1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Ethernet driver
3  *
4  * Copyright (C) 2020 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <net/tso.h>
14 
15 #include "otx2_reg.h"
16 #include "otx2_common.h"
17 #include "otx2_struct.h"
18 
19 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
20 				 struct otx2_nic *pfvf, int qidx)
21 {
22 	u64 incr = (u64)qidx << 32;
23 	u64 *ptr;
24 
25 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
26 	stats->bytes = otx2_atomic64_add(incr, ptr);
27 
28 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
29 	stats->pkts = otx2_atomic64_add(incr, ptr);
30 }
31 
32 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
33 				 struct otx2_nic *pfvf, int qidx)
34 {
35 	u64 incr = (u64)qidx << 32;
36 	u64 *ptr;
37 
38 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
39 	stats->bytes = otx2_atomic64_add(incr, ptr);
40 
41 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
42 	stats->pkts = otx2_atomic64_add(incr, ptr);
43 }
44 
45 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
46 {
47 	struct msg_req *req;
48 
49 	if (!netif_running(pfvf->netdev))
50 		return;
51 
52 	mutex_lock(&pfvf->mbox.lock);
53 	req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
54 	if (!req) {
55 		mutex_unlock(&pfvf->mbox.lock);
56 		return;
57 	}
58 
59 	otx2_sync_mbox_msg(&pfvf->mbox);
60 	mutex_unlock(&pfvf->mbox.lock);
61 }
62 
63 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
64 {
65 	struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
66 
67 	if (!pfvf->qset.rq)
68 		return 0;
69 
70 	otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
71 	return 1;
72 }
73 
74 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
75 {
76 	struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
77 
78 	if (!pfvf->qset.sq)
79 		return 0;
80 
81 	otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
82 	return 1;
83 }
84 
85 void otx2_get_dev_stats(struct otx2_nic *pfvf)
86 {
87 	struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
88 
89 #define OTX2_GET_RX_STATS(reg) \
90 	 otx2_read64(pfvf, NIX_LF_RX_STATX(reg))
91 #define OTX2_GET_TX_STATS(reg) \
92 	 otx2_read64(pfvf, NIX_LF_TX_STATX(reg))
93 
94 	dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
95 	dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
96 	dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
97 	dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
98 	dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
99 	dev_stats->rx_frames = dev_stats->rx_bcast_frames +
100 			       dev_stats->rx_mcast_frames +
101 			       dev_stats->rx_ucast_frames;
102 
103 	dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
104 	dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
105 	dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
106 	dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
107 	dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
108 	dev_stats->tx_frames = dev_stats->tx_bcast_frames +
109 			       dev_stats->tx_mcast_frames +
110 			       dev_stats->tx_ucast_frames;
111 }
112 
113 void otx2_get_stats64(struct net_device *netdev,
114 		      struct rtnl_link_stats64 *stats)
115 {
116 	struct otx2_nic *pfvf = netdev_priv(netdev);
117 	struct otx2_dev_stats *dev_stats;
118 
119 	otx2_get_dev_stats(pfvf);
120 
121 	dev_stats = &pfvf->hw.dev_stats;
122 	stats->rx_bytes = dev_stats->rx_bytes;
123 	stats->rx_packets = dev_stats->rx_frames;
124 	stats->rx_dropped = dev_stats->rx_drops;
125 	stats->multicast = dev_stats->rx_mcast_frames;
126 
127 	stats->tx_bytes = dev_stats->tx_bytes;
128 	stats->tx_packets = dev_stats->tx_frames;
129 	stats->tx_dropped = dev_stats->tx_drops;
130 }
131 EXPORT_SYMBOL(otx2_get_stats64);
132 
133 /* Sync MAC address with RVU AF */
134 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
135 {
136 	struct nix_set_mac_addr *req;
137 	int err;
138 
139 	mutex_lock(&pfvf->mbox.lock);
140 	req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
141 	if (!req) {
142 		mutex_unlock(&pfvf->mbox.lock);
143 		return -ENOMEM;
144 	}
145 
146 	ether_addr_copy(req->mac_addr, mac);
147 
148 	err = otx2_sync_mbox_msg(&pfvf->mbox);
149 	mutex_unlock(&pfvf->mbox.lock);
150 	return err;
151 }
152 
153 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
154 				struct net_device *netdev)
155 {
156 	struct nix_get_mac_addr_rsp *rsp;
157 	struct mbox_msghdr *msghdr;
158 	struct msg_req *req;
159 	int err;
160 
161 	mutex_lock(&pfvf->mbox.lock);
162 	req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
163 	if (!req) {
164 		mutex_unlock(&pfvf->mbox.lock);
165 		return -ENOMEM;
166 	}
167 
168 	err = otx2_sync_mbox_msg(&pfvf->mbox);
169 	if (err) {
170 		mutex_unlock(&pfvf->mbox.lock);
171 		return err;
172 	}
173 
174 	msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
175 	if (IS_ERR(msghdr)) {
176 		mutex_unlock(&pfvf->mbox.lock);
177 		return PTR_ERR(msghdr);
178 	}
179 	rsp = (struct nix_get_mac_addr_rsp *)msghdr;
180 	ether_addr_copy(netdev->dev_addr, rsp->mac_addr);
181 	mutex_unlock(&pfvf->mbox.lock);
182 
183 	return 0;
184 }
185 
186 int otx2_set_mac_address(struct net_device *netdev, void *p)
187 {
188 	struct otx2_nic *pfvf = netdev_priv(netdev);
189 	struct sockaddr *addr = p;
190 
191 	if (!is_valid_ether_addr(addr->sa_data))
192 		return -EADDRNOTAVAIL;
193 
194 	if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
195 		memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
196 		/* update dmac field in vlan offload rule */
197 		if (pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
198 			otx2_install_rxvlan_offload_flow(pfvf);
199 	} else {
200 		return -EPERM;
201 	}
202 
203 	return 0;
204 }
205 EXPORT_SYMBOL(otx2_set_mac_address);
206 
207 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
208 {
209 	struct nix_frs_cfg *req;
210 	int err;
211 
212 	mutex_lock(&pfvf->mbox.lock);
213 	req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
214 	if (!req) {
215 		mutex_unlock(&pfvf->mbox.lock);
216 		return -ENOMEM;
217 	}
218 
219 	pfvf->max_frs = mtu +  OTX2_ETH_HLEN;
220 	req->maxlen = pfvf->max_frs;
221 
222 	err = otx2_sync_mbox_msg(&pfvf->mbox);
223 	mutex_unlock(&pfvf->mbox.lock);
224 	return err;
225 }
226 
227 int otx2_config_pause_frm(struct otx2_nic *pfvf)
228 {
229 	struct cgx_pause_frm_cfg *req;
230 	int err;
231 
232 	if (is_otx2_lbkvf(pfvf->pdev))
233 		return 0;
234 
235 	mutex_lock(&pfvf->mbox.lock);
236 	req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
237 	if (!req) {
238 		err = -ENOMEM;
239 		goto unlock;
240 	}
241 
242 	req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
243 	req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
244 	req->set = 1;
245 
246 	err = otx2_sync_mbox_msg(&pfvf->mbox);
247 unlock:
248 	mutex_unlock(&pfvf->mbox.lock);
249 	return err;
250 }
251 
252 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
253 {
254 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
255 	struct nix_rss_flowkey_cfg *req;
256 	int err;
257 
258 	mutex_lock(&pfvf->mbox.lock);
259 	req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
260 	if (!req) {
261 		mutex_unlock(&pfvf->mbox.lock);
262 		return -ENOMEM;
263 	}
264 	req->mcam_index = -1; /* Default or reserved index */
265 	req->flowkey_cfg = rss->flowkey_cfg;
266 	req->group = DEFAULT_RSS_CONTEXT_GROUP;
267 
268 	err = otx2_sync_mbox_msg(&pfvf->mbox);
269 	mutex_unlock(&pfvf->mbox.lock);
270 	return err;
271 }
272 
273 int otx2_set_rss_table(struct otx2_nic *pfvf)
274 {
275 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
276 	struct mbox *mbox = &pfvf->mbox;
277 	struct nix_aq_enq_req *aq;
278 	int idx, err;
279 
280 	mutex_lock(&mbox->lock);
281 	/* Get memory to put this msg */
282 	for (idx = 0; idx < rss->rss_size; idx++) {
283 		aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
284 		if (!aq) {
285 			/* The shared memory buffer can be full.
