1 /*
2  * PXA168 ethernet driver.
3  * Most of the code is derived from mv643xx ethernet driver.
4  *
5  * Copyright (C) 2010 Marvell International Ltd.
6  *		Sachin Sanap <ssanap@marvell.com>
7  *		Zhangfei Gao <zgao6@marvell.com>
8  *		Philip Rakity <prakity@marvell.com>
9  *		Mark Brown <markb@marvell.com>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version 2
14  * of the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include <linux/dma-mapping.h>
26 #include <linux/in.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/udp.h>
30 #include <linux/etherdevice.h>
31 #include <linux/bitops.h>
32 #include <linux/delay.h>
33 #include <linux/ethtool.h>
34 #include <linux/platform_device.h>
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/workqueue.h>
38 #include <linux/clk.h>
39 #include <linux/phy.h>
40 #include <linux/io.h>
41 #include <linux/interrupt.h>
42 #include <linux/types.h>
43 #include <asm/pgtable.h>
44 #include <asm/cacheflush.h>
45 #include <linux/pxa168_eth.h>
46 
47 #define DRIVER_NAME	"pxa168-eth"
48 #define DRIVER_VERSION	"0.3"
49 
50 /*
51  * Registers
52  */
53 
54 #define PHY_ADDRESS		0x0000
55 #define SMI			0x0010
56 #define PORT_CONFIG		0x0400
57 #define PORT_CONFIG_EXT		0x0408
58 #define PORT_COMMAND		0x0410
59 #define PORT_STATUS		0x0418
60 #define HTPR			0x0428
61 #define SDMA_CONFIG		0x0440
62 #define SDMA_CMD		0x0448
63 #define INT_CAUSE		0x0450
64 #define INT_W_CLEAR		0x0454
65 #define INT_MASK		0x0458
66 #define ETH_F_RX_DESC_0		0x0480
67 #define ETH_C_RX_DESC_0		0x04A0
68 #define ETH_C_TX_DESC_1		0x04E4
69 
70 /* smi register */
71 #define SMI_BUSY		(1 << 28)	/* 0 - Write, 1 - Read  */
72 #define SMI_R_VALID		(1 << 27)	/* 0 - Write, 1 - Read  */
73 #define SMI_OP_W		(0 << 26)	/* Write operation      */
74 #define SMI_OP_R		(1 << 26)	/* Read operation */
75 
76 #define PHY_WAIT_ITERATIONS	10
77 
78 #define PXA168_ETH_PHY_ADDR_DEFAULT	0
79 /* RX & TX descriptor command */
80 #define BUF_OWNED_BY_DMA	(1 << 31)
81 
82 /* RX descriptor status */
83 #define RX_EN_INT		(1 << 23)
84 #define RX_FIRST_DESC		(1 << 17)
85 #define RX_LAST_DESC		(1 << 16)
86 #define RX_ERROR		(1 << 15)
87 
88 /* TX descriptor command */
89 #define TX_EN_INT		(1 << 23)
90 #define TX_GEN_CRC		(1 << 22)
91 #define TX_ZERO_PADDING		(1 << 18)
92 #define TX_FIRST_DESC		(1 << 17)
93 #define TX_LAST_DESC		(1 << 16)
94 #define TX_ERROR		(1 << 15)
95 
96 /* SDMA_CMD */
97 #define SDMA_CMD_AT		(1 << 31)
98 #define SDMA_CMD_TXDL		(1 << 24)
99 #define SDMA_CMD_TXDH		(1 << 23)
100 #define SDMA_CMD_AR		(1 << 15)
101 #define SDMA_CMD_ERD		(1 << 7)
102 
103 /* Bit definitions of the Port Config Reg */
104 #define PCR_HS			(1 << 12)
105 #define PCR_EN			(1 << 7)
106 #define PCR_PM			(1 << 0)
107 
108 /* Bit definitions of the Port Config Extend Reg */
109 #define PCXR_2BSM		(1 << 28)
110 #define PCXR_DSCP_EN		(1 << 21)
111 #define PCXR_MFL_1518		(0 << 14)
112 #define PCXR_MFL_1536		(1 << 14)
113 #define PCXR_MFL_2048		(2 << 14)
114 #define PCXR_MFL_64K		(3 << 14)
115 #define PCXR_FLP		(1 << 11)
116 #define PCXR_PRIO_TX_OFF	3
117 #define PCXR_TX_HIGH_PRI	(7 << PCXR_PRIO_TX_OFF)
118 
119 /* Bit definitions of the SDMA Config Reg */
120 #define SDCR_BSZ_OFF		12
121 #define SDCR_BSZ8		(3 << SDCR_BSZ_OFF)
122 #define SDCR_BSZ4		(2 << SDCR_BSZ_OFF)
123 #define SDCR_BSZ2		(1 << SDCR_BSZ_OFF)
124 #define SDCR_BSZ1		(0 << SDCR_BSZ_OFF)
125 #define SDCR_BLMR		(1 << 6)
126 #define SDCR_BLMT		(1 << 7)
127 #define SDCR_RIFB		(1 << 9)
128 #define SDCR_RC_OFF		2
129 #define SDCR_RC_MAX_RETRANS	(0xf << SDCR_RC_OFF)
130 
131 /*
132  * Bit definitions of the Interrupt Cause Reg
133  * and Interrupt MASK Reg is the same
134  */
135 #define ICR_RXBUF		(1 << 0)
136 #define ICR_TXBUF_H		(1 << 2)
137 #define ICR_TXBUF_L		(1 << 3)
138 #define ICR_TXEND_H		(1 << 6)
139 #define ICR_TXEND_L		(1 << 7)
140 #define ICR_RXERR		(1 << 8)
141 #define ICR_TXERR_H		(1 << 10)
142 #define ICR_TXERR_L		(1 << 11)
143 #define ICR_TX_UDR		(1 << 13)
144 #define ICR_MII_CH		(1 << 28)
145 
146 #define ALL_INTS (ICR_TXBUF_H  | ICR_TXBUF_L  | ICR_TX_UDR |\
147 				ICR_TXERR_H  | ICR_TXERR_L |\
148 				ICR_TXEND_H  | ICR_TXEND_L |\
149 				ICR_RXBUF | ICR_RXERR  | ICR_MII_CH)
150 
151 #define ETH_HW_IP_ALIGN		2	/* hw aligns IP header */
152 
153 #define NUM_RX_DESCS		64
154 #define NUM_TX_DESCS		64
155 
156 #define HASH_ADD		0
157 #define HASH_DELETE		1
158 #define HASH_ADDR_TABLE_SIZE	0x4000	/* 16K (1/2K address - PCR_HS == 1) */
159 #define HOP_NUMBER		12
160 
161 /* Bit definitions for Port status */
162 #define PORT_SPEED_100		(1 << 0)
163 #define FULL_DUPLEX		(1 << 1)
164 #define FLOW_CONTROL_ENABLED	(1 << 2)
165 #define LINK_UP			(1 << 3)
166 
167 /* Bit definitions for work to be done */
168 #define WORK_LINK		(1 << 0)
169 #define WORK_TX_DONE		(1 << 1)
170 
171 /*
172  * Misc definitions.
