1 // SPDX-License-Identifier: GPL-2.0 2 /* Marvell RVU Ethernet driver 3 * 4 * Copyright (C) 2020 Marvell. 5 * 6 */ 7 8 #include <linux/etherdevice.h> 9 #include <net/ip.h> 10 #include <net/tso.h> 11 #include <linux/bpf.h> 12 #include <linux/bpf_trace.h> 13 #include <net/ip6_checksum.h> 14 15 #include "otx2_reg.h" 16 #include "otx2_common.h" 17 #include "otx2_struct.h" 18 #include "otx2_txrx.h" 19 #include "otx2_ptp.h" 20 #include "cn10k.h" 21 22 #define CQE_ADDR(CQ, idx) ((CQ)->cqe_base + ((CQ)->cqe_size * (idx))) 23 #define PTP_PORT 0x13F 24 /* PTPv2 header Original Timestamp starts at byte offset 34 and 25 * contains 6 byte seconds field and 4 byte nano seconds field. 26 */ 27 #define PTP_SYNC_SEC_OFFSET 34 28 29 static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf, 30 struct bpf_prog *prog, 31 struct nix_cqe_rx_s *cqe, 32 struct otx2_cq_queue *cq); 33 34 static int otx2_nix_cq_op_status(struct otx2_nic *pfvf, 35 struct otx2_cq_queue *cq) 36 { 37 u64 incr = (u64)(cq->cq_idx) << 32; 38 u64 status; 39 40 status = otx2_atomic64_fetch_add(incr, pfvf->cq_op_addr); 41 42 if (unlikely(status & BIT_ULL(CQ_OP_STAT_OP_ERR) || 43 status & BIT_ULL(CQ_OP_STAT_CQ_ERR))) { 44 dev_err(pfvf->dev, "CQ stopped due to error"); 45 return -EINVAL; 46 } 47 48 cq->cq_tail = status & 0xFFFFF; 49 cq->cq_head = (status >> 20) & 0xFFFFF; 50 if (cq->cq_tail < cq->cq_head) 51 cq->pend_cqe = (cq->cqe_cnt - cq->cq_head) + 52 cq->cq_tail; 53 else 54 cq->pend_cqe = cq->cq_tail - cq->cq_head; 55 56 return 0; 57 } 58 59 static struct nix_cqe_hdr_s *otx2_get_next_cqe(struct otx2_cq_queue *cq) 60 { 61 struct nix_cqe_hdr_s *cqe_hdr; 62 63 cqe_hdr = (struct nix_cqe_hdr_s *)CQE_ADDR(cq, cq->cq_head); 64 if (cqe_hdr->cqe_type == NIX_XQE_TYPE_INVALID) 65 return NULL; 66 67 cq->cq_head++; 68 cq->cq_head &= (cq->cqe_cnt - 1); 69 70 return cqe_hdr; 71 } 72 73 static unsigned int frag_num(unsigned int i) 74 { 75 #ifdef __BIG_ENDIAN 76 return (i & ~3) + 3 - (i & 3); 77 #else 78 return i; 79 #endif 80 } 81 82 static dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf, 83 struct sk_buff *skb, int seg, int *len) 84 { 85 const skb_frag_t *frag; 86 struct page *page; 87 int offset; 88 89 /* First segment is always skb->data */ 90 if (!seg) { 91 page = virt_to_page(skb->data); 92 offset = offset_in_page(skb->data); 93 *len = skb_headlen(skb); 94 } else { 95 frag = &skb_shinfo(skb)->frags[seg - 1]; 96 page = skb_frag_page(frag); 97 offset = skb_frag_off(frag); 98 *len = skb_frag_size(frag); 99 } 100 return otx2_dma_map_page(pfvf, page, offset, *len, DMA_TO_DEVICE); 101 } 102 103 static void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg) 104 { 105 int seg; 106 107 for (seg = 0; seg < sg->num_segs; seg++) { 108 otx2_dma_unmap_page(pfvf, sg->dma_addr[seg], 109 sg->size[seg], DMA_TO_DEVICE); 110 } 111 sg->num_segs = 0; 112 } 113 114 static void otx2_xdp_snd_pkt_handler(struct otx2_nic *pfvf, 115 struct otx2_snd_queue *sq, 116 struct nix_cqe_tx_s *cqe) 117 { 118 struct nix_send_comp_s *snd_comp = &cqe->comp; 119 struct sg_list *sg; 120 struct page *page; 121 u64 pa; 122 123 sg = &sq->sg[snd_comp->sqe_id]; 124 125 pa = otx2_iova_to_phys(pfvf->iommu_domain, sg->dma_addr[0]); 126 otx2_dma_unmap_page(pfvf, sg->dma_addr[0], 127 sg->size[0], DMA_TO_DEVICE); 128 page = virt_to_page(phys_to_virt(pa)); 129 put_page(page); 130 } 131 132 static void otx2_snd_pkt_handler(struct otx2_nic *pfvf, 133 struct otx2_cq_queue *cq, 134 struct otx2_snd_queue *sq, 135 struct nix_cqe_tx_s *cqe, 136 int budget, int *tx_pkts, int *tx_bytes) 137 { 138 struct nix_send_comp_s *snd_comp = &cqe->comp; 139 struct skb_shared_hwtstamps ts; 140 struct sk_buff *skb = NULL; 141 u64 timestamp, tsns; 142 struct sg_list *sg; 143 int err; 144 145 if (unlikely(snd_comp->status) && netif_msg_tx_err(pfvf)) 146 net_err_ratelimited("%s: TX%d: Error in send CQ status:%x\n", 147 pfvf->netdev->name, cq->cint_idx, 148 snd_comp->status); 149 150 sg = &sq->sg[snd_comp->sqe_id]; 151 skb = (struct sk_buff *)sg->skb; 152 if (unlikely(!skb)) 153 return; 154 155 if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) { 156 timestamp = ((u64 *)sq->timestamps->base)[snd_comp->sqe_id]; 157 if (timestamp != 1) { 158 timestamp = pfvf->ptp->convert_tx_ptp_tstmp(timestamp); 159 err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns); 160 if (!err) { 161 memset(&ts, 0, sizeof(ts)); 162 ts.hwtstamp = ns_to_ktime(tsns); 163 skb_tstamp_tx(skb, &ts); 164 } 165 } 166 } 167 168 *tx_bytes += skb->len; 169 (*tx_pkts)++; 170 otx2_dma_unmap_skb_frags(pfvf, sg); 171 napi_consume_skb(skb, budget); 172 sg->skb = (u64)NULL; 173 } 174 175 static void otx2_set_rxtstamp(struct otx2_nic *pfvf, 176 struct sk_buff *skb, void *data) 177 { 178 u64 timestamp, tsns; 179 int err; 180 181 if (!