1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Physcial Function ethernet driver
3  *
4  * Copyright (C) 2020 Marvell.
5  */
6 
7 #include "cn10k.h"
8 #include "otx2_reg.h"
9 #include "otx2_struct.h"
10 
11 static struct dev_hw_ops	otx2_hw_ops = {
12 	.sq_aq_init = otx2_sq_aq_init,
13 	.sqe_flush = otx2_sqe_flush,
14 	.aura_freeptr = otx2_aura_freeptr,
15 	.refill_pool_ptrs = otx2_refill_pool_ptrs,
16 };
17 
18 static struct dev_hw_ops cn10k_hw_ops = {
19 	.sq_aq_init = cn10k_sq_aq_init,
20 	.sqe_flush = cn10k_sqe_flush,
21 	.aura_freeptr = cn10k_aura_freeptr,
22 	.refill_pool_ptrs = cn10k_refill_pool_ptrs,
23 };
24 
25 int cn10k_lmtst_init(struct otx2_nic *pfvf)
26 {
27 
28 	struct lmtst_tbl_setup_req *req;
29 	int qcount, err;
30 
31 	if (!test_bit(CN10K_LMTST, &pfvf->hw.cap_flag)) {
32 		pfvf->hw_ops = &otx2_hw_ops;
33 		return 0;
34 	}
35 
36 	pfvf->hw_ops = &cn10k_hw_ops;
37 	qcount = pfvf->hw.max_queues;
38 	/* LMTST lines allocation
39 	 * qcount = num_online_cpus();
40 	 * NPA = TX + RX + XDP.
41 	 * NIX = TX * 32 (For Burst SQE flush).
42 	 */
43 	pfvf->tot_lmt_lines = (qcount * 3) + (qcount * 32);
44 	pfvf->npa_lmt_lines = qcount * 3;
45 	pfvf->nix_lmt_size =  LMT_BURST_SIZE * LMT_LINE_SIZE;
46 
47 	mutex_lock(&pfvf->mbox.lock);
48 	req = otx2_mbox_alloc_msg_lmtst_tbl_setup(&pfvf->mbox);
49 	if (!req) {
50 		mutex_unlock(&pfvf->mbox.lock);
51 		return -ENOMEM;
52 	}
53 
54 	req->use_local_lmt_region = true;
55 
56 	err = qmem_alloc(pfvf->dev, &pfvf->dync_lmt, pfvf->tot_lmt_lines,
57 			 LMT_LINE_SIZE);
58 	if (err) {
59 		mutex_unlock(&pfvf->mbox.lock);
60 		return err;
61 	}
62 	pfvf->hw.lmt_base = (u64 *)pfvf->dync_lmt->base;
63 	req->lmt_iova = (u64)pfvf->dync_lmt->iova;
64 
65 	err = otx2_sync_mbox_msg(&pfvf->mbox);
66 	mutex_unlock(&pfvf->mbox.lock);
67 
68 	return 0;
69 }
70 EXPORT_SYMBOL(cn10k_lmtst_init);
71 
72 int cn10k_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura)
73 {
74 	struct nix_cn10k_aq_enq_req *aq;
75 	struct otx2_nic *pfvf = dev;
76 	struct otx2_snd_queue *sq;
77 
78 	sq = &pfvf->qset.sq[qidx];
79 	sq->lmt_addr = (u64 *)((u64)pfvf->hw.nix_lmt_base +
80 			       (qidx * pfvf->nix_lmt_size));
81 
82 	sq->lmt_id = pfvf->npa_lmt_lines + (qidx * LMT_BURST_SIZE);
83 
84 	/* Get memory to put this msg */
85 	aq = otx2_mbox_alloc_msg_nix_cn10k_aq_enq(&pfvf->mbox);
86 	if (!aq)
87 		return -ENOMEM;
88 
89 	aq->sq.cq = pfvf->hw.rx_queues + qidx;
90 	aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
91 	aq->sq.cq_ena = 1;
92 	aq->sq.ena = 1;
93 	/* Only one SMQ is allocated, map all SQ's to that SMQ  */
94 	aq->sq.smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
95 	aq->sq.smq_rr_weight = mtu_to_dwrr_weight(pfvf, pfvf->max_frs);
96 	aq->sq.default_chan = pfvf->hw.tx_chan_base;
97 	aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
98 	aq->sq.sqb_aura = sqb_aura;
99 	aq->sq.sq_int_ena = NIX_SQINT_BITS;
100 	aq->sq.qint_idx = 0;
101 	/* Due pipelining impact minimum 2000 unused SQ CQE's
102 	 * need to maintain to avoid CQ overflow.
