1 // SPDX-License-Identifier: GPL-2.0 2 /* Marvell RVU Admin Function driver 3 * 4 * Copyright (C) 2022 Marvell. 5 * 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/module.h> 10 #include <linux/pci.h> 11 #include <linux/firmware.h> 12 #include <linux/stddef.h> 13 #include <linux/debugfs.h> 14 15 #include "rvu_struct.h" 16 #include "rvu_reg.h" 17 #include "rvu.h" 18 #include "npc.h" 19 #include "cgx.h" 20 #include "rvu_npc_fs.h" 21 #include "rvu_npc_hash.h" 22 23 static u64 rvu_npc_wide_extract(const u64 input[], size_t start_bit, 24 size_t width_bits) 25 { 26 const u64 mask = ~(u64)((~(__uint128_t)0) << width_bits); 27 const size_t msb = start_bit + width_bits - 1; 28 const size_t lword = start_bit >> 6; 29 const size_t uword = msb >> 6; 30 size_t lbits; 31 u64 hi, lo; 32 33 if (lword == uword) 34 return (input[lword] >> (start_bit & 63)) & mask; 35 36 lbits = 64 - (start_bit & 63); 37 hi = input[uword]; 38 lo = (input[lword] >> (start_bit & 63)); 39 return ((hi << lbits) | lo) & mask; 40 } 41 42 static void rvu_npc_lshift_key(u64 *key, size_t key_bit_len) 43 { 44 u64 prev_orig_word = 0; 45 u64 cur_orig_word = 0; 46 size_t extra = key_bit_len % 64; 47 size_t max_idx = key_bit_len / 64; 48 size_t i; 49 50 if (extra) 51 max_idx++; 52 53 for (i = 0; i < max_idx; i++) { 54 cur_orig_word = key[i]; 55 key[i] = key[i] << 1; 56 key[i] |= ((prev_orig_word >> 63) & 0x1); 57 prev_orig_word = cur_orig_word; 58 } 59 } 60 61 static u32 rvu_npc_toeplitz_hash(const u64 *data, u64 *key, size_t data_bit_len, 62 size_t key_bit_len) 63 { 64 u32 hash_out = 0; 65 u64 temp_data = 0; 66 int i; 67 68 for (i = data_bit_len - 1; i >= 0; i--) { 69 temp_data = (data[i / 64]); 70 temp_data = temp_data >> (i % 64); 71 temp_data &= 0x1; 72 if (temp_data) 73 hash_out ^= (u32)(rvu_npc_wide_extract(key, key_bit_len - 32, 32)); 74 75 rvu_npc_lshift_key(key, key_bit_len); 76 } 77 78 return hash_out; 79 } 80 81 u32 npc_field_hash_calc(u64 *ldata, struct npc_mcam_kex_hash *mkex_hash, 82 u64 *secret_key, u8 intf, u8 hash_idx) 83 { 84 u64 hash_key[3]; 85 u64 data_padded[2]; 86 u32 field_hash; 87 88 hash_key[0] = secret_key[1] << 31; 89 hash_key[0] |= secret_key[2]; 90 hash_key[1] = secret_key[1] >> 33; 91 hash_key[1] |= secret_key[0] << 31; 92 hash_key[2] = secret_key[0] >> 33; 93 94 data_padded[0] = mkex_hash->hash_mask[intf][hash_idx][0] & ldata[0]; 95 data_padded[1] = mkex_hash->hash_mask[intf][hash_idx][1] & ldata[1]; 96 field_hash = rvu_npc_toeplitz_hash(data_padded, hash_key, 128, 159); 97 98 field_hash &= mkex_hash->hash_ctrl[intf][hash_idx] >> 32; 99 field_hash |= mkex_hash->hash_ctrl[intf][hash_idx]; 100 return field_hash; 101 } 102 103 static u64 npc_update_use_hash(int lt, int ld) 104 { 105 u64 cfg = 0; 106 107 switch (lt) { 108 case NPC_LT_LC_IP6: 109 /* Update use_hash(bit-20) and bytesm1 (bit-16:19) 110 * in KEX_LD_CFG 111 */ 112 cfg = KEX_LD_CFG_USE_HASH(0x1, 0x03, 113 ld ? 0x8 : 0x18, 114 0x1, 0x0, 0x10); 115 break; 116 } 117 118 return cfg; 119 } 120 121 static void npc_program_mkex_hash_rx(struct rvu *rvu, int blkaddr, 122 u8 intf) 123 { 124 struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash; 125 int lid, lt, ld, hash_cnt = 0; 126 127 if (is_npc_intf_tx(intf)) 128 return; 129 130 /* Program HASH_CFG */ 131 for (lid = 0; lid < NPC_MAX_LID; lid++) { 132 for (lt = 0; lt < NPC_MAX_LT; lt++) { 133 for (ld = 0; ld < NPC_MAX_LD; ld++) { 134 if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][ld]) { 135 u64 cfg = npc_update_use_hash(lt, ld); 136 137 hash_cnt++; 138 if (hash_cnt == NPC_MAX_HASH) 139 return; 140 141 /* Set updated KEX configuration */ 142 SET_KEX_LD(intf, lid, lt, ld, cfg); 143 /* Set HASH configuration */ 144 SET_KEX_LD_HASH(intf, ld, 145 mkex_hash->hash[intf][ld]); 146 SET_KEX_LD_HASH_MASK(intf, ld, 0, 147 mkex_hash->hash_mask[intf][ld][0]); 148 SET_KEX_LD_HASH_MASK(intf, ld, 1, 149 mkex_hash->hash_mask[intf][ld][1]); 150 SET_KEX_LD_HASH_CTRL(intf, ld, 151 mkex_hash->hash_ctrl[intf][ld]); 152 } 153 } 154 } 155 } 156 } 157 158 static void npc_program_mkex_hash_tx(struct rvu *rvu, int blkaddr, 159 u8 intf) 160 { 161 struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash; 162 int lid, lt, ld, hash_cnt = 0; 163 164 if (is_npc_intf_rx(intf)) 165 return; 166 167 /* Program HASH_CFG */ 168 for (lid = 0; lid < NPC_MAX_LID; lid++) { 169 for (lt = 0; lt < NPC_MAX_LT; lt++) { 170 for (ld = 0; ld < NPC_MAX_LD; ld++) 171 if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][ld]) { 172 u64 cfg = npc_update_use_hash(lt, ld); 173 174 hash_cnt++; 175 if (hash_cnt == NPC_MAX_HASH) 176 return; 177 178 /* Set updated KEX configuration */ 179 SET_KEX_LD(intf, lid, lt, ld, cfg); 180 /* Set HASH configuration */ 181 SET_KEX_LD_HASH(intf, ld, 182 mkex_hash->hash[intf][ld]); 183 SET_KEX_LD_HASH_MASK(intf, ld, 0, 184 mkex_hash->hash_mask[intf][ld][0]); 185 SET_KEX_LD_HASH_MASK(intf, ld, 1, 186 mkex_hash->hash_mask[intf][ld][1]); 187 SET_KEX_LD_HASH_CTRL(intf, ld, 188 mkex_hash->hash_ctrl[intf][ld]); 189 hash_cnt++; 190 if (hash_cnt == NPC_MAX_HASH) 191 return; 192 } 193 } 194 } 195 } 196 197 void npc_config_secret_key(struct rvu *rvu, int blkaddr) 198 { 199 struct hw_cap *hwcap = &rvu->hw->cap; 200 struct rvu_hwinfo *hw = rvu->hw; 201 u8 intf; 202 203 if (!hwcap->npc_hash_extract) { 204 dev_info(rvu->dev, "HW does not support secret key configuration\n"); 205 return; 206 } 207 208 for (intf = 0; intf < hw->npc_intfs; intf++) { 209 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY0(intf), 210 RVU_NPC_HASH_SECRET_KEY0); 211 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY1(intf), 212 RVU_NPC_HASH_SECRET_KEY1); 213 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY2(intf), 214 RVU_NPC_HASH_SECRET_KEY2); 215 } 216 } 217 218 void npc_program_mkex_hash(struct rvu *rvu, int blkaddr) 219 { 220 struct hw_cap *hwcap = &rvu->hw->cap; 221 struct rvu_hwinfo *hw = rvu->hw; 222 u8 intf; 223 224 if (!hwcap->npc_hash_extract) { 225 dev_dbg(rvu->dev, "Field hash extract feature is not supported\n"); 226 return; 227 } 228 229 for (intf = 0; intf < hw->npc_intfs; intf++) { 230 npc_program_mkex_hash_rx(rvu, blkaddr, intf); 231 npc_program_mkex_hash_tx(rvu, blkaddr, intf); 232 } 233 } 234 235 void npc_update_field_hash(struct rvu *rvu, u8 intf, 236 struct mcam_entry *entry, 237 int blkaddr, 238 u64 features, 239 struct flow_msg *pkt, 240 struct flow_msg *mask, 241 struct flow_msg *opkt, 242 struct flow_msg *omask) 243 { 244 struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash; 245 struct npc_get_secret_key_req req; 246 struct npc_get_secret_key_rsp rsp; 247 u64 ldata[2], cfg; 248 u32 field_hash; 249 u8 hash_idx; 250 251 if (!rvu->hw->cap.npc_hash_extract) { 252 dev_dbg(rvu->dev, "%s: Field hash extract feature is not supported\n", __func__); 253 return; 254 } 255 256 req.intf = intf; 257 rvu_mbox_handler_npc_get_secret_key(rvu, &req, &rsp); 258 259 for (hash_idx = 0; hash_idx < NPC_MAX_HASH; hash_idx++) { 260 cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_HASHX_CFG(intf, hash_idx)); 261 if ((cfg & BIT_ULL(11)) && (cfg & BIT_ULL(12))) { 262 u8 lid = (cfg & GENMASK_ULL(10, 8)) >> 8; 263 u8 ltype = (cfg & GENMASK_ULL(7, 4)) >> 4; 264 u8 ltype_mask = cfg & GENMASK_ULL(3, 0); 265 266 if (mkex_hash->lid_lt_ld_hash_en[intf][lid][ltype][hash_idx]) { 267 switch (ltype & ltype_mask) { 268 /* If hash extract enabled is supported for IPv6 then 269 * 128 bit IPv6 source and destination addressed 270 * is hashed to 32 bit value. 