173  */
174 #define SKB_DMA_REALIGN		((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
175 
176 struct rx_desc {
177 	u32 cmd_sts;		/* Descriptor command status            */
178 	u16 byte_cnt;		/* Descriptor buffer byte count         */
179 	u16 buf_size;		/* Buffer size                          */
180 	u32 buf_ptr;		/* Descriptor buffer pointer            */
181 	u32 next_desc_ptr;	/* Next descriptor pointer              */
182 };
183 
184 struct tx_desc {
185 	u32 cmd_sts;		/* Command/status field                 */
186 	u16 reserved;
187 	u16 byte_cnt;		/* buffer byte count                    */
188 	u32 buf_ptr;		/* pointer to buffer for this descriptor */
189 	u32 next_desc_ptr;	/* Pointer to next descriptor           */
190 };
191 
192 struct pxa168_eth_private {
193 	int port_num;		/* User Ethernet port number    */
194 
195 	int rx_resource_err;	/* Rx ring resource error flag */
196 
197 	/* Next available and first returning Rx resource */
198 	int rx_curr_desc_q, rx_used_desc_q;
199 
200 	/* Next available and first returning Tx resource */
201 	int tx_curr_desc_q, tx_used_desc_q;
202 
203 	struct rx_desc *p_rx_desc_area;
204 	dma_addr_t rx_desc_dma;
205 	int rx_desc_area_size;
206 	struct sk_buff **rx_skb;
207 
208 	struct tx_desc *p_tx_desc_area;
209 	dma_addr_t tx_desc_dma;
210 	int tx_desc_area_size;
211 	struct sk_buff **tx_skb;
212 
213 	struct work_struct tx_timeout_task;
214 
215 	struct net_device *dev;
216 	struct napi_struct napi;
217 	u8 work_todo;
218 	int skb_size;
219 
220 	/* Size of Tx Ring per queue */
221 	int tx_ring_size;
222 	/* Number of tx descriptors in use */
223 	int tx_desc_count;
224 	/* Size of Rx Ring per queue */
225 	int rx_ring_size;
226 	/* Number of rx descriptors in use */
227 	int rx_desc_count;
228 
229 	/*
230 	 * Used in case RX Ring is empty, which can occur when
231 	 * system does not have resources (skb's)
232 	 */
233 	struct timer_list timeout;
234 	struct mii_bus *smi_bus;
235 	struct phy_device *phy;
236 
237 	/* clock */
238 	struct clk *clk;
239 	struct pxa168_eth_platform_data *pd;
240 	/*
241 	 * Ethernet controller base address.
242 	 */
243 	void __iomem *base;
244 
245 	/* Pointer to the hardware address filter table */
246 	void *htpr;
247 	dma_addr_t htpr_dma;
248 };
249 
250 struct addr_table_entry {
251 	__le32 lo;
252 	__le32 hi;
253 };
254 
255 /* Bit fields of a Hash Table Entry */
256 enum hash_table_entry {
257 	HASH_ENTRY_VALID = 1,
258 	SKIP = 2,
259 	HASH_ENTRY_RECEIVE_DISCARD = 4,
260 	HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
261 };
262 
263 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
264 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
265 static int pxa168_init_hw(struct pxa168_eth_private *pep);
266 static void eth_port_reset(struct net_device *dev);
267 static void eth_port_start(struct net_device *dev);
268 static int pxa168_eth_open(struct net_device *dev);
269 static int pxa168_eth_stop(struct net_device *dev);
270 static int ethernet_phy_setup(struct net_device *dev);
271 
272 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
273 {
274 	return readl(pep->base + offset);
275 }
276 
277 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
278 {
279 	writel(data, pep->base + offset);
280 }
281 
282 static void abort_dma(struct pxa168_eth_private *pep)
283 {
284 	int delay;
285 	int max_retries = 40;
286 
287 	do {
288 		wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
289 		udelay(100);
290 
291 		delay = 10;
292 		while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
293 		       && delay-- > 0) {
294 			udelay(10);
295 		}
296 	} while (max_retries-- > 0 && delay <= 0);
297 
298 	if (max_retries <= 0)
299 		printk(KERN_ERR "%s : DMA Stuck\n", __func__);
300 }
301 
302 static int ethernet_phy_get(struct pxa168_eth_private *pep)
303 {
304 	unsigned int reg_data;
305 
306 	reg_data = rdl(pep, PHY_ADDRESS);
307 
308 	return (reg_data >> (5 * pep->port_num)) & 0x1f;
309 }
310 
311 static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
312 {
313 	u32 reg_data;
314 	int addr_shift = 5 * pep->port_num;
315 
316 	reg_data = rdl(pep, PHY_ADDRESS);
317 	reg_data &= ~(0x1f << addr_shift);
318 	reg_data |= (phy_addr & 0x1f) << addr_shift;
319 	wrl(pep, PHY_ADDRESS, reg_data);
320 }
321 
322 static void rxq_refill(struct net_device *dev)
323 {
324 	struct pxa168_eth_private *pep = netdev_priv(dev);
325 	struct sk_buff *skb;
326 	struct rx_desc *p_used_rx_desc;
327 	int used_rx_desc;
328 
329 	while (pep->rx_desc_count < pep->rx_ring_size) {
330 		int size;
331 
332 		skb = netdev_alloc_skb(dev, pep->skb_size);
333 		if (!skb)
334 			break;
335 		if (SKB_DMA_REALIGN)
336 			skb_reserve(skb, SKB_DMA_REALIGN);
337 		pep->rx_desc_count++;
338 		/* Get 'used' Rx descriptor */
339 		used_rx_desc = pep->rx_used_desc_q;
340 		p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
341 		size = skb_end_pointer(skb) - skb->data;
342 		p_used_rx_desc->buf_ptr = dma_map_single(NULL,
343 							 skb->data,
344 							 size,
345 							 DMA_FROM_DEVICE);
346 		p_used_rx_desc->buf_size = size;
347 		pep->rx_skb[used_rx_desc] = skb;
348 
349 		/* Return the descriptor to DMA ownership */
350 		wmb();
351 		p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
352 		wmb();
353 
354 		/* Move the used descriptor pointer to the next descriptor */
355 		pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
356 
357 		/* Any Rx return cancels the Rx resource error status */
358 		pep->rx_resource_err = 0;
359 
360 		skb_reserve(skb, ETH_HW_IP_ALIGN);
361 	}
362 
363 	/*
364 	 * If RX ring is empty of SKB, set a timer to try allocating
365 	 * again at a later time.
366 	 */
367 	if (pep->rx_desc_count == 0) {
368 		pep->timeout.expires = jiffies + (HZ / 10);
369 		add_timer(&pep->timeout);
370 	}
371 }
372 
373 static inline void rxq_refill_timer_wrapper(unsigned long data)
374 {
375 	struct pxa168_eth_private *pep = (void *)data;
376 	napi_schedule(&pep->napi);
377 }
378 
379 static inline u8 flip_8_bits(u8 x)
380 {
381 	return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
382 	    | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
383 	    | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
384 	    | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
385 }
386 
387 static void nibble_swap_every_byte(unsigned char *mac_addr)
388 {
389 	int i;
390 	for (i = 0; i < ETH_ALEN; i++) {
391 		mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
392 				((mac_addr[i] & 0xf0) >> 4);
393 	}
394 }
395 
396 static void inverse_every_nibble(unsigned char *mac_addr)
397 {
398 	int i;
399 	for (i = 0; i < ETH_ALEN; i++)
400 		mac_addr[i] = flip_8_bits(mac_addr[i]);
401 }
402 
403 /*
404  * ----------------------------------------------------------------------------
405  * This function will calculate the hash function of the address.
