1 // SPDX-License-Identifier: GPL-2.0 2 /* Marvell RVU Ethernet driver 3 * 4 * Copyright (C) 2020 Marvell. 5 * 6 */ 7 8 #include <linux/interrupt.h> 9 #include <linux/pci.h> 10 #include <net/page_pool/helpers.h> 11 #include <net/tso.h> 12 #include <linux/bitfield.h> 13 14 #include "otx2_reg.h" 15 #include "otx2_common.h" 16 #include "otx2_struct.h" 17 #include "cn10k.h" 18 19 static void otx2_nix_rq_op_stats(struct queue_stats *stats, 20 struct otx2_nic *pfvf, int qidx) 21 { 22 u64 incr = (u64)qidx << 32; 23 u64 *ptr; 24 25 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS); 26 stats->bytes = otx2_atomic64_add(incr, ptr); 27 28 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS); 29 stats->pkts = otx2_atomic64_add(incr, ptr); 30 } 31 32 static void otx2_nix_sq_op_stats(struct queue_stats *stats, 33 struct otx2_nic *pfvf, int qidx) 34 { 35 u64 incr = (u64)qidx << 32; 36 u64 *ptr; 37 38 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS); 39 stats->bytes = otx2_atomic64_add(incr, ptr); 40 41 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS); 42 stats->pkts = otx2_atomic64_add(incr, ptr); 43 } 44 45 void otx2_update_lmac_stats(struct otx2_nic *pfvf) 46 { 47 struct msg_req *req; 48 49 if (!netif_running(pfvf->netdev)) 50 return; 51 52 mutex_lock(&pfvf->mbox.lock); 53 req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox); 54 if (!req) { 55 mutex_unlock(&pfvf->mbox.lock); 56 return; 57 } 58 59 otx2_sync_mbox_msg(&pfvf->mbox); 60 mutex_unlock(&pfvf->mbox.lock); 61 } 62 63 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf) 64 { 65 struct msg_req *req; 66 67 if (!netif_running(pfvf->netdev)) 68 return; 69 mutex_lock(&pfvf->mbox.lock); 70 req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox); 71 if (req) 72 otx2_sync_mbox_msg(&pfvf->mbox); 73 mutex_unlock(&pfvf->mbox.lock); 74 } 75 76 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx) 77 { 78 struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx]; 79 80 if (!pfvf->qset.rq) 81 return 0; 82 83 otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx); 84 return 1; 85 } 86 87 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx) 88 { 89 struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx]; 90 91 if (!pfvf->qset.sq) 92 return 0; 93 94 if (qidx >= pfvf->hw.non_qos_queues) { 95 if (!test_bit(qidx - pfvf->hw.non_qos_queues, pfvf->qos.qos_sq_bmap)) 96 return 0; 97 } 98 99 otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx); 100 return 1; 101 } 102 103 void otx2_get_dev_stats(struct otx2_nic *pfvf) 104 { 105 struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats; 106 107 dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS); 108 dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP); 109 dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST); 110 dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST); 111 dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST); 112 dev_stats->rx_frames = dev_stats->rx_bcast_frames + 113 dev_stats->rx_mcast_frames + 114 dev_stats->rx_ucast_frames; 115 116 dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS); 117 dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP); 118 dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST); 119 dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST); 120 dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST); 121 dev_stats->tx_frames = dev_stats->tx_bcast_frames + 122 dev_stats->tx_mcast_frames + 123 dev_stats->tx_ucast_frames; 124 } 125 126 void otx2_get_stats64(struct net_device *netdev, 127 struct rtnl_link_stats64 *stats) 128 { 129 struct otx2_nic *pfvf = netdev_priv(netdev); 130 struct otx2_dev_stats *dev_stats; 131 132 otx2_get_dev_stats(pfvf); 133 134 dev_stats = &pfvf->hw.dev_stats; 135 stats->rx_bytes = dev_stats->rx_bytes; 136 stats->rx_packets = dev_stats->rx_frames; 137 stats->rx_dropped = dev_stats->rx_drops; 138 stats->multicast = dev_stats->rx_mcast_frames; 139 140 stats->tx_bytes = dev_stats->tx_bytes; 141 stats->tx_packets = dev_stats->tx_frames; 142 stats->tx_dropped = dev_stats->tx_drops; 143 } 144 EXPORT_SYMBOL(otx2_get_stats64); 145 146 /* Sync MAC address with RVU AF */ 147 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac) 148 { 149 struct nix_set_mac_addr *req; 150 int err; 151 152 mutex_lock(&pfvf->mbox.lock); 153 req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox); 154 if (!req) { 155 mutex_unlock(&pfvf->mbox.lock); 156 return -ENOMEM; 157 } 158 159 ether_addr_copy(req->mac_addr, mac); 160 161 err = otx2_sync_mbox_msg(&pfvf->mbox); 162 mutex_unlock(&pfvf->mbox.lock); 163 return err; 164 } 165 166 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf, 167 struct net_device *netdev) 168 { 169 struct nix_get_mac_addr_rsp *rsp; 170 struct mbox_msghdr *msghdr; 171 struct msg_req *req; 172 int err; 173 174 mutex_lock(&pfvf->mbox.lock); 175 req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox); 176 if (!req) { 177 mutex_unlock(&pfvf->mbox.lock); 178 return -ENOMEM; 179 } 180 181 err = otx2_sync_mbox_msg(&pfvf->mbox); 182 if (err) { 183 mutex_unlock(&pfvf->mbox.lock); 184 return err; 185 } 186 187 msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr); 188 if (IS_ERR(msghdr)) { 189 mutex_unlock(&pfvf->mbox.lock); 190 return PTR_ERR(msghdr); 191 } 192 rsp = (struct nix_get_mac_addr_rsp *)msghdr; 193 eth_hw_addr_set(netdev, rsp->mac_addr); 194 mutex_unlock(&pfvf->mbox.lock); 195 196 return 0; 197 } 198 199 int otx2_set_mac_address(struct net_device *netdev, void *p) 200 { 201 struct otx2_nic *pfvf = netdev_priv(netdev); 202 struct sockaddr *addr = p; 203 204 if (!is_valid_ether_addr(addr->sa_data)) 205 return -EADDRNOTAVAIL; 206 207 if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) { 208 eth_hw_addr_set(netdev, addr->sa_data); 209 /* update dmac field in vlan offload rule */ 210 if (netif_running(netdev) && 211 pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT) 212 otx2_install_rxvlan_offload_flow(pfvf); 213 /* update dmac address in ntuple and DMAC filter list */ 214 if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT) 215 otx2_dmacflt_update_pfmac_flow(pfvf); 216 } else { 217 return -EPERM; 218 } 219 220 return 0; 221 } 222 EXPORT_SYMBOL(otx2_set_mac_address); 223 224 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu) 225 { 226 struct nix_frs_cfg *req; 227 u16 maxlen; 228 int err; 229 230 maxlen = otx2_get_max_mtu(pfvf) + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN; 231 232 mutex_lock(&pfvf->mbox.lock); 233 req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox); 234 if (!req) { 235 mutex_unlock(&pfvf->mbox.lock); 236 return -ENOMEM; 237 } 238 239 req->maxlen = pfvf->netdev->mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN; 240 241 /* Use max receive length supported by hardware for loopback devices */ 242 if (is_otx2_lbkvf(pfvf->pdev)) 243 req->maxlen = maxlen; 244 245 err = otx2_sync_mbox_msg(&pfvf->mbox); 246 mutex_unlock(&pfvf->mbox.lock); 247 