271 */ 272 case NPC_LT_LC_IP6: 273 if (features & BIT_ULL(NPC_SIP_IPV6)) { 274 u32 src_ip[IPV6_WORDS]; 275 276 be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS); 277 ldata[0] = (u64)src_ip[0] << 32 | src_ip[1]; 278 ldata[1] = (u64)src_ip[2] << 32 | src_ip[3]; 279 field_hash = npc_field_hash_calc(ldata, 280 mkex_hash, 281 rsp.secret_key, 282 intf, 283 hash_idx); 284 npc_update_entry(rvu, NPC_SIP_IPV6, entry, 285 field_hash, 0, 32, 0, intf); 286 memcpy(&opkt->ip6src, &pkt->ip6src, 287 sizeof(pkt->ip6src)); 288 memcpy(&omask->ip6src, &mask->ip6src, 289 sizeof(mask->ip6src)); 290 break; 291 } 292 293 if (features & BIT_ULL(NPC_DIP_IPV6)) { 294 u32 dst_ip[IPV6_WORDS]; 295 296 be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS); 297 ldata[0] = (u64)dst_ip[0] << 32 | dst_ip[1]; 298 ldata[1] = (u64)dst_ip[2] << 32 | dst_ip[3]; 299 field_hash = npc_field_hash_calc(ldata, 300 mkex_hash, 301 rsp.secret_key, 302 intf, 303 hash_idx); 304 npc_update_entry(rvu, NPC_DIP_IPV6, entry, 305 field_hash, 0, 32, 0, intf); 306 memcpy(&opkt->ip6dst, &pkt->ip6dst, 307 sizeof(pkt->ip6dst)); 308 memcpy(&omask->ip6dst, &mask->ip6dst, 309 sizeof(mask->ip6dst)); 310 } 311 break; 312 } 313 } 314 } 315 } 316 } 317 318 int rvu_mbox_handler_npc_get_secret_key(struct rvu *rvu, 319 struct npc_get_secret_key_req *req, 320 struct npc_get_secret_key_rsp *rsp) 321 { 322 u64 *secret_key = rsp->secret_key; 323 u8 intf = req->intf; 324 int blkaddr; 325 326 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 327 if (blkaddr < 0) { 328 dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__); 329 return -EINVAL; 330 } 331 332 secret_key[0] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY0(intf)); 333 secret_key[1] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY1(intf)); 334 secret_key[2] = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_SECRET_KEY2(intf)); 335 336 return 0; 337 } 338 339 /** 340 * rvu_npc_exact_mac2u64 - utility function to convert mac address to u64. 341 * @mac_addr: MAC address. 342 * Return: mdata for exact match table. 343 */ 344 static u64 rvu_npc_exact_mac2u64(u8 *mac_addr) 345 { 346 u64 mac = 0; 347 int index; 348 349 for (index = ETH_ALEN - 1; index >= 0; index--) 350 mac |= ((u64)*mac_addr++) << (8 * index); 351 352 return mac; 353 } 354 355 /** 356 * rvu_exact_prepare_mdata - Make mdata for mcam entry 357 * @mac: MAC address 358 * @chan: Channel number. 359 * @ctype: Channel Type. 360 * @mask: LDATA mask. 361 * Return: Meta data 362 */ 363 static u64 rvu_exact_prepare_mdata(u8 *mac, u16 chan, u16 ctype, u64 mask) 364 { 365 u64 ldata = rvu_npc_exact_mac2u64(mac); 366 367 /* Please note that mask is 48bit which excludes chan and ctype. 368 * Increase mask bits if we need to include them as well. 369 */ 370 ldata |= ((u64)chan << 48); 371 ldata |= ((u64)ctype << 60); 372 ldata &= mask; 373 ldata = ldata << 2; 374 375 return ldata; 376 } 377 378 /** 379 * rvu_exact_calculate_hash - calculate hash index to mem table. 380 * @rvu: resource virtualization unit. 381 * @chan: Channel number 382 * @ctype: Channel type. 383 * @mac: MAC address 384 * @mask: HASH mask. 385 * @table_depth: Depth of table. 386 * Return: Hash value 387 */ 388 static u32 rvu_exact_calculate_hash(struct rvu *rvu, u16 chan, u16 ctype, u8 *mac, 389 u64 mask, u32 table_depth) 390 { 391 struct npc_exact_table *table = rvu->hw->table; 392 u64 hash_key[2]; 393 u64 key_in[2]; 394 u64 ldata; 395 u32 hash; 396 397 key_in[0] = RVU_NPC_HASH_SECRET_KEY0; 398 key_in[1] = RVU_NPC_HASH_SECRET_KEY2; 399 400 hash_key[0] = key_in[0] << 31; 401 hash_key[0] |= key_in[1]; 402 hash_key[1] = key_in[0] >> 33; 403 404 ldata = rvu_exact_prepare_mdata(mac, chan, ctype, mask); 405 406 dev_dbg(rvu->dev, "%s: ldata=0x%llx hash_key0=0x%llx hash_key2=0x%llx\n", __func__, 407 ldata, hash_key[1], hash_key[0]); 408 hash = rvu_npc_toeplitz_hash(&ldata, (u64 *)hash_key, 64, 95); 409 410 hash &= table->mem_table.hash_mask; 411 hash += table->mem_table.hash_offset; 412 dev_dbg(rvu->dev, "%s: hash=%x\n", __func__, hash); 413 414 return hash; 415 } 416 417 /** 418 * rvu_npc_exact_alloc_mem_table_entry - find free entry in 4 way table. 419 * @rvu: resource virtualization unit. 420 * @way: Indicate way to table. 421 * @index: Hash index to 4 way table. 422 * @hash: Hash value. 423 * 424 * Searches 4 way table using hash index. Returns 0 on success. 425 * Return: 0 upon success. 426 */ 427 static int rvu_npc_exact_alloc_mem_table_entry(struct rvu *rvu, u8 *way, 428 u32 *index, unsigned int hash) 429 { 430 struct npc_exact_table *table; 431 int depth, i; 432 433 table = rvu->hw->table; 434 depth = table->mem_table.depth; 435 436 /* Check all the 4 ways for a free slot. */ 437 mutex_lock(&table->lock); 438 for (i = 0; i < table->mem_table.ways; i++) { 439 if (test_bit(hash + i * depth, table->mem_table.bmap)) 440 continue; 441 442 set_bit(hash + i * depth, table->mem_table.bmap); 443 mutex_unlock(&table->lock); 444 445 dev_dbg(rvu->dev, "%s: mem table entry alloc success (way=%d index=%d)\n", 446 __func__, i, hash); 447 448 *way = i; 449 *index = hash; 450 return 0; 451 } 452 mutex_unlock(&table->lock); 453 454 dev_dbg(rvu->dev, "%s: No space in 4 way exact way, weight=%u\n", __func__, 455 bitmap_weight(table->mem_table.bmap, table->mem_table.depth)); 456 return -ENOSPC; 457 } 458 459 /** 460 * rvu_npc_exact_free_id - Free seq id from bitmat. 461 * @rvu: Resource virtualization unit. 462 * @seq_id: Sequence identifier to be freed. 463 */ 464 static void rvu_npc_exact_free_id(struct rvu *rvu, u32 seq_id) 465 { 466 struct npc_exact_table *table; 467 468 table = rvu->hw->table; 469 mutex_lock(&table->lock); 470 clear_bit(seq_id, table->id_bmap); 471 mutex_unlock(&table->lock); 472 dev_dbg(rvu->dev, "%s: freed id %d\n", __func__, seq_id); 473 } 474 475 /** 476 * rvu_npc_exact_alloc_id - Alloc seq id from bitmap. 477 * @rvu: Resource virtualization unit. 478 * @seq_id: Sequence identifier. 479 * Return: True or false. 480 */ 481 static bool rvu_npc_exact_alloc_id(struct rvu *rvu, u32 *seq_id) 482 { 483 struct npc_exact_table *table; 484 u32 idx; 485 486 table = rvu->hw->table; 487 488 mutex_lock(&table->lock); 489 idx = find_first_zero_bit(table->id_bmap, table->tot_ids); 490 if (idx == table->tot_ids) { 491 mutex_unlock(&table->lock); 492 dev_err(rvu->dev, "%s: No space in id bitmap (%d)\n", 493 __func__, bitmap_weight(table->id_bmap, table->tot_ids)); 494 495 return false; 496 } 497 498 /* Mark bit map to indicate that slot is used.*/ 499 set_bit(idx, table->id_bmap); 500 mutex_unlock(&table->lock); 501 502 *seq_id = idx; 503 dev_dbg(rvu->dev, "%s: Allocated id (%d)\n", __func__, *seq_id); 504 505 return true; 506 } 507 508 /** 509 * rvu_npc_exact_alloc_cam_table_entry - find free slot in fully associative table. 510 * @rvu: resource virtualization unit. 511 * @index: Index to exact CAM table. 512 * Return: 0 upon success; else error number. 513 */ 514 static int rvu_npc_exact_alloc_cam_table_entry(struct rvu *rvu, int *index) 515 { 516 struct npc_exact_table *table; 517 u32 idx; 518 519 table = rvu->hw->table; 520 521 mutex_lock(&table->lock); 522 idx = find_first_zero_bit(table->cam_table.bmap, table->cam_table.depth); 523 if (idx == table->cam_table.depth) { 524 mutex_unlock(&table->lock); 525 dev_info(rvu->dev, "%s: No space in exact cam table, weight=%u\n", __func__, 526 bitmap_weight(table->cam_table.bmap, table->cam_table.depth)); 527 return -ENOSPC; 528 } 529 530 /* Mark bit map to indicate that slot is used.*/ 531 set_bit(idx, table->cam_table.bmap); 532 mutex_unlock(&table->lock); 533 534 *index = idx; 535 dev_dbg(rvu->dev, "%s: cam table entry alloc success (index=%d)\n", 536 __func__, idx); 537 return 0; 538 } 539 540 /** 541 * rvu_exact_prepare_table_entry - Data for exact match table entry. 