406  * Inputs
407  * mac_addr_orig    - MAC address.
408  * Outputs
409  * return the calculated entry.
410  */
411 static u32 hash_function(unsigned char *mac_addr_orig)
412 {
413 	u32 hash_result;
414 	u32 addr0;
415 	u32 addr1;
416 	u32 addr2;
417 	u32 addr3;
418 	unsigned char mac_addr[ETH_ALEN];
419 
420 	/* Make a copy of MAC address since we are going to performe bit
421 	 * operations on it
422 	 */
423 	memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
424 
425 	nibble_swap_every_byte(mac_addr);
426 	inverse_every_nibble(mac_addr);
427 
428 	addr0 = (mac_addr[5] >> 2) & 0x3f;
429 	addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
430 	addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
431 	addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
432 
433 	hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
434 	hash_result = hash_result & 0x07ff;
435 	return hash_result;
436 }
437 
438 /*
439  * ----------------------------------------------------------------------------
440  * This function will add/del an entry to the address table.
441  * Inputs
442  * pep - ETHERNET .
443  * mac_addr - MAC address.
444  * skip - if 1, skip this address.Used in case of deleting an entry which is a
445  *	  part of chain in the hash table.We can't just delete the entry since
446  *	  that will break the chain.We need to defragment the tables time to
447  *	  time.
448  * rd   - 0 Discard packet upon match.
449  *	- 1 Receive packet upon match.
450  * Outputs
451  * address table entry is added/deleted.
452  * 0 if success.
453  * -ENOSPC if table full
454  */
455 static int add_del_hash_entry(struct pxa168_eth_private *pep,
456 			      unsigned char *mac_addr,
457 			      u32 rd, u32 skip, int del)
458 {
459 	struct addr_table_entry *entry, *start;
460 	u32 new_high;
461 	u32 new_low;
462 	u32 i;
463 
464 	new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
465 	    | (((mac_addr[1] >> 0) & 0xf) << 11)
466 	    | (((mac_addr[0] >> 4) & 0xf) << 7)
467 	    | (((mac_addr[0] >> 0) & 0xf) << 3)
468 	    | (((mac_addr[3] >> 4) & 0x1) << 31)
469 	    | (((mac_addr[3] >> 0) & 0xf) << 27)
470 	    | (((mac_addr[2] >> 4) & 0xf) << 23)
471 	    | (((mac_addr[2] >> 0) & 0xf) << 19)
472 	    | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
473 	    | HASH_ENTRY_VALID;
474 
475 	new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
476 	    | (((mac_addr[5] >> 0) & 0xf) << 11)
477 	    | (((mac_addr[4] >> 4) & 0xf) << 7)
478 	    | (((mac_addr[4] >> 0) & 0xf) << 3)
479 	    | (((mac_addr[3] >> 5) & 0x7) << 0);
480 
481 	/*
482 	 * Pick the appropriate table, start scanning for free/reusable
483 	 * entries at the index obtained by hashing the specified MAC address
484 	 */
485 	start = pep->htpr;
486 	entry = start + hash_function(mac_addr);
487 	for (i = 0; i < HOP_NUMBER; i++) {
488 		if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
489 			break;
490 		} else {
491 			/* if same address put in same position */
492 			if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
493 				(new_low & 0xfffffff8)) &&
494 				(le32_to_cpu(entry->hi) == new_high)) {
495 				break;
496 			}
497 		}
498 		if (entry == start + 0x7ff)
499 			entry = start;
500 		else
501 			entry++;
502 	}
503 
504 	if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
505 	    (le32_to_cpu(entry->hi) != new_high) && del)
506 		return 0;
507 
508 	if (i == HOP_NUMBER) {
509 		if (!del) {
510 			printk(KERN_INFO "%s: table section is full, need to "
511 					"move to 16kB implementation?\n",
512 					 __FILE__);
513 			return -ENOSPC;
514 		} else
515 			return 0;
516 	}
517 
518 	/*
519 	 * Update the selected entry
520 	 */
521 	if (del) {
522 		entry->hi = 0;
523 		entry->lo = 0;
524 	} else {
525 		entry->hi = cpu_to_le32(new_high);
526 		entry->lo = cpu_to_le32(new_low);
527 	}
528 
529 	return 0;
530 }
531 
532 /*
533  * ----------------------------------------------------------------------------
534  *  Create an addressTable entry from MAC address info
535  *  found in the specifed net_device struct
536  *
537  *  Input : pointer to ethernet interface network device structure
538  *  Output : N/A
539  */
540 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
541 					  unsigned char *oaddr,
542 					  unsigned char *addr)
543 {
544 	/* Delete old entry */
545 	if (oaddr)
546 		add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
547 	/* Add new entry */
548 	add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
549 }
550 
551 static int init_hash_table(struct pxa168_eth_private *pep)
552 {
553 	/*
554 	 * Hardware expects CPU to build a hash table based on a predefined
555 	 * hash function and populate it based on hardware address. The
556 	 * location of the hash table is identified by 32-bit pointer stored
557 	 * in HTPR internal register. Two possible sizes exists for the hash
558 	 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
559 	 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
560 	 * 1/2kB.
561 	 */
562 	/* TODO: Add support for 8kB hash table and alternative hash
563 	 * function.Driver can dynamically switch to them if the 1/2kB hash
564 	 * table is full.
565 	 */
566 	if (pep->htpr == NULL) {
567 		pep->htpr = dma_zalloc_coherent(pep->dev->dev.parent,
568 						HASH_ADDR_TABLE_SIZE,
569 						&pep->htpr_dma, GFP_KERNEL);
570 		if (pep->htpr == NULL)
571 			return -ENOMEM;
572 	} else {
573 		memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
574 	}
575 	wrl(pep, HTPR, pep->htpr_dma);
576 	return 0;
577 }
578 
579 static void pxa168_eth_set_rx_mode(struct net_device *dev)
580 {
581 	struct pxa168_eth_private *pep = netdev_priv(dev);
582 	struct netdev_hw_addr *ha;
583 	u32 val;
584 
585 	val = rdl(pep, PORT_CONFIG);
586 	if (dev->flags & IFF_PROMISC)
587 		val |= PCR_PM;
588 	else
589 		val &= ~PCR_PM;
590 	wrl(pep, PORT_CONFIG, val);
591 
592 	/*
593 	 * Remove the old list of MAC address and add dev->addr
594 	 * and multicast address.
