xref: /openbmc/linux/drivers/net/ethernet/marvell/octeontx2/nic/otx2_common.c (revision de8c12110a130337c8e7e7b8250de0580e644dee)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Ethernet driver
3  *
4  * Copyright (C) 2020 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <net/tso.h>
14 
15 #include "otx2_reg.h"
16 #include "otx2_common.h"
17 #include "otx2_struct.h"
18 #include "cn10k.h"
19 
20 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
21 				 struct otx2_nic *pfvf, int qidx)
22 {
23 	u64 incr = (u64)qidx << 32;
24 	u64 *ptr;
25 
26 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
27 	stats->bytes = otx2_atomic64_add(incr, ptr);
28 
29 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
30 	stats->pkts = otx2_atomic64_add(incr, ptr);
31 }
32 
33 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
34 				 struct otx2_nic *pfvf, int qidx)
35 {
36 	u64 incr = (u64)qidx << 32;
37 	u64 *ptr;
38 
39 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
40 	stats->bytes = otx2_atomic64_add(incr, ptr);
41 
42 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
43 	stats->pkts = otx2_atomic64_add(incr, ptr);
44 }
45 
46 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
47 {
48 	struct msg_req *req;
49 
50 	if (!netif_running(pfvf->netdev))
51 		return;
52 
53 	mutex_lock(&pfvf->mbox.lock);
54 	req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
55 	if (!req) {
56 		mutex_unlock(&pfvf->mbox.lock);
57 		return;
58 	}
59 
60 	otx2_sync_mbox_msg(&pfvf->mbox);
61 	mutex_unlock(&pfvf->mbox.lock);
62 }
63 
64 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
65 {
66 	struct msg_req *req;
67 
68 	if (!netif_running(pfvf->netdev))
69 		return;
70 	mutex_lock(&pfvf->mbox.lock);
71 	req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
72 	if (req)
73 		otx2_sync_mbox_msg(&pfvf->mbox);
74 	mutex_unlock(&pfvf->mbox.lock);
75 }
76 
77 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
78 {
79 	struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
80 
81 	if (!pfvf->qset.rq)
82 		return 0;
83 
84 	otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
85 	return 1;
86 }
87 
88 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
89 {
90 	struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
91 
92 	if (!pfvf->qset.sq)
93 		return 0;
94 
95 	otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
96 	return 1;
97 }
98 
99 void otx2_get_dev_stats(struct otx2_nic *pfvf)
100 {
101 	struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
102 
103 #define OTX2_GET_RX_STATS(reg) \
104 	 otx2_read64(pfvf, NIX_LF_RX_STATX(reg))
105 #define OTX2_GET_TX_STATS(reg) \
106 	 otx2_read64(pfvf, NIX_LF_TX_STATX(reg))
107 
108 	dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
109 	dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
110 	dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
111 	dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
112 	dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
113 	dev_stats->rx_frames = dev_stats->rx_bcast_frames +
114 			       dev_stats->rx_mcast_frames +
115 			       dev_stats->rx_ucast_frames;
116 
117 	dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
118 	dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
119 	dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
120 	dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
121 	dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
122 	dev_stats->tx_frames = dev_stats->tx_bcast_frames +
123 			       dev_stats->tx_mcast_frames +
124 			       dev_stats->tx_ucast_frames;
125 }
126 
127 void otx2_get_stats64(struct net_device *netdev,
128 		      struct rtnl_link_stats64 *stats)
129 {
130 	struct otx2_nic *pfvf = netdev_priv(netdev);
131 	struct otx2_dev_stats *dev_stats;
132 
133 	otx2_get_dev_stats(pfvf);
134 
135 	dev_stats = &pfvf->hw.dev_stats;
136 	stats->rx_bytes = dev_stats->rx_bytes;
137 	stats->rx_packets = dev_stats->rx_frames;
138 	stats->rx_dropped = dev_stats->rx_drops;
139 	stats->multicast = dev_stats->rx_mcast_frames;
140 
141 	stats->tx_bytes = dev_stats->tx_bytes;
142 	stats->tx_packets = dev_stats->tx_frames;
143 	stats->tx_dropped = dev_stats->tx_drops;
144 }
145 EXPORT_SYMBOL(otx2_get_stats64);
146 
147 /* Sync MAC address with RVU AF */
148 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
149 {
150 	struct nix_set_mac_addr *req;
151 	int err;
152 
153 	mutex_lock(&pfvf->mbox.lock);
154 	req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
155 	if (!req) {
156 		mutex_unlock(&pfvf->mbox.lock);
157 		return -ENOMEM;
158 	}
159 
160 	ether_addr_copy(req->mac_addr, mac);
161 
162 	err = otx2_sync_mbox_msg(&pfvf->mbox);
163 	mutex_unlock(&pfvf->mbox.lock);
164 	return err;
165 }
166 
167 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
168 				struct net_device *netdev)
169 {
170 	struct nix_get_mac_addr_rsp *rsp;
171 	struct mbox_msghdr *msghdr;
172 	struct msg_req *req;
173 	int err;
174 
175 	mutex_lock(&pfvf->mbox.lock);
176 	req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
177 	if (!req) {
178 		mutex_unlock(&pfvf->mbox.lock);
179 		return -ENOMEM;
180 	}
181 
182 	err = otx2_sync_mbox_msg(&pfvf->mbox);
183 	if (err) {
184 		mutex_unlock(&pfvf->mbox.lock);
185 		return err;
186 	}
187 
188 	msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
189 	if (IS_ERR(msghdr)) {
190 		mutex_unlock(&pfvf->mbox.lock);
191 		return PTR_ERR(msghdr);
192 	}
193 	rsp = (struct nix_get_mac_addr_rsp *)msghdr;
194 	ether_addr_copy(netdev->dev_addr, rsp->mac_addr);
195 	mutex_unlock(&pfvf->mbox.lock);
196 
197 	return 0;
198 }
199 
200 int otx2_set_mac_address(struct net_device *netdev, void *p)
201 {
202 	struct otx2_nic *pfvf = netdev_priv(netdev);
203 	struct sockaddr *addr = p;
204 
205 	if (!is_valid_ether_addr(addr->sa_data))
206 		return -EADDRNOTAVAIL;
207 
208 	if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
209 		memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
210 		/* update dmac field in vlan offload rule */
211 		if (pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
212 			otx2_install_rxvlan_offload_flow(pfvf);
213 	} else {
214 		return -EPERM;
215 	}
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(otx2_set_mac_address);
220 
221 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
222 {
223 	struct nix_frs_cfg *req;
224 	int err;
225 
226 	mutex_lock(&pfvf->mbox.lock);
227 	req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
228 	if (!req) {
229 		mutex_unlock(&pfvf->mbox.lock);
230 		return -ENOMEM;
231 	}
232 
233 	req->maxlen = pfvf->max_frs;
234 
235 	err = otx2_sync_mbox_msg(&pfvf->mbox);
236 	mutex_unlock(&pfvf->mbox.lock);
237 	return err;
238 }
239 
240 int otx2_config_pause_frm(struct otx2_nic *pfvf)
241 {
242 	struct cgx_pause_frm_cfg *req;
243 	int err;
244 
245 	if (is_otx2_lbkvf(pfvf->pdev))
246 		return 0;
247 
248 	mutex_lock(&pfvf->mbox.lock);
249 	req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
250 	if (!req) {
251 		err = -ENOMEM;
252 		goto unlock;
253 	}
254 
255 	req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
256 	req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