(pfvf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED)) 182 return; 183 184 timestamp = pfvf->ptp->convert_rx_ptp_tstmp(*(u64 *)data); 185 /* The first 8 bytes is the timestamp */ 186 err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns); 187 if (err) 188 return; 189 190 skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(tsns); 191 } 192 193 static bool otx2_skb_add_frag(struct otx2_nic *pfvf, struct sk_buff *skb, 194 u64 iova, int len, struct nix_rx_parse_s *parse, 195 int qidx) 196 { 197 struct page *page; 198 int off = 0; 199 void *va; 200 201 va = phys_to_virt(otx2_iova_to_phys(pfvf->iommu_domain, iova)); 202 203 if (likely(!skb_shinfo(skb)->nr_frags)) { 204 /* Check if data starts at some nonzero offset 205 * from the start of the buffer. For now the 206 * only possible offset is 8 bytes in the case 207 * where packet is prepended by a timestamp. 208 */ 209 if (parse->laptr) { 210 otx2_set_rxtstamp(pfvf, skb, va); 211 off = OTX2_HW_TIMESTAMP_LEN; 212 } 213 } 214 215 page = virt_to_page(va); 216 if (likely(skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS)) { 217 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 218 va - page_address(page) + off, 219 len - off, pfvf->rbsize); 220 return true; 221 } 222 223 /* If more than MAX_SKB_FRAGS fragments are received then 224 * give back those buffer pointers to hardware for reuse. 225 */ 226 pfvf->hw_ops->aura_freeptr(pfvf, qidx, iova & ~0x07ULL); 227 228 return false; 229 } 230 231 static void otx2_set_rxhash(struct otx2_nic *pfvf, 232 struct nix_cqe_rx_s *cqe, struct sk_buff *skb) 233 { 234 enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE; 235 struct otx2_rss_info *rss; 236 u32 hash = 0; 237 238 if (!(pfvf->netdev->features & NETIF_F_RXHASH)) 239 return; 240 241 rss = &pfvf->hw.rss_info; 242 if (rss->flowkey_cfg) { 243 if (rss->flowkey_cfg & 244 ~(NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6)) 245 hash_type = PKT_HASH_TYPE_L4; 246 else 247 hash_type = PKT_HASH_TYPE_L3; 248 hash = cqe->hdr.flow_tag; 249 } 250 skb_set_hash(skb, hash, hash_type); 251 } 252 253 static void otx2_free_rcv_seg(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe, 254 int qidx) 255 { 256 struct nix_rx_sg_s *sg = &cqe->sg; 257 void *end, *start; 258 u64 *seg_addr; 259 int seg; 260 261 start = (void *)sg; 262 end = start + ((cqe->parse.desc_sizem1 + 1) * 16); 263 while (start < end) { 264 sg = (struct nix_rx_sg_s *)start; 265 seg_addr = &sg->seg_addr; 266 for (seg = 0; seg < sg->segs; seg++, seg_addr++) 267 pfvf->hw_ops->aura_freeptr(pfvf, qidx, 268 *seg_addr & ~0x07ULL); 269 start += sizeof(*sg); 270 } 271 } 272 273 static bool otx2_check_rcv_errors(struct otx2_nic *pfvf, 274 struct nix_cqe_rx_s *cqe, int qidx) 275 { 276 struct otx2_drv_stats *stats = &pfvf->hw.drv_stats; 277 struct nix_rx_parse_s *parse = &cqe->parse; 278 279 if (netif_msg_rx_err(pfvf)) 280 netdev_err(pfvf->netdev, 281 "RQ%d: Error pkt with errlev:0x%x errcode:0x%x\n", 282 qidx, parse->errlev, parse->errcode); 283 284 if (parse->errlev == NPC_ERRLVL_RE) { 285 switch (parse->errcode) { 286 case ERRCODE_FCS: 287 case ERRCODE_FCS_RCV: 288 atomic_inc(&stats->rx_fcs_errs); 289 break; 290 case ERRCODE_UNDERSIZE: 291 atomic_inc(&stats->rx_undersize_errs); 292 break; 293 case ERRCODE_OVERSIZE: 294 atomic_inc(&stats->rx_oversize_errs); 295 break; 296 case ERRCODE_OL2_LEN_MISMATCH: 297 atomic_inc(&stats->rx_len_errs); 298 break; 299 default: 300 atomic_inc(&stats->rx_other_errs); 301 break; 302 } 303 } else if (parse->errlev == NPC_ERRLVL_NIX) { 304 switch (parse->errcode) { 305 case ERRCODE_OL3_LEN: 306 case ERRCODE_OL4_LEN: 307 case ERRCODE_IL3_LEN: 308 case ERRCODE_IL4_LEN: 309 atomic_inc(&stats->rx_len_errs); 310 break; 311 case ERRCODE_OL4_CSUM: 312 case ERRCODE_IL4_CSUM: 313 atomic_inc(&stats->rx_csum_errs); 314 break; 315 default: 316 atomic_inc(&stats->rx_other_errs); 317 break; 318 } 319 } else { 320 atomic_inc(&stats->rx_other_errs); 321 /* For now ignore all the NPC parser errors and 322 * pass the packets to stack. 323 */ 324 return false; 325 } 326 327 /* If RXALL is enabled pass on packets to stack. */ 328 if (pfvf->netdev->features & NETIF_F_RXALL) 329 return false; 330 331 /* Free buffer back to pool */ 332 if (cqe->sg.segs) 333 otx2_free_rcv_seg(pfvf, cqe, qidx); 334 return true; 335 } 336 337 static void otx2_rcv_pkt_handler(struct otx2_nic *pfvf, 338 struct napi_struct *napi, 339 struct otx2_cq_queue *cq, 340 struct nix_cqe_rx_s *cqe) 341 { 342 struct nix_rx_parse_s *parse = &cqe->parse; 343 struct nix_rx_sg_s *sg = &cqe->sg; 344 struct sk_buff *skb = NULL; 345 void *end, *start; 346 u64 *seg_addr; 347 u16 *seg_size; 348 int seg; 349 350 if (unlikely(parse->errlev || parse->errcode)) { 351 if (otx2_check_rcv_errors(pfvf, cqe, cq->cq_idx)) 352 return; 353 } 354 355 if (pfvf->xdp_prog) 356 if (otx2_xdp_rcv_pkt_handler(pfvf, pfvf->xdp_prog, cqe, cq)) 357 return; 358 359 skb = napi_get_frags(napi); 360 if (unlikely(!skb)) 361 return; 362 363 start = (void *)sg; 364 end = start + ((cqe->parse.desc_sizem1 + 1) * 16); 365 while (start < end) { 366 sg = (struct nix_rx_sg_s *)start; 367 seg_addr = &sg->seg_addr; 368 seg_size = (void *)sg; 369 for (seg = 0; seg < sg->segs; seg++, seg_addr++) { 370 if (otx2_skb_add_frag(pfvf, skb, *seg_addr, 371 