1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/etherdevice.h>
9 #include <net/ip.h>
10 #include <net/tso.h>
11 
12 #include "otx2_reg.h"
13 #include "otx2_common.h"
14 #include "otx2_struct.h"
15 #include "otx2_txrx.h"
16 #include "otx2_ptp.h"
17 #include "cn10k.h"
18 
19 #define CQE_ADDR(CQ, idx) ((CQ)->cqe_base + ((CQ)->cqe_size * (idx)))
20 
21 static struct nix_cqe_hdr_s *otx2_get_next_cqe(struct otx2_cq_queue *cq)
22 {
23 	struct nix_cqe_hdr_s *cqe_hdr;
24 
25 	cqe_hdr = (struct nix_cqe_hdr_s *)CQE_ADDR(cq, cq->cq_head);
26 	if (cqe_hdr->cqe_type == NIX_XQE_TYPE_INVALID)
27 		return NULL;
28 
29 	cq->cq_head++;
30 	cq->cq_head &= (cq->cqe_cnt - 1);
31 
32 	return cqe_hdr;
33 }
34 
35 static unsigned int frag_num(unsigned int i)
36 {
37 #ifdef __BIG_ENDIAN
38 	return (i & ~3) + 3 - (i & 3);
39 #else
40 	return i;
41 #endif
42 }
43 
44 static dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf,
45 					struct sk_buff *skb, int seg, int *len)
46 {
47 	const skb_frag_t *frag;
48 	struct page *page;
49 	int offset;
50 
51 	/* First segment is always skb->data */
52 	if (!seg) {
53 		page = virt_to_page(skb->data);
54 		offset = offset_in_page(skb->data);
55 		*len = skb_headlen(skb);
56 	} else {
57 		frag = &skb_shinfo(skb)->frags[seg - 1];
58 		page = skb_frag_page(frag);
59 		offset = skb_frag_off(frag);
60 		*len = skb_frag_size(frag);
61 	}
62 	return otx2_dma_map_page(pfvf, page, offset, *len, DMA_TO_DEVICE);
63 }
64 
65 static void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg)
66 {
67 	int seg;
68 
69 	for (seg = 0; seg < sg->num_segs; seg++) {
70 		otx2_dma_unmap_page(pfvf, sg->dma_addr[seg],
71 				    sg->size[seg], DMA_TO_DEVICE);
72 	}
73 	sg->num_segs = 0;
74 }
75 
76 static void otx2_snd_pkt_handler(struct otx2_nic *pfvf,
77 				 struct otx2_cq_queue *cq,
78 				 struct otx2_snd_queue *sq,
79 				 struct nix_cqe_tx_s *cqe,
80 				 int budget, int *tx_pkts, int *tx_bytes)
81 {
82 	struct nix_send_comp_s *snd_comp = &cqe->comp;
83 	struct skb_shared_hwtstamps ts;
84 	struct sk_buff *skb = NULL;
85 	u64 timestamp, tsns;
86 	struct sg_list *sg;
87 	int err;
88 
89 	if (unlikely(snd_comp->status) && netif_msg_tx_err(pfvf))
90 		net_err_ratelimited("%s: TX%d: Error in send CQ status:%x\n",
91 				    pfvf->netdev->name, cq->cint_idx,
92 				    snd_comp->status);
93 
94 	sg = &sq->sg[snd_comp->sqe_id];
95 	skb = (struct sk_buff *)sg->skb;
96 	if (unlikely(!skb))
97 		return;
98 
99 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
100 		timestamp = ((u64 *)sq->timestamps->base)[snd_comp->sqe_id];
101 		if (timestamp != 1) {
102 			err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns);
103 			if (!err) {
104 				memset(&ts, 0, sizeof(ts));
105 				ts.hwtstamp = ns_to_ktime(tsns);
106 				skb_tstamp_tx(skb, &ts);
107 			}
108 		}
109 	}
110 
111 	*tx_bytes += skb->len;
112 	(*tx_pkts)++;
113 	otx2_dma_unmap_skb_frags(pfvf, sg);
114 	napi_consume_skb(skb, budget);
115 	sg->skb = (u64)NULL;
116 }
117 
118 static void otx2_set_rxtstamp(struct otx2_nic *pfvf,
119 			      struct sk_buff *skb, void *data)
120 {
121 	u64 tsns;
122 	int err;
123 
124 	if (!(pfvf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED))
125 		return;
126 
127 	/* The first 8 bytes is the timestamp */
128 	err = otx2_ptp_tstamp2time(pfvf, be64_to_cpu(*(__be64 *)data), &tsns);
129 	if (err)
130 		return;
131 
132 	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(tsns);
133 }
134 
135 static void otx2_skb_add_frag(struct otx2_nic *pfvf, struct sk_buff *skb,
136 			      u64 iova, int len, struct nix_rx_parse_s *parse)
137 {
138 	struct page *page;
139 	int off = 0;
140 	void *va;
141 
142 	va = phys_to_virt(otx2_iova_to_phys(pfvf->iommu_domain, iova));
143 
144 	if (likely(!skb_shinfo(skb)->nr_frags)) {
145 		/* Check if data starts at some nonzero offset
146 		 * from the start of the buffer.  For now the
147 		 * only possible offset is 8 bytes in the case
148 		 * where packet is prepended by a timestamp.
