1 /* 2 * PXA168 ethernet driver. 3 * Most of the code is derived from mv643xx ethernet driver. 4 * 5 * Copyright (C) 2010 Marvell International Ltd. 6 * Sachin Sanap <ssanap@marvell.com> 7 * Zhangfei Gao <zgao6@marvell.com> 8 * Philip Rakity <prakity@marvell.com> 9 * Mark Brown <markb@marvell.com> 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 2 14 * of the License, or (at your option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, see <http://www.gnu.org/licenses/>. 23 */ 24 25 #include <linux/bitops.h> 26 #include <linux/clk.h> 27 #include <linux/delay.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/etherdevice.h> 30 #include <linux/ethtool.h> 31 #include <linux/in.h> 32 #include <linux/interrupt.h> 33 #include <linux/io.h> 34 #include <linux/ip.h> 35 #include <linux/kernel.h> 36 #include <linux/module.h> 37 #include <linux/of.h> 38 #include <linux/of_net.h> 39 #include <linux/phy.h> 40 #include <linux/platform_device.h> 41 #include <linux/pxa168_eth.h> 42 #include <linux/tcp.h> 43 #include <linux/types.h> 44 #include <linux/udp.h> 45 #include <linux/workqueue.h> 46 47 #include <asm/pgtable.h> 48 #include <asm/cacheflush.h> 49 50 #define DRIVER_NAME "pxa168-eth" 51 #define DRIVER_VERSION "0.3" 52 53 /* 54 * Registers 55 */ 56 57 #define PHY_ADDRESS 0x0000 58 #define SMI 0x0010 59 #define PORT_CONFIG 0x0400 60 #define PORT_CONFIG_EXT 0x0408 61 #define PORT_COMMAND 0x0410 62 #define PORT_STATUS 0x0418 63 #define HTPR 0x0428 64 #define MAC_ADDR_LOW 0x0430 65 #define MAC_ADDR_HIGH 0x0438 66 #define SDMA_CONFIG 0x0440 67 #define SDMA_CMD 0x0448 68 #define INT_CAUSE 0x0450 69 #define INT_W_CLEAR 0x0454 70 #define INT_MASK 0x0458 71 #define ETH_F_RX_DESC_0 0x0480 72 #define ETH_C_RX_DESC_0 0x04A0 73 #define ETH_C_TX_DESC_1 0x04E4 74 75 /* smi register */ 76 #define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */ 77 #define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */ 78 #define SMI_OP_W (0 << 26) /* Write operation */ 79 #define SMI_OP_R (1 << 26) /* Read operation */ 80 81 #define PHY_WAIT_ITERATIONS 10 82 83 #define PXA168_ETH_PHY_ADDR_DEFAULT 0 84 /* RX & TX descriptor command */ 85 #define BUF_OWNED_BY_DMA (1 << 31) 86 87 /* RX descriptor status */ 88 #define RX_EN_INT (1 << 23) 89 #define RX_FIRST_DESC (1 << 17) 90 #define RX_LAST_DESC (1 << 16) 91 #define RX_ERROR (1 << 15) 92 93 /* TX descriptor command */ 94 #define TX_EN_INT (1 << 23) 95 #define TX_GEN_CRC (1 << 22) 96 #define TX_ZERO_PADDING (1 << 18) 97 #define TX_FIRST_DESC (1 << 17) 98 #define TX_LAST_DESC (1 << 16) 99 #define TX_ERROR (1 << 15) 100 101 /* SDMA_CMD */ 102 #define SDMA_CMD_AT (1 << 31) 103 #define SDMA_CMD_TXDL (1 << 24) 104 #define SDMA_CMD_TXDH (1 << 23) 105 #define SDMA_CMD_AR (1 << 15) 106 #define SDMA_CMD_ERD (1 << 7) 107 108 /* Bit definitions of the Port Config Reg */ 109 #define PCR_HS (1 << 12) 110 #define PCR_EN (1 << 7) 111 #define PCR_PM (1 << 0) 112 113 /* Bit definitions of the Port Config Extend Reg */ 114 #define PCXR_2BSM (1 << 28) 115 #define PCXR_DSCP_EN (1 << 21) 116 #define PCXR_MFL_1518 (0 << 14) 117 #define PCXR_MFL_1536 (1 << 14) 118 #define PCXR_MFL_2048 (2 << 14) 119 #define PCXR_MFL_64K (3 << 14) 120 #define PCXR_FLP (1 << 11) 121 #define PCXR_PRIO_TX_OFF 3 122 #define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF) 123 124 /* Bit definitions of the SDMA Config Reg */ 125 #define SDCR_BSZ_OFF 12 126 #define SDCR_BSZ8 (3 << SDCR_BSZ_OFF) 127 #define SDCR_BSZ4 (2 << SDCR_BSZ_OFF) 128 #define SDCR_BSZ2 (1 << SDCR_BSZ_OFF) 129 #define SDCR_BSZ1 (0 << SDCR_BSZ_OFF) 130 #define SDCR_BLMR (1 << 6) 131 #define SDCR_BLMT (1 << 7) 132 #define SDCR_RIFB (1 << 9) 133 #define SDCR_RC_OFF 2 134 #define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF) 135 136 /* 137 * Bit definitions of the Interrupt Cause Reg 138 * and Interrupt MASK Reg is the same 139 */ 140 #define ICR_RXBUF (1 << 0) 141 #define ICR_TXBUF_H (1 << 2) 142 #define ICR_TXBUF_L (1 << 3) 143 #define ICR_TXEND_H (1 << 6) 144 #define ICR_TXEND_L (1 << 7) 145 #define ICR_RXERR (1 << 8) 146 #define ICR_TXERR_H (1 << 10) 147 #define ICR_TXERR_L (1 << 11) 148 #define ICR_TX_UDR (1 << 13) 149 #define ICR_MII_CH (1 << 28) 150 151 #define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\ 152 ICR_TXERR_H | ICR_TXERR_L |\ 153 ICR_TXEND_H | ICR_TXEND_L |\ 154 ICR_RXBUF | ICR_RXERR | ICR_MII_CH) 155 156 #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */ 157 158 #define NUM_RX_DESCS 64 159 #define NUM_TX_DESCS 64 160 161 #define HASH_ADD 0 162 #define HASH_DELETE 1 163 #define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */ 164 #define HOP_NUMBER 12 165 166 /* Bit definitions for Port status */ 167 #define PORT_SPEED_100 (1 << 0) 168 #define FULL_DUPLEX (1 << 1) 169 #define FLOW_CONTROL_DISABLED (1 << 2) 170 #define LINK_UP (1 << 3) 171 172 /* Bit definitions for work to be done */ 173 #define WORK_LINK (1 << 0) 174 #define WORK_TX_DONE (1 << 1) 175 176 /* 177 * Misc definitions. 178 */ 179 #define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES) 180 181 struct rx_desc { 182 u32 cmd_sts; /* Descriptor command status */ 183 u16 byte_cnt; /* Descriptor buffer byte count */ 184 u16 buf_size; /* Buffer size */ 185 u32 buf_ptr; /* Descriptor buffer pointer */ 186 u32 next_desc_ptr; /* Next descriptor pointer */ 187 }; 188 189 struct tx_desc { 190 u32 cmd_sts; /* Command/status field */ 191 u16 reserved; 192 u16 byte_cnt; /* buffer byte count */ 193 u32 buf_ptr; /* pointer to buffer for this descriptor */ 194 u32 next_desc_ptr; /* Pointer to next descriptor */ 195 }; 196 197 struct pxa168_eth_private { 198 int port_num; /* User Ethernet port number */ 199 int phy_addr; 200 201 int rx_resource_err; /* Rx ring resource error flag */ 202 203 /* Next available and first returning Rx resource */ 204 int rx_curr_desc_q, rx_used_desc_q; 205 206 /* Next available and first returning Tx resource */ 207 int tx_curr_desc_q, tx_used_desc_q; 208 209 struct rx_desc *p_rx_desc_area; 210 dma_addr_t rx_desc_dma; 211 int rx_desc_area_size; 212 struct sk_buff **rx_skb; 213 214 struct tx_desc *p_tx_desc_area; 215 dma_addr_t tx_desc_dma; 216 int tx_desc_area_size; 217 struct sk_buff **tx_skb; 218 219 struct work_struct tx_timeout_task; 220 221 struct net_device *dev; 222 struct napi_struct napi; 223 u8 work_todo; 224 int skb_size; 225 226 /* Size of Tx Ring per queue */ 227 int tx_ring_size; 228 /* Number of tx descriptors in use */ 229 int tx_desc_count; 230 /* Size of Rx Ring per queue */ 231 int rx_ring_size; 232 /* Number of rx descriptors in use */ 233 int rx_desc_count; 234 235 /* 236 * Used in case RX Ring is empty, which can occur when 237 * system does not have resources (skb's) 238 */ 239 struct timer_list timeout; 240 struct mii_bus *smi_bus; 241 struct phy_device *phy; 242 243 /* clock */ 244 struct clk *clk; 245 struct pxa168_eth_platform_data *pd; 246 /* 247 * Ethernet controller base address. 248 */ 249 void __iomem *base; 250 251 /* Pointer to the hardware address filter table */ 252 void *htpr; 253 dma_addr_t htpr_dma; 254 }; 255 256 struct addr_table_entry { 257 __le32 lo; 258 __le32 hi; 259 }; 260 261 /* Bit fields of a Hash Table Entry */ 262 enum hash_table_entry { 263 HASH_ENTRY_VALID = 1, 264 SKIP = 2, 265 HASH_ENTRY_RECEIVE_DISCARD = 4, 266 HASH_ENTRY_RECEIVE_DISCARD_BIT = 2 267 }; 268 269 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd); 270 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd); 271 static int pxa168_init_hw(struct pxa168_eth_private *pep); 272 static void eth_port_reset(struct net_device *dev); 273 static void eth_port_start(struct net_device *dev); 274 static int pxa168_eth_open(struct net_device *dev); 275 static int pxa168_eth_stop(struct net_device *dev); 276 static int ethernet_phy_setup(struct net_device *dev); 277 278 static inline u32 rdl(struct pxa168_eth_private *pep, int offset) 279 { 280 return readl(pep->base + offset); 281 } 282 283 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data) 284 { 285 writel(data, pep->base + offset); 286 } 287 288 static void abort_dma(struct pxa168_eth_private *pep) 289 { 290 int delay; 291 int max_retries = 40; 292 293 do { 294 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT); 295 udelay(100); 296 297 delay = 10; 298 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT)) 299 && delay-- > 0) { 300 udelay(10); 301 } 302 } while (max_retries-- > 0 && delay <= 0); 303 304 if (max_retries <= 0) 305 netdev_err(pep->dev, "%s : DMA Stuck\n", __func__); 306 } 307 308 static int ethernet_phy_get(struct pxa168_eth_private *pep) 309 { 310 unsigned int reg_data; 311 312 reg_data = rdl(pep, PHY_ADDRESS); 313 314 return (reg_data >> (5 * pep->port_num)) & 0x1f; 315 } 316 317 static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr) 318 { 319 u32 reg_data; 320 int addr_shift = 5 * pep->port_num; 321 322 reg_data = rdl(pep, PHY_ADDRESS); 323 reg_data &= ~(0x1f << addr_shift); 324 reg_data |= (phy_addr & 0x1f) << addr_shift; 325 wrl(pep, PHY_ADDRESS, reg_data); 326 } 327 328 static void rxq_refill(struct net_device *dev) 329 { 330 struct pxa168_eth_private *pep = netdev_priv(dev); 331 struct sk_buff *skb; 332 struct rx_desc *p_used_rx_desc; 333 int used_rx_desc; 334 335 while (pep->rx_desc_count < pep->rx_ring_size) { 336 int size; 337 338 skb = netdev_alloc_skb(dev, pep->skb_size); 339 if (!skb) 340 break; 341 if (SKB_DMA_REALIGN) 342 skb_reserve(skb, SKB_DMA_REALIGN); 343 pep->rx_desc_count++; 344 /* Get 'used' Rx descriptor */ 345 used_rx_desc = pep->rx_used_desc_q; 346 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc]; 347 size = skb_end_pointer(skb) - skb->data; 348 p_used_rx_desc->buf_ptr = dma_map_single(NULL, 349 skb->data, 350 size, 351 DMA_FROM_DEVICE); 352 p_used_rx_desc->buf_size = size; 353 pep->rx_skb[used_rx_desc] = skb; 354 355 /* Return the descriptor to DMA ownership */ 356 wmb(); 357 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT; 358 wmb(); 359 360 /* Move the used descriptor pointer to the next descriptor */ 361 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size; 362 363 /* Any Rx return cancels the Rx resource error status */ 364 pep->rx_resource_err = 0; 365 366 skb_reserve(skb, ETH_HW_IP_ALIGN); 367 } 368 369 /* 370 * If RX ring is empty of SKB, set a timer to try allocating 371 * again at a later time. 372 */ 373 if (pep->rx_desc_count == 0) { 374 pep->timeout.expires = jiffies + (HZ / 10); 375 add_timer(&pep->timeout); 376 } 377 } 378 379 static inline void rxq_refill_timer_wrapper(unsigned long data) 380 { 381 struct pxa168_eth_private *pep = (void *)data; 382 napi_schedule(&pep->napi); 383 } 384 385 static inline u8 flip_8_bits(u8 x) 386 { 387 return (((x) & 0x01) << 3) | (((x) & 0x02) << 1) 388 | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3) 389 | (((x) & 0x10) << 3) | (((x) & 0x20) << 1) 390 | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3); 391 } 392 393 static void nibble_swap_every_byte(unsigned char *mac_addr) 394 { 395 int i; 396 for (i = 0; i < ETH_ALEN; i++) { 397 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) | 398 ((mac_addr[i] & 0xf0) >> 4); 399 } 400 } 401 402 static void inverse_every_nibble(unsigned char *mac_addr) 403 { 404 int i; 405 for (i = 0; i < ETH_ALEN; i++) 406 mac_addr[i] = flip_8_bits(mac_addr[i]); 407 } 408 409 /* 410 * ---------------------------------------------------------------------------- 411 * This function will calculate the hash function of the address. 412 * Inputs 413 * mac_addr_orig - MAC address. 414 * Outputs 415 * return the calculated entry. 