257 	req->set = 1;
258 
259 	err = otx2_sync_mbox_msg(&pfvf->mbox);
260 unlock:
261 	mutex_unlock(&pfvf->mbox.lock);
262 	return err;
263 }
264 
265 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
266 {
267 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
268 	struct nix_rss_flowkey_cfg *req;
269 	int err;
270 
271 	mutex_lock(&pfvf->mbox.lock);
272 	req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
273 	if (!req) {
274 		mutex_unlock(&pfvf->mbox.lock);
275 		return -ENOMEM;
276 	}
277 	req->mcam_index = -1; /* Default or reserved index */
278 	req->flowkey_cfg = rss->flowkey_cfg;
279 	req->group = DEFAULT_RSS_CONTEXT_GROUP;
280 
281 	err = otx2_sync_mbox_msg(&pfvf->mbox);
282 	mutex_unlock(&pfvf->mbox.lock);
283 	return err;
284 }
285 
286 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id)
287 {
288 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
289 	const int index = rss->rss_size * ctx_id;
290 	struct mbox *mbox = &pfvf->mbox;
291 	struct otx2_rss_ctx *rss_ctx;
292 	struct nix_aq_enq_req *aq;
293 	int idx, err;
294 
295 	mutex_lock(&mbox->lock);
296 	rss_ctx = rss->rss_ctx[ctx_id];
297 	/* Get memory to put this msg */
298 	for (idx = 0; idx < rss->rss_size; idx++) {
299 		aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
300 		if (!aq) {
301 			/* The shared memory buffer can be full.
302 			 * Flush it and retry
303 			 */
304 			err = otx2_sync_mbox_msg(mbox);
305 			if (err) {
306 				mutex_unlock(&mbox->lock);
307 				return err;
308 			}
309 			aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
310 			if (!aq) {
311 				mutex_unlock(&mbox->lock);
312 				return -ENOMEM;
313 			}
314 		}
315 
316 		aq->rss.rq = rss_ctx->ind_tbl[idx];
317 
318 		/* Fill AQ info */
319 		aq->qidx = index + idx;
320 		aq->ctype = NIX_AQ_CTYPE_RSS;
321 		aq->op = NIX_AQ_INSTOP_INIT;
322 	}
323 	err = otx2_sync_mbox_msg(mbox);
324 	mutex_unlock(&mbox->lock);
325 	return err;
326 }
327 
328 void otx2_set_rss_key(struct otx2_nic *pfvf)
329 {
330 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
331 	u64 *key = (u64 *)&rss->key[4];
332 	int idx;
333 
334 	/* 352bit or 44byte key needs to be configured as below
335 	 * NIX_LF_RX_SECRETX0 = key<351:288>
336 	 * NIX_LF_RX_SECRETX1 = key<287:224>
337 	 * NIX_LF_RX_SECRETX2 = key<223:160>
338 	 * NIX_LF_RX_SECRETX3 = key<159:96>
339 	 * NIX_LF_RX_SECRETX4 = key<95:32>
340 	 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
341 	 */
342 	otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
343 		     (u64)(*((u32 *)&rss->key)) << 32);
344 	idx = sizeof(rss->key) / sizeof(u64);
345 	while (idx > 0) {
346 		idx--;
347 		otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
348 	}
349 }
350 
351 int otx2_rss_init(struct otx2_nic *pfvf)
352 {
353 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
354 	struct otx2_rss_ctx *rss_ctx;
355 	int idx, ret = 0;
356 
357 	rss->rss_size = sizeof(*rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]);
358 
359 	/* Init RSS key if it is not setup already */
360 	if (!rss->enable)
361 		netdev_rss_key_fill(rss->key, sizeof(rss->key));
362 	otx2_set_rss_key(pfvf);
363 
364 	if (!netif_is_rxfh_configured(pfvf->netdev)) {
365 		/* Set RSS group 0 as default indirection table */
366 		rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP] = kzalloc(rss->rss_size,
367 								  GFP_KERNEL);
368 		if (!rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP])
369 			return -ENOMEM;
370 
371 		rss_ctx = rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP];
372 		for (idx = 0; idx < rss->rss_size; idx++)
373 			rss_ctx->ind_tbl[idx] =
374 				ethtool_rxfh_indir_default(idx,
375 							   pfvf->hw.rx_queues);
376 	}
377 	ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP);
378 	if (ret)
379 		return ret;
380 
381 	/* Flowkey or hash config to be used for generating flow tag */
382 	rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
383 			   NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
384 			   NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
385 			   NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
386 			   NIX_FLOW_KEY_TYPE_IPV4_PROTO;
387 
388 	ret = otx2_set_flowkey_cfg(pfvf);
389 	if (ret)
390 		return ret;
391 
392 	rss->enable = true;
393 	return 0;
394 }
395 
396 /* Setup UDP segmentation algorithm in HW */
397 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
398 {
399 	struct nix_lso_format *field;
400 
401 	field = (struct nix_lso_format *)&lso->fields[0];
402 	lso->field_mask = GENMASK(18, 0);
403 
404 	/* IP's Length field */
405 	field->layer = NIX_TXLAYER_OL3;
406 	/* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
407 	field->offset = v4 ? 2 : 4;
408 	field->sizem1 = 1; /* i.e 2 bytes */
409 	field->alg = NIX_LSOALG_ADD_PAYLEN;
410 	field++;
411 
412 	/* No ID field in IPv6 header */
413 	if (v4) {
414 		/* Increment IPID */
415 		field->layer = NIX_TXLAYER_OL3;
416 		field->offset = 4;
417 		field->sizem1 = 1; /* i.e 2 bytes */
418 		field->alg = NIX_LSOALG_ADD_SEGNUM;
419 		field++;
420 	}
421 
422 	/* Update length in UDP header */
423 	field->layer = NIX_TXLAYER_OL4;
424 	field->offset = 4;
425 	field->sizem1 = 1;
426 	field->alg = NIX_LSOALG_ADD_PAYLEN;
427 }
428 
429 /* Setup segmentation algorithms in HW and retrieve algorithm index */
430 void otx2_setup_segmentation(struct otx2_nic *pfvf)
431 {
432 	struct nix_lso_format_cfg_rsp *rsp;
433 	struct nix_lso_format_cfg *lso;
434 	struct otx2_hw *hw = &pfvf->hw;
435 	int err;
436 
437 	mutex_lock(&pfvf->mbox.lock);
438 
439 	/* UDPv4 segmentation */
440 	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
441 	if (!lso)
442 		goto fail;
443 
444 	/* Setup UDP/IP header fields that HW should update per segment */
445 	otx2_setup_udp_segmentation(lso, true);
446 
447 	err = otx2_sync_mbox_msg(&pfvf->mbox);
448 	if (err)
449 		goto fail;
450 
451 	rsp = (struct nix_lso_format_cfg_rsp *)
452 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
453 	if (IS_ERR(rsp))
454 		goto fail;
455 
456 	hw->lso_udpv4_idx = rsp->lso_format_idx;
457 
458 	/* UDPv6 segmentation */
459 	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
460 	if (!lso)
461 		goto fail;
462 
463 	/* Setup UDP/IP header fields that HW should update per segment */
464 	otx2_setup_udp_segmentation(lso, false);
465 
466 	err = otx2_sync_mbox_msg(&pfvf->mbox);
467 	if (err)
468 		goto fail;
469 
470 	rsp = (struct nix_lso_format_cfg_rsp *)
471 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
472 	if (IS_ERR(rsp))
473 		goto fail;
474 
475 	hw->lso_udpv6_idx = rsp->lso_format_idx;
476 	mutex_unlock(&pfvf->mbox.lock);
477 	return;
478 fail:
479 	mutex_unlock(&pfvf->mbox.lock);
480 	netdev_info(pfvf->netdev,
481 		    "Failed to get LSO index for UDP GSO offload, disabling\n");
482 	pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
483 }
484 
485 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
486 {
487 	/* Configure CQE interrupt coalescing parameters
488 	 *
489 	 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
490 	 * set 1 less than cq_ecount_wait. And cq_time_wait is in
491 	 * usecs, convert that to 100ns count.