149 		 */
150 		if (parse->laptr) {
151 			otx2_set_rxtstamp(pfvf, skb, va);
152 			off = OTX2_HW_TIMESTAMP_LEN;
153 		}
154 	}
155 
156 	page = virt_to_page(va);
157 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
158 			va - page_address(page) + off, len - off, pfvf->rbsize);
159 
160 	otx2_dma_unmap_page(pfvf, iova - OTX2_HEAD_ROOM,
161 			    pfvf->rbsize, DMA_FROM_DEVICE);
162 }
163 
164 static void otx2_set_rxhash(struct otx2_nic *pfvf,
165 			    struct nix_cqe_rx_s *cqe, struct sk_buff *skb)
166 {
167 	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
168 	struct otx2_rss_info *rss;
169 	u32 hash = 0;
170 
171 	if (!(pfvf->netdev->features & NETIF_F_RXHASH))
172 		return;
173 
174 	rss = &pfvf->hw.rss_info;
175 	if (rss->flowkey_cfg) {
176 		if (rss->flowkey_cfg &
177 		    ~(NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6))
178 			hash_type = PKT_HASH_TYPE_L4;
179 		else
180 			hash_type = PKT_HASH_TYPE_L3;
181 		hash = cqe->hdr.flow_tag;
182 	}
183 	skb_set_hash(skb, hash, hash_type);
184 }
185 
186 static void otx2_free_rcv_seg(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe,
187 			      int qidx)
188 {
189 	struct nix_rx_sg_s *sg = &cqe->sg;
190 	void *end, *start;
191 	u64 *seg_addr;
192 	int seg;
193 
194 	start = (void *)sg;
195 	end = start + ((cqe->parse.desc_sizem1 + 1) * 16);
196 	while (start < end) {
197 		sg = (struct nix_rx_sg_s *)start;
198 		seg_addr = &sg->seg_addr;
199 		for (seg = 0; seg < sg->segs; seg++, seg_addr++)
200 			pfvf->hw_ops->aura_freeptr(pfvf, qidx,
201 						   *seg_addr & ~0x07ULL);
202 		start += sizeof(*sg);
203 	}
204 }
205 
206 static bool otx2_check_rcv_errors(struct otx2_nic *pfvf,
207 				  struct nix_cqe_rx_s *cqe, int qidx)
208 {
209 	struct otx2_drv_stats *stats = &pfvf->hw.drv_stats;
210 	struct nix_rx_parse_s *parse = &cqe->parse;
211 
212 	if (netif_msg_rx_err(pfvf))
213 		netdev_err(pfvf->netdev,
214 			   "RQ%d: Error pkt with errlev:0x%x errcode:0x%x\n",
215 			   qidx, parse->errlev, parse->errcode);
216 
217 	if (parse->errlev == NPC_ERRLVL_RE) {
218 		switch (parse->errcode) {
219 		case ERRCODE_FCS:
220 		case ERRCODE_FCS_RCV:
221 			atomic_inc(&stats->rx_fcs_errs);
222 			break;
223 		case ERRCODE_UNDERSIZE:
224 			atomic_inc(&stats->rx_undersize_errs);
225 			break;
226 		case ERRCODE_OVERSIZE:
227 			atomic_inc(&stats->rx_oversize_errs);
228 			break;
229 		case ERRCODE_OL2_LEN_MISMATCH:
230 			atomic_inc(&stats->rx_len_errs);
231 			break;
232 		default:
233 			atomic_inc(&stats->rx_other_errs);
234 			break;
235 		}
236 	} else if (parse->errlev == NPC_ERRLVL_NIX) {
237 		switch (parse->errcode) {
238 		case ERRCODE_OL3_LEN:
239 		case ERRCODE_OL4_LEN:
240 		case ERRCODE_IL3_LEN:
241 		case ERRCODE_IL4_LEN:
242 			atomic_inc(&stats->rx_len_errs);
243 			break;
244 		case ERRCODE_OL4_CSUM:
245 		case ERRCODE_IL4_CSUM:
246 			atomic_inc(&stats->rx_csum_errs);
247 			break;
248 		default:
249 			atomic_inc(&stats->rx_other_errs);
250 			break;
251 		}
252 	} else {
253 		atomic_inc(&stats->rx_other_errs);
254 		/* For now ignore all the NPC parser errors and
255 		 * pass the packets to stack.
