1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * PXA168 ethernet driver. 4 * Most of the code is derived from mv643xx ethernet driver. 5 * 6 * Copyright (C) 2010 Marvell International Ltd. 7 * Sachin Sanap <ssanap@marvell.com> 8 * Zhangfei Gao <zgao6@marvell.com> 9 * Philip Rakity <prakity@marvell.com> 10 * Mark Brown <markb@marvell.com> 11 */ 12 13 #include <linux/bitops.h> 14 #include <linux/clk.h> 15 #include <linux/delay.h> 16 #include <linux/dma-mapping.h> 17 #include <linux/etherdevice.h> 18 #include <linux/ethtool.h> 19 #include <linux/in.h> 20 #include <linux/interrupt.h> 21 #include <linux/io.h> 22 #include <linux/ip.h> 23 #include <linux/kernel.h> 24 #include <linux/module.h> 25 #include <linux/of.h> 26 #include <linux/of_net.h> 27 #include <linux/phy.h> 28 #include <linux/platform_device.h> 29 #include <linux/pxa168_eth.h> 30 #include <linux/tcp.h> 31 #include <linux/types.h> 32 #include <linux/udp.h> 33 #include <linux/workqueue.h> 34 #include <linux/pgtable.h> 35 36 #include <asm/cacheflush.h> 37 38 #define DRIVER_NAME "pxa168-eth" 39 #define DRIVER_VERSION "0.3" 40 41 /* 42 * Registers 43 */ 44 45 #define PHY_ADDRESS 0x0000 46 #define SMI 0x0010 47 #define PORT_CONFIG 0x0400 48 #define PORT_CONFIG_EXT 0x0408 49 #define PORT_COMMAND 0x0410 50 #define PORT_STATUS 0x0418 51 #define HTPR 0x0428 52 #define MAC_ADDR_LOW 0x0430 53 #define MAC_ADDR_HIGH 0x0438 54 #define SDMA_CONFIG 0x0440 55 #define SDMA_CMD 0x0448 56 #define INT_CAUSE 0x0450 57 #define INT_W_CLEAR 0x0454 58 #define INT_MASK 0x0458 59 #define ETH_F_RX_DESC_0 0x0480 60 #define ETH_C_RX_DESC_0 0x04A0 61 #define ETH_C_TX_DESC_1 0x04E4 62 63 /* smi register */ 64 #define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */ 65 #define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */ 66 #define SMI_OP_W (0 << 26) /* Write operation */ 67 #define SMI_OP_R (1 << 26) /* Read operation */ 68 69 #define PHY_WAIT_ITERATIONS 10 70 71 #define PXA168_ETH_PHY_ADDR_DEFAULT 0 72 /* RX & TX descriptor command */ 73 #define BUF_OWNED_BY_DMA (1 << 31) 74 75 /* RX descriptor status */ 76 #define RX_EN_INT (1 << 23) 77 #define RX_FIRST_DESC (1 << 17) 78 #define RX_LAST_DESC (1 << 16) 79 #define RX_ERROR (1 << 15) 80 81 /* TX descriptor command */ 82 #define TX_EN_INT (1 << 23) 83 #define TX_GEN_CRC (1 << 22) 84 #define TX_ZERO_PADDING (1 << 18) 85 #define TX_FIRST_DESC (1 << 17) 86 #define TX_LAST_DESC (1 << 16) 87 #define TX_ERROR (1 << 15) 88 89 /* SDMA_CMD */ 90 #define SDMA_CMD_AT (1 << 31) 91 #define SDMA_CMD_TXDL (1 << 24) 92 #define SDMA_CMD_TXDH (1 << 23) 93 #define SDMA_CMD_AR (1 << 15) 94 #define SDMA_CMD_ERD (1 << 7) 95 96 /* Bit definitions of the Port Config Reg */ 97 #define PCR_DUPLEX_FULL (1 << 15) 98 #define PCR_HS (1 << 12) 99 #define PCR_EN (1 << 7) 100 #define PCR_PM (1 << 0) 101 102 /* Bit definitions of the Port Config Extend Reg */ 103 #define PCXR_2BSM (1 << 28) 104 #define PCXR_DSCP_EN (1 << 21) 105 #define PCXR_RMII_EN (1 << 20) 106 #define PCXR_AN_SPEED_DIS (1 << 19) 107 #define PCXR_SPEED_100 (1 << 18) 108 #define PCXR_MFL_1518 (0 << 14) 109 #define PCXR_MFL_1536 (1 << 14) 110 #define PCXR_MFL_2048 (2 << 14) 111 #define PCXR_MFL_64K (3 << 14) 112 #define PCXR_FLOWCTL_DIS (1 << 12) 113 #define PCXR_FLP (1 << 11) 114 #define PCXR_AN_FLOWCTL_DIS (1 << 10) 115 #define PCXR_AN_DUPLEX_DIS (1 << 9) 116 #define PCXR_PRIO_TX_OFF 3 117 #define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF) 118 119 /* Bit definitions of the SDMA Config Reg */ 120 #define SDCR_BSZ_OFF 12 121 #define SDCR_BSZ8 (3 << SDCR_BSZ_OFF) 122 #define SDCR_BSZ4 (2 << SDCR_BSZ_OFF) 123 #define SDCR_BSZ2 (1 << SDCR_BSZ_OFF) 124 #define SDCR_BSZ1 (0 << SDCR_BSZ_OFF) 125 #define SDCR_BLMR (1 << 6) 126 #define SDCR_BLMT (1 << 7) 127 #define SDCR_RIFB (1 << 9) 128 #define SDCR_RC_OFF 2 129 #define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF) 130 131 /* 132 * Bit definitions of the Interrupt Cause Reg 133 * and Interrupt MASK Reg is the same 134 */ 135 #define ICR_RXBUF (1 << 0) 136 #define ICR_TXBUF_H (1 << 2) 137 #define ICR_TXBUF_L (1 << 3) 138 #define ICR_TXEND_H (1 << 6) 139 #define ICR_TXEND_L (1 << 7) 140 #define ICR_RXERR (1 << 8) 141 #define ICR_TXERR_H (1 << 10) 142 #define ICR_TXERR_L (1 << 11) 143 #define ICR_TX_UDR (1 << 13) 144 #define ICR_MII_CH (1 << 28) 145 146 #define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\ 147 ICR_TXERR_H | ICR_TXERR_L |\ 148 ICR_TXEND_H | ICR_TXEND_L |\ 149 ICR_RXBUF | ICR_RXERR | ICR_MII_CH) 150 151 #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */ 152 153 #define NUM_RX_DESCS 64 154 #define NUM_TX_DESCS 64 155 156 #define HASH_ADD 0 157 #define HASH_DELETE 1 158 #define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */ 159 #define HOP_NUMBER 12 160 161 /* Bit definitions for Port status */ 162 #define PORT_SPEED_100 (1 << 0) 163 #define FULL_DUPLEX (1 << 1) 164 #define FLOW_CONTROL_DISABLED (1 << 2) 165 #define LINK_UP (1 << 3) 166 167 /* Bit definitions for work to be done */ 168 #define WORK_TX_DONE (1 << 1) 169 170 /* 171 * Misc definitions. 