103 	 */
104 	aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
105 
106 	/* Fill AQ info */
107 	aq->qidx = qidx;
108 	aq->ctype = NIX_AQ_CTYPE_SQ;
109 	aq->op = NIX_AQ_INSTOP_INIT;
110 
111 	return otx2_sync_mbox_msg(&pfvf->mbox);
112 }
113 
114 #define NPA_MAX_BURST 16
115 void cn10k_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq)
116 {
117 	struct otx2_nic *pfvf = dev;
118 	u64 ptrs[NPA_MAX_BURST];
119 	int num_ptrs = 1;
120 	dma_addr_t bufptr;
121 
122 	/* Refill pool with new buffers */
123 	while (cq->pool_ptrs) {
124 		if (otx2_alloc_buffer(pfvf, cq, &bufptr)) {
125 			if (num_ptrs--)
126 				__cn10k_aura_freeptr(pfvf, cq->cq_idx, ptrs,
127 						     num_ptrs,
128 						     cq->rbpool->lmt_addr);
129 			break;
130 		}
131 		cq->pool_ptrs--;
132 		ptrs[num_ptrs] = (u64)bufptr + OTX2_HEAD_ROOM;
133 		num_ptrs++;
134 		if (num_ptrs == NPA_MAX_BURST || cq->pool_ptrs == 0) {
135 			__cn10k_aura_freeptr(pfvf, cq->cq_idx, ptrs,
136 					     num_ptrs,
137 					     cq->rbpool->lmt_addr);
138 			num_ptrs = 1;
139 		}
140 	}
141 }
142 
143 void cn10k_sqe_flush(void *dev, struct otx2_snd_queue *sq, int size, int qidx)
144 {
145 	u64 val = 0, tar_addr = 0;
146 
147 	/* FIXME: val[0:10] LMT_ID.
148 	 * [12:15] no of LMTST - 1 in the burst.
149 	 * [19:63] data size of each LMTST in the burst except first.
150 	 */
151 	val = (sq->lmt_id & 0x7FF);
152 	/* Target address for LMTST flush tells HW how many 128bit
153 	 * words are present.
154 	 * tar_addr[6:4] size of first LMTST - 1 in units of 128b.
155 	 */
156 	tar_addr |= sq->io_addr | (((size / 16) - 1) & 0x7) << 4;
157 	dma_wmb();
158 	memcpy(sq->lmt_addr, sq->sqe_base, size);
159 	cn10k_lmt_flush(val, tar_addr);
160 
161 	sq->head++;
162 	sq->head &= (sq->sqe_cnt - 1);
163 }
164 
165 int cn10k_free_all_ipolicers(struct otx2_nic *pfvf)
166 {
167 	struct nix_bandprof_free_req *req;
168 	int rc;
169 
170 	if (is_dev_otx2(pfvf->pdev))
171 		return 0;
172 
173 	mutex_lock(&pfvf->mbox.lock);
174 
175 	req = otx2_mbox_alloc_msg_nix_bandprof_free(&pfvf->mbox);
176 	if (!req) {
177 		rc =  -ENOMEM;
178 		goto out;
179 	}
180 
181 	/* Free all bandwidth profiles allocated */
182 	req->free_all = true;
183 
184 	rc = otx2_sync_mbox_msg(&pfvf->mbox);
185 out:
186 	mutex_unlock(&pfvf->mbox.lock);
187 	return rc;
188 }
189 
190 int cn10k_alloc_leaf_profile(struct otx2_nic *pfvf, u16 *leaf)
191 {
192 	struct nix_bandprof_alloc_req *req;
193 	struct nix_bandprof_alloc_rsp *rsp;
194 	int rc;
195 