492 	 */
493 	otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
494 		     ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
495 		     ((u64)pfvf->hw.cq_qcount_wait << 32) |
496 		     (pfvf->hw.cq_ecount_wait - 1));
497 }
498 
499 int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
500 		      dma_addr_t *dma)
501 {
502 	u8 *buf;
503 
504 	buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
505 	if (unlikely(!buf))
506 		return -ENOMEM;
507 
508 	*dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
509 				    DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
510 	if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
511 		page_frag_free(buf);
512 		return -ENOMEM;
513 	}
514 
515 	return 0;
516 }
517 
518 static int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
519 			   dma_addr_t *dma)
520 {
521 	int ret;
522 
523 	local_bh_disable();
524 	ret = __otx2_alloc_rbuf(pfvf, pool, dma);
525 	local_bh_enable();
526 	return ret;
527 }
528 
529 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
530 		      dma_addr_t *dma)
531 {
532 	if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma))) {
533 		struct refill_work *work;
534 		struct delayed_work *dwork;
535 
536 		work = &pfvf->refill_wrk[cq->cq_idx];
537 		dwork = &work->pool_refill_work;
538 		/* Schedule a task if no other task is running */
539 		if (!cq->refill_task_sched) {
540 			cq->refill_task_sched = true;
541 			schedule_delayed_work(dwork,
542 					      msecs_to_jiffies(100));
543 		}
544 		return -ENOMEM;
545 	}
546 	return 0;
547 }
548 
549 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
550 {
551 	struct otx2_nic *pfvf = netdev_priv(netdev);
552 
553 	schedule_work(&pfvf->reset_task);
554 }
555 EXPORT_SYMBOL(otx2_tx_timeout);
556 
557 void otx2_get_mac_from_af(struct net_device *netdev)
558 {
559 	struct otx2_nic *pfvf = netdev_priv(netdev);
560 	int err;
561 
562 	err = otx2_hw_get_mac_addr(pfvf, netdev);
563 	if (err)
564 		dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
565 
566 	/* If AF doesn't provide a valid MAC, generate a random one */
567 	if (!is_valid_ether_addr(netdev->dev_addr))
568 		eth_hw_addr_random(netdev);
569 }
570 EXPORT_SYMBOL(otx2_get_mac_from_af);
571 
572 static int otx2_get_link(struct otx2_nic *pfvf)
573 {
574 	int link = 0;
575 	u16 map;
576 
577 	/* cgx lmac link */
578 	if (pfvf->hw.tx_chan_base >= CGX_CHAN_BASE) {
579 		map = pfvf->hw.tx_chan_base & 0x7FF;
580 		link = 4 * ((map >> 8) & 0xF) + ((map >> 4) & 0xF);
581 	}
582 	/* LBK channel */
583 	if (pfvf->hw.tx_chan_base < SDP_CHAN_BASE) {
584 		map = pfvf->hw.tx_chan_base & 0x7FF;
585 		link = pfvf->hw.cgx_links | ((map >> 8) & 0xF);
586 	}
587 
588 	return link;
589 }
590 
591 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl)
592 {
593 	struct otx2_hw *hw = &pfvf->hw;
594 	struct nix_txschq_config *req;
595 	u64 schq, parent;
596 
597 	req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
598 	if (!req)
599 		return -ENOMEM;
600 
601 	req->lvl = lvl;
602 	req->num_regs = 1;
603 
604 	schq = hw->txschq_list[lvl][0];
605 	/* Set topology e.t.c configuration */
606 	if (lvl == NIX_TXSCH_LVL_SMQ) {
607 		req->reg[0] = NIX_AF_SMQX_CFG(schq);
608 		req->regval[0] = ((pfvf->netdev->max_mtu + OTX2_ETH_HLEN) << 8)
609 				  | OTX2_MIN_MTU;
610 
611 		req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
612 				  (0x2ULL << 36);
613 		req->num_regs++;
614 		/* MDQ config */
615 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL4][0];
616 		req->reg[1] = NIX_AF_MDQX_PARENT(schq);
617 		req->regval[1] = parent << 16;
618 		req->num_regs++;
619 		/* Set DWRR quantum */
620 		req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
621 		req->regval[2] =  DFLT_RR_QTM;
622 	} else if (lvl == NIX_TXSCH_LVL_TL4) {
623 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL3][0];
624 		req->reg[0] = NIX_AF_TL4X_PARENT(schq);
625 		req->regval[0] = parent << 16;
626 		req->num_regs++;
627 		req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
628 		req->regval[1] = DFLT_RR_QTM;
629 	} else if (lvl == NIX_TXSCH_LVL_TL3) {
630 		parent = hw->txschq_list[NIX_TXSCH_LVL_TL2][0];
631 		req->reg[0] = NIX_AF_TL3X_PARENT(schq);
632 		req->regval[0] = parent << 16;
633 		req->num_regs++;
634 		req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
635 		req->regval[1] = DFLT_RR_QTM;
636 	} else if (lvl == NIX_TXSCH_LVL_TL2) {
637 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL1][0];
638 		req->reg[0] = NIX_AF_TL2X_PARENT(schq);
639 		req->regval[0] = parent << 16;
640 
641 		req->num_regs++;
642 		req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
643 		req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | DFLT_RR_QTM;
644 
645 		req->num_regs++;
646 		req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq,
647 							otx2_get_link(pfvf));
648 		/* Enable this queue and backpressure */
649 		req->regval[2] = BIT_ULL(13) | BIT_ULL(12);
650 
651 	} else if (lvl == NIX_TXSCH_LVL_TL1) {
652 		/* Default config for TL1.