172 */ 173 #define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES) 174 175 struct rx_desc { 176 u32 cmd_sts; /* Descriptor command status */ 177 u16 byte_cnt; /* Descriptor buffer byte count */ 178 u16 buf_size; /* Buffer size */ 179 u32 buf_ptr; /* Descriptor buffer pointer */ 180 u32 next_desc_ptr; /* Next descriptor pointer */ 181 }; 182 183 struct tx_desc { 184 u32 cmd_sts; /* Command/status field */ 185 u16 reserved; 186 u16 byte_cnt; /* buffer byte count */ 187 u32 buf_ptr; /* pointer to buffer for this descriptor */ 188 u32 next_desc_ptr; /* Pointer to next descriptor */ 189 }; 190 191 struct pxa168_eth_private { 192 struct platform_device *pdev; 193 int port_num; /* User Ethernet port number */ 194 int phy_addr; 195 int phy_speed; 196 int phy_duplex; 197 phy_interface_t phy_intf; 198 199 int rx_resource_err; /* Rx ring resource error flag */ 200 201 /* Next available and first returning Rx resource */ 202 int rx_curr_desc_q, rx_used_desc_q; 203 204 /* Next available and first returning Tx resource */ 205 int tx_curr_desc_q, tx_used_desc_q; 206 207 struct rx_desc *p_rx_desc_area; 208 dma_addr_t rx_desc_dma; 209 int rx_desc_area_size; 210 struct sk_buff **rx_skb; 211 212 struct tx_desc *p_tx_desc_area; 213 dma_addr_t tx_desc_dma; 214 int tx_desc_area_size; 215 struct sk_buff **tx_skb; 216 217 struct work_struct tx_timeout_task; 218 219 struct net_device *dev; 220 struct napi_struct napi; 221 u8 work_todo; 222 int skb_size; 223 224 /* Size of Tx Ring per queue */ 225 int tx_ring_size; 226 /* Number of tx descriptors in use */ 227 int tx_desc_count; 228 /* Size of Rx Ring per queue */ 229 int rx_ring_size; 230 /* Number of rx descriptors in use */ 231 int rx_desc_count; 232 233 /* 234 * Used in case RX Ring is empty, which can occur when 235 * system does not have resources (skb's) 236 */ 237 struct timer_list timeout; 238 struct mii_bus *smi_bus; 239 240 /* clock */ 241 struct clk *clk; 242 struct pxa168_eth_platform_data *pd; 243 /* 244 * Ethernet controller base address. 245 */ 246 void __iomem *base; 247 248 /* Pointer to the hardware address filter table */ 249 void *htpr; 250 dma_addr_t htpr_dma; 251 }; 252 253 struct addr_table_entry { 254 __le32 lo; 255 __le32 hi; 256 }; 257 258 /* Bit fields of a Hash Table Entry */ 259 enum hash_table_entry { 260 HASH_ENTRY_VALID = 1, 261 SKIP = 2, 262 HASH_ENTRY_RECEIVE_DISCARD = 4, 263 HASH_ENTRY_RECEIVE_DISCARD_BIT = 2 264 }; 265 266 static int pxa168_init_hw(struct pxa168_eth_private *pep); 267 static int pxa168_init_phy(struct net_device *dev); 268 static void eth_port_reset(struct net_device *dev); 269 static void eth_port_start(struct net_device *dev); 270 static int pxa168_eth_open(struct net_device *dev); 271 static int pxa168_eth_stop(struct net_device *dev); 272 273 static inline u32 rdl(struct pxa168_eth_private *pep, int offset) 274 { 275 return readl_relaxed(pep->base + offset); 276 } 277 278 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data) 279 { 280 writel_relaxed(data, pep->base + offset); 281 } 282 283 static void abort_dma(struct pxa168_eth_private *pep) 284 { 285 int delay; 286 int max_retries = 40; 287 288 do { 289 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT); 290 udelay(100); 291 292 delay = 10; 293 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT)) 294 && delay-- > 0) { 295 udelay(10); 296 } 297 } while (max_retries-- > 0 && delay <= 0); 298 299 if (max_retries <= 0) 300 netdev_err(pep->dev, "%s : DMA Stuck\n", __func__); 301 } 302 303 static void rxq_refill(struct net_device *dev) 304 { 305 struct pxa168_eth_private *pep = netdev_priv(dev); 306 struct sk_buff *skb; 307 struct rx_desc *p_used_rx_desc; 308 int used_rx_desc; 309 310 while (pep->rx_desc_count < pep->rx_ring_size) { 311 int size; 312 313 skb = netdev_alloc_skb(dev, pep->skb_size); 314 if (!skb) 315 break; 316 if (SKB_DMA_REALIGN) 317 skb_reserve(skb, SKB_DMA_REALIGN); 318 pep->rx_desc_count++; 319 /* Get 'used' Rx descriptor */ 320 used_rx_desc = pep->rx_used_desc_q; 321 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc]; 322 size = skb_end_pointer(skb) - skb->data; 323 p_used_rx_desc->buf_ptr = dma_map_single(&pep->pdev->dev, 324 skb->data, 325 size, 326 DMA_FROM_DEVICE); 327 p_used_rx_desc->buf_size = size; 328 pep->rx_skb[used_rx_desc] = skb; 329 330 /* Return the descriptor to DMA ownership */ 331 dma_wmb(); 332 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; 333 dma_wmb(); 334 335 /* Move the used descriptor pointer to the next descriptor */ 336 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size; 337 338 /* Any Rx return cancels the Rx resource error status */ 339 pep->rx_resource_err = 0; 340 341 skb_reserve(skb, ETH_HW_IP_ALIGN); 342 } 343 344 /* 345 * If RX ring is empty of SKB, set a timer to try allocating 346 * again at a later time. 347 */ 348 if (pep->rx_desc_count == 0) { 349 pep->timeout.expires = jiffies + (HZ / 10); 350 add_timer(&pep->timeout); 351 } 352 } 353 354 static inline void rxq_refill_timer_wrapper(struct timer_list *t) 355 { 356 struct pxa168_eth_private *pep = from_timer(pep, t, timeout); 357 napi_schedule(&pep->napi); 358 } 359 360 static inline u8 flip_8_bits(u8 x) 361 { 362 return (((x) & 0x01) << 3) | (((x) & 0x02) << 1) 363 | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3) 364 | (((x) & 0x10) << 3) | (((x) & 0x20) << 1) 365 | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3); 366 } 367 368 static void nibble_swap_every_byte(unsigned char *mac_addr) 369 { 370 int i; 371 for (i = 0; i < ETH_ALEN; i++) { 372 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) | 373 ((mac_addr[i] & 0xf0) >> 4); 374 } 375 } 376 377 static void inverse_every_nibble(unsigned char *mac_addr) 378 { 379 int i; 380 for (i = 0; i < ETH_ALEN; i++) 381 mac_addr[i] = flip_8_bits(mac_addr[i]); 382 } 383 384 /* 385 * ---------------------------------------------------------------------------- 386 * This function will calculate the hash function of the address. 387 * Inputs 388 * mac_addr_orig - MAC address. 389 * Outputs 390 * return the calculated entry. 