return err; 248 } 249 250 int otx2_config_pause_frm(struct otx2_nic *pfvf) 251 { 252 struct cgx_pause_frm_cfg *req; 253 int err; 254 255 if (is_otx2_lbkvf(pfvf->pdev)) 256 return 0; 257 258 mutex_lock(&pfvf->mbox.lock); 259 req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox); 260 if (!req) { 261 err = -ENOMEM; 262 goto unlock; 263 } 264 265 req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED); 266 req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED); 267 req->set = 1; 268 269 err = otx2_sync_mbox_msg(&pfvf->mbox); 270 unlock: 271 mutex_unlock(&pfvf->mbox.lock); 272 return err; 273 } 274 EXPORT_SYMBOL(otx2_config_pause_frm); 275 276 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf) 277 { 278 struct otx2_rss_info *rss = &pfvf->hw.rss_info; 279 struct nix_rss_flowkey_cfg_rsp *rsp; 280 struct nix_rss_flowkey_cfg *req; 281 int err; 282 283 mutex_lock(&pfvf->mbox.lock); 284 req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox); 285 if (!req) { 286 mutex_unlock(&pfvf->mbox.lock); 287 return -ENOMEM; 288 } 289 req->mcam_index = -1; /* Default or reserved index */ 290 req->flowkey_cfg = rss->flowkey_cfg; 291 req->group = DEFAULT_RSS_CONTEXT_GROUP; 292 293 err = otx2_sync_mbox_msg(&pfvf->mbox); 294 if (err) 295 goto fail; 296 297 rsp = (struct nix_rss_flowkey_cfg_rsp *) 298 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr); 299 if (IS_ERR(rsp)) { 300 err = PTR_ERR(rsp); 301 goto fail; 302 } 303 304 pfvf->hw.flowkey_alg_idx = rsp->alg_idx; 305 fail: 306 mutex_unlock(&pfvf->mbox.lock); 307 return err; 308 } 309 310 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id) 311 { 312 struct otx2_rss_info *rss = &pfvf->hw.rss_info; 313 const int index = rss->rss_size * ctx_id; 314 struct mbox *mbox = &pfvf->mbox; 315 struct otx2_rss_ctx *rss_ctx; 316 struct nix_aq_enq_req *aq; 317 int idx, err; 318 319 mutex_lock(&mbox->lock); 320 rss_ctx = rss->rss_ctx[ctx_id]; 321 /* Get memory to put this msg */ 322 for (idx = 0; idx < rss->rss_size; idx++) { 323 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox); 324 if (!aq) { 325 /* The shared memory buffer can be full. 326 * Flush it and retry 327 */ 328 err = otx2_sync_mbox_msg(mbox); 329 if (err) { 330 mutex_unlock(&mbox->lock); 331 return err; 332 } 333 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox); 334 if (!aq) { 335 mutex_unlock(&mbox->lock); 336 return -ENOMEM; 337 } 338 } 339 340 aq->rss.rq = rss_ctx->ind_tbl[idx]; 341 342 /* Fill AQ info */ 343 aq->qidx = index + idx; 344 aq->ctype = NIX_AQ_CTYPE_RSS; 345 aq->op = NIX_AQ_INSTOP_INIT; 346 } 347 err = otx2_sync_mbox_msg(mbox); 348 mutex_unlock(&mbox->lock); 349 return err; 350 } 351 352 void otx2_set_rss_key(struct otx2_nic *pfvf) 353 { 354 struct otx2_rss_info *rss = &pfvf->hw.rss_info; 355 u64 *key = (u64 *)&rss->key[4]; 356 int idx; 357 358 /* 352bit or 44byte key needs to be configured as below 359 * NIX_LF_RX_SECRETX0 = key<351:288> 360 * NIX_LF_RX_SECRETX1 = key<287:224> 361 * NIX_LF_RX_SECRETX2 = key<223:160> 362 * NIX_LF_RX_SECRETX3 = key<159:96> 363 * NIX_LF_RX_SECRETX4 = key<95:32> 364 * NIX_LF_RX_SECRETX5<63:32> = key<31:0> 365 */ 366 otx2_write64(pfvf, NIX_LF_RX_SECRETX(5), 367 (u64)(*((u32 *)&rss->key)) << 32); 368 idx = sizeof(rss->key) / sizeof(u64); 369 while (idx > 0) { 370 idx--; 371 otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++); 372 } 373 } 374 375 int otx2_rss_init(struct otx2_nic *pfvf) 376 { 377 struct otx2_rss_info *rss = &pfvf->hw.rss_info; 378 struct otx2_rss_ctx *rss_ctx; 379 int idx, ret = 0; 380 381 rss->rss_size = sizeof(*rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]); 382 383 /* Init RSS key if it is not setup already */ 384 if (!rss->enable) 385 netdev_rss_key_fill(rss->key, sizeof(rss->key)); 386 otx2_set_rss_key(pfvf); 387 388 if (!netif_is_rxfh_configured(pfvf->netdev)) { 389 /* Set RSS group 0 as default indirection table */ 390 rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP] = kzalloc(rss->rss_size, 391 GFP_KERNEL); 392 if (!rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]) 393 return -ENOMEM; 394 395 rss_ctx = rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]; 396 for (idx = 0; idx < rss->rss_size; idx++) 397 rss_ctx->ind_tbl[idx] = 398 ethtool_rxfh_indir_default(idx, 399 pfvf->hw.rx_queues); 400 } 401 ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP); 402 if (ret) 403 return ret; 404 405 /* Flowkey or hash config to be used for generating flow tag */ 406 rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg : 407 NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 | 408 NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP | 409 NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN | 410 NIX_FLOW_KEY_TYPE_IPV4_PROTO; 411 412 ret = otx2_set_flowkey_cfg(pfvf); 413 if (ret) 414 return ret; 415 416 rss->enable = true; 417 return 0; 418 } 419 420 /* Setup UDP segmentation algorithm in HW */ 421 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4) 422 { 423 struct nix_lso_format *field; 424 425 field = (struct nix_lso_format *)&lso->fields[0]; 426 lso->field_mask = GENMASK(18, 0); 427 428 /* IP's Length field */ 429 field->layer = NIX_TXLAYER_OL3; 430 /* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */ 431 field->offset = v4 ? 2 : 4; 432 field->sizem1 = 1; /* i.e 2 bytes */ 433 field->alg = NIX_LSOALG_ADD_PAYLEN; 434 field++; 435 436 /* No ID field in IPv6 header */ 437 if (v4) { 438 /* Increment IPID */ 439 field->layer = NIX_TXLAYER_OL3; 440 field->offset = 4; 441 field->sizem1 = 1; /* i.e 2 bytes */ 442 field->alg = NIX_LSOALG_ADD_SEGNUM; 443 field++; 444 } 445 446 /* Update length in UDP header */ 447 field->layer = NIX_TXLAYER_OL4; 448 field->offset = 4; 449 field->sizem1 = 1; 450 field->alg = NIX_LSOALG_ADD_PAYLEN; 451 } 452 453 /* Setup segmentation algorithms in HW and retrieve algorithm index */ 454 void otx2_setup_segmentation(struct otx2_nic *pfvf) 455 { 456 struct nix_lso_format_cfg_rsp *rsp; 457 struct nix_lso_format_cfg *lso; 458 struct otx2_hw *hw = &pfvf->hw; 459 int err; 460 461 mutex_lock(&pfvf->mbox.lock); 462 463 /* UDPv4 segmentation */ 464 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox); 465 if (!lso) 466 goto fail; 467 468 /* Setup UDP/IP header fields that HW should update per segment */ 469 otx2_setup_udp_segmentation(lso, true); 470 471 err = otx2_sync_mbox_msg(&pfvf->mbox); 472 if (err) 473 goto fail; 474 475 rsp = (struct nix_lso_format_cfg_rsp *) 476 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr); 477 if (IS_ERR(rsp)) 478 goto fail; 479 480 hw->lso_udpv4_idx = rsp->lso_format_idx; 481 482 /* UDPv6 segmentation */ 483 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox); 484 if (!lso) 485 goto fail; 486 487 /* Setup UDP/IP header fields that HW should update per segment */ 488 otx2_setup_udp_segmentation(lso, false); 489 490 err = otx2_sync_mbox_msg(&pfvf->mbox); 491 if (err) 492 goto fail; 493 494 rsp = (struct nix_lso_format_cfg_rsp *) 495 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr); 496 if (IS_ERR(rsp)) 497 goto fail; 498 499 hw->lso_udpv6_idx = rsp->lso_format_idx; 500 mutex_unlock(&pfvf->mbox.lock); 501 return; 502 fail: 503 mutex_unlock(&pfvf->mbox.lock); 504 netdev_info(pfvf->netdev, 505 "Failed to get LSO index for UDP GSO offload, disabling\n"); 506 pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4; 507 } 508 509 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx) 510 { 511 /* Configure CQE interrupt coalescing parameters 512 * 513 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence 514 * set 1 less than cq_ecount_wait. And cq_time_wait is in 515 * usecs, convert that to 100ns count. 