653 		 * For VF this is always ignored.
654 		 */
655 
656 		/* Set DWRR quantum */
657 		req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
658 		req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
659 
660 		req->num_regs++;
661 		req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
662 		req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1);
663 
664 		req->num_regs++;
665 		req->reg[2] = NIX_AF_TL1X_CIR(schq);
666 		req->regval[2] = 0;
667 	}
668 
669 	return otx2_sync_mbox_msg(&pfvf->mbox);
670 }
671 
672 int otx2_txsch_alloc(struct otx2_nic *pfvf)
673 {
674 	struct nix_txsch_alloc_req *req;
675 	int lvl;
676 
677 	/* Get memory to put this msg */
678 	req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
679 	if (!req)
680 		return -ENOMEM;
681 
682 	/* Request one schq per level */
683 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
684 		req->schq[lvl] = 1;
685 
686 	return otx2_sync_mbox_msg(&pfvf->mbox);
687 }
688 
689 int otx2_txschq_stop(struct otx2_nic *pfvf)
690 {
691 	struct nix_txsch_free_req *free_req;
692 	int lvl, schq, err;
693 
694 	mutex_lock(&pfvf->mbox.lock);
695 	/* Free the transmit schedulers */
696 	free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
697 	if (!free_req) {
698 		mutex_unlock(&pfvf->mbox.lock);
699 		return -ENOMEM;
700 	}
701 
702 	free_req->flags = TXSCHQ_FREE_ALL;
703 	err = otx2_sync_mbox_msg(&pfvf->mbox);
704 	mutex_unlock(&pfvf->mbox.lock);
705 
706 	/* Clear the txschq list */
707 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
708 		for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
709 			pfvf->hw.txschq_list[lvl][schq] = 0;
710 	}
711 	return err;
712 }
713 
714 void otx2_sqb_flush(struct otx2_nic *pfvf)
715 {
716 	int qidx, sqe_tail, sqe_head;
717 	u64 incr, *ptr, val;
718 	int timeout = 1000;
719 
720 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
721 	for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
722 		incr = (u64)qidx << 32;
723 		while (timeout) {
724 			val = otx2_atomic64_add(incr, ptr);
725 			sqe_head = (val >> 20) & 0x3F;
726 			sqe_tail = (val >> 28) & 0x3F;
727 			if (sqe_head == sqe_tail)
728 				break;
729 			usleep_range(1, 3);
730 			timeout--;
731 		}
732 	}
733 }
734 
735 /* RED and drop levels of CQ on packet reception.
736  * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
737  */
738 #define RQ_PASS_LVL_CQ(skid, qsize)	((((skid) + 16) * 256) / (qsize))
739 #define RQ_DROP_LVL_CQ(skid, qsize)	(((skid) * 256) / (qsize))
740 
741 /* RED and drop levels of AURA for packet reception.
742  * For AURA level is measure of fullness (0x0 = empty, 255 = full).
743  * Eg: For RQ length 1K, for pass/drop level 204/230.
744  * RED accepts pkts if free pointers > 102 & <= 205.
745  * Drops pkts if free pointers < 102.
746  */
747 #define RQ_BP_LVL_AURA   (255 - ((85 * 256) / 100)) /* BP when 85% is full */
748 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
749 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
750 
751 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
752 {
753 	struct otx2_qset *qset = &pfvf->qset;
754 	struct nix_aq_enq_req *aq;
755 
756 	/* Get memory to put this msg */
757 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
758 	if (!aq)
759 		return -ENOMEM;
760 
761 	aq->rq.cq = qidx;
762 	aq->rq.ena = 1;
763 	aq->rq.pb_caching = 1;
764 	aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
765 	aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
766 	aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
767 	aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
768 	aq->rq.qint_idx = 0;
769 	aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
770 	aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
771 	aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
772 	aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
773 	aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
774 	aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
775 
776 	/* Fill AQ info */
777 	aq->qidx = qidx;
778 	aq->ctype = NIX_AQ_CTYPE_RQ;
779 	aq->op = NIX_AQ_INSTOP_INIT;
780 
781 	return otx2_sync_mbox_msg(&pfvf->mbox);
782 }
783 
784 int otx2_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura)
785 {
786 	struct otx2_nic *pfvf = dev;
787 	struct otx2_snd_queue *sq;
788 	struct nix_aq_enq_req *aq;
789 
790 	sq = &pfvf->qset.sq[qidx];
791 	sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
792 	/* Get memory to put this msg */
793 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
794 	if (!aq)
795 		return -ENOMEM;
796 
797 	aq->sq.cq = pfvf->hw.rx_queues + qidx;
798 	aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
799 	aq->sq.cq_ena = 1;
800 	aq->sq.ena = 1;
801 	/* Only one SMQ is allocated, map all SQ's to that SMQ  */
802 	aq->sq.smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
803 	aq->sq.smq_rr_quantum = DFLT_RR_QTM;
804 	aq->sq.default_chan = pfvf->hw.tx_chan_base;
805 	aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
806 	aq->sq.sqb_aura = sqb_aura;
807 	aq->sq.sq_int_ena = NIX_SQINT_BITS;
808 	aq->sq.qint_idx = 0;
809 	/* Due pipelining impact minimum 2000 unused SQ CQE's
810 	 * need to maintain to avoid CQ overflow.