286 			 * Flush it and retry
287 			 */
288 			err = otx2_sync_mbox_msg(mbox);
289 			if (err) {
290 				mutex_unlock(&mbox->lock);
291 				return err;
292 			}
293 			aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
294 			if (!aq) {
295 				mutex_unlock(&mbox->lock);
296 				return -ENOMEM;
297 			}
298 		}
299 
300 		aq->rss.rq = rss->ind_tbl[idx];
301 
302 		/* Fill AQ info */
303 		aq->qidx = idx;
304 		aq->ctype = NIX_AQ_CTYPE_RSS;
305 		aq->op = NIX_AQ_INSTOP_INIT;
306 	}
307 	err = otx2_sync_mbox_msg(mbox);
308 	mutex_unlock(&mbox->lock);
309 	return err;
310 }
311 
312 void otx2_set_rss_key(struct otx2_nic *pfvf)
313 {
314 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
315 	u64 *key = (u64 *)&rss->key[4];
316 	int idx;
317 
318 	/* 352bit or 44byte key needs to be configured as below
319 	 * NIX_LF_RX_SECRETX0 = key<351:288>
320 	 * NIX_LF_RX_SECRETX1 = key<287:224>
321 	 * NIX_LF_RX_SECRETX2 = key<223:160>
322 	 * NIX_LF_RX_SECRETX3 = key<159:96>
323 	 * NIX_LF_RX_SECRETX4 = key<95:32>
324 	 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
325 	 */
326 	otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
327 		     (u64)(*((u32 *)&rss->key)) << 32);
328 	idx = sizeof(rss->key) / sizeof(u64);
329 	while (idx > 0) {
330 		idx--;
331 		otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
332 	}
333 }
334 
335 int otx2_rss_init(struct otx2_nic *pfvf)
336 {
337 	struct otx2_rss_info *rss = &pfvf->hw.rss_info;
338 	int idx, ret = 0;
339 
340 	rss->rss_size = sizeof(rss->ind_tbl);
341 
342 	/* Init RSS key if it is not setup already */
343 	if (!rss->enable)
344 		netdev_rss_key_fill(rss->key, sizeof(rss->key));
345 	otx2_set_rss_key(pfvf);
346 
347 	if (!netif_is_rxfh_configured(pfvf->netdev)) {
348 		/* Default indirection table */
349 		for (idx = 0; idx < rss->rss_size; idx++)
350 			rss->ind_tbl[idx] =
351 				ethtool_rxfh_indir_default(idx,
352 							   pfvf->hw.rx_queues);
353 	}
354 	ret = otx2_set_rss_table(pfvf);
355 	if (ret)
356 		return ret;
357 
358 	/* Flowkey or hash config to be used for generating flow tag */
359 	rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
360 			   NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
361 			   NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
362 			   NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
363 			   NIX_FLOW_KEY_TYPE_IPV4_PROTO;
364 
365 	ret = otx2_set_flowkey_cfg(pfvf);
366 	if (ret)
367 		return ret;
368 
369 	rss->enable = true;
370 	return 0;
371 }
372 
373 /* Setup UDP segmentation algorithm in HW */
374 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
375 {
376 	struct nix_lso_format *field;
377 
378 	field = (struct nix_lso_format *)&lso->fields[0];
379 	lso->field_mask = GENMASK(18, 0);
380 
381 	/* IP's Length field */
382 	field->layer = NIX_TXLAYER_OL3;
383 	/* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
384 	field->offset = v4 ? 2 : 4;
385 	field->sizem1 = 1; /* i.e 2 bytes */
386 	field->alg = NIX_LSOALG_ADD_PAYLEN;
387 	field++;
388 
389 	/* No ID field in IPv6 header */
390 	if (v4) {
391 		/* Increment IPID */
392 		field->layer = NIX_TXLAYER_OL3;
393 		field->offset = 4;
394 		field->sizem1 = 1; /* i.e 2 bytes */
395 		field->alg = NIX_LSOALG_ADD_SEGNUM;
396 		field++;
397 	}
398 
399 	/* Update length in UDP header */
400 	field->layer = NIX_TXLAYER_OL4;
401 	field->offset = 4;
402 	field->sizem1 = 1;
403 	field->alg = NIX_LSOALG_ADD_PAYLEN;
404 }
405 
406 /* Setup segmentation algorithms in HW and retrieve algorithm index */
407 void otx2_setup_segmentation(struct otx2_nic *pfvf)
408 {
409 	struct nix_lso_format_cfg_rsp *rsp;
410 	struct nix_lso_format_cfg *lso;
411 	struct otx2_hw *hw = &pfvf->hw;
412 	int err;
413 
414 	mutex_lock(&pfvf->mbox.lock);
415 
416 	/* UDPv4 segmentation */
417 	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
418 	if (!lso)
419 		goto fail;
420 
421 	/* Setup UDP/IP header fields that HW should update per segment */
422 	otx2_setup_udp_segmentation(lso, true);
423 
424 	err = otx2_sync_mbox_msg(&pfvf->mbox);
425 	if (err)
426 		goto fail;
427 
428 	rsp = (struct nix_lso_format_cfg_rsp *)
429 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
430 	if (IS_ERR(rsp))
431 		goto fail;
432 
433 	hw->lso_udpv4_idx = rsp->lso_format_idx;
434 
435 	/* UDPv6 segmentation */
436 	lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
437 	if (!lso)
438 		goto fail;
439 
440 	/* Setup UDP/IP header fields that HW should update per segment */
441 	otx2_setup_udp_segmentation(lso, false);
442 
443 	err = otx2_sync_mbox_msg(&pfvf->mbox);
444 	if (err)
445 		goto fail;
446 
447 	rsp = (struct nix_lso_format_cfg_rsp *)
448 			otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
449 	if (IS_ERR(rsp))
450 		goto fail;
451 
452 	hw->lso_udpv6_idx = rsp->lso_format_idx;
453 	mutex_unlock(&pfvf->mbox.lock);
454 	return;
455 fail:
456 	mutex_unlock(&pfvf->mbox.lock);
457 	netdev_info(pfvf->netdev,
458 		    "Failed to get LSO index for UDP GSO offload, disabling\n");
459 	pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
460 }
461 
462 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
463 {
464 	/* Configure CQE interrupt coalescing parameters
465 	 *
466 	 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
467 	 * set 1 less than cq_ecount_wait. And cq_time_wait is in
468 	 * usecs, convert that to 100ns count.