416 */ 417 static u32 hash_function(unsigned char *mac_addr_orig) 418 { 419 u32 hash_result; 420 u32 addr0; 421 u32 addr1; 422 u32 addr2; 423 u32 addr3; 424 unsigned char mac_addr[ETH_ALEN]; 425 426 /* Make a copy of MAC address since we are going to performe bit 427 * operations on it 428 */ 429 memcpy(mac_addr, mac_addr_orig, ETH_ALEN); 430 431 nibble_swap_every_byte(mac_addr); 432 inverse_every_nibble(mac_addr); 433 434 addr0 = (mac_addr[5] >> 2) & 0x3f; 435 addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2); 436 addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1; 437 addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8); 438 439 hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3); 440 hash_result = hash_result & 0x07ff; 441 return hash_result; 442 } 443 444 /* 445 * ---------------------------------------------------------------------------- 446 * This function will add/del an entry to the address table. 447 * Inputs 448 * pep - ETHERNET . 449 * mac_addr - MAC address. 450 * skip - if 1, skip this address.Used in case of deleting an entry which is a 451 * part of chain in the hash table.We can't just delete the entry since 452 * that will break the chain.We need to defragment the tables time to 453 * time. 454 * rd - 0 Discard packet upon match. 455 * - 1 Receive packet upon match. 456 * Outputs 457 * address table entry is added/deleted. 458 * 0 if success. 459 * -ENOSPC if table full 460 */ 461 static int add_del_hash_entry(struct pxa168_eth_private *pep, 462 unsigned char *mac_addr, 463 u32 rd, u32 skip, int del) 464 { 465 struct addr_table_entry *entry, *start; 466 u32 new_high; 467 u32 new_low; 468 u32 i; 469 470 new_low = (((mac_addr[1] >> 4) & 0xf) << 15) 471 | (((mac_addr[1] >> 0) & 0xf) << 11) 472 | (((mac_addr[0] >> 4) & 0xf) << 7) 473 | (((mac_addr[0] >> 0) & 0xf) << 3) 474 | (((mac_addr[3] >> 4) & 0x1) << 31) 475 | (((mac_addr[3] >> 0) & 0xf) << 27) 476 | (((mac_addr[2] >> 4) & 0xf) << 23) 477 | (((mac_addr[2] >> 0) & 0xf) << 19) 478 | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT) 479 | HASH_ENTRY_VALID; 480 481 new_high = (((mac_addr[5] >> 4) & 0xf) << 15) 482 | (((mac_addr[5] >> 0) & 0xf) << 11) 483 | (((mac_addr[4] >> 4) & 0xf) << 7) 484 | (((mac_addr[4] >> 0) & 0xf) << 3) 485 | (((mac_addr[3] >> 5) & 0x7) << 0); 486 487 /* 488 * Pick the appropriate table, start scanning for free/reusable 489 * entries at the index obtained by hashing the specified MAC address 490 */ 491 start = pep->htpr; 492 entry = start + hash_function(mac_addr); 493 for (i = 0; i < HOP_NUMBER; i++) { 494 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) { 495 break; 496 } else { 497 /* if same address put in same position */ 498 if (((le32_to_cpu(entry->lo) & 0xfffffff8) == 499 (new_low & 0xfffffff8)) && 500 (le32_to_cpu(entry->hi) == new_high)) { 501 break; 502 } 503 } 504 if (entry == start + 0x7ff) 505 entry = start; 506 else 507 entry++; 508 } 509 510 if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) && 511 (le32_to_cpu(entry->hi) != new_high) && del) 512 return 0; 513 514 if (i == HOP_NUMBER) { 515 if (!del) { 516 netdev_info(pep->dev, 517 "%s: table section is full, need to " 518 "move to 16kB implementation?\n", 519 __FILE__); 520 return -ENOSPC; 521 } else 522 return 0; 523 } 524 525 /* 526 * Update the selected entry 527 */ 528 if (del) { 529 entry->hi = 0; 530 entry->lo = 0; 531 } else { 532 entry->hi = cpu_to_le32(new_high); 533 entry->lo = cpu_to_le32(new_low); 534 } 535 536 return 0; 537 } 538 539 /* 540 * ---------------------------------------------------------------------------- 541 * Create an addressTable entry from MAC address info 542 * found in the specifed net_device struct 543 * 544 * Input : pointer to ethernet interface network device structure 545 * Output : N/A 546 */ 547 static void update_hash_table_mac_address(struct pxa168_eth_private *pep, 548 unsigned char *oaddr, 549 unsigned char *addr) 550 { 551 /* Delete old entry */ 552 if (oaddr) 553 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE); 554 /* Add new entry */ 555 add_del_hash_entry(pep, addr, 1, 0, HASH_ADD); 556 } 557 558 static int init_hash_table(struct pxa168_eth_private *pep) 559 { 560 /* 561 * Hardware expects CPU to build a hash table based on a predefined 562 * hash function and populate it based on hardware address. The 563 * location of the hash table is identified by 32-bit pointer stored 564 * in HTPR internal register. Two possible sizes exists for the hash 565 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB 566 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support 567 * 1/2kB. 568 */ 569 /* TODO: Add support for 8kB hash table and alternative hash 570 * function.Driver can dynamically switch to them if the 1/2kB hash 571 * table is full. 572 */ 573 if (pep->htpr == NULL) { 574 pep->htpr = dma_zalloc_coherent(pep->dev->dev.parent, 575 HASH_ADDR_TABLE_SIZE, 576 &pep->htpr_dma, GFP_KERNEL); 577 if (pep->htpr == NULL) 578 return -ENOMEM; 579 } else { 580 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE); 581 } 582 wrl(pep, HTPR, pep->htpr_dma); 583 return 0; 584 } 585 586 static void pxa168_eth_set_rx_mode(struct net_device *dev) 587 { 588 struct pxa168_eth_private *pep = netdev_priv(dev); 589 struct netdev_hw_addr *ha; 590 u32 val; 591 592 val = rdl(pep, PORT_CONFIG); 593 if (dev->flags & IFF_PROMISC) 594 val |= PCR_PM; 595 else 596 val &= ~PCR_PM; 597 wrl(pep, PORT_CONFIG, val); 598 599 /* 600 * Remove the old list of MAC address and add dev->addr 601 * and multicast address. 