811 	 */
812 	aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
813 
814 	/* Fill AQ info */
815 	aq->qidx = qidx;
816 	aq->ctype = NIX_AQ_CTYPE_SQ;
817 	aq->op = NIX_AQ_INSTOP_INIT;
818 
819 	return otx2_sync_mbox_msg(&pfvf->mbox);
820 }
821 
822 static int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
823 {
824 	struct otx2_qset *qset = &pfvf->qset;
825 	struct otx2_snd_queue *sq;
826 	struct otx2_pool *pool;
827 	int err;
828 
829 	pool = &pfvf->qset.pool[sqb_aura];
830 	sq = &qset->sq[qidx];
831 	sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
832 	sq->sqe_cnt = qset->sqe_cnt;
833 
834 	err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
835 	if (err)
836 		return err;
837 
838 	err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
839 			 TSO_HEADER_SIZE);
840 	if (err)
841 		return err;
842 
843 	sq->sqe_base = sq->sqe->base;
844 	sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
845 	if (!sq->sg)
846 		return -ENOMEM;
847 
848 	if (pfvf->ptp) {
849 		err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
850 				 sizeof(*sq->timestamps));
851 		if (err)
852 			return err;
853 	}
854 
855 	sq->head = 0;
856 	sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
857 	sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
858 	/* Set SQE threshold to 10% of total SQEs */
859 	sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
860 	sq->aura_id = sqb_aura;
861 	sq->aura_fc_addr = pool->fc_addr->base;
862 	sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
863 
864 	sq->stats.bytes = 0;
865 	sq->stats.pkts = 0;
866 
867 	return pfvf->hw_ops->sq_aq_init(pfvf, qidx, sqb_aura);
868 
869 }
870 
871 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
872 {
873 	struct otx2_qset *qset = &pfvf->qset;
874 	struct nix_aq_enq_req *aq;
875 	struct otx2_cq_queue *cq;
876 	int err, pool_id;
877 
878 	cq = &qset->cq[qidx];
879 	cq->cq_idx = qidx;
880 	if (qidx < pfvf->hw.rx_queues) {
881 		cq->cq_type = CQ_RX;
882 		cq->cint_idx = qidx;
883 		cq->cqe_cnt = qset->rqe_cnt;
884 	} else {
885 		cq->cq_type = CQ_TX;
886 		cq->cint_idx = qidx - pfvf->hw.rx_queues;
887 		cq->cqe_cnt = qset->sqe_cnt;
888 	}
889 	cq->cqe_size = pfvf->qset.xqe_size;
890 
891 	/* Allocate memory for CQEs */
892 	err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
893 	if (err)
894 		return err;
895 
896 	/* Save CQE CPU base for faster reference */
897 	cq->cqe_base = cq->cqe->base;
898 	/* In case where all RQs auras point to single pool,
899 	 * all CQs receive buffer pool also point to same pool.
900 	 */
901 	pool_id = ((cq->cq_type == CQ_RX) &&
902 		   (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
903 	cq->rbpool = &qset->pool[pool_id];
904 	cq->refill_task_sched = false;
905 
906 	/* Get memory to put this msg */
907 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
908 	if (!aq)
909 		return -ENOMEM;
910 
911 	aq->cq.ena = 1;
912 	aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
913 	aq->cq.caching = 1;
914 	aq->cq.base = cq->cqe->iova;
915 	aq->cq.cint_idx = cq->cint_idx;
916 	aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
917 	aq->cq.qint_idx = 0;
918 	aq->cq.avg_level = 255;
919 
920 	if (qidx < pfvf->hw.rx_queues) {
921 		aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
922 		aq->cq.drop_ena = 1;
923 
924 		/* Enable receive CQ backpressure */
925 		aq->cq.bp_ena = 1;
926 		aq->cq.bpid = pfvf->bpid[0];
927 
928 		/* Set backpressure level is same as cq pass level */
929 		aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
930 	}
931 
932 	/* Fill AQ info */
933 	aq->qidx = qidx;
934 	aq->ctype = NIX_AQ_CTYPE_CQ;
935 	aq->op = NIX_AQ_INSTOP_INIT;
936 
937 	return otx2_sync_mbox_msg(&pfvf->mbox);
938 }
939 
940 static void otx2_pool_refill_task(struct work_struct *work)
941 {
942 	struct otx2_cq_queue *cq;
943 	struct otx2_pool *rbpool;
944 	struct refill_work *wrk;
945 	int qidx, free_ptrs = 0;
946 	struct otx2_nic *pfvf;
947 	dma_addr_t bufptr;
948 
949 	wrk = container_of(work, struct refill_work, pool_refill_work.work);
950 	pfvf = wrk->pf;
951 	qidx = wrk - pfvf->refill_wrk;
952 	cq = &pfvf->qset.cq[qidx];
953 	rbpool = cq->rbpool;
954 	free_ptrs = cq->pool_ptrs;
955 
956 	while (cq->pool_ptrs) {
957 		if (otx2_alloc_rbuf(pfvf, rbpool, &bufptr)) {
958 			/* Schedule a WQ if we fails to free atleast half of the
959 			 * pointers else enable napi for this RQ.
960 			 */
961 			if (!((free_ptrs - cq->pool_ptrs) > free_ptrs / 2)) {
962 				struct delayed_work *dwork;
963 
964 				dwork = &wrk->pool_refill_work;
965 				schedule_delayed_work(dwork,
966 						      msecs_to_jiffies(100));
967 			} else {
968 				cq->refill_task_sched = false;
969 			}
970 			return;
971 		}
972 		pfvf->hw_ops->aura_freeptr(pfvf, qidx, bufptr + OTX2_HEAD_ROOM);
973 		cq->pool_ptrs--;
974 	}
975 	cq->refill_task_sched = false;
976 }
977 
978 int otx2_config_nix_queues(struct otx2_nic *pfvf)
979 {
980 	int qidx, err;
981 
982 	/* Initialize RX queues */
983 	for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
984 		u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
985 
986 		err = otx2_rq_init(pfvf, qidx, lpb_aura);
987 		if (err)
988 			return err;
989 	}
990 
991 	/* Initialize TX queues */
992 	for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
993 		u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
994 
995 		err = otx2_sq_init(pfvf, qidx, sqb_aura);
996 		if (err)
997 			return err;
998 	}
999 
1000 	/* Initialize completion queues */
1001 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1002 		err = otx2_cq_init(pfvf, qidx);
1003 		if (err)
1004 			return err;
1005 	}
1006 
1007 	/* Initialize work queue for receive buffer refill */
1008 	pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
1009 					sizeof(struct refill_work), GFP_KERNEL);
1010 	if (!pfvf->refill_wrk)
1011 		return -ENOMEM;
1012 
1013 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1014 		pfvf->refill_wrk[qidx].pf = pfvf;
1015 		INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
1016 				  otx2_pool_refill_task);
1017 	}
1018 	return 0;
1019 }
1020 
1021 int otx2_config_nix(struct otx2_nic *pfvf)
1022 {
1023 	struct nix_lf_alloc_req  *nixlf;
1024 	struct nix_lf_alloc_rsp *rsp;
1025 	int err;
1026 
1027 	pfvf->qset.xqe_size = NIX_XQESZ_W16 ? 128 : 512;
1028 
1029 	/* Get memory to put this msg */
1030 	nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
1031 	if (!nixlf)
1032 		return -ENOMEM;
1033 
1034 	/* Set RQ/SQ/CQ counts */
1035 	nixlf->rq_cnt = pfvf->hw.rx_queues;
1036 	nixlf->sq_cnt = pfvf->hw.tx_queues;
1037 	nixlf->cq_cnt = pfvf->qset.cq_cnt;
1038 	nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1039 	nixlf->rss_grps = MAX_RSS_GROUPS;
1040 	nixlf->xqe_sz = NIX_XQESZ_W16;
1041 	/* We don't know absolute NPA LF idx attached.