469 	 */
470 	otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
471 		     ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
472 		     ((u64)pfvf->hw.cq_qcount_wait << 32) |
473 		     (pfvf->hw.cq_ecount_wait - 1));
474 }
475 
476 dma_addr_t __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool)
477 {
478 	dma_addr_t iova;
479 	u8 *buf;
480 
481 	buf = napi_alloc_frag(pool->rbsize + OTX2_ALIGN);
482 	if (unlikely(!buf))
483 		return -ENOMEM;
484 
485 	buf = PTR_ALIGN(buf, OTX2_ALIGN);
486 	iova = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
487 				    DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
488 	if (unlikely(dma_mapping_error(pfvf->dev, iova))) {
489 		page_frag_free(buf);
490 		return -ENOMEM;
491 	}
492 
493 	return iova;
494 }
495 
496 static dma_addr_t otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool)
497 {
498 	dma_addr_t addr;
499 
500 	local_bh_disable();
501 	addr = __otx2_alloc_rbuf(pfvf, pool);
502 	local_bh_enable();
503 	return addr;
504 }
505 
506 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
507 {
508 	struct otx2_nic *pfvf = netdev_priv(netdev);
509 
510 	schedule_work(&pfvf->reset_task);
511 }
512 EXPORT_SYMBOL(otx2_tx_timeout);
513 
514 void otx2_get_mac_from_af(struct net_device *netdev)
515 {
516 	struct otx2_nic *pfvf = netdev_priv(netdev);
517 	int err;
518 
519 	err = otx2_hw_get_mac_addr(pfvf, netdev);
520 	if (err)
521 		dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
522 
523 	/* If AF doesn't provide a valid MAC, generate a random one */
524 	if (!is_valid_ether_addr(netdev->dev_addr))
525 		eth_hw_addr_random(netdev);
526 }
527 EXPORT_SYMBOL(otx2_get_mac_from_af);
528 
529 static int otx2_get_link(struct otx2_nic *pfvf)
530 {
531 	int link = 0;
532 	u16 map;
533 
534 	/* cgx lmac link */
535 	if (pfvf->hw.tx_chan_base >= CGX_CHAN_BASE) {
536 		map = pfvf->hw.tx_chan_base & 0x7FF;
537 		link = 4 * ((map >> 8) & 0xF) + ((map >> 4) & 0xF);
538 	}
539 	/* LBK channel */
540 	if (pfvf->hw.tx_chan_base < SDP_CHAN_BASE) {
541 		map = pfvf->hw.tx_chan_base & 0x7FF;
542 		link = pfvf->hw.cgx_links | ((map >> 8) & 0xF);
543 	}
544 
545 	return link;
546 }
547 
548 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl)
549 {
550 	struct otx2_hw *hw = &pfvf->hw;
551 	struct nix_txschq_config *req;
552 	u64 schq, parent;
553 
554 	req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
555 	if (!req)
556 		return -ENOMEM;
557 
558 	req->lvl = lvl;
559 	req->num_regs = 1;
560 
561 	schq = hw->txschq_list[lvl][0];
562 	/* Set topology e.t.c configuration */
563 	if (lvl == NIX_TXSCH_LVL_SMQ) {
564 		req->reg[0] = NIX_AF_SMQX_CFG(schq);
565 		req->regval[0] = ((OTX2_MAX_MTU + OTX2_ETH_HLEN) << 8) |
566 				   OTX2_MIN_MTU;
567 
568 		req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
569 				  (0x2ULL << 36);
570 		req->num_regs++;
571 		/* MDQ config */
572 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL4][0];
573 		req->reg[1] = NIX_AF_MDQX_PARENT(schq);
574 		req->regval[1] = parent << 16;
575 		req->num_regs++;
576 		/* Set DWRR quantum */
577 		req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
578 		req->regval[2] =  DFLT_RR_QTM;
579 	} else if (lvl == NIX_TXSCH_LVL_TL4) {
580 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL3][0];
581 		req->reg[0] = NIX_AF_TL4X_PARENT(schq);
582 		req->regval[0] = parent << 16;
583 		req->num_regs++;
584 		req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
585 		req->regval[1] = DFLT_RR_QTM;
586 	} else if (lvl == NIX_TXSCH_LVL_TL3) {
587 		parent = hw->txschq_list[NIX_TXSCH_LVL_TL2][0];
588 		req->reg[0] = NIX_AF_TL3X_PARENT(schq);
589 		req->regval[0] = parent << 16;
590 		req->num_regs++;
591 		req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
592 		req->regval[1] = DFLT_RR_QTM;
593 	} else if (lvl == NIX_TXSCH_LVL_TL2) {
594 		parent =  hw->txschq_list[NIX_TXSCH_LVL_TL1][0];
595 		req->reg[0] = NIX_AF_TL2X_PARENT(schq);
596 		req->regval[0] = parent << 16;
597 
598 		req->num_regs++;
599 		req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
600 		req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | DFLT_RR_QTM;
601 
602 		req->num_regs++;
603 		req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq,
604 							otx2_get_link(pfvf));
605 		/* Enable this queue and backpressure */
606 		req->regval[2] = BIT_ULL(13) | BIT_ULL(12);
607 
608 	} else if (lvl == NIX_TXSCH_LVL_TL1) {
609 		/* Default config for TL1.