seg_size[seg], parse, cq->cq_idx)) 372 cq->pool_ptrs++; 373 } 374 start += sizeof(*sg); 375 } 376 otx2_set_rxhash(pfvf, cqe, skb); 377 378 skb_record_rx_queue(skb, cq->cq_idx); 379 if (pfvf->netdev->features & NETIF_F_RXCSUM) 380 skb->ip_summed = CHECKSUM_UNNECESSARY; 381 382 skb_mark_for_recycle(skb); 383 384 napi_gro_frags(napi); 385 } 386 387 static int otx2_rx_napi_handler(struct otx2_nic *pfvf, 388 struct napi_struct *napi, 389 struct otx2_cq_queue *cq, int budget) 390 { 391 struct nix_cqe_rx_s *cqe; 392 int processed_cqe = 0; 393 394 if (cq->pend_cqe >= budget) 395 goto process_cqe; 396 397 if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) 398 return 0; 399 400 process_cqe: 401 while (likely(processed_cqe < budget) && cq->pend_cqe) { 402 cqe = (struct nix_cqe_rx_s *)CQE_ADDR(cq, cq->cq_head); 403 if (cqe->hdr.cqe_type == NIX_XQE_TYPE_INVALID || 404 !cqe->sg.seg_addr) { 405 if (!processed_cqe) 406 return 0; 407 break; 408 } 409 cq->cq_head++; 410 cq->cq_head &= (cq->cqe_cnt - 1); 411 412 otx2_rcv_pkt_handler(pfvf, napi, cq, cqe); 413 414 cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID; 415 cqe->sg.seg_addr = 0x00; 416 processed_cqe++; 417 cq->pend_cqe--; 418 } 419 420 /* Free CQEs to HW */ 421 otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, 422 ((u64)cq->cq_idx << 32) | processed_cqe); 423 424 return processed_cqe; 425 } 426 427 void otx2_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq) 428 { 429 struct otx2_nic *pfvf = dev; 430 dma_addr_t bufptr; 431 432 while (cq->pool_ptrs) { 433 if (otx2_alloc_buffer(pfvf, cq, &bufptr)) 434 break; 435 otx2_aura_freeptr(pfvf, cq->cq_idx, bufptr + OTX2_HEAD_ROOM); 436 cq->pool_ptrs--; 437 } 438 } 439 440 static int otx2_tx_napi_handler(struct otx2_nic *pfvf, 441 struct otx2_cq_queue *cq, int budget) 442 { 443 int tx_pkts = 0, tx_bytes = 0, qidx; 444 struct otx2_snd_queue *sq; 445 struct nix_cqe_tx_s *cqe; 446 int processed_cqe = 0; 447 448 if (cq->pend_cqe >= budget) 449 goto process_cqe; 450 451 if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) 452 return 0; 453 454 process_cqe: 455 qidx = cq->cq_idx - pfvf->hw.rx_queues; 456 sq = &pfvf->qset.sq[qidx]; 457 458 while (likely(processed_cqe < budget) && cq->pend_cqe) { 459 cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq); 460 if (unlikely(!cqe)) { 461 if (!processed_cqe) 462 return 0; 463 break; 464 } 465 466 qidx = cq->cq_idx - pfvf->hw.rx_queues; 467 468 if (cq->cq_type == CQ_XDP) 469 otx2_xdp_snd_pkt_handler(pfvf, sq, cqe); 470 else 471 otx2_snd_pkt_handler(pfvf, cq, &pfvf->qset.sq[qidx], 472 cqe, budget, &tx_pkts, &tx_bytes); 473 474 cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID; 475 processed_cqe++; 476 cq->pend_cqe--; 477 478 sq->cons_head++; 479 sq->cons_head &= (sq->sqe_cnt - 1); 480 } 481 482 /* Free CQEs to HW */ 483 otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, 484 ((u64)cq->cq_idx << 32) | processed_cqe); 485 486 if (likely(tx_pkts)) { 487 struct netdev_queue *txq; 488 489 qidx = cq->cq_idx - pfvf->hw.rx_queues; 490 491 if (qidx >= pfvf->hw.tx_queues) 492 qidx -= pfvf->hw.xdp_queues; 493 txq = netdev_get_tx_queue(pfvf->netdev, qidx); 494 netdev_tx_completed_queue(txq, tx_pkts, tx_bytes); 495 /* Check if queue was stopped earlier due to ring full */ 496 smp_mb(); 497 if (netif_tx_queue_stopped(txq) && 498 netif_carrier_ok(pfvf->netdev)) 499 netif_tx_wake_queue(txq); 500 } 501 return 0; 502 } 503 504 static void otx2_adjust_adaptive_coalese(struct otx2_nic *pfvf, struct otx2_cq_poll *cq_poll) 505 { 506 struct dim_sample dim_sample; 507 u64 rx_frames, rx_bytes; 508 509 rx_frames = OTX2_GET_RX_STATS(RX_BCAST) + OTX2_GET_RX_STATS(RX_MCAST) + 510 OTX2_GET_RX_STATS(RX_UCAST); 511 rx_bytes = OTX2_GET_RX_STATS(RX_OCTS); 512 dim_update_sample(pfvf->napi_events, rx_frames, rx_bytes, &dim_sample); 513 net_dim(&cq_poll->dim, dim_sample); 514 } 515 516 int otx2_napi_handler(struct napi_struct *napi, int budget) 517 { 518 struct otx2_cq_queue *rx_cq = NULL; 519 struct otx2_cq_poll *cq_poll; 520 int workdone = 0, cq_idx, i; 521 struct otx2_cq_queue *cq; 522 struct otx2_qset *qset; 523 struct otx2_nic *pfvf; 524 525 cq_poll = container_of(napi, struct otx2_cq_poll, napi); 526 pfvf = (struct otx2_nic *)cq_poll->dev; 527 qset = &pfvf->qset; 528 529 for (i = 0; i < CQS_PER_CINT; i++) { 530 cq_idx = cq_poll->cq_ids[i]; 531 if (unlikely(cq_idx == CINT_INVALID_CQ)) 532 continue; 533 cq = &qset->cq[cq_idx]; 534 if (cq->cq_type == CQ_RX) { 535 rx_cq = cq; 536 workdone += otx2_rx_napi_handler(pfvf, napi, 537 cq, budget); 538 } else { 539 workdone += otx2_tx_napi_handler(pfvf, cq, budget); 540 } 541 } 542 543 if (rx_cq && rx_cq->pool_ptrs) 544 pfvf->hw_ops->refill_pool_ptrs(pfvf, rx_cq); 545 /* Clear the IRQ */ 546 otx2_write64(pfvf, NIX_LF_CINTX_INT(cq_poll->cint_idx), BIT_ULL(0)); 547 548 if (workdone < budget && napi_complete_done(napi, workdone)) { 549 /* If interface is going down, don't re-enable IRQ */ 550 if (pfvf->flags & OTX2_FLAG_INTF_DOWN) 551 return workdone; 552 553 /* Check for adaptive