595 	 */
596 	memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
597 	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
598 
599 	netdev_for_each_mc_addr(ha, dev)
600 		update_hash_table_mac_address(pep, NULL, ha->addr);
601 }
602 
603 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
604 {
605 	struct sockaddr *sa = addr;
606 	struct pxa168_eth_private *pep = netdev_priv(dev);
607 	unsigned char oldMac[ETH_ALEN];
608 
609 	if (!is_valid_ether_addr(sa->sa_data))
610 		return -EADDRNOTAVAIL;
611 	memcpy(oldMac, dev->dev_addr, ETH_ALEN);
612 	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
613 	netif_addr_lock_bh(dev);
614 	update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
615 	netif_addr_unlock_bh(dev);
616 	return 0;
617 }
618 
619 static void eth_port_start(struct net_device *dev)
620 {
621 	unsigned int val = 0;
622 	struct pxa168_eth_private *pep = netdev_priv(dev);
623 	int tx_curr_desc, rx_curr_desc;
624 
625 	/* Perform PHY reset, if there is a PHY. */
626 	if (pep->phy != NULL) {
627 		struct ethtool_cmd cmd;
628 
629 		pxa168_get_settings(pep->dev, &cmd);
630 		phy_init_hw(pep->phy);
631 		pxa168_set_settings(pep->dev, &cmd);
632 	}
633 
634 	/* Assignment of Tx CTRP of given queue */
635 	tx_curr_desc = pep->tx_curr_desc_q;
636 	wrl(pep, ETH_C_TX_DESC_1,
637 	    (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
638 
639 	/* Assignment of Rx CRDP of given queue */
640 	rx_curr_desc = pep->rx_curr_desc_q;
641 	wrl(pep, ETH_C_RX_DESC_0,
642 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
643 
644 	wrl(pep, ETH_F_RX_DESC_0,
645 	    (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
646 
647 	/* Clear all interrupts */
648 	wrl(pep, INT_CAUSE, 0);
649 
650 	/* Enable all interrupts for receive, transmit and error. */
651 	wrl(pep, INT_MASK, ALL_INTS);
652 
653 	val = rdl(pep, PORT_CONFIG);
654 	val |= PCR_EN;
655 	wrl(pep, PORT_CONFIG, val);
656 
657 	/* Start RX DMA engine */
658 	val = rdl(pep, SDMA_CMD);
659 	val |= SDMA_CMD_ERD;
660 	wrl(pep, SDMA_CMD, val);
661 }
662 
663 static void eth_port_reset(struct net_device *dev)
664 {
665 	struct pxa168_eth_private *pep = netdev_priv(dev);
666 	unsigned int val = 0;
667 
668 	/* Stop all interrupts for receive, transmit and error. */
669 	wrl(pep, INT_MASK, 0);
670 
671 	/* Clear all interrupts */
672 	wrl(pep, INT_CAUSE, 0);
673 
674 	/* Stop RX DMA */
675 	val = rdl(pep, SDMA_CMD);
676 	val &= ~SDMA_CMD_ERD;	/* abort dma command */
677 
678 	/* Abort any transmit and receive operations and put DMA
679 	 * in idle state.
680 	 */
681 	abort_dma(pep);
682 
683 	/* Disable port */
684 	val = rdl(pep, PORT_CONFIG);
685 	val &= ~PCR_EN;
686 	wrl(pep, PORT_CONFIG, val);
687 }
688 
689 /*
690  * txq_reclaim - Free the tx desc data for completed descriptors
691  * If force is non-zero, frees uncompleted descriptors as well
692  */
693 static int txq_reclaim(struct net_device *dev, int force)
694 {
695 	struct pxa168_eth_private *pep = netdev_priv(dev);
696 	struct tx_desc *desc;
697 	u32 cmd_sts;
698 	struct sk_buff *skb;
699 	int tx_index;
700 	dma_addr_t addr;
701 	int count;
702 	int released = 0;
703 
704 	netif_tx_lock(dev);
705 
706 	pep->work_todo &= ~WORK_TX_DONE;
707 	while (pep->tx_desc_count > 0) {
708 		tx_index = pep->tx_used_desc_q;
709 		desc = &pep->p_tx_desc_area[tx_index];
710 		cmd_sts = desc->cmd_sts;
711 		if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
712 			if (released > 0) {
713 				goto txq_reclaim_end;
714 			} else {
715 				released = -1;
716 				goto txq_reclaim_end;
717 			}
718 		}
719 		pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
720 		pep->tx_desc_count--;
721 		addr = desc->buf_ptr;
722 		count = desc->byte_cnt;
723 		skb = pep->tx_skb[tx_index];
724 		if (skb)
725 			pep->tx_skb[tx_index] = NULL;
726 
727 		if (cmd_sts & TX_ERROR) {
728 			if (net_ratelimit())
729 				printk(KERN_ERR "%s: Error in TX\n", dev->name);
730 			dev->stats.tx_errors++;
731 		}
732 		dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
733 		if (skb)
734 			dev_kfree_skb_irq(skb);
735 		released++;
736 	}
737 txq_reclaim_end:
738 	netif_tx_unlock(dev);
739 	return released;
740 }
741 
742 static void pxa168_eth_tx_timeout(struct net_device *dev)
743 {
744 	struct pxa168_eth_private *pep = netdev_priv(dev);
745 
746 	printk(KERN_INFO "%s: TX timeout  desc_count %d\n",
747 	       dev->name, pep->tx_desc_count);
748 
749 	schedule_work(&pep->tx_timeout_task);
750 }
751 
752 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
753 {
754 	struct pxa168_eth_private *pep = container_of(work,
755 						 struct pxa168_eth_private,
756 						 tx_timeout_task);
757 	struct net_device *dev = pep->dev;
758 	pxa168_eth_stop(dev);
759 	pxa168_eth_open(dev);
760 }
761 
762 static int rxq_process(struct net_device *dev, int budget)
763 {
764 	struct pxa168_eth_private *pep = netdev_priv(dev);
765 	struct net_device_stats *stats = &dev->stats;
766 	unsigned int received_packets = 0;
767 	struct sk_buff *skb;
768 
769 	while (budget-- > 0) {
770 		int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
771 		struct rx_desc *rx_desc;
772 		unsigned int cmd_sts;
773 
774 		/* Do not process Rx ring in case of Rx ring resource error */
775 		if (pep->rx_resource_err)
776 			break;
777 		rx_curr_desc = pep->rx_curr_desc_q;
778 		rx_used_desc = pep->rx_used_desc_q;
779 		rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
780 		cmd_sts = rx_desc->cmd_sts;
781 		rmb();
782 		if (cmd_sts & (BUF_OWNED_BY_DMA))
783 			break;
784 		skb = pep->rx_skb[rx_curr_desc];
785 		pep->rx_skb[rx_curr_desc] = NULL;
786 
787 		rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
788 		pep->rx_curr_desc_q = rx_next_curr_desc;
789 
790 		/* Rx descriptors exhausted. */
791 		/* Set the Rx ring resource error flag */
792 		if (rx_next_curr_desc == rx_used_desc)
793 			pep->rx_resource_err = 1;
794 		pep->rx_desc_count--;
795 		dma_unmap_single(NULL, rx_desc->buf_ptr,
796 				 rx_desc->buf_size,
797 				 DMA_FROM_DEVICE);
798 		received_packets++;
799 		/*
800 		 * Update statistics.
801 		 * Note byte count includes 4 byte CRC count
802 		 */
803 		stats->rx_packets++;
804 		stats->rx_bytes += rx_desc->byte_cnt;
805 		/*
806 		 * In case received a packet without first / last bits on OR
807 		 * the error summary bit is on, the packets needs to be droped.