256 		 */
257 		return false;
258 	}
259 
260 	/* If RXALL is enabled pass on packets to stack. */
261 	if (pfvf->netdev->features & NETIF_F_RXALL)
262 		return false;
263 
264 	/* Free buffer back to pool */
265 	if (cqe->sg.segs)
266 		otx2_free_rcv_seg(pfvf, cqe, qidx);
267 	return true;
268 }
269 
270 static void otx2_rcv_pkt_handler(struct otx2_nic *pfvf,
271 				 struct napi_struct *napi,
272 				 struct otx2_cq_queue *cq,
273 				 struct nix_cqe_rx_s *cqe)
274 {
275 	struct nix_rx_parse_s *parse = &cqe->parse;
276 	struct nix_rx_sg_s *sg = &cqe->sg;
277 	struct sk_buff *skb = NULL;
278 	void *end, *start;
279 	u64 *seg_addr;
280 	u16 *seg_size;
281 	int seg;
282 
283 	if (unlikely(parse->errlev || parse->errcode)) {
284 		if (otx2_check_rcv_errors(pfvf, cqe, cq->cq_idx))
285 			return;
286 	}
287 
288 	skb = napi_get_frags(napi);
289 	if (unlikely(!skb))
290 		return;
291 
292 	start = (void *)sg;
293 	end = start + ((cqe->parse.desc_sizem1 + 1) * 16);
294 	while (start < end) {
295 		sg = (struct nix_rx_sg_s *)start;
296 		seg_addr = &sg->seg_addr;
297 		seg_size = (void *)sg;
298 		for (seg = 0; seg < sg->segs; seg++, seg_addr++) {
299 			otx2_skb_add_frag(pfvf, skb, *seg_addr, seg_size[seg],
300 					  parse);
301 			cq->pool_ptrs++;
302 		}
303 		start += sizeof(*sg);
304 	}
305 	otx2_set_rxhash(pfvf, cqe, skb);
306 
307 	skb_record_rx_queue(skb, cq->cq_idx);
308 	if (pfvf->netdev->features & NETIF_F_RXCSUM)
309 		skb->ip_summed = CHECKSUM_UNNECESSARY;
310 
311 	napi_gro_frags(napi);
312 }
313 
314 static int otx2_rx_napi_handler(struct otx2_nic *pfvf,
315 				struct napi_struct *napi,
316 				struct otx2_cq_queue *cq, int budget)
317 {
318 	struct nix_cqe_rx_s *cqe;
319 	int processed_cqe = 0;
320 
321 	while (likely(processed_cqe < budget)) {
322 		cqe = (struct nix_cqe_rx_s *)CQE_ADDR(cq, cq->cq_head);
323 		if (cqe->hdr.cqe_type == NIX_XQE_TYPE_INVALID ||
324 		    !cqe->sg.seg_addr) {
325 			if (!processed_cqe)
326 				return 0;
327 			break;
328 		}
329 		cq->cq_head++;
330 		cq->cq_head &= (cq->cqe_cnt - 1);
331 
332 		otx2_rcv_pkt_handler(pfvf, napi, cq, cqe);
333 
334 		cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
335 		cqe->sg.seg_addr = 0x00;
336 		processed_cqe++;
337 	}
338 
339 	/* Free CQEs to HW */
340 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
341 		     ((u64)cq->cq_idx << 32) | processed_cqe);
342 
343 	if (unlikely(!cq->pool_ptrs))
344 		return 0;
345 	/* Refill pool with new buffers */
346 	pfvf->hw_ops->refill_pool_ptrs(pfvf, cq);
347 
348 	return processed_cqe;
349 }
350 
351 void otx2_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq)
352 {
353 	struct otx2_nic *pfvf = dev;
354 	dma_addr_t bufptr;
355 
356 	while (cq->pool_ptrs) {
357 		if (otx2_alloc_buffer(pfvf, cq, &bufptr))
358 			break;
359 		otx2_aura_freeptr(pfvf, cq->cq_idx, bufptr + OTX2_HEAD_ROOM);
360 		cq->pool_ptrs--;
361 	}
362 }
363 
364 static int otx2_tx_napi_handler(struct otx2_nic *pfvf,
365 				struct otx2_cq_queue *cq, int budget)
366 {
367 	int tx_pkts = 0, tx_bytes = 0;
368 	struct nix_cqe_tx_s *cqe;
369 	int processed_cqe = 0;
370 
371 	while (likely(processed_cqe < budget)) {
372 		cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq);
373 		if (unlikely(!cqe)) {
374 			if (!processed_cqe)
375 				return 0;
376 			break;
377 		}
378 		otx2_snd_pkt_handler(pfvf, cq, &pfvf->qset.sq[cq->cint_idx],
379 				     cqe, budget, &tx_pkts, &tx_bytes);
380 
381 		cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
382 		processed_cqe++;
383 	}
384 
385 	/* Free CQEs to HW */
386 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
387 		     ((u64)cq->cq_idx << 32) | processed_cqe);
388 
389 	if (likely(tx_pkts)) {
390 		struct netdev_queue *txq;
391 
392 		txq = netdev_get_tx_queue(pfvf->netdev, cq->cint_idx);
393 		netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
394 		/* Check if queue was stopped earlier due to ring full */
395 		smp_mb();
396 		if (netif_tx_queue_stopped(txq) &&
397 		    netif_carrier_ok(pfvf->netdev))
398 			netif_tx_wake_queue(txq);
399 	}
400 	return 0;
401 }
402 
403 int otx2_napi_handler(struct napi_struct *napi, int budget)
404 {
405 	struct otx2_cq_poll *cq_poll;
406 	int workdone = 0, cq_idx, i;
407 	struct otx2_cq_queue *cq;
408 	struct otx2_qset *qset;
409 	struct otx2_nic *pfvf;
410 
411 	cq_poll = container_of(napi, struct otx2_cq_poll, napi);
412 	pfvf = (struct otx2_nic *)cq_poll->dev;
413 	qset = &pfvf->qset;
414 
415 	for (i = CQS_PER_CINT - 1; i >= 0; i--) {
416 		cq_idx = cq_poll->cq_ids[i];
417 		if (unlikely(cq_idx == CINT_INVALID_CQ))
418 			continue;
419 		cq = &qset->cq[cq_idx];
420 		if (cq->cq_type == CQ_RX) {
421 			/* If the RQ refill WQ task is running, skip napi
422 			 * scheduler for this queue.