516 */ 517 otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx), 518 ((u64)(pfvf->hw.cq_time_wait * 10) << 48) | 519 ((u64)pfvf->hw.cq_qcount_wait << 32) | 520 (pfvf->hw.cq_ecount_wait - 1)); 521 } 522 523 static int otx2_alloc_pool_buf(struct otx2_nic *pfvf, struct otx2_pool *pool, 524 dma_addr_t *dma) 525 { 526 unsigned int offset = 0; 527 struct page *page; 528 size_t sz; 529 530 sz = SKB_DATA_ALIGN(pool->rbsize); 531 sz = ALIGN(sz, OTX2_ALIGN); 532 533 page = page_pool_alloc_frag(pool->page_pool, &offset, sz, GFP_ATOMIC); 534 if (unlikely(!page)) 535 return -ENOMEM; 536 537 *dma = page_pool_get_dma_addr(page) + offset; 538 return 0; 539 } 540 541 static int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool, 542 dma_addr_t *dma) 543 { 544 u8 *buf; 545 546 if (pool->page_pool) 547 return otx2_alloc_pool_buf(pfvf, pool, dma); 548 549 buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN); 550 if (unlikely(!buf)) 551 return -ENOMEM; 552 553 *dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize, 554 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); 555 if (unlikely(dma_mapping_error(pfvf->dev, *dma))) { 556 page_frag_free(buf); 557 return -ENOMEM; 558 } 559 560 return 0; 561 } 562 563 int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool, 564 dma_addr_t *dma) 565 { 566 int ret; 567 568 local_bh_disable(); 569 ret = __otx2_alloc_rbuf(pfvf, pool, dma); 570 local_bh_enable(); 571 return ret; 572 } 573 574 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, 575 dma_addr_t *dma) 576 { 577 if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma))) 578 return -ENOMEM; 579 return 0; 580 } 581 582 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq) 583 { 584 struct otx2_nic *pfvf = netdev_priv(netdev); 585 586 schedule_work(&pfvf->reset_task); 587 } 588 EXPORT_SYMBOL(otx2_tx_timeout); 589 590 void otx2_get_mac_from_af(struct net_device *netdev) 591 { 592 struct otx2_nic *pfvf = netdev_priv(netdev); 593 int err; 594 595 err = otx2_hw_get_mac_addr(pfvf, netdev); 596 if (err) 597 dev_warn(pfvf->dev, "Failed to read mac from hardware\n"); 598 599 /* If AF doesn't provide a valid MAC, generate a random one */ 600 if (!is_valid_ether_addr(netdev->dev_addr)) 601 eth_hw_addr_random(netdev); 602 } 603 EXPORT_SYMBOL(otx2_get_mac_from_af); 604 605 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl, int prio, bool txschq_for_pfc) 606 { 607 u16 (*schq_list)[MAX_TXSCHQ_PER_FUNC]; 608 struct otx2_hw *hw = &pfvf->hw; 609 struct nix_txschq_config *req; 610 u64 schq, parent; 611 u64 dwrr_val; 612 613 dwrr_val = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen); 614 615 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox); 616 if (!req) 617 return -ENOMEM; 618 619 req->lvl = lvl; 620 req->num_regs = 1; 621 622 schq_list = hw->txschq_list; 623 #ifdef CONFIG_DCB 624 if (txschq_for_pfc) 625 schq_list = pfvf->pfc_schq_list; 626 #endif 627 628 schq = schq_list[lvl][prio]; 629 /* Set topology e.t.c configuration */ 630 if (lvl == NIX_TXSCH_LVL_SMQ) { 631 req->reg[0] = NIX_AF_SMQX_CFG(schq); 632 req->regval[0] = ((u64)pfvf->tx_max_pktlen << 8) | OTX2_MIN_MTU; 633 req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) | 634 (0x2ULL << 36); 635 /* Set link type for DWRR MTU selection on CN10K silicons */ 636 if (!is_dev_otx2(pfvf->pdev)) 637 req->regval[0] |= FIELD_PREP(GENMASK_ULL(58, 57), 638 (u64)hw->smq_link_type); 639 req->num_regs++; 640 /* MDQ config */ 641 parent = schq_list[NIX_TXSCH_LVL_TL4][prio]; 642 req->reg[1] = NIX_AF_MDQX_PARENT(schq); 643 req->regval[1] = parent << 16; 644 req->num_regs++; 645 /* Set DWRR quantum */ 646 req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq); 647 req->regval[2] = dwrr_val; 648 } else if (lvl == NIX_TXSCH_LVL_TL4) { 649 parent = schq_list[NIX_TXSCH_LVL_TL3][prio]; 650 req->reg[0] = NIX_AF_TL4X_PARENT(schq); 651 req->regval[0] = parent << 16; 652 req->num_regs++; 653 req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq); 654 req->regval[1] = dwrr_val; 655 } else if (lvl == NIX_TXSCH_LVL_TL3) { 656 parent = schq_list[NIX_TXSCH_LVL_TL2][prio]; 657 req->reg[0] = NIX_AF_TL3X_PARENT(schq); 658 req->regval[0] = parent << 16; 659 req->num_regs++; 660 req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq); 661 req->regval[1] = dwrr_val; 662 if (lvl == hw->txschq_link_cfg_lvl) { 663 req->num_regs++; 664 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link); 665 /* Enable this queue and backpressure 666 * and set relative channel 667 */ 668 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio; 669 } 670 } else if (lvl == NIX_TXSCH_LVL_TL2) { 671 parent = schq_list[NIX_TXSCH_LVL_TL1][prio]; 672 req->reg[0] = NIX_AF_TL2X_PARENT(schq); 673 req->regval[0] = parent << 16; 674 675 req->num_regs++; 676 req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq); 677 req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | dwrr_val; 678 679 if (lvl == hw->txschq_link_cfg_lvl) { 680 req->num_regs++; 681 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link); 682 /* Enable this queue and backpressure 683 * and set relative channel 684 */ 685 req->regval[2] = BIT_ULL(13) | BIT_ULL(12) | prio; 686 } 687 } else if (lvl == NIX_TXSCH_LVL_TL1) { 688 /* Default config for TL1. 689 * For VF this is always ignored. 