1042 	 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
1043 	 * NPA LF attached to this RVU PF/VF.
1044 	 */
1045 	nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
1046 	/* Disable alignment pad, enable L2 length check,
1047 	 * enable L4 TCP/UDP checksum verification.
1048 	 */
1049 	nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1050 
1051 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1052 	if (err)
1053 		return err;
1054 
1055 	rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1056 							   &nixlf->hdr);
1057 	if (IS_ERR(rsp))
1058 		return PTR_ERR(rsp);
1059 
1060 	if (rsp->qints < 1)
1061 		return -ENXIO;
1062 
1063 	return rsp->hdr.rc;
1064 }
1065 
1066 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1067 {
1068 	struct otx2_qset *qset = &pfvf->qset;
1069 	struct otx2_hw *hw = &pfvf->hw;
1070 	struct otx2_snd_queue *sq;
1071 	int sqb, qidx;
1072 	u64 iova, pa;
1073 
1074 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1075 		sq = &qset->sq[qidx];
1076 		if (!sq->sqb_ptrs)
1077 			continue;
1078 		for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1079 			if (!sq->sqb_ptrs[sqb])
1080 				continue;
1081 			iova = sq->sqb_ptrs[sqb];
1082 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1083 			dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1084 					     DMA_FROM_DEVICE,
1085 					     DMA_ATTR_SKIP_CPU_SYNC);
1086 			put_page(virt_to_page(phys_to_virt(pa)));
1087 		}
1088 		sq->sqb_count = 0;
1089 	}
1090 }
1091 
1092 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1093 {
1094 	int pool_id, pool_start = 0, pool_end = 0, size = 0;
1095 	u64 iova, pa;
1096 
1097 	if (type == AURA_NIX_SQ) {
1098 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
1099 		pool_end =  pool_start + pfvf->hw.sqpool_cnt;
1100 		size = pfvf->hw.sqb_size;
1101 	}
1102 	if (type == AURA_NIX_RQ) {
1103 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
1104 		pool_end = pfvf->hw.rqpool_cnt;
1105 		size = pfvf->rbsize;
1106 	}
1107 
1108 	/* Free SQB and RQB pointers from the aura pool */
1109 	for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1110 		iova = otx2_aura_allocptr(pfvf, pool_id);
1111 		while (iova) {
1112 			if (type == AURA_NIX_RQ)
1113 				iova -= OTX2_HEAD_ROOM;
1114 
1115 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1116 			dma_unmap_page_attrs(pfvf->dev, iova, size,
1117 					     DMA_FROM_DEVICE,
1118 					     DMA_ATTR_SKIP_CPU_SYNC);
1119 			put_page(virt_to_page(phys_to_virt(pa)));
1120 			iova = otx2_aura_allocptr(pfvf, pool_id);
1121 		}
1122 	}
1123 }
1124 
1125 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1126 {
1127 	struct otx2_pool *pool;
1128 	int pool_id;
1129 
1130 	if (!pfvf->qset.pool)
1131 		return;
1132 
1133 	for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1134 		pool = &pfvf->qset.pool[pool_id];
1135 		qmem_free(pfvf->dev, pool->stack);
1136 		qmem_free(pfvf->dev, pool->fc_addr);
1137 	}
1138 	devm_kfree(pfvf->dev, pfvf->qset.pool);
1139 	pfvf->qset.pool = NULL;
1140 }
1141 
1142 static int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1143 			  int pool_id, int numptrs)
1144 {
1145 	struct npa_aq_enq_req *aq;
1146 	struct otx2_pool *pool;
1147 	int err;
1148 
1149 	pool = &pfvf->qset.pool[pool_id];
1150 
1151 	/* Allocate memory for HW to update Aura count.
1152 	 * Alloc one cache line, so that it fits all FC_STYPE modes.
1153 	 */
1154 	if (!pool->fc_addr) {
1155 		err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1156 		if (err)
1157 			return err;
1158 	}
1159 
1160 	/* Initialize this aura's context via AF */
1161 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1162 	if (!aq) {
1163 		/* Shared mbox memory buffer is full, flush it and retry */
1164 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1165 		if (err)
1166 			return err;
1167 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1168 		if (!aq)
1169 			return -ENOMEM;
1170 	}
1171 
1172 	aq->aura_id = aura_id;
1173 	/* Will be filled by AF with correct pool context address */
1174 	aq->aura.pool_addr = pool_id;
1175 	aq->aura.pool_caching = 1;
1176 	aq->aura.shift = ilog2(numptrs) - 8;
1177 	aq->aura.count = numptrs;
1178 	aq->aura.limit = numptrs;
1179 	aq->aura.avg_level = 255;
1180 	aq->aura.ena = 1;
1181 	aq->aura.fc_ena = 1;
1182 	aq->aura.fc_addr = pool->fc_addr->iova;
1183 	aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1184 
1185 	/* Enable backpressure for RQ aura */
1186 	if (aura_id < pfvf->hw.rqpool_cnt) {
1187 		aq->aura.bp_ena = 0;
1188 		aq->aura.nix0_bpid = pfvf->bpid[0];
1189 		/* Set backpressure level for RQ's Aura */
1190 		aq->aura.bp = RQ_BP_LVL_AURA;
1191 	}
1192 
1193 	/* Fill AQ info */
1194 	aq->ctype = NPA_AQ_CTYPE_AURA;
1195 	aq->op = NPA_AQ_INSTOP_INIT;
1196 
1197 	return 0;
1198 }
1199 
1200 static int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1201 			  int stack_pages, int numptrs, int buf_size)
1202 {
1203 	struct npa_aq_enq_req *aq;
1204 	struct otx2_pool *pool;
1205 	int err;
1206 
1207 	pool = &pfvf->qset.pool[pool_id];
1208 	/* Alloc memory for stack which is used to store buffer pointers */
1209 	err = qmem_alloc(pfvf->dev, &pool->stack,
1210 			 stack_pages, pfvf->hw.stack_pg_bytes);
1211 	if (err)
1212 		return err;
1213 
1214 	pool->rbsize = buf_size;
1215 
1216 	/* Set LMTST addr for NPA batch free */
1217 	if (test_bit(CN10K_LMTST, &pfvf->hw.cap_flag))
1218 		pool->lmt_addr = (__force u64 *)((u64)pfvf->hw.npa_lmt_base +
1219 						 (pool_id * LMT_LINE_SIZE));
1220 
1221 	/* Initialize this pool's context via AF */
1222 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1223 	if (!aq) {
1224 		/* Shared mbox memory buffer is full, flush it and retry */
1225 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1226 		if (err) {
1227 			qmem_free(pfvf->dev, pool->stack);
1228 			return err;
1229 		}
1230 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1231 		if (!aq) {
1232 			qmem_free(pfvf->dev, pool->stack);
1233 			return -ENOMEM;
1234 		}
1235 	}
1236 
1237 	aq->aura_id = pool_id;
1238 	aq->pool.stack_base = pool->stack->iova;
1239 	aq->pool.stack_caching = 1;
1240 	aq->pool.ena = 1;
1241 	aq->pool.buf_size = buf_size / 128;
1242 	aq->pool.stack_max_pages = stack_pages;
1243 	aq->pool.shift = ilog2(numptrs) - 8;
1244 	aq->pool.ptr_start = 0;
1245 	aq->pool.ptr_end = ~0ULL;
1246 
1247 	/* Fill AQ info */
1248 	aq->ctype = NPA_AQ_CTYPE_POOL;
1249 	aq->op = NPA_AQ_INSTOP_INIT;
1250 
1251 	return 0;
1252 }
1253 
1254 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1255 {
1256 	int qidx, pool_id, stack_pages, num_sqbs;
1257 	struct otx2_qset *qset = &pfvf->qset;
1258 	struct otx2_hw *hw = &pfvf->hw;
1259 	struct otx2_snd_queue *sq;
1260 	struct otx2_pool *pool;
1261 	dma_addr_t bufptr;
1262 	int err, ptr;
1263 
1264 	/* Calculate number of SQBs needed.