542 * @rvu: Resource virtualization unit. 543 * @enable: Enable/Disable entry 544 * @ctype: Software defined channel type. Currently set as 0. 545 * @chan: Channel number. 546 * @mac_addr: Destination mac address. 547 * Return: mdata for exact match table. 548 */ 549 static u64 rvu_exact_prepare_table_entry(struct rvu *rvu, bool enable, 550 u8 ctype, u16 chan, u8 *mac_addr) 551 552 { 553 u64 ldata = rvu_npc_exact_mac2u64(mac_addr); 554 555 /* Enable or disable */ 556 u64 mdata = FIELD_PREP(GENMASK_ULL(63, 63), enable ? 1 : 0); 557 558 /* Set Ctype */ 559 mdata |= FIELD_PREP(GENMASK_ULL(61, 60), ctype); 560 561 /* Set chan */ 562 mdata |= FIELD_PREP(GENMASK_ULL(59, 48), chan); 563 564 /* MAC address */ 565 mdata |= FIELD_PREP(GENMASK_ULL(47, 0), ldata); 566 567 return mdata; 568 } 569 570 /** 571 * rvu_exact_config_secret_key - Configure secret key. 572 * @rvu: Resource virtualization unit. 573 */ 574 static void rvu_exact_config_secret_key(struct rvu *rvu) 575 { 576 int blkaddr; 577 578 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 579 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET0(NIX_INTF_RX), 580 RVU_NPC_HASH_SECRET_KEY0); 581 582 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET1(NIX_INTF_RX), 583 RVU_NPC_HASH_SECRET_KEY1); 584 585 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_SECRET2(NIX_INTF_RX), 586 RVU_NPC_HASH_SECRET_KEY2); 587 } 588 589 /** 590 * rvu_exact_config_search_key - Configure search key 591 * @rvu: Resource virtualization unit. 592 */ 593 static void rvu_exact_config_search_key(struct rvu *rvu) 594 { 595 int blkaddr; 596 u64 reg_val; 597 598 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 599 600 /* HDR offset */ 601 reg_val = FIELD_PREP(GENMASK_ULL(39, 32), 0); 602 603 /* BYTESM1, number of bytes - 1 */ 604 reg_val |= FIELD_PREP(GENMASK_ULL(18, 16), ETH_ALEN - 1); 605 606 /* Enable LID and set LID to NPC_LID_LA */ 607 reg_val |= FIELD_PREP(GENMASK_ULL(11, 11), 1); 608 reg_val |= FIELD_PREP(GENMASK_ULL(10, 8), NPC_LID_LA); 609 610 /* Clear layer type based extraction */ 611 612 /* Disable LT_EN */ 613 reg_val |= FIELD_PREP(GENMASK_ULL(12, 12), 0); 614 615 /* Set LTYPE_MATCH to 0 */ 616 reg_val |= FIELD_PREP(GENMASK_ULL(7, 4), 0); 617 618 /* Set LTYPE_MASK to 0 */ 619 reg_val |= FIELD_PREP(GENMASK_ULL(3, 0), 0); 620 621 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_CFG(NIX_INTF_RX), reg_val); 622 } 623 624 /** 625 * rvu_exact_config_result_ctrl - Set exact table hash control 626 * @rvu: Resource virtualization unit. 627 * @depth: Depth of Exact match table. 628 * 629 * Sets mask and offset for hash for mem table. 630 */ 631 static void rvu_exact_config_result_ctrl(struct rvu *rvu, uint32_t depth) 632 { 633 int blkaddr; 634 u64 reg = 0; 635 636 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 637 638 /* Set mask. Note that depth is a power of 2 */ 639 rvu->hw->table->mem_table.hash_mask = (depth - 1); 640 reg |= FIELD_PREP(GENMASK_ULL(42, 32), (depth - 1)); 641 642 /* Set offset as 0 */ 643 rvu->hw->table->mem_table.hash_offset = 0; 644 reg |= FIELD_PREP(GENMASK_ULL(10, 0), 0); 645 646 /* Set reg for RX */ 647 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_RESULT_CTL(NIX_INTF_RX), reg); 648 /* Store hash mask and offset for s/w algorithm */ 649 } 650 651 /** 652 * rvu_exact_config_table_mask - Set exact table mask. 653 * @rvu: Resource virtualization unit. 654 */ 655 static void rvu_exact_config_table_mask(struct rvu *rvu) 656 { 657 int blkaddr; 658 u64 mask = 0; 659 660 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 661 662 /* Don't use Ctype */ 663 mask |= FIELD_PREP(GENMASK_ULL(61, 60), 0); 664 665 /* Set chan */ 666 mask |= GENMASK_ULL(59, 48); 667 668 /* Full ldata */ 669 mask |= GENMASK_ULL(47, 0); 670 671 /* Store mask for s/w hash calcualtion */ 672 rvu->hw->table->mem_table.mask = mask; 673 674 /* Set mask for RX.*/ 675 rvu_write64(rvu, blkaddr, NPC_AF_INTFX_EXACT_MASK(NIX_INTF_RX), mask); 676 } 677 678 /** 679 * rvu_npc_exact_get_max_entries - Get total number of entries in table. 680 * @rvu: resource virtualization unit. 681 * Return: Maximum table entries possible. 682 */ 683 u32 rvu_npc_exact_get_max_entries(struct rvu *rvu) 684 { 685 struct npc_exact_table *table; 686 687 table = rvu->hw->table; 688 return table->tot_ids; 689 } 690 691 /** 692 * rvu_npc_exact_has_match_table - Checks support for exact match. 693 * @rvu: resource virtualization unit. 694 * Return: True if exact match table is supported/enabled. 695 */ 696 bool rvu_npc_exact_has_match_table(struct rvu *rvu) 697 { 698 return rvu->hw->cap.npc_exact_match_enabled; 699 } 700 701 /** 702 * __rvu_npc_exact_find_entry_by_seq_id - find entry by id 703 * @rvu: resource virtualization unit. 704 * @seq_id: Sequence identifier. 705 * 706 * Caller should acquire the lock. 707 * Return: Pointer to table entry. 708 */ 709 static struct npc_exact_table_entry * 710 __rvu_npc_exact_find_entry_by_seq_id(struct rvu *rvu, u32 seq_id) 711 { 712 struct npc_exact_table *table = rvu->hw->table; 713 struct npc_exact_table_entry *entry = NULL; 714 struct list_head *lhead; 715 716 lhead = &table->lhead_gbl; 717 718 /* traverse to find the matching entry */ 719 list_for_each_entry(entry, lhead, glist) { 720 if (entry->seq_id != seq_id) 721 continue; 722 723 return entry; 724 } 725 726 return NULL; 727 } 728 729 /** 730 * rvu_npc_exact_add_to_list - Add entry to list 731 * @rvu: resource virtualization unit. 732 * @opc_type: OPCODE to select MEM/CAM table. 733 * @ways: MEM table ways. 734 * @index: Index in MEM/CAM table. 735 * @cgx_id: CGX identifier. 736 * @lmac_id: LMAC identifier. 737 * @mac_addr: MAC address. 738 * @chan: Channel number. 739 * @ctype: Channel Type. 740 * @seq_id: Sequence identifier 741 * @cmd: True if function is called by ethtool cmd 742 * @mcam_idx: NPC mcam index of DMAC entry in NPC mcam. 743 * @pcifunc: pci function 744 * Return: 0 upon success. 745 */ 746 static int rvu_npc_exact_add_to_list(struct rvu *rvu, enum npc_exact_opc_type opc_type, u8 ways, 747 u32 index, u8 cgx_id, u8 lmac_id, u8 *mac_addr, u16 chan, 748 u8 ctype, u32 *seq_id, bool cmd, u32 mcam_idx, u16 pcifunc) 749 { 750 struct npc_exact_table_entry *entry, *tmp, *iter; 751 struct npc_exact_table *table = rvu->hw->table; 752 struct list_head *lhead, *pprev; 753 754 WARN_ON(ways >= NPC_EXACT_TBL_MAX_WAYS); 755 756 if (!rvu_npc_exact_alloc_id(rvu, seq_id)) { 757 dev_err(rvu->dev, "%s: Generate seq id failed\n", __func__); 758 return -EFAULT; 759 } 760 761 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 762 if (!entry) { 763 rvu_npc_exact_free_id(rvu, *seq_id); 764 dev_err(rvu->dev, "%s: Memory allocation failed\n", __func__); 765 return -ENOMEM; 766 } 767 768 mutex_lock(&table->lock); 769 switch (opc_type) { 770 case NPC_EXACT_OPC_CAM: 771 lhead = &table->lhead_cam_tbl_entry; 772 table->cam_tbl_entry_cnt++; 773 break; 774 775 case NPC_EXACT_OPC_MEM: 776 lhead = &table->lhead_mem_tbl_entry[ways]; 777 table->mem_tbl_entry_cnt++; 778 break; 779 780 default: 781 mutex_unlock(&table->lock); 782 kfree(entry); 783 rvu_npc_exact_free_id(rvu, *seq_id); 784 785 dev_err(rvu->dev, "%s: Unknown opc type%d\n", __func__, opc_type); 786 return -EINVAL; 787 } 788 789 /* Add to global list */ 790 INIT_LIST_HEAD(&entry->glist); 791 list_add_tail(&entry->glist, &table->lhead_gbl); 792 INIT_LIST_HEAD(&entry->list); 793 entry->index = index; 794 entry->ways = ways; 795 entry->opc_type = opc_type; 796 797 entry->pcifunc = pcifunc; 798 799 ether_addr_copy(entry->mac, mac_addr); 800 entry->chan = chan; 801 entry->ctype = ctype; 802 entry->cgx_id = cgx_id; 803 entry->lmac_id = lmac_id; 804 805 entry->seq_id = *seq_id; 806 807 entry->mcam_idx = mcam_idx; 808 entry->cmd = cmd; 809 810 pprev = lhead; 811 812 /* Insert entry in ascending order of index */ 813 list_for_each_entry_safe(iter, tmp, lhead, list) { 814 if (index < iter->index) 815 break; 816 817 pprev = &iter->list; 818 } 819 820 /* Add to each table list */ 821 list_add(&entry->list, pprev); 822 mutex_unlock(&table->lock); 823 return 0; 824 } 825 826 /** 827 * rvu_npc_exact_mem_table_write - Wrapper for register write 828 * @rvu: resource virtualization unit. 829 * @blkaddr: Block address 830 * @ways: ways for MEM table. 