391 */ 392 static u32 hash_function(unsigned char *mac_addr_orig) 393 { 394 u32 hash_result; 395 u32 addr0; 396 u32 addr1; 397 u32 addr2; 398 u32 addr3; 399 unsigned char mac_addr[ETH_ALEN]; 400 401 /* Make a copy of MAC address since we are going to performe bit 402 * operations on it 403 */ 404 memcpy(mac_addr, mac_addr_orig, ETH_ALEN); 405 406 nibble_swap_every_byte(mac_addr); 407 inverse_every_nibble(mac_addr); 408 409 addr0 = (mac_addr[5] >> 2) & 0x3f; 410 addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2); 411 addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1; 412 addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8); 413 414 hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3); 415 hash_result = hash_result & 0x07ff; 416 return hash_result; 417 } 418 419 /* 420 * ---------------------------------------------------------------------------- 421 * This function will add/del an entry to the address table. 422 * Inputs 423 * pep - ETHERNET . 424 * mac_addr - MAC address. 425 * skip - if 1, skip this address.Used in case of deleting an entry which is a 426 * part of chain in the hash table.We can't just delete the entry since 427 * that will break the chain.We need to defragment the tables time to 428 * time. 429 * rd - 0 Discard packet upon match. 430 * - 1 Receive packet upon match. 431 * Outputs 432 * address table entry is added/deleted. 433 * 0 if success. 434 * -ENOSPC if table full 435 */ 436 static int add_del_hash_entry(struct pxa168_eth_private *pep, 437 unsigned char *mac_addr, 438 u32 rd, u32 skip, int del) 439 { 440 struct addr_table_entry *entry, *start; 441 u32 new_high; 442 u32 new_low; 443 u32 i; 444 445 new_low = (((mac_addr[1] >> 4) & 0xf) << 15) 446 | (((mac_addr[1] >> 0) & 0xf) << 11) 447 | (((mac_addr[0] >> 4) & 0xf) << 7) 448 | (((mac_addr[0] >> 0) & 0xf) << 3) 449 | (((mac_addr[3] >> 4) & 0x1) << 31) 450 | (((mac_addr[3] >> 0) & 0xf) << 27) 451 | (((mac_addr[2] >> 4) & 0xf) << 23) 452 | (((mac_addr[2] >> 0) & 0xf) << 19) 453 | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT) 454 | HASH_ENTRY_VALID; 455 456 new_high = (((mac_addr[5] >> 4) & 0xf) << 15) 457 | (((mac_addr[5] >> 0) & 0xf) << 11) 458 | (((mac_addr[4] >> 4) & 0xf) << 7) 459 | (((mac_addr[4] >> 0) & 0xf) << 3) 460 | (((mac_addr[3] >> 5) & 0x7) << 0); 461 462 /* 463 * Pick the appropriate table, start scanning for free/reusable 464 * entries at the index obtained by hashing the specified MAC address 465 */ 466 start = pep->htpr; 467 entry = start + hash_function(mac_addr); 468 for (i = 0; i < HOP_NUMBER; i++) { 469 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) { 470 break; 471 } else { 472 /* if same address put in same position */ 473 if (((le32_to_cpu(entry->lo) & 0xfffffff8) == 474 (new_low & 0xfffffff8)) && 475 (le32_to_cpu(entry->hi) == new_high)) { 476 break; 477 } 478 } 479 if (entry == start + 0x7ff) 480 entry = start; 481 else 482 entry++; 483 } 484 485 if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) && 486 (le32_to_cpu(entry->hi) != new_high) && del) 487 return 0; 488 489 if (i == HOP_NUMBER) { 490 if (!del) { 491 netdev_info(pep->dev, 492 "%s: table section is full, need to " 493 "move to 16kB implementation?\n", 494 __FILE__); 495 return -ENOSPC; 496 } else 497 return 0; 498 } 499 500 /* 501 * Update the selected entry 502 */ 503 if (del) { 504 entry->hi = 0; 505 entry->lo = 0; 506 } else { 507 entry->hi = cpu_to_le32(new_high); 508 entry->lo = cpu_to_le32(new_low); 509 } 510 511 return 0; 512 } 513 514 /* 515 * ---------------------------------------------------------------------------- 516 * Create an addressTable entry from MAC address info 517 * found in the specifed net_device struct 518 * 519 * Input : pointer to ethernet interface network device structure 520 * Output : N/A 521 */ 522 static void update_hash_table_mac_address(struct pxa168_eth_private *pep, 523 unsigned char *oaddr, 524 unsigned char *addr) 525 { 526 /* Delete old entry */ 527 if (oaddr) 528 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE); 529 /* Add new entry */ 530 add_del_hash_entry(pep, addr, 1, 0, HASH_ADD); 531 } 532 533 static int init_hash_table(struct pxa168_eth_private *pep) 534 { 535 /* 536 * Hardware expects CPU to build a hash table based on a predefined 537 * hash function and populate it based on hardware address. The 538 * location of the hash table is identified by 32-bit pointer stored 539 * in HTPR internal register. Two possible sizes exists for the hash 540 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB 541 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support 542 * 1/2kB. 543 */ 544 /* TODO: Add support for 8kB hash table and alternative hash 545 * function.Driver can dynamically switch to them if the 1/2kB hash 546 * table is full. 547 */ 548 if (!pep->htpr) { 549 pep->htpr = dma_alloc_coherent(pep->dev->dev.parent, 550 HASH_ADDR_TABLE_SIZE, 551 &pep->htpr_dma, GFP_KERNEL); 552 if (!pep->htpr) 553 return -ENOMEM; 554 } else { 555 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE); 556 } 557 wrl(pep, HTPR, pep->htpr_dma); 558 return 0; 559 } 560 561 static void pxa168_eth_set_rx_mode(struct net_device *dev) 562 { 563 struct pxa168_eth_private *pep = netdev_priv(dev); 564 struct netdev_hw_addr *ha; 565 u32 val; 566 567 val = rdl(pep, PORT_CONFIG); 568 if (dev->flags & IFF_PROMISC) 569 val |= PCR_PM; 570 else 571 val &= ~PCR_PM; 572 wrl(pep, PORT_CONFIG, val); 573 574 /* 575 * Remove the old list of MAC address and add dev->addr 576 * and multicast address. 