1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/interrupt.h>
9 #include <linux/pci.h>
10 #include <net/tso.h>
11 
12 #include "otx2_reg.h"
13 #include "otx2_common.h"
14 #include "otx2_struct.h"
15 #include "cn10k.h"
16 
17 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
18 				 struct otx2_nic *pfvf, int qidx)
19 {
20 	u64 incr = (u64)qidx << 32;
21 	u64 *ptr;
22 
23 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
24 	stats->bytes = otx2_atomic64_add(incr, ptr);
25 
26 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
27 	stats->pkts = otx2_atomic64_add(incr, ptr);
28 }
29 
30 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
31 				 struct otx2_nic *pfvf, int qidx)
32 {
33 	u64 incr = (u64)qidx << 32;
34 	u64 *ptr;
35 
36 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
37 	stats->bytes = otx2_atomic64_add(incr, ptr);
38 
39 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
40 	stats->pkts = otx2_atomic64_add(incr, ptr);
41 }
42 
43 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
44 {
45 	struct msg_req *req;
46 
47 	if (!netif_running(pfvf->netdev))
48 		return;
49 
50 	mutex_lock(&pfvf->mbox.lock);
51 	req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
52 	if (!req) {
53 		mutex_unlock(&pfvf->mbox.lock);
54 		return;
55 	}
56 
57 	otx2_sync_mbox_msg(&pfvf->mbox);
58 	mutex_unlock(&pfvf->mbox.lock);
59 }
60 
61 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
62 {
63 	struct msg_req *req;
64 
65 	if (!netif_running(pfvf->netdev))
66 		return;
67 	mutex_lock(&pfvf->mbox.lock);
68 	req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
69 	if (req)
70 		otx2_sync_mbox_msg(&pfvf->mbox);
71 	mutex_unlock(&pfvf->mbox.lock);
72 }
73 
74 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
75 {
76 	struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
77 
78 	if (!pfvf->qset.rq)
79 		return 0;
80 
81 	otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
82 	return 1;
83 }
84 
85 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
86 {
87 	struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
88 
89 	if (!pfvf->qset.sq)
90 		return 0;
91 
92 	otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
93 	return 1;
94 }
95 
96 void otx2_get_dev_stats(struct otx2_nic *pfvf)
97 {
98 	struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
99 
100 	dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
101 	dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
102 	dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
103 	dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
104 	dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
105 	dev_stats->rx_frames = dev_stats->rx_bcast_frames +
106 			       dev_stats->rx_mcast_frames +
107 			       dev_stats->rx_ucast_frames;
108 
109 	dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
110 	dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
111 	dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
112 	dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
113 	dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
114 	dev_stats->tx_frames = dev_stats->tx_bcast_frames +
115 			       dev_stats->tx_mcast_frames +
116 			       dev_stats->tx_ucast_frames;
117 }
118 
119 void otx2_get_stats64(struct net_device *netdev,
120 		      struct rtnl_link_stats64 *stats)
121 {
122 	struct otx2_nic *pfvf = netdev_priv(netdev);
123 	struct otx2_dev_stats *dev_stats;
124 
125 	otx2_get_dev_stats(pfvf);
126 
127 	dev_stats = &pfvf->hw.dev_stats;
128 	stats->rx_bytes = dev_stats->rx_bytes;
129 	stats->rx_packets = dev_stats->rx_frames;
130 	stats->rx_dropped = dev_stats->rx_drops;
131 	stats->multicast = dev_stats->rx_mcast_frames;
132 
133 	stats->tx_bytes = dev_stats->tx_bytes;
134 	stats->tx_packets = dev_stats->tx_frames;
135 	stats->tx_dropped = dev_stats->tx_drops;
136 }
137 EXPORT_SYMBOL(otx2_get_stats64);
138 
139 /* Sync MAC address with RVU AF */
140 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
141 {
142 	struct nix_set_mac_addr *req;
143 	int err;
144 
145 	mutex_lock(&pfvf->mbox.lock);
146 	req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
147 	if (!req) {
148 		mutex_unlock(&pfvf->mbox.lock);
149 		return -ENOMEM;
150 	}
151 
152 	ether_addr_copy(req->mac_addr, mac);
153 
154 	err = otx2_sync_mbox_msg(&pfvf->mbox);
155 	mutex_unlock(&pfvf->mbox.lock);
156 	return err;
157 }
158 
159 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
160 				struct net_device *netdev)
161 {
162 	struct nix_get_mac_addr_rsp *rsp;
163 	struct mbox_msghdr *msghdr;
164 	struct msg_req *req;
165 	int err;
166 
167 	mutex_lock(&pfvf->mbox.lock);
168 	req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
169 	if (!req) {
170 		mutex_unlock(&pfvf->mbox.lock);
171 		return -ENOMEM;
172 	}
173 
174 	err = otx2_sync_mbox_msg(&pfvf->mbox);
175 	if (err) {
176 		mutex_unlock(&pfvf->mbox.lock);
177 		return err;
178 	}
179 
180 	msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
181 	if (IS_ERR(msghdr)) {
182 		mutex_unlock(&pfvf->mbox.lock);
183 		return PTR_ERR(msghdr);
184 	}
185 	rsp = (struct nix_get_mac_addr_rsp *)msghdr;
186 	eth_hw_addr_set(netdev, rsp->mac_addr);
187 	mutex_unlock(&pfvf->mbox.lock);
188 
189 	return 0;
190 }
191 
192 int otx2_set_mac_address(struct net_device *netdev, void *p)
193 {
194 	struct otx2_nic *pfvf = netdev_priv(netdev);
195 	struct sockaddr *addr = p;
196 
197 	if (!is_valid_ether_addr(addr->sa_data))
198 		return -EADDRNOTAVAIL;
199 
200 	if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
201 		eth_hw_addr_set(netdev, addr->sa_data);
202 		/* update dmac field in vlan offload rule */
203 		if (netif_running(netdev) &&
204 		    pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
205 			otx2_install_rxvlan_offload_flow(pfvf);
206 		/* update dmac address in ntuple and DMAC filter list */
207 		if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT)
208 			otx2_dmacflt_update_pfmac_flow(pfvf);
209 	} else {
210 		return -EPERM;
211 	}
212 
213 	return 0;
214 }
215 EXPORT_SYMBOL(otx2_set_mac_address);
216 
217 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
218 {
219 	struct nix_frs_cfg *req;
220 	u16 maxlen;
221 	int err;
222 
223 	maxlen = otx2_get_max_mtu(pfvf) + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
224 
225 	mutex_lock(&pfvf->mbox.lock);
226 	req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
227 	if (!req) {
228 		mutex_unlock(&pfvf->mbox.lock);
229 		return -ENOMEM;
230 	}
231 
232 	req->maxlen = pfvf->netdev->mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
233 
234 	/* Use max receive length supported by hardware for loopback devices */
235 	if (is_otx2_lbkvf(pfvf->pdev))
236 		req->maxlen = maxlen;
237 
238 	err = otx2_sync_mbox_msg(&pfvf->mbox);
239 	mutex_unlock(&pfvf->mbox.lock);
240 	return err;
241 }
242 
243 int otx2_config_pause_frm(struct otx2_nic *pfvf)
244 {
245 	struct cgx_pause_frm_cfg *req;
246 	int err;
247 
248 	if (is_otx2_lbkvf(pfvf->pdev))
249 		return 0;
250 
251 	mutex_lock(&pfvf->mbox.lock);
252 	req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
253 	if (!req) {
254 		err = -ENOMEM;
255 		goto unlock;
256 	}
257 
258 	req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
259 	req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
260 	req->set = 1;
261 
262 	err = otx2_sync_mbox_msg(&pfvf->mbox);
263 unlock:
264 	mutex_unlock(&pfvf->mbox.lock);
265 	return err;
266 }
267 EXPORT_SYMBOL(otx2_config_pause_frm);
268 
269 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
270 {
271 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
272 	struct nix_rss_flowkey_cfg_rsp *rsp;
273 	struct nix_rss_flowkey_cfg *req;
274 	int err;
275 
276 	mutex_lock(&pfvf->mbox.lock);
277 	req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
278 	if (!req) {
279 		mutex_unlock(&pfvf->mbox.lock);
280 		return -ENOMEM;
281 	}
282 	req->mcam_index = -1; /* Default or reserved index */
283 	req->flowkey_cfg = rss->flowkey_cfg;
284 	req->group = DEFAULT_RSS_CONTEXT_GROUP;
285 
286 	err = otx2_sync_mbox_msg(&pfvf->mbox);
287 	if (err)
288 		goto fail;
289 
290 	rsp = (struct nix_rss_flowkey_cfg_rsp *)
291 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
292 	if (IS_ERR(rsp)) {
293 		err = PTR_ERR(rsp);
294 		goto fail;
295 	}
296 
297 	pfvf->hw.flowkey_alg_idx = rsp->alg_idx;
298 fail:
299 	mutex_unlock(&pfvf->mbox.lock);
300 	return err;
301 }
302 
303 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id)
304 {
305 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
306 	const int index = rss->rss_size * ctx_id;
307 	struct mbox *mbox = &pfvf->mbox;
308 	struct otx2_rss_ctx *rss_ctx;
309 	struct nix_aq_enq_req *aq;
310 	int idx, err;
311 
312 	mutex_lock(&mbox->lock);
313 	rss_ctx = rss->rss_ctx[ctx_id];
314 	/* Get memory to put this msg */
315 	for (idx = 0; idx < rss->rss_size; idx++) {
316 		aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
317 		if (!aq) {
318 			/* The shared memory buffer can be full.