831 * @index: Index in MEM 832 * @mdata: Meta data to be written to register. 833 */ 834 static void rvu_npc_exact_mem_table_write(struct rvu *rvu, int blkaddr, u8 ways, 835 u32 index, u64 mdata) 836 { 837 rvu_write64(rvu, blkaddr, NPC_AF_EXACT_MEM_ENTRY(ways, index), mdata); 838 } 839 840 /** 841 * rvu_npc_exact_cam_table_write - Wrapper for register write 842 * @rvu: resource virtualization unit. 843 * @blkaddr: Block address 844 * @index: Index in MEM 845 * @mdata: Meta data to be written to register. 846 */ 847 static void rvu_npc_exact_cam_table_write(struct rvu *rvu, int blkaddr, 848 u32 index, u64 mdata) 849 { 850 rvu_write64(rvu, blkaddr, NPC_AF_EXACT_CAM_ENTRY(index), mdata); 851 } 852 853 /** 854 * rvu_npc_exact_dealloc_table_entry - dealloc table entry 855 * @rvu: resource virtualization unit. 856 * @opc_type: OPCODE for selection of table(MEM or CAM) 857 * @ways: ways if opc_type is MEM table. 858 * @index: Index of MEM or CAM table. 859 * Return: 0 upon success. 860 */ 861 static int rvu_npc_exact_dealloc_table_entry(struct rvu *rvu, enum npc_exact_opc_type opc_type, 862 u8 ways, u32 index) 863 { 864 int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 865 struct npc_exact_table *table; 866 u8 null_dmac[6] = { 0 }; 867 int depth; 868 869 /* Prepare entry with all fields set to zero */ 870 u64 null_mdata = rvu_exact_prepare_table_entry(rvu, false, 0, 0, null_dmac); 871 872 table = rvu->hw->table; 873 depth = table->mem_table.depth; 874 875 mutex_lock(&table->lock); 876 877 switch (opc_type) { 878 case NPC_EXACT_OPC_CAM: 879 880 /* Check whether entry is used already */ 881 if (!test_bit(index, table->cam_table.bmap)) { 882 mutex_unlock(&table->lock); 883 dev_err(rvu->dev, "%s: Trying to free an unused entry ways=%d index=%d\n", 884 __func__, ways, index); 885 return -EINVAL; 886 } 887 888 rvu_npc_exact_cam_table_write(rvu, blkaddr, index, null_mdata); 889 clear_bit(index, table->cam_table.bmap); 890 break; 891 892 case NPC_EXACT_OPC_MEM: 893 894 /* Check whether entry is used already */ 895 if (!test_bit(index + ways * depth, table->mem_table.bmap)) { 896 mutex_unlock(&table->lock); 897 dev_err(rvu->dev, "%s: Trying to free an unused entry index=%d\n", 898 __func__, index); 899 return -EINVAL; 900 } 901 902 rvu_npc_exact_mem_table_write(rvu, blkaddr, ways, index, null_mdata); 903 clear_bit(index + ways * depth, table->mem_table.bmap); 904 break; 905 906 default: 907 mutex_unlock(&table->lock); 908 dev_err(rvu->dev, "%s: invalid opc type %d", __func__, opc_type); 909 return -ENOSPC; 910 } 911 912 mutex_unlock(&table->lock); 913 914 dev_dbg(rvu->dev, "%s: Successfully deleted entry (index=%d, ways=%d opc_type=%d\n", 915 __func__, index, ways, opc_type); 916 917 return 0; 918 } 919 920 /** 921 * rvu_npc_exact_alloc_table_entry - Allociate an entry 922 * @rvu: resource virtualization unit. 923 * @mac: MAC address. 924 * @chan: Channel number. 925 * @ctype: Channel Type. 926 * @index: Index of MEM table or CAM table. 927 * @ways: Ways. Only valid for MEM table. 928 * @opc_type: OPCODE to select table (MEM or CAM) 929 * 930 * Try allocating a slot from MEM table. If all 4 ways 931 * slot are full for a hash index, check availability in 932 * 32-entry CAM table for allocation. 933 * Return: 0 upon success. 934 */ 935 static int rvu_npc_exact_alloc_table_entry(struct rvu *rvu, char *mac, u16 chan, u8 ctype, 936 u32 *index, u8 *ways, enum npc_exact_opc_type *opc_type) 937 { 938 struct npc_exact_table *table; 939 unsigned int hash; 940 int err; 941 942 table = rvu->hw->table; 943 944 /* Check in 4-ways mem entry for free slote */ 945 hash = rvu_exact_calculate_hash(rvu, chan, ctype, mac, table->mem_table.mask, 946 table->mem_table.depth); 947 err = rvu_npc_exact_alloc_mem_table_entry(rvu, ways, index, hash); 948 if (!err) { 949 *opc_type = NPC_EXACT_OPC_MEM; 950 dev_dbg(rvu->dev, "%s: inserted in 4 ways hash table ways=%d, index=%d\n", 951 __func__, *ways, *index); 952 return 0; 953 } 954 955 dev_dbg(rvu->dev, "%s: failed to insert in 4 ways hash table\n", __func__); 956 957 /* wayss is 0 for cam table */ 958 *ways = 0; 959 err = rvu_npc_exact_alloc_cam_table_entry(rvu, index); 960 if (!err) { 961 *opc_type = NPC_EXACT_OPC_CAM; 962 dev_dbg(rvu->dev, "%s: inserted in fully associative hash table index=%u\n", 963 __func__, *index); 964 return 0; 965 } 966 967 dev_err(rvu->dev, "%s: failed to insert in fully associative hash table\n", __func__); 968 return -ENOSPC; 969 } 970 971 /** 972 * rvu_npc_exact_save_drop_rule_chan_and_mask - Save drop rules info in data base. 973 * @rvu: resource virtualization unit. 974 * @drop_mcam_idx: Drop rule index in NPC mcam. 975 * @chan_val: Channel value. 976 * @chan_mask: Channel Mask. 977 * @pcifunc: pcifunc of interface. 978 * Return: True upon success. 979 */ 980 static bool rvu_npc_exact_save_drop_rule_chan_and_mask(struct rvu *rvu, int drop_mcam_idx, 981 u64 chan_val, u64 chan_mask, u16 pcifunc) 982 { 983 struct npc_exact_table *table; 984 int i; 985 986 table = rvu->hw->table; 987 988 for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) { 989 if (!table->drop_rule_map[i].valid) 990 break; 991 992 if (table->drop_rule_map[i].chan_val != (u16)chan_val) 993 continue; 994 995 if (table->drop_rule_map[i].chan_mask != (u16)chan_mask) 996 continue; 997 998 return false; 999 } 1000 1001 if (i == NPC_MCAM_DROP_RULE_MAX) 1002 return false; 1003 1004 table->drop_rule_map[i].drop_rule_idx = drop_mcam_idx; 1005 table->drop_rule_map[i].chan_val = (u16)chan_val; 1006 table->drop_rule_map[i].chan_mask = (u16)chan_mask; 1007 table->drop_rule_map[i].pcifunc = pcifunc; 1008 table->drop_rule_map[i].valid = true; 1009 return true; 1010 } 1011 1012 /** 1013 * rvu_npc_exact_calc_drop_rule_chan_and_mask - Calculate Channel number and mask. 1014 * @rvu: resource virtualization unit. 1015 * @intf_type: Interface type (SDK, LBK or CGX) 1016 * @cgx_id: CGX identifier. 1017 * @lmac_id: LAMC identifier. 1018 * @val: Channel number. 1019 * @mask: Channel mask. 1020 * Return: True upon success. 1021 */ 1022 static bool rvu_npc_exact_calc_drop_rule_chan_and_mask(struct rvu *rvu, u8 intf_type, 1023 u8 cgx_id, u8 lmac_id, 1024 u64 *val, u64 *mask) 1025 { 1026 u16 chan_val, chan_mask; 1027 1028 /* No support for SDP and LBK */ 1029 if (intf_type != NIX_INTF_TYPE_CGX) 1030 return false; 1031 1032 chan_val = rvu_nix_chan_cgx(rvu, cgx_id, lmac_id, 0); 1033 chan_mask = 0xfff; 1034 1035 if (val) 1036 *val = chan_val; 1037 1038 if (mask) 1039 *mask = chan_mask; 1040 1041 return true; 1042 } 1043 1044 /** 1045 * rvu_npc_exact_drop_rule_to_pcifunc - Retrieve pcifunc 1046 * @rvu: resource virtualization unit. 1047 * @drop_rule_idx: Drop rule index in NPC mcam. 1048 * 1049 * Debugfs (exact_drop_cnt) entry displays pcifunc for interface 1050 * by retrieving the pcifunc value from data base. 1051 * Return: Drop rule index. 