196 	req = otx2_mbox_alloc_msg_nix_bandprof_alloc(&pfvf->mbox);
197 	if (!req)
198 		return  -ENOMEM;
199 
200 	req->prof_count[BAND_PROF_LEAF_LAYER] = 1;
201 
202 	rc = otx2_sync_mbox_msg(&pfvf->mbox);
203 	if (rc)
204 		goto out;
205 
206 	rsp = (struct  nix_bandprof_alloc_rsp *)
207 	       otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
208 	if (!rsp->prof_count[BAND_PROF_LEAF_LAYER]) {
209 		rc = -EIO;
210 		goto out;
211 	}
212 
213 	*leaf = rsp->prof_idx[BAND_PROF_LEAF_LAYER][0];
214 out:
215 	if (rc) {
216 		dev_warn(pfvf->dev,
217 			 "Failed to allocate ingress bandwidth policer\n");
218 	}
219 
220 	return rc;
221 }
222 
223 int cn10k_alloc_matchall_ipolicer(struct otx2_nic *pfvf)
224 {
225 	struct otx2_hw *hw = &pfvf->hw;
226 	int ret;
227 
228 	mutex_lock(&pfvf->mbox.lock);
229 
230 	ret = cn10k_alloc_leaf_profile(pfvf, &hw->matchall_ipolicer);
231 
232 	mutex_unlock(&pfvf->mbox.lock);
233 
234 	return ret;
235 }
236 
237 #define POLICER_TIMESTAMP	  1  /* 1 second */
238 #define MAX_RATE_EXP		  22 /* Valid rate exponent range: 0 - 22 */
239 
240 static void cn10k_get_ingress_burst_cfg(u32 burst, u32 *burst_exp,
241 					u32 *burst_mantissa)
242 {
243 	int tmp;
244 
245 	/* Burst is calculated as
246 	 * (1+[BURST_MANTISSA]/256)*2^[BURST_EXPONENT]
247 	 * This is the upper limit on number tokens (bytes) that
248 	 * can be accumulated in the bucket.
249 	 */
250 	*burst_exp = ilog2(burst);
251 	if (burst < 256) {
252 		/* No float: can't express mantissa in this case */
253 		*burst_mantissa = 0;
254 		return;
255 	}
256 
257 	if (*burst_exp > MAX_RATE_EXP)
258 		*burst_exp = MAX_RATE_EXP;
259 
260 	/* Calculate mantissa
261 	 * Find remaining bytes 'burst - 2^burst_exp'
262 	 * mantissa = (remaining bytes) / 2^ (burst_exp - 8)
263 	 */
264 	tmp = burst - rounddown_pow_of_two(burst);
265 	*burst_mantissa = tmp / (1UL << (*burst_exp - 8));
266 }
267 
268 static void cn10k_get_ingress_rate_cfg(u64 rate, u32 *rate_exp,
269 				       u32 *rate_mantissa, u32 *rdiv)
270 {
271 	u32 div = 0;
272 	u32 exp = 0;
273 	u64 tmp;
274 
275 	/* Figure out mantissa, exponent and divider from given max pkt rate
276 	 *
277 	 * To achieve desired rate HW adds
278 	 * (1+[RATE_MANTISSA]/256)*2^[RATE_EXPONENT] tokens (bytes) at every
279 	 * policer timeunit * 2^rdiv ie 2 * 2^rdiv usecs, to the token bucket.
280 	 * Here policer timeunit is 2 usecs and rate is in bits per sec.
281 	 * Since floating point cannot be used below algorithm uses 1000000
282 	 * scale factor to support rates upto 100Gbps.