577 */ 578 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE); 579 update_hash_table_mac_address(pep, NULL, dev->dev_addr); 580 581 netdev_for_each_mc_addr(ha, dev) 582 update_hash_table_mac_address(pep, NULL, ha->addr); 583 } 584 585 static void pxa168_eth_get_mac_address(struct net_device *dev, 586 unsigned char *addr) 587 { 588 struct pxa168_eth_private *pep = netdev_priv(dev); 589 unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH); 590 unsigned int mac_l = rdl(pep, MAC_ADDR_LOW); 591 592 addr[0] = (mac_h >> 24) & 0xff; 593 addr[1] = (mac_h >> 16) & 0xff; 594 addr[2] = (mac_h >> 8) & 0xff; 595 addr[3] = mac_h & 0xff; 596 addr[4] = (mac_l >> 8) & 0xff; 597 addr[5] = mac_l & 0xff; 598 } 599 600 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr) 601 { 602 struct sockaddr *sa = addr; 603 struct pxa168_eth_private *pep = netdev_priv(dev); 604 unsigned char oldMac[ETH_ALEN]; 605 u32 mac_h, mac_l; 606 607 if (!is_valid_ether_addr(sa->sa_data)) 608 return -EADDRNOTAVAIL; 609 memcpy(oldMac, dev->dev_addr, ETH_ALEN); 610 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN); 611 612 mac_h = dev->dev_addr[0] << 24; 613 mac_h |= dev->dev_addr[1] << 16; 614 mac_h |= dev->dev_addr[2] << 8; 615 mac_h |= dev->dev_addr[3]; 616 mac_l = dev->dev_addr[4] << 8; 617 mac_l |= dev->dev_addr[5]; 618 wrl(pep, MAC_ADDR_HIGH, mac_h); 619 wrl(pep, MAC_ADDR_LOW, mac_l); 620 621 netif_addr_lock_bh(dev); 622 update_hash_table_mac_address(pep, oldMac, dev->dev_addr); 623 netif_addr_unlock_bh(dev); 624 return 0; 625 } 626 627 static void eth_port_start(struct net_device *dev) 628 { 629 unsigned int val = 0; 630 struct pxa168_eth_private *pep = netdev_priv(dev); 631 int tx_curr_desc, rx_curr_desc; 632 633 phy_start(dev->phydev); 634 635 /* Assignment of Tx CTRP of given queue */ 636 tx_curr_desc = pep->tx_curr_desc_q; 637 wrl(pep, ETH_C_TX_DESC_1, 638 (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc))); 639 640 /* Assignment of Rx CRDP of given queue */ 641 rx_curr_desc = pep->rx_curr_desc_q; 642 wrl(pep, ETH_C_RX_DESC_0, 643 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc))); 644 645 wrl(pep, ETH_F_RX_DESC_0, 646 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc))); 647 648 /* Clear all interrupts */ 649 wrl(pep, INT_CAUSE, 0); 650 651 /* Enable all interrupts for receive, transmit and error. */ 652 wrl(pep, INT_MASK, ALL_INTS); 653 654 val = rdl(pep, PORT_CONFIG); 655 val |= PCR_EN; 656 wrl(pep, PORT_CONFIG, val); 657 658 /* Start RX DMA engine */ 659 val = rdl(pep, SDMA_CMD); 660 val |= SDMA_CMD_ERD; 661 wrl(pep, SDMA_CMD, val); 662 } 663 664 static void eth_port_reset(struct net_device *dev) 665 { 666 struct pxa168_eth_private *pep = netdev_priv(dev); 667 unsigned int val = 0; 668 669 /* Stop all interrupts for receive, transmit and error. */ 670 wrl(pep, INT_MASK, 0); 671 672 /* Clear all interrupts */ 673 wrl(pep, INT_CAUSE, 0); 674 675 /* Stop RX DMA */ 676 val = rdl(pep, SDMA_CMD); 677 val &= ~SDMA_CMD_ERD; /* abort dma command */ 678 679 /* Abort any transmit and receive operations and put DMA 680 * in idle state. 681 */ 682 abort_dma(pep); 683 684 /* Disable port */ 685 val = rdl(pep, PORT_CONFIG); 686 val &= ~PCR_EN; 687 wrl(pep, PORT_CONFIG, val); 688 689 phy_stop(dev->phydev); 690 } 691 692 /* 693 * txq_reclaim - Free the tx desc data for completed descriptors 694 * If force is non-zero, frees uncompleted descriptors as well 695 */ 696 static int txq_reclaim(struct net_device *dev, int force) 697 { 698 struct pxa168_eth_private *pep = netdev_priv(dev); 699 struct tx_desc *desc; 700 u32 cmd_sts; 701 struct sk_buff *skb; 702 int tx_index; 703 dma_addr_t addr; 704 int count; 705 int released = 0; 706 707 netif_tx_lock(dev); 708 709 pep->work_todo &= ~WORK_TX_DONE; 710 while (pep->tx_desc_count > 0) { 711 tx_index = pep->tx_used_desc_q; 712 desc = &pep->p_tx_desc_area[tx_index]; 713 cmd_sts = desc->cmd_sts; 714 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) { 715 if (released > 0) { 716 goto txq_reclaim_end; 717 } else { 718 released = -1; 719 goto txq_reclaim_end; 720 } 721 } 722 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size; 723 pep->tx_desc_count--; 724 addr = desc->buf_ptr; 725 count = desc->byte_cnt; 726 skb = pep->tx_skb[tx_index]; 727 if (skb) 728 pep->tx_skb[tx_index] = NULL; 729 730 if (cmd_sts & TX_ERROR) { 731 if (net_ratelimit()) 732 netdev_err(dev, "Error in TX\n"); 733 dev->stats.tx_errors++; 734 } 735 dma_unmap_single(&pep->pdev->dev, addr, count, DMA_TO_DEVICE); 736 if (skb) 737 dev_kfree_skb_irq(skb); 738 released++; 739 } 740 txq_reclaim_end: 741 netif_tx_unlock(dev); 742 return released; 743 } 744 745 static void pxa168_eth_tx_timeout(struct net_device *dev, unsigned int txqueue) 746 { 747 struct pxa168_eth_private *pep = netdev_priv(dev); 748 749 netdev_info(dev, "TX timeout desc_count %d\n", pep->tx_desc_count); 750 751 schedule_work(&pep->tx_timeout_task); 752 } 753 754 static void pxa168_eth_tx_timeout_task(struct work_struct *work) 755 { 756 struct pxa168_eth_private *pep = container_of(work, 757 struct pxa168_eth_private, 758 tx_timeout_task); 759 struct net_device *dev = pep->dev; 760 pxa168_eth_stop(dev); 761 pxa168_eth_open(dev); 762 } 763 764 static int rxq_process(struct net_device *dev, int budget) 765 { 766 struct pxa168_eth_private *pep = netdev_priv(dev); 767 struct net_device_stats *stats = &dev->stats; 768 unsigned int received_packets = 0; 769 struct sk_buff *skb; 770 771 while (budget-- > 0) { 772 int rx_next_curr_desc, rx_curr_desc, rx_used_desc; 773 struct rx_desc *rx_desc; 774 unsigned int cmd_sts; 775 776 /* Do not process Rx ring in case of Rx ring resource error */ 777 if (pep->rx_resource_err) 778 break; 779 rx_curr_desc = pep->rx_curr_desc_q; 780 rx_used_desc = pep->rx_used_desc_q; 781 rx_desc = &pep->p_rx_desc_area[rx_curr_desc]; 782 cmd_sts = rx_desc->cmd_sts; 783 dma_rmb(); 784 if (cmd_sts & (BUF_OWNED_BY_DMA)) 785 break; 786 skb = pep->rx_skb[rx_curr_desc]; 787 pep->rx_skb[rx_curr_desc] = NULL; 788 789 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size; 790 pep->rx_curr_desc_q = rx_next_curr_desc; 791 792 /* Rx descriptors exhausted. */ 793 /* Set the Rx ring resource error flag */ 794 if (rx_next_curr_desc == rx_used_desc) 795 pep->rx_resource_err = 1; 796 pep->rx_desc_count--; 797 dma_unmap_single(&pep->pdev->dev, rx_desc->buf_ptr, 798 rx_desc->buf_size, 799 DMA_FROM_DEVICE); 800 received_packets++; 801 /* 802 * Update statistics. 