602 */ 603 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE); 604 update_hash_table_mac_address(pep, NULL, dev->dev_addr); 605 606 netdev_for_each_mc_addr(ha, dev) 607 update_hash_table_mac_address(pep, NULL, ha->addr); 608 } 609 610 static void pxa168_eth_get_mac_address(struct net_device *dev, 611 unsigned char *addr) 612 { 613 struct pxa168_eth_private *pep = netdev_priv(dev); 614 unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH); 615 unsigned int mac_l = rdl(pep, MAC_ADDR_LOW); 616 617 addr[0] = (mac_h >> 24) & 0xff; 618 addr[1] = (mac_h >> 16) & 0xff; 619 addr[2] = (mac_h >> 8) & 0xff; 620 addr[3] = mac_h & 0xff; 621 addr[4] = (mac_l >> 8) & 0xff; 622 addr[5] = mac_l & 0xff; 623 } 624 625 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr) 626 { 627 struct sockaddr *sa = addr; 628 struct pxa168_eth_private *pep = netdev_priv(dev); 629 unsigned char oldMac[ETH_ALEN]; 630 u32 mac_h, mac_l; 631 632 if (!is_valid_ether_addr(sa->sa_data)) 633 return -EADDRNOTAVAIL; 634 memcpy(oldMac, dev->dev_addr, ETH_ALEN); 635 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN); 636 637 mac_h = dev->dev_addr[0] << 24; 638 mac_h |= dev->dev_addr[1] << 16; 639 mac_h |= dev->dev_addr[2] << 8; 640 mac_h |= dev->dev_addr[3]; 641 mac_l = dev->dev_addr[4] << 8; 642 mac_l |= dev->dev_addr[5]; 643 wrl(pep, MAC_ADDR_HIGH, mac_h); 644 wrl(pep, MAC_ADDR_LOW, mac_l); 645 646 netif_addr_lock_bh(dev); 647 update_hash_table_mac_address(pep, oldMac, dev->dev_addr); 648 netif_addr_unlock_bh(dev); 649 return 0; 650 } 651 652 static void eth_port_start(struct net_device *dev) 653 { 654 unsigned int val = 0; 655 struct pxa168_eth_private *pep = netdev_priv(dev); 656 int tx_curr_desc, rx_curr_desc; 657 658 /* Perform PHY reset, if there is a PHY. */ 659 if (pep->phy != NULL) { 660 struct ethtool_cmd cmd; 661 662 pxa168_get_settings(pep->dev, &cmd); 663 phy_init_hw(pep->phy); 664 pxa168_set_settings(pep->dev, &cmd); 665 } 666 667 /* Assignment of Tx CTRP of given queue */ 668 tx_curr_desc = pep->tx_curr_desc_q; 669 wrl(pep, ETH_C_TX_DESC_1, 670 (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc))); 671 672 /* Assignment of Rx CRDP of given queue */ 673 rx_curr_desc = pep->rx_curr_desc_q; 674 wrl(pep, ETH_C_RX_DESC_0, 675 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc))); 676 677 wrl(pep, ETH_F_RX_DESC_0, 678 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc))); 679 680 /* Clear all interrupts */ 681 wrl(pep, INT_CAUSE, 0); 682 683 /* Enable all interrupts for receive, transmit and error. */ 684 wrl(pep, INT_MASK, ALL_INTS); 685 686 val = rdl(pep, PORT_CONFIG); 687 val |= PCR_EN; 688 wrl(pep, PORT_CONFIG, val); 689 690 /* Start RX DMA engine */ 691 val = rdl(pep, SDMA_CMD); 692 val |= SDMA_CMD_ERD; 693 wrl(pep, SDMA_CMD, val); 694 } 695 696 static void eth_port_reset(struct net_device *dev) 697 { 698 struct pxa168_eth_private *pep = netdev_priv(dev); 699 unsigned int val = 0; 700 701 /* Stop all interrupts for receive, transmit and error. */ 702 wrl(pep, INT_MASK, 0); 703 704 /* Clear all interrupts */ 705 wrl(pep, INT_CAUSE, 0); 706 707 /* Stop RX DMA */ 708 val = rdl(pep, SDMA_CMD); 709 val &= ~SDMA_CMD_ERD; /* abort dma command */ 710 711 /* Abort any transmit and receive operations and put DMA 712 * in idle state. 713 */ 714 abort_dma(pep); 715 716 /* Disable port */ 717 val = rdl(pep, PORT_CONFIG); 718 val &= ~PCR_EN; 719 wrl(pep, PORT_CONFIG, val); 720 } 721 722 /* 723 * txq_reclaim - Free the tx desc data for completed descriptors 724 * If force is non-zero, frees uncompleted descriptors as well 725 */ 726 static int txq_reclaim(struct net_device *dev, int force) 727 { 728 struct pxa168_eth_private *pep = netdev_priv(dev); 729 struct tx_desc *desc; 730 u32 cmd_sts; 731 struct sk_buff *skb; 732 int tx_index; 733 dma_addr_t addr; 734 int count; 735 int released = 0; 736 737 netif_tx_lock(dev); 738 739 pep->work_todo &= ~WORK_TX_DONE; 740 while (pep->tx_desc_count > 0) { 741 tx_index = pep->tx_used_desc_q; 742 desc = &pep->p_tx_desc_area[tx_index]; 743 cmd_sts = desc->cmd_sts; 744 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) { 745 if (released > 0) { 746 goto txq_reclaim_end; 747 } else { 748 released = -1; 749 goto txq_reclaim_end; 750 } 751 } 752 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size; 753 pep->tx_desc_count--; 754 addr = desc->buf_ptr; 755 count = desc->byte_cnt; 756 skb = pep->tx_skb[tx_index]; 757 if (skb) 758 pep->tx_skb[tx_index] = NULL; 759 760 if (cmd_sts & TX_ERROR) { 761 if (net_ratelimit()) 762 netdev_err(dev, "Error in TX\n"); 763 dev->stats.tx_errors++; 764 } 765 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE); 766 if (skb) 767 dev_kfree_skb_irq(skb); 768 released++; 769 } 770 txq_reclaim_end: 771 netif_tx_unlock(dev); 772 return released; 773 } 774 775 static void pxa168_eth_tx_timeout(struct net_device *dev) 776 { 777 struct pxa168_eth_private *pep = netdev_priv(dev); 778 779 netdev_info(dev, "TX timeout desc_count %d\n", pep->tx_desc_count); 780 781 schedule_work(&pep->tx_timeout_task); 782 } 783 784 static void pxa168_eth_tx_timeout_task(struct work_struct *work) 785 { 786 struct pxa168_eth_private *pep = container_of(work, 787 struct pxa168_eth_private, 788 tx_timeout_task); 789 struct net_device *dev = pep->dev; 790 pxa168_eth_stop(dev); 791 pxa168_eth_open(dev); 792 } 793 794 static int rxq_process(struct net_device *dev, int budget) 795 { 796 struct pxa168_eth_private *pep = netdev_priv(dev); 797 struct net_device_stats *stats = &dev->stats; 798 unsigned int received_packets = 0; 799 struct sk_buff *skb; 800 801 while (budget-- > 0) { 802 int rx_next_curr_desc, rx_curr_desc, rx_used_desc; 803 struct rx_desc *rx_desc; 804 unsigned int cmd_sts; 805 806 /* Do not process Rx ring in case of Rx ring resource error */ 807 if (pep->rx_resource_err) 808 break; 809 rx_curr_desc = pep->rx_curr_desc_q; 810 rx_used_desc = pep->rx_used_desc_q; 811 rx_desc = &pep->p_rx_desc_area[rx_curr_desc]; 812 cmd_sts = rx_desc->cmd_sts; 813 rmb(); 814 if (cmd_sts & (BUF_OWNED_BY_DMA)) 815 break; 816 skb = pep->rx_skb[rx_curr_desc]; 817 pep->rx_skb[rx_curr_desc] = NULL; 818 819 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size; 820 pep->rx_curr_desc_q = rx_next_curr_desc; 821 822 /* Rx descriptors exhausted. */ 823 /* Set the Rx ring resource error flag */ 824 if (rx_next_curr_desc == rx_used_desc) 825 pep->rx_resource_err = 1; 826 pep->rx_desc_count--; 827 dma_unmap_single(NULL, rx_desc->buf_ptr, 828 rx_desc->buf_size, 829 DMA_FROM_DEVICE); 830 received_packets++; 831 /* 832 * Update statistics. 833 * Note byte count includes 4 byte CRC count 834 */ 835 stats->rx_packets++; 836 stats->rx_bytes += rx_desc->byte_cnt; 837 /* 838 * In case received a packet without first / last bits on OR 839 * the error summary bit is on, the packets needs to be droped. 