interrupt coalesce */ 554 if (workdone != 0 && 555 ((pfvf->flags & OTX2_FLAG_ADPTV_INT_COAL_ENABLED) == 556 OTX2_FLAG_ADPTV_INT_COAL_ENABLED)) { 557 /* Adjust irq coalese using net_dim */ 558 otx2_adjust_adaptive_coalese(pfvf, cq_poll); 559 /* Update irq coalescing */ 560 for (i = 0; i < pfvf->hw.cint_cnt; i++) 561 otx2_config_irq_coalescing(pfvf, i); 562 } 563 564 /* Re-enable interrupts */ 565 otx2_write64(pfvf, NIX_LF_CINTX_ENA_W1S(cq_poll->cint_idx), 566 BIT_ULL(0)); 567 } 568 return workdone; 569 } 570 571 void otx2_sqe_flush(void *dev, struct otx2_snd_queue *sq, 572 int size, int qidx) 573 { 574 u64 status; 575 576 /* Packet data stores should finish before SQE is flushed to HW */ 577 dma_wmb(); 578 579 do { 580 memcpy(sq->lmt_addr, sq->sqe_base, size); 581 status = otx2_lmt_flush(sq->io_addr); 582 } while (status == 0); 583 584 sq->head++; 585 sq->head &= (sq->sqe_cnt - 1); 586 } 587 588 #define MAX_SEGS_PER_SG 3 589 /* Add SQE scatter/gather subdescriptor structure */ 590 static bool otx2_sqe_add_sg(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, 591 struct sk_buff *skb, int num_segs, int *offset) 592 { 593 struct nix_sqe_sg_s *sg = NULL; 594 u64 dma_addr, *iova = NULL; 595 u16 *sg_lens = NULL; 596 int seg, len; 597 598 sq->sg[sq->head].num_segs = 0; 599 600 for (seg = 0; seg < num_segs; seg++) { 601 if ((seg % MAX_SEGS_PER_SG) == 0) { 602 sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset); 603 sg->ld_type = NIX_SEND_LDTYPE_LDD; 604 sg->subdc = NIX_SUBDC_SG; 605 sg->segs = 0; 606 sg_lens = (void *)sg; 607 iova = (void *)sg + sizeof(*sg); 608 /* Next subdc always starts at a 16byte boundary. 609 * So if sg->segs is whether 2 or 3, offset += 16bytes. 610 */ 611 if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1)) 612 *offset += sizeof(*sg) + (3 * sizeof(u64)); 613 else 614 *offset += sizeof(*sg) + sizeof(u64); 615 } 616 dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len); 617 if (dma_mapping_error(pfvf->dev, dma_addr)) 618 return false; 619 620 sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = len; 621 sg->segs++; 622 *iova++ = dma_addr; 623 624 /* Save DMA mapping info for later unmapping */ 625 sq->sg[sq->head].dma_addr[seg] = dma_addr; 626 sq->sg[sq->head].size[seg] = len; 627 sq->sg[sq->head].num_segs++; 628 } 629 630 sq->sg[sq->head].skb = (u64)skb; 631 return true; 632 } 633 634 /* Add SQE extended header subdescriptor */ 635 static void otx2_sqe_add_ext(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, 636 struct sk_buff *skb, int *offset) 637 { 638 struct nix_sqe_ext_s *ext; 639 640 ext = (struct nix_sqe_ext_s *)(sq->sqe_base + *offset); 641 ext->subdc = NIX_SUBDC_EXT; 642 if (skb_shinfo(skb)->gso_size) { 643 ext->lso = 1; 644 ext->lso_sb = skb_tcp_all_headers(skb); 645 ext->lso_mps = skb_shinfo(skb)->gso_size; 646 647 /* Only TSOv4 and TSOv6 GSO offloads are supported */ 648 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 649 ext->lso_format = pfvf->hw.lso_tsov4_idx; 650 651 /* HW adds payload size to 'ip_hdr->tot_len' while 652 * sending TSO segment, hence set payload length 653 * in IP header of the packet to just header length. 654 */ 655 ip_hdr(skb)->tot_len = 656 htons(ext->lso_sb - skb_network_offset(skb)); 657 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) { 658 ext->lso_format = pfvf->hw.lso_tsov6_idx; 659 660 ipv6_hdr(skb)->payload_len = 661 htons(ext->lso_sb - skb_network_offset(skb)); 662 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 663 __be16 l3_proto = vlan_get_protocol(skb); 664 struct udphdr *udph = udp_hdr(skb); 665 u16 iplen; 666 667 ext->lso_sb = skb_transport_offset(skb) + 668 sizeof(struct udphdr); 669 670 /* HW adds payload size to length fields in IP and 671 * UDP headers while segmentation, hence adjust the 672 * lengths to just header sizes. 673 */ 674 iplen = htons(ext->lso_sb - skb_network_offset(skb)); 675 if (l3_proto == htons(ETH_P_IP)) { 676 ip_hdr(skb)->tot_len = iplen; 677 ext->lso_format = pfvf->hw.lso_udpv4_idx; 678 } else { 679 ipv6_hdr(skb)->payload_len = iplen; 680 ext->lso_format = pfvf->hw.lso_udpv6_idx; 681 } 682 683 udph->len = htons(sizeof(struct udphdr)); 684 } 685 } else if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 686 ext->tstmp = 1; 687 } 688 689 #define OTX2_VLAN_PTR_OFFSET (ETH_HLEN - ETH_TLEN) 690 if (skb_vlan_tag_present(skb)) { 691 if (skb->vlan_proto == htons(ETH_P_8021Q)) { 692 ext->vlan1_ins_ena = 1; 693 ext->vlan1_ins_ptr = OTX2_VLAN_PTR_OFFSET; 694 ext->vlan1_ins_tci = skb_vlan_tag_get(skb); 695 } else if (skb->vlan_proto == htons(ETH_P_8021AD)) { 696 ext->vlan0_ins_ena = 1; 697 ext->vlan0_ins_ptr = OTX2_VLAN_PTR_OFFSET; 698 ext->vlan0_ins_tci = skb_vlan_tag_get(skb); 699 } 700 } 701 702 *offset += sizeof(*ext); 703 } 704 705 static void otx2_sqe_add_mem(struct otx2_snd_queue *sq, int *offset, 706 int alg, u64 iova, int ptp_offset, 707 u64 base_ns, bool udp_csum_crt) 708 { 709 struct nix_sqe_mem_s *mem; 710 711 mem = (struct nix_sqe_mem_s *)(sq->sqe_base + *offset); 712 mem->subdc = NIX_SUBDC_MEM; 713 mem->alg = alg; 714 mem->wmem = 1; /* wait for the memory operation */ 715 mem->addr = iova; 716 717 if (ptp_offset) { 718 mem->start_offset = ptp_offset; 719 mem->udp_csum_crt = !!udp_csum_crt; 720 mem->base_ns = base_ns; 721 mem->step_type = 1; 722 } 723 724 *offset += sizeof(*mem); 725 } 726 727 /* Add SQE header subdescriptor structure */ 728 static void otx2_sqe_add_hdr(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, 729 struct nix_sqe_hdr_s *sqe_hdr, 730 struct sk_buff *skb, u16 qidx) 731 { 732 int proto = 0; 733 734 /* Check if SQE was framed before, if yes then no need to 735 * set these constants again and again. 