690 */ 691 692 /* On CN10K, if RR_WEIGHT is greater than 16384, HW will 693 * clip it to 16384, so configuring a 24bit max value 694 * will work on both OTx2 and CN10K. 695 */ 696 req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq); 697 req->regval[0] = TXSCH_TL1_DFLT_RR_QTM; 698 699 req->num_regs++; 700 req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq); 701 req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1); 702 703 req->num_regs++; 704 req->reg[2] = NIX_AF_TL1X_CIR(schq); 705 req->regval[2] = 0; 706 } 707 708 return otx2_sync_mbox_msg(&pfvf->mbox); 709 } 710 EXPORT_SYMBOL(otx2_txschq_config); 711 712 int otx2_smq_flush(struct otx2_nic *pfvf, int smq) 713 { 714 struct nix_txschq_config *req; 715 int rc; 716 717 mutex_lock(&pfvf->mbox.lock); 718 719 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox); 720 if (!req) { 721 mutex_unlock(&pfvf->mbox.lock); 722 return -ENOMEM; 723 } 724 725 req->lvl = NIX_TXSCH_LVL_SMQ; 726 req->reg[0] = NIX_AF_SMQX_CFG(smq); 727 req->regval[0] |= BIT_ULL(49); 728 req->num_regs++; 729 730 rc = otx2_sync_mbox_msg(&pfvf->mbox); 731 mutex_unlock(&pfvf->mbox.lock); 732 return rc; 733 } 734 EXPORT_SYMBOL(otx2_smq_flush); 735 736 int otx2_txsch_alloc(struct otx2_nic *pfvf) 737 { 738 struct nix_txsch_alloc_req *req; 739 struct nix_txsch_alloc_rsp *rsp; 740 int lvl, schq, rc; 741 742 /* Get memory to put this msg */ 743 req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox); 744 if (!req) 745 return -ENOMEM; 746 747 /* Request one schq per level */ 748 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) 749 req->schq[lvl] = 1; 750 rc = otx2_sync_mbox_msg(&pfvf->mbox); 751 if (rc) 752 return rc; 753 754 rsp = (struct nix_txsch_alloc_rsp *) 755 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr); 756 if (IS_ERR(rsp)) 757 return PTR_ERR(rsp); 758 759 /* Setup transmit scheduler list */ 760 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) 761 for (schq = 0; schq < rsp->schq[lvl]; schq++) 762 pfvf->hw.txschq_list[lvl][schq] = 763 rsp->schq_list[lvl][schq]; 764 765 pfvf->hw.txschq_link_cfg_lvl = rsp->link_cfg_lvl; 766 pfvf->hw.txschq_aggr_lvl_rr_prio = rsp->aggr_lvl_rr_prio; 767 768 return 0; 769 } 770 771 void otx2_txschq_free_one(struct otx2_nic *pfvf, u16 lvl, u16 schq) 772 { 773 struct nix_txsch_free_req *free_req; 774 int err; 775 776 mutex_lock(&pfvf->mbox.lock); 777 778 free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox); 779 if (!free_req) { 780 mutex_unlock(&pfvf->mbox.lock); 781 netdev_err(pfvf->netdev, 782 "Failed alloc txschq free req\n"); 783 return; 784 } 785 786 free_req->schq_lvl = lvl; 787 free_req->schq = schq; 788 789 err = otx2_sync_mbox_msg(&pfvf->mbox); 790 if (err) { 791 netdev_err(pfvf->netdev, 792 "Failed stop txschq %d at level %d\n", schq, lvl); 793 } 794 795 mutex_unlock(&pfvf->mbox.lock); 796 } 797 EXPORT_SYMBOL(otx2_txschq_free_one); 798 799 void otx2_txschq_stop(struct otx2_nic *pfvf) 800 { 801 int lvl, schq; 802 803 /* free non QOS TLx nodes */ 804 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) 805 otx2_txschq_free_one(pfvf, lvl, 806 pfvf->hw.txschq_list[lvl][0]); 807 808 /* Clear the txschq list */ 809 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) { 810 for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++) 811 pfvf->hw.txschq_list[lvl][schq] = 0; 812 } 813 814 } 815 816 void otx2_sqb_flush(struct otx2_nic *pfvf) 817 { 818 int qidx, sqe_tail, sqe_head; 819 struct otx2_snd_queue *sq; 820 u64 incr, *ptr, val; 821 822 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS); 823 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) { 824 sq = &pfvf->qset.sq[qidx]; 825 if (!sq->sqb_ptrs) 826 continue; 827 828 incr = (u64)qidx << 32; 829 val = otx2_atomic64_add(incr, ptr); 830 sqe_head = (val >> 20) & 0x3F; 831 sqe_tail = (val >> 28) & 0x3F; 832 if (sqe_head != sqe_tail) 833 usleep_range(50, 60); 834 } 835 } 836 837 /* RED and drop levels of CQ on packet reception. 838 * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty). 839 */ 840 #define RQ_PASS_LVL_CQ(skid, qsize) ((((skid) + 16) * 256) / (qsize)) 841 #define RQ_DROP_LVL_CQ(skid, qsize) (((skid) * 256) / (qsize)) 842 843 /* RED and drop levels of AURA for packet reception. 844 * For AURA level is measure of fullness (0x0 = empty, 255 = full). 845 * Eg: For RQ length 1K, for pass/drop level 204/230. 846 * RED accepts pkts if free pointers > 102 & <= 205. 847 * Drops pkts if free pointers < 102. 848 */ 849 #define RQ_BP_LVL_AURA (255 - ((85 * 256) / 100)) /* BP when 85% is full */ 850 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */ 851 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */ 852 853 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura) 854 { 855 struct otx2_qset *qset = &pfvf->qset; 856 struct nix_aq_enq_req *aq; 857 858 /* Get memory to put this msg */ 859 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox); 860 if (!aq) 861 return -ENOMEM; 862 863 aq->rq.cq = qidx; 864 aq->rq.ena = 1; 865 aq->rq.pb_caching = 1; 866 aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */ 867 aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1; 868 aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */ 869 aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */ 870 aq->rq.qint_idx = 0; 871 aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */ 872 aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */ 873 aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt); 874 aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt); 875 aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA; 876 aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA; 877 878 /* Fill AQ info */ 879 aq->qidx = qidx; 880 aq->ctype = NIX_AQ_CTYPE_RQ; 881 aq->op = NIX_AQ_INSTOP_INIT; 882 883 return otx2_sync_mbox_msg(&pfvf->mbox); 884 } 885 886 int otx2_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura) 887 { 888 struct otx2_nic *pfvf = dev; 889 struct otx2_snd_queue *sq; 890 struct nix_aq_enq_req *aq; 891 892 sq = &pfvf->qset.sq[qidx]; 893 sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx)); 894 /* Get memory to put this msg */ 895 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox); 896 if (!aq) 897 return -ENOMEM; 898 899 aq->sq.cq = pfvf->hw.rx_queues + qidx; 900 aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */ 901 aq->sq.cq_ena = 1; 902 aq->sq.ena = 1; 903 aq->sq.smq = otx2_get_smq_idx(pfvf, qidx); 904 aq->sq.smq_rr_quantum = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen); 905 aq->sq.default_chan = pfvf->hw.tx_chan_base; 906 aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */ 907 aq->sq.sqb_aura = sqb_aura; 908 aq->sq.sq_int_ena = NIX_SQINT_BITS; 909 aq->sq.qint_idx = 0; 910 /* Due pipelining impact minimum 2000 unused SQ CQE's 911 * need to maintain to avoid CQ overflow. 912 */ 913 aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt)); 914 915 /* Fill AQ info */ 916 aq->qidx = qidx; 917 aq->ctype = NIX_AQ_CTYPE_SQ; 918 aq->op = NIX_AQ_INSTOP_INIT; 919 920 return otx2_sync_mbox_msg(&pfvf->mbox); 921 } 922 923 int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura) 924 { 925 struct otx2_qset *qset = &pfvf->qset; 926 struct otx2_snd_queue *sq; 927 struct otx2_pool *pool; 928 int err; 929 930 pool = &pfvf->qset.pool[sqb_aura]; 931 sq = &qset->sq[qidx]; 932 sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128; 933 sq->sqe_cnt = qset->sqe_cnt; 934 935 err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size); 936 if (err) 937 return err; 938 939 if (qidx < pfvf->hw.tx_queues) { 940 err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt, 941 TSO_HEADER_SIZE); 942 if (err) 943 return err; 944 } 945 946 sq->sqe_base = sq->sqe->base; 947 sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL); 948 if (!sq->sg) 949 return -ENOMEM; 950 951 if (pfvf->ptp && qidx < pfvf->hw.tx_queues) { 952 err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt, 953 