803 * Note byte count includes 4 byte CRC count 804 */ 805 stats->rx_packets++; 806 stats->rx_bytes += rx_desc->byte_cnt; 807 /* 808 * In case received a packet without first / last bits on OR 809 * the error summary bit is on, the packets needs to be droped. 810 */ 811 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != 812 (RX_FIRST_DESC | RX_LAST_DESC)) 813 || (cmd_sts & RX_ERROR)) { 814 815 stats->rx_dropped++; 816 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != 817 (RX_FIRST_DESC | RX_LAST_DESC)) { 818 if (net_ratelimit()) 819 netdev_err(dev, 820 "Rx pkt on multiple desc\n"); 821 } 822 if (cmd_sts & RX_ERROR) 823 stats->rx_errors++; 824 dev_kfree_skb_irq(skb); 825 } else { 826 /* 827 * The -4 is for the CRC in the trailer of the 828 * received packet 829 */ 830 skb_put(skb, rx_desc->byte_cnt - 4); 831 skb->protocol = eth_type_trans(skb, dev); 832 netif_receive_skb(skb); 833 } 834 } 835 /* Fill RX ring with skb's */ 836 rxq_refill(dev); 837 return received_packets; 838 } 839 840 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep, 841 struct net_device *dev) 842 { 843 u32 icr; 844 int ret = 0; 845 846 icr = rdl(pep, INT_CAUSE); 847 if (icr == 0) 848 return IRQ_NONE; 849 850 wrl(pep, INT_CAUSE, ~icr); 851 if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) { 852 pep->work_todo |= WORK_TX_DONE; 853 ret = 1; 854 } 855 if (icr & ICR_RXBUF) 856 ret = 1; 857 return ret; 858 } 859 860 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id) 861 { 862 struct net_device *dev = (struct net_device *)dev_id; 863 struct pxa168_eth_private *pep = netdev_priv(dev); 864 865 if (unlikely(!pxa168_eth_collect_events(pep, dev))) 866 return IRQ_NONE; 867 /* Disable interrupts */ 868 wrl(pep, INT_MASK, 0); 869 napi_schedule(&pep->napi); 870 return IRQ_HANDLED; 871 } 872 873 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep) 874 { 875 int skb_size; 876 877 /* 878 * Reserve 2+14 bytes for an ethernet header (the hardware 879 * automatically prepends 2 bytes of dummy data to each 880 * received packet), 16 bytes for up to four VLAN tags, and 881 * 4 bytes for the trailing FCS -- 36 bytes total. 882 */ 883 skb_size = pep->dev->mtu + 36; 884 885 /* 886 * Make sure that the skb size is a multiple of 8 bytes, as 887 * the lower three bits of the receive descriptor's buffer 888 * size field are ignored by the hardware. 889 */ 890 pep->skb_size = (skb_size + 7) & ~7; 891 892 /* 893 * If NET_SKB_PAD is smaller than a cache line, 894 * netdev_alloc_skb() will cause skb->data to be misaligned 895 * to a cache line boundary. If this is the case, include 896 * some extra space to allow re-aligning the data area. 897 */ 898 pep->skb_size += SKB_DMA_REALIGN; 899 900 } 901 902 static int set_port_config_ext(struct pxa168_eth_private *pep) 903 { 904 int skb_size; 905 906 pxa168_eth_recalc_skb_size(pep); 907 if (pep->skb_size <= 1518) 908 skb_size = PCXR_MFL_1518; 909 else if (pep->skb_size <= 1536) 910 skb_size = PCXR_MFL_1536; 911 else if (pep->skb_size <= 2048) 912 skb_size = PCXR_MFL_2048; 913 else 914 skb_size = PCXR_MFL_64K; 915 916 /* Extended Port Configuration */ 917 wrl(pep, PORT_CONFIG_EXT, 918 PCXR_AN_SPEED_DIS | /* Disable HW AN */ 919 PCXR_AN_DUPLEX_DIS | 920 PCXR_AN_FLOWCTL_DIS | 921 PCXR_2BSM | /* Two byte prefix aligns IP hdr */ 922 PCXR_DSCP_EN | /* Enable DSCP in IP */ 923 skb_size | PCXR_FLP | /* do not force link pass */ 924 PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */ 925 926 return 0; 927 } 928 929 static void pxa168_eth_adjust_link(struct net_device *dev) 930 { 931 struct pxa168_eth_private *pep = netdev_priv(dev); 932 struct phy_device *phy = dev->phydev; 933 u32 cfg, cfg_o = rdl(pep, PORT_CONFIG); 934 u32 cfgext, cfgext_o = rdl(pep, PORT_CONFIG_EXT); 935 936 cfg = cfg_o & ~PCR_DUPLEX_FULL; 937 cfgext = cfgext_o & ~(PCXR_SPEED_100 | PCXR_FLOWCTL_DIS | PCXR_RMII_EN); 938 939 if (phy->interface == PHY_INTERFACE_MODE_RMII) 940 cfgext |= PCXR_RMII_EN; 941 if (phy->speed == SPEED_100) 942 cfgext |= PCXR_SPEED_100; 943 if (phy->duplex) 944 cfg |= PCR_DUPLEX_FULL; 945 if (!phy->pause) 946 cfgext |= PCXR_FLOWCTL_DIS; 947 948 /* Bail out if there has nothing changed */ 949 if (cfg == cfg_o && cfgext == cfgext_o) 950 return; 951 952 wrl(pep, PORT_CONFIG, cfg); 953 wrl(pep, PORT_CONFIG_EXT, cfgext); 954 955 phy_print_status(phy); 956 } 957 958 static int pxa168_init_phy(struct net_device *dev) 959 { 960 struct pxa168_eth_private *pep = netdev_priv(dev); 961 struct ethtool_link_ksettings cmd; 962 struct phy_device *phy = NULL; 963 int err; 964 965 if (dev->phydev) 966 return 0; 967 968 phy = mdiobus_scan(pep->smi_bus, pep->phy_addr); 969 if (IS_ERR(phy)) 970 return PTR_ERR(phy); 971 972 err = phy_connect_direct(dev, phy, pxa168_eth_adjust_link, 973 pep->phy_intf); 974 if (err) 975 return err; 976 977 cmd.base.phy_address = pep->phy_addr; 978 cmd.base.speed = pep->phy_speed; 979 cmd.base.duplex = pep->phy_duplex; 980 bitmap_copy(cmd.link_modes.advertising, PHY_BASIC_FEATURES, 981 __ETHTOOL_LINK_MODE_MASK_NBITS); 982 cmd.base.autoneg = AUTONEG_ENABLE; 983 984 if (cmd.base.speed != 0) 985 cmd.base.autoneg = AUTONEG_DISABLE; 986 987 return phy_ethtool_set_link_ksettings(dev, &cmd); 988 } 989 990 static int pxa168_init_hw(struct pxa168_eth_private *pep) 991 { 992 int err = 0; 993 994 /* Disable interrupts */ 995 wrl(pep, INT_MASK, 0); 996 wrl(pep, INT_CAUSE, 0); 997 /* Write to ICR to clear interrupts. */ 998 wrl(pep, INT_W_CLEAR, 0); 999 /* Abort any transmit and receive operations and put DMA 1000 * in idle state. 