840 */ 841 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != 842 (RX_FIRST_DESC | RX_LAST_DESC)) 843 || (cmd_sts & RX_ERROR)) { 844 845 stats->rx_dropped++; 846 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) != 847 (RX_FIRST_DESC | RX_LAST_DESC)) { 848 if (net_ratelimit()) 849 netdev_err(dev, 850 "Rx pkt on multiple desc\n"); 851 } 852 if (cmd_sts & RX_ERROR) 853 stats->rx_errors++; 854 dev_kfree_skb_irq(skb); 855 } else { 856 /* 857 * The -4 is for the CRC in the trailer of the 858 * received packet 859 */ 860 skb_put(skb, rx_desc->byte_cnt - 4); 861 skb->protocol = eth_type_trans(skb, dev); 862 netif_receive_skb(skb); 863 } 864 } 865 /* Fill RX ring with skb's */ 866 rxq_refill(dev); 867 return received_packets; 868 } 869 870 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep, 871 struct net_device *dev) 872 { 873 u32 icr; 874 int ret = 0; 875 876 icr = rdl(pep, INT_CAUSE); 877 if (icr == 0) 878 return IRQ_NONE; 879 880 wrl(pep, INT_CAUSE, ~icr); 881 if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) { 882 pep->work_todo |= WORK_TX_DONE; 883 ret = 1; 884 } 885 if (icr & ICR_RXBUF) 886 ret = 1; 887 if (icr & ICR_MII_CH) { 888 pep->work_todo |= WORK_LINK; 889 ret = 1; 890 } 891 return ret; 892 } 893 894 static void handle_link_event(struct pxa168_eth_private *pep) 895 { 896 struct net_device *dev = pep->dev; 897 u32 port_status; 898 int speed; 899 int duplex; 900 int fc; 901 902 port_status = rdl(pep, PORT_STATUS); 903 if (!(port_status & LINK_UP)) { 904 if (netif_carrier_ok(dev)) { 905 netdev_info(dev, "link down\n"); 906 netif_carrier_off(dev); 907 txq_reclaim(dev, 1); 908 } 909 return; 910 } 911 if (port_status & PORT_SPEED_100) 912 speed = 100; 913 else 914 speed = 10; 915 916 duplex = (port_status & FULL_DUPLEX) ? 1 : 0; 917 fc = (port_status & FLOW_CONTROL_DISABLED) ? 0 : 1; 918 netdev_info(dev, "link up, %d Mb/s, %s duplex, flow control %sabled\n", 919 speed, duplex ? "full" : "half", fc ? "en" : "dis"); 920 if (!netif_carrier_ok(dev)) 921 netif_carrier_on(dev); 922 } 923 924 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id) 925 { 926 struct net_device *dev = (struct net_device *)dev_id; 927 struct pxa168_eth_private *pep = netdev_priv(dev); 928 929 if (unlikely(!pxa168_eth_collect_events(pep, dev))) 930 return IRQ_NONE; 931 /* Disable interrupts */ 932 wrl(pep, INT_MASK, 0); 933 napi_schedule(&pep->napi); 934 return IRQ_HANDLED; 935 } 936 937 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep) 938 { 939 int skb_size; 940 941 /* 942 * Reserve 2+14 bytes for an ethernet header (the hardware 943 * automatically prepends 2 bytes of dummy data to each 944 * received packet), 16 bytes for up to four VLAN tags, and 945 * 4 bytes for the trailing FCS -- 36 bytes total. 946 */ 947 skb_size = pep->dev->mtu + 36; 948 949 /* 950 * Make sure that the skb size is a multiple of 8 bytes, as 951 * the lower three bits of the receive descriptor's buffer 952 * size field are ignored by the hardware. 953 */ 954 pep->skb_size = (skb_size + 7) & ~7; 955 956 /* 957 * If NET_SKB_PAD is smaller than a cache line, 958 * netdev_alloc_skb() will cause skb->data to be misaligned 959 * to a cache line boundary. If this is the case, include 960 * some extra space to allow re-aligning the data area. 961 */ 962 pep->skb_size += SKB_DMA_REALIGN; 963 964 } 965 966 static int set_port_config_ext(struct pxa168_eth_private *pep) 967 { 968 int skb_size; 969 970 pxa168_eth_recalc_skb_size(pep); 971 if (pep->skb_size <= 1518) 972 skb_size = PCXR_MFL_1518; 973 else if (pep->skb_size <= 1536) 974 skb_size = PCXR_MFL_1536; 975 else if (pep->skb_size <= 2048) 976 skb_size = PCXR_MFL_2048; 977 else 978 skb_size = PCXR_MFL_64K; 979 980 /* Extended Port Configuration */ 981 wrl(pep, 982 PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */ 983 PCXR_DSCP_EN | /* Enable DSCP in IP */ 984 skb_size | PCXR_FLP | /* do not force link pass */ 985 PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */ 986 987 return 0; 988 } 989 990 static int pxa168_init_hw(struct pxa168_eth_private *pep) 991 { 992 int err = 0; 993 994 /* Disable interrupts */ 995 wrl(pep, INT_MASK, 0); 996 wrl(pep, INT_CAUSE, 0); 997 /* Write to ICR to clear interrupts. */ 998 wrl(pep, INT_W_CLEAR, 0); 999 /* Abort any transmit and receive operations and put DMA 1000 * in idle state. 1001 */ 1002 abort_dma(pep); 1003 /* Initialize address hash table */ 1004 err = init_hash_table(pep); 1005 if (err) 1006 return err; 1007 /* SDMA configuration */ 1008 wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */ 1009 SDCR_RIFB | /* Rx interrupt on frame */ 1010 SDCR_BLMT | /* Little endian transmit */ 1011 SDCR_BLMR | /* Little endian receive */ 1012 SDCR_RC_MAX_RETRANS); /* Max retransmit count */ 1013 /* Port Configuration */ 1014 wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */ 1015 set_port_config_ext(pep); 1016 1017 return err; 1018 } 1019 1020 static int rxq_init(struct net_device *dev) 1021 { 1022 struct pxa168_eth_private *pep = netdev_priv(dev); 1023 struct rx_desc *p_rx_desc; 1024 int size = 0, i = 0; 1025 int rx_desc_num = pep->rx_ring_size; 1026 1027 /* Allocate RX skb rings */ 1028 pep->rx_skb = kzalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size, 1029 GFP_KERNEL); 1030 if (!pep->rx_skb) 1031 return -ENOMEM; 1032 1033 /* Allocate RX ring */ 1034 pep->rx_desc_count = 0; 1035 size = pep->rx_ring_size * sizeof(struct rx_desc); 1036 pep->rx_desc_area_size = size; 1037 pep->p_rx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size, 1038 &pep->rx_desc_dma, 1039 GFP_KERNEL); 1040 if (!pep->p_rx_desc_area) 1041 goto out; 1042 1043 /* initialize the next_desc_ptr links in the Rx descriptors ring */ 1044 p_rx_desc = pep->p_rx_desc_area; 1045 for (i = 0; i < rx_desc_num; i++) { 1046 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma + 1047 ((i + 1) % rx_desc_num) * sizeof(struct rx_desc); 1048 } 1049 /* Save Rx desc pointer to