319 			 * Flush it and retry
320 			 */
321 			err = otx2_sync_mbox_msg(mbox);
322 			if (err) {
323 				mutex_unlock(&mbox->lock);
324 				return err;
325 			}
326 			aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
327 			if (!aq) {
328 				mutex_unlock(&mbox->lock);
329 				return -ENOMEM;
330 			}
331 		}
332 
333 		aq->rss.rq = rss_ctx->ind_tbl[idx];
334 
335 		/* Fill AQ info */
336 		aq->qidx = index + idx;
337 		aq->ctype = NIX_AQ_CTYPE_RSS;
338 		aq->op = NIX_AQ_INSTOP_INIT;
339 	}
340 	err = otx2_sync_mbox_msg(mbox);
341 	mutex_unlock(&mbox->lock);
342 	return err;
343 }
344 
345 void otx2_set_rss_key(struct otx2_nic *pfvf)
346 {
347 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
348 	u64 *key = (u64 *)&rss->key[4];
349 	int idx;
350 
351 	/* 352bit or 44byte key needs to be configured as below
352 	 * NIX_LF_RX_SECRETX0 = key<351:288>
353 	 * NIX_LF_RX_SECRETX1 = key<287:224>
354 	 * NIX_LF_RX_SECRETX2 = key<223:160>
355 	 * NIX_LF_RX_SECRETX3 = key<159:96>
356 	 * NIX_LF_RX_SECRETX4 = key<95:32>
357 	 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
358 	 */
359 	otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
360 		     (u64)(*((u32 *)&rss->key)) << 32);
361 	idx = sizeof(rss->key) / sizeof(u64);
362 	while (idx > 0) {
363 		idx--;
364 		otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
365 	}
366 }
367 
368 int otx2_rss_init(struct otx2_nic *pfvf)
369 {
370 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
371 	struct otx2_rss_ctx *rss_ctx;
372 	int idx, ret = 0;
373 
374 	rss->rss_size = sizeof(*rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]);
375 
376 	/* Init RSS key if it is not setup already */
377 	if (!rss->enable)
378 		netdev_rss_key_fill(rss->key, sizeof(rss->key));
379 	otx2_set_rss_key(pfvf);
380 
381 	if (!netif_is_rxfh_configured(pfvf->netdev)) {
382 		/* Set RSS group 0 as default indirection table */
383 		rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP] = kzalloc(rss->rss_size,
384 								  GFP_KERNEL);
385 		if (!rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP])
386 			return -ENOMEM;
387 
388 		rss_ctx = rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP];
389 		for (idx = 0; idx < rss->rss_size; idx++)
390 			rss_ctx->ind_tbl[idx] =
391 				ethtool_rxfh_indir_default(idx,
392 							   pfvf->hw.rx_queues);
393 	}
394 	ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP);
395 	if (ret)
396 		return ret;
397 
398 	/* Flowkey or hash config to be used for generating flow tag */
399 	rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
400 			   NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
401 			   NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
402 			   NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
403 			   NIX_FLOW_KEY_TYPE_IPV4_PROTO;
404 
405 	ret = otx2_set_flowkey_cfg(pfvf);
406 	if (ret)
407 		return ret;
408 
409 	rss->enable = true;
410 	return 0;
411 }
412 
413 /* Setup UDP segmentation algorithm in HW */
414 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
415 {
416 	struct nix_lso_format *field;
417 
418 	field = (struct nix_lso_format *)&lso->fields[0];
419 	lso->field_mask = GENMASK(18, 0);
420 
421 	/* IP's Length field */
422 	field->layer = NIX_TXLAYER_OL3;
423 	/* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
424 	field->offset = v4 ? 2 : 4;
425 	field->sizem1 = 1; /* i.e 2 bytes */
426 	field->alg = NIX_LSOALG_ADD_PAYLEN;
427 	field++;
428 
429 	/* No ID field in IPv6 header */
430 	if (v4) {
431 		/* Increment IPID */
432 		field->layer = NIX_TXLAYER_OL3;
433 		field->offset = 4;
434 		field->sizem1 = 1; /* i.e 2 bytes */
435 		field->alg = NIX_LSOALG_ADD_SEGNUM;
436 		field++;
437 	}
438 
439 	/* Update length in UDP header */
440 	field->layer = NIX_TXLAYER_OL4;
441 	field->offset = 4;
442 	field->sizem1 = 1;
443 	field->alg = NIX_LSOALG_ADD_PAYLEN;
444 }
445 
446 /* Setup segmentation algorithms in HW and retrieve algorithm index */
447 void otx2_setup_segmentation(struct otx2_nic *pfvf)
448 {
449 	struct nix_lso_format_cfg_rsp *rsp;
450 	struct nix_lso_format_cfg *lso;
451 	struct otx2_hw *hw = &pfvf->hw;
452 	int err;
453 
454 	mutex_lock(&pfvf->mbox.lock);
455 
456 	/* UDPv4 segmentation */
457 	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
458 	if (!lso)
459 		goto fail;
460 
461 	/* Setup UDP/IP header fields that HW should update per segment */
462 	otx2_setup_udp_segmentation(lso, true);
463 
464 	err = otx2_sync_mbox_msg(&pfvf->mbox);
465 	if (err)
466 		goto fail;
467 
468 	rsp = (struct nix_lso_format_cfg_rsp *)
469 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
470 	if (IS_ERR(rsp))
471 		goto fail;
472 
473 	hw->lso_udpv4_idx = rsp->lso_format_idx;
474 
475 	/* UDPv6 segmentation */
476 	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
477 	if (!lso)
478 		goto fail;
479 
480 	/* Setup UDP/IP header fields that HW should update per segment */
481 	otx2_setup_udp_segmentation(lso, false);
482 
483 	err = otx2_sync_mbox_msg(&pfvf->mbox);
484 	if (err)
485 		goto fail;
486 
487 	rsp = (struct nix_lso_format_cfg_rsp *)
488 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
489 	if (IS_ERR(rsp))
490 		goto fail;
491 
492 	hw->lso_udpv6_idx = rsp->lso_format_idx;
493 	mutex_unlock(&pfvf->mbox.lock);
494 	return;
495 fail:
496 	mutex_unlock(&pfvf->mbox.lock);
497 	netdev_info(pfvf->netdev,
498 		    "Failed to get LSO index for UDP GSO offload, disabling\n");
499 	pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
500 }
501 
502 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
503 {
504 	/* Configure CQE interrupt coalescing parameters
505 	 *
506 	 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
507 	 * set 1 less than cq_ecount_wait. And cq_time_wait is in
508 	 * usecs, convert that to 100ns count.
