1 // SPDX-License-Identifier: GPL-2.0 2 /* Marvell RVU Admin Function driver 3 * 4 * Copyright (C) 2020 Marvell. 5 */ 6 7 #include <linux/bitfield.h> 8 9 #include "rvu_struct.h" 10 #include "rvu_reg.h" 11 #include "rvu.h" 12 #include "npc.h" 13 #include "rvu_npc_fs.h" 14 #include "rvu_npc_hash.h" 15 16 #define NPC_BYTESM GENMASK_ULL(19, 16) 17 #define NPC_HDR_OFFSET GENMASK_ULL(15, 8) 18 #define NPC_KEY_OFFSET GENMASK_ULL(5, 0) 19 #define NPC_LDATA_EN BIT_ULL(7) 20 21 static const char * const npc_flow_names[] = { 22 [NPC_DMAC] = "dmac", 23 [NPC_SMAC] = "smac", 24 [NPC_ETYPE] = "ether type", 25 [NPC_VLAN_ETYPE_CTAG] = "vlan ether type ctag", 26 [NPC_VLAN_ETYPE_STAG] = "vlan ether type stag", 27 [NPC_OUTER_VID] = "outer vlan id", 28 [NPC_TOS] = "tos", 29 [NPC_SIP_IPV4] = "ipv4 source ip", 30 [NPC_DIP_IPV4] = "ipv4 destination ip", 31 [NPC_SIP_IPV6] = "ipv6 source ip", 32 [NPC_DIP_IPV6] = "ipv6 destination ip", 33 [NPC_IPPROTO_TCP] = "ip proto tcp", 34 [NPC_IPPROTO_UDP] = "ip proto udp", 35 [NPC_IPPROTO_SCTP] = "ip proto sctp", 36 [NPC_IPPROTO_ICMP] = "ip proto icmp", 37 [NPC_IPPROTO_ICMP6] = "ip proto icmp6", 38 [NPC_IPPROTO_AH] = "ip proto AH", 39 [NPC_IPPROTO_ESP] = "ip proto ESP", 40 [NPC_SPORT_TCP] = "tcp source port", 41 [NPC_DPORT_TCP] = "tcp destination port", 42 [NPC_SPORT_UDP] = "udp source port", 43 [NPC_DPORT_UDP] = "udp destination port", 44 [NPC_SPORT_SCTP] = "sctp source port", 45 [NPC_DPORT_SCTP] = "sctp destination port", 46 [NPC_UNKNOWN] = "unknown", 47 }; 48 49 const char *npc_get_field_name(u8 hdr) 50 { 51 if (hdr >= ARRAY_SIZE(npc_flow_names)) 52 return npc_flow_names[NPC_UNKNOWN]; 53 54 return npc_flow_names[hdr]; 55 } 56 57 /* Compute keyword masks and figure out the number of keywords a field 58 * spans in the key. 59 */ 60 static void npc_set_kw_masks(struct npc_mcam *mcam, u8 type, 61 u8 nr_bits, int start_kwi, int offset, u8 intf) 62 { 63 struct npc_key_field *field = &mcam->rx_key_fields[type]; 64 u8 bits_in_kw; 65 int max_kwi; 66 67 if (mcam->banks_per_entry == 1) 68 max_kwi = 1; /* NPC_MCAM_KEY_X1 */ 69 else if (mcam->banks_per_entry == 2) 70 max_kwi = 3; /* NPC_MCAM_KEY_X2 */ 71 else 72 max_kwi = 6; /* NPC_MCAM_KEY_X4 */ 73 74 if (is_npc_intf_tx(intf)) 75 field = &mcam->tx_key_fields[type]; 76 77 if (offset + nr_bits <= 64) { 78 /* one KW only */ 79 if (start_kwi > max_kwi) 80 return; 81 field->kw_mask[start_kwi] |= GENMASK_ULL(nr_bits - 1, 0) 82 << offset; 83 field->nr_kws = 1; 84 } else if (offset + nr_bits > 64 && 85 offset + nr_bits <= 128) { 86 /* two KWs */ 87 if (start_kwi + 1 > max_kwi) 88 return; 89 /* first KW mask */ 90 bits_in_kw = 64 - offset; 91 field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0) 92 << offset; 93 /* second KW mask i.e. mask for rest of bits */ 94 bits_in_kw = nr_bits + offset - 64; 95 field->kw_mask[start_kwi + 1] |= GENMASK_ULL(bits_in_kw - 1, 0); 96 field->nr_kws = 2; 97 } else { 98 /* three KWs */ 99 if (start_kwi + 2 > max_kwi) 100 return; 101 /* first KW mask */ 102 bits_in_kw = 64 - offset; 103 field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0) 104 << offset; 105 /* second KW mask */ 106 field->kw_mask[start_kwi + 1] = ~0ULL; 107 /* third KW mask i.e. mask for rest of bits */ 108 bits_in_kw = nr_bits + offset - 128; 109 field->kw_mask[start_kwi + 2] |= GENMASK_ULL(bits_in_kw - 1, 0); 110 field->nr_kws = 3; 111 } 112 } 113 114 /* Helper function to figure out whether field exists in the key */ 115 static bool npc_is_field_present(struct rvu *rvu, enum key_fields type, u8 intf) 116 { 117 struct