808 		 */
809 		if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
810 		     (RX_FIRST_DESC | RX_LAST_DESC))
811 		    || (cmd_sts & RX_ERROR)) {
812 
813 			stats->rx_dropped++;
814 			if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
815 			    (RX_FIRST_DESC | RX_LAST_DESC)) {
816 				if (net_ratelimit())
817 					printk(KERN_ERR
818 					       "%s: Rx pkt on multiple desc\n",
819 					       dev->name);
820 			}
821 			if (cmd_sts & RX_ERROR)
822 				stats->rx_errors++;
823 			dev_kfree_skb_irq(skb);
824 		} else {
825 			/*
826 			 * The -4 is for the CRC in the trailer of the
827 			 * received packet
828 			 */
829 			skb_put(skb, rx_desc->byte_cnt - 4);
830 			skb->protocol = eth_type_trans(skb, dev);
831 			netif_receive_skb(skb);
832 		}
833 	}
834 	/* Fill RX ring with skb's */
835 	rxq_refill(dev);
836 	return received_packets;
837 }
838 
839 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
840 				     struct net_device *dev)
841 {
842 	u32 icr;
843 	int ret = 0;
844 
845 	icr = rdl(pep, INT_CAUSE);
846 	if (icr == 0)
847 		return IRQ_NONE;
848 
849 	wrl(pep, INT_CAUSE, ~icr);
850 	if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
851 		pep->work_todo |= WORK_TX_DONE;
852 		ret = 1;
853 	}
854 	if (icr & ICR_RXBUF)
855 		ret = 1;
856 	if (icr & ICR_MII_CH) {
857 		pep->work_todo |= WORK_LINK;
858 		ret = 1;
859 	}
860 	return ret;
861 }
862 
863 static void handle_link_event(struct pxa168_eth_private *pep)
864 {
865 	struct net_device *dev = pep->dev;
866 	u32 port_status;
867 	int speed;
868 	int duplex;
869 	int fc;
870 
871 	port_status = rdl(pep, PORT_STATUS);
872 	if (!(port_status & LINK_UP)) {
873 		if (netif_carrier_ok(dev)) {
874 			printk(KERN_INFO "%s: link down\n", dev->name);
875 			netif_carrier_off(dev);
876 			txq_reclaim(dev, 1);
877 		}
878 		return;
879 	}
880 	if (port_status & PORT_SPEED_100)
881 		speed = 100;
882 	else
883 		speed = 10;
884 
885 	duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
886 	fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0;
887 	printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
888 	       "flow control %sabled\n", dev->name,
889 	       speed, duplex ? "full" : "half", fc ? "en" : "dis");
890 	if (!netif_carrier_ok(dev))
891 		netif_carrier_on(dev);
892 }
893 
894 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
895 {
896 	struct net_device *dev = (struct net_device *)dev_id;
897 	struct pxa168_eth_private *pep = netdev_priv(dev);
898 
899 	if (unlikely(!pxa168_eth_collect_events(pep, dev)))
900 		return IRQ_NONE;
901 	/* Disable interrupts */
902 	wrl(pep, INT_MASK, 0);
903 	napi_schedule(&pep->napi);
904 	return IRQ_HANDLED;
905 }
906 
907 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
908 {
909 	int skb_size;
910 
911 	/*
912 	 * Reserve 2+14 bytes for an ethernet header (the hardware
913 	 * automatically prepends 2 bytes of dummy data to each
914 	 * received packet), 16 bytes for up to four VLAN tags, and
915 	 * 4 bytes for the trailing FCS -- 36 bytes total.
916 	 */
917 	skb_size = pep->dev->mtu + 36;
918 
919 	/*
920 	 * Make sure that the skb size is a multiple of 8 bytes, as
921 	 * the lower three bits of the receive descriptor's buffer
922 	 * size field are ignored by the hardware.
923 	 */
924 	pep->skb_size = (skb_size + 7) & ~7;
925 
926 	/*
927 	 * If NET_SKB_PAD is smaller than a cache line,
928 	 * netdev_alloc_skb() will cause skb->data to be misaligned
929 	 * to a cache line boundary.  If this is the case, include
930 	 * some extra space to allow re-aligning the data area.
931 	 */
932 	pep->skb_size += SKB_DMA_REALIGN;
933 
934 }
935 
936 static int set_port_config_ext(struct pxa168_eth_private *pep)
937 {
938 	int skb_size;
939 
940 	pxa168_eth_recalc_skb_size(pep);
941 	if  (pep->skb_size <= 1518)
942 		skb_size = PCXR_MFL_1518;
943 	else if (pep->skb_size <= 1536)
944 		skb_size = PCXR_MFL_1536;
945 	else if (pep->skb_size <= 2048)
946 		skb_size = PCXR_MFL_2048;
947 	else
948 		skb_size = PCXR_MFL_64K;
949 
950 	/* Extended Port Configuration */
951 	wrl(pep,
952 	    PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
953 	    PCXR_DSCP_EN |		 /* Enable DSCP in IP */
954 	    skb_size | PCXR_FLP |	 /* do not force link pass */
955 	    PCXR_TX_HIGH_PRI);		 /* Transmit - high priority queue */
956 
957 	return 0;
958 }
959 
960 static int pxa168_init_hw(struct pxa168_eth_private *pep)
961 {
962 	int err = 0;
963 
964 	/* Disable interrupts */
965 	wrl(pep, INT_MASK, 0);
966 	wrl(pep, INT_CAUSE, 0);
967 	/* Write to ICR to clear interrupts. */
968 	wrl(pep, INT_W_CLEAR, 0);
969 	/* Abort any transmit and receive operations and put DMA
970 	 * in idle state.