509 	 */
510 	otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
511 		     ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
512 		     ((u64)pfvf->hw.cq_qcount_wait << 32) |
513 		     (pfvf->hw.cq_ecount_wait - 1));
514 }
515 
516 int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
517 		      dma_addr_t *dma)
518 {
519 	u8 *buf;
520 
521 	buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
522 	if (unlikely(!buf))
523 		return -ENOMEM;
524 
525 	*dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
526 				    DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
527 	if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
528 		page_frag_free(buf);
529 		return -ENOMEM;
530 	}
531 
532 	return 0;
533 }
534 
535 static int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
536 			   dma_addr_t *dma)
537 {
538 	int ret;
539 
540 	local_bh_disable();
541 	ret = __otx2_alloc_rbuf(pfvf, pool, dma);
542 	local_bh_enable();
543 	return ret;
544 }
545 
546 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
547 		      dma_addr_t *dma)
548 {
549 	if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma))) {
550 		struct refill_work *work;
551 		struct delayed_work *dwork;
552 
553 		work = &pfvf->refill_wrk[cq->cq_idx];
554 		dwork = &work->pool_refill_work;
555 		/* Schedule a task if no other task is running */
556 		if (!cq->refill_task_sched) {
557 			cq->refill_task_sched = true;
558 			schedule_delayed_work(dwork,
559 					      msecs_to_jiffies(100));
560 		}
561 		return -ENOMEM;
562 	}
563 	return 0;
564 }
565 
566 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
567 {
568 	struct otx2_nic *pfvf = netdev_priv(netdev);
569 
570 	schedule_work(&pfvf->reset_task);
571 }
572 EXPORT_SYMBOL(otx2_tx_timeout);
573 
574 void otx2_get_mac_from_af(struct net_device *netdev)
575 {
576 	struct otx2_nic *pfvf = netdev_priv(netdev);
577 	int err;
578 
579 	err = otx2_hw_get_mac_addr(pfvf, netdev);
580 	if (err)
581 		dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
582 
583 	/* If AF doesn't provide a valid MAC, generate a random one */
584 	if (!is_valid_ether_addr(netdev->dev_addr))
585 		eth_hw_addr_random(netdev);
586 }
587 EXPORT_SYMBOL(otx2_get_mac_from_af);
588 
589 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl)
590 {
591 	struct otx2_hw *hw = &pfvf->hw;
592 	struct nix_txschq_config *req;
593 	u64 schq, parent;
594 	u64 dwrr_val;
595 
596 	dwrr_val = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
597 
598 	req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
599 	if (!req)
600 		return -ENOMEM;
601 
602 	req->lvl = lvl;
603 	req->num_regs = 1;
604 
605 	schq = hw->txschq_list[lvl][0];
606 	/* Set topology e.t.c configuration */
607 	if (lvl == NIX_TXSCH_LVL_SMQ) {
608 		req->reg[0] = NIX_AF_SMQX_CFG(schq);
609 		req->regval[0] = ((u64)pfvf->tx_max_pktlen << 8) | OTX2_MIN_MTU;
610 		req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
611 				  (0x2ULL << 36);
612 		req->num_regs++;
613 		/* MDQ config */
614 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL4][0];
615 		req->reg[1] = NIX_AF_MDQX_PARENT(schq);
616 		req->regval[1] = parent << 16;
617 		req->num_regs++;
618 		/* Set DWRR quantum */
619 		req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
620 		req->regval[2] =  dwrr_val;
621 	} else if (lvl == NIX_TXSCH_LVL_TL4) {
622 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL3][0];
623 		req->reg[0] = NIX_AF_TL4X_PARENT(schq);
624 		req->regval[0] = parent << 16;
625 		req->num_regs++;
626 		req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
627 		req->regval[1] = dwrr_val;
628 	} else if (lvl == NIX_TXSCH_LVL_TL3) {
629 		parent = hw->txschq_list[NIX_TXSCH_LVL_TL2][0];
630 		req->reg[0] = NIX_AF_TL3X_PARENT(schq);
631 		req->regval[0] = parent << 16;
632 		req->num_regs++;
633 		req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
634 		req->regval[1] = dwrr_val;
635 		if (lvl == hw->txschq_link_cfg_lvl) {
636 			req->num_regs++;
637 			req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
638 			/* Enable this queue and backpressure */
639 			req->regval[2] = BIT_ULL(13) | BIT_ULL(12);
640 		}
641 	} else if (lvl == NIX_TXSCH_LVL_TL2) {
642 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL1][0];
643 		req->reg[0] = NIX_AF_TL2X_PARENT(schq);
644 		req->regval[0] = parent << 16;
645 
646 		req->num_regs++;
647 		req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
648 		req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | dwrr_val;
649 
650 		if (lvl == hw->txschq_link_cfg_lvl) {
651 			req->num_regs++;
652 			req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
653 			/* Enable this queue and backpressure */
654 			req->regval[2] = BIT_ULL(13) | BIT_ULL(12);
655 		}
656 	} else if (lvl == NIX_TXSCH_LVL_TL1) {
657 		/* Default config for TL1.
658 		 * For VF this is always ignored.
659 		 */
660 
661 		/* On CN10K, if RR_WEIGHT is greater than 16384, HW will
662 		 * clip it to 16384, so configuring a 24bit max value
663 		 * will work on both OTx2 and CN10K.