1052 */ 1053 u16 rvu_npc_exact_drop_rule_to_pcifunc(struct rvu *rvu, u32 drop_rule_idx) 1054 { 1055 struct npc_exact_table *table; 1056 int i; 1057 1058 table = rvu->hw->table; 1059 1060 for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) { 1061 if (!table->drop_rule_map[i].valid) 1062 break; 1063 1064 if (table->drop_rule_map[i].drop_rule_idx != drop_rule_idx) 1065 continue; 1066 1067 return table->drop_rule_map[i].pcifunc; 1068 } 1069 1070 dev_err(rvu->dev, "%s: drop mcam rule index (%d) >= NPC_MCAM_DROP_RULE_MAX\n", 1071 __func__, drop_rule_idx); 1072 return -1; 1073 } 1074 1075 /** 1076 * rvu_npc_exact_get_drop_rule_info - Get drop rule information. 1077 * @rvu: resource virtualization unit. 1078 * @intf_type: Interface type (CGX, SDP or LBK) 1079 * @cgx_id: CGX identifier. 1080 * @lmac_id: LMAC identifier. 1081 * @drop_mcam_idx: NPC mcam drop rule index. 1082 * @val: Channel value. 1083 * @mask: Channel mask. 1084 * @pcifunc: pcifunc of interface corresponding to the drop rule. 1085 * Return: True upon success. 1086 */ 1087 static bool rvu_npc_exact_get_drop_rule_info(struct rvu *rvu, u8 intf_type, u8 cgx_id, 1088 u8 lmac_id, u32 *drop_mcam_idx, u64 *val, 1089 u64 *mask, u16 *pcifunc) 1090 { 1091 struct npc_exact_table *table; 1092 u64 chan_val, chan_mask; 1093 bool rc; 1094 int i; 1095 1096 table = rvu->hw->table; 1097 1098 if (intf_type != NIX_INTF_TYPE_CGX) { 1099 dev_err(rvu->dev, "%s: No drop rule for LBK/SDP mode\n", __func__); 1100 return false; 1101 } 1102 1103 rc = rvu_npc_exact_calc_drop_rule_chan_and_mask(rvu, intf_type, cgx_id, 1104 lmac_id, &chan_val, &chan_mask); 1105 if (!rc) 1106 return false; 1107 1108 for (i = 0; i < NPC_MCAM_DROP_RULE_MAX; i++) { 1109 if (!table->drop_rule_map[i].valid) 1110 break; 1111 1112 if (table->drop_rule_map[i].chan_val != (u16)chan_val) 1113 continue; 1114 1115 if (val) 1116 *val = table->drop_rule_map[i].chan_val; 1117 if (mask) 1118 *mask = table->drop_rule_map[i].chan_mask; 1119 if (pcifunc) 1120 *pcifunc = table->drop_rule_map[i].pcifunc; 1121 1122 *drop_mcam_idx = i; 1123 return true; 1124 } 1125 1126 if (i == NPC_MCAM_DROP_RULE_MAX) { 1127 dev_err(rvu->dev, "%s: drop mcam rule index (%d) >= NPC_MCAM_DROP_RULE_MAX\n", 1128 __func__, *drop_mcam_idx); 1129 return false; 1130 } 1131 1132 dev_err(rvu->dev, "%s: Could not retrieve for cgx=%d, lmac=%d\n", 1133 __func__, cgx_id, lmac_id); 1134 return false; 1135 } 1136 1137 /** 1138 * __rvu_npc_exact_cmd_rules_cnt_update - Update number dmac rules against a drop rule. 1139 * @rvu: resource virtualization unit. 1140 * @drop_mcam_idx: NPC mcam drop rule index. 1141 * @val: +1 or -1. 1142 * @enable_or_disable_cam: If no exact match rules against a drop rule, disable it. 1143 * 1144 * when first exact match entry against a drop rule is added, enable_or_disable_cam 1145 * is set to true. When last exact match entry against a drop rule is deleted, 1146 * enable_or_disable_cam is set to true. 1147 * Return: Number of rules 1148 */ 1149 static u16 __rvu_npc_exact_cmd_rules_cnt_update(struct rvu *rvu, int drop_mcam_idx, 1150 int val, bool *enable_or_disable_cam) 1151 { 1152 struct npc_exact_table *table; 1153 u16 *cnt, old_cnt; 1154 bool promisc; 1155 1156 table = rvu->hw->table; 1157 promisc = table->promisc_mode[drop_mcam_idx]; 1158 1159 cnt = &table->cnt_cmd_rules[drop_mcam_idx]; 1160 old_cnt = *cnt; 1161 1162 *cnt += val; 1163 1164 if (!enable_or_disable_cam) 1165 goto done; 1166 1167 *enable_or_disable_cam = false; 1168 1169 if (promisc) 1170 goto done; 1171 1172 /* If all rules are deleted and not already in promisc mode; disable cam */ 1173 if (!*cnt && val < 0) { 1174 *enable_or_disable_cam = true; 1175 goto done; 1176 } 1177 1178 /* If rule got added and not already in promisc mode; enable cam */ 1179 if (!old_cnt && val > 0) { 1180 *enable_or_disable_cam = true; 1181 goto done; 1182 } 1183 1184 done: 1185 return *cnt; 1186 } 1187 1188 /** 1189 * rvu_npc_exact_del_table_entry_by_id - Delete and free table entry. 1190 * @rvu: resource virtualization unit. 1191 * @seq_id: Sequence identifier of the entry. 1192 * 1193 * Deletes entry from linked lists and free up slot in HW MEM or CAM 1194 * table. 1195 * Return: 0 upon success. 1196 */ 1197 static int rvu_npc_exact_del_table_entry_by_id(struct rvu *rvu, u32 seq_id) 1198 { 1199 struct npc_exact_table_entry *entry = NULL; 1200 struct npc_exact_table *table; 1201 bool disable_cam = false; 1202 u32 drop_mcam_idx = -1; 1203 int *cnt; 1204 bool rc; 1205 1206 table = rvu->hw->table; 1207 1208 mutex_lock(&table->lock); 1209 1210 /* Lookup for entry which needs to be updated */ 1211 entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, seq_id); 1212 if (!entry) { 1213 dev_dbg(rvu->dev, "%s: failed to find entry for id=%d\n", __func__, seq_id); 1214 mutex_unlock(&table->lock); 1215 return -ENODATA; 1216 } 1217 1218 cnt = (entry->opc_type == NPC_EXACT_OPC_CAM) ? &table->cam_tbl_entry_cnt : 1219 &table->mem_tbl_entry_cnt; 1220 1221 /* delete from lists */ 1222 list_del_init(&entry->list); 1223 list_del_init(&entry->glist); 1224 1225 (*cnt)--; 1226 1227 rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, entry->cgx_id, 1228 entry->lmac_id, &drop_mcam_idx, NULL, NULL, NULL); 1229 if (!rc) { 1230 dev_dbg(rvu->dev, "%s: failed to retrieve drop info for id=0x%x\n", 1231 __func__, seq_id); 1232 mutex_unlock(&table->lock); 1233 return -ENODATA; 1234 } 1235 1236 if (entry->cmd) 1237 __rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, -1, &disable_cam); 1238 1239 /* No dmac filter rules; disable drop on hit rule */ 1240 if (disable_cam) { 1241 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, false); 1242 dev_dbg(rvu->dev, "%s: Disabling mcam idx %d\n", 1243 __func__, drop_mcam_idx); 1244 } 1245 1246 mutex_unlock(&table->lock); 1247 1248 rvu_npc_exact_dealloc_table_entry(rvu, entry->opc_type, entry->ways, entry->index); 1249 1250 rvu_npc_exact_free_id(rvu, seq_id); 1251 1252 dev_dbg(rvu->dev, "%s: delete entry success for id=0x%x, mca=%pM\n", 1253 __func__, seq_id, entry->mac); 1254 kfree(entry); 1255 1256 return 0; 1257 } 1258 1259 /** 1260 * rvu_npc_exact_add_table_entry - Adds a table entry 1261 * @rvu: resource virtualization unit. 1262 * @cgx_id: cgx identifier. 1263 * @lmac_id: lmac identifier. 1264 * @mac: MAC address. 1265 * @chan: Channel number. 1266 * @ctype: Channel Type. 1267 * @seq_id: Sequence number. 1268 * @cmd: Whether it is invoked by ethtool cmd. 1269 * @mcam_idx: NPC mcam index corresponding to MAC 1270 * @pcifunc: PCI func. 1271 * 1272 * Creates a new exact match table entry in either CAM or 1273 * MEM table. 1274 * Return: 0 upon success. 