1265 	 *
1266 	 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1267 	 * Last SQE is used for pointing to next SQB.
1268 	 */
1269 	num_sqbs = (hw->sqb_size / 128) - 1;
1270 	num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1271 
1272 	/* Get no of stack pages needed */
1273 	stack_pages =
1274 		(num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1275 
1276 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1277 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1278 		/* Initialize aura context */
1279 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1280 		if (err)
1281 			goto fail;
1282 
1283 		/* Initialize pool context */
1284 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1285 				     num_sqbs, hw->sqb_size);
1286 		if (err)
1287 			goto fail;
1288 	}
1289 
1290 	/* Flush accumulated messages */
1291 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1292 	if (err)
1293 		goto fail;
1294 
1295 	/* Allocate pointers and free them to aura/pool */
1296 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1297 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1298 		pool = &pfvf->qset.pool[pool_id];
1299 
1300 		sq = &qset->sq[qidx];
1301 		sq->sqb_count = 0;
1302 		sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1303 		if (!sq->sqb_ptrs)
1304 			return -ENOMEM;
1305 
1306 		for (ptr = 0; ptr < num_sqbs; ptr++) {
1307 			if (otx2_alloc_rbuf(pfvf, pool, &bufptr))
1308 				return -ENOMEM;
1309 			pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1310 			sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1311 		}
1312 	}
1313 
1314 	return 0;
1315 fail:
1316 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1317 	otx2_aura_pool_free(pfvf);
1318 	return err;
1319 }
1320 
1321 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1322 {
1323 	struct otx2_hw *hw = &pfvf->hw;
1324 	int stack_pages, pool_id, rq;
1325 	struct otx2_pool *pool;
1326 	int err, ptr, num_ptrs;
1327 	dma_addr_t bufptr;
1328 
1329 	num_ptrs = pfvf->qset.rqe_cnt;
1330 
1331 	stack_pages =
1332 		(num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1333 
1334 	for (rq = 0; rq < hw->rx_queues; rq++) {
1335 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1336 		/* Initialize aura context */
1337 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1338 		if (err)
1339 			goto fail;
1340 	}
1341 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1342 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1343 				     num_ptrs, pfvf->rbsize);
1344 		if (err)
1345 			goto fail;
1346 	}
1347 
1348 	/* Flush accumulated messages */
1349 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1350 	if (err)
1351 		goto fail;
1352 
1353 	/* Allocate pointers and free them to aura/pool */
1354 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1355 		pool = &pfvf->qset.pool[pool_id];
1356 		for (ptr = 0; ptr < num_ptrs; ptr++) {
1357 			if (otx2_alloc_rbuf(pfvf, pool, &bufptr))
1358 				return -ENOMEM;
1359 			pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
1360 						   bufptr + OTX2_HEAD_ROOM);
1361 		}
1362 	}
1363 
1364 	return 0;
1365 fail:
1366 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1367 	otx2_aura_pool_free(pfvf);
1368 	return err;
1369 }
1370 
1371 int otx2_config_npa(struct otx2_nic *pfvf)
1372 {
1373 	struct otx2_qset *qset = &pfvf->qset;
1374 	struct npa_lf_alloc_req  *npalf;
1375 	struct otx2_hw *hw = &pfvf->hw;
1376 	int aura_cnt;
1377 
1378 	/* Pool - Stack of free buffer pointers
1379 	 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1380 	 */
1381 
1382 	if (!hw->pool_cnt)
1383 		return -EINVAL;
1384 
1385 	qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1386 				  sizeof(struct otx2_pool), GFP_KERNEL);
1387 	if (!qset->pool)
1388 		return -ENOMEM;
1389 
1390 	/* Get memory to put this msg */
1391 	npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1392 	if (!npalf)
1393 		return -ENOMEM;
1394 
1395 	/* Set aura and pool counts */
1396 	npalf->nr_pools = hw->pool_cnt;
1397 	aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1398 	npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1399 
1400 	return otx2_sync_mbox_msg(&pfvf->mbox);
1401 }
1402 
1403 int otx2_detach_resources(struct mbox *mbox)
1404 {
1405 	struct rsrc_detach *detach;
1406 
1407 	mutex_lock(&mbox->lock);
1408 	detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1409 	if (!detach) {
1410 		mutex_unlock(&mbox->lock);
1411 		return -ENOMEM;
1412 	}
1413 
1414 	/* detach all */
1415 	detach->partial = false;
1416 
1417 	/* Send detach request to AF */
1418 	otx2_mbox_msg_send(&mbox->mbox, 0);
1419 	mutex_unlock(&mbox->lock);
1420 	return 0;
1421 }
1422 EXPORT_SYMBOL(otx2_detach_resources);
1423 
1424 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1425 {
1426 	struct rsrc_attach *attach;
1427 	struct msg_req *msix;
1428 	int err;
1429 
1430 	mutex_lock(&pfvf->mbox.lock);
1431 	/* Get memory to put this msg */
1432 	attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1433 	if (!attach) {
1434 		mutex_unlock(&pfvf->mbox.lock);
1435 		return -ENOMEM;
1436 	}
1437 
1438 	attach->npalf = true;
1439 	attach->nixlf = true;
1440 
1441 	/* Send attach request to AF */
1442 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1443 	if (err) {
1444 		mutex_unlock(&pfvf->mbox.lock);
1445 		return err;
1446 	}
1447 
1448 	pfvf->nix_blkaddr = BLKADDR_NIX0;
1449 
1450 	/* If the platform has two NIX blocks then LF may be
1451 	 * allocated from NIX1.