664 		 */
665 		req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
666 		req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
667 
668 		req->num_regs++;
669 		req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
670 		req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1);
671 
672 		req->num_regs++;
673 		req->reg[2] = NIX_AF_TL1X_CIR(schq);
674 		req->regval[2] = 0;
675 	}
676 
677 	return otx2_sync_mbox_msg(&pfvf->mbox);
678 }
679 
680 int otx2_txsch_alloc(struct otx2_nic *pfvf)
681 {
682 	struct nix_txsch_alloc_req *req;
683 	int lvl;
684 
685 	/* Get memory to put this msg */
686 	req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
687 	if (!req)
688 		return -ENOMEM;
689 
690 	/* Request one schq per level */
691 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
692 		req->schq[lvl] = 1;
693 
694 	return otx2_sync_mbox_msg(&pfvf->mbox);
695 }
696 
697 int otx2_txschq_stop(struct otx2_nic *pfvf)
698 {
699 	struct nix_txsch_free_req *free_req;
700 	int lvl, schq, err;
701 
702 	mutex_lock(&pfvf->mbox.lock);
703 	/* Free the transmit schedulers */
704 	free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
705 	if (!free_req) {
706 		mutex_unlock(&pfvf->mbox.lock);
707 		return -ENOMEM;
708 	}
709 
710 	free_req->flags = TXSCHQ_FREE_ALL;
711 	err = otx2_sync_mbox_msg(&pfvf->mbox);
712 	mutex_unlock(&pfvf->mbox.lock);
713 
714 	/* Clear the txschq list */
715 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
716 		for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
717 			pfvf->hw.txschq_list[lvl][schq] = 0;
718 	}
719 	return err;
720 }
721 
722 void otx2_sqb_flush(struct otx2_nic *pfvf)
723 {
724 	int qidx, sqe_tail, sqe_head;
725 	u64 incr, *ptr, val;
726 	int timeout = 1000;
727 
728 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
729 	for (qidx = 0; qidx < pfvf->hw.tot_tx_queues; qidx++) {
730 		incr = (u64)qidx << 32;
731 		while (timeout) {
732 			val = otx2_atomic64_add(incr, ptr);
733 			sqe_head = (val >> 20) & 0x3F;
734 			sqe_tail = (val >> 28) & 0x3F;
735 			if (sqe_head == sqe_tail)
736 				break;
737 			usleep_range(1, 3);
738 			timeout--;
739 		}
740 	}
741 }
742 
743 /* RED and drop levels of CQ on packet reception.
744  * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
745  */
746 #define RQ_PASS_LVL_CQ(skid, qsize)	((((skid) + 16) * 256) / (qsize))
747 #define RQ_DROP_LVL_CQ(skid, qsize)	(((skid) * 256) / (qsize))
748 
749 /* RED and drop levels of AURA for packet reception.
750  * For AURA level is measure of fullness (0x0 = empty, 255 = full).
751  * Eg: For RQ length 1K, for pass/drop level 204/230.
752  * RED accepts pkts if free pointers > 102 & <= 205.
753  * Drops pkts if free pointers < 102.
754  */
755 #define RQ_BP_LVL_AURA   (255 - ((85 * 256) / 100)) /* BP when 85% is full */
756 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
757 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
758 
759 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
760 {
761 	struct otx2_qset *qset = &pfvf->qset;
762 	struct nix_aq_enq_req *aq;
763 
764 	/* Get memory to put this msg */
765 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
766 	if (!aq)
767 		return -ENOMEM;
768 
769 	aq->rq.cq = qidx;
770 	aq->rq.ena = 1;
771 	aq->rq.pb_caching = 1;
772 	aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
773 	aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
774 	aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
775 	aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
776 	aq->rq.qint_idx = 0;
777 	aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
778 	aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
779 	aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
780 	aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
781 	aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
782 	aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
783 
784 	/* Fill AQ info */
785 	aq->qidx = qidx;
786 	aq->ctype = NIX_AQ_CTYPE_RQ;
787 	aq->op = NIX_AQ_INSTOP_INIT;
788 
789 	return otx2_sync_mbox_msg(&pfvf->mbox);
790 }
791 
792 int otx2_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura)
793 {
794 	struct otx2_nic *pfvf = dev;
795 	struct otx2_snd_queue *sq;
796 	struct nix_aq_enq_req *aq;
797 
798 	sq = &pfvf->qset.sq[qidx];
799 	sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
800 	/* Get memory to put this msg */
801 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
802 	if (!aq)
803 		return -ENOMEM;
804 
805 	aq->sq.cq = pfvf->hw.rx_queues + qidx;
806 	aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
807 	aq->sq.cq_ena = 1;
808 	aq->sq.ena = 1;
809 	/* Only one SMQ is allocated, map all SQ's to that SMQ  */
810 	aq->sq.smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
811 	aq->sq.smq_rr_quantum = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
812 	aq->sq.default_chan = pfvf->hw.tx_chan_base;
813 	aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
814 	aq->sq.sqb_aura = sqb_aura;
815 	aq->sq.sq_int_ena = NIX_SQINT_BITS;
816 	aq->sq.qint_idx = 0;
817 	/* Due pipelining impact minimum 2000 unused SQ CQE's
818 	 * need to maintain to avoid CQ overflow.
819 	 */
820 	aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
821 
822 	/* Fill AQ info */
823 	aq->qidx = qidx;
824 	aq->ctype = NIX_AQ_CTYPE_SQ;
825 	aq->op = NIX_AQ_INSTOP_INIT;
826 
827 	return otx2_sync_mbox_msg(&pfvf->mbox);
828 }
829 
830 static int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
831 {
832 	struct otx2_qset *qset = &pfvf->qset;
833 	struct otx2_snd_queue *sq;
834 	struct otx2_pool *pool;
835 	int err;
836 
837 	pool = &pfvf->qset.pool[sqb_aura];
838 	sq = &qset->sq[qidx];
839 	sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
840 	sq->sqe_cnt = qset->sqe_cnt;
841 
842 	err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
843 	if (err)
844 		return err;
845 
846 	if (qidx < pfvf->hw.tx_queues) {
847 		err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
848 				 TSO_HEADER_SIZE);
849 		if (err)
850 			return err;
851 	}
852 
853 	sq->sqe_base = sq->sqe->base;
854 	sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
855 	if (!sq->sg)
856 		return -ENOMEM;
857 
858 	if (pfvf->ptp && qidx < pfvf->hw.tx_queues) {
859 		err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
860 				 sizeof(*sq->timestamps));
861 		if (err)
862 			return err;
863 	}
864 
865 	sq->head = 0;
866 	sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
867 	sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
868 	/* Set SQE threshold to 10% of total SQEs */
869 	sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
870 	sq->aura_id = sqb_aura;
871 	sq->aura_fc_addr = pool->fc_addr->base;
872 	sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
873 
874 	sq->stats.bytes = 0;
875 	sq->stats.pkts = 0;
876 
877 	return pfvf->hw_ops->sq_aq_init(pfvf, qidx, sqb_aura);
878 
879 }
880 
881 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
882 {
883 	struct otx2_qset *qset = &pfvf->qset;
884 	int err, pool_id, non_xdp_queues;
885 	struct nix_aq_enq_req *aq;
886 	struct otx2_cq_queue *cq;
887 
888 	cq = &qset->cq[qidx];
889 	cq->cq_idx = qidx;
890 	non_xdp_queues = pfvf->hw.rx_queues + pfvf->hw.tx_queues;
891 	if (qidx < pfvf->hw.rx_queues) {
892 		cq->cq_type = CQ_RX;
893 		cq->cint_idx = qidx;
894 		cq->cqe_cnt = qset->rqe_cnt;
895 		if (pfvf->xdp_prog)
896 			xdp_rxq_info_reg(&cq->xdp_rxq, pfvf->netdev, qidx, 0);
897 	} else if (qidx < non_xdp_queues) {
898 		cq->cq_type = CQ_TX;
899 		cq->cint_idx = qidx - pfvf->hw.rx_queues;
900 		cq->cqe_cnt = qset->sqe_cnt;
901 	} else {
902 		cq->cq_type = CQ_XDP;
903 		cq->cint_idx = qidx - non_xdp_queues;
904 		cq->cqe_cnt = qset->sqe_cnt;
905 	}
906 	cq->cqe_size = pfvf->qset.xqe_size;
907 
908 	/* Allocate memory for CQEs */
909 	err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
910 	if (err)
911 		return err;
912 
913 	/* Save CQE CPU base for faster reference */
914 	cq->cqe_base = cq->cqe->base;
915 	/* In case where all RQs auras point to single pool,
916 	 * all CQs receive buffer pool also point to same pool.