1275 */ 1276 static int rvu_npc_exact_add_table_entry(struct rvu *rvu, u8 cgx_id, u8 lmac_id, u8 *mac, 1277 u16 chan, u8 ctype, u32 *seq_id, bool cmd, 1278 u32 mcam_idx, u16 pcifunc) 1279 { 1280 int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 1281 enum npc_exact_opc_type opc_type; 1282 bool enable_cam = false; 1283 u32 drop_mcam_idx; 1284 u32 index; 1285 u64 mdata; 1286 bool rc; 1287 int err; 1288 u8 ways; 1289 1290 ctype = 0; 1291 1292 err = rvu_npc_exact_alloc_table_entry(rvu, mac, chan, ctype, &index, &ways, &opc_type); 1293 if (err) { 1294 dev_err(rvu->dev, "%s: Could not alloc in exact match table\n", __func__); 1295 return err; 1296 } 1297 1298 /* Write mdata to table */ 1299 mdata = rvu_exact_prepare_table_entry(rvu, true, ctype, chan, mac); 1300 1301 if (opc_type == NPC_EXACT_OPC_CAM) 1302 rvu_npc_exact_cam_table_write(rvu, blkaddr, index, mdata); 1303 else 1304 rvu_npc_exact_mem_table_write(rvu, blkaddr, ways, index, mdata); 1305 1306 /* Insert entry to linked list */ 1307 err = rvu_npc_exact_add_to_list(rvu, opc_type, ways, index, cgx_id, lmac_id, 1308 mac, chan, ctype, seq_id, cmd, mcam_idx, pcifunc); 1309 if (err) { 1310 rvu_npc_exact_dealloc_table_entry(rvu, opc_type, ways, index); 1311 dev_err(rvu->dev, "%s: could not add to exact match table\n", __func__); 1312 return err; 1313 } 1314 1315 rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id, 1316 &drop_mcam_idx, NULL, NULL, NULL); 1317 if (!rc) { 1318 rvu_npc_exact_dealloc_table_entry(rvu, opc_type, ways, index); 1319 dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n", 1320 __func__, cgx_id, lmac_id); 1321 return -EINVAL; 1322 } 1323 1324 if (cmd) 1325 __rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, 1, &enable_cam); 1326 1327 /* First command rule; enable drop on hit rule */ 1328 if (enable_cam) { 1329 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, true); 1330 dev_dbg(rvu->dev, "%s: Enabling mcam idx %d\n", 1331 __func__, drop_mcam_idx); 1332 } 1333 1334 dev_dbg(rvu->dev, 1335 "%s: Successfully added entry (index=%d, dmac=%pM, ways=%d opc_type=%d\n", 1336 __func__, index, mac, ways, opc_type); 1337 1338 return 0; 1339 } 1340 1341 /** 1342 * rvu_npc_exact_update_table_entry - Update exact match table. 1343 * @rvu: resource virtualization unit. 1344 * @cgx_id: CGX identifier. 1345 * @lmac_id: LMAC identifier. 1346 * @old_mac: Existing MAC address entry. 1347 * @new_mac: New MAC address entry. 1348 * @seq_id: Sequence identifier of the entry. 1349 * 1350 * Updates MAC address of an entry. If entry is in MEM table, new 1351 * hash value may not match with old one. 1352 * Return: 0 upon success. 1353 */ 1354 static int rvu_npc_exact_update_table_entry(struct rvu *rvu, u8 cgx_id, u8 lmac_id, 1355 u8 *old_mac, u8 *new_mac, u32 *seq_id) 1356 { 1357 int blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 1358 struct npc_exact_table_entry *entry; 1359 struct npc_exact_table *table; 1360 u32 hash_index; 1361 u64 mdata; 1362 1363 table = rvu->hw->table; 1364 1365 mutex_lock(&table->lock); 1366 1367 /* Lookup for entry which needs to be updated */ 1368 entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, *seq_id); 1369 if (!entry) { 1370 mutex_unlock(&table->lock); 1371 dev_dbg(rvu->dev, 1372 "%s: failed to find entry for cgx_id=%d lmac_id=%d old_mac=%pM\n", 1373 __func__, cgx_id, lmac_id, old_mac); 1374 return -ENODATA; 1375 } 1376 1377 /* If entry is in mem table and new hash index is different than old 1378 * hash index, we cannot update the entry. Fail in these scenarios. 1379 */ 1380 if (entry->opc_type == NPC_EXACT_OPC_MEM) { 1381 hash_index = rvu_exact_calculate_hash(rvu, entry->chan, entry->ctype, 1382 new_mac, table->mem_table.mask, 1383 table->mem_table.depth); 1384 if (hash_index != entry->index) { 1385 dev_dbg(rvu->dev, 1386 "%s: Update failed due to index mismatch(new=0x%x, old=%x)\n", 1387 __func__, hash_index, entry->index); 1388 mutex_unlock(&table->lock); 1389 return -EINVAL; 1390 } 1391 } 1392 1393 mdata = rvu_exact_prepare_table_entry(rvu, true, entry->ctype, entry->chan, new_mac); 1394 1395 if (entry->opc_type == NPC_EXACT_OPC_MEM) 1396 rvu_npc_exact_mem_table_write(rvu, blkaddr, entry->ways, entry->index, mdata); 1397 else 1398 rvu_npc_exact_cam_table_write(rvu, blkaddr, entry->index, mdata); 1399 1400 /* Update entry fields */ 1401 ether_addr_copy(entry->mac, new_mac); 1402 *seq_id = entry->seq_id; 1403 1404 dev_dbg(rvu->dev, 1405 "%s: Successfully updated entry (index=%d, dmac=%pM, ways=%d opc_type=%d\n", 1406 __func__, entry->index, entry->mac, entry->ways, entry->opc_type); 1407 1408 dev_dbg(rvu->dev, "%s: Successfully updated entry (old mac=%pM new_mac=%pM\n", 1409 __func__, old_mac, new_mac); 1410 1411 mutex_unlock(&table->lock); 1412 return 0; 1413 } 1414 1415 /** 1416 * rvu_npc_exact_promisc_disable - Disable promiscuous mode. 1417 * @rvu: resource virtualization unit. 1418 * @pcifunc: pcifunc 1419 * 1420 * Drop rule is against each PF. We dont support DMAC filter for 1421 * VF. 1422 * Return: 0 upon success 1423 */ 1424 1425 int rvu_npc_exact_promisc_disable(struct rvu *rvu, u16 pcifunc) 1426 { 1427 struct npc_exact_table *table; 1428 int pf = rvu_get_pf(pcifunc); 1429 u8 cgx_id, lmac_id; 1430 u32 drop_mcam_idx; 1431 bool *promisc; 1432 bool rc; 1433 u32 cnt; 1434 1435 table = rvu->hw->table; 1436 1437 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); 1438 rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id, 1439 &drop_mcam_idx, NULL, NULL, NULL); 1440 if (!rc) { 1441 dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n", 1442 __func__, cgx_id, lmac_id); 1443 return -EINVAL; 1444 } 1445 1446 mutex_lock(&table->lock); 1447 promisc = &table->promisc_mode[drop_mcam_idx]; 1448 1449 if (!*promisc) { 1450 mutex_unlock(&table->lock); 1451 dev_dbg(rvu->dev, "%s: Err Already promisc mode disabled (cgx=%d lmac=%d)\n", 1452 __func__, cgx_id, lmac_id); 1453 return LMAC_AF_ERR_INVALID_PARAM; 1454 } 1455 *promisc = false; 1456 cnt = __rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, 0, NULL); 1457 mutex_unlock(&table->lock); 1458 1459 /* If no dmac filter entries configured, disable drop rule */ 1460 if (!cnt) 1461 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, false); 1462 else 1463 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, !*promisc); 1464 1465 dev_dbg(rvu->dev, "%s: disabled promisc mode (cgx=%d lmac=%d, cnt=%d)\n", 1466 __func__, cgx_id, lmac_id, cnt); 1467 return 0; 1468 } 1469 1470 /** 1471 * rvu_npc_exact_promisc_enable - Enable promiscuous mode. 1472 * @rvu: resource virtualization unit. 1473 * @pcifunc: pcifunc. 1474 * Return: 0 upon success 1475 */ 1476 int rvu_npc_exact_promisc_enable(struct rvu *rvu, u16 pcifunc) 1477 { 1478 struct npc_exact_table *table; 1479 int pf = rvu_get_pf(pcifunc); 1480 u8 cgx_id, lmac_id; 1481 u32 drop_mcam_idx; 1482 bool *promisc; 1483 bool rc; 1484 u32 cnt; 1485 1486 table = rvu->hw->table; 1487 1488 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); 1489 rc = rvu_npc_exact_get_drop_rule_info(rvu, NIX_INTF_TYPE_CGX, cgx_id, lmac_id, 1490 &drop_mcam_idx, NULL, NULL, NULL); 1491 if (!rc) { 1492 dev_dbg(rvu->dev, "%s: failed to get drop rule info cgx=%d lmac=%d\n", 1493 __func__, cgx_id, lmac_id); 1494 return -EINVAL; 1495 } 1496 1497 mutex_lock(&table->lock); 1498 promisc = &table->promisc_mode[drop_mcam_idx]; 1499 1500 if (*promisc) { 1501 mutex_unlock(&table->lock); 1502 dev_dbg(rvu->dev, "%s: Already in promisc mode (cgx=%d lmac=%d)\n", 1503 __func__, cgx_id, lmac_id); 1504 return LMAC_AF_ERR_INVALID_PARAM; 1505 } 1506 *promisc = true; 1507 cnt = __rvu_npc_exact_cmd_rules_cnt_update(rvu, drop_mcam_idx, 0, NULL); 1508 mutex_unlock(&table->lock); 1509 1510 /* If no dmac filter entries configured, disable drop rule */ 1511 if (!cnt) 1512 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, false); 1513 else 1514 rvu_npc_enable_mcam_by_entry_index(rvu, drop_mcam_idx, NIX_INTF_RX, !*promisc); 1515 1516 dev_dbg(rvu->dev, "%s: Enabled promisc mode (cgx=%d lmac=%d cnt=%d)\n", 1517 __func__, cgx_id, lmac_id, cnt); 1518 return 0; 1519 } 1520 1521 /** 1522 * rvu_npc_exact_mac_addr_reset - Delete PF mac address. 1523 * @rvu: resource virtualization unit. 1524 * @req: Reset request 1525 * @rsp: Reset response. 