1452 	 */
1453 	if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1454 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1455 
1456 	/* Get NPA and NIX MSIX vector offsets */
1457 	msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1458 	if (!msix) {
1459 		mutex_unlock(&pfvf->mbox.lock);
1460 		return -ENOMEM;
1461 	}
1462 
1463 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1464 	if (err) {
1465 		mutex_unlock(&pfvf->mbox.lock);
1466 		return err;
1467 	}
1468 	mutex_unlock(&pfvf->mbox.lock);
1469 
1470 	if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1471 	    pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1472 		dev_err(pfvf->dev,
1473 			"RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1474 		return -EINVAL;
1475 	}
1476 
1477 	return 0;
1478 }
1479 EXPORT_SYMBOL(otx2_attach_npa_nix);
1480 
1481 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1482 {
1483 	struct hwctx_disable_req *req;
1484 
1485 	mutex_lock(&mbox->lock);
1486 	/* Request AQ to disable this context */
1487 	if (npa)
1488 		req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1489 	else
1490 		req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1491 
1492 	if (!req) {
1493 		mutex_unlock(&mbox->lock);
1494 		return;
1495 	}
1496 
1497 	req->ctype = type;
1498 
1499 	if (otx2_sync_mbox_msg(mbox))
1500 		dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1501 			__func__);
1502 
1503 	mutex_unlock(&mbox->lock);
1504 }
1505 
1506 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1507 {
1508 	struct nix_bp_cfg_req *req;
1509 
1510 	if (enable)
1511 		req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1512 	else
1513 		req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1514 
1515 	if (!req)
1516 		return -ENOMEM;
1517 
1518 	req->chan_base = 0;
1519 	req->chan_cnt = 1;
1520 	req->bpid_per_chan = 0;
1521 
1522 	return otx2_sync_mbox_msg(&pfvf->mbox);
1523 }
1524 
1525 /* Mbox message handlers */
1526 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1527 			    struct cgx_stats_rsp *rsp)
1528 {
1529 	int id;
1530 
1531 	for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1532 		pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1533 	for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1534 		pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1535 }
1536 
1537 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1538 				struct cgx_fec_stats_rsp *rsp)
1539 {
1540 	pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
1541 	pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
1542 }
1543 
1544 void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf,
1545 				  struct nix_txsch_alloc_rsp *rsp)
1546 {
1547 	int lvl, schq;
1548 
1549 	/* Setup transmit scheduler list */
1550 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
1551 		for (schq = 0; schq < rsp->schq[lvl]; schq++)
1552 			pf->hw.txschq_list[lvl][schq] =
1553 				rsp->schq_list[lvl][schq];
1554 }
1555 EXPORT_SYMBOL(mbox_handler_nix_txsch_alloc);
1556 
1557 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1558 			       struct npa_lf_alloc_rsp *rsp)
1559 {
1560 	pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1561 	pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1562 }
1563 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1564 
1565 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1566 			       struct nix_lf_alloc_rsp *rsp)
1567 {
1568 	pfvf->hw.sqb_size = rsp->sqb_size;
1569 	pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1570 	pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1571 	pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1572 	pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1573 	pfvf->hw.cgx_links = rsp->cgx_links;
1574 	pfvf->hw.lbk_links = rsp->lbk_links;
1575 }
1576 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1577 
1578 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1579 			      struct msix_offset_rsp *rsp)
1580 {
1581 	pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1582 	pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1583 }
1584 EXPORT_SYMBOL(mbox_handler_msix_offset);
1585 
1586 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1587 				struct nix_bp_cfg_rsp *rsp)
1588 {
1589 	int chan, chan_id;
1590 
1591 	for (chan = 0; chan < rsp->chan_cnt; chan++) {
1592 		chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1593 		pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1594 	}
1595 }
1596 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1597 
1598 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1599 {
1600 	struct otx2_qset *qset = &pfvf->qset;
1601 	struct otx2_hw *hw = &pfvf->hw;
1602 	int irq, qidx;
1603 
1604 	for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1605 	     qidx < n;
1606 	     qidx++, irq++) {
1607 		int vector = pci_irq_vector(pfvf->pdev, irq);
1608 
1609 		irq_set_affinity_hint(vector, NULL);
1610 		free_cpumask_var(hw->affinity_mask[irq]);
1611 		free_irq(vector, &qset->napi[qidx]);
1612 	}
1613 }
1614 
1615 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1616 {
1617 	struct otx2_hw *hw = &pfvf->hw;
1618 	int vec, cpu, irq, cint;
1619 
1620 	vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1621 	cpu = cpumask_first(cpu_online_mask);
1622 
1623 	/* CQ interrupts */
1624 	for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1625 		if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1626 			return;
1627 
1628 		cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1629 
1630 		irq = pci_irq_vector(pfvf->pdev, vec);
1631 		irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1632 
1633 		cpu = cpumask_next(cpu, cpu_online_mask);
1634 		if (unlikely(cpu >= nr_cpu_ids))
1635 			cpu = 0;
1636 	}
1637 }
1638 
1639 u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
1640 {
1641 	struct nix_hw_info *rsp;
1642 	struct msg_req *req;
1643 	u16 max_mtu;
1644 	int rc;
1645 
1646 	mutex_lock(&pfvf->mbox.lock);
1647 
1648 	req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
1649 	if (!req) {
1650 		rc =  -ENOMEM;
1651 		goto out;
1652 	}
1653 
1654 	rc = otx2_sync_mbox_msg(&pfvf->mbox);
1655 	if (!rc) {
1656 		rsp = (struct nix_hw_info *)
1657 		       otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
1658 
1659 		/* HW counts VLAN insertion bytes (8 for double tag)
1660 		 * irrespective of whether SQE is requesting to insert VLAN
1661 		 * in the packet or not. Hence these 8 bytes have to be
1662 		 * discounted from max packet size otherwise HW will throw
1663 		 * SMQ errors
1664 		 */
1665 		max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
1666 	}
1667 
1668 out:
1669 	mutex_unlock(&pfvf->mbox.lock);
1670 	if (rc) {
1671 		dev_warn(pfvf->dev,
1672 			 "Failed to get MTU from hardware setting default value(1500)\n");
1673 		max_mtu = 1500;
1674 	}
1675 	return max_mtu;
1676 }
1677 EXPORT_SYMBOL(otx2_get_max_mtu);
1678 
1679 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1680 int __weak								\
1681 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf,		\
1682 				struct _req_type *req,			\
1683 				struct _rsp_type *rsp)			\
1684 {									\
1685 	/* Nothing to do here */					\
1686 	return 0;							\
1687 }									\
1688 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
1689 MBOX_UP_CGX_MESSAGES
1690 #undef M
1691