610 		 * For VF this is always ignored.
611 		 */
612 
613 		/* Set DWRR quantum */
614 		req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
615 		req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
616 
617 		req->num_regs++;
618 		req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
619 		req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1);
620 
621 		req->num_regs++;
622 		req->reg[2] = NIX_AF_TL1X_CIR(schq);
623 		req->regval[2] = 0;
624 	}
625 
626 	return otx2_sync_mbox_msg(&pfvf->mbox);
627 }
628 
629 int otx2_txsch_alloc(struct otx2_nic *pfvf)
630 {
631 	struct nix_txsch_alloc_req *req;
632 	int lvl;
633 
634 	/* Get memory to put this msg */
635 	req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
636 	if (!req)
637 		return -ENOMEM;
638 
639 	/* Request one schq per level */
640 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
641 		req->schq[lvl] = 1;
642 
643 	return otx2_sync_mbox_msg(&pfvf->mbox);
644 }
645 
646 int otx2_txschq_stop(struct otx2_nic *pfvf)
647 {
648 	struct nix_txsch_free_req *free_req;
649 	int lvl, schq, err;
650 
651 	mutex_lock(&pfvf->mbox.lock);
652 	/* Free the transmit schedulers */
653 	free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
654 	if (!free_req) {
655 		mutex_unlock(&pfvf->mbox.lock);
656 		return -ENOMEM;
657 	}
658 
659 	free_req->flags = TXSCHQ_FREE_ALL;
660 	err = otx2_sync_mbox_msg(&pfvf->mbox);
661 	mutex_unlock(&pfvf->mbox.lock);
662 
663 	/* Clear the txschq list */
664 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
665 		for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
666 			pfvf->hw.txschq_list[lvl][schq] = 0;
667 	}
668 	return err;
669 }
670 
671 void otx2_sqb_flush(struct otx2_nic *pfvf)
672 {
673 	int qidx, sqe_tail, sqe_head;
674 	u64 incr, *ptr, val;
675 	int timeout = 1000;
676 
677 	ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
678 	for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
679 		incr = (u64)qidx << 32;
680 		while (timeout) {
681 			val = otx2_atomic64_add(incr, ptr);
682 			sqe_head = (val >> 20) & 0x3F;
683 			sqe_tail = (val >> 28) & 0x3F;
684 			if (sqe_head == sqe_tail)
685 				break;
686 			usleep_range(1, 3);
687 			timeout--;
688 		}
689 	}
690 }
691 
692 /* RED and drop levels of CQ on packet reception.
693  * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
694  */
695 #define RQ_PASS_LVL_CQ(skid, qsize)	((((skid) + 16) * 256) / (qsize))
696 #define RQ_DROP_LVL_CQ(skid, qsize)	(((skid) * 256) / (qsize))
697 
698 /* RED and drop levels of AURA for packet reception.
699  * For AURA level is measure of fullness (0x0 = empty, 255 = full).
700  * Eg: For RQ length 1K, for pass/drop level 204/230.
701  * RED accepts pkts if free pointers > 102 & <= 205.
702  * Drops pkts if free pointers < 102.
703  */
704 #define RQ_BP_LVL_AURA   (255 - ((85 * 256) / 100)) /* BP when 85% is full */
705 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
706 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
707 
708 /* Send skid of 2000 packets required for CQ size of 4K CQEs. */
709 #define SEND_CQ_SKID	2000
710 
711 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
712 {
713 	struct otx2_qset *qset = &pfvf->qset;
714 	struct nix_aq_enq_req *aq;
715 
716 	/* Get memory to put this msg */
717 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
718 	if (!aq)
719 		return -ENOMEM;
720 
721 	aq->rq.cq = qidx;
722 	aq->rq.ena = 1;
723 	aq->rq.pb_caching = 1;
724 	aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
725 	aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
726 	aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
727 	aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
728 	aq->rq.qint_idx = 0;
729 	aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
730 	aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
731 	aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
732 	aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
733 	aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
734 	aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
735 
736 	/* Fill AQ info */
737 	aq->qidx = qidx;
738 	aq->ctype = NIX_AQ_CTYPE_RQ;
739 	aq->op = NIX_AQ_INSTOP_INIT;
740 
741 	return otx2_sync_mbox_msg(&pfvf->mbox);
742 }
743 
744 static int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
745 {
746 	struct otx2_qset *qset = &pfvf->qset;
747 	struct otx2_snd_queue *sq;
748 	struct nix_aq_enq_req *aq;
749 	struct otx2_pool *pool;
750 	int err;
751 
752 	pool = &pfvf->qset.pool[sqb_aura];
753 	sq = &qset->sq[qidx];
754 	sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
755 	sq->sqe_cnt = qset->sqe_cnt;
756 
757 	err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
758 	if (err)
759 		return err;
760 
761 	err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
762 			 TSO_HEADER_SIZE);
763 	if (err)
764 		return err;
765 
766 	sq->sqe_base = sq->sqe->base;
767 	sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
768 	if (!sq->sg)
769 		return -ENOMEM;
770 
771 	if (pfvf->ptp) {
772 		err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
773 				 sizeof(*sq->timestamps));
774 		if (err)
775 			return err;
776 	}
777 
778 	sq->head = 0;
779 	sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
780 	sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
781 	/* Set SQE threshold to 10% of total SQEs */
782 	sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
783 	sq->aura_id = sqb_aura;
784 	sq->aura_fc_addr = pool->fc_addr->base;
785 	sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
786 	sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
787 
788 	sq->stats.bytes = 0;
789 	sq->stats.pkts = 0;
790 
791 	/* Get memory to put this msg */
792 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
793 	if (!aq)
794 		return -ENOMEM;
795 
796 	aq->sq.cq = pfvf->hw.rx_queues + qidx;
797 	aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
798 	aq->sq.cq_ena = 1;
799 	aq->sq.ena = 1;
800 	/* Only one SMQ is allocated, map all SQ's to that SMQ  */
801 	aq->sq.smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
802 	aq->sq.smq_rr_quantum = DFLT_RR_QTM;
803 	aq->sq.default_chan = pfvf->hw.tx_chan_base;
804 	aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
805 	aq->sq.sqb_aura = sqb_aura;
806 	aq->sq.sq_int_ena = NIX_SQINT_BITS;
807 	aq->sq.qint_idx = 0;
808 	/* Due pipelining impact minimum 2000 unused SQ CQE's
809 	 * need to maintain to avoid CQ overflow.