971 	 */
972 	abort_dma(pep);
973 	/* Initialize address hash table */
974 	err = init_hash_table(pep);
975 	if (err)
976 		return err;
977 	/* SDMA configuration */
978 	wrl(pep, SDMA_CONFIG, SDCR_BSZ8 |	/* Burst size = 32 bytes */
979 	    SDCR_RIFB |				/* Rx interrupt on frame */
980 	    SDCR_BLMT |				/* Little endian transmit */
981 	    SDCR_BLMR |				/* Little endian receive */
982 	    SDCR_RC_MAX_RETRANS);		/* Max retransmit count */
983 	/* Port Configuration */
984 	wrl(pep, PORT_CONFIG, PCR_HS);		/* Hash size is 1/2kb */
985 	set_port_config_ext(pep);
986 
987 	return err;
988 }
989 
990 static int rxq_init(struct net_device *dev)
991 {
992 	struct pxa168_eth_private *pep = netdev_priv(dev);
993 	struct rx_desc *p_rx_desc;
994 	int size = 0, i = 0;
995 	int rx_desc_num = pep->rx_ring_size;
996 
997 	/* Allocate RX skb rings */
998 	pep->rx_skb = kzalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
999 			     GFP_KERNEL);
1000 	if (!pep->rx_skb)
1001 		return -ENOMEM;
1002 
1003 	/* Allocate RX ring */
1004 	pep->rx_desc_count = 0;
1005 	size = pep->rx_ring_size * sizeof(struct rx_desc);
1006 	pep->rx_desc_area_size = size;
1007 	pep->p_rx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1008 						  &pep->rx_desc_dma,
1009 						  GFP_KERNEL);
1010 	if (!pep->p_rx_desc_area)
1011 		goto out;
1012 
1013 	/* initialize the next_desc_ptr links in the Rx descriptors ring */
1014 	p_rx_desc = pep->p_rx_desc_area;
1015 	for (i = 0; i < rx_desc_num; i++) {
1016 		p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1017 		    ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1018 	}
1019 	/* Save Rx desc pointer to driver struct. */
1020 	pep->rx_curr_desc_q = 0;
1021 	pep->rx_used_desc_q = 0;
1022 	pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1023 	return 0;
1024 out:
1025 	kfree(pep->rx_skb);
1026 	return -ENOMEM;
1027 }
1028 
1029 static void rxq_deinit(struct net_device *dev)
1030 {
1031 	struct pxa168_eth_private *pep = netdev_priv(dev);
1032 	int curr;
1033 
1034 	/* Free preallocated skb's on RX rings */
1035 	for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1036 		if (pep->rx_skb[curr]) {
1037 			dev_kfree_skb(pep->rx_skb[curr]);
1038 			pep->rx_desc_count--;
1039 		}
1040 	}
1041 	if (pep->rx_desc_count)
1042 		printk(KERN_ERR
1043 		       "Error in freeing Rx Ring. %d skb's still\n",
1044 		       pep->rx_desc_count);
1045 	/* Free RX ring */
1046 	if (pep->p_rx_desc_area)
1047 		dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1048 				  pep->p_rx_desc_area, pep->rx_desc_dma);
1049 	kfree(pep->rx_skb);
1050 }
1051 
1052 static int txq_init(struct net_device *dev)
1053 {
1054 	struct pxa168_eth_private *pep = netdev_priv(dev);
1055 	struct tx_desc *p_tx_desc;
1056 	int size = 0, i = 0;
1057 	int tx_desc_num = pep->tx_ring_size;
1058 
1059 	pep->tx_skb = kzalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1060 			     GFP_KERNEL);
1061 	if (!pep->tx_skb)
1062 		return -ENOMEM;
1063 
1064 	/* Allocate TX ring */
1065 	pep->tx_desc_count = 0;
1066 	size = pep->tx_ring_size * sizeof(struct tx_desc);
1067 	pep->tx_desc_area_size = size;
1068 	pep->p_tx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1069 						  &pep->tx_desc_dma,
1070 						  GFP_KERNEL);
1071 	if (!pep->p_tx_desc_area)
1072 		goto out;
1073 	/* Initialize the next_desc_ptr links in the Tx descriptors ring */
1074 	p_tx_desc = pep->p_tx_desc_area;
1075 	for (i = 0; i < tx_desc_num; i++) {
1076 		p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1077 		    ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1078 	}
1079 	pep->tx_curr_desc_q = 0;
1080 	pep->tx_used_desc_q = 0;
1081 	pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1082 	return 0;
1083 out:
1084 	kfree(pep->tx_skb);
1085 	return -ENOMEM;
1086 }
1087 
1088 static void txq_deinit(struct net_device *dev)
1089 {
1090 	struct pxa168_eth_private *pep = netdev_priv(dev);
1091 
1092 	/* Free outstanding skb's on TX ring */
1093 	txq_reclaim(dev, 1);
1094 	BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1095 	/* Free TX ring */
1096 	if (pep->p_tx_desc_area)
1097 		dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1098 				  pep->p_tx_desc_area, pep->tx_desc_dma);
1099 	kfree(pep->tx_skb);
1100 }
1101 
1102 static int pxa168_eth_open(struct net_device *dev)
1103 {
1104 	struct pxa168_eth_private *pep = netdev_priv(dev);
1105 	int err;
1106 
1107 	err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1108 	if (err) {
1109 		dev_err(&dev->dev, "can't assign irq\n");
1110 		return -EAGAIN;
1111 	}
1112 	pep->rx_resource_err = 0;
1113 	err = rxq_init(dev);
1114 	if (err != 0)
1115 		goto out_free_irq;
1116 	err = txq_init(dev);
1117 	if (err != 0)
1118 		goto out_free_rx_skb;
1119 	pep->rx_used_desc_q = 0;
1120 	pep->rx_curr_desc_q = 0;
1121 
1122 	/* Fill RX ring with skb's */
1123 	rxq_refill(dev);
1124 	pep->rx_used_desc_q = 0;
1125 	pep->rx_curr_desc_q = 0;
1126 	netif_carrier_off(dev);
1127 	eth_port_start(dev);
1128 	napi_enable(&pep->napi);
1129 	return 0;
1130 out_free_rx_skb:
1131 	rxq_deinit(dev);
1132 out_free_irq:
1133 	free_irq(dev->irq, dev);
1134 	return err;
1135 }
1136 
1137 static int pxa168_eth_stop(struct net_device *dev)
1138 {
1139 	struct pxa168_eth_private *pep = netdev_priv(dev);
1140 	eth_port_reset(dev);
1141 
1142 	/* Disable interrupts */
1143 	wrl(pep, INT_MASK, 0);
1144 	wrl(pep, INT_CAUSE, 0);
1145 	/* Write to ICR to clear interrupts. */
1146 	wrl(pep, INT_W_CLEAR, 0);
1147 	napi_disable(&pep->napi);
1148 	del_timer_sync(&pep->timeout);
1149 	netif_carrier_off(dev);
1150 	free_irq(dev->irq, dev);
1151 	rxq_deinit(dev);
1152 	txq_deinit(dev);
1153 
1154 	return 0;
1155 }
1156 
1157 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1158 {
1159 	int retval;
1160 	struct pxa168_eth_private *pep = netdev_priv(dev);
1161 
1162 	if ((mtu > 9500) || (mtu < 68))
1163 		return -EINVAL;
1164 
1165 	dev->mtu = mtu;
1166 	retval = set_port_config_ext(pep);
1167 
1168 	if (!netif_running(dev))
1169 		return 0;
1170 
1171 	/*
1172 	 * Stop and then re-open the interface. This will allocate RX
1173 	 * skbs of the new MTU.
1174 	 * There is a possible danger that the open will not succeed,
1175 	 * due to memory being full.
1176 	 */
1177 	pxa168_eth_stop(dev);
1178 	if (pxa168_eth_open(dev)) {
1179 		dev_err(&dev->dev,
1180 			"fatal error on re-opening device after MTU change\n");
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1187 {
1188 	int tx_desc_curr;
1189 
1190 	tx_desc_curr = pep->tx_curr_desc_q;
1191 	pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1192 	BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1193 	pep->tx_desc_count++;
1194 
1195 	return tx_desc_curr;
1196 }
1197 
1198 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1199 {
1200 	struct pxa168_eth_private *pep =
1201 	    container_of(napi, struct pxa168_eth_private, napi);
1202 	struct net_device *dev = pep->dev;
1203 	int work_done = 0;
1204 
1205 	if (unlikely(pep->work_todo & WORK_LINK)) {
1206 		pep->work_todo &= ~(WORK_LINK);
1207 		handle_link_event(pep);
1208 	}
1209 	/*
1210 	 * We call txq_reclaim every time since in NAPI interupts are disabled
1211 	 * and due to this we miss the TX_DONE interrupt,which is not updated in
1212 	 * interrupt status register.