736 */ 737 if (!sqe_hdr->total) { 738 /* Don't free Tx buffers to Aura */ 739 sqe_hdr->df = 1; 740 sqe_hdr->aura = sq->aura_id; 741 /* Post a CQE Tx after pkt transmission */ 742 sqe_hdr->pnc = 1; 743 sqe_hdr->sq = (qidx >= pfvf->hw.tx_queues) ? 744 qidx + pfvf->hw.xdp_queues : qidx; 745 } 746 sqe_hdr->total = skb->len; 747 /* Set SQE identifier which will be used later for freeing SKB */ 748 sqe_hdr->sqe_id = sq->head; 749 750 /* Offload TCP/UDP checksum to HW */ 751 if (skb->ip_summed == CHECKSUM_PARTIAL) { 752 sqe_hdr->ol3ptr = skb_network_offset(skb); 753 sqe_hdr->ol4ptr = skb_transport_offset(skb); 754 /* get vlan protocol Ethertype */ 755 if (eth_type_vlan(skb->protocol)) 756 skb->protocol = vlan_get_protocol(skb); 757 758 if (skb->protocol == htons(ETH_P_IP)) { 759 proto = ip_hdr(skb)->protocol; 760 /* In case of TSO, HW needs this to be explicitly set. 761 * So set this always, instead of adding a check. 762 */ 763 sqe_hdr->ol3type = NIX_SENDL3TYPE_IP4_CKSUM; 764 } else if (skb->protocol == htons(ETH_P_IPV6)) { 765 proto = ipv6_hdr(skb)->nexthdr; 766 sqe_hdr->ol3type = NIX_SENDL3TYPE_IP6; 767 } 768 769 if (proto == IPPROTO_TCP) 770 sqe_hdr->ol4type = NIX_SENDL4TYPE_TCP_CKSUM; 771 else if (proto == IPPROTO_UDP) 772 sqe_hdr->ol4type = NIX_SENDL4TYPE_UDP_CKSUM; 773 } 774 } 775 776 static int otx2_dma_map_tso_skb(struct otx2_nic *pfvf, 777 struct otx2_snd_queue *sq, 778 struct sk_buff *skb, int sqe, int hdr_len) 779 { 780 int num_segs = skb_shinfo(skb)->nr_frags + 1; 781 struct sg_list *sg = &sq->sg[sqe]; 782 u64 dma_addr; 783 int seg, len; 784 785 sg->num_segs = 0; 786 787 /* Get payload length at skb->data */ 788 len = skb_headlen(skb) - hdr_len; 789 790 for (seg = 0; seg < num_segs; seg++) { 791 /* Skip skb->data, if there is no payload */ 792 if (!seg && !len) 793 continue; 794 dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len); 795 if (dma_mapping_error(pfvf->dev, dma_addr)) 796 goto unmap; 797 798 /* Save DMA mapping info for later unmapping */ 799 sg->dma_addr[sg->num_segs] = dma_addr; 800 sg->size[sg->num_segs] = len; 801 sg->num_segs++; 802 } 803 return 0; 804 unmap: 805 otx2_dma_unmap_skb_frags(pfvf, sg); 806 return -EINVAL; 807 } 808 809 static u64 otx2_tso_frag_dma_addr(struct otx2_snd_queue *sq, 810 struct sk_buff *skb, int seg, 811 u64 seg_addr, int hdr_len, int sqe) 812 { 813 struct sg_list *sg = &sq->sg[sqe]; 814 const skb_frag_t *frag; 815 int offset; 816 817 if (seg < 0) 818 return sg->dma_addr[0] + (seg_addr - (u64)skb->data); 819 820 frag = &skb_shinfo(skb)->frags[seg]; 821 offset = seg_addr - (u64)skb_frag_address(frag); 822 if (skb_headlen(skb) - hdr_len) 823 seg++; 824 return sg->dma_addr[seg] + offset; 825 } 826 827 static void otx2_sqe_tso_add_sg(struct otx2_snd_queue *sq, 828 struct sg_list *list, int *offset) 829 { 830 struct nix_sqe_sg_s *sg = NULL; 831 u16 *sg_lens = NULL; 832 u64 *iova = NULL; 833 int seg; 834 835 /* Add SG descriptors with buffer addresses */ 836 for (seg = 0; seg < list->num_segs; seg++) { 837 if ((seg % MAX_SEGS_PER_SG) == 0) { 838 sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset); 839 sg->ld_type = NIX_SEND_LDTYPE_LDD; 840 sg->subdc = NIX_SUBDC_SG; 841 sg->segs = 0; 842 sg_lens = (void *)sg; 843 iova = (void *)sg + sizeof(*sg); 844 /* Next subdc always starts at a 16byte boundary. 845 * So if sg->segs is whether 2 or 3, offset += 16bytes. 846 */ 847 if ((list->num_segs - seg) >= (MAX_SEGS_PER_SG - 1)) 848 *offset += sizeof(*sg) + (3 * sizeof(u64)); 849 else 850 *offset += sizeof(*sg) + sizeof(u64); 851 } 852 sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = list->size[seg]; 853 *iova++ = list->dma_addr[seg]; 854 sg->segs++; 855 } 856 } 857 858 static void otx2_sq_append_tso(struct otx2_nic *pfvf, struct otx2_snd_queue *sq, 859 struct sk_buff *skb, u16 qidx) 860 { 861 struct netdev_queue *txq = netdev_get_tx_queue(pfvf->netdev, qidx); 862 int hdr_len, tcp_data, seg_len, pkt_len, offset; 863 struct nix_sqe_hdr_s *sqe_hdr; 864 int first_sqe = sq->head; 865 struct sg_list list; 866 struct tso_t tso; 867 868 hdr_len = tso_start(skb, &tso); 869 870 /* Map SKB's fragments to DMA. 871 * It's done here to avoid mapping for every TSO segment's packet. 