1526 * Return: 0 upon success 1527 */ 1528 int rvu_npc_exact_mac_addr_reset(struct rvu *rvu, struct cgx_mac_addr_reset_req *req, 1529 struct msg_rsp *rsp) 1530 { 1531 int pf = rvu_get_pf(req->hdr.pcifunc); 1532 u32 seq_id = req->index; 1533 struct rvu_pfvf *pfvf; 1534 u8 cgx_id, lmac_id; 1535 int rc; 1536 1537 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); 1538 1539 pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc); 1540 1541 rc = rvu_npc_exact_del_table_entry_by_id(rvu, seq_id); 1542 if (rc) { 1543 /* TODO: how to handle this error case ? */ 1544 dev_err(rvu->dev, "%s MAC (%pM) del PF=%d failed\n", __func__, pfvf->mac_addr, pf); 1545 return 0; 1546 } 1547 1548 dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d success (seq_id=%u)\n", 1549 __func__, pfvf->mac_addr, pf, seq_id); 1550 return 0; 1551 } 1552 1553 /** 1554 * rvu_npc_exact_mac_addr_update - Update mac address field with new value. 1555 * @rvu: resource virtualization unit. 1556 * @req: Update request. 1557 * @rsp: Update response. 1558 * Return: 0 upon success 1559 */ 1560 int rvu_npc_exact_mac_addr_update(struct rvu *rvu, 1561 struct cgx_mac_addr_update_req *req, 1562 struct cgx_mac_addr_update_rsp *rsp) 1563 { 1564 int pf = rvu_get_pf(req->hdr.pcifunc); 1565 struct npc_exact_table_entry *entry; 1566 struct npc_exact_table *table; 1567 struct rvu_pfvf *pfvf; 1568 u32 seq_id, mcam_idx; 1569 u8 old_mac[ETH_ALEN]; 1570 u8 cgx_id, lmac_id; 1571 int rc; 1572 1573 if (!is_cgx_config_permitted(rvu, req->hdr.pcifunc)) 1574 return LMAC_AF_ERR_PERM_DENIED; 1575 1576 dev_dbg(rvu->dev, "%s: Update request for seq_id=%d, mac=%pM\n", 1577 __func__, req->index, req->mac_addr); 1578 1579 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); 1580 1581 pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc); 1582 1583 table = rvu->hw->table; 1584 1585 mutex_lock(&table->lock); 1586 1587 /* Lookup for entry which needs to be updated */ 1588 entry = __rvu_npc_exact_find_entry_by_seq_id(rvu, req->index); 1589 if (!entry) { 1590 dev_err(rvu->dev, "%s: failed to find entry for id=0x%x\n", __func__, req->index); 1591 mutex_unlock(&table->lock); 1592 return LMAC_AF_ERR_EXACT_MATCH_TBL_LOOK_UP_FAILED; 1593 } 1594 ether_addr_copy(old_mac, entry->mac); 1595 seq_id = entry->seq_id; 1596 mcam_idx = entry->mcam_idx; 1597 mutex_unlock(&table->lock); 1598 1599 rc = rvu_npc_exact_update_table_entry(rvu, cgx_id, lmac_id, old_mac, 1600 req->mac_addr, &seq_id); 1601 if (!rc) { 1602 rsp->index = seq_id; 1603 dev_dbg(rvu->dev, "%s mac:%pM (pfvf:%pM default:%pM) update to PF=%d success\n", 1604 __func__, req->mac_addr, pfvf->mac_addr, pfvf->default_mac, pf); 1605 ether_addr_copy(pfvf->mac_addr, req->mac_addr); 1606 return 0; 1607 } 1608 1609 /* Try deleting and adding it again */ 1610 rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index); 1611 if (rc) { 1612 /* This could be a new entry */ 1613 dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d failed\n", __func__, 1614 pfvf->mac_addr, pf); 1615 } 1616 1617 rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr, 1618 pfvf->rx_chan_base, 0, &seq_id, true, 1619 mcam_idx, req->hdr.pcifunc); 1620 if (rc) { 1621 dev_err(rvu->dev, "%s MAC (%pM) add PF=%d failed\n", __func__, 1622 req->mac_addr, pf); 1623 return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED; 1624 } 1625 1626 rsp->index = seq_id; 1627 dev_dbg(rvu->dev, 1628 "%s MAC (new:%pM, old=%pM default:%pM) del and add to PF=%d success (seq_id=%u)\n", 1629 __func__, req->mac_addr, pfvf->mac_addr, pfvf->default_mac, pf, seq_id); 1630 1631 ether_addr_copy(pfvf->mac_addr, req->mac_addr); 1632 return 0; 1633 } 1634 1635 /** 1636 * rvu_npc_exact_mac_addr_add - Adds MAC address to exact match table. 1637 * @rvu: resource virtualization unit. 1638 * @req: Add request. 1639 * @rsp: Add response. 1640 * Return: 0 upon success 1641 */ 1642 int rvu_npc_exact_mac_addr_add(struct rvu *rvu, 1643 struct cgx_mac_addr_add_req *req, 1644 struct cgx_mac_addr_add_rsp *rsp) 1645 { 1646 int pf = rvu_get_pf(req->hdr.pcifunc); 1647 struct rvu_pfvf *pfvf; 1648 u8 cgx_id, lmac_id; 1649 int rc = 0; 1650 u32 seq_id; 1651 1652 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); 1653 pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc); 1654 1655 rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr, 1656 pfvf->rx_chan_base, 0, &seq_id, 1657 true, -1, req->hdr.pcifunc); 1658 1659 if (!rc) { 1660 rsp->index = seq_id; 1661 dev_dbg(rvu->dev, "%s MAC (%pM) add to PF=%d success (seq_id=%u)\n", 1662 __func__, req->mac_addr, pf, seq_id); 1663 return 0; 1664 } 1665 1666 dev_err(rvu->dev, "%s MAC (%pM) add to PF=%d failed\n", __func__, 1667 req->mac_addr, pf); 1668 return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED; 1669 } 1670 1671 /** 1672 * rvu_npc_exact_mac_addr_del - Delete DMAC filter 1673 * @rvu: resource virtualization unit. 1674 * @req: Delete request. 1675 * @rsp: Delete response. 1676 * Return: 0 upon success 1677 */ 1678 int rvu_npc_exact_mac_addr_del(struct rvu *rvu, 1679 struct cgx_mac_addr_del_req *req, 1680 struct msg_rsp *rsp) 1681 { 1682 int pf = rvu_get_pf(req->hdr.pcifunc); 1683 int rc; 1684 1685 rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index); 1686 if (!rc) { 1687 dev_dbg(rvu->dev, "%s del to PF=%d success (seq_id=%u)\n", 1688 __func__, pf, req->index); 1689 return 0; 1690 } 1691 1692 dev_err(rvu->dev, "%s del to PF=%d failed (seq_id=%u)\n", 1693 __func__, pf, req->index); 1694 return LMAC_AF_ERR_EXACT_MATCH_TBL_DEL_FAILED; 1695 } 1696 1697 /** 1698 * rvu_npc_exact_mac_addr_set - Add PF mac address to dmac filter. 1699 * @rvu: resource virtualization unit. 1700 * @req: Set request. 1701 * @rsp: Set response. 1702 * Return: 0 upon success 1703 */ 1704 int rvu_npc_exact_mac_addr_set(struct rvu *rvu, struct cgx_mac_addr_set_or_get *req, 1705 struct cgx_mac_addr_set_or_get *rsp) 1706 { 1707 int pf = rvu_get_pf(req->hdr.pcifunc); 1708 u32 seq_id = req->index; 1709 struct rvu_pfvf *pfvf; 1710 u8 cgx_id, lmac_id; 1711 u32 mcam_idx = -1; 1712 int rc, nixlf; 1713 1714 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[pf], &cgx_id, &lmac_id); 1715 1716 pfvf = &rvu->pf[pf]; 1717 1718 /* If table does not have an entry; both update entry and del table entry API 1719 * below fails. Those are not failure conditions. 1720 */ 1721 rc = rvu_npc_exact_update_table_entry(rvu, cgx_id, lmac_id, pfvf->mac_addr, 1722 req->mac_addr, &seq_id); 1723 if (!rc) { 1724 rsp->index = seq_id; 1725 ether_addr_copy(pfvf->mac_addr, req->mac_addr); 1726 ether_addr_copy(rsp->mac_addr, req->mac_addr); 1727 dev_dbg(rvu->dev, "%s MAC (%pM) update to PF=%d success\n", 1728 __func__, req->mac_addr, pf); 1729 return 0; 1730 } 1731 1732 /* Try deleting and adding it again */ 1733 rc = rvu_npc_exact_del_table_entry_by_id(rvu, req->index); 1734 if (rc) { 1735 dev_dbg(rvu->dev, "%s MAC (%pM) del PF=%d failed\n", 1736 __func__, pfvf->mac_addr, pf); 1737 } 1738 1739 /* find mcam entry if exist */ 1740 rc = nix_get_nixlf(rvu, req->hdr.pcifunc, &nixlf, NULL); 1741 if (!rc) { 1742 mcam_idx = npc_get_nixlf_mcam_index(&rvu->hw->mcam, req->hdr.pcifunc, 1743 nixlf, NIXLF_UCAST_ENTRY); 1744 } 1745 1746 rc = rvu_npc_exact_add_table_entry(rvu, cgx_id, lmac_id, req->mac_addr, 1747 pfvf->rx_chan_base, 0, &seq_id, 1748 true, mcam_idx, req->hdr.pcifunc); 1749 if (rc) { 1750 dev_err(rvu->dev, "%s MAC (%pM) add PF=%d failed\n", 1751 __func__, req->mac_addr, pf); 1752 return LMAC_AF_ERR_EXACT_MATCH_TBL_ADD_FAILED; 1753 } 1754 1755 rsp->index = seq_id; 1756 ether_addr_copy(rsp->mac_addr, req->mac_addr); 1757 ether_addr_copy(pfvf->mac_addr, req->mac_addr); 1758 dev_dbg(rvu->dev, 1759 "%s MAC (%pM) del and add to PF=%d success (seq_id=%u)\n", 1760 __func__, req->mac_addr, pf, seq_id); 1761 return 0; 1762 } 1763 1764 /** 1765 * rvu_npc_exact_can_disable_feature - Check if feature can be disabled. 1766 * @rvu: resource virtualization unit. 1767 * Return: True if exact match feature is supported. 