917 	 */
918 	pool_id = ((cq->cq_type == CQ_RX) &&
919 		   (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
920 	cq->rbpool = &qset->pool[pool_id];
921 	cq->refill_task_sched = false;
922 
923 	/* Get memory to put this msg */
924 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
925 	if (!aq)
926 		return -ENOMEM;
927 
928 	aq->cq.ena = 1;
929 	aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
930 	aq->cq.caching = 1;
931 	aq->cq.base = cq->cqe->iova;
932 	aq->cq.cint_idx = cq->cint_idx;
933 	aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
934 	aq->cq.qint_idx = 0;
935 	aq->cq.avg_level = 255;
936 
937 	if (qidx < pfvf->hw.rx_queues) {
938 		aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
939 		aq->cq.drop_ena = 1;
940 
941 		if (!is_otx2_lbkvf(pfvf->pdev)) {
942 			/* Enable receive CQ backpressure */
943 			aq->cq.bp_ena = 1;
944 #ifdef CONFIG_DCB
945 			aq->cq.bpid = pfvf->bpid[pfvf->queue_to_pfc_map[qidx]];
946 #else
947 			aq->cq.bpid = pfvf->bpid[0];
948 #endif
949 
950 			/* Set backpressure level is same as cq pass level */
951 			aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
952 		}
953 	}
954 
955 	/* Fill AQ info */
956 	aq->qidx = qidx;
957 	aq->ctype = NIX_AQ_CTYPE_CQ;
958 	aq->op = NIX_AQ_INSTOP_INIT;
959 
960 	return otx2_sync_mbox_msg(&pfvf->mbox);
961 }
962 
963 static void otx2_pool_refill_task(struct work_struct *work)
964 {
965 	struct otx2_cq_queue *cq;
966 	struct otx2_pool *rbpool;
967 	struct refill_work *wrk;
968 	int qidx, free_ptrs = 0;
969 	struct otx2_nic *pfvf;
970 	dma_addr_t bufptr;
971 
972 	wrk = container_of(work, struct refill_work, pool_refill_work.work);
973 	pfvf = wrk->pf;
974 	qidx = wrk - pfvf->refill_wrk;
975 	cq = &pfvf->qset.cq[qidx];
976 	rbpool = cq->rbpool;
977 	free_ptrs = cq->pool_ptrs;
978 
979 	while (cq->pool_ptrs) {
980 		if (otx2_alloc_rbuf(pfvf, rbpool, &bufptr)) {
981 			/* Schedule a WQ if we fails to free atleast half of the
982 			 * pointers else enable napi for this RQ.
983 			 */
984 			if (!((free_ptrs - cq->pool_ptrs) > free_ptrs / 2)) {
985 				struct delayed_work *dwork;
986 
987 				dwork = &wrk->pool_refill_work;
988 				schedule_delayed_work(dwork,
989 						      msecs_to_jiffies(100));
990 			} else {
991 				cq->refill_task_sched = false;
992 			}
993 			return;
994 		}
995 		pfvf->hw_ops->aura_freeptr(pfvf, qidx, bufptr + OTX2_HEAD_ROOM);
996 		cq->pool_ptrs--;
997 	}
998 	cq->refill_task_sched = false;
999 }
1000 
1001 int otx2_config_nix_queues(struct otx2_nic *pfvf)
1002 {
1003 	int qidx, err;
1004 
1005 	/* Initialize RX queues */
1006 	for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
1007 		u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
1008 
1009 		err = otx2_rq_init(pfvf, qidx, lpb_aura);
1010 		if (err)
1011 			return err;
1012 	}
1013 
1014 	/* Initialize TX queues */
1015 	for (qidx = 0; qidx < pfvf->hw.tot_tx_queues; qidx++) {
1016 		u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1017 
1018 		err = otx2_sq_init(pfvf, qidx, sqb_aura);
1019 		if (err)
1020 			return err;
1021 	}
1022 
1023 	/* Initialize completion queues */
1024 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1025 		err = otx2_cq_init(pfvf, qidx);
1026 		if (err)
1027 			return err;
1028 	}
1029 
1030 	pfvf->cq_op_addr = (__force u64 *)otx2_get_regaddr(pfvf,
1031 							   NIX_LF_CQ_OP_STATUS);
1032 
1033 	/* Initialize work queue for receive buffer refill */
1034 	pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
1035 					sizeof(struct refill_work), GFP_KERNEL);
1036 	if (!pfvf->refill_wrk)
1037 		return -ENOMEM;
1038 
1039 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1040 		pfvf->refill_wrk[qidx].pf = pfvf;
1041 		INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
1042 				  otx2_pool_refill_task);
1043 	}
1044 	return 0;
1045 }
1046 
1047 int otx2_config_nix(struct otx2_nic *pfvf)
1048 {
1049 	struct nix_lf_alloc_req  *nixlf;
1050 	struct nix_lf_alloc_rsp *rsp;
1051 	int err;
1052 
1053 	pfvf->qset.xqe_size = pfvf->hw.xqe_size;
1054 
1055 	/* Get memory to put this msg */
1056 	nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
1057 	if (!nixlf)
1058 		return -ENOMEM;
1059 
1060 	/* Set RQ/SQ/CQ counts */
1061 	nixlf->rq_cnt = pfvf->hw.rx_queues;
1062 	nixlf->sq_cnt = pfvf->hw.tot_tx_queues;
1063 	nixlf->cq_cnt = pfvf->qset.cq_cnt;
1064 	nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1065 	nixlf->rss_grps = MAX_RSS_GROUPS;
1066 	nixlf->xqe_sz = pfvf->hw.xqe_size == 128 ? NIX_XQESZ_W16 : NIX_XQESZ_W64;
1067 	/* We don't know absolute NPA LF idx attached.
1068 	 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
1069 	 * NPA LF attached to this RVU PF/VF.
1070 	 */
1071 	nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
1072 	/* Disable alignment pad, enable L2 length check,
1073 	 * enable L4 TCP/UDP checksum verification.