npc_mcam *mcam = &rvu->hw->mcam; 118 struct npc_key_field *input; 119 120 input = &mcam->rx_key_fields[type]; 121 if (is_npc_intf_tx(intf)) 122 input = &mcam->tx_key_fields[type]; 123 124 return input->nr_kws > 0; 125 } 126 127 static bool npc_is_same(struct npc_key_field *input, 128 struct npc_key_field *field) 129 { 130 return memcmp(&input->layer_mdata, &field->layer_mdata, 131 sizeof(struct npc_layer_mdata)) == 0; 132 } 133 134 static void npc_set_layer_mdata(struct npc_mcam *mcam, enum key_fields type, 135 u64 cfg, u8 lid, u8 lt, u8 intf) 136 { 137 struct npc_key_field *input = &mcam->rx_key_fields[type]; 138 139 if (is_npc_intf_tx(intf)) 140 input = &mcam->tx_key_fields[type]; 141 142 input->layer_mdata.hdr = FIELD_GET(NPC_HDR_OFFSET, cfg); 143 input->layer_mdata.key = FIELD_GET(NPC_KEY_OFFSET, cfg); 144 input->layer_mdata.len = FIELD_GET(NPC_BYTESM, cfg) + 1; 145 input->layer_mdata.ltype = lt; 146 input->layer_mdata.lid = lid; 147 } 148 149 static bool npc_check_overlap_fields(struct npc_key_field *input1, 150 struct npc_key_field *input2) 151 { 152 int kwi; 153 154 /* Fields with same layer id and different ltypes are mutually 155 * exclusive hence they can be overlapped 156 */ 157 if (input1->layer_mdata.lid == input2->layer_mdata.lid && 158 input1->layer_mdata.ltype != input2->layer_mdata.ltype) 159 return false; 160 161 for (kwi = 0; kwi < NPC_MAX_KWS_IN_KEY; kwi++) { 162 if (input1->kw_mask[kwi] & input2->kw_mask[kwi]) 163 return true; 164 } 165 166 return false; 167 } 168 169 /* Helper function to check whether given field overlaps with any other fields 170 * in the key. Due to limitations on key size and the key extraction profile in 171 * use higher layers can overwrite lower layer's header fields. Hence overlap 172 * needs to be checked. 173 */ 174 static bool npc_check_overlap(struct rvu *rvu, int blkaddr, 175 enum key_fields type, u8 start_lid, u8 intf) 176 { 177 struct npc_mcam *mcam = &rvu->hw->mcam; 178 struct npc_key_field *dummy, *input; 179 int start_kwi, offset; 180 u8 nr_bits, lid, lt, ld; 181 u64 cfg; 182 183 dummy = &mcam->rx_key_fields[NPC_UNKNOWN]; 184 input = &mcam->rx_key_fields[type]; 185 186 if (is_npc_intf_tx(intf)) { 187 dummy = &mcam->tx_key_fields[NPC_UNKNOWN]; 188 input = &mcam->tx_key_fields[type]; 189 } 190 191 for (lid = start_lid; lid < NPC_MAX_LID; lid++) { 192 for (lt = 0; lt < NPC_MAX_LT; lt++) { 193 for (ld = 0; ld < NPC_MAX_LD; ld++) { 194 cfg = rvu_read64(rvu, blkaddr, 195 NPC_AF_INTFX_LIDX_LTX_LDX_CFG 196 (intf, lid, lt, ld)); 197 if (!FIELD_GET(NPC_LDATA_EN, cfg)) 198 continue; 199 memset(dummy, 0, sizeof(struct npc_key_field)); 200 npc_set_layer_mdata(mcam, NPC_UNKNOWN, cfg, 201 lid, lt, intf); 202 /* exclude input */ 203 if (npc_is_same(input, dummy)) 204 continue; 205 start_kwi = dummy->layer_mdata.key / 8; 206 offset = (dummy->layer_mdata.key * 8) % 64; 207 nr_bits = dummy->layer_mdata.len * 8; 208 /* form KW masks */ 209 npc_set_kw_masks(mcam, NPC_UNKNOWN, nr_bits, 210 start_kwi, offset, intf); 211 /* check any input field bits falls in any 212 * other field bits. 213 */ 214 if (npc_check_overlap_fields(dummy, input)) 215 return true; 216 } 217 } 218 } 219 220 return false; 221 } 222 223 static bool npc_check_field(struct rvu *rvu, int blkaddr, enum key_fields type, 224 u8 intf) 225 { 226 if (!npc_is_field_present(rvu, type, intf) || 227 npc_check_overlap(rvu, blkaddr, type, 0, intf)) 228 return false; 229 return true; 230 } 231 232 static void npc_scan_exact_result(struct npc_mcam *mcam, u8 bit_number, 233 u8 key_nibble, u8 intf) 234 { 235 u8 offset = (key_nibble * 4) % 64; /* offset within key word */ 236 u8 kwi = (key_nibble * 4) / 64; /* which word in key */ 237 u8 nr_bits = 4; /* bits in a nibble */ 238 u8 type; 239 240 switch (bit_number) { 241 case 40 ... 