810 	 */
811 	aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (sq->sqe_cnt));
812 
813 	/* Fill AQ info */
814 	aq->qidx = qidx;
815 	aq->ctype = NIX_AQ_CTYPE_SQ;
816 	aq->op = NIX_AQ_INSTOP_INIT;
817 
818 	return otx2_sync_mbox_msg(&pfvf->mbox);
819 }
820 
821 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
822 {
823 	struct otx2_qset *qset = &pfvf->qset;
824 	struct nix_aq_enq_req *aq;
825 	struct otx2_cq_queue *cq;
826 	int err, pool_id;
827 
828 	cq = &qset->cq[qidx];
829 	cq->cq_idx = qidx;
830 	if (qidx < pfvf->hw.rx_queues) {
831 		cq->cq_type = CQ_RX;
832 		cq->cint_idx = qidx;
833 		cq->cqe_cnt = qset->rqe_cnt;
834 	} else {
835 		cq->cq_type = CQ_TX;
836 		cq->cint_idx = qidx - pfvf->hw.rx_queues;
837 		cq->cqe_cnt = qset->sqe_cnt;
838 	}
839 	cq->cqe_size = pfvf->qset.xqe_size;
840 
841 	/* Allocate memory for CQEs */
842 	err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
843 	if (err)
844 		return err;
845 
846 	/* Save CQE CPU base for faster reference */
847 	cq->cqe_base = cq->cqe->base;
848 	/* In case where all RQs auras point to single pool,
849 	 * all CQs receive buffer pool also point to same pool.
850 	 */
851 	pool_id = ((cq->cq_type == CQ_RX) &&
852 		   (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
853 	cq->rbpool = &qset->pool[pool_id];
854 	cq->refill_task_sched = false;
855 
856 	/* Get memory to put this msg */
857 	aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
858 	if (!aq)
859 		return -ENOMEM;
860 
861 	aq->cq.ena = 1;
862 	aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
863 	aq->cq.caching = 1;
864 	aq->cq.base = cq->cqe->iova;
865 	aq->cq.cint_idx = cq->cint_idx;
866 	aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
867 	aq->cq.qint_idx = 0;
868 	aq->cq.avg_level = 255;
869 
870 	if (qidx < pfvf->hw.rx_queues) {
871 		aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
872 		aq->cq.drop_ena = 1;
873 
874 		/* Enable receive CQ backpressure */
875 		aq->cq.bp_ena = 1;
876 		aq->cq.bpid = pfvf->bpid[0];
877 
878 		/* Set backpressure level is same as cq pass level */
879 		aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
880 	}
881 
882 	/* Fill AQ info */
883 	aq->qidx = qidx;
884 	aq->ctype = NIX_AQ_CTYPE_CQ;
885 	aq->op = NIX_AQ_INSTOP_INIT;
886 
887 	return otx2_sync_mbox_msg(&pfvf->mbox);
888 }
889 
890 static void otx2_pool_refill_task(struct work_struct *work)
891 {
892 	struct otx2_cq_queue *cq;
893 	struct otx2_pool *rbpool;
894 	struct refill_work *wrk;
895 	int qidx, free_ptrs = 0;
896 	struct otx2_nic *pfvf;
897 	s64 bufptr;
898 
899 	wrk = container_of(work, struct refill_work, pool_refill_work.work);
900 	pfvf = wrk->pf;
901 	qidx = wrk - pfvf->refill_wrk;
902 	cq = &pfvf->qset.cq[qidx];
903 	rbpool = cq->rbpool;
904 	free_ptrs = cq->pool_ptrs;
905 
906 	while (cq->pool_ptrs) {
907 		bufptr = otx2_alloc_rbuf(pfvf, rbpool);
908 		if (bufptr <= 0) {
909 			/* Schedule a WQ if we fails to free atleast half of the
910 			 * pointers else enable napi for this RQ.
911 			 */
912 			if (!((free_ptrs - cq->pool_ptrs) > free_ptrs / 2)) {
913 				struct delayed_work *dwork;
914 
915 				dwork = &wrk->pool_refill_work;
916 				schedule_delayed_work(dwork,
917 						      msecs_to_jiffies(100));
918 			} else {
919 				cq->refill_task_sched = false;
920 			}
921 			return;
922 		}
923 		otx2_aura_freeptr(pfvf, qidx, bufptr + OTX2_HEAD_ROOM);
924 		cq->pool_ptrs--;
925 	}
926 	cq->refill_task_sched = false;
927 }
928 
929 int otx2_config_nix_queues(struct otx2_nic *pfvf)
930 {
931 	int qidx, err;
932 
933 	/* Initialize RX queues */
934 	for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
935 		u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
936 
937 		err = otx2_rq_init(pfvf, qidx, lpb_aura);
938 		if (err)
939 			return err;
940 	}
941 
942 	/* Initialize TX queues */
943 	for (qidx = 0; qidx < pfvf->hw.tx_queues; qidx++) {
944 		u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
945 
946 		err = otx2_sq_init(pfvf, qidx, sqb_aura);
947 		if (err)
948 			return err;
949 	}
950 
951 	/* Initialize completion queues */
952 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
953 		err = otx2_cq_init(pfvf, qidx);
954 		if (err)
955 			return err;
956 	}
957 
958 	/* Initialize work queue for receive buffer refill */
959 	pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
960 					sizeof(struct refill_work), GFP_KERNEL);
961 	if (!pfvf->refill_wrk)
962 		return -ENOMEM;
963 
964 	for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
965 		pfvf->refill_wrk[qidx].pf = pfvf;
966 		INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
967 				  otx2_pool_refill_task);
968 	}
969 	return 0;
970 }
971 
972 int otx2_config_nix(struct otx2_nic *pfvf)
973 {
974 	struct nix_lf_alloc_req  *nixlf;
975 	struct nix_lf_alloc_rsp *rsp;
976 	int err;
977 
978 	pfvf->qset.xqe_size = NIX_XQESZ_W16 ? 128 : 512;
979 
980 	/* Get memory to put this msg */
981 	nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
982 	if (!nixlf)
983 		return -ENOMEM;
984 
985 	/* Set RQ/SQ/CQ counts */
986 	nixlf->rq_cnt = pfvf->hw.rx_queues;
987 	nixlf->sq_cnt = pfvf->hw.tx_queues;
988 	nixlf->cq_cnt = pfvf->qset.cq_cnt;
989 	nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
990 	nixlf->rss_grps = 1; /* Single RSS indir table supported, for now */
991 	nixlf->xqe_sz = NIX_XQESZ_W16;
992 	/* We don't know absolute NPA LF idx attached.