1001 */ 1002 abort_dma(pep); 1003 /* Initialize address hash table */ 1004 err = init_hash_table(pep); 1005 if (err) 1006 return err; 1007 /* SDMA configuration */ 1008 wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */ 1009 SDCR_RIFB | /* Rx interrupt on frame */ 1010 SDCR_BLMT | /* Little endian transmit */ 1011 SDCR_BLMR | /* Little endian receive */ 1012 SDCR_RC_MAX_RETRANS); /* Max retransmit count */ 1013 /* Port Configuration */ 1014 wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */ 1015 set_port_config_ext(pep); 1016 1017 return err; 1018 } 1019 1020 static int rxq_init(struct net_device *dev) 1021 { 1022 struct pxa168_eth_private *pep = netdev_priv(dev); 1023 struct rx_desc *p_rx_desc; 1024 int size = 0, i = 0; 1025 int rx_desc_num = pep->rx_ring_size; 1026 1027 /* Allocate RX skb rings */ 1028 pep->rx_skb = kcalloc(rx_desc_num, sizeof(*pep->rx_skb), GFP_KERNEL); 1029 if (!pep->rx_skb) 1030 return -ENOMEM; 1031 1032 /* Allocate RX ring */ 1033 pep->rx_desc_count = 0; 1034 size = pep->rx_ring_size * sizeof(struct rx_desc); 1035 pep->rx_desc_area_size = size; 1036 pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size, 1037 &pep->rx_desc_dma, 1038 GFP_KERNEL); 1039 if (!pep->p_rx_desc_area) 1040 goto out; 1041 1042 /* initialize the next_desc_ptr links in the Rx descriptors ring */ 1043 p_rx_desc = pep->p_rx_desc_area; 1044 for (i = 0; i < rx_desc_num; i++) { 1045 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma + 1046 ((i + 1) % rx_desc_num) * sizeof(struct rx_desc); 1047 } 1048 /* Save Rx desc pointer to driver struct. */ 1049 pep->rx_curr_desc_q = 0; 1050 pep->rx_used_desc_q = 0; 1051 pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc); 1052 return 0; 1053 out: 1054 kfree(pep->rx_skb); 1055 return -ENOMEM; 1056 } 1057 1058 static void rxq_deinit(struct net_device *dev) 1059 { 1060 struct pxa168_eth_private *pep = netdev_priv(dev); 1061 int curr; 1062 1063 /* Free preallocated skb's on RX rings */ 1064 for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) { 1065 if (pep->rx_skb[curr]) { 1066 dev_kfree_skb(pep->rx_skb[curr]); 1067 pep->rx_desc_count--; 1068 } 1069 } 1070 if (pep->rx_desc_count) 1071 netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n", 1072 pep->rx_desc_count); 1073 /* Free RX ring */ 1074 if (pep->p_rx_desc_area) 1075 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size, 1076 pep->p_rx_desc_area, pep->rx_desc_dma); 1077 kfree(pep->rx_skb); 1078 } 1079 1080 static int txq_init(struct net_device *dev) 1081 { 1082 struct pxa168_eth_private *pep = netdev_priv(dev); 1083 struct tx_desc *p_tx_desc; 1084 int size = 0, i = 0; 1085 int tx_desc_num = pep->tx_ring_size; 1086 1087 pep->tx_skb = kcalloc(tx_desc_num, sizeof(*pep->tx_skb), GFP_KERNEL); 1088 if (!pep->tx_skb) 1089 return -ENOMEM; 1090 1091 /* Allocate TX ring */ 1092 pep->tx_desc_count = 0; 1093 size = pep->tx_ring_size * sizeof(struct tx_desc); 1094 pep->tx_desc_area_size = size; 1095 pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size, 1096 &pep->tx_desc_dma, 1097 GFP_KERNEL); 1098 if (!pep->p_tx_desc_area) 1099 goto out; 1100 /* Initialize the next_desc_ptr links in the Tx descriptors ring */ 1101 p_tx_desc = pep->p_tx_desc_area; 1102 for (i = 0; i < tx_desc_num; i++) { 1103 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma + 1104 ((i + 1) % tx_desc_num) * sizeof(struct tx_desc); 1105 } 1106 pep->tx_curr_desc_q = 0; 1107 pep->tx_used_desc_q = 0; 1108 pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc); 1109 return 0; 1110 out: 1111 kfree(pep->tx_skb); 1112 return -ENOMEM; 1113 } 1114 1115 static void txq_deinit(struct net_device *dev) 1116 { 1117 struct pxa168_eth_private *pep = netdev_priv(dev); 1118 1119 /* Free outstanding skb's on TX ring */ 1120 txq_reclaim(dev, 1); 1121 BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q); 1122 /* Free TX ring */ 1123 if (pep->p_tx_desc_area) 1124 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size, 1125 pep->p_tx_desc_area, pep->tx_desc_dma); 1126 kfree(pep->tx_skb); 1127 } 1128 1129 static int pxa168_eth_open(struct net_device *dev) 1130 { 1131 struct pxa168_eth_private *pep = netdev_priv(dev); 1132 int err; 1133 1134 err = pxa168_init_phy(dev); 1135 if (err) 1136 return err; 1137 1138 err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev); 1139 if (err) { 1140 dev_err(&dev->dev, "can't assign irq\n"); 1141 return -EAGAIN; 1142 } 1143 pep->rx_resource_err = 0; 1144 err = rxq_init(dev); 1145 if (err != 0) 1146 goto out_free_irq; 1147 err = txq_init(dev); 1148 if (err != 0) 1149 goto out_free_rx_skb; 1150 pep->rx_used_desc_q = 0; 1151 pep->rx_curr_desc_q = 0; 1152 1153 /* Fill RX ring with skb's */ 1154 rxq_refill(dev); 1155 pep->rx_used_desc_q = 0; 1156 pep->rx_curr_desc_q = 0; 1157 netif_carrier_off(dev); 1158 napi_enable(&pep->napi); 1159 eth_port_start(dev); 1160 return 0; 1161 out_free_rx_skb: 1162 rxq_deinit(dev); 1163 out_free_irq: 1164 free_irq(dev->irq, dev); 1165 return err; 1166 } 1167 1168 static int pxa168_eth_stop(struct net_device *dev) 1169 { 1170 struct pxa168_eth_private *pep = netdev_priv(dev); 1171 eth_port_reset(dev); 1172 1173 /* Disable interrupts */ 1174 wrl(pep, INT_MASK, 0); 1175 wrl(pep, INT_CAUSE, 0); 1176 /* Write to ICR to clear interrupts. */ 1177 wrl(pep, INT_W_CLEAR, 0); 1178 napi_disable(&pep->napi); 1179 del_timer_sync(&pep->timeout); 1180 netif_carrier_off(dev); 1181 free_irq(dev->irq, dev); 1182 rxq_deinit(dev); 1183 txq_deinit(dev); 1184 1185 return 0; 1186 } 1187 1188 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu) 1189 { 1190 struct pxa168_eth_private *pep = netdev_priv(dev); 1191 1192 dev->mtu = mtu; 1193 set_port_config_ext(pep); 1194 1195 if (!netif_running(dev)) 1196 return 0; 1197 1198 /* 1199 * Stop and then re-open the interface. This will allocate RX 1200 * skbs of the new MTU. 1201 * There is a possible