43: 242 type = NPC_EXACT_RESULT; 243 break; 244 245 default: 246 return; 247 } 248 npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf); 249 } 250 251 static void npc_scan_parse_result(struct npc_mcam *mcam, u8 bit_number, 252 u8 key_nibble, u8 intf) 253 { 254 u8 offset = (key_nibble * 4) % 64; /* offset within key word */ 255 u8 kwi = (key_nibble * 4) / 64; /* which word in key */ 256 u8 nr_bits = 4; /* bits in a nibble */ 257 u8 type; 258 259 switch (bit_number) { 260 case 0 ... 2: 261 type = NPC_CHAN; 262 break; 263 case 3: 264 type = NPC_ERRLEV; 265 break; 266 case 4 ... 5: 267 type = NPC_ERRCODE; 268 break; 269 case 6: 270 type = NPC_LXMB; 271 break; 272 /* check for LTYPE only as of now */ 273 case 9: 274 type = NPC_LA; 275 break; 276 case 12: 277 type = NPC_LB; 278 break; 279 case 15: 280 type = NPC_LC; 281 break; 282 case 18: 283 type = NPC_LD; 284 break; 285 case 21: 286 type = NPC_LE; 287 break; 288 case 24: 289 type = NPC_LF; 290 break; 291 case 27: 292 type = NPC_LG; 293 break; 294 case 30: 295 type = NPC_LH; 296 break; 297 default: 298 return; 299 } 300 301 npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf); 302 } 303 304 static void npc_handle_multi_layer_fields(struct rvu *rvu, int blkaddr, u8 intf) 305 { 306 struct npc_mcam *mcam = &rvu->hw->mcam; 307 struct npc_key_field *key_fields; 308 /* Ether type can come from three layers 309 * (ethernet, single tagged, double tagged) 310 */ 311 struct npc_key_field *etype_ether; 312 struct npc_key_field *etype_tag1; 313 struct npc_key_field *etype_tag2; 314 /* Outer VLAN TCI can come from two layers 315 * (single tagged, double tagged) 316 */ 317 struct npc_key_field *vlan_tag1; 318 struct npc_key_field *vlan_tag2; 319 u64 *features; 320 u8 start_lid; 321 int i; 322 323 key_fields = mcam->rx_key_fields; 324 features = &mcam->rx_features; 325 326 if (is_npc_intf_tx(intf)) { 327 key_fields = mcam->tx_key_fields; 328 features = &mcam->tx_features; 329 } 330 331 /* Handle header fields which can come from multiple layers like 332 * etype, outer vlan tci. These fields should have same position in 333 * the key otherwise to install a mcam rule more than one entry is 334 * needed which complicates mcam space management. 335 */ 336 etype_ether = &key_fields[NPC_ETYPE_ETHER]; 337 etype_tag1 = &key_fields[NPC_ETYPE_TAG1]; 338 etype_tag2 = &key_fields[NPC_ETYPE_TAG2]; 339 vlan_tag1 = &key_fields[NPC_VLAN_TAG1]; 340 vlan_tag2 = &key_fields[NPC_VLAN_TAG2]; 341 342 /* if key profile programmed does not extract Ethertype at all */ 343 if (!etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws) 344 goto vlan_tci; 345 346 /* if key profile programmed extracts Ethertype from one layer */ 347 if (etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws) 348 key_fields[NPC_ETYPE] = *etype_ether; 349 if (!etype_ether->nr_kws && etype_tag1->nr_kws && !etype_tag2->nr_kws) 350 key_fields[NPC_ETYPE] = *etype_tag1; 351 if (!etype_ether->nr_kws && !etype_tag1->nr_kws && etype_tag2->nr_kws) 352 key_fields[NPC_ETYPE] = *etype_tag2; 353 354 /* if key profile programmed extracts Ethertype from multiple layers */ 355 if (etype_ether->nr_kws && etype_tag1->nr_kws) { 356 for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { 357 if (etype_ether->kw_mask[i] != etype_tag1->kw_mask[i]) 358 