993 	 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
994 	 * NPA LF attached to this RVU PF/VF.
995 	 */
996 	nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
997 	/* Disable alignment pad, enable L2 length check,
998 	 * enable L4 TCP/UDP checksum verification.
999 	 */
1000 	nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1001 
1002 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1003 	if (err)
1004 		return err;
1005 
1006 	rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1007 							   &nixlf->hdr);
1008 	if (IS_ERR(rsp))
1009 		return PTR_ERR(rsp);
1010 
1011 	if (rsp->qints < 1)
1012 		return -ENXIO;
1013 
1014 	return rsp->hdr.rc;
1015 }
1016 
1017 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1018 {
1019 	struct otx2_qset *qset = &pfvf->qset;
1020 	struct otx2_hw *hw = &pfvf->hw;
1021 	struct otx2_snd_queue *sq;
1022 	int sqb, qidx;
1023 	u64 iova, pa;
1024 
1025 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1026 		sq = &qset->sq[qidx];
1027 		if (!sq->sqb_ptrs)
1028 			continue;
1029 		for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1030 			if (!sq->sqb_ptrs[sqb])
1031 				continue;
1032 			iova = sq->sqb_ptrs[sqb];
1033 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1034 			dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1035 					     DMA_FROM_DEVICE,
1036 					     DMA_ATTR_SKIP_CPU_SYNC);
1037 			put_page(virt_to_page(phys_to_virt(pa)));
1038 		}
1039 		sq->sqb_count = 0;
1040 	}
1041 }
1042 
1043 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1044 {
1045 	int pool_id, pool_start = 0, pool_end = 0, size = 0;
1046 	u64 iova, pa;
1047 
1048 	if (type == AURA_NIX_SQ) {
1049 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
1050 		pool_end =  pool_start + pfvf->hw.sqpool_cnt;
1051 		size = pfvf->hw.sqb_size;
1052 	}
1053 	if (type == AURA_NIX_RQ) {
1054 		pool_start = otx2_get_pool_idx(pfvf, type, 0);
1055 		pool_end = pfvf->hw.rqpool_cnt;
1056 		size = pfvf->rbsize;
1057 	}
1058 
1059 	/* Free SQB and RQB pointers from the aura pool */
1060 	for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1061 		iova = otx2_aura_allocptr(pfvf, pool_id);
1062 		while (iova) {
1063 			if (type == AURA_NIX_RQ)
1064 				iova -= OTX2_HEAD_ROOM;
1065 
1066 			pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1067 			dma_unmap_page_attrs(pfvf->dev, iova, size,
1068 					     DMA_FROM_DEVICE,
1069 					     DMA_ATTR_SKIP_CPU_SYNC);
1070 			put_page(virt_to_page(phys_to_virt(pa)));
1071 			iova = otx2_aura_allocptr(pfvf, pool_id);
1072 		}
1073 	}
1074 }
1075 
1076 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1077 {
1078 	struct otx2_pool *pool;
1079 	int pool_id;
1080 
1081 	if (!pfvf->qset.pool)
1082 		return;
1083 
1084 	for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1085 		pool = &pfvf->qset.pool[pool_id];
1086 		qmem_free(pfvf->dev, pool->stack);
1087 		qmem_free(pfvf->dev, pool->fc_addr);
1088 	}
1089 	devm_kfree(pfvf->dev, pfvf->qset.pool);
1090 	pfvf->qset.pool = NULL;
1091 }
1092 
1093 static int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1094 			  int pool_id, int numptrs)
1095 {
1096 	struct npa_aq_enq_req *aq;
1097 	struct otx2_pool *pool;
1098 	int err;
1099 
1100 	pool = &pfvf->qset.pool[pool_id];
1101 
1102 	/* Allocate memory for HW to update Aura count.
1103 	 * Alloc one cache line, so that it fits all FC_STYPE modes.
1104 	 */
1105 	if (!pool->fc_addr) {
1106 		err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1107 		if (err)
1108 			return err;
1109 	}
1110 
1111 	/* Initialize this aura's context via AF */
1112 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1113 	if (!aq) {
1114 		/* Shared mbox memory buffer is full, flush it and retry */
1115 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1116 		if (err)
1117 			return err;
1118 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1119 		if (!aq)
1120 			return -ENOMEM;
1121 	}
1122 
1123 	aq->aura_id = aura_id;
1124 	/* Will be filled by AF with correct pool context address */
1125 	aq->aura.pool_addr = pool_id;
1126 	aq->aura.pool_caching = 1;
1127 	aq->aura.shift = ilog2(numptrs) - 8;
1128 	aq->aura.count = numptrs;
1129 	aq->aura.limit = numptrs;
1130 	aq->aura.avg_level = 255;
1131 	aq->aura.ena = 1;
1132 	aq->aura.fc_ena = 1;
1133 	aq->aura.fc_addr = pool->fc_addr->iova;
1134 	aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1135 
1136 	/* Enable backpressure for RQ aura */
1137 	if (aura_id < pfvf->hw.rqpool_cnt) {
1138 		aq->aura.bp_ena = 0;
1139 		aq->aura.nix0_bpid = pfvf->bpid[0];
1140 		/* Set backpressure level for RQ's Aura */
1141 		aq->aura.bp = RQ_BP_LVL_AURA;
1142 	}
1143 
1144 	/* Fill AQ info */
1145 	aq->ctype = NPA_AQ_CTYPE_AURA;
1146 	aq->op = NPA_AQ_INSTOP_INIT;
1147 
1148 	return 0;
1149 }
1150 
1151 static int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1152 			  int stack_pages, int numptrs, int buf_size)
1153 {
1154 	struct npa_aq_enq_req *aq;
1155 	struct otx2_pool *pool;
1156 	int err;
1157 
1158 	pool = &pfvf->qset.pool[pool_id];
1159 	/* Alloc memory for stack which is used to store buffer pointers */
1160 	err = qmem_alloc(pfvf->dev, &pool->stack,
1161 			 stack_pages, pfvf->hw.stack_pg_bytes);
1162 	if (err)
1163 		return err;
1164 
1165 	pool->rbsize = buf_size;
1166 
1167 	/* Initialize this pool's context via AF */
1168 	aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1169 	if (!aq) {
1170 		/* Shared mbox memory buffer is full, flush it and retry */
1171 		err = otx2_sync_mbox_msg(&pfvf->mbox);
1172 		if (err) {
1173 			qmem_free(pfvf->dev, pool->stack);
1174 			return err;
1175 		}
1176 		aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1177 		if (!aq) {
1178 			qmem_free(pfvf->dev, pool->stack);
1179 			return -ENOMEM;
1180 		}
1181 	}
1182 
1183 	aq->aura_id = pool_id;
1184 	aq->pool.stack_base = pool->stack->iova;
1185 	aq->pool.stack_caching = 1;
1186 	aq->pool.ena = 1;
1187 	aq->pool.buf_size = buf_size / 128;
1188 	aq->pool.stack_max_pages = stack_pages;
1189 	aq->pool.shift = ilog2(numptrs) - 8;
1190 	aq->pool.ptr_start = 0;
1191 	aq->pool.ptr_end = ~0ULL;
1192 
1193 	/* Fill AQ info */
1194 	aq->ctype = NPA_AQ_CTYPE_POOL;
1195 	aq->op = NPA_AQ_INSTOP_INIT;
1196 
1197 	return 0;
1198 }
1199 
1200 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1201 {
1202 	int qidx, pool_id, stack_pages, num_sqbs;
1203 	struct otx2_qset *qset = &pfvf->qset;
1204 	struct otx2_hw *hw = &pfvf->hw;
1205 	struct otx2_snd_queue *sq;
1206 	struct otx2_pool *pool;
1207 	int err, ptr;
1208 	s64 bufptr;
1209 
1210 	/* Calculate number of SQBs needed.