1213 	 */
1214 	txq_reclaim(dev, 0);
1215 	if (netif_queue_stopped(dev)
1216 	    && pep->tx_ring_size - pep->tx_desc_count > 1) {
1217 		netif_wake_queue(dev);
1218 	}
1219 	work_done = rxq_process(dev, budget);
1220 	if (work_done < budget) {
1221 		napi_complete(napi);
1222 		wrl(pep, INT_MASK, ALL_INTS);
1223 	}
1224 
1225 	return work_done;
1226 }
1227 
1228 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1229 {
1230 	struct pxa168_eth_private *pep = netdev_priv(dev);
1231 	struct net_device_stats *stats = &dev->stats;
1232 	struct tx_desc *desc;
1233 	int tx_index;
1234 	int length;
1235 
1236 	tx_index = eth_alloc_tx_desc_index(pep);
1237 	desc = &pep->p_tx_desc_area[tx_index];
1238 	length = skb->len;
1239 	pep->tx_skb[tx_index] = skb;
1240 	desc->byte_cnt = length;
1241 	desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1242 
1243 	skb_tx_timestamp(skb);
1244 
1245 	wmb();
1246 	desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1247 			TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1248 	wmb();
1249 	wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1250 
1251 	stats->tx_bytes += length;
1252 	stats->tx_packets++;
1253 	dev->trans_start = jiffies;
1254 	if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1255 		/* We handled the current skb, but now we are out of space.*/
1256 		netif_stop_queue(dev);
1257 	}
1258 
1259 	return NETDEV_TX_OK;
1260 }
1261 
1262 static int smi_wait_ready(struct pxa168_eth_private *pep)
1263 {
1264 	int i = 0;
1265 
1266 	/* wait for the SMI register to become available */
1267 	for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1268 		if (i == PHY_WAIT_ITERATIONS)
1269 			return -ETIMEDOUT;
1270 		msleep(10);
1271 	}
1272 
1273 	return 0;
1274 }
1275 
1276 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1277 {
1278 	struct pxa168_eth_private *pep = bus->priv;
1279 	int i = 0;
1280 	int val;
1281 
1282 	if (smi_wait_ready(pep)) {
1283 		printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1284 		return -ETIMEDOUT;
1285 	}
1286 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1287 	/* now wait for the data to be valid */
1288 	for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1289 		if (i == PHY_WAIT_ITERATIONS) {
1290 			printk(KERN_WARNING
1291 				"pxa168_eth: SMI bus read not valid\n");
1292 			return -ENODEV;
1293 		}
1294 		msleep(10);
1295 	}
1296 
1297 	return val & 0xffff;
1298 }
1299 
1300 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1301 			    u16 value)
1302 {
1303 	struct pxa168_eth_private *pep = bus->priv;
1304 
1305 	if (smi_wait_ready(pep)) {
1306 		printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1307 		return -ETIMEDOUT;
1308 	}
1309 
1310 	wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1311 	    SMI_OP_W | (value & 0xffff));
1312 
1313 	if (smi_wait_ready(pep)) {
1314 		printk(KERN_ERR "pxa168_eth: SMI bus busy timeout\n");
1315 		return -ETIMEDOUT;
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1322 			       int cmd)
1323 {
1324 	struct pxa168_eth_private *pep = netdev_priv(dev);
1325 	if (pep->phy != NULL)
1326 		return phy_mii_ioctl(pep->phy, ifr, cmd);
1327 
1328 	return -EOPNOTSUPP;
1329 }
1330 
1331 static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
1332 {
1333 	struct mii_bus *bus = pep->smi_bus;
1334 	struct phy_device *phydev;
1335 	int start;
1336 	int num;
1337 	int i;
1338 
1339 	if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
1340 		/* Scan entire range */
1341 		start = ethernet_phy_get(pep);
1342 		num = 32;
1343 	} else {
1344 		/* Use phy addr specific to platform */
1345 		start = phy_addr & 0x1f;
1346 		num = 1;
1347 	}
1348 	phydev = NULL;
1349 	for (i = 0; i < num; i++) {
1350 		int addr = (start + i) & 0x1f;
1351 		if (bus->phy_map[addr] == NULL)
1352 			mdiobus_scan(bus, addr);
1353 
1354 		if (phydev == NULL) {
1355 			phydev = bus->phy_map[addr];
1356 			if (phydev != NULL)
1357 				ethernet_phy_set_addr(pep, addr);
1358 		}
1359 	}
1360 
1361 	return phydev;
1362 }
1363 
1364 static void phy_init(struct pxa168_eth_private *pep, int speed, int duplex)
1365 {
1366 	struct phy_device *phy = pep->phy;
1367 
1368 	phy_attach(pep->dev, dev_name(&phy->dev), PHY_INTERFACE_MODE_MII);
1369 
1370 	if (speed == 0) {
1371 		phy->autoneg = AUTONEG_ENABLE;
1372 		phy->speed = 0;
1373 		phy->duplex = 0;
1374 		phy->supported &= PHY_BASIC_FEATURES;
1375 		phy->advertising = phy->supported | ADVERTISED_Autoneg;
1376 	} else {
1377 		phy->autoneg = AUTONEG_DISABLE;
1378 		phy->advertising = 0;
1379 		phy->speed = speed;
1380 		phy->duplex = duplex;
1381 	}
1382 	phy_start_aneg(phy);
1383 }
1384 
1385 static int ethernet_phy_setup(struct net_device *dev)
1386 {
1387 	struct pxa168_eth_private *pep = netdev_priv(dev);
1388 
1389 	if (pep->pd->init)
1390 		pep->pd->init();
1391 	pep->phy = phy_scan(pep, pep->pd->phy_addr & 0x1f);
1392 	if (pep->phy != NULL)
1393 		phy_init(pep, pep->pd->speed, pep->pd->duplex);
1394 	update_hash_table_mac_address(pep, NULL, dev->dev_addr);
1395 
1396 	return 0;
1397 }
1398 
1399 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1400 {
1401 	struct pxa168_eth_private *pep = netdev_priv(dev);
1402 	int err;
1403 
1404 	err = phy_read_status(pep->phy);
1405 	if (err == 0)
1406 		err = phy_ethtool_gset(pep->phy, cmd);
1407 
1408 	return err;
1409 }
1410 
1411 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1412 {
1413 	struct pxa168_eth_private *pep = netdev_priv(dev);
1414 
1415 	return phy_ethtool_sset(pep->phy, cmd);
1416 }
1417 
1418 static void pxa168_get_drvinfo(struct net_device *dev,
1419 			       struct ethtool_drvinfo *info)
1420 {
1421 	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1422 	strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1423 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1424 	strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1425 }