872 */ 873 if (otx2_dma_map_tso_skb(pfvf, sq, skb, first_sqe, hdr_len)) { 874 dev_kfree_skb_any(skb); 875 return; 876 } 877 878 netdev_tx_sent_queue(txq, skb->len); 879 880 tcp_data = skb->len - hdr_len; 881 while (tcp_data > 0) { 882 char *hdr; 883 884 seg_len = min_t(int, skb_shinfo(skb)->gso_size, tcp_data); 885 tcp_data -= seg_len; 886 887 /* Set SQE's SEND_HDR */ 888 memset(sq->sqe_base, 0, sq->sqe_size); 889 sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base); 890 otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx); 891 offset = sizeof(*sqe_hdr); 892 893 /* Add TSO segment's pkt header */ 894 hdr = sq->tso_hdrs->base + (sq->head * TSO_HEADER_SIZE); 895 tso_build_hdr(skb, hdr, &tso, seg_len, tcp_data == 0); 896 list.dma_addr[0] = 897 sq->tso_hdrs->iova + (sq->head * TSO_HEADER_SIZE); 898 list.size[0] = hdr_len; 899 list.num_segs = 1; 900 901 /* Add TSO segment's payload data fragments */ 902 pkt_len = hdr_len; 903 while (seg_len > 0) { 904 int size; 905 906 size = min_t(int, tso.size, seg_len); 907 908 list.size[list.num_segs] = size; 909 list.dma_addr[list.num_segs] = 910 otx2_tso_frag_dma_addr(sq, skb, 911 tso.next_frag_idx - 1, 912 (u64)tso.data, hdr_len, 913 first_sqe); 914 list.num_segs++; 915 pkt_len += size; 916 seg_len -= size; 917 tso_build_data(skb, &tso, size); 918 } 919 sqe_hdr->total = pkt_len; 920 otx2_sqe_tso_add_sg(sq, &list, &offset); 921 922 /* DMA mappings and skb needs to be freed only after last 923 * TSO segment is transmitted out. So set 'PNC' only for 924 * last segment. Also point last segment's sqe_id to first 925 * segment's SQE index where skb address and DMA mappings 926 * are saved. 927 */ 928 if (!tcp_data) { 929 sqe_hdr->pnc = 1; 930 sqe_hdr->sqe_id = first_sqe; 931 sq->sg[first_sqe].skb = (u64)skb; 932 } else { 933 sqe_hdr->pnc = 0; 934 } 935 936 sqe_hdr->sizem1 = (offset / 16) - 1; 937 938 /* Flush SQE to HW */ 939 pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx); 940 } 941 } 942 943 static bool is_hw_tso_supported(struct otx2_nic *pfvf, 944 struct sk_buff *skb) 945 { 946 int payload_len, last_seg_size; 947 948 if (test_bit(HW_TSO, &pfvf->hw.cap_flag)) 949 return true; 950 951 /* On 96xx A0, HW TSO not supported */ 952 if (!is_96xx_B0(pfvf->pdev)) 953 return false; 954 955 /* HW has an issue due to which when the payload of the last LSO 956 * segment is shorter than 16 bytes, some header fields may not 957 * be correctly modified, hence don't offload such TSO segments. 958 */ 959 960 payload_len = skb->len - skb_tcp_all_headers(skb); 961 last_seg_size = payload_len % skb_shinfo(skb)->gso_size; 962 if (last_seg_size && last_seg_size < 16) 963 return false; 964 965 return true; 966 } 967 968 static int otx2_get_sqe_count(struct otx2_nic *pfvf, struct sk_buff *skb) 969 { 970 if (!skb_shinfo(skb)->gso_size) 971 return 1; 972 973 /* HW TSO */ 974 if (is_hw_tso_supported(pfvf, skb)) 975 return 1; 976 977 /* SW TSO */ 978 return skb_shinfo(skb)->gso_segs; 979 } 980 981 static bool otx2_validate_network_transport(struct sk_buff *skb) 982 { 983 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) || 984 (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)) { 985 struct udphdr *udph = udp_hdr(skb); 986 987 if (udph->source == htons(PTP_PORT) && 988 udph->dest == htons(PTP_PORT)) 989 return true; 990 } 991 992 return false; 993 } 994 995 static bool otx2_ptp_is_sync(struct sk_buff *skb, int *offset, bool *udp_csum_crt) 996 { 997 struct ethhdr *eth = (struct ethhdr *)(skb->data); 998 u16 nix_offload_hlen = 0, inner_vhlen = 0; 999 bool udp_hdr_present = false, is_sync; 1000 u8 *data = skb->data, *msgtype; 1001 __be16 proto = eth->h_proto; 1002 int network_depth = 0; 1003 1004 /* NIX is programmed to offload outer VLAN header 1005 * in case of single vlan protocol field holds Network header ETH_IP/V6 1006 * in case of stacked vlan protocol field holds Inner vlan (8100) 1007 */ 1008 if (skb->dev->features & NETIF_F_HW_VLAN_CTAG_TX && 1009 skb->dev->features & NETIF_F_HW_VLAN_STAG_TX) { 1010 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 1011 /* Get vlan protocol */ 1012 proto = __vlan_get_protocol(skb, eth->h_proto, NULL); 1013 /* SKB APIs like skb_transport_offset does not include 1014 * offloaded vlan header length. Need to explicitly add 1015 * the length 1016 */ 1017 nix_offload_hlen = VLAN_HLEN; 1018 inner_vhlen = VLAN_HLEN; 1019 } else if (skb->vlan_proto == htons(ETH_P_8021Q)) { 1020 nix_offload_hlen = VLAN_HLEN; 1021 } 1022 } else if (eth_type_vlan(eth->h_proto)) { 1023 proto = __vlan_get_protocol(skb, eth->h_proto, &network_depth); 1024 } 1025 1026 switch (ntohs(proto)) { 1027 case ETH_P_1588: 1028 if (network_depth) 1029 *offset = network_depth; 1030 else 1031 *offset = ETH_HLEN + nix_offload_hlen + 1032 inner_vhlen; 1033 break; 1034 case ETH_P_IP: 1035 case ETH_P_IPV6: 1036 if (!otx2_validate_network_transport(skb)) 1037 return false; 1038 1039 *offset = nix_offload_hlen + skb_transport_offset(skb) + 1040 sizeof(struct udphdr); 1041 udp_hdr_present = true; 1042 1043 } 1044 1045 msgtype = data + *offset; 1046 /* Check PTP messageId is SYNC or not */ 1047 is_sync = !