sizeof(*sq->timestamps)); 954 if (err) 955 return err; 956 } 957 958 sq->head = 0; 959 sq->cons_head = 0; 960 sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1; 961 sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb; 962 /* Set SQE threshold to 10% of total SQEs */ 963 sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100; 964 sq->aura_id = sqb_aura; 965 sq->aura_fc_addr = pool->fc_addr->base; 966 sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0)); 967 968 sq->stats.bytes = 0; 969 sq->stats.pkts = 0; 970 971 return pfvf->hw_ops->sq_aq_init(pfvf, qidx, sqb_aura); 972 973 } 974 975 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx) 976 { 977 struct otx2_qset *qset = &pfvf->qset; 978 int err, pool_id, non_xdp_queues; 979 struct nix_aq_enq_req *aq; 980 struct otx2_cq_queue *cq; 981 982 cq = &qset->cq[qidx]; 983 cq->cq_idx = qidx; 984 non_xdp_queues = pfvf->hw.rx_queues + pfvf->hw.tx_queues; 985 if (qidx < pfvf->hw.rx_queues) { 986 cq->cq_type = CQ_RX; 987 cq->cint_idx = qidx; 988 cq->cqe_cnt = qset->rqe_cnt; 989 if (pfvf->xdp_prog) 990 xdp_rxq_info_reg(&cq->xdp_rxq, pfvf->netdev, qidx, 0); 991 } else if (qidx < non_xdp_queues) { 992 cq->cq_type = CQ_TX; 993 cq->cint_idx = qidx - pfvf->hw.rx_queues; 994 cq->cqe_cnt = qset->sqe_cnt; 995 } else { 996 if (pfvf->hw.xdp_queues && 997 qidx < non_xdp_queues + pfvf->hw.xdp_queues) { 998 cq->cq_type = CQ_XDP; 999 cq->cint_idx = qidx - non_xdp_queues; 1000 cq->cqe_cnt = qset->sqe_cnt; 1001 } else { 1002 cq->cq_type = CQ_QOS; 1003 cq->cint_idx = qidx - non_xdp_queues - 1004 pfvf->hw.xdp_queues; 1005 cq->cqe_cnt = qset->sqe_cnt; 1006 } 1007 } 1008 cq->cqe_size = pfvf->qset.xqe_size; 1009 1010 /* Allocate memory for CQEs */ 1011 err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size); 1012 if (err) 1013 return err; 1014 1015 /* Save CQE CPU base for faster reference */ 1016 cq->cqe_base = cq->cqe->base; 1017 /* In case where all RQs auras point to single pool, 1018 * all CQs receive buffer pool also point to same pool. 1019 */ 1020 pool_id = ((cq->cq_type == CQ_RX) && 1021 (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx; 1022 cq->rbpool = &qset->pool[pool_id]; 1023 cq->refill_task_sched = false; 1024 1025 /* Get memory to put this msg */ 1026 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox); 1027 if (!aq) 1028 return -ENOMEM; 1029 1030 aq->cq.ena = 1; 1031 aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4); 1032 aq->cq.caching = 1; 1033 aq->cq.base = cq->cqe->iova; 1034 aq->cq.cint_idx = cq->cint_idx; 1035 aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS; 1036 aq->cq.qint_idx = 0; 1037 aq->cq.avg_level = 255; 1038 1039 if (qidx < pfvf->hw.rx_queues) { 1040 aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt); 1041 aq->cq.drop_ena = 1; 1042 1043 if (!is_otx2_lbkvf(pfvf->pdev)) { 1044 /* Enable receive CQ backpressure */ 1045 aq->cq.bp_ena = 1; 1046 #ifdef CONFIG_DCB 1047 aq->cq.bpid = pfvf->bpid[pfvf->queue_to_pfc_map[qidx]]; 1048 #else 1049 aq->cq.bpid = pfvf->bpid[0]; 1050 #endif 1051 1052 /* Set backpressure level is same as cq pass level */ 1053 aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt); 1054 } 1055 } 1056 1057 /* Fill AQ info */ 1058 aq->qidx = qidx; 1059 aq->ctype = NIX_AQ_CTYPE_CQ; 1060 aq->op = NIX_AQ_INSTOP_INIT; 1061 1062 return otx2_sync_mbox_msg(&pfvf->mbox); 1063 } 1064 1065 static void otx2_pool_refill_task(struct work_struct *work) 1066 { 1067 struct otx2_cq_queue *cq; 1068 struct refill_work *wrk; 1069 struct otx2_nic *pfvf; 1070 int qidx; 1071 1072 wrk = container_of(work, struct refill_work, pool_refill_work.work); 1073 pfvf = wrk->pf; 1074 qidx = wrk - pfvf->refill_wrk; 1075 cq = &pfvf->qset.cq[qidx]; 1076 1077 cq->refill_task_sched = false; 1078 1079 local_bh_disable(); 1080 napi_schedule(wrk->napi); 1081 local_bh_enable(); 1082 } 1083 1084 int otx2_config_nix_queues(struct otx2_nic *pfvf) 1085 { 1086 int qidx, err; 1087 1088 /* Initialize RX queues */ 1089 for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) { 1090 u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx); 1091 1092 err = otx2_rq_init(pfvf, qidx, lpb_aura); 1093 if (err) 1094 return err; 1095 } 1096 1097 /* Initialize TX queues */ 1098 for (qidx = 0; qidx < pfvf->hw.non_qos_queues; qidx++) { 1099 u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx); 1100 1101 err = otx2_sq_init(pfvf, qidx, sqb_aura); 1102 if (err) 1103 return err; 1104 } 1105 1106 /* Initialize completion queues */ 1107 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) { 1108 err = otx2_cq_init(pfvf, qidx); 1109 if (err) 1110 return err; 1111 } 1112 1113 pfvf->cq_op_addr = (__force u64 *)otx2_get_regaddr(pfvf, 1114 NIX_LF_CQ_OP_STATUS); 1115 1116 /* Initialize work queue for receive buffer refill */ 1117 pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt, 1118 sizeof(struct refill_work), GFP_KERNEL); 1119 if (!pfvf->refill_wrk) 1120 return -ENOMEM; 1121 1122 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) { 1123 pfvf->refill_wrk[qidx].pf = pfvf; 1124 INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work, 1125 otx2_pool_refill_task); 1126 } 1127 return 0; 1128 } 1129 1130 int otx2_config_nix(struct otx2_nic *pfvf) 1131 { 1132 struct nix_lf_alloc_req *nixlf; 1133 struct nix_lf_alloc_rsp *rsp; 1134 int err; 1135 1136 pfvf->qset.xqe_size = pfvf->hw.xqe_size; 1137 1138 /* Get memory to put this msg */ 1139 nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox); 1140 if (!nixlf) 1141 return -ENOMEM; 1142 1143 /* Set RQ/SQ/CQ counts */ 1144 nixlf->rq_cnt = pfvf->hw.rx_queues; 1145 nixlf->sq_cnt = otx2_get_total_tx_queues(pfvf); 1146 nixlf->cq_cnt = pfvf->qset.cq_cnt; 1147 nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE; 1148 nixlf->rss_grps = MAX_RSS_GROUPS; 1149 nixlf->xqe_sz = pfvf->hw.xqe_size == 128 ? NIX_XQESZ_W16 : NIX_XQESZ_W64; 1150 /* We don't know absolute NPA LF idx attached. 1151 * AF will replace 'RVU_DEFAULT_PF_FUNC' with 1152 * NPA LF attached to this RVU PF/VF. 1153 */ 1154 nixlf->npa_func = RVU_DEFAULT_PF_FUNC; 1155 /* Disable alignment pad, enable L2 length check, 1156 * enable L4 TCP/UDP checksum verification. 