev); 1256 struct net_device_stats *stats = &dev->stats; 1257 struct tx_desc *desc; 1258 int tx_index; 1259 int length; 1260 1261 tx_index = eth_alloc_tx_desc_index(pep); 1262 desc = &pep->p_tx_desc_area[tx_index]; 1263 length = skb->len; 1264 pep->tx_skb[tx_index] = skb; 1265 desc->byte_cnt = length; 1266 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE); 1267 1268 skb_tx_timestamp(skb); 1269 1270 wmb(); 1271 desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC | 1272 TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT; 1273 wmb(); 1274 wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD); 1275 1276 stats->tx_bytes += length; 1277 stats->tx_packets++; 1278 dev->trans_start = jiffies; 1279 if (pep->tx_ring_size - pep->tx_desc_count <= 1) { 1280 /* We handled the current skb, but now we are out of space.*/ 1281 netif_stop_queue(dev); 1282 } 1283 1284 return NETDEV_TX_OK; 1285 } 1286 1287 static int smi_wait_ready(struct pxa168_eth_private *pep) 1288 { 1289 int i = 0; 1290 1291 /* wait for the SMI register to become available */ 1292 for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) { 1293 if (i == PHY_WAIT_ITERATIONS) 1294 return -ETIMEDOUT; 1295 msleep(10); 1296 } 1297 1298 return 0; 1299 } 1300 1301 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum) 1302 { 1303 struct pxa168_eth_private *pep = bus->priv; 1304 int i = 0; 1305 int val; 1306 1307 if (smi_wait_ready(pep)) { 1308 printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n"); 1309 return -ETIMEDOUT; 1310 } 1311 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R); 1312 /* now wait for the data to be valid */ 1313 for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) { 1314 if (i == PHY_WAIT_ITERATIONS) { 1315 printk(KERN_WARNING 1316 "pxa168_eth: SMI bus read not valid\n"); 1317 return -ENODEV; 1318 } 1319 msleep(10); 1320 } 1321 1322 return val & 0xffff; 1323 } 1324 1325 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum, 1326 u16 value) 1327 { 1328 struct pxa168_eth_private *pep = bus->priv; 1329 1330 if (smi_wait_ready(pep)) { 1331 printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n"); 1332 return -ETIMEDOUT; 1333 } 1334 1335 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | 1336 SMI_OP_W | (value & 0xffff)); 1337 1338 if (smi_wait_ready(pep)) { 1339 printk(KERN_ERR "pxa168_eth: SMI bus busy timeout\n"); 1340 return -ETIMEDOUT; 1341 } 1342 1343 return 0; 1344 } 1345 1346 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, 1347 int cmd) 1348 { 1349 struct pxa168_eth_private *pep = netdev_priv(dev); 1350 if (pep->phy != NULL) 1351 return phy_mii_ioctl(pep->phy, ifr, cmd); 1352 1353 return -EOPNOTSUPP; 1354 } 1355 1356 static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr) 1357 { 1358 struct mii_bus *bus = pep->smi_bus; 1359 struct phy_device *phydev; 1360 int start; 1361 int num; 1362 int i; 1363 1364 if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) { 1365 /* Scan entire range */ 1366 start = ethernet_phy_get(pep); 1367 num = 32; 1368 } else { 1369 /* Use phy addr specific to platform */ 1370 start = phy_addr & 0x1f; 1371 num = 1; 1372 } 1373 phydev = NULL; 1374 for (i = 0; i < num; i++) { 1375 int addr = (start + i) & 0x1f; 1376 if (bus->phy_map[addr] == NULL) 1377 mdiobus_scan(bus, addr); 1378 1379 if (phydev == NULL) { 1380 phydev = bus->phy_map[addr]; 1381 if (phydev != NULL) 1382 ethernet_phy_set_addr(pep, addr); 1383 } 1384 } 1385 1386 return phydev; 1387 } 1388 1389 static void phy_init(struct pxa168_eth_private *pep, int speed, int duplex) 1390 { 1391 struct phy_device *phy = pep->phy; 1392 ethernet_phy_reset(pep); 1393 1394 