(*msgtype & 0xf); 1048 if (is_sync) 1049 *udp_csum_crt = udp_hdr_present; 1050 else 1051 *offset = 0; 1052 1053 return is_sync; 1054 } 1055 1056 static void otx2_set_txtstamp(struct otx2_nic *pfvf, struct sk_buff *skb, 1057 struct otx2_snd_queue *sq, int *offset) 1058 { 1059 struct ethhdr *eth = (struct ethhdr *)(skb->data); 1060 struct ptpv2_tstamp *origin_tstamp; 1061 bool udp_csum_crt = false; 1062 unsigned int udphoff; 1063 struct timespec64 ts; 1064 int ptp_offset = 0; 1065 __wsum skb_csum; 1066 u64 iova; 1067 1068 if (unlikely(!skb_shinfo(skb)->gso_size && 1069 (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) { 1070 if (unlikely(pfvf->flags & OTX2_FLAG_PTP_ONESTEP_SYNC && 1071 otx2_ptp_is_sync(skb, &ptp_offset, &udp_csum_crt))) { 1072 origin_tstamp = (struct ptpv2_tstamp *) 1073 ((u8 *)skb->data + ptp_offset + 1074 PTP_SYNC_SEC_OFFSET); 1075 ts = ns_to_timespec64(pfvf->ptp->tstamp); 1076 origin_tstamp->seconds_msb = htons((ts.tv_sec >> 32) & 0xffff); 1077 origin_tstamp->seconds_lsb = htonl(ts.tv_sec & 0xffffffff); 1078 origin_tstamp->nanoseconds = htonl(ts.tv_nsec); 1079 /* Point to correction field in PTP packet */ 1080 ptp_offset += 8; 1081 1082 /* When user disables hw checksum, stack calculates the csum, 1083 * but it does not cover ptp timestamp which is added later. 1084 * Recalculate the checksum manually considering the timestamp. 1085 */ 1086 if (udp_csum_crt) { 1087 struct udphdr *uh = udp_hdr(skb); 1088 1089 if (skb->ip_summed != CHECKSUM_PARTIAL && uh->check != 0) { 1090 udphoff = skb_transport_offset(skb); 1091 uh->check = 0; 1092 skb_csum = skb_checksum(skb, udphoff, skb->len - udphoff, 1093 0); 1094 if (ntohs(eth->h_proto) == ETH_P_IPV6) 1095 uh->check = csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 1096 &ipv6_hdr(skb)->daddr, 1097 skb->len - udphoff, 1098 ipv6_hdr(skb)->nexthdr, 1099 skb_csum); 1100 else 1101 uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr, 1102 ip_hdr(skb)->daddr, 1103 skb->len - udphoff, 1104 IPPROTO_UDP, 1105 skb_csum); 1106 } 1107 } 1108 } else { 1109 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1110 } 1111 iova = sq->timestamps->iova + (sq->head * sizeof(u64)); 1112 otx2_sqe_add_mem(sq, offset, NIX_SENDMEMALG_E_SETTSTMP, iova, 1113 ptp_offset, pfvf->ptp->base_ns, udp_csum_crt); 1114 } else { 1115 skb_tx_timestamp(skb); 1116 } 1117 } 1118 1119 bool otx2_sq_append_skb(struct net_device *netdev, struct otx2_snd_queue *sq, 1120 struct sk_buff *skb, u16 qidx) 1121 { 1122 struct netdev_queue *txq = netdev_get_tx_queue(netdev, qidx); 1123 struct otx2_nic *pfvf = netdev_priv(netdev); 1124 int offset, num_segs, free_desc; 1125 struct nix_sqe_hdr_s *sqe_hdr; 1126 1127 /* Check if there is enough room between producer 1128 * and consumer index. 1129 */ 1130 free_desc = (sq->cons_head - sq->head - 1 + sq->sqe_cnt) & (sq->sqe_cnt - 1); 1131 if (free_desc < sq->sqe_thresh) 1132 return false; 1133 1134 if (free_desc < otx2_get_sqe_count(pfvf, skb)) 1135 return false; 1136 1137 num_segs = skb_shinfo(skb)->nr_frags + 1; 1138 1139 /* If SKB doesn't fit in a single SQE, linearize it. 1140 * TODO: Consider adding JUMP descriptor instead. 1141 */ 1142 if (unlikely(num_segs > OTX2_MAX_FRAGS_IN_SQE)) { 1143 if (__skb_linearize(skb)) { 1144 dev_kfree_skb_any(skb); 1145 return true; 1146 } 1147 num_segs = skb_shinfo(skb)->nr_frags + 1; 1148 } 1149 1150 if (skb_shinfo(skb)->gso_size && !is_hw_tso_supported(pfvf, skb)) { 1151 /* Insert vlan tag before giving pkt to tso */ 1152 if (skb_vlan_tag_present(skb)) 1153 skb = __vlan_hwaccel_push_inside(skb); 1154 otx2_sq_append_tso(pfvf, sq, skb, qidx); 1155 return true; 1156 } 1157 1158 /* Set SQE's SEND_HDR. 1159 * Do not clear the first 64bit as it contains constant info. 1160 */ 1161 memset(sq->sqe_base + 8, 0, sq->sqe_size - 8); 1162 sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base); 1163 otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx); 1164 offset = sizeof(*sqe_hdr); 1165 1166 /* Add extended header if needed */ 1167 otx2_sqe_add_ext(pfvf, sq, skb, &offset); 1168 1169 /* Add SG subdesc with data frags */ 1170 if (!otx2_sqe_add_sg(pfvf, sq, skb, num_segs, &offset)) { 1171 otx2_dma_unmap_skb_frags(pfvf, &sq->sg[sq->head]); 1172 return false; 1173 } 1174 1175 otx2_set_txtstamp(pfvf, skb, sq, &offset); 1176 1177 sqe_hdr->sizem1 = (offset / 16) - 1; 1178 1179 netdev_tx_sent_queue(txq, skb->len); 1180 1181 /* Flush SQE to HW */ 1182 pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx); 1183 1184 return true; 1185 } 1186 EXPORT_SYMBOL(otx2_sq_append_skb); 1187 1188 void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, int qidx) 1189 { 1190 struct nix_cqe_rx_s *cqe; 1191 struct otx2_pool *pool; 1192 int processed_cqe = 0; 1193 u16 pool_id; 1194 u64 iova; 1195 1196 if (pfvf->xdp_prog) 1197 xdp_rxq_info_unreg(&cq->xdp_rxq); 1198 1199 if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) 1200 return; 1201 1202 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx); 1203 pool = &pfvf->qset.pool[pool_id]; 1204 1205 while (cq->pend_cqe) { 1206 cqe = (struct nix_cqe_rx_s *)otx2_get_next_cqe(cq); 1207 