1157 */ 1158 nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37); 1159 1160 err = otx2_sync_mbox_msg(&pfvf->mbox); 1161 if (err) 1162 return err; 1163 1164 rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, 1165 &nixlf->hdr); 1166 if (IS_ERR(rsp)) 1167 return PTR_ERR(rsp); 1168 1169 if (rsp->qints < 1) 1170 return -ENXIO; 1171 1172 return rsp->hdr.rc; 1173 } 1174 1175 void otx2_sq_free_sqbs(struct otx2_nic *pfvf) 1176 { 1177 struct otx2_qset *qset = &pfvf->qset; 1178 struct otx2_hw *hw = &pfvf->hw; 1179 struct otx2_snd_queue *sq; 1180 int sqb, qidx; 1181 u64 iova, pa; 1182 1183 for (qidx = 0; qidx < otx2_get_total_tx_queues(pfvf); qidx++) { 1184 sq = &qset->sq[qidx]; 1185 if (!sq->sqb_ptrs) 1186 continue; 1187 for (sqb = 0; sqb < sq->sqb_count; sqb++) { 1188 if (!sq->sqb_ptrs[sqb]) 1189 continue; 1190 iova = sq->sqb_ptrs[sqb]; 1191 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova); 1192 dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size, 1193 DMA_FROM_DEVICE, 1194 DMA_ATTR_SKIP_CPU_SYNC); 1195 put_page(virt_to_page(phys_to_virt(pa))); 1196 } 1197 sq->sqb_count = 0; 1198 } 1199 } 1200 1201 void otx2_free_bufs(struct otx2_nic *pfvf, struct otx2_pool *pool, 1202 u64 iova, int size) 1203 { 1204 struct page *page; 1205 u64 pa; 1206 1207 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova); 1208 page = virt_to_head_page(phys_to_virt(pa)); 1209 1210 if (pool->page_pool) { 1211 page_pool_put_full_page(pool->page_pool, page, true); 1212 } else { 1213 dma_unmap_page_attrs(pfvf->dev, iova, size, 1214 DMA_FROM_DEVICE, 1215 DMA_ATTR_SKIP_CPU_SYNC); 1216 1217 put_page(page); 1218 } 1219 } 1220 1221 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type) 1222 { 1223 int pool_id, pool_start = 0, pool_end = 0, size = 0; 1224 struct otx2_pool *pool; 1225 u64 iova; 1226 1227 if (type == AURA_NIX_SQ) { 1228 pool_start = otx2_get_pool_idx(pfvf, type, 0); 1229 pool_end = pool_start + pfvf->hw.sqpool_cnt; 1230 size = pfvf->hw.sqb_size; 1231 } 1232 if (type == AURA_NIX_RQ) { 1233 pool_start = otx2_get_pool_idx(pfvf, type, 0); 1234 pool_end = pfvf->hw.rqpool_cnt; 1235 size = pfvf->rbsize; 1236 } 1237 1238 /* Free SQB and RQB pointers from the aura pool */ 1239 for (pool_id = pool_start; pool_id < pool_end; pool_id++) { 1240 iova = otx2_aura_allocptr(pfvf, pool_id); 1241 pool = &pfvf->qset.pool[pool_id]; 1242 while (iova) { 1243 if (type == AURA_NIX_RQ) 1244 iova -= OTX2_HEAD_ROOM; 1245 1246 otx2_free_bufs(pfvf, pool, iova, size); 1247 1248 iova = otx2_aura_allocptr(pfvf, pool_id); 1249 } 1250 } 1251 } 1252 1253 void otx2_aura_pool_free(struct otx2_nic *pfvf) 1254 { 1255 struct otx2_pool *pool; 1256 int pool_id; 1257 1258 if (!pfvf->qset.pool) 1259 return; 1260 1261 for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) { 1262 pool = &pfvf->qset.pool[pool_id]; 1263 qmem_free(pfvf->dev, pool->stack); 1264 qmem_free(pfvf->dev, pool->fc_addr); 1265 page_pool_destroy(pool->page_pool); 1266 pool->page_pool = NULL; 1267 } 1268 devm_kfree(pfvf->dev, pfvf->qset.pool); 1269 pfvf->qset.pool = NULL; 1270 } 1271 1272 int otx2_aura_init(struct otx2_nic *pfvf, int aura_id, 1273 int pool_id, int numptrs) 1274 { 1275 struct npa_aq_enq_req *aq; 1276 struct otx2_pool *pool; 1277 int err; 1278 1279 pool = &pfvf->qset.pool[pool_id]; 1280 1281 /* Allocate memory for HW to update Aura count. 1282 * Alloc one cache line, so that it fits all FC_STYPE modes. 1283 */ 1284 if (!pool->fc_addr) { 1285 err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN); 1286 if (err) 1287 return err; 1288 } 1289 1290 /* Initialize this aura's context via AF */ 1291 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox); 1292 if (!aq) { 1293 /* Shared mbox memory buffer is full, flush it and retry */ 1294 err = otx2_sync_mbox_msg(&pfvf->mbox); 1295 if (err) 1296 return err; 1297 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox); 1298 if (!aq) 1299 return -ENOMEM; 1300 } 1301 1302 aq->aura_id = aura_id; 1303 /* Will be filled by AF with correct pool context address */ 1304 aq->aura.pool_addr = pool_id; 1305 aq->aura.pool_caching = 1; 1306 aq->aura.shift = ilog2(numptrs) - 8; 1307 aq->aura.count = numptrs; 1308 aq->aura.limit = numptrs; 1309 aq->aura.avg_level = 255; 1310 aq->aura.ena = 1; 1311 aq->aura.fc_ena = 1; 1312 aq->aura.fc_addr = pool->fc_addr->iova; 1313 aq->aura.fc_hyst_bits = 0; /* Store count on all updates */ 1314 1315 /* Enable backpressure for RQ aura */ 1316 if (aura_id < pfvf->hw.rqpool_cnt && !is_otx2_lbkvf(pfvf->pdev)) { 1317 aq->aura.bp_ena = 0; 1318 /* If NIX1 LF is attached then specify NIX1_RX. 1319 * 1320 * Below NPA_AURA_S[BP_ENA] is set according to the 1321 * NPA_BPINTF_E enumeration given as: 1322 * 0x0 + a*0x1 where 'a' is 0 for NIX0_RX and 1 for NIX1_RX so 1323 * NIX0_RX is 0x0 + 0*0x1 = 0 1324 * NIX1_RX is 0x0 + 1*0x1 = 1 1325 * But in HRM it is given that 1326 * "NPA_AURA_S[BP_ENA](w1[33:32]) - Enable aura backpressure to 1327 * NIX-RX based on [BP] level. One bit per NIX-RX; index 1328 * enumerated by NPA_BPINTF_E." 1329 */ 1330 if (pfvf->nix_blkaddr == BLKADDR_NIX1) 1331 aq->aura.bp_ena = 1; 1332 #ifdef CONFIG_DCB 1333 aq->aura.nix0_bpid = pfvf->bpid[pfvf->queue_to_pfc_map[aura_id]]; 1334 #else 1335 aq->aura.nix0_bpid = pfvf->bpid[0]; 1336 #endif 1337 1338 /* Set backpressure level for RQ's Aura */ 1339 aq->aura.bp = RQ_BP_LVL_AURA; 1340 } 1341 1342 /* Fill AQ info */ 1343 aq->ctype = NPA_AQ_CTYPE_AURA; 1344 aq->op = NPA_AQ_INSTOP_INIT; 1345 1346 return 0; 1347 } 1348 1349 int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id, 1350 int stack_pages, int numptrs, int buf_size, int type) 1351 { 1352 struct page_pool_params pp_params = { 0 }; 1353 struct npa_aq_enq_req *aq; 1354 struct otx2_pool *pool; 1355 int err; 1356 1357 pool = &pfvf->qset.pool[pool_id]; 1358 /* Alloc memory for stack which is used to store buffer pointers */ 1359 err = qmem_alloc(pfvf->dev, &pool->stack, 1360 stack_pages, pfvf->hw.stack_pg_bytes); 1361 if (err) 1362 return err; 1363 1364 pool->rbsize = buf_size; 1365 1366 /* Initialize this pool's context via AF */ 1367 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox); 1368 if (!aq) { 1369 /* Shared mbox memory buffer is full, flush it and retry */ 1370 err = otx2_sync_mbox_msg(&pfvf->mbox); 1371 if (err) { 1372 qmem_free(pfvf->dev, pool->stack); 1373 return err; 1374 } 1375 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox); 1376 if (!aq) { 1377 qmem_free(pfvf->dev, pool->stack); 1378 return -ENOMEM; 1379 } 1380 } 1381 1382 aq->aura_id = pool_id; 1383 aq->pool.stack_base = pool->stack->iova; 1384 aq->pool.stack_caching = 1; 1385 aq->pool.ena = 1; 1386 aq->pool.buf_size = buf_size / 128; 1387 aq->pool.stack_max_pages = stack_pages; 1388 aq->pool.shift = ilog2(numptrs) - 8; 1389 aq->pool.ptr_start = 0; 1390 aq->pool.ptr_end = ~0ULL; 1391 1392 /* Fill AQ info */ 1393 aq->ctype = NPA_AQ_CTYPE_POOL; 1394 aq->op = NPA_AQ_INSTOP_INIT; 1395 1396 if (type != AURA_NIX_RQ) { 1397 pool->page_pool = NULL; 1398 return 0; 1399 } 1400 1401 pp_params.order = get_order(buf_size); 1402 pp_params.flags = PP_FLAG_PAGE_FRAG | PP_FLAG_DMA_MAP; 1403 pp_params.pool_size = min(OTX2_PAGE_POOL_SZ, numptrs); 1404 pp_params.nid = NUMA_NO_NODE; 1405 pp_params.dev = pfvf->dev; 1406 pp_params.dma_dir = DMA_FROM_DEVICE; 1407 pool->page_pool = page_pool_create(&pp_params); 1408 if (IS_ERR(pool->page_pool)) { 1409 netdev_err(pfvf->netdev, "Creation of page pool failed\n"); 1410 return PTR_ERR(pool->page_pool); 1411 } 1412 1413 return 0; 1414 } 1415 1416 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf) 1417 { 1418 int qidx, pool_id, stack_pages, num_sqbs; 1419 struct otx2_qset *qset = &pfvf->qset; 1420 struct otx2_hw *hw = &pfvf->hw; 1421 struct otx2_snd_queue *sq; 1422 struct otx2_pool *pool; 1423 dma_addr_t bufptr; 1424 int err, ptr; 1425 1426 /* Calculate number of SQBs needed. 