goto vlan_tci; 359 } 360 key_fields[NPC_ETYPE] = *etype_tag1; 361 } 362 if (etype_ether->nr_kws && etype_tag2->nr_kws) { 363 for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { 364 if (etype_ether->kw_mask[i] != etype_tag2->kw_mask[i]) 365 goto vlan_tci; 366 } 367 key_fields[NPC_ETYPE] = *etype_tag2; 368 } 369 if (etype_tag1->nr_kws && etype_tag2->nr_kws) { 370 for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { 371 if (etype_tag1->kw_mask[i] != etype_tag2->kw_mask[i]) 372 goto vlan_tci; 373 } 374 key_fields[NPC_ETYPE] = *etype_tag2; 375 } 376 377 /* check none of higher layers overwrite Ethertype */ 378 start_lid = key_fields[NPC_ETYPE].layer_mdata.lid + 1; 379 if (npc_check_overlap(rvu, blkaddr, NPC_ETYPE, start_lid, intf)) 380 goto vlan_tci; 381 *features |= BIT_ULL(NPC_ETYPE); 382 vlan_tci: 383 /* if key profile does not extract outer vlan tci at all */ 384 if (!vlan_tag1->nr_kws && !vlan_tag2->nr_kws) 385 goto done; 386 387 /* if key profile extracts outer vlan tci from one layer */ 388 if (vlan_tag1->nr_kws && !vlan_tag2->nr_kws) 389 key_fields[NPC_OUTER_VID] = *vlan_tag1; 390 if (!vlan_tag1->nr_kws && vlan_tag2->nr_kws) 391 key_fields[NPC_OUTER_VID] = *vlan_tag2; 392 393 /* if key profile extracts outer vlan tci from multiple layers */ 394 if (vlan_tag1->nr_kws && vlan_tag2->nr_kws) { 395 for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { 396 if (vlan_tag1->kw_mask[i] != vlan_tag2->kw_mask[i]) 397 goto done; 398 } 399 key_fields[NPC_OUTER_VID] = *vlan_tag2; 400 } 401 /* check none of higher layers overwrite outer vlan tci */ 402 start_lid = key_fields[NPC_OUTER_VID].layer_mdata.lid + 1; 403 if (npc_check_overlap(rvu, blkaddr, NPC_OUTER_VID, start_lid, intf)) 404 goto done; 405 *features |= BIT_ULL(NPC_OUTER_VID); 406 done: 407 return; 408 } 409 410 static void npc_scan_ldata(struct rvu *rvu, int blkaddr, u8 lid, 411 u8 lt, u64 cfg, u8 intf) 412 { 413 struct npc_mcam *mcam = &rvu->hw->mcam; 414 u8 hdr, key, nr_bytes, bit_offset; 415 u8 la_ltype, la_start; 416 /* starting KW index and starting bit position */ 417 int start_kwi, offset; 418 419 nr_bytes = FIELD_GET(NPC_BYTESM, cfg) + 1; 420 hdr = FIELD_GET(NPC_HDR_OFFSET, cfg); 421 key = FIELD_GET(NPC_KEY_OFFSET, cfg); 422 start_kwi = key / 8; 423 offset = (key * 8) % 64; 424 425 /* For Tx, Layer A has NIX_INST_HDR_S(64 bytes) preceding 426 * ethernet header. 427 */ 428 if (is_npc_intf_tx(intf)) { 429 la_ltype = NPC_LT_LA_IH_NIX_ETHER; 430 la_start = 8; 431 } else { 432 la_ltype = NPC_LT_LA_ETHER; 433 la_start = 0; 434 } 435 436 #define NPC_SCAN_HDR(name, hlid, hlt, hstart, hlen) \ 437 do { \ 438 if (lid == (hlid) && lt == (hlt)) { \ 439 if ((hstart) >= hdr && \ 440 ((hstart) + (hlen)) <= (hdr + nr_bytes)) { \ 441 bit_offset = (hdr + nr_bytes - (hstart) - (hlen)) * 8; \ 442 npc_set_layer_mdata(mcam, (name), cfg, lid, lt, intf); \ 443 npc_set_kw_masks(mcam, (name), (hlen) * 8, \ 444 start_kwi, offset + bit_offset, intf);\ 445 } \ 446 } \ 447 } while (0) 448 449 /* List LID, LTYPE, start offset from layer and length(in bytes) of 450 * packet header fields below. 