danger that the open will not succeed, 1202 * due to memory being full. 1203 */ 1204 pxa168_eth_stop(dev); 1205 if (pxa168_eth_open(dev)) { 1206 dev_err(&dev->dev, 1207 "fatal error on re-opening device after MTU change\n"); 1208 } 1209 1210 return 0; 1211 } 1212 1213 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep) 1214 { 1215 int tx_desc_curr; 1216 1217 tx_desc_curr = pep->tx_curr_desc_q; 1218 pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size; 1219 BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q); 1220 pep->tx_desc_count++; 1221 1222 return tx_desc_curr; 1223 } 1224 1225 static int pxa168_rx_poll(struct napi_struct *napi, int budget) 1226 { 1227 struct pxa168_eth_private *pep = 1228 container_of(napi, struct pxa168_eth_private, napi); 1229 struct net_device *dev = pep->dev; 1230 int work_done = 0; 1231 1232 /* 1233 * We call txq_reclaim every time since in NAPI interupts are disabled 1234 * and due to this we miss the TX_DONE interrupt,which is not updated in 1235 * interrupt status register. 1236 */ 1237 txq_reclaim(dev, 0); 1238 if (netif_queue_stopped(dev) 1239 && pep->tx_ring_size - pep->tx_desc_count > 1) { 1240 netif_wake_queue(dev); 1241 } 1242 work_done = rxq_process(dev, budget); 1243 if (work_done < budget) { 1244 napi_complete_done(napi, work_done); 1245 wrl(pep, INT_MASK, ALL_INTS); 1246 } 1247 1248 return work_done; 1249 } 1250 1251 static netdev_tx_t 1252 pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev) 1253 { 1254 struct pxa168_eth_private *pep = netdev_priv(dev); 1255 struct net_device_stats *stats = &dev->stats; 1256 struct tx_desc *desc; 1257 int tx_index; 1258 int length; 1259 1260 tx_index = eth_alloc_tx_desc_index(pep); 1261 desc = &pep->p_tx_desc_area[tx_index]; 1262 length = skb->len; 1263 pep->tx_skb[tx_index] = skb; 1264 desc->byte_cnt = length; 1265 desc->buf_ptr = dma_map_single(&pep->pdev->dev, skb->data, length, 1266 DMA_TO_DEVICE); 1267 1268 skb_tx_timestamp(skb); 1269 1270 dma_wmb(); 1271 desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC | 1272 TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT; 1273 wmb(); 1274 wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD); 1275 1276 stats->tx_bytes += length; 1277 stats->tx_packets++; 1278 netif_trans_update(dev); 1279 if (pep->tx_ring_size - pep->tx_desc_count <= 1) { 1280 /* We handled the current skb, but now we are out of space.*/ 1281 netif_stop_queue(dev); 1282 } 1283 1284 return NETDEV_TX_OK; 1285 } 1286 1287 static int smi_wait_ready(struct pxa168_eth_private *pep) 1288 { 1289 int i = 0; 1290 1291 /* wait for the SMI register to become available */ 1292 for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) { 1293 if (i == PHY_WAIT_ITERATIONS) 1294 return -ETIMEDOUT; 1295 msleep(10); 1296 } 1297 1298 return 0; 1299 } 1300 1301 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum) 1302 { 1303 struct pxa168_eth_private *pep = bus->priv; 1304 int i = 0; 1305 int val; 1306 1307 if (smi_wait_ready(pep)) { 1308 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n"); 1309 return -ETIMEDOUT; 1310 } 1311 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R); 1312 /* now wait for the data to be valid */ 1313 for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) { 1314 if (i == PHY_WAIT_ITERATIONS) { 1315 netdev_warn(pep->dev, 1316 "pxa168_eth: SMI bus read not valid\n"); 1317 return -ENODEV; 1318 } 1319 msleep(10); 1320 } 1321 1322 return val & 0xffff; 1323 } 1324 1325 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum, 1326 u16 value) 1327 { 1328 struct pxa168_eth_private *pep = bus->priv; 1329 1330 if (smi_wait_ready(pep)) { 1331 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n"); 1332 return -ETIMEDOUT; 1333 } 1334 1335 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | 1336 SMI_OP_W | (value & 0xffff)); 1337 1338 if (smi_wait_ready(pep)) { 1339 netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n"); 1340 return -ETIMEDOUT; 1341 } 1342 1343 return 0; 1344 } 1345 1346 #ifdef CONFIG_NET_POLL_CONTROLLER 1347 static void pxa168_eth_netpoll(struct net_device *dev) 1348 { 1349 disable_irq(dev->irq); 1350 pxa168_eth_int_handler(dev->irq, dev); 1351 enable_irq(dev->irq); 1352 } 1353 #endif 1354 1355 static void pxa168_get_drvinfo(struct net_device *dev, 1356 struct ethtool_drvinfo *info) 1357 { 1358 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); 1359 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version)); 1360 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 1361 strlcpy(info->bus_info, "N/A", sizeof(info->bus_info)); 1362 } 1363 1364 static const struct ethtool_ops pxa168_ethtool_ops = { 1365 .get_drvinfo = pxa168_get_drvinfo, 1366 .nway_reset = phy_ethtool_nway_reset, 1367 .get_link = ethtool_op_get_link, 1368 .get_ts_info = ethtool_op_get_ts_info, 1369 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1370 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1371 }; 1372 1373 static const struct net_device_ops pxa168_eth_netdev_ops = { 1374 .ndo_open = pxa168_eth_open, 1375 .ndo_stop = pxa168_eth_stop, 1376 .ndo_start_xmit = pxa168_eth_start_xmit, 1377 .ndo_set_rx_mode = pxa168_eth_set_rx_mode, 1378 .ndo_set_mac_address = pxa168_eth_set_mac_address, 1379 .ndo_validate_addr = eth_validate_addr, 1380 .ndo_do_ioctl = phy_do_ioctl, 1381 .ndo_change_mtu = pxa168_eth_change_mtu, 1382 .ndo_tx_timeout = pxa168_eth_tx_timeout, 1383 #ifdef CONFIG_NET_POLL_CONTROLLER 1384 .ndo_poll_controller = pxa168_eth_netpoll, 1385 #endif 1386 }; 1387 1388 static int pxa168_eth_probe(struct platform_device *pdev) 1389 { 1390 struct pxa168_eth_private *pep = NULL; 1391 struct net_device *dev = NULL; 1392 struct resource *res; 1393 struct clk *clk; 1394 struct device_node *np; 1395 const