423 			 */
424 			if (cq->refill_task_sched)
425 				continue;
426 			workdone += otx2_rx_napi_handler(pfvf, napi,
427 							 cq, budget);
428 		} else {
429 			workdone += otx2_tx_napi_handler(pfvf, cq, budget);
430 		}
431 	}
432 
433 	/* Clear the IRQ */
434 	otx2_write64(pfvf, NIX_LF_CINTX_INT(cq_poll->cint_idx), BIT_ULL(0));
435 
436 	if (workdone < budget && napi_complete_done(napi, workdone)) {
437 		/* If interface is going down, don't re-enable IRQ */
438 		if (pfvf->flags & OTX2_FLAG_INTF_DOWN)
439 			return workdone;
440 
441 		/* Re-enable interrupts */
442 		otx2_write64(pfvf, NIX_LF_CINTX_ENA_W1S(cq_poll->cint_idx),
443 			     BIT_ULL(0));
444 	}
445 	return workdone;
446 }
447 
448 void otx2_sqe_flush(void *dev, struct otx2_snd_queue *sq,
449 		    int size, int qidx)
450 {
451 	u64 status;
452 
453 	/* Packet data stores should finish before SQE is flushed to HW */
454 	dma_wmb();
455 
456 	do {
457 		memcpy(sq->lmt_addr, sq->sqe_base, size);
458 		status = otx2_lmt_flush(sq->io_addr);
459 	} while (status == 0);
460 
461 	sq->head++;
462 	sq->head &= (sq->sqe_cnt - 1);
463 }
464 
465 #define MAX_SEGS_PER_SG	3
466 /* Add SQE scatter/gather subdescriptor structure */
467 static bool otx2_sqe_add_sg(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
468 			    struct sk_buff *skb, int num_segs, int *offset)
469 {
470 	struct nix_sqe_sg_s *sg = NULL;
471 	u64 dma_addr, *iova = NULL;
472 	u16 *sg_lens = NULL;
473 	int seg, len;
474 
475 	sq->sg[sq->head].num_segs = 0;
476 
477 	for (seg = 0; seg < num_segs; seg++) {
478 		if ((seg % MAX_SEGS_PER_SG) == 0) {
479 			sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
480 			sg->ld_type = NIX_SEND_LDTYPE_LDD;
481 			sg->subdc = NIX_SUBDC_SG;
482 			sg->segs = 0;
483 			sg_lens = (void *)sg;
484 			iova = (void *)sg + sizeof(*sg);
485 			/* Next subdc always starts at a 16byte boundary.
486 			 * So if sg->segs is whether 2 or 3, offset += 16bytes.
487 			 */
488 			if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
489 				*offset += sizeof(*sg) + (3 * sizeof(u64));
490 			else
491 				*offset += sizeof(*sg) + sizeof(u64);
492 		}
493 		dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
494 		if (dma_mapping_error(pfvf->dev, dma_addr))
495 			return false;
496 
497 		sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = len;
498 		sg->segs++;
499 		*iova++ = dma_addr;
500 
501 		/* Save DMA mapping info for later unmapping */
502 		sq->sg[sq->head].dma_addr[seg] = dma_addr;
503 		sq->sg[sq->head].size[seg] = len;
504 		sq->sg[sq->head].num_segs++;
505 	}
506 
507 	sq->sg[sq->head].skb = (u64)skb;
508 	return true;
509 }
510 
511 /* Add SQE extended header subdescriptor */
512 static void otx2_sqe_add_ext(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
513 			     struct sk_buff *skb, int *offset)
514 {
515 	struct nix_sqe_ext_s *ext;
516 
517 	ext = (struct nix_sqe_ext_s *)(sq->sqe_base + *offset);
518 	ext->subdc = NIX_SUBDC_EXT;
519 	if (skb_shinfo(skb)->gso_size) {
520 		ext->lso = 1;
521 		ext->lso_sb = skb_transport_offset(skb) + tcp_hdrlen(skb);
522 		ext->lso_mps = skb_shinfo(skb)->gso_size;
523 
524 		/* Only TSOv4 and TSOv6 GSO offloads are supported */
525 		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
526 			ext->lso_format = pfvf->hw.lso_tsov4_idx;
527 
528 			/* HW adds payload size to 'ip_hdr->tot_len' while
529 			 * sending TSO segment, hence set payload length
530 			 * in IP header of the packet to just header length.