1074 	 */
1075 	nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1076 
1077 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1078 	if (err)
1079 		return err;
1080 
1081 	rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1082 							   &nixlf->hdr);
1083 	if (IS_ERR(rsp))
1084 		return PTR_ERR(rsp);
1085 
1086 	if (rsp->qints < 1)
1087 		return -ENXIO;
1088 
1089 	return rsp->hdr.rc;
1090 }
1091 
1092 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1093 {
1094 	struct otx2_qset *qset = &pfvf->qset;
1095 	struct otx2_hw *hw = &pfvf->hw;
1096 	struct otx2_snd_queue *sq;
1097 	int sqb, qidx;
1098 	u64 iova, pa;
1099 
1100 	for (qidx = 0; qidx < hw->tot_tx_queues; qidx++) {
1101 		sq = &qset->sq[qidx];
1102 		if (!sq->sqb_ptrs)
1103 			continue;
1104 		for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1105 			if (!sq->sqb_ptrs[sqb])
1106 				continue;
1107 			iova = sq->sqb_ptrs[sqb];
1108 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1109 			dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1110 					     DMA_FROM_DEVICE,
1111 					     DMA_ATTR_SKIP_CPU_SYNC);
1112 			put_page(virt_to_page(phys_to_virt(pa)));
1113 		}
1114 		sq->sqb_count = 0;
1115 	}
1116 }
1117 
1118 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1119 {
1120 	int pool_id, pool_start = 0, pool_end = 0, size = 0;
1121 	u64 iova, pa;
1122 
1123 	if (type == AURA_NIX_SQ) {
1124 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
1125 		pool_end =  pool_start + pfvf->hw.sqpool_cnt;
1126 		size = pfvf->hw.sqb_size;
1127 	}
1128 	if (type == AURA_NIX_RQ) {
1129 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
1130 		pool_end = pfvf->hw.rqpool_cnt;
1131 		size = pfvf->rbsize;
1132 	}
1133 
1134 	/* Free SQB and RQB pointers from the aura pool */
1135 	for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1136 		iova = otx2_aura_allocptr(pfvf, pool_id);
1137 		while (iova) {
1138 			if (type == AURA_NIX_RQ)
1139 				iova -= OTX2_HEAD_ROOM;
1140 
1141 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1142 			dma_unmap_page_attrs(pfvf->dev, iova, size,
1143 					     DMA_FROM_DEVICE,
1144 					     DMA_ATTR_SKIP_CPU_SYNC);
1145 			put_page(virt_to_page(phys_to_virt(pa)));
1146 			iova = otx2_aura_allocptr(pfvf, pool_id);
1147 		}
1148 	}
1149 }
1150 
1151 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1152 {
1153 	struct otx2_pool *pool;
1154 	int pool_id;
1155 
1156 	if (!pfvf->qset.pool)
1157 		return;
1158 
1159 	for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1160 		pool = &pfvf->qset.pool[pool_id];
1161 		qmem_free(pfvf->dev, pool->stack);
1162 		qmem_free(pfvf->dev, pool->fc_addr);
1163 	}
1164 	devm_kfree(pfvf->dev, pfvf->qset.pool);
1165 	pfvf->qset.pool = NULL;
1166 }
1167 
1168 static int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1169 			  int pool_id, int numptrs)
1170 {
1171 	struct npa_aq_enq_req *aq;
1172 	struct otx2_pool *pool;
1173 	int err;
1174 
1175 	pool = &pfvf->qset.pool[pool_id];
1176 
1177 	/* Allocate memory for HW to update Aura count.
1178 	 * Alloc one cache line, so that it fits all FC_STYPE modes.
1179 	 */
1180 	if (!pool->fc_addr) {
1181 		err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1182 		if (err)
1183 			return err;
1184 	}
1185 
1186 	/* Initialize this aura's context via AF */
1187 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1188 	if (!aq) {
1189 		/* Shared mbox memory buffer is full, flush it and retry */
1190 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1191 		if (err)
1192 			return err;
1193 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1194 		if (!aq)
1195 			return -ENOMEM;
1196 	}
1197 
1198 	aq->aura_id = aura_id;
1199 	/* Will be filled by AF with correct pool context address */
1200 	aq->aura.pool_addr = pool_id;
1201 	aq->aura.pool_caching = 1;
1202 	aq->aura.shift = ilog2(numptrs) - 8;
1203 	aq->aura.count = numptrs;
1204 	aq->aura.limit = numptrs;
1205 	aq->aura.avg_level = 255;
1206 	aq->aura.ena = 1;
1207 	aq->aura.fc_ena = 1;
1208 	aq->aura.fc_addr = pool->fc_addr->iova;
1209 	aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1210 
1211 	/* Enable backpressure for RQ aura */
1212 	if (aura_id < pfvf->hw.rqpool_cnt && !is_otx2_lbkvf(pfvf->pdev)) {
1213 		aq->aura.bp_ena = 0;
1214 		/* If NIX1 LF is attached then specify NIX1_RX.
1215 		 *
1216 		 * Below NPA_AURA_S[BP_ENA] is set according to the
1217 		 * NPA_BPINTF_E enumeration given as:
1218 		 * 0x0 + a*0x1 where 'a' is 0 for NIX0_RX and 1 for NIX1_RX so
1219 		 * NIX0_RX is 0x0 + 0*0x1 = 0
1220 		 * NIX1_RX is 0x0 + 1*0x1 = 1
1221 		 * But in HRM it is given that
1222 		 * "NPA_AURA_S[BP_ENA](w1[33:32]) - Enable aura backpressure to
1223 		 * NIX-RX based on [BP] level. One bit per NIX-RX; index
1224 		 * enumerated by NPA_BPINTF_E."
1225 		 */
1226 		if (pfvf->nix_blkaddr == BLKADDR_NIX1)
1227 			aq->aura.bp_ena = 1;
1228 #ifdef CONFIG_DCB
1229 		aq->aura.nix0_bpid = pfvf->bpid[pfvf->queue_to_pfc_map[aura_id]];
1230 #else
1231 		aq->aura.nix0_bpid = pfvf->bpid[0];
1232 #endif
1233 
1234 		/* Set backpressure level for RQ's Aura */
1235 		aq->aura.bp = RQ_BP_LVL_AURA;
1236 	}
1237 
1238 	/* Fill AQ info */
1239 	aq->ctype = NPA_AQ_CTYPE_AURA;
1240 	aq->op = NPA_AQ_INSTOP_INIT;
1241 
1242 	return 0;
1243 }
1244 
1245 static int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1246 			  int stack_pages, int numptrs, int buf_size)
1247 {
1248 	struct npa_aq_enq_req *aq;
1249 	struct otx2_pool *pool;
1250 	int err;
1251 
1252 	pool = &pfvf->qset.pool[pool_id];
1253 	/* Alloc memory for stack which is used to store buffer pointers */
1254 	err = qmem_alloc(pfvf->dev, &pool->stack,
1255 			 stack_pages, pfvf->hw.stack_pg_bytes);
1256 	if (err)
1257 		return err;
1258 
1259 	pool->rbsize = buf_size;
1260 
1261 	/* Initialize this pool's context via AF */
1262 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1263 	if (!aq) {
1264 		/* Shared mbox memory buffer is full, flush it and retry */
1265 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1266 		if (err) {
1267 			qmem_free(pfvf->dev, pool->stack);
1268 			return err;
1269 		}
1270 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1271 		if (!aq) {
1272 			qmem_free(pfvf->dev, pool->stack);
1273 			return -ENOMEM;
1274 		}
1275 	}
1276 
1277 	aq->aura_id = pool_id;
1278 	aq->pool.stack_base = pool->stack->iova;
1279 	aq->pool.stack_caching = 1;
1280 	aq->pool.ena = 1;
1281 	aq->pool.buf_size = buf_size / 128;
1282 	aq->pool.stack_max_pages = stack_pages;
1283 	aq->pool.shift = ilog2(numptrs) - 8;
1284 	aq->pool.ptr_start = 0;
1285 	aq->pool.ptr_end = ~0ULL;
1286 
1287 	/* Fill AQ info */
1288 	aq->ctype = NPA_AQ_CTYPE_POOL;
1289 	aq->op = NPA_AQ_INSTOP_INIT;
1290 
1291 	return 0;
1292 }
1293 
1294 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1295 {
1296 	int qidx, pool_id, stack_pages, num_sqbs;
1297 	struct otx2_qset *qset = &pfvf->qset;
1298 	struct otx2_hw *hw = &pfvf->hw;
1299 	struct otx2_snd_queue *sq;
1300 	struct otx2_pool *pool;
1301 	dma_addr_t bufptr;
1302 	int err, ptr;
1303 
1304 	/* Calculate number of SQBs needed.
1305 	 *
1306 	 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1307 	 * Last SQE is used for pointing to next SQB.