1427 * 1428 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB. 1429 * Last SQE is used for pointing to next SQB. 1430 */ 1431 num_sqbs = (hw->sqb_size / 128) - 1; 1432 num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs; 1433 1434 /* Get no of stack pages needed */ 1435 stack_pages = 1436 (num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs; 1437 1438 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) { 1439 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx); 1440 /* Initialize aura context */ 1441 err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs); 1442 if (err) 1443 goto fail; 1444 1445 /* Initialize pool context */ 1446 err = otx2_pool_init(pfvf, pool_id, stack_pages, 1447 num_sqbs, hw->sqb_size, AURA_NIX_SQ); 1448 if (err) 1449 goto fail; 1450 } 1451 1452 /* Flush accumulated messages */ 1453 err = otx2_sync_mbox_msg(&pfvf->mbox); 1454 if (err) 1455 goto fail; 1456 1457 /* Allocate pointers and free them to aura/pool */ 1458 for (qidx = 0; qidx < hw->non_qos_queues; qidx++) { 1459 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx); 1460 pool = &pfvf->qset.pool[pool_id]; 1461 1462 sq = &qset->sq[qidx]; 1463 sq->sqb_count = 0; 1464 sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL); 1465 if (!sq->sqb_ptrs) { 1466 err = -ENOMEM; 1467 goto err_mem; 1468 } 1469 1470 for (ptr = 0; ptr < num_sqbs; ptr++) { 1471 err = otx2_alloc_rbuf(pfvf, pool, &bufptr); 1472 if (err) 1473 goto err_mem; 1474 pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr); 1475 sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr; 1476 } 1477 } 1478 1479 err_mem: 1480 return err ? -ENOMEM : 0; 1481 1482 fail: 1483 otx2_mbox_reset(&pfvf->mbox.mbox, 0); 1484 otx2_aura_pool_free(pfvf); 1485 return err; 1486 } 1487 1488 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf) 1489 { 1490 struct otx2_hw *hw = &pfvf->hw; 1491 int stack_pages, pool_id, rq; 1492 struct otx2_pool *pool; 1493 int err, ptr, num_ptrs; 1494 dma_addr_t bufptr; 1495 1496 num_ptrs = pfvf->qset.rqe_cnt; 1497 1498 stack_pages = 1499 (num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs; 1500 1501 for (rq = 0; rq < hw->rx_queues; rq++) { 1502 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq); 1503 /* Initialize aura context */ 1504 err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs); 1505 if (err) 1506 goto fail; 1507 } 1508 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) { 1509 err = otx2_pool_init(pfvf, pool_id, stack_pages, 1510 num_ptrs, pfvf->rbsize, AURA_NIX_RQ); 1511 if (err) 1512 goto fail; 1513 } 1514 1515 /* Flush accumulated messages */ 1516 err = otx2_sync_mbox_msg(&pfvf->mbox); 1517 if (err) 1518 goto fail; 1519 1520 /* Allocate pointers and free them to aura/pool */ 1521 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) { 1522 pool = &pfvf->qset.pool[pool_id]; 1523 for (ptr = 0; ptr < num_ptrs; ptr++) { 1524 err = otx2_alloc_rbuf(pfvf, pool, &bufptr); 1525 if (err) 1526 return -ENOMEM; 1527 pfvf->hw_ops->aura_freeptr(pfvf, pool_id, 1528 bufptr + OTX2_HEAD_ROOM); 1529 } 1530 } 1531 return 0; 1532 fail: 1533 otx2_mbox_reset(&pfvf->mbox.mbox, 0); 1534 otx2_aura_pool_free(pfvf); 1535 return err; 1536 } 1537 1538 int otx2_config_npa(struct otx2_nic *pfvf) 1539 { 1540 struct otx2_qset *qset = &pfvf->qset; 1541 struct npa_lf_alloc_req *npalf; 1542 struct otx2_hw *hw = &pfvf->hw; 1543 int aura_cnt; 1544 1545 /* Pool - Stack of free buffer pointers 1546 * Aura - Alloc/frees pointers from/to pool for NIX DMA. 1547 */ 1548 1549 if (!hw->pool_cnt) 1550 return -EINVAL; 1551 1552 qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt, 1553 sizeof(struct otx2_pool), GFP_KERNEL); 1554 if (!qset->pool) 1555 return -ENOMEM; 1556 1557 /* Get memory to put this msg */ 1558 npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox); 1559 if (!npalf) 1560 return -ENOMEM; 1561 1562 /* Set aura and pool counts */ 1563 npalf->nr_pools = hw->pool_cnt; 1564 aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt)); 1565 npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1; 1566 1567 return otx2_sync_mbox_msg(&pfvf->mbox); 1568 } 1569 1570 int otx2_detach_resources(struct mbox *mbox) 1571 { 1572 struct rsrc_detach *detach; 1573 1574 mutex_lock(&mbox->lock); 1575 detach = otx2_mbox_alloc_msg_detach_resources(mbox); 1576 if (!detach) { 1577 mutex_unlock(&mbox->lock); 1578 return -ENOMEM; 1579 } 1580 1581 /* detach all */ 1582 detach->partial = false; 1583 1584 /* Send detach request to AF */ 1585 otx2_mbox_msg_send(&mbox->mbox, 0); 1586 mutex_unlock(&mbox->lock); 1587 return 0; 1588 } 1589 EXPORT_SYMBOL(otx2_detach_resources); 1590 1591 int otx2_attach_npa_nix(struct otx2_nic *pfvf) 1592 { 1593 struct rsrc_attach *attach; 1594 struct msg_req *msix; 1595 int err; 1596 1597 mutex_lock(&pfvf->mbox.lock); 1598 /* Get memory to put this msg */ 1599 attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox); 1600 if (!attach) { 1601 mutex_unlock(&pfvf->mbox.lock); 1602 return -ENOMEM; 1603 } 1604 1605 attach->npalf = true; 1606 attach->nixlf = true; 1607 1608 /* Send attach request to AF */ 1609 err = otx2_sync_mbox_msg(&pfvf->mbox); 1610 if (err) { 1611 mutex_unlock(&pfvf->mbox.lock); 1612 return err; 1613 } 1614 1615 pfvf->nix_blkaddr = BLKADDR_NIX0; 1616 1617 /* If the platform has two NIX blocks then LF may be 1618 * allocated from NIX1. 1619 */ 1620 if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL) 1621 pfvf->nix_blkaddr = BLKADDR_NIX1; 1622 1623 /* Get NPA and NIX MSIX vector offsets */ 1624 msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox); 1625 if (!msix) { 1626 mutex_unlock(&pfvf->mbox.lock); 1627 return -ENOMEM; 1628 } 1629 1630 err = otx2_sync_mbox_msg(&pfvf->mbox); 1631 if (err) { 1632 mutex_unlock(&pfvf->mbox.lock); 1633 return err; 1634 } 1635 mutex_unlock(&pfvf->mbox.lock); 1636 1637 if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID || 1638 pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) { 1639 dev_err(pfvf->dev, 1640 "RVUPF: Invalid MSIX vector offset for NPA/NIX\n"); 1641 return -EINVAL; 1642 } 1643 1644 return 0; 1645 } 1646 EXPORT_SYMBOL(otx2_attach_npa_nix); 1647 1648 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa) 1649 { 1650 struct hwctx_disable_req *req; 1651 1652 mutex_lock(&mbox->lock); 1653 /* Request AQ to disable this context */ 1654 if (npa) 1655 req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox); 1656 else 1657 req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox); 1658 1659 if (!req) { 1660 mutex_unlock(&mbox->lock); 1661 return; 1662 } 1663 1664 req->ctype = type; 1665 1666 if (otx2_sync_mbox_msg(mbox)) 1667 dev_err(mbox->pfvf->dev, "%s failed to disable context\n", 1668 __func__); 1669 1670 mutex_unlock(&mbox->lock); 1671 } 1672 1673 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable) 1674 { 1675 struct nix_bp_cfg_req *req; 1676 1677 if (enable) 1678 req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox); 1679 else 1680 req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox); 1681 1682 if (!req) 1683 return -ENOMEM; 1684 1685 req->chan_base = 0; 1686 #ifdef CONFIG_DCB 1687 req->chan_cnt = pfvf->pfc_en ? IEEE_8021QAZ_MAX_TCS : 1; 1688 req->bpid_per_chan = pfvf->pfc_en ? 