531 			 */
532 			ip_hdr(skb)->tot_len =
533 				htons(ext->lso_sb - skb_network_offset(skb));
534 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
535 			ext->lso_format = pfvf->hw.lso_tsov6_idx;
536 
537 			ipv6_hdr(skb)->payload_len =
538 				htons(ext->lso_sb - skb_network_offset(skb));
539 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
540 			__be16 l3_proto = vlan_get_protocol(skb);
541 			struct udphdr *udph = udp_hdr(skb);
542 			u16 iplen;
543 
544 			ext->lso_sb = skb_transport_offset(skb) +
545 					sizeof(struct udphdr);
546 
547 			/* HW adds payload size to length fields in IP and
548 			 * UDP headers while segmentation, hence adjust the
549 			 * lengths to just header sizes.
550 			 */
551 			iplen = htons(ext->lso_sb - skb_network_offset(skb));
552 			if (l3_proto == htons(ETH_P_IP)) {
553 				ip_hdr(skb)->tot_len = iplen;
554 				ext->lso_format = pfvf->hw.lso_udpv4_idx;
555 			} else {
556 				ipv6_hdr(skb)->payload_len = iplen;
557 				ext->lso_format = pfvf->hw.lso_udpv6_idx;
558 			}
559 
560 			udph->len = htons(sizeof(struct udphdr));
561 		}
562 	} else if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
563 		ext->tstmp = 1;
564 	}
565 
566 #define OTX2_VLAN_PTR_OFFSET     (ETH_HLEN - ETH_TLEN)
567 	if (skb_vlan_tag_present(skb)) {
568 		if (skb->vlan_proto == htons(ETH_P_8021Q)) {
569 			ext->vlan1_ins_ena = 1;
570 			ext->vlan1_ins_ptr = OTX2_VLAN_PTR_OFFSET;
571 			ext->vlan1_ins_tci = skb_vlan_tag_get(skb);
572 		} else if (skb->vlan_proto == htons(ETH_P_8021AD)) {
573 			ext->vlan0_ins_ena = 1;
574 			ext->vlan0_ins_ptr = OTX2_VLAN_PTR_OFFSET;
575 			ext->vlan0_ins_tci = skb_vlan_tag_get(skb);
576 		}
577 	}
578 
579 	*offset += sizeof(*ext);
580 }
581 
582 static void otx2_sqe_add_mem(struct otx2_snd_queue *sq, int *offset,
583 			     int alg, u64 iova)
584 {
585 	struct nix_sqe_mem_s *mem;
586 
587 	mem = (struct nix_sqe_mem_s *)(sq->sqe_base + *offset);
588 	mem->subdc = NIX_SUBDC_MEM;
589 	mem->alg = alg;
590 	mem->wmem = 1; /* wait for the memory operation */
591 	mem->addr = iova;
592 
593 	*offset += sizeof(*mem);
594 }
595 
596 /* Add SQE header subdescriptor structure */
597 static void otx2_sqe_add_hdr(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
598 			     struct nix_sqe_hdr_s *sqe_hdr,
599 			     struct sk_buff *skb, u16 qidx)
600 {
601 	int proto = 0;
602 
603 	/* Check if SQE was framed before, if yes then no need to
604 	 * set these constants again and again.
605 	 */
606 	if (!sqe_hdr->total) {
607 		/* Don't free Tx buffers to Aura */
608 		sqe_hdr->df = 1;
609 		sqe_hdr->aura = sq->aura_id;
610 		/* Post a CQE Tx after pkt transmission */
611 		sqe_hdr->pnc = 1;
612 		sqe_hdr->sq = qidx;
613 	}
614 	sqe_hdr->total = skb->len;
615 	/* Set SQE identifier which will be used later for freeing SKB */
616 	sqe_hdr->sqe_id = sq->head;
617 
618 	/* Offload TCP/UDP checksum to HW */
619 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
620 		sqe_hdr->ol3ptr = skb_network_offset(skb);
621 		sqe_hdr->ol4ptr = skb_transport_offset(skb);
622 		/* get vlan protocol Ethertype */
623 		if (eth_type_vlan(skb->protocol))
624 			skb->protocol = vlan_get_protocol(skb);
625 
626 		if (skb->protocol == htons(ETH_P_IP)) {
627 			proto = ip_hdr(skb)->protocol;
628 			/* In case of TSO, HW needs this to be explicitly set.