1426 
1427 static const struct ethtool_ops pxa168_ethtool_ops = {
1428 	.get_settings = pxa168_get_settings,
1429 	.set_settings = pxa168_set_settings,
1430 	.get_drvinfo = pxa168_get_drvinfo,
1431 	.get_link = ethtool_op_get_link,
1432 	.get_ts_info = ethtool_op_get_ts_info,
1433 };
1434 
1435 static const struct net_device_ops pxa168_eth_netdev_ops = {
1436 	.ndo_open = pxa168_eth_open,
1437 	.ndo_stop = pxa168_eth_stop,
1438 	.ndo_start_xmit = pxa168_eth_start_xmit,
1439 	.ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1440 	.ndo_set_mac_address = pxa168_eth_set_mac_address,
1441 	.ndo_validate_addr = eth_validate_addr,
1442 	.ndo_do_ioctl = pxa168_eth_do_ioctl,
1443 	.ndo_change_mtu = pxa168_eth_change_mtu,
1444 	.ndo_tx_timeout = pxa168_eth_tx_timeout,
1445 };
1446 
1447 static int pxa168_eth_probe(struct platform_device *pdev)
1448 {
1449 	struct pxa168_eth_private *pep = NULL;
1450 	struct net_device *dev = NULL;
1451 	struct resource *res;
1452 	struct clk *clk;
1453 	int err;
1454 
1455 	printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1456 
1457 	clk = clk_get(&pdev->dev, "MFUCLK");
1458 	if (IS_ERR(clk)) {
1459 		printk(KERN_ERR "%s: Fast Ethernet failed to get clock\n",
1460 			DRIVER_NAME);
1461 		return -ENODEV;
1462 	}
1463 	clk_enable(clk);
1464 
1465 	dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1466 	if (!dev) {
1467 		err = -ENOMEM;
1468 		goto err_clk;
1469 	}
1470 
1471 	platform_set_drvdata(pdev, dev);
1472 	pep = netdev_priv(dev);
1473 	pep->dev = dev;
1474 	pep->clk = clk;
1475 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1476 	if (res == NULL) {
1477 		err = -ENODEV;
1478 		goto err_netdev;
1479 	}
1480 	pep->base = ioremap(res->start, resource_size(res));
1481 	if (pep->base == NULL) {
1482 		err = -ENOMEM;
1483 		goto err_netdev;
1484 	}
1485 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1486 	BUG_ON(!res);
1487 	dev->irq = res->start;
1488 	dev->netdev_ops = &pxa168_eth_netdev_ops;
1489 	dev->watchdog_timeo = 2 * HZ;
1490 	dev->base_addr = 0;
1491 	SET_ETHTOOL_OPS(dev, &pxa168_ethtool_ops);
1492 
1493 	INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1494 
1495 	printk(KERN_INFO "%s:Using random mac address\n", DRIVER_NAME);
1496 	eth_hw_addr_random(dev);
1497 
1498 	pep->pd = dev_get_platdata(&pdev->dev);
1499 	pep->rx_ring_size = NUM_RX_DESCS;
1500 	if (pep->pd->rx_queue_size)
1501 		pep->rx_ring_size = pep->pd->rx_queue_size;
1502 
1503 	pep->tx_ring_size = NUM_TX_DESCS;
1504 	if (pep->pd->tx_queue_size)
1505 		pep->tx_ring_size = pep->pd->tx_queue_size;
1506 
1507 	pep->port_num = pep->pd->port_number;
1508 	/* Hardware supports only 3 ports */
1509 	BUG_ON(pep->port_num > 2);
1510 	netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1511 
1512 	memset(&pep->timeout, 0, sizeof(struct timer_list));
1513 	init_timer(&pep->timeout);
1514 	pep->timeout.function = rxq_refill_timer_wrapper;
1515 	pep->timeout.data = (unsigned long)pep;
1516 
1517 	pep->smi_bus = mdiobus_alloc();
1518 	if (pep->smi_bus == NULL) {
1519 		err = -ENOMEM;
1520 		goto err_base;
1521 	}
1522 	pep->smi_bus->priv = pep;
1523 	pep->smi_bus->name = "pxa168_eth smi";
1524 	pep->smi_bus->read = pxa168_smi_read;
1525 	pep->smi_bus->write = pxa168_smi_write;
1526 	snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1527 		pdev->name, pdev->id);
1528 	pep->smi_bus->parent = &pdev->dev;
1529 	pep->smi_bus->phy_mask = 0xffffffff;
1530 	err = mdiobus_register(pep->smi_bus);
1531 	if (err)
1532 		goto err_free_mdio;
1533 
1534 	pxa168_init_hw(pep);
1535 	err = ethernet_phy_setup(dev);
1536 	if (err)
1537 		goto err_mdiobus;
1538 	SET_NETDEV_DEV(dev, &pdev->dev);
1539 	err = register_netdev(dev);
1540 	if (err)
1541 		goto err_mdiobus;
1542 	return 0;
1543 
1544 err_mdiobus:
1545 	mdiobus_unregister(pep->smi_bus);
1546 err_free_mdio:
1547 	mdiobus_free(pep->smi_bus);
1548 err_base:
1549 	iounmap(pep->base);
1550 err_netdev:
1551 	free_netdev(dev);
1552 err_clk:
1553 	clk_disable(clk);
1554 	clk_put(clk);
1555 	return err;
1556 }
1557 
1558 static int pxa168_eth_remove(struct platform_device *pdev)
1559 {
1560 	struct net_device *dev = platform_get_drvdata(pdev);
1561 	struct pxa168_eth_private *pep = netdev_priv(dev);
1562 
1563 	if (pep->htpr) {
1564 		dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1565 				  pep->htpr, pep->htpr_dma);
1566 		pep->htpr = NULL;
1567 	}
1568 	if (pep->clk) {
1569 		clk_disable(pep->clk);
1570 		clk_put(pep->clk);
1571 		pep->clk = NULL;
1572 	}
1573 	if (pep->phy != NULL)
1574 		phy_detach(pep->phy);
1575 
1576 	iounmap(pep->base);
1577 	pep->base = NULL;
1578 	mdiobus_unregister(pep->smi_bus);
1579 	mdiobus_free(pep->smi_bus);
1580 	unregister_netdev(dev);
1581 	cancel_work_sync(&pep->tx_timeout_task);
1582 	free_netdev(dev);
1583 	return 0;
1584 }
1585 
1586 static void pxa168_eth_shutdown(struct platform_device *pdev)
1587 {
1588 	struct net_device *dev = platform_get_drvdata(pdev);
1589 	eth_port_reset(dev);
1590 }
1591 
1592 #ifdef CONFIG_PM
1593 static int pxa168_eth_resume(struct platform_device *pdev)
1594 {
1595 	return -ENOSYS;
1596 }
1597 
1598 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1599 {
1600 	return -ENOSYS;
1601 }
1602 
1603 #else
1604 #define pxa168_eth_resume NULL
1605 #define pxa168_eth_suspend NULL
1606 #endif
1607 
1608 static struct platform_driver pxa168_eth_driver = {
1609 	.probe = pxa168_eth_probe,
1610 	.remove = pxa168_eth_remove,
1611 	.shutdown = pxa168_eth_shutdown,
1612 	.resume = pxa168_eth_resume,
1613 	.suspend = pxa168_eth_suspend,
1614 	.driver = {
1615 		   .name = DRIVER_NAME,
1616 		   },
1617 };
1618 
1619 module_platform_driver(pxa168_eth_driver);
1620 
1621 MODULE_LICENSE("GPL");
1622 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1623 MODULE_ALIAS("platform:pxa168_eth");
1624