283 	 */
284 	tmp = rate * 32 * 2;
285 	if (tmp < 256000000) {
286 		while (tmp < 256000000) {
287 			tmp = tmp * 2;
288 			div++;
289 		}
290 	} else {
291 		for (exp = 0; tmp >= 512000000 && exp <= MAX_RATE_EXP; exp++)
292 			tmp = tmp / 2;
293 
294 		if (exp > MAX_RATE_EXP)
295 			exp = MAX_RATE_EXP;
296 	}
297 
298 	*rate_mantissa = (tmp - 256000000) / 1000000;
299 	*rate_exp = exp;
300 	*rdiv = div;
301 }
302 
303 int cn10k_map_unmap_rq_policer(struct otx2_nic *pfvf, int rq_idx,
304 			       u16 policer, bool map)
305 {
306 	struct nix_cn10k_aq_enq_req *aq;
307 
308 	aq = otx2_mbox_alloc_msg_nix_cn10k_aq_enq(&pfvf->mbox);
309 	if (!aq)
310 		return -ENOMEM;
311 
312 	/* Enable policing and set the bandwidth profile (policer) index */
313 	if (map)
314 		aq->rq.policer_ena = 1;
315 	else
316 		aq->rq.policer_ena = 0;
317 	aq->rq_mask.policer_ena = 1;
318 
319 	aq->rq.band_prof_id = policer;
320 	aq->rq_mask.band_prof_id = GENMASK(9, 0);
321 
322 	/* Fill AQ info */
323 	aq->qidx = rq_idx;
324 	aq->ctype = NIX_AQ_CTYPE_RQ;
325 	aq->op = NIX_AQ_INSTOP_WRITE;
326 
327 	return otx2_sync_mbox_msg(&pfvf->mbox);
328 }
329 
330 int cn10k_free_leaf_profile(struct otx2_nic *pfvf, u16 leaf)
331 {
332 	struct nix_bandprof_free_req *req;
333 
334 	req = otx2_mbox_alloc_msg_nix_bandprof_free(&pfvf->mbox);
335 	if (!req)
336 		return -ENOMEM;
337 
338 	req->prof_count[BAND_PROF_LEAF_LAYER] = 1;
339 	req->prof_idx[BAND_PROF_LEAF_LAYER][0] = leaf;
340 
341 	return otx2_sync_mbox_msg(&pfvf->mbox);
342 }
343 
344 int cn10k_free_matchall_ipolicer(struct otx2_nic *pfvf)
345 {
346 	struct otx2_hw *hw = &pfvf->hw;
347 	int qidx, rc;
348 
349 	mutex_lock(&pfvf->mbox.lock);
350 
351 	/* Remove RQ's policer mapping */
352 	for (qidx = 0; qidx < hw->rx_queues; qidx++)
353 		cn10k_map_unmap_rq_policer(pfvf, qidx,
354 					   hw->matchall_ipolicer, false);
355 
356 	rc = cn10k_free_leaf_profile(pfvf, hw->matchall_ipolicer);
357 
358 	mutex_unlock(&pfvf->mbox.lock);
359 	return rc;
360 }
361 
362 int cn10k_set_ipolicer_rate(struct otx2_nic *pfvf, u16 profile,
363 			    u32 burst, u64 rate, bool pps)
364 {
365 	struct nix_cn10k_aq_enq_req *aq;
366 	u32 burst_exp, burst_mantissa;
367 	u32 rate_exp, rate_mantissa;
368 	u32 rdiv;
369 
370 	/* Get exponent and mantissa values for the desired rate */
371 	cn10k_get_ingress_burst_cfg(burst, &burst_exp, &burst_mantissa);
372 	cn10k_get_ingress_rate_cfg(rate, &rate_exp, &rate_mantissa, &rdiv);
373 
374 	/* Init bandwidth profile */
375 	aq = otx2_mbox_alloc_msg_nix_cn10k_aq_enq(&pfvf->mbox);
376 	if (!aq)
377 		return -ENOMEM;
378 
379 	/* Set initial color mode to blind */
380 	aq->prof.icolor = 0x03;
381 	aq->prof_mask.icolor = 0x03;
382 
383 	/* Set rate and burst values */
384 	aq->prof.cir_exponent = rate_exp;
385 	aq->prof_mask.cir_exponent = 0x1F;
386 
387 	aq->prof.cir_mantissa = rate_mantissa;
388 	aq->prof_mask.cir_mantissa = 0xFF;
389 
390 	aq->prof.cbs_exponent = burst_exp;
391 	aq->prof_mask.cbs_exponent = 0x1F;
392 
393 	aq->prof.cbs_mantissa = burst_mantissa;
394 	aq->prof_mask.cbs_mantissa = 0xFF;
395 
396 	aq->prof.rdiv = rdiv;
397 	aq->prof_mask.rdiv = 0xF;
398 
399 	if (pps) {
400 		/* The amount of decremented tokens is calculated according to
401 		 * the following equation:
402 		 * max([ LMODE ? 0 : (packet_length - LXPTR)] +
403 		 *	     ([ADJUST_MANTISSA]/256 - 1) * 2^[ADJUST_EXPONENT],
404 		 *	1/256)
405 		 * if LMODE is 1 then rate limiting will be based on
406 		 * PPS otherwise bps.