phy_attach(pep->dev, dev_name(&phy->dev), 0, PHY_INTERFACE_MODE_MII); 1395 1396 if (speed == 0) { 1397 phy->autoneg = AUTONEG_ENABLE; 1398 phy->speed = 0; 1399 phy->duplex = 0; 1400 phy->supported &= PHY_BASIC_FEATURES; 1401 phy->advertising = phy->supported | ADVERTISED_Autoneg; 1402 } else { 1403 phy->autoneg = AUTONEG_DISABLE; 1404 phy->advertising = 0; 1405 phy->speed = speed; 1406 phy->duplex = duplex; 1407 } 1408 phy_start_aneg(phy); 1409 } 1410 1411 static int ethernet_phy_setup(struct net_device *dev) 1412 { 1413 struct pxa168_eth_private *pep = netdev_priv(dev); 1414 1415 if (pep->pd->init) 1416 pep->pd->init(); 1417 pep->phy = phy_scan(pep, pep->pd->phy_addr & 0x1f); 1418 if (pep->phy != NULL) 1419 phy_init(pep, pep->pd->speed, pep->pd->duplex); 1420 update_hash_table_mac_address(pep, NULL, dev->dev_addr); 1421 1422 return 0; 1423 } 1424 1425 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1426 { 1427 struct pxa168_eth_private *pep = netdev_priv(dev); 1428 int err; 1429 1430 err = phy_read_status(pep->phy); 1431 if (err == 0) 1432 err = phy_ethtool_gset(pep->phy, cmd); 1433 1434 return err; 1435 } 1436 1437 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1438 { 1439 struct pxa168_eth_private *pep = netdev_priv(dev); 1440 1441 return phy_ethtool_sset(pep->phy, cmd); 1442 } 1443 1444 static void pxa168_get_drvinfo(struct net_device *dev, 1445 struct ethtool_drvinfo *info) 1446 { 1447 strncpy(info->driver, DRIVER_NAME, 32); 1448 strncpy(info->version, DRIVER_VERSION, 32); 1449 strncpy(info->fw_version, "N/A", 32); 1450 strncpy(info->bus_info, "N/A", 32); 1451 } 1452 1453 static const struct ethtool_ops pxa168_ethtool_ops = { 1454 .get_settings = pxa168_get_settings, 1455 .set_settings = pxa168_set_settings, 1456 .get_drvinfo = pxa168_get_drvinfo, 1457 .get_link = ethtool_op_get_link, 1458 .get_ts_info = ethtool_op_get_ts_info, 1459 }; 1460 1461 static const struct net_device_ops pxa168_eth_netdev_ops = { 1462 .ndo_open = pxa168_eth_open, 1463 .ndo_stop = pxa168_eth_stop, 1464 .ndo_start_xmit = pxa168_eth_start_xmit, 1465 .ndo_set_rx_mode = pxa168_eth_set_rx_mode, 1466 .ndo_set_mac_address = pxa168_eth_set_mac_address, 1467 .ndo_validate_addr = eth_validate_addr, 1468 .ndo_do_ioctl = pxa168_eth_do_ioctl, 1469 .ndo_change_mtu = pxa168_eth_change_mtu, 1470 .ndo_tx_timeout = pxa168_eth_tx_timeout, 1471 }; 1472 1473 static int pxa168_eth_probe(struct platform_device *pdev) 1474 { 1475 struct pxa168_eth_private *pep = NULL; 1476 struct net_device *dev = NULL; 1477 struct resource *res; 1478 struct clk *clk; 1479 int err; 1480 1481 printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n"); 1482 1483 clk = clk_get(&pdev->dev, "MFUCLK"); 1484 if (IS_ERR(clk)) { 1485 printk(KERN_ERR "%s: Fast Ethernet failed to get clock\n", 1486 DRIVER_NAME); 1487 return -ENODEV; 1488 } 1489 clk_enable(clk); 1490 1491 dev = alloc_etherdev(sizeof(struct pxa168_eth_private)); 1492 if (!dev) { 1493 err = -ENOMEM; 1494 goto err_clk; 1495 } 1496 1497 platform_set_drvdata(pdev, dev); 1498 pep = netdev_priv(dev); 1499 pep->dev = dev; 1500 pep->clk = clk; 1501 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1502 if (res == NULL) { 1503 err = -ENODEV; 1504 goto err_netdev; 1505 } 1506 pep->base = ioremap(res->start, resource_size(res)); 1507 if (pep->base == NULL) { 1508 err = -ENOMEM; 1509 goto err_netdev; 1510 } 1511 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1512 BUG_ON(!res); 1513 dev->irq = res->start; 1514 dev->netdev_ops = &pxa168_eth_netdev_ops; 1515 dev->watchdog_timeo = 2 * HZ; 1516 dev->base_addr = 0; 1517 SET_ETHTOOL_OPS(dev, &pxa168_ethtool_ops); 1518 1519 INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task); 1520 1521 printk(KERN_INFO "%s:Using random mac address\n", DRIVER_NAME); 1522 eth_hw_addr_random(dev); 1523 1524 pep->pd = pdev->dev.platform_data; 1525 pep->rx_ring_size = NUM_RX_DESCS; 1526 if (pep->pd->rx_queue_size) 1527 pep->rx_ring_size = pep->pd->rx_queue_size; 1528 1529 pep->tx_ring_size = NUM_TX_DESCS; 1530 if (pep->pd->tx_queue_size) 1531 pep->tx_ring_size = pep->pd->tx_queue_size; 1532 1533 pep->port_num = pep->pd->port_number; 1534 /* Hardware supports only 3 ports */ 1535 BUG_ON(pep->port_num > 2); 1536 netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size); 1537 1538 memset(&pep->timeout, 0, sizeof(struct timer_list)); 1539 init_timer(&pep->timeout); 1540 pep->timeout.function = rxq_refill_timer_wrapper; 1541 pep->timeout.data = (unsigned long)pep; 1542 1543 pep->smi_bus = mdiobus_alloc(); 1544 if (pep->smi_bus == NULL) { 1545 err = -ENOMEM; 1546 goto err_base; 1547 } 1548 pep->smi_bus->priv = pep; 1549 pep->smi_bus->name = "pxa168_eth smi"; 1550 pep->smi_bus->read = pxa168_smi_read; 1551 pep->smi_bus->write = pxa168_smi_write; 1552 snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d", 1553 pdev->name, pdev->id); 1554 pep->smi_bus->parent = &pdev->dev; 1555 pep->smi_bus->phy_mask = 0xffffffff; 1556 err = mdiobus_register(pep->smi_bus); 1557 if (err) 1558 goto err_free_mdio; 1559 1560 pxa168_init_hw(pep); 1561 err = ethernet_phy_setup(dev); 1562 if (err) 1563 goto err_mdiobus; 1564 SET_NETDEV_DEV(dev, &pdev->dev); 1565 err = register_netdev(dev); 1566 if (err) 1567 goto err_mdiobus; 1568 return 0; 1569 1570 err_mdiobus: 1571 mdiobus_unregister(pep->smi_bus); 1572 err_free_mdio: 1573 mdiobus_free(pep->smi_bus); 1574 err_base: 1575 iounmap(pep->base); 1576 err_netdev: 1577 free_netdev(dev); 1578 err_clk: 1579 clk_disable(clk); 1580 clk_put(clk); 1581 return err; 1582 } 1583 1584 static int pxa168_eth_remove(struct platform_device *pdev) 1585 { 1586 struct net_device *dev = platform_get_drvdata(pdev); 1587 struct pxa168_eth_private *pep = netdev_priv(dev); 1588 1589 if (pep->htpr) { 1590 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE, 1591 pep->htpr, pep->htpr_dma); 1592 pep->htpr = NULL; 1593 } 1594 if (pep->clk) { 1595 clk_disable(pep->clk); 1596 clk_put(pep->clk); 1597 pep->clk = NULL; 1598 } 1599 if (pep->phy != NULL) 1600 phy_detach(pep->phy); 1601 1602 iounmap(pep->base); 1603 pep->base = NULL; 1604 mdiobus_unregister(pep->smi_bus); 1605 mdiobus_free(pep->smi_bus); 1606 unregister_netdev(dev); 1607 cancel_work_sync(&pep->tx_timeout_task); 1608 free_netdev(dev); 1609 platform_set_drvdata(pdev, NULL); 1610 return 0; 1611 } 1612 1613 static void pxa168_eth_shutdown(struct platform_device *pdev) 1614 { 1615 struct net_device *dev = platform_get_drvdata(pdev); 1616 eth_port_reset(dev); 1617 } 1618 1619 #ifdef CONFIG_PM 1620 static int pxa168_eth_resume(struct platform_device *pdev) 1621 { 1622 return -ENOSYS; 1623 } 1624 1625 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state) 1626 { 1627 return -ENOSYS; 1628 } 1629 1630 #else 1631 #define pxa168_eth_resume NULL 1632 #define pxa168_eth_suspend NULL 1633 #endif 1634 1635 static struct platform_driver pxa168_eth_driver = { 1636 .probe = pxa168_eth_probe, 1637 .remove = pxa168_eth_remove, 1638 .shutdown = pxa168_eth_shutdown, 1639 .resume = pxa168_eth_resume, 1640 .suspend = pxa168_eth_suspend, 1641 .driver = { 1642 .name = DRIVER_NAME, 1643 }, 1644 }; 1645 1646 module_platform_driver(pxa168_eth_driver); 1647 1648 MODULE_LICENSE("GPL"); 1649 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168"); 1650 MODULE_ALIAS("platform:pxa168_eth"); 1651