processed_cqe++; 1208 cq->pend_cqe--; 1209 1210 if (!cqe) 1211 continue; 1212 if (cqe->sg.segs > 1) { 1213 otx2_free_rcv_seg(pfvf, cqe, cq->cq_idx); 1214 continue; 1215 } 1216 iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM; 1217 1218 otx2_free_bufs(pfvf, pool, iova, pfvf->rbsize); 1219 } 1220 1221 /* Free CQEs to HW */ 1222 otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, 1223 ((u64)cq->cq_idx << 32) | processed_cqe); 1224 } 1225 1226 void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq) 1227 { 1228 struct sk_buff *skb = NULL; 1229 struct otx2_snd_queue *sq; 1230 struct nix_cqe_tx_s *cqe; 1231 int processed_cqe = 0; 1232 struct sg_list *sg; 1233 int qidx; 1234 1235 qidx = cq->cq_idx - pfvf->hw.rx_queues; 1236 sq = &pfvf->qset.sq[qidx]; 1237 1238 if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe) 1239 return; 1240 1241 while (cq->pend_cqe) { 1242 cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq); 1243 processed_cqe++; 1244 cq->pend_cqe--; 1245 1246 if (!cqe) 1247 continue; 1248 sg = &sq->sg[cqe->comp.sqe_id]; 1249 skb = (struct sk_buff *)sg->skb; 1250 if (skb) { 1251 otx2_dma_unmap_skb_frags(pfvf, sg); 1252 dev_kfree_skb_any(skb); 1253 sg->skb = (u64)NULL; 1254 } 1255 } 1256 1257 /* Free CQEs to HW */ 1258 otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR, 1259 ((u64)cq->cq_idx << 32) | processed_cqe); 1260 } 1261 1262 int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable) 1263 { 1264 struct msg_req *msg; 1265 int err; 1266 1267 mutex_lock(&pfvf->mbox.lock); 1268 if (enable) 1269 msg = otx2_mbox_alloc_msg_nix_lf_start_rx(&pfvf->mbox); 1270 else 1271 msg = otx2_mbox_alloc_msg_nix_lf_stop_rx(&pfvf->mbox); 1272 1273 if (!msg) { 1274 mutex_unlock(&pfvf->mbox.lock); 1275 return -ENOMEM; 1276 } 1277 1278 err = otx2_sync_mbox_msg(&pfvf->mbox); 1279 mutex_unlock(&pfvf->mbox.lock); 1280 return err; 1281 } 1282 1283 static void otx2_xdp_sqe_add_sg(struct otx2_snd_queue *sq, u64 dma_addr, 1284 int len, int *offset) 1285 { 1286 struct nix_sqe_sg_s *sg = NULL; 1287 u64 *iova = NULL; 1288 1289 sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset); 1290 sg->ld_type = NIX_SEND_LDTYPE_LDD; 1291 sg->subdc = NIX_SUBDC_SG; 1292 sg->segs = 1; 1293 sg->seg1_size = len; 1294 iova = (void *)sg + sizeof(*sg); 1295 *iova = dma_addr; 1296 *offset += sizeof(*sg) + sizeof(u64); 1297 1298 sq->sg[sq->head].dma_addr[0] = dma_addr; 1299 sq->sg[sq->head].size[0] = len; 1300 sq->sg[sq->head].num_segs = 1; 1301 } 1302 1303 bool otx2_xdp_sq_append_pkt(struct otx2_nic *pfvf, u64 iova, int len, u16 qidx) 1304 { 1305 struct nix_sqe_hdr_s *sqe_hdr; 1306 struct otx2_snd_queue *sq; 1307 int offset, free_sqe; 1308 1309 sq = &pfvf->qset.sq[qidx]; 1310 free_sqe = (sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb; 1311 if (free_sqe < sq->sqe_thresh) 1312 return false; 1313 1314 memset(sq->sqe_base + 8, 0, sq->sqe_size - 8); 1315 1316 sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base); 1317 1318 if (!sqe_hdr->total) { 1319 sqe_hdr->aura = sq->aura_id; 1320 sqe_hdr->df = 1; 1321 sqe_hdr->sq = qidx; 1322 sqe_hdr->pnc = 1; 1323 } 1324 sqe_hdr->total = len; 1325 sqe_hdr->sqe_id = sq->head; 1326 1327 offset = sizeof(*sqe_hdr); 1328 1329 otx2_xdp_sqe_add_sg(sq, iova, len, &offset); 1330 sqe_hdr->sizem1 = (offset / 16) - 1; 1331 pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx); 1332 1333 return true; 1334 } 1335 1336 static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf, 1337 struct bpf_prog *prog, 1338 struct nix_cqe_rx_s *cqe, 1339 struct otx2_cq_queue *cq) 1340 { 1341 unsigned char *hard_start, *data; 1342 int qidx = cq->cq_idx; 1343 struct xdp_buff xdp; 1344 struct page *page; 1345 u64 iova, pa; 1346 u32 act; 1347 int err; 1348 1349 iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM; 1350 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova); 1351 page = virt_to_page(phys_to_virt(pa)); 1352 1353 xdp_init_buff(&xdp, pfvf->rbsize, &cq->xdp_rxq); 1354 1355 data = (unsigned char *)phys_to_virt(pa); 1356 hard_start = page_address(page); 1357 xdp_prepare_buff(&xdp, hard_start, data - hard_start, 1358 cqe->sg.seg_size, false); 1359 1360 act = bpf_prog_run_xdp(prog, &xdp); 1361 1362 switch (act) { 1363 case XDP_PASS: 1364 break; 1365 case XDP_TX: 1366 qidx += pfvf->hw.tx_queues; 1367 cq->pool_ptrs++; 1368 return otx2_xdp_sq_append_pkt(pfvf, iova, 1369 cqe->sg.seg_size, qidx); 1370 case XDP_REDIRECT: 1371 cq->pool_ptrs++; 1372 err = xdp_do_redirect(pfvf->netdev, &xdp, prog); 1373 1374 otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize, 1375 DMA_FROM_DEVICE); 1376 if (!err) 1377 return true; 1378 put_page(page); 1379 break; 1380 default: 1381 bpf_warn_invalid_xdp_action(pfvf->netdev, prog, act); 1382 break; 1383 case XDP_ABORTED: 1384 trace_xdp_exception(pfvf->netdev, prog, act); 1385 break; 1386 case XDP_DROP: 1387 otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize, 1388 DMA_FROM_DEVICE); 1389 put_page(page); 1390 cq->pool_ptrs++; 1391 return true; 1392 } 1393 return false; 1394 } 1395