407 		 * The aim of the ADJUST value is to specify a token cost per
408 		 * packet in contrary to the packet length that specifies a
409 		 * cost per byte. To rate limit based on PPS adjust mantissa
410 		 * is set as 384 and exponent as 1 so that number of tokens
411 		 * decremented becomes 1 i.e, 1 token per packeet.
412 		 */
413 		aq->prof.adjust_exponent = 1;
414 		aq->prof_mask.adjust_exponent = 0x1F;
415 
416 		aq->prof.adjust_mantissa = 384;
417 		aq->prof_mask.adjust_mantissa = 0x1FF;
418 
419 		aq->prof.lmode = 0x1;
420 		aq->prof_mask.lmode = 0x1;
421 	}
422 
423 	/* Two rate three color marker
424 	 * With PEIR/EIR set to zero, color will be either green or red
425 	 */
426 	aq->prof.meter_algo = 2;
427 	aq->prof_mask.meter_algo = 0x3;
428 
429 	aq->prof.rc_action = NIX_RX_BAND_PROF_ACTIONRESULT_DROP;
430 	aq->prof_mask.rc_action = 0x3;
431 
432 	aq->prof.yc_action = NIX_RX_BAND_PROF_ACTIONRESULT_PASS;
433 	aq->prof_mask.yc_action = 0x3;
434 
435 	aq->prof.gc_action = NIX_RX_BAND_PROF_ACTIONRESULT_PASS;
436 	aq->prof_mask.gc_action = 0x3;
437 
438 	/* Setting exponent value as 24 and mantissa as 0 configures
439 	 * the bucket with zero values making bucket unused. Peak
440 	 * information rate and Excess information rate buckets are
441 	 * unused here.
442 	 */
443 	aq->prof.peir_exponent = 24;
444 	aq->prof_mask.peir_exponent = 0x1F;
445 
446 	aq->prof.peir_mantissa = 0;
447 	aq->prof_mask.peir_mantissa = 0xFF;
448 
449 	aq->prof.pebs_exponent = 24;
450 	aq->prof_mask.pebs_exponent = 0x1F;
451 
452 	aq->prof.pebs_mantissa = 0;
453 	aq->prof_mask.pebs_mantissa = 0xFF;
454 
455 	/* Fill AQ info */
456 	aq->qidx = profile;
457 	aq->ctype = NIX_AQ_CTYPE_BANDPROF;
458 	aq->op = NIX_AQ_INSTOP_WRITE;
459 
460 	return otx2_sync_mbox_msg(&pfvf->mbox);
461 }
462 
463 int cn10k_set_matchall_ipolicer_rate(struct otx2_nic *pfvf,
464 				     u32 burst, u64 rate)
465 {
466 	struct otx2_hw *hw = &pfvf->hw;
467 	int qidx, rc;
468 
469 	mutex_lock(&pfvf->mbox.lock);
470 
471 	rc = cn10k_set_ipolicer_rate(pfvf, hw->matchall_ipolicer, burst,
472 				     rate, false);
473 	if (rc)
474 		goto out;
475 
476 	for (qidx = 0; qidx < hw->rx_queues; qidx++) {
477 		rc = cn10k_map_unmap_rq_policer(pfvf, qidx,
478 						hw->matchall_ipolicer, true);
479 		if (rc)
480 			break;
481 	}
482 
483 out:
484 	mutex_unlock(&pfvf->mbox.lock);
485 	return rc;
486 }
487