1 : 0; 1689 #else 1690 req->chan_cnt = 1; 1691 req->bpid_per_chan = 0; 1692 #endif 1693 1694 return otx2_sync_mbox_msg(&pfvf->mbox); 1695 } 1696 EXPORT_SYMBOL(otx2_nix_config_bp); 1697 1698 /* Mbox message handlers */ 1699 void mbox_handler_cgx_stats(struct otx2_nic *pfvf, 1700 struct cgx_stats_rsp *rsp) 1701 { 1702 int id; 1703 1704 for (id = 0; id < CGX_RX_STATS_COUNT; id++) 1705 pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id]; 1706 for (id = 0; id < CGX_TX_STATS_COUNT; id++) 1707 pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id]; 1708 } 1709 1710 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf, 1711 struct cgx_fec_stats_rsp *rsp) 1712 { 1713 pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks; 1714 pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks; 1715 } 1716 1717 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf, 1718 struct npa_lf_alloc_rsp *rsp) 1719 { 1720 pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs; 1721 pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes; 1722 } 1723 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc); 1724 1725 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf, 1726 struct nix_lf_alloc_rsp *rsp) 1727 { 1728 pfvf->hw.sqb_size = rsp->sqb_size; 1729 pfvf->hw.rx_chan_base = rsp->rx_chan_base; 1730 pfvf->hw.tx_chan_base = rsp->tx_chan_base; 1731 pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx; 1732 pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx; 1733 pfvf->hw.cgx_links = rsp->cgx_links; 1734 pfvf->hw.lbk_links = rsp->lbk_links; 1735 pfvf->hw.tx_link = rsp->tx_link; 1736 } 1737 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc); 1738 1739 void mbox_handler_msix_offset(struct otx2_nic *pfvf, 1740 struct msix_offset_rsp *rsp) 1741 { 1742 pfvf->hw.npa_msixoff = rsp->npa_msixoff; 1743 pfvf->hw.nix_msixoff = rsp->nix_msixoff; 1744 } 1745 EXPORT_SYMBOL(mbox_handler_msix_offset); 1746 1747 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf, 1748 struct nix_bp_cfg_rsp *rsp) 1749 { 1750 int chan, chan_id; 1751 1752 for (chan = 0; chan < rsp->chan_cnt; chan++) { 1753 chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F); 1754 pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF; 1755 } 1756 } 1757 EXPORT_SYMBOL(mbox_handler_nix_bp_enable); 1758 1759 void otx2_free_cints(struct otx2_nic *pfvf, int n) 1760 { 1761 struct otx2_qset *qset = &pfvf->qset; 1762 struct otx2_hw *hw = &pfvf->hw; 1763 int irq, qidx; 1764 1765 for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START; 1766 qidx < n; 1767 qidx++, irq++) { 1768 int vector = pci_irq_vector(pfvf->pdev, irq); 1769 1770 irq_set_affinity_hint(vector, NULL); 1771 free_cpumask_var(hw->affinity_mask[irq]); 1772 free_irq(vector, &qset->napi[qidx]); 1773 } 1774 } 1775 1776 void otx2_set_cints_affinity(struct otx2_nic *pfvf) 1777 { 1778 struct otx2_hw *hw = &pfvf->hw; 1779 int vec, cpu, irq, cint; 1780 1781 vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START; 1782 cpu = cpumask_first(cpu_online_mask); 1783 1784 /* CQ interrupts */ 1785 for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) { 1786 if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL)) 1787 return; 1788 1789 cpumask_set_cpu(cpu, hw->affinity_mask[vec]); 1790 1791 irq = pci_irq_vector(pfvf->pdev, vec); 1792 irq_set_affinity_hint(irq, hw->affinity_mask[vec]); 1793 1794 cpu = cpumask_next(cpu, cpu_online_mask); 1795 if (unlikely(cpu >= nr_cpu_ids)) 1796 cpu = 0; 1797 } 1798 } 1799 1800 static u32 get_dwrr_mtu(struct otx2_nic *pfvf, struct nix_hw_info *hw) 1801 { 1802 if (is_otx2_lbkvf(pfvf->pdev)) { 1803 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_LBK; 1804 return hw->lbk_dwrr_mtu; 1805 } 1806 1807 pfvf->hw.smq_link_type = SMQ_LINK_TYPE_RPM; 1808 return hw->rpm_dwrr_mtu; 1809 } 1810 1811 u16 otx2_get_max_mtu(struct otx2_nic *pfvf) 1812 { 1813 struct nix_hw_info *rsp; 1814 struct msg_req *req; 1815 u16 max_mtu; 1816 int rc; 1817 1818 mutex_lock(&pfvf->mbox.lock); 1819 1820 req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox); 1821 if (!req) { 1822 rc = -ENOMEM; 1823 goto out; 1824 } 1825 1826 rc = otx2_sync_mbox_msg(&pfvf->mbox); 1827 if (!rc) { 1828 rsp = (struct nix_hw_info *) 1829 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr); 1830 1831 /* HW counts VLAN insertion bytes (8 for double tag) 1832 * irrespective of whether SQE is requesting to insert VLAN 1833 * in the packet or not. Hence these 8 bytes have to be 1834 * discounted from max packet size otherwise HW will throw 1835 * SMQ errors 1836 */ 1837 max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN; 1838 1839 /* Also save DWRR MTU, needed for DWRR weight calculation */ 1840 pfvf->hw.dwrr_mtu = get_dwrr_mtu(pfvf, rsp); 1841 if (!pfvf->hw.dwrr_mtu) 1842 pfvf->hw.dwrr_mtu = 1; 1843 } 1844 1845 out: 1846 mutex_unlock(&pfvf->mbox.lock); 1847 if (rc) { 1848 dev_warn(pfvf->dev, 1849 "Failed to get MTU from hardware setting default value(1500)\n"); 1850 max_mtu = 1500; 1851 } 1852 return max_mtu; 1853 } 1854 EXPORT_SYMBOL(otx2_get_max_mtu); 1855 1856 int otx2_handle_ntuple_tc_features(struct net_device *netdev, netdev_features_t features) 1857 { 1858 netdev_features_t changed = features ^ netdev->features; 1859 struct otx2_nic *pfvf = netdev_priv(netdev); 1860 bool ntuple = !!(features & NETIF_F_NTUPLE); 1861 bool tc = !!(features & NETIF_F_HW_TC); 1862 1863 if ((changed & NETIF_F_NTUPLE) && !ntuple) 1864 otx2_destroy_ntuple_flows(pfvf); 1865 1866 if ((changed & NETIF_F_NTUPLE) && ntuple) { 1867 if (!pfvf->flow_cfg->max_flows) { 1868 netdev_err(netdev, 1869 "Can't enable NTUPLE, MCAM entries not allocated\n"); 1870 return -EINVAL; 1871 } 1872 } 1873 1874 if ((changed & NETIF_F_HW_TC) && !tc && 1875 otx2_tc_flower_rule_cnt(pfvf)) { 1876 netdev_err(netdev, "Can't disable TC hardware offload while flows are active\n"); 1877 return -EBUSY; 1878 } 1879 1880 if ((changed & NETIF_F_NTUPLE) && ntuple && 1881 otx2_tc_flower_rule_cnt(pfvf) && !(changed & NETIF_F_HW_TC)) { 1882 netdev_err(netdev, 1883 "Can't enable NTUPLE when TC flower offload is active, disable TC rules and retry\n"); 1884 return -EINVAL; 1885 } 1886 1887 return 0; 1888 } 1889 EXPORT_SYMBOL(otx2_handle_ntuple_tc_features); 1890 1891 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \ 1892 int __weak \ 1893 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \ 1894 struct _req_type *req, \ 1895 struct _rsp_type *rsp) \ 1896 { \ 1897 /* Nothing to do here */ \ 1898 return 0; \ 1899 } \ 1900 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name); 1901 MBOX_UP_CGX_MESSAGES 1902 MBOX_UP_MCS_MESSAGES 1903 #undef M 1904