451 * Example: Source IP is 4 bytes and starts at 12th byte of IP header 452 */ 453 NPC_SCAN_HDR(NPC_TOS, NPC_LID_LC, NPC_LT_LC_IP, 1, 1); 454 NPC_SCAN_HDR(NPC_SIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 12, 4); 455 NPC_SCAN_HDR(NPC_DIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 16, 4); 456 NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16); 457 NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16); 458 NPC_SCAN_HDR(NPC_SPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 0, 2); 459 NPC_SCAN_HDR(NPC_DPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 2, 2); 460 NPC_SCAN_HDR(NPC_SPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 0, 2); 461 NPC_SCAN_HDR(NPC_DPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 2, 2); 462 NPC_SCAN_HDR(NPC_SPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 0, 2); 463 NPC_SCAN_HDR(NPC_DPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 2, 2); 464 NPC_SCAN_HDR(NPC_ETYPE_ETHER, NPC_LID_LA, NPC_LT_LA_ETHER, 12, 2); 465 NPC_SCAN_HDR(NPC_ETYPE_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 4, 2); 466 NPC_SCAN_HDR(NPC_ETYPE_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 8, 2); 467 NPC_SCAN_HDR(NPC_VLAN_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 2, 2); 468 NPC_SCAN_HDR(NPC_VLAN_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 2, 2); 469 NPC_SCAN_HDR(NPC_DMAC, NPC_LID_LA, la_ltype, la_start, 6); 470 NPC_SCAN_HDR(NPC_SMAC, NPC_LID_LA, la_ltype, la_start, 6); 471 /* PF_FUNC is 2 bytes at 0th byte of NPC_LT_LA_IH_NIX_ETHER */ 472 NPC_SCAN_HDR(NPC_PF_FUNC, NPC_LID_LA, NPC_LT_LA_IH_NIX_ETHER, 0, 2); 473 } 474 475 static void npc_set_features(struct rvu *rvu, int blkaddr, u8 intf) 476 { 477 struct npc_mcam *mcam = &rvu->hw->mcam; 478 u64 *features = &mcam->rx_features; 479 u64 tcp_udp_sctp; 480 int hdr; 481 482 if (is_npc_intf_tx(intf)) 483 features = &mcam->tx_features; 484 485 for (hdr = NPC_DMAC; hdr < NPC_HEADER_FIELDS_MAX; hdr++) { 486 if (npc_check_field(rvu, blkaddr, hdr, intf)) 487 *features |= BIT_ULL(hdr); 488 } 489 490 tcp_udp_sctp = BIT_ULL(NPC_SPORT_TCP) | BIT_ULL(NPC_SPORT_UDP) | 491 BIT_ULL(NPC_DPORT_TCP) | BIT_ULL(NPC_DPORT_UDP) | 492 BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP); 493 494 /* for tcp/udp/sctp corresponding layer type should be in the key */ 495 if (*features & tcp_udp_sctp) { 496 if (!npc_check_field(rvu, blkaddr, NPC_LD, intf)) 497 *features &= ~tcp_udp_sctp; 498 else 499 *features |= BIT_ULL(NPC_IPPROTO_TCP) | 500 BIT_ULL(NPC_IPPROTO_UDP) | 501 BIT_ULL(NPC_IPPROTO_SCTP); 502 } 503 504 /* for AH/ICMP/ICMPv6/, check if corresponding layer type is present in the key */ 505 if (npc_check_field(rvu, blkaddr, NPC_LD, intf)) { 506 *features |= BIT_ULL(NPC_IPPROTO_AH); 507 *features |= BIT_ULL(NPC_IPPROTO_ICMP); 508 *features |= BIT_ULL(NPC_IPPROTO_ICMP6); 509 } 510 511 /* for ESP, check if corresponding layer type is present in the key */ 512 if (npc_check_field(rvu, blkaddr, NPC_LE, intf)) 513 *features |= BIT_ULL(NPC_IPPROTO_ESP); 514 515 /* for vlan corresponding layer type should be in the key */ 516 if (*features & BIT_ULL(NPC_OUTER_VID)) 517 if (!npc_check_field(rvu, blkaddr, NPC_LB, intf)) 518 *features &= ~BIT_ULL(NPC_OUTER_VID); 519 520 /* for vlan ethertypes corresponding layer type should be in the key */ 521 if (npc_check_field(rvu, blkaddr, NPC_LB, intf)) 522 *features |= BIT_ULL(NPC_VLAN_ETYPE_CTAG) | 523 BIT_ULL(NPC_VLAN_ETYPE_STAG); 524 } 525 526 /* Scan key extraction profile and record how fields of our interest 527 * fill the key structure. Also verify Channel and DMAC exists in 528 * key and not overwritten by other header fields. 