629 			 * So set this always, instead of adding a check.
630 			 */
631 			sqe_hdr->ol3type = NIX_SENDL3TYPE_IP4_CKSUM;
632 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
633 			proto = ipv6_hdr(skb)->nexthdr;
634 			sqe_hdr->ol3type = NIX_SENDL3TYPE_IP6;
635 		}
636 
637 		if (proto == IPPROTO_TCP)
638 			sqe_hdr->ol4type = NIX_SENDL4TYPE_TCP_CKSUM;
639 		else if (proto == IPPROTO_UDP)
640 			sqe_hdr->ol4type = NIX_SENDL4TYPE_UDP_CKSUM;
641 	}
642 }
643 
644 static int otx2_dma_map_tso_skb(struct otx2_nic *pfvf,
645 				struct otx2_snd_queue *sq,
646 				struct sk_buff *skb, int sqe, int hdr_len)
647 {
648 	int num_segs = skb_shinfo(skb)->nr_frags + 1;
649 	struct sg_list *sg = &sq->sg[sqe];
650 	u64 dma_addr;
651 	int seg, len;
652 
653 	sg->num_segs = 0;
654 
655 	/* Get payload length at skb->data */
656 	len = skb_headlen(skb) - hdr_len;
657 
658 	for (seg = 0; seg < num_segs; seg++) {
659 		/* Skip skb->data, if there is no payload */
660 		if (!seg && !len)
661 			continue;
662 		dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
663 		if (dma_mapping_error(pfvf->dev, dma_addr))
664 			goto unmap;
665 
666 		/* Save DMA mapping info for later unmapping */
667 		sg->dma_addr[sg->num_segs] = dma_addr;
668 		sg->size[sg->num_segs] = len;
669 		sg->num_segs++;
670 	}
671 	return 0;
672 unmap:
673 	otx2_dma_unmap_skb_frags(pfvf, sg);
674 	return -EINVAL;
675 }
676 
677 static u64 otx2_tso_frag_dma_addr(struct otx2_snd_queue *sq,
678 				  struct sk_buff *skb, int seg,
679 				  u64 seg_addr, int hdr_len, int sqe)
680 {
681 	struct sg_list *sg = &sq->sg[sqe];
682 	const skb_frag_t *frag;
683 	int offset;
684 
685 	if (seg < 0)
686 		return sg->dma_addr[0] + (seg_addr - (u64)skb->data);
687 
688 	frag = &skb_shinfo(skb)->frags[seg];
689 	offset = seg_addr - (u64)skb_frag_address(frag);
690 	if (skb_headlen(skb) - hdr_len)
691 		seg++;
692 	return sg->dma_addr[seg] + offset;
693 }
694 
695 static void otx2_sqe_tso_add_sg(struct otx2_snd_queue *sq,
696 				struct sg_list *list, int *offset)
697 {
698 	struct nix_sqe_sg_s *sg = NULL;
699 	u16 *sg_lens = NULL;
700 	u64 *iova = NULL;
701 	int seg;
702 
703 	/* Add SG descriptors with buffer addresses */
704 	for (seg = 0; seg < list->num_segs; seg++) {
705 		if ((seg % MAX_SEGS_PER_SG) == 0) {
706 			sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
707 			sg->ld_type = NIX_SEND_LDTYPE_LDD;
708 			sg->subdc = NIX_SUBDC_SG;
709 			sg->segs = 0;
710 			sg_lens = (void *)sg;
711 			iova = (void *)sg + sizeof(*sg);
712 			/* Next subdc always starts at a 16byte boundary.
713 			 * So if sg->segs is whether 2 or 3, offset += 16bytes.
714 			 */
715 			if ((list->num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
716 				*offset += sizeof(*sg) + (3 * sizeof(u64));
717 			else
718 				*offset += sizeof(*sg) + sizeof(u64);
719 		}
720 		sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = list->size[seg];
721 		*iova++ = list->dma_addr[seg];
722 		sg->segs++;
723 	}
724 }
725 
726 static void otx2_sq_append_tso(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
727 			       struct sk_buff *skb, u16 qidx)
728 {
729 	struct netdev_queue *txq = netdev_get_tx_queue(pfvf->netdev, qidx);
730 	int hdr_len, tcp_data, seg_len, pkt_len, offset;
731 	struct nix_sqe_hdr_s *sqe_hdr;
732 	int first_sqe = sq->head;
733 	struct sg_list list;
734 	struct tso_t tso;
735 
736 	hdr_len = tso_start(skb, &tso);
737 
738 	/* Map SKB's fragments to DMA.
739 	 * It's done here to avoid mapping for every TSO segment's packet.