unsigned char *mac_addr = NULL; 1396 int err; 1397 1398 printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n"); 1399 1400 clk = devm_clk_get(&pdev->dev, NULL); 1401 if (IS_ERR(clk)) { 1402 dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n"); 1403 return -ENODEV; 1404 } 1405 clk_prepare_enable(clk); 1406 1407 dev = alloc_etherdev(sizeof(struct pxa168_eth_private)); 1408 if (!dev) { 1409 err = -ENOMEM; 1410 goto err_clk; 1411 } 1412 1413 platform_set_drvdata(pdev, dev); 1414 pep = netdev_priv(dev); 1415 pep->dev = dev; 1416 pep->clk = clk; 1417 1418 pep->base = devm_platform_ioremap_resource(pdev, 0); 1419 if (IS_ERR(pep->base)) { 1420 err = PTR_ERR(pep->base); 1421 goto err_netdev; 1422 } 1423 1424 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1425 BUG_ON(!res); 1426 dev->irq = res->start; 1427 dev->netdev_ops = &pxa168_eth_netdev_ops; 1428 dev->watchdog_timeo = 2 * HZ; 1429 dev->base_addr = 0; 1430 dev->ethtool_ops = &pxa168_ethtool_ops; 1431 1432 /* MTU range: 68 - 9500 */ 1433 dev->min_mtu = ETH_MIN_MTU; 1434 dev->max_mtu = 9500; 1435 1436 INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task); 1437 1438 if (pdev->dev.of_node) 1439 mac_addr = of_get_mac_address(pdev->dev.of_node); 1440 1441 if (!IS_ERR_OR_NULL(mac_addr)) { 1442 ether_addr_copy(dev->dev_addr, mac_addr); 1443 } else { 1444 /* try reading the mac address, if set by the bootloader */ 1445 pxa168_eth_get_mac_address(dev, dev->dev_addr); 1446 if (!is_valid_ether_addr(dev->dev_addr)) { 1447 dev_info(&pdev->dev, "Using random mac address\n"); 1448 eth_hw_addr_random(dev); 1449 } 1450 } 1451 1452 pep->rx_ring_size = NUM_RX_DESCS; 1453 pep->tx_ring_size = NUM_TX_DESCS; 1454 1455 pep->pd = dev_get_platdata(&pdev->dev); 1456 if (pep->pd) { 1457 if (pep->pd->rx_queue_size) 1458 pep->rx_ring_size = pep->pd->rx_queue_size; 1459 1460 if (pep->pd->tx_queue_size) 1461 pep->tx_ring_size = pep->pd->tx_queue_size; 1462 1463 pep->port_num = pep->pd->port_number; 1464 pep->phy_addr = pep->pd->phy_addr; 1465 pep->phy_speed = pep->pd->speed; 1466 pep->phy_duplex = pep->pd->duplex; 1467 pep->phy_intf = pep->pd->intf; 1468 1469 if (pep->pd->init) 1470 pep->pd->init(); 1471 } else if (pdev->dev.of_node) { 1472 of_property_read_u32(pdev->dev.of_node, "port-id", 1473 &pep->port_num); 1474 1475 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); 1476 if (!np) { 1477 dev_err(&pdev->dev, "missing phy-handle\n"); 1478 err = -EINVAL; 1479 goto err_netdev; 1480 } 1481 of_property_read_u32(np, "reg", &pep->phy_addr); 1482 of_node_put(np); 1483 err = of_get_phy_mode(pdev->dev.of_node, &pep->phy_intf); 1484 if (err && err != -ENODEV) 1485 goto err_netdev; 1486 } 1487 1488 /* Hardware supports only 3 ports */ 1489 BUG_ON(pep->port_num > 2); 1490 netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size); 1491 1492 memset(&pep->timeout, 0, sizeof(struct timer_list)); 1493 timer_setup(&pep->timeout, rxq_refill_timer_wrapper, 0); 1494 1495 pep->smi_bus = mdiobus_alloc(); 1496 if (!pep->smi_bus) { 1497 err = -ENOMEM; 1498 goto err_netdev; 1499 } 1500 pep->smi_bus->priv = pep; 1501 pep->smi_bus->name = "pxa168_eth smi"; 1502 pep->smi_bus->read = pxa168_smi_read; 1503 pep->smi_bus->write = pxa168_smi_write; 1504 snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d", 1505 pdev->name, pdev->id); 1506 pep->smi_bus->parent = &pdev->dev; 1507 pep->smi_bus->phy_mask = 0xffffffff; 1508 err = mdiobus_register(pep->smi_bus); 1509 if (err) 1510 goto err_free_mdio; 1511 1512 pep->pdev = pdev; 1513 SET_NETDEV_DEV(dev, &pdev->dev); 1514 pxa168_init_hw(pep); 1515 err = register_netdev(dev); 1516 if (err) 1517 goto err_mdiobus; 1518 return 0; 1519 1520 err_mdiobus: 1521 mdiobus_unregister(pep->smi_bus); 1522 err_free_mdio: 1523 mdiobus_free(pep->smi_bus); 1524 err_netdev: 1525 free_netdev(dev); 1526 err_clk: 1527 clk_disable_unprepare(clk); 1528 return err; 1529 } 1530 1531 static int pxa168_eth_remove(struct platform_device *pdev) 1532 { 1533 struct net_device *dev = platform_get_drvdata(pdev); 1534 struct pxa168_eth_private *pep = netdev_priv(dev); 1535 1536 if (pep->htpr) { 1537 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE, 1538 pep->htpr, pep->htpr_dma); 1539 pep->htpr = NULL; 1540 } 1541 if (dev->phydev) 1542 phy_disconnect(dev->phydev); 1543 1544 clk_disable_unprepare(pep->clk); 1545 mdiobus_unregister(pep->smi_bus); 1546 mdiobus_free(pep->smi_bus); 1547 cancel_work_sync(&pep->tx_timeout_task); 1548 unregister_netdev(dev); 1549 free_netdev(dev); 1550 return 0; 1551 } 1552 1553 static void pxa168_eth_shutdown(struct platform_device *pdev) 1554 { 1555 struct net_device *dev = platform_get_drvdata(pdev); 1556 eth_port_reset(dev); 1557 } 1558 1559 #ifdef CONFIG_PM 1560 static int pxa168_eth_resume(struct platform_device *pdev) 1561 { 1562 return -ENOSYS; 1563 } 1564 1565 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state) 1566 { 1567 return -ENOSYS; 1568 } 1569 1570 #else 1571 #define pxa168_eth_resume NULL 1572 #define pxa168_eth_suspend NULL 1573 #endif 1574 1575 static const struct of_device_id pxa168_eth_of_match[] = { 1576 { .compatible = "marvell,pxa168-eth" }, 1577 { }, 1578 }; 1579 MODULE_DEVICE_TABLE(of, pxa168_eth_of_match); 1580 1581 static struct platform_driver pxa168_eth_driver = { 1582 .probe = pxa168_eth_probe, 1583 .remove = pxa168_eth_remove, 1584 .shutdown = pxa168_eth_shutdown, 1585 .resume = pxa168_eth_resume, 1586 .suspend = pxa168_eth_suspend, 1587 .driver = { 1588 .name = DRIVER_NAME, 1589 .of_match_table = of_match_ptr(pxa168_eth_of_match), 1590 }, 1591 }; 1592 1593 module_platform_driver(pxa168_eth_driver); 1594 1595 MODULE_LICENSE("GPL"); 1596 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168"); 1597 MODULE_ALIAS("platform:pxa168_eth"); 1598