529 */ 530 static int npc_scan_kex(struct rvu *rvu, int blkaddr, u8 intf) 531 { 532 struct npc_mcam *mcam = &rvu->hw->mcam; 533 u8 lid, lt, ld, bitnr; 534 u64 cfg, masked_cfg; 535 u8 key_nibble = 0; 536 537 /* Scan and note how parse result is going to be in key. 538 * A bit set in PARSE_NIBBLE_ENA corresponds to a nibble from 539 * parse result in the key. The enabled nibbles from parse result 540 * will be concatenated in key. 541 */ 542 cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(intf)); 543 masked_cfg = cfg & NPC_PARSE_NIBBLE; 544 for_each_set_bit(bitnr, (unsigned long *)&masked_cfg, 31) { 545 npc_scan_parse_result(mcam, bitnr, key_nibble, intf); 546 key_nibble++; 547 } 548 549 /* Ignore exact match bits for mcam entries except the first rule 550 * which is drop on hit. This first rule is configured explitcitly by 551 * exact match code. 552 */ 553 masked_cfg = cfg & NPC_EXACT_NIBBLE; 554 bitnr = NPC_EXACT_NIBBLE_START; 555 for_each_set_bit_from(bitnr, (unsigned long *)&masked_cfg, 556 NPC_EXACT_NIBBLE_START) { 557 npc_scan_exact_result(mcam, bitnr, key_nibble, intf); 558 key_nibble++; 559 } 560 561 /* Scan and note how layer data is going to be in key */ 562 for (lid = 0; lid < NPC_MAX_LID; lid++) { 563 for (lt = 0; lt < NPC_MAX_LT; lt++) { 564 for (ld = 0; ld < NPC_MAX_LD; ld++) { 565 cfg = rvu_read64(rvu, blkaddr, 566 NPC_AF_INTFX_LIDX_LTX_LDX_CFG 567 (intf, lid, lt, ld)); 568 if (!FIELD_GET(NPC_LDATA_EN, cfg)) 569 continue; 570 npc_scan_ldata(rvu, blkaddr, lid, lt, cfg, 571 intf); 572 } 573 } 574 } 575 576 return 0; 577 } 578 579 static int npc_scan_verify_kex(struct rvu *rvu, int blkaddr) 580 { 581 int err; 582 583 err = npc_scan_kex(rvu, blkaddr, NIX_INTF_RX); 584 if (err) 585 return err; 586 587 err = npc_scan_kex(rvu, blkaddr, NIX_INTF_TX); 588 if (err) 589 return err; 590 591 /* Channel is mandatory */ 592 if (!npc_is_field_present(rvu, NPC_CHAN, NIX_INTF_RX)) { 593 dev_err(rvu->dev, "Channel not present in Key\n"); 594 return -EINVAL; 595 } 596 /* check that none of the fields overwrite channel */ 597 if (npc_check_overlap(rvu, blkaddr, NPC_CHAN, 0, NIX_INTF_RX)) { 598 dev_err(rvu->dev, "Channel cannot be overwritten\n"); 599 return -EINVAL; 600 } 601 /* DMAC should be present in key for unicast filter to work */ 602 if (!npc_is_field_present(rvu, NPC_DMAC, NIX_INTF_RX)) { 603 dev_err(rvu->dev, "DMAC not present in Key\n"); 604 return -EINVAL; 605 } 606 /* check that none of the fields overwrite DMAC */ 607 if (npc_check_overlap(rvu, blkaddr, NPC_DMAC, 0, NIX_INTF_RX)) { 608 dev_err(rvu->dev, "DMAC cannot be overwritten\n"); 609 return -EINVAL; 610 } 611 612 npc_set_features(rvu, blkaddr, NIX_INTF_TX); 613 npc_set_features(rvu, blkaddr, NIX_INTF_RX); 614 npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_TX); 615 npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_RX); 616 617 return 0; 618 } 619 620 int npc_flow_steering_init(struct rvu *rvu, int blkaddr) 621 { 622 struct npc_mcam *mcam = &rvu->hw->mcam; 623 624 INIT_LIST_HEAD(&mcam->mcam_rules); 625 626 return npc_scan_verify_kex(rvu, blkaddr); 627 } 628 629 static int npc_check_unsupported_flows(struct rvu *rvu, u64 features, u8 intf) 630 { 631 struct npc_mcam *mcam = &rvu->hw->mcam; 632 u64 *mcam_features = &mcam->rx_features; 633 u64 unsupported; 634 u8 bit; 635 636 if (is_npc_intf_tx(intf)) 637 mcam_features = &mcam->tx_features; 638 639 unsupported = (*mcam_features ^ features) & ~(*mcam_features); 640 if (unsupported) { 641 dev_info(rvu->dev, "Unsupported flow(s):\n"); 642 for_each_set_bit(bit, (unsigned long *)&unsupported, 64) 643 dev_info(rvu->dev, "%s ", npc_get_field_name(bit)); 644 return -EOPNOTSUPP; 645 } 646 647 return 0; 648 } 649 650 /* npc_update_entry - Based on the masks generated during 651 * the key scanning, updates the given entry with value and 652 * masks for the field of interest. Maximum 16 bytes of a packet 653 * header can be extracted by HW hence lo and hi are sufficient. 