driver struct. */ 1050 pep->rx_curr_desc_q = 0; 1051 pep->rx_used_desc_q = 0; 1052 pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc); 1053 return 0; 1054 out: 1055 kfree(pep->rx_skb); 1056 return -ENOMEM; 1057 } 1058 1059 static void rxq_deinit(struct net_device *dev) 1060 { 1061 struct pxa168_eth_private *pep = netdev_priv(dev); 1062 int curr; 1063 1064 /* Free preallocated skb's on RX rings */ 1065 for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) { 1066 if (pep->rx_skb[curr]) { 1067 dev_kfree_skb(pep->rx_skb[curr]); 1068 pep->rx_desc_count--; 1069 } 1070 } 1071 if (pep->rx_desc_count) 1072 netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n", 1073 pep->rx_desc_count); 1074 /* Free RX ring */ 1075 if (pep->p_rx_desc_area) 1076 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size, 1077 pep->p_rx_desc_area, pep->rx_desc_dma); 1078 kfree(pep->rx_skb); 1079 } 1080 1081 static int txq_init(struct net_device *dev) 1082 { 1083 struct pxa168_eth_private *pep = netdev_priv(dev); 1084 struct tx_desc *p_tx_desc; 1085 int size = 0, i = 0; 1086 int tx_desc_num = pep->tx_ring_size; 1087 1088 pep->tx_skb = kzalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size, 1089 GFP_KERNEL); 1090 if (!pep->tx_skb) 1091 return -ENOMEM; 1092 1093 /* Allocate TX ring */ 1094 pep->tx_desc_count = 0; 1095 size = pep->tx_ring_size * sizeof(struct tx_desc); 1096 pep->tx_desc_area_size = size; 1097 pep->p_tx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size, 1098 &pep->tx_desc_dma, 1099 GFP_KERNEL); 1100 if (!pep->p_tx_desc_area) 1101 goto out; 1102 /* Initialize the next_desc_ptr links in the Tx descriptors ring */ 1103 p_tx_desc = pep->p_tx_desc_area; 1104 for (i = 0; i < tx_desc_num; i++) { 1105 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma + 1106 ((i + 1) % tx_desc_num) * sizeof(struct tx_desc); 1107 } 1108 pep->tx_curr_desc_q = 0; 1109 pep->tx_used_desc_q = 0; 1110 pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc); 1111 return 0; 1112 out: 1113 kfree(pep->tx_skb); 1114 return -ENOMEM; 1115 } 1116 1117 static void txq_deinit(struct net_device *dev) 1118 { 1119 struct pxa168_eth_private *pep = netdev_priv(dev); 1120 1121 /* Free outstanding skb's on TX ring */ 1122 txq_reclaim(dev, 1); 1123 BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q); 1124 /* Free TX ring */ 1125 if (pep->p_tx_desc_area) 1126 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size, 1127 pep->p_tx_desc_area, pep->tx_desc_dma); 1128 kfree(pep->tx_skb); 1129 } 1130 1131 static int pxa168_eth_open(struct net_device *dev) 1132 { 1133 struct pxa168_eth_private *pep = netdev_priv(dev); 1134 int err; 1135 1136 err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev); 1137 if (err) { 1138 dev_err(&dev->dev, "can't assign irq\n"); 1139 return -EAGAIN; 1140 } 1141 pep->rx_resource_err = 0; 1142 err = rxq_init(dev); 1143 if (err != 0) 1144 goto out_free_irq; 1145 err = txq_init(dev); 1146 if (err != 0) 1147 goto out_free_rx_skb; 1148 pep->rx_used_desc_q = 0; 1149 pep->rx_curr_desc_q = 0; 1150 1151 /* Fill RX ring with skb's */ 1152 rxq_refill(dev); 1153 pep->rx_used_desc_q = 0; 1154 pep->rx_curr_desc_q = 0; 1155 netif_carrier_off(dev); 1156 eth_port_start(dev); 1157 napi_enable(&pep->napi); 1158 return 0; 1159 out_free_rx_skb: 1160 rxq_deinit(dev); 1161 out_free_irq: 1162 free_irq(dev->irq, dev); 1163 return err; 1164 } 1165 1166 static int pxa168_eth_stop(struct net_device *dev) 1167 { 1168 struct pxa168_eth_private *pep = netdev_priv(dev); 1169 eth_port_reset(dev); 1170 1171 /* Disable interrupts */ 1172 wrl(pep, INT_MASK, 0); 1173 wrl(pep, INT_CAUSE, 0); 1174 /* Write to ICR to clear interrupts. */ 1175 wrl(pep, INT_W_CLEAR, 0); 1176 napi_disable(&pep->napi); 1177 del_timer_sync(&pep->timeout); 1178 netif_carrier_off(dev); 1179 free_irq(dev->irq, dev); 1180 rxq_deinit(dev); 1181 txq_deinit(dev); 1182 1183 return 0; 1184 } 1185 1186 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu) 1187 { 1188 int retval; 1189 struct pxa168_eth_private *pep = netdev_priv(dev); 1190 1191 if ((mtu > 9500) || (mtu < 68)) 1192 return -EINVAL; 1193 1194 dev->mtu = mtu; 1195 retval = set_port_config_ext(pep); 1196 1197 if (!netif_running(dev)) 1198 return 0; 1199 1200 /* 1201 * Stop and then re-open the interface. This will allocate RX 1202 * skbs of the new MTU. 1203 * There is a possible danger that the open will not succeed, 1204 * due to memory being full. 1205 */ 1206 pxa168_eth_stop(dev); 1207 if (pxa168_eth_open(dev)) { 1208 dev_err(&dev->dev, 1209 "fatal error on re-opening device after MTU change\n"); 1210 } 1211 1212 return 0; 1213 } 1214 1215 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep) 1216 { 1217 int tx_desc_curr; 1218 1219 tx_desc_curr = pep->tx_curr_desc_q; 1220 pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size; 1221 BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q); 1222 pep->tx_desc_count++; 1223 1224 return tx_desc_curr; 1225 } 1226 1227 static int pxa168_rx_poll(struct napi_struct *napi, int budget) 1228 { 1229 struct pxa168_eth_private *pep = 1230 container_of(napi, struct pxa168_eth_private, napi); 1231 struct net_device *dev = pep->dev; 1232 int work_done = 0; 1233 1234 if (unlikely(pep->work_todo & WORK_LINK)) { 1235 pep->work_todo &= ~(WORK_LINK); 1236 handle_link_event(pep); 1237 } 1238 /* 1239 * We call txq_reclaim every time since in NAPI interupts are disabled 1240 * and due to this we miss the TX_DONE interrupt,which is not updated in 1241 * interrupt status register. 