1211 	 *
1212 	 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1213 	 * Last SQE is used for pointing to next SQB.
1214 	 */
1215 	num_sqbs = (hw->sqb_size / 128) - 1;
1216 	num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1217 
1218 	/* Get no of stack pages needed */
1219 	stack_pages =
1220 		(num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1221 
1222 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1223 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1224 		/* Initialize aura context */
1225 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1226 		if (err)
1227 			goto fail;
1228 
1229 		/* Initialize pool context */
1230 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1231 				     num_sqbs, hw->sqb_size);
1232 		if (err)
1233 			goto fail;
1234 	}
1235 
1236 	/* Flush accumulated messages */
1237 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1238 	if (err)
1239 		goto fail;
1240 
1241 	/* Allocate pointers and free them to aura/pool */
1242 	for (qidx = 0; qidx < hw->tx_queues; qidx++) {
1243 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1244 		pool = &pfvf->qset.pool[pool_id];
1245 
1246 		sq = &qset->sq[qidx];
1247 		sq->sqb_count = 0;
1248 		sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1249 		if (!sq->sqb_ptrs)
1250 			return -ENOMEM;
1251 
1252 		for (ptr = 0; ptr < num_sqbs; ptr++) {
1253 			bufptr = otx2_alloc_rbuf(pfvf, pool);
1254 			if (bufptr <= 0)
1255 				return bufptr;
1256 			otx2_aura_freeptr(pfvf, pool_id, bufptr);
1257 			sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1258 		}
1259 	}
1260 
1261 	return 0;
1262 fail:
1263 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1264 	otx2_aura_pool_free(pfvf);
1265 	return err;
1266 }
1267 
1268 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1269 {
1270 	struct otx2_hw *hw = &pfvf->hw;
1271 	int stack_pages, pool_id, rq;
1272 	struct otx2_pool *pool;
1273 	int err, ptr, num_ptrs;
1274 	s64 bufptr;
1275 
1276 	num_ptrs = pfvf->qset.rqe_cnt;
1277 
1278 	stack_pages =
1279 		(num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1280 
1281 	for (rq = 0; rq < hw->rx_queues; rq++) {
1282 		pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1283 		/* Initialize aura context */
1284 		err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1285 		if (err)
1286 			goto fail;
1287 	}
1288 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1289 		err = otx2_pool_init(pfvf, pool_id, stack_pages,
1290 				     num_ptrs, pfvf->rbsize);
1291 		if (err)
1292 			goto fail;
1293 	}
1294 
1295 	/* Flush accumulated messages */
1296 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1297 	if (err)
1298 		goto fail;
1299 
1300 	/* Allocate pointers and free them to aura/pool */
1301 	for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1302 		pool = &pfvf->qset.pool[pool_id];
1303 		for (ptr = 0; ptr < num_ptrs; ptr++) {
1304 			bufptr = otx2_alloc_rbuf(pfvf, pool);
1305 			if (bufptr <= 0)
1306 				return bufptr;
1307 			otx2_aura_freeptr(pfvf, pool_id,
1308 					  bufptr + OTX2_HEAD_ROOM);
1309 		}
1310 	}
1311 
1312 	return 0;
1313 fail:
1314 	otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1315 	otx2_aura_pool_free(pfvf);
1316 	return err;
1317 }
1318 
1319 int otx2_config_npa(struct otx2_nic *pfvf)
1320 {
1321 	struct otx2_qset *qset = &pfvf->qset;
1322 	struct npa_lf_alloc_req  *npalf;
1323 	struct otx2_hw *hw = &pfvf->hw;
1324 	int aura_cnt;
1325 
1326 	/* Pool - Stack of free buffer pointers
1327 	 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1328 	 */
1329 
1330 	if (!hw->pool_cnt)
1331 		return -EINVAL;
1332 
1333 	qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1334 				  sizeof(struct otx2_pool), GFP_KERNEL);
1335 	if (!qset->pool)
1336 		return -ENOMEM;
1337 
1338 	/* Get memory to put this msg */
1339 	npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1340 	if (!npalf)
1341 		return -ENOMEM;
1342 
1343 	/* Set aura and pool counts */
1344 	npalf->nr_pools = hw->pool_cnt;
1345 	aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1346 	npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1347 
1348 	return otx2_sync_mbox_msg(&pfvf->mbox);
1349 }
1350 
1351 int otx2_detach_resources(struct mbox *mbox)
1352 {
1353 	struct rsrc_detach *detach;
1354 
1355 	mutex_lock(&mbox->lock);
1356 	detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1357 	if (!detach) {
1358 		mutex_unlock(&mbox->lock);
1359 		return -ENOMEM;
1360 	}
1361 
1362 	/* detach all */
1363 	detach->partial = false;
1364 
1365 	/* Send detach request to AF */
1366 	otx2_mbox_msg_send(&mbox->mbox, 0);
1367 	mutex_unlock(&mbox->lock);
1368 	return 0;
1369 }
1370 EXPORT_SYMBOL(otx2_detach_resources);
1371 
1372 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1373 {
1374 	struct rsrc_attach *attach;
1375 	struct msg_req *msix;
1376 	int err;
1377 
1378 	mutex_lock(&pfvf->mbox.lock);
1379 	/* Get memory to put this msg */
1380 	attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1381 	if (!attach) {
1382 		mutex_unlock(&pfvf->mbox.lock);
1383 		return -ENOMEM;
1384 	}
1385 
1386 	attach->npalf = true;
1387 	attach->nixlf = true;
1388 
1389 	/* Send attach request to AF */
1390 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1391 	if (err) {
1392 		mutex_unlock(&pfvf->mbox.lock);
1393 		return err;
1394 	}
1395 
1396 	pfvf->nix_blkaddr = BLKADDR_NIX0;
1397 
1398 	/* If the platform has two NIX blocks then LF may be
1399 	 * allocated from NIX1.