654 * When field bytes are less than or equal to 8 then hi should be 655 * 0 for value and mask. 656 * 657 * If exact match of value is required then mask should be all 1's. 658 * If any bits in mask are 0 then corresponding bits in value are 659 * dont care. 660 */ 661 void npc_update_entry(struct rvu *rvu, enum key_fields type, 662 struct mcam_entry *entry, u64 val_lo, 663 u64 val_hi, u64 mask_lo, u64 mask_hi, u8 intf) 664 { 665 struct npc_mcam *mcam = &rvu->hw->mcam; 666 struct mcam_entry dummy = { {0} }; 667 struct npc_key_field *field; 668 u64 kw1, kw2, kw3; 669 u8 shift; 670 int i; 671 672 field = &mcam->rx_key_fields[type]; 673 if (is_npc_intf_tx(intf)) 674 field = &mcam->tx_key_fields[type]; 675 676 if (!field->nr_kws) 677 return; 678 679 for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { 680 if (!field->kw_mask[i]) 681 continue; 682 /* place key value in kw[x] */ 683 shift = __ffs64(field->kw_mask[i]); 684 /* update entry value */ 685 kw1 = (val_lo << shift) & field->kw_mask[i]; 686 dummy.kw[i] = kw1; 687 /* update entry mask */ 688 kw1 = (mask_lo << shift) & field->kw_mask[i]; 689 dummy.kw_mask[i] = kw1; 690 691 if (field->nr_kws == 1) 692 break; 693 /* place remaining bits of key value in kw[x + 1] */ 694 if (field->nr_kws == 2) { 695 /* update entry value */ 696 kw2 = shift ? val_lo >> (64 - shift) : 0; 697 kw2 |= (val_hi << shift); 698 kw2 &= field->kw_mask[i + 1]; 699 dummy.kw[i + 1] = kw2; 700 /* update entry mask */ 701 kw2 = shift ? mask_lo >> (64 - shift) : 0; 702 kw2 |= (mask_hi << shift); 703 kw2 &= field->kw_mask[i + 1]; 704 dummy.kw_mask[i + 1] = kw2; 705 break; 706 } 707 /* place remaining bits of key value in kw[x + 1], kw[x + 2] */ 708 if (field->nr_kws == 3) { 709 /* update entry value */ 710 kw2 = shift ? val_lo >> (64 - shift) : 0; 711 kw2 |= (val_hi << shift); 712 kw2 &= field->kw_mask[i + 1]; 713 kw3 = shift ? val_hi >> (64 - shift) : 0; 714 kw3 &= field->kw_mask[i + 2]; 715 dummy.kw[i + 1] = kw2; 716 dummy.kw[i + 2] = kw3; 717 /* update entry mask */ 718 kw2 = shift ? mask_lo >> (64 - shift) : 0; 719 kw2 |= (mask_hi << shift); 720 kw2 &= field->kw_mask[i + 1]; 721 kw3 = shift ? mask_hi >> (64 - shift) : 0; 722 kw3 &= field->kw_mask[i + 2]; 723 dummy.kw_mask[i + 1] = kw2; 724 dummy.kw_mask[i + 2] = kw3; 725 break; 726 } 727 } 728 /* dummy is ready with values and masks for given key 729 * field now clear and update input entry with those 730 */ 731 for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) { 732 if (!field->kw_mask[i]) 733 continue; 734 entry->kw[i] &= ~field->kw_mask[i]; 735 entry->kw_mask[i] &= ~field->kw_mask[i]; 736 737 entry->kw[i] |= dummy.kw[i]; 738 entry->kw_mask[i] |= dummy.kw_mask[i]; 739 } 740 } 741 742 static void npc_update_ipv6_flow(struct rvu *rvu, struct mcam_entry *entry, 743 u64 features, struct flow_msg *pkt, 744 struct flow_msg *mask, 745 struct rvu_npc_mcam_rule *output, u8 intf) 746 { 747 u32 src_ip[IPV6_WORDS], src_ip_mask[IPV6_WORDS]; 748 u32 dst_ip[IPV6_WORDS], dst_ip_mask[IPV6_WORDS]; 749 struct flow_msg *opkt = &output->packet; 750 struct flow_msg *omask = &output->mask; 751 u64 mask_lo, mask_hi; 752 u64 val_lo, val_hi; 753 754 /* For an ipv6 address fe80::2c68:63ff:fe5e:2d0a the packet 755 * values to be programmed in MCAM should as below: 756 * val_high: 0xfe80000000000000 757 * val_low: 0x2c6863fffe5e2d0a 758 */ 759 if (features & BIT_ULL(NPC_SIP_IPV6)) { 760 be32_to_cpu_array(src_ip_mask, mask->ip6src, IPV6_WORDS); 