740 	 */
741 	if (otx2_dma_map_tso_skb(pfvf, sq, skb, first_sqe, hdr_len)) {
742 		dev_kfree_skb_any(skb);
743 		return;
744 	}
745 
746 	netdev_tx_sent_queue(txq, skb->len);
747 
748 	tcp_data = skb->len - hdr_len;
749 	while (tcp_data > 0) {
750 		char *hdr;
751 
752 		seg_len = min_t(int, skb_shinfo(skb)->gso_size, tcp_data);
753 		tcp_data -= seg_len;
754 
755 		/* Set SQE's SEND_HDR */
756 		memset(sq->sqe_base, 0, sq->sqe_size);
757 		sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
758 		otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
759 		offset = sizeof(*sqe_hdr);
760 
761 		/* Add TSO segment's pkt header */
762 		hdr = sq->tso_hdrs->base + (sq->head * TSO_HEADER_SIZE);
763 		tso_build_hdr(skb, hdr, &tso, seg_len, tcp_data == 0);
764 		list.dma_addr[0] =
765 			sq->tso_hdrs->iova + (sq->head * TSO_HEADER_SIZE);
766 		list.size[0] = hdr_len;
767 		list.num_segs = 1;
768 
769 		/* Add TSO segment's payload data fragments */
770 		pkt_len = hdr_len;
771 		while (seg_len > 0) {
772 			int size;
773 
774 			size = min_t(int, tso.size, seg_len);
775 
776 			list.size[list.num_segs] = size;
777 			list.dma_addr[list.num_segs] =
778 				otx2_tso_frag_dma_addr(sq, skb,
779 						       tso.next_frag_idx - 1,
780 						       (u64)tso.data, hdr_len,
781 						       first_sqe);
782 			list.num_segs++;
783 			pkt_len += size;
784 			seg_len -= size;
785 			tso_build_data(skb, &tso, size);
786 		}
787 		sqe_hdr->total = pkt_len;
788 		otx2_sqe_tso_add_sg(sq, &list, &offset);
789 
790 		/* DMA mappings and skb needs to be freed only after last
791 		 * TSO segment is transmitted out. So set 'PNC' only for
792 		 * last segment. Also point last segment's sqe_id to first
793 		 * segment's SQE index where skb address and DMA mappings
794 		 * are saved.
795 		 */
796 		if (!tcp_data) {
797 			sqe_hdr->pnc = 1;
798 			sqe_hdr->sqe_id = first_sqe;
799 			sq->sg[first_sqe].skb = (u64)skb;
800 		} else {
801 			sqe_hdr->pnc = 0;
802 		}
803 
804 		sqe_hdr->sizem1 = (offset / 16) - 1;
805 
806 		/* Flush SQE to HW */
807 		pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
808 	}
809 }
810 
811 static bool is_hw_tso_supported(struct otx2_nic *pfvf,
812 				struct sk_buff *skb)
813 {
814 	int payload_len, last_seg_size;
815 
816 	if (test_bit(HW_TSO, &pfvf->hw.cap_flag))
817 		return true;
818 
819 	/* On 96xx A0, HW TSO not supported */
820 	if (!is_96xx_B0(pfvf->pdev))
821 		return false;
822 
823 	/* HW has an issue due to which when the payload of the last LSO
824 	 * segment is shorter than 16 bytes, some header fields may not
825 	 * be correctly modified, hence don't offload such TSO segments.
826 	 */
827 
828 	payload_len = skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb));
829 	last_seg_size = payload_len % skb_shinfo(skb)->gso_size;
830 	if (last_seg_size && last_seg_size < 16)
831 		return false;
832 
833 	return true;
834 }
835 
836 static int otx2_get_sqe_count(struct otx2_nic *pfvf, struct sk_buff *skb)
837 {
838 	if (!skb_shinfo(skb)->gso_size)
839 		return 1;
840 
841 	/* HW TSO */
842 	if (is_hw_tso_supported(pfvf, skb))
843 		return 1;
844 
845 	/* SW TSO */
846 	return skb_shinfo(skb)->gso_segs;
847 }
848 
849 static void otx2_set_txtstamp(struct otx2_nic *pfvf, struct sk_buff *skb,
850 			      struct otx2_snd_queue *sq, int *offset)
851 {
852 	u64 iova;
853 
854 	if (!skb_shinfo(skb)->gso_size &&
855 	    skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
856 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
857 		iova = sq->timestamps->iova + (sq->head * sizeof(u64));
858 		otx2_sqe_add_mem(sq, offset, NIX_SENDMEMALG_E_SETTSTMP, iova);
859 	} else {
860 		skb_tx_timestamp(skb);
861 	}
862 }
863 
864 bool otx2_sq_append_skb(struct net_device *netdev, struct otx2_snd_queue *sq,
865 			struct sk_buff *skb, u16 qidx)
866 {
867 	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qidx);
868 	struct otx2_nic *pfvf = netdev_priv(netdev);
869 	int offset, num_segs, free_sqe;
870 	struct nix_sqe_hdr_s *sqe_hdr;
871 
872 	/* Check if there is room for new SQE.