1400 	 */
1401 	if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1402 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1403 
1404 	/* Get NPA and NIX MSIX vector offsets */
1405 	msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1406 	if (!msix) {
1407 		mutex_unlock(&pfvf->mbox.lock);
1408 		return -ENOMEM;
1409 	}
1410 
1411 	err = otx2_sync_mbox_msg(&pfvf->mbox);
1412 	if (err) {
1413 		mutex_unlock(&pfvf->mbox.lock);
1414 		return err;
1415 	}
1416 	mutex_unlock(&pfvf->mbox.lock);
1417 
1418 	if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1419 	    pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1420 		dev_err(pfvf->dev,
1421 			"RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1422 		return -EINVAL;
1423 	}
1424 
1425 	return 0;
1426 }
1427 EXPORT_SYMBOL(otx2_attach_npa_nix);
1428 
1429 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1430 {
1431 	struct hwctx_disable_req *req;
1432 
1433 	mutex_lock(&mbox->lock);
1434 	/* Request AQ to disable this context */
1435 	if (npa)
1436 		req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1437 	else
1438 		req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1439 
1440 	if (!req) {
1441 		mutex_unlock(&mbox->lock);
1442 		return;
1443 	}
1444 
1445 	req->ctype = type;
1446 
1447 	if (otx2_sync_mbox_msg(mbox))
1448 		dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1449 			__func__);
1450 
1451 	mutex_unlock(&mbox->lock);
1452 }
1453 
1454 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1455 {
1456 	struct nix_bp_cfg_req *req;
1457 
1458 	if (enable)
1459 		req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1460 	else
1461 		req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1462 
1463 	if (!req)
1464 		return -ENOMEM;
1465 
1466 	req->chan_base = 0;
1467 	req->chan_cnt = 1;
1468 	req->bpid_per_chan = 0;
1469 
1470 	return otx2_sync_mbox_msg(&pfvf->mbox);
1471 }
1472 
1473 /* Mbox message handlers */
1474 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1475 			    struct cgx_stats_rsp *rsp)
1476 {
1477 	int id;
1478 
1479 	for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1480 		pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1481 	for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1482 		pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1483 }
1484 
1485 void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf,
1486 				  struct nix_txsch_alloc_rsp *rsp)
1487 {
1488 	int lvl, schq;
1489 
1490 	/* Setup transmit scheduler list */
1491 	for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
1492 		for (schq = 0; schq < rsp->schq[lvl]; schq++)
1493 			pf->hw.txschq_list[lvl][schq] =
1494 				rsp->schq_list[lvl][schq];
1495 }
1496 EXPORT_SYMBOL(mbox_handler_nix_txsch_alloc);
1497 
1498 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1499 			       struct npa_lf_alloc_rsp *rsp)
1500 {
1501 	pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1502 	pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1503 }
1504 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1505 
1506 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1507 			       struct nix_lf_alloc_rsp *rsp)
1508 {
1509 	pfvf->hw.sqb_size = rsp->sqb_size;
1510 	pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1511 	pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1512 	pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1513 	pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1514 	pfvf->hw.cgx_links = rsp->cgx_links;
1515 	pfvf->hw.lbk_links = rsp->lbk_links;
1516 }
1517 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1518 
1519 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1520 			      struct msix_offset_rsp *rsp)
1521 {
1522 	pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1523 	pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1524 }
1525 EXPORT_SYMBOL(mbox_handler_msix_offset);
1526 
1527 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1528 				struct nix_bp_cfg_rsp *rsp)
1529 {
1530 	int chan, chan_id;
1531 
1532 	for (chan = 0; chan < rsp->chan_cnt; chan++) {
1533 		chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1534 		pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1535 	}
1536 }
1537 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1538 
1539 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1540 {
1541 	struct otx2_qset *qset = &pfvf->qset;
1542 	struct otx2_hw *hw = &pfvf->hw;
1543 	int irq, qidx;
1544 
1545 	for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1546 	     qidx < n;
1547 	     qidx++, irq++) {
1548 		int vector = pci_irq_vector(pfvf->pdev, irq);
1549 
1550 		irq_set_affinity_hint(vector, NULL);
1551 		free_cpumask_var(hw->affinity_mask[irq]);
1552 		free_irq(vector, &qset->napi[qidx]);
1553 	}
1554 }
1555 
1556 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1557 {
1558 	struct otx2_hw *hw = &pfvf->hw;
1559 	int vec, cpu, irq, cint;
1560 
1561 	vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1562 	cpu = cpumask_first(cpu_online_mask);
1563 
1564 	/* CQ interrupts */
1565 	for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1566 		if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1567 			return;
1568 
1569 		cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1570 
1571 		irq = pci_irq_vector(pfvf->pdev, vec);
1572 		irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1573 
1574 		cpu = cpumask_next(cpu, cpu_online_mask);
1575 		if (unlikely(cpu >= nr_cpu_ids))
1576 			cpu = 0;
1577 	}
1578 }
1579 
1580 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1581 int __weak								\
1582 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf,		\
1583 				struct _req_type *req,			\
1584 				struct _rsp_type *rsp)			\
1585 {									\
1586 	/* Nothing to do here */					\
1587 	return 0;							\
1588 }									\
1589 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
1590 MBOX_UP_CGX_MESSAGES
1591 #undef M
1592