1242 */ 1243 txq_reclaim(dev, 0); 1244 if (netif_queue_stopped(dev) 1245 && pep->tx_ring_size - pep->tx_desc_count > 1) { 1246 netif_wake_queue(dev); 1247 } 1248 work_done = rxq_process(dev, budget); 1249 if (work_done < budget) { 1250 napi_complete(napi); 1251 wrl(pep, INT_MASK, ALL_INTS); 1252 } 1253 1254 return work_done; 1255 } 1256 1257 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev) 1258 { 1259 struct pxa168_eth_private *pep = netdev_priv(dev); 1260 struct net_device_stats *stats = &dev->stats; 1261 struct tx_desc *desc; 1262 int tx_index; 1263 int length; 1264 1265 tx_index = eth_alloc_tx_desc_index(pep); 1266 desc = &pep->p_tx_desc_area[tx_index]; 1267 length = skb->len; 1268 pep->tx_skb[tx_index] = skb; 1269 desc->byte_cnt = length; 1270 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE); 1271 1272 skb_tx_timestamp(skb); 1273 1274 wmb(); 1275 desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC | 1276 TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT; 1277 wmb(); 1278 wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD); 1279 1280 stats->tx_bytes += length; 1281 stats->tx_packets++; 1282 dev->trans_start = jiffies; 1283 if (pep->tx_ring_size - pep->tx_desc_count <= 1) { 1284 /* We handled the current skb, but now we are out of space.*/ 1285 netif_stop_queue(dev); 1286 } 1287 1288 return NETDEV_TX_OK; 1289 } 1290 1291 static int smi_wait_ready(struct pxa168_eth_private *pep) 1292 { 1293 int i = 0; 1294 1295 /* wait for the SMI register to become available */ 1296 for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) { 1297 if (i == PHY_WAIT_ITERATIONS) 1298 return -ETIMEDOUT; 1299 msleep(10); 1300 } 1301 1302 return 0; 1303 } 1304 1305 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum) 1306 { 1307 struct pxa168_eth_private *pep = bus->priv; 1308 int i = 0; 1309 int val; 1310 1311 if (smi_wait_ready(pep)) { 1312 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n"); 1313 return -ETIMEDOUT; 1314 } 1315 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R); 1316 /* now wait for the data to be valid */ 1317 for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) { 1318 if (i == PHY_WAIT_ITERATIONS) { 1319 netdev_warn(pep->dev, 1320 "pxa168_eth: SMI bus read not valid\n"); 1321 return -ENODEV; 1322 } 1323 msleep(10); 1324 } 1325 1326 return val & 0xffff; 1327 } 1328 1329 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum, 1330 u16 value) 1331 { 1332 struct pxa168_eth_private *pep = bus->priv; 1333 1334 if (smi_wait_ready(pep)) { 1335 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n"); 1336 return -ETIMEDOUT; 1337 } 1338 1339 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | 1340 SMI_OP_W | (value & 0xffff)); 1341 1342 if (smi_wait_ready(pep)) { 1343 netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n"); 1344 return -ETIMEDOUT; 1345 } 1346 1347 return 0; 1348 } 1349 1350 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, 1351 int cmd) 1352 { 1353 struct pxa168_eth_private *pep = netdev_priv(dev); 1354 if (pep->phy != NULL) 1355 return phy_mii_ioctl(pep->phy, ifr, cmd); 1356 1357 return -EOPNOTSUPP; 1358 } 1359 1360 static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr) 1361 { 1362 struct mii_bus *bus = pep->smi_bus; 1363 struct phy_device *phydev; 1364 int start; 1365 int num; 1366 int i; 1367 1368 if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) { 1369 /* Scan entire range */ 1370 start = ethernet_phy_get(pep); 1371 num = 32; 1372 } else { 1373 /* Use phy addr specific to platform */ 1374 start = phy_addr & 0x1f; 1375 num = 1; 1376 } 1377 phydev = NULL; 1378 for (i = 0; i < num; i++) { 1379 int addr = (start + i) & 0x1f; 1380 if (bus->phy_map[addr] == NULL) 1381 mdiobus_scan(bus, addr); 1382 1383 if (phydev == NULL) { 1384 phydev = bus->phy_map[addr]; 1385 if (phydev != NULL) 1386 ethernet_phy_set_addr(pep, addr); 1387 } 1388 } 1389 1390 return phydev; 1391 } 1392 1393 static void phy_init(struct pxa168_eth_private *pep) 1394 { 1395 struct phy_device *phy = pep->phy; 1396 1397 phy_attach(pep->dev, dev_name(&phy->dev), PHY_INTERFACE_MODE_MII); 1398 1399 if (pep->pd && pep->pd->speed != 0) { 1400 phy->autoneg = AUTONEG_DISABLE; 1401 phy->advertising = 0; 1402 phy->speed = pep->pd->speed; 1403 phy->duplex = pep->pd->duplex; 1404 } else { 1405 phy->autoneg = AUTONEG_ENABLE; 1406 phy->speed = 0; 1407 phy->duplex = 0; 1408 phy->supported &= PHY_BASIC_FEATURES; 1409 phy->advertising = phy->supported | ADVERTISED_Autoneg; 1410 } 1411 1412 phy_start_aneg(phy); 1413 } 1414 1415 static int ethernet_phy_setup(struct net_device *dev) 1416 { 1417 struct pxa168_eth_private *pep = netdev_priv(dev); 1418 1419 if (pep->pd && pep->pd->init) 1420 pep->pd->init(); 1421 1422 pep->phy = phy_scan(pep, pep->phy_addr & 0x1f); 1423 if (pep->phy != NULL) 1424 phy_init(pep); 1425 1426 update_hash_table_mac_address(pep, NULL, dev->dev_addr); 1427 1428 return 0; 1429 } 1430 1431 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1432 { 1433 struct pxa168_eth_private *pep = netdev_priv(dev); 1434 int err; 1435 1436 err = phy_read_status(pep->phy); 1437 if (err == 0) 1438 err = phy_ethtool_gset(pep->phy, cmd); 1439 1440 return err; 1441 } 1442 1443 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1444 { 1445 struct pxa168_eth_private *pep = netdev_priv(dev); 1446 1447 return phy_ethtool_sset(pep->phy, cmd); 1448 } 1449 1450 static void pxa168_get_drvinfo(struct net_device *dev, 1451 struct ethtool_drvinfo *info) 1452 { 1453 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); 1454 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version)); 1455 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 1456 strlcpy(info->bus_info, "N/A", sizeof(info->bus_info)); 1457 } 1458 1459 static const struct ethtool_ops pxa168_ethtool_ops = { 1460 .get_settings = pxa168_get_settings, 1461 .set_settings = pxa168_set_settings, 1462 .get_drvinfo = pxa168_get_drvinfo, 1463 .get_link = ethtool_op_get_link, 1464 .get_ts_info = ethtool_op_get_ts_info, 1465 }; 1466 1467 static const struct net_device_ops pxa168_eth_netdev_ops = { 1468 .ndo_open = pxa168_eth_open, 1469 .ndo_stop = pxa168_eth_stop, 1470 .ndo_start_xmit = pxa168_eth_start_xmit, 1471 .ndo_set_rx_mode = pxa168_eth_set_rx_mode, 1472 .ndo_set_mac_address = pxa168_eth_set_mac_address, 1473 .ndo_validate_addr = eth_validate_addr, 1474 .ndo_do_ioctl = pxa168_eth_do_ioctl, 1475 .ndo_change_mtu = pxa168_eth_change_mtu, 1476 .ndo_tx_timeout = pxa168_eth_tx_timeout, 1477 }; 1478 1479 static int pxa168_eth_probe(struct platform_device *pdev) 1480 { 1481 struct pxa168_eth_private *pep = NULL; 1482 struct net_device *dev = NULL; 1483 struct resource *res; 1484 struct clk *clk; 1485 struct device_node *np; 1486 const unsigned char *mac_addr = NULL; 1487 int err; 1488 1489 printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n"); 1490 1491 clk = devm_clk_get(&pdev->dev, NULL); 1492 if (IS_ERR(clk)) { 1493 dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n"); 1494 return -ENODEV; 1495 } 1496 clk_prepare_enable(clk); 1497 1498 dev = alloc_etherdev(sizeof(struct pxa168_eth_private)); 1499 if (!dev) { 1500 err = -ENOMEM; 1501 goto err_clk; 1502 } 1503 1504 platform_set_drvdata(pdev, dev); 1505 pep = netdev_priv(dev); 1506 pep->dev = dev; 1507 pep->clk = clk; 1508 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1509 if (res == NULL) { 1510 err = -ENODEV; 1511 goto err_netdev; 1512 } 1513 pep->base = devm_ioremap_resource(&pdev->dev, res); 1514 if (IS_ERR(pep->base)) { 1515 err = -ENOMEM; 1516 goto err_netdev; 1517 } 1518 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1519 BUG_ON(!res); 1520 dev->irq = res->start; 1521 dev->netdev_ops = &pxa168_eth_netdev_ops; 1522 dev->watchdog_timeo = 2 * HZ; 1523 dev->base_addr = 0; 1524 dev->ethtool_ops = &pxa168_ethtool_ops; 1525 1526 INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task); 1527 1528 if (pdev->dev.of_node) 1529 mac_addr = of_get_mac_address(pdev->dev.of_node); 1530 1531 if (mac_addr && is_valid_ether_addr(mac_addr)) { 1532 ether_addr_copy(dev->dev_addr, mac_addr); 1533 } else { 1534 /* try reading the mac address, if set by the bootloader */ 1535 pxa168_eth_get_mac_address(dev, dev->dev_addr); 1536 if (!is_valid_ether_addr(dev->dev_addr)) { 1537 dev_info(&pdev->dev, "Using random mac address\n"); 1538 eth_hw_addr_random(dev); 1539 } 1540 } 1541 1542 pep->rx_ring_size = NUM_RX_DESCS; 1543 pep->tx_ring_size = NUM_TX_DESCS; 1544 1545 pep->pd = dev_get_platdata(&pdev->dev); 1546 if (pep->pd) { 1547 if (pep->pd->rx_queue_size) 1548 pep->rx_ring_size = pep->pd->rx_queue_size; 1549 1550 if (pep->pd->tx_queue_size) 1551 pep->tx_ring_size = pep->pd->tx_queue_size; 1552 1553 pep->port_num = pep->pd->port_number; 1554 pep->phy_addr = pep->pd->phy_addr; 1555 } else if (pdev->dev.of_node) { 1556 of_property_read_u32(pdev->dev.of_node, "port-id", 1557 &pep->port_num); 1558 1559 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); 1560 if (np) 1561 of_property_read_u32(np, "reg", &pep->phy_addr); 1562 } 1563 1564 /* Hardware supports only 3 ports */ 1565 BUG_ON(pep->port_num > 2); 1566 netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size); 1567 1568 memset(&pep->timeout, 0, sizeof(struct timer_list)); 1569 init_timer(&pep->timeout); 1570 pep->timeout.function = rxq_refill_timer_wrapper; 1571 pep->timeout.data = (unsigned long)pep; 1572 1573 pep->smi_bus = mdiobus_alloc(); 1574 if (pep->smi_bus == NULL) { 1575 err = -ENOMEM; 1576 goto err_base; 1577 } 1578 pep->smi_bus->priv = pep; 1579 pep->smi_bus->name = "pxa168_eth smi"; 1580 pep->smi_bus->read = pxa168_smi_read; 1581 pep->smi_bus->write = pxa168_smi_write; 1582 snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d", 1583 pdev->name, pdev->id); 1584 pep->smi_bus->parent = &pdev->dev; 1585 pep->smi_bus->phy_mask = 0xffffffff; 1586 err = mdiobus_register(pep->smi_bus); 1587 if (err) 1588 goto err_free_mdio; 1589 1590 pxa168_init_hw(pep); 1591 err = ethernet_phy_setup(dev); 1592 if (err) 1593 goto err_mdiobus; 1594 SET_NETDEV_DEV(dev, &pdev->dev); 1595 err = register_netdev(dev); 1596 if (err) 1597 goto err_mdiobus; 1598 return 0; 1599 1600 err_mdiobus: 1601 mdiobus_unregister(pep->smi_bus); 1602 err_free_mdio: 1603 mdiobus_free(pep->smi_bus); 1604 err_base: 1605 iounmap(pep->base); 1606 err_netdev: 1607 free_netdev(dev); 1608 err_clk: 1609 clk_disable(clk); 1610 clk_put(clk); 1611 return err; 1612 } 1613 1614 static int pxa168_eth_remove(struct platform_device *pdev) 1615 { 1616 struct net_device *dev = platform_get_drvdata(pdev); 1617 struct pxa168_eth_private *pep = netdev_priv(dev); 1618 1619 if (pep->htpr) { 1620 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE, 1621 pep->htpr, pep->htpr_dma); 1622 pep->htpr = NULL; 1623 } 1624 if (pep->clk) { 1625 clk_disable(pep->clk); 1626 clk_put(pep->clk); 1627 pep->clk = NULL; 1628 } 1629 if (pep->phy != NULL) 1630 phy_detach(pep->phy); 1631 1632 iounmap(pep->base); 1633 pep->base = NULL; 1634 mdiobus_unregister(pep->smi_bus); 1635 mdiobus_free(pep->smi_bus); 1636 unregister_netdev(dev); 1637 cancel_work_sync(&pep->tx_timeout_task); 1638 free_netdev(dev); 1639 return 0; 1640 } 1641 1642 static void pxa168_eth_shutdown(struct platform_device *pdev) 1643 { 1644 struct net_device *dev = platform_get_drvdata(pdev); 1645 eth_port_reset(dev); 1646 } 1647 1648 #ifdef CONFIG_PM 1649 static int pxa168_eth_resume(struct platform_device *pdev) 1650 { 1651 return -ENOSYS; 1652 } 1653 1654 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state) 1655 { 1656 return -ENOSYS; 1657 } 1658 1659 #else 1660 #define pxa168_eth_resume NULL 1661 #define pxa168_eth_suspend NULL 1662 #endif 1663 1664 static const struct of_device_id pxa168_eth_of_match[] = { 1665 { .compatible = "marvell,pxa168-eth" }, 1666 { }, 1667 }; 1668 MODULE_DEVICE_TABLE(of, pxa168_eth_of_match); 1669 1670 static struct platform_driver pxa168_eth_driver = { 1671 .probe = pxa168_eth_probe, 1672 .remove = pxa168_eth_remove, 1673 .shutdown = pxa168_eth_shutdown, 1674 .resume = pxa168_eth_resume, 1675 .suspend = pxa168_eth_suspend, 1676 .driver = { 1677 .name = DRIVER_NAME, 1678 .of_match_table = of_match_ptr(pxa168_eth_of_match), 1679 }, 1680 }; 1681 1682 module_platform_driver(pxa168_eth_driver); 1683 1684 MODULE_LICENSE("GPL"); 1685 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168"); 1686 MODULE_ALIAS("platform:pxa168_eth"); 1687