1308 	 */
1309 	num_sqbs = (hw->sqb_size / 128) - 1;
1310 	num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1311 
1312 	/* Get no of stack pages needed */
1313 	stack_pages =
1314 		(num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1315 
1316 	for (qidx = 0; qidx < hw->tot_tx_queues; qidx++) {
1317 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1318 		/* Initialize aura context */
1319 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1320 		if (err)
1321 			goto fail;
1322 
1323 		/* Initialize pool context */
1324 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1325 				     num_sqbs, hw->sqb_size);
1326 		if (err)
1327 			goto fail;
1328 	}
1329 
1330 	/* Flush accumulated messages */
1331 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1332 	if (err)
1333 		goto fail;
1334 
1335 	/* Allocate pointers and free them to aura/pool */
1336 	for (qidx = 0; qidx < hw->tot_tx_queues; qidx++) {
1337 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1338 		pool = &pfvf->qset.pool[pool_id];
1339 
1340 		sq = &qset->sq[qidx];
1341 		sq->sqb_count = 0;
1342 		sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1343 		if (!sq->sqb_ptrs)
1344 			return -ENOMEM;
1345 
1346 		for (ptr = 0; ptr < num_sqbs; ptr++) {
1347 			if (otx2_alloc_rbuf(pfvf, pool, &bufptr))
1348 				return -ENOMEM;
1349 			pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1350 			sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1351 		}
1352 	}
1353 
1354 	return 0;
1355 fail:
1356 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1357 	otx2_aura_pool_free(pfvf);
1358 	return err;
1359 }
1360 
1361 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1362 {
1363 	struct otx2_hw *hw = &pfvf->hw;
1364 	int stack_pages, pool_id, rq;
1365 	struct otx2_pool *pool;
1366 	int err, ptr, num_ptrs;
1367 	dma_addr_t bufptr;
1368 
1369 	num_ptrs = pfvf->qset.rqe_cnt;
1370 
1371 	stack_pages =
1372 		(num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1373 
1374 	for (rq = 0; rq < hw->rx_queues; rq++) {
1375 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1376 		/* Initialize aura context */
1377 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1378 		if (err)
1379 			goto fail;
1380 	}
1381 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1382 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1383 				     num_ptrs, pfvf->rbsize);
1384 		if (err)
1385 			goto fail;
1386 	}
1387 
1388 	/* Flush accumulated messages */
1389 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1390 	if (err)
1391 		goto fail;
1392 
1393 	/* Allocate pointers and free them to aura/pool */
1394 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1395 		pool = &pfvf->qset.pool[pool_id];
1396 		for (ptr = 0; ptr < num_ptrs; ptr++) {
1397 			if (otx2_alloc_rbuf(pfvf, pool, &bufptr))
1398 				return -ENOMEM;
1399 			pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
1400 						   bufptr + OTX2_HEAD_ROOM);
1401 		}
1402 	}
1403 
1404 	return 0;
1405 fail:
1406 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1407 	otx2_aura_pool_free(pfvf);
1408 	return err;
1409 }
1410 
1411 int otx2_config_npa(struct otx2_nic *pfvf)
1412 {
1413 	struct otx2_qset *qset = &pfvf->qset;
1414 	struct npa_lf_alloc_req  *npalf;
1415 	struct otx2_hw *hw = &pfvf->hw;
1416 	int aura_cnt;
1417 
1418 	/* Pool - Stack of free buffer pointers
1419 	 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1420 	 */
1421 
1422 	if (!hw->pool_cnt)
1423 		return -EINVAL;
1424 
1425 	qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1426 				  sizeof(struct otx2_pool), GFP_KERNEL);
1427 	if (!qset->pool)
1428 		return -ENOMEM;
1429 
1430 	/* Get memory to put this msg */
1431 	npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1432 	if (!npalf)
1433 		return -ENOMEM;
1434 
1435 	/* Set aura and pool counts */
1436 	npalf->nr_pools = hw->pool_cnt;
1437 	aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1438 	npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1439 
1440 	return otx2_sync_mbox_msg(&pfvf->mbox);
1441 }
1442 
1443 int otx2_detach_resources(struct mbox *mbox)
1444 {
1445 	struct rsrc_detach *detach;
1446 
1447 	mutex_lock(&mbox->lock);
1448 	detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1449 	if (!detach) {
1450 		mutex_unlock(&mbox->lock);
1451 		return -ENOMEM;
1452 	}
1453 
1454 	/* detach all */
1455 	detach->partial = false;
1456 
1457 	/* Send detach request to AF */
1458 	otx2_mbox_msg_send(&mbox->mbox, 0);
1459 	mutex_unlock(&mbox->lock);
1460 	return 0;
1461 }
1462 EXPORT_SYMBOL(otx2_detach_resources);
1463 
1464 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1465 {
1466 	struct rsrc_attach *attach;
1467 	struct msg_req *msix;
1468 	int err;
1469 
1470 	mutex_lock(&pfvf->mbox.lock);
1471 	/* Get memory to put this msg */
1472 	attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1473 	if (!attach) {
1474 		mutex_unlock(&pfvf->mbox.lock);
1475 		return -ENOMEM;
1476 	}
1477 
1478 	attach->npalf = true;
1479 	attach->nixlf = true;
1480 
1481 	/* Send attach request to AF */
1482 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1483 	if (err) {
1484 		mutex_unlock(&pfvf->mbox.lock);
1485 		return err;
1486 	}
1487 
1488 	pfvf->nix_blkaddr = BLKADDR_NIX0;
1489 
1490 	/* If the platform has two NIX blocks then LF may be
1491 	 * allocated from NIX1.
1492 	 */
1493 	if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1494 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1495 
1496 	/* Get NPA and NIX MSIX vector offsets */
1497 	msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1498 	if (!msix) {
1499 		mutex_unlock(&pfvf->mbox.lock);
1500 		return -ENOMEM;
1501 	}
1502 
1503 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1504 	if (err) {
1505 		mutex_unlock(&pfvf->mbox.lock);
1506 		return err;
1507 	}
1508 	mutex_unlock(&pfvf->mbox.lock);
1509 
1510 	if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1511 	    pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1512 		dev_err(pfvf->dev,
1513 			"RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1514 		return -EINVAL;
1515 	}
1516 
1517 	return 0;
1518 }
1519 EXPORT_SYMBOL(otx2_attach_npa_nix);
1520 
1521 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1522 {
1523 	struct hwctx_disable_req *req;
1524 
1525 	mutex_lock(&mbox->lock);
1526 	/* Request AQ to disable this context */
1527 	if (npa)
1528 		req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1529 	else
1530 		req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1531 
1532 	if (!req) {
1533 		mutex_unlock(&mbox->lock);
1534 		return;
1535 	}
1536 
1537 	req->ctype = type;
1538 
1539 	if (otx2_sync_mbox_msg(mbox))
1540 		dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1541 			__func__);
1542 
1543 	mutex_unlock(&mbox->lock);
1544 }
1545 
1546 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1547 {
1548 	struct nix_bp_cfg_req *req;
1549 
1550 	if (enable)
1551 		req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1552 	else
1553 		req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1554 
1555 	if (!req)
1556 		return -ENOMEM;
1557 
1558 	req->chan_base = 0;
1559 #ifdef CONFIG_DCB
1560 	req->chan_cnt = pfvf->pfc_en ? IEEE_8021QAZ_MAX_TCS : 1;
1561 	req->bpid_per_chan = pfvf->pfc_en ? 1 : 0;
1562 #else
1563 	req->chan_cnt =  1;
1564 	req->bpid_per_chan = 0;
1565 #endif
1566 
1567 
1568 	return otx2_sync_mbox_msg(&pfvf->mbox);
1569 }