761 be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS); 762 763 mask_hi = (u64)src_ip_mask[0] << 32 | src_ip_mask[1]; 764 mask_lo = (u64)src_ip_mask[2] << 32 | src_ip_mask[3]; 765 val_hi = (u64)src_ip[0] << 32 | src_ip[1]; 766 val_lo = (u64)src_ip[2] << 32 | src_ip[3]; 767 768 npc_update_entry(rvu, NPC_SIP_IPV6, entry, val_lo, val_hi, 769 mask_lo, mask_hi, intf); 770 memcpy(opkt->ip6src, pkt->ip6src, sizeof(opkt->ip6src)); 771 memcpy(omask->ip6src, mask->ip6src, sizeof(omask->ip6src)); 772 } 773 if (features & BIT_ULL(NPC_DIP_IPV6)) { 774 be32_to_cpu_array(dst_ip_mask, mask->ip6dst, IPV6_WORDS); 775 be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS); 776 777 mask_hi = (u64)dst_ip_mask[0] << 32 | dst_ip_mask[1]; 778 mask_lo = (u64)dst_ip_mask[2] << 32 | dst_ip_mask[3]; 779 val_hi = (u64)dst_ip[0] << 32 | dst_ip[1]; 780 val_lo = (u64)dst_ip[2] << 32 | dst_ip[3]; 781 782 npc_update_entry(rvu, NPC_DIP_IPV6, entry, val_lo, val_hi, 783 mask_lo, mask_hi, intf); 784 memcpy(opkt->ip6dst, pkt->ip6dst, sizeof(opkt->ip6dst)); 785 memcpy(omask->ip6dst, mask->ip6dst, sizeof(omask->ip6dst)); 786 } 787 } 788 789 static void npc_update_vlan_features(struct rvu *rvu, struct mcam_entry *entry, 790 u64 features, u8 intf) 791 { 792 bool ctag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_CTAG)); 793 bool stag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_STAG)); 794 bool vid = !!(features & BIT_ULL(NPC_OUTER_VID)); 795 796 /* If only VLAN id is given then always match outer VLAN id */ 797 if (vid && !ctag && !stag) { 798 npc_update_entry(rvu, NPC_LB, entry, 799 NPC_LT_LB_STAG_QINQ | NPC_LT_LB_CTAG, 0, 800 NPC_LT_LB_STAG_QINQ & NPC_LT_LB_CTAG, 0, intf); 801 return; 802 } 803 if (ctag) 804 npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_CTAG, 0, 805 ~0ULL, 0, intf); 806 if (stag) 807 npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_STAG_QINQ, 0, 808 ~0ULL, 0, intf); 809 } 810 811 static void npc_update_flow(struct rvu *rvu, struct mcam_entry *entry, 812 u64 features, struct flow_msg *pkt, 813 struct flow_msg *mask, 814 struct rvu_npc_mcam_rule *output, u8 intf, 815 int blkaddr) 816 { 817 u64 dmac_mask = ether_addr_to_u64(mask->dmac); 818 u64 smac_mask = ether_addr_to_u64(mask->smac); 819 u64 dmac_val = ether_addr_to_u64(pkt->dmac); 820 u64 smac_val = ether_addr_to_u64(pkt->smac); 821 struct flow_msg *opkt = &output->packet; 822 struct flow_msg *omask = &output->mask; 823 824 if (!features) 825 return; 826 827 /* For tcp/udp/sctp LTYPE should be present in entry */ 828 if (features & BIT_ULL(NPC_IPPROTO_TCP)) 829 npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_TCP, 830 0, ~0ULL, 0, intf); 831 if (features & BIT_ULL(NPC_IPPROTO_UDP)) 832 npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_UDP, 833 0, ~0ULL, 0, intf); 834 if (features & BIT_ULL(NPC_IPPROTO_SCTP)) 835 npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_SCTP, 836 0, ~0ULL, 0, intf); 837 if (features & BIT_ULL(NPC_IPPROTO_ICMP)) 838 npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP, 839 0, ~0ULL, 0, intf); 840 if (features & BIT_ULL(NPC_IPPROTO_ICMP6)) 841 npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP6, 842 0, ~0ULL, 0, intf); 843 844 /* For AH, LTYPE should be present in entry */ 845 if (features & BIT_ULL(NPC_IPPROTO_AH)) 846 npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_AH, 847 0, ~0ULL, 0, intf); 848 /* For ESP, LTYPE should be present in entry */ 849 if (features & BIT_ULL(NPC_IPPROTO_ESP)) 850 npc_update_entry(rvu, NPC_LE, entry, NPC_LT_LE