873 	 * 'Num of SQBs freed to SQ's pool - SQ's Aura count'
874 	 * will give free SQE count.
875 	 */
876 	free_sqe = (sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb;
877 
878 	if (free_sqe < sq->sqe_thresh ||
879 	    free_sqe < otx2_get_sqe_count(pfvf, skb))
880 		return false;
881 
882 	num_segs = skb_shinfo(skb)->nr_frags + 1;
883 
884 	/* If SKB doesn't fit in a single SQE, linearize it.
885 	 * TODO: Consider adding JUMP descriptor instead.
886 	 */
887 	if (unlikely(num_segs > OTX2_MAX_FRAGS_IN_SQE)) {
888 		if (__skb_linearize(skb)) {
889 			dev_kfree_skb_any(skb);
890 			return true;
891 		}
892 		num_segs = skb_shinfo(skb)->nr_frags + 1;
893 	}
894 
895 	if (skb_shinfo(skb)->gso_size && !is_hw_tso_supported(pfvf, skb)) {
896 		/* Insert vlan tag before giving pkt to tso */
897 		if (skb_vlan_tag_present(skb))
898 			skb = __vlan_hwaccel_push_inside(skb);
899 		otx2_sq_append_tso(pfvf, sq, skb, qidx);
900 		return true;
901 	}
902 
903 	/* Set SQE's SEND_HDR.
904 	 * Do not clear the first 64bit as it contains constant info.
905 	 */
906 	memset(sq->sqe_base + 8, 0, sq->sqe_size - 8);
907 	sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
908 	otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
909 	offset = sizeof(*sqe_hdr);
910 
911 	/* Add extended header if needed */
912 	otx2_sqe_add_ext(pfvf, sq, skb, &offset);
913 
914 	/* Add SG subdesc with data frags */
915 	if (!otx2_sqe_add_sg(pfvf, sq, skb, num_segs, &offset)) {
916 		otx2_dma_unmap_skb_frags(pfvf, &sq->sg[sq->head]);
917 		return false;
918 	}
919 
920 	otx2_set_txtstamp(pfvf, skb, sq, &offset);
921 
922 	sqe_hdr->sizem1 = (offset / 16) - 1;
923 
924 	netdev_tx_sent_queue(txq, skb->len);
925 
926 	/* Flush SQE to HW */
927 	pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
928 
929 	return true;
930 }
931 EXPORT_SYMBOL(otx2_sq_append_skb);
932 
933 void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq)
934 {
935 	struct nix_cqe_rx_s *cqe;
936 	int processed_cqe = 0;
937 	u64 iova, pa;
938 
939 	while ((cqe = (struct nix_cqe_rx_s *)otx2_get_next_cqe(cq))) {
940 		if (!cqe->sg.subdc)
941 			continue;
942 		processed_cqe++;
943 		if (cqe->sg.segs > 1) {
944 			otx2_free_rcv_seg(pfvf, cqe, cq->cq_idx);
945 			continue;
946 		}
947 		iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM;
948 		pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
949 		otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize, DMA_FROM_DEVICE);
950 		put_page(virt_to_page(phys_to_virt(pa)));
951 	}
952 
953 	/* Free CQEs to HW */
954 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
955 		     ((u64)cq->cq_idx << 32) | processed_cqe);
956 }
957 
958 void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq)
959 {
960 	struct sk_buff *skb = NULL;
961 	struct otx2_snd_queue *sq;
962 	struct nix_cqe_tx_s *cqe;
963 	int processed_cqe = 0;
964 	struct sg_list *sg;
965 
966 	sq = &pfvf->qset.sq[cq->cint_idx];
967 
968 	while ((cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq))) {
969 		sg = &sq->sg[cqe->comp.sqe_id];
970 		skb = (struct sk_buff *)sg->skb;
971 		if (skb) {
972 			otx2_dma_unmap_skb_frags(pfvf, sg);
973 			dev_kfree_skb_any(skb);
974 			sg->skb = (u64)NULL;
975 		}
976 		processed_cqe++;
977 	}
978 
979 	/* Free CQEs to HW */
980 	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
981 		     ((u64)cq->cq_idx << 32) | processed_cqe);
982 }
983 
984 int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable)
985 {
986 	struct msg_req *msg;
987 	int err;
988 
989 	mutex_lock(&pfvf->mbox.lock);
990 	if (enable)
991 		msg = otx2_mbox_alloc_msg_nix_lf_start_rx(&pfvf->mbox);
992 	else
993 		msg = otx2_mbox_alloc_msg_nix_lf_stop_rx(&pfvf->mbox);
994 
995 	if (!msg) {
996 		mutex_unlock(&pfvf->mbox.lock);
997 		return -ENOMEM;
998 	}
999 
1000 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1001 	mutex_unlock(&pfvf->mbox.lock);
1002 	return err;
1003 }
1004