1570 EXPORT_SYMBOL(otx2_nix_config_bp);
1571 
1572 /* Mbox message handlers */
1573 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1574 			    struct cgx_stats_rsp *rsp)
1575 {
1576 	int id;
1577 
1578 	for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1579 		pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1580 	for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1581 		pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1582 }
1583 
1584 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1585 				struct cgx_fec_stats_rsp *rsp)
1586 {
1587 	pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
1588 	pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
1589 }
1590 
1591 void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf,
1592 				  struct nix_txsch_alloc_rsp *rsp)
1593 {
1594 	int lvl, schq;
1595 
1596 	/* Setup transmit scheduler list */
1597 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
1598 		for (schq = 0; schq < rsp->schq[lvl]; schq++)
1599 			pf->hw.txschq_list[lvl][schq] =
1600 				rsp->schq_list[lvl][schq];
1601 
1602 	pf->hw.txschq_link_cfg_lvl = rsp->link_cfg_lvl;
1603 }
1604 EXPORT_SYMBOL(mbox_handler_nix_txsch_alloc);
1605 
1606 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1607 			       struct npa_lf_alloc_rsp *rsp)
1608 {
1609 	pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1610 	pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1611 }
1612 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1613 
1614 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1615 			       struct nix_lf_alloc_rsp *rsp)
1616 {
1617 	pfvf->hw.sqb_size = rsp->sqb_size;
1618 	pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1619 	pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1620 	pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1621 	pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1622 	pfvf->hw.cgx_links = rsp->cgx_links;
1623 	pfvf->hw.lbk_links = rsp->lbk_links;
1624 	pfvf->hw.tx_link = rsp->tx_link;
1625 }
1626 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1627 
1628 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1629 			      struct msix_offset_rsp *rsp)
1630 {
1631 	pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1632 	pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1633 }
1634 EXPORT_SYMBOL(mbox_handler_msix_offset);
1635 
1636 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1637 				struct nix_bp_cfg_rsp *rsp)
1638 {
1639 	int chan, chan_id;
1640 
1641 	for (chan = 0; chan < rsp->chan_cnt; chan++) {
1642 		chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1643 		pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1644 	}
1645 }
1646 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1647 
1648 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1649 {
1650 	struct otx2_qset *qset = &pfvf->qset;
1651 	struct otx2_hw *hw = &pfvf->hw;
1652 	int irq, qidx;
1653 
1654 	for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1655 	     qidx < n;
1656 	     qidx++, irq++) {
1657 		int vector = pci_irq_vector(pfvf->pdev, irq);
1658 
1659 		irq_set_affinity_hint(vector, NULL);
1660 		free_cpumask_var(hw->affinity_mask[irq]);
1661 		free_irq(vector, &qset->napi[qidx]);
1662 	}
1663 }
1664 
1665 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1666 {
1667 	struct otx2_hw *hw = &pfvf->hw;
1668 	int vec, cpu, irq, cint;
1669 
1670 	vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1671 	cpu = cpumask_first(cpu_online_mask);
1672 
1673 	/* CQ interrupts */
1674 	for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1675 		if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1676 			return;
1677 
1678 		cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1679 
1680 		irq = pci_irq_vector(pfvf->pdev, vec);
1681 		irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1682 
1683 		cpu = cpumask_next(cpu, cpu_online_mask);
1684 		if (unlikely(cpu >= nr_cpu_ids))
1685 			cpu = 0;
1686 	}
1687 }
1688 
1689 u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
1690 {
1691 	struct nix_hw_info *rsp;
1692 	struct msg_req *req;
1693 	u16 max_mtu;
1694 	int rc;
1695 
1696 	mutex_lock(&pfvf->mbox.lock);
1697 
1698 	req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
1699 	if (!req) {
1700 		rc =  -ENOMEM;
1701 		goto out;
1702 	}
1703 
1704 	rc = otx2_sync_mbox_msg(&pfvf->mbox);
1705 	if (!rc) {
1706 		rsp = (struct nix_hw_info *)
1707 		       otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
1708 
1709 		/* HW counts VLAN insertion bytes (8 for double tag)
1710 		 * irrespective of whether SQE is requesting to insert VLAN
1711 		 * in the packet or not. Hence these 8 bytes have to be
1712 		 * discounted from max packet size otherwise HW will throw
1713 		 * SMQ errors
1714 		 */
1715 		max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
1716 
1717 		/* Also save DWRR MTU, needed for DWRR weight calculation */
1718 		pfvf->hw.dwrr_mtu = rsp->rpm_dwrr_mtu;
1719 		if (!pfvf->hw.dwrr_mtu)
1720 			pfvf->hw.dwrr_mtu = 1;
1721 	}
1722 
1723 out:
1724 	mutex_unlock(&pfvf->mbox.lock);
1725 	if (rc) {
1726 		dev_warn(pfvf->dev,
1727 			 "Failed to get MTU from hardware setting default value(1500)\n");
1728 		max_mtu = 1500;
1729 	}
1730 	return max_mtu;
1731 }
1732 EXPORT_SYMBOL(otx2_get_max_mtu);
1733 
1734 int otx2_handle_ntuple_tc_features(struct net_device *netdev, netdev_features_t features)
1735 {
1736 	netdev_features_t changed = features ^ netdev->features;
1737 	struct otx2_nic *pfvf = netdev_priv(netdev);
1738 	bool ntuple = !!(features & NETIF_F_NTUPLE);
1739 	bool tc = !!(features & NETIF_F_HW_TC);
1740 
1741 	if ((changed & NETIF_F_NTUPLE) && !ntuple)
1742 		otx2_destroy_ntuple_flows(pfvf);
1743 
1744 	if ((changed & NETIF_F_NTUPLE) && ntuple) {
1745 		if (!pfvf->flow_cfg->max_flows) {
1746 			netdev_err(netdev,
1747 				   "Can't enable NTUPLE, MCAM entries not allocated\n");
1748 			return -EINVAL;
1749 		}
1750 	}
1751 
1752 	if ((changed & NETIF_F_HW_TC) && tc) {
1753 		if (!pfvf->flow_cfg->max_flows) {
1754 			netdev_err(netdev,
1755 				   "Can't enable TC, MCAM entries not allocated\n");
1756 			return -EINVAL;
1757 		}
1758 	}
1759 
1760 	if ((changed & NETIF_F_HW_TC) && !tc &&
1761 	    pfvf->flow_cfg && pfvf->flow_cfg->nr_flows) {
1762 		netdev_err(netdev, "Can't disable TC hardware offload while flows are active\n");
1763 		return -EBUSY;
1764 	}
1765 
1766 	if ((changed & NETIF_F_NTUPLE) && ntuple &&
1767 	    (netdev->features & NETIF_F_HW_TC) && !(changed & NETIF_F_HW_TC)) {
1768 		netdev_err(netdev,
1769 			   "Can't enable NTUPLE when TC is active, disable TC and retry\n");
1770 		return -EINVAL;
1771 	}
1772 
1773 	if ((changed & NETIF_F_HW_TC) && tc &&
1774 	    (netdev->features & NETIF_F_NTUPLE) && !(changed & NETIF_F_NTUPLE)) {
1775 		netdev_err(netdev,
1776 			   "Can't enable TC when NTUPLE is active, disable NTUPLE and retry\n");
1777 		return -EINVAL;
1778 	}
1779 
1780 	return 0;
1781 }
1782 EXPORT_SYMBOL(otx2_handle_ntuple_tc_features);
1783 
1784 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1785 int __weak								\
1786 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf,		\
1787 				struct _req_type *req,			\
1788 				struct _rsp_type *rsp)			\
1789 {									\
1790 	/* Nothing to do here */					\
1791 	return 0;							\
1792 }									\
1793 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
1794 MBOX_UP_CGX_MESSAGES
1795 #undef M
1796