1768 */ 1769 bool rvu_npc_exact_can_disable_feature(struct rvu *rvu) 1770 { 1771 struct npc_exact_table *table = rvu->hw->table; 1772 bool empty; 1773 1774 if (!rvu->hw->cap.npc_exact_match_enabled) 1775 return false; 1776 1777 mutex_lock(&table->lock); 1778 empty = list_empty(&table->lhead_gbl); 1779 mutex_unlock(&table->lock); 1780 1781 return empty; 1782 } 1783 1784 /** 1785 * rvu_npc_exact_disable_feature - Disable feature. 1786 * @rvu: resource virtualization unit. 1787 */ 1788 void rvu_npc_exact_disable_feature(struct rvu *rvu) 1789 { 1790 rvu->hw->cap.npc_exact_match_enabled = false; 1791 } 1792 1793 /** 1794 * rvu_npc_exact_reset - Delete and free all entry which match pcifunc. 1795 * @rvu: resource virtualization unit. 1796 * @pcifunc: PCI func to match. 1797 */ 1798 void rvu_npc_exact_reset(struct rvu *rvu, u16 pcifunc) 1799 { 1800 struct npc_exact_table *table = rvu->hw->table; 1801 struct npc_exact_table_entry *tmp, *iter; 1802 u32 seq_id; 1803 1804 mutex_lock(&table->lock); 1805 list_for_each_entry_safe(iter, tmp, &table->lhead_gbl, glist) { 1806 if (pcifunc != iter->pcifunc) 1807 continue; 1808 1809 seq_id = iter->seq_id; 1810 dev_dbg(rvu->dev, "%s: resetting pcifun=%d seq_id=%u\n", __func__, 1811 pcifunc, seq_id); 1812 1813 mutex_unlock(&table->lock); 1814 rvu_npc_exact_del_table_entry_by_id(rvu, seq_id); 1815 mutex_lock(&table->lock); 1816 } 1817 mutex_unlock(&table->lock); 1818 } 1819 1820 /** 1821 * rvu_npc_exact_init - initialize exact match table 1822 * @rvu: resource virtualization unit. 1823 * 1824 * Initialize HW and SW resources to manage 4way-2K table and fully 1825 * associative 32-entry mcam table. 1826 * Return: 0 upon success. 1827 */ 1828 int rvu_npc_exact_init(struct rvu *rvu) 1829 { 1830 u64 bcast_mcast_val, bcast_mcast_mask; 1831 struct npc_exact_table *table; 1832 u64 exact_val, exact_mask; 1833 u64 chan_val, chan_mask; 1834 u8 cgx_id, lmac_id; 1835 u32 *drop_mcam_idx; 1836 u16 max_lmac_cnt; 1837 u64 npc_const3; 1838 int table_size; 1839 int blkaddr; 1840 u16 pcifunc; 1841 int err, i; 1842 u64 cfg; 1843 bool rc; 1844 1845 /* Read NPC_AF_CONST3 and check for have exact 1846 * match functionality is present 1847 */ 1848 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 1849 if (blkaddr < 0) { 1850 dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__); 1851 return -EINVAL; 1852 } 1853 1854 /* Check exact match feature is supported */ 1855 npc_const3 = rvu_read64(rvu, blkaddr, NPC_AF_CONST3); 1856 if (!(npc_const3 & BIT_ULL(62))) { 1857 dev_info(rvu->dev, "%s: No support for exact match support\n", 1858 __func__); 1859 return 0; 1860 } 1861 1862 /* Check if kex profile has enabled EXACT match nibble */ 1863 cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(NIX_INTF_RX)); 1864 if (!(cfg & NPC_EXACT_NIBBLE_HIT)) { 1865 dev_info(rvu->dev, "%s: NPC exact match nibble not enabled in KEX profile\n", 1866 __func__); 1867 return 0; 1868 } 1869 1870 /* Set capability to true */ 1871 rvu->hw->cap.npc_exact_match_enabled = true; 1872 1873 table = kmalloc(sizeof(*table), GFP_KERNEL); 1874 if (!table) 1875 return -ENOMEM; 1876 1877 dev_dbg(rvu->dev, "%s: Memory allocation for table success\n", __func__); 1878 memset(table, 0, sizeof(*table)); 1879 rvu->hw->table = table; 1880 1881 /* Read table size, ways and depth */ 1882 table->mem_table.depth = FIELD_GET(GENMASK_ULL(31, 24), npc_const3); 1883 table->mem_table.ways = FIELD_GET(GENMASK_ULL(19, 16), npc_const3); 1884 table->cam_table.depth = FIELD_GET(GENMASK_ULL(15, 0), npc_const3); 1885 1886 dev_dbg(rvu->dev, "%s: NPC exact match 4way_2k table(ways=%d, depth=%d)\n", 1887 __func__, table->mem_table.ways, table->cam_table.depth); 1888 1889 /* Check if depth of table is not a sequre of 2 1890 * TODO: why _builtin_popcount() is not working ? 1891 */ 1892 if ((table->mem_table.depth & (table->mem_table.depth - 1)) != 0) { 1893 dev_err(rvu->dev, 1894 "%s: NPC exact match 4way_2k table depth(%d) is not square of 2\n", 1895 __func__, table->mem_table.depth); 1896 return -EINVAL; 1897 } 1898 1899 table_size = table->mem_table.depth * table->mem_table.ways; 1900 1901 /* Allocate bitmap for 4way 2K table */ 1902 table->mem_table.bmap = devm_kcalloc(rvu->dev, BITS_TO_LONGS(table_size), 1903 sizeof(long), GFP_KERNEL); 1904 if (!table->mem_table.bmap) 1905 return -ENOMEM; 1906 1907 dev_dbg(rvu->dev, "%s: Allocated bitmap for 4way 2K entry table\n", __func__); 1908 1909 /* Allocate bitmap for 32 entry mcam */ 1910 table->cam_table.bmap = devm_kcalloc(rvu->dev, 1, sizeof(long), GFP_KERNEL); 1911 1912 if (!table->cam_table.bmap) 1913 return -ENOMEM; 1914 1915 dev_dbg(rvu->dev, "%s: Allocated bitmap for 32 entry cam\n", __func__); 1916 1917 table->tot_ids = (table->mem_table.depth * table->mem_table.ways) + table->cam_table.depth; 1918 table->id_bmap = devm_kcalloc(rvu->dev, BITS_TO_LONGS(table->tot_ids), 1919 table->tot_ids, GFP_KERNEL); 1920 1921 if (!table->id_bmap) 1922 return -ENOMEM; 1923 1924 dev_dbg(rvu->dev, "%s: Allocated bitmap for id map (total=%d)\n", 1925 __func__, table->tot_ids); 1926 1927 /* Initialize list heads for npc_exact_table entries. 1928 * This entry is used by debugfs to show entries in 1929 * exact match table. 1930 */ 1931 for (i = 0; i < NPC_EXACT_TBL_MAX_WAYS; i++) 1932 INIT_LIST_HEAD(&table->lhead_mem_tbl_entry[i]); 1933 1934 INIT_LIST_HEAD(&table->lhead_cam_tbl_entry); 1935 INIT_LIST_HEAD(&table->lhead_gbl); 1936 1937 mutex_init(&table->lock); 1938 1939 rvu_exact_config_secret_key(rvu); 1940 rvu_exact_config_search_key(rvu); 1941 1942 rvu_exact_config_table_mask(rvu); 1943 rvu_exact_config_result_ctrl(rvu, table->mem_table.depth); 1944 1945 /* - No drop rule for LBK 1946 * - Drop rules for SDP and each LMAC. 1947 */ 1948 exact_val = !NPC_EXACT_RESULT_HIT; 1949 exact_mask = NPC_EXACT_RESULT_HIT; 1950 1951 /* nibble - 3 2 1 0 1952 * L3B L3M L2B L2M 1953 */ 1954 bcast_mcast_val = 0b0000; 1955 bcast_mcast_mask = 0b0011; 1956 1957 /* Install SDP drop rule */ 1958 drop_mcam_idx = &table->num_drop_rules; 1959 1960 max_lmac_cnt = rvu->cgx_cnt_max * MAX_LMAC_PER_CGX + PF_CGXMAP_BASE; 1961 for (i = PF_CGXMAP_BASE; i < max_lmac_cnt; i++) { 1962 if (rvu->pf2cgxlmac_map[i] == 0xFF) 1963 continue; 1964 1965 rvu_get_cgx_lmac_id(rvu->pf2cgxlmac_map[i], &cgx_id, &lmac_id); 1966 1967 rc = rvu_npc_exact_calc_drop_rule_chan_and_mask(rvu, NIX_INTF_TYPE_CGX, cgx_id, 1968 lmac_id, &chan_val, &chan_mask); 1969 if (!rc) { 1970 dev_err(rvu->dev, 1971 "%s: failed, info chan_val=0x%llx chan_mask=0x%llx rule_id=%d\n", 1972 __func__, chan_val, chan_mask, *drop_mcam_idx); 1973 return -EINVAL; 1974 } 1975 1976 /* Filter rules are only for PF */ 1977 pcifunc = RVU_PFFUNC(i, 0); 1978 1979 dev_dbg(rvu->dev, 1980 "%s:Drop rule cgx=%d lmac=%d chan(val=0x%llx, mask=0x%llx\n", 1981 __func__, cgx_id, lmac_id, chan_val, chan_mask); 1982 1983 rc = rvu_npc_exact_save_drop_rule_chan_and_mask(rvu, table->num_drop_rules, 1984 chan_val, chan_mask, pcifunc); 1985 if (!rc) { 1986 dev_err(rvu->dev, 1987 "%s: failed to set drop info for cgx=%d, lmac=%d, chan=%llx\n", 1988 __func__, cgx_id, lmac_id, chan_val); 1989 return -EINVAL; 1990 } 1991 1992 err = npc_install_mcam_drop_rule(rvu, *drop_mcam_idx, 1993 &table->counter_idx[*drop_mcam_idx], 1994 chan_val, chan_mask, 1995 exact_val, exact_mask, 1996 bcast_mcast_val, bcast_mcast_mask); 1997 if (err) { 1998 dev_err(rvu->dev, 1999 "failed to configure drop rule (cgx=%d lmac=%d)\n", 2000 cgx_id, lmac_id); 2001 return err; 2002 } 2003 2004 (*drop_mcam_idx)++; 2005 } 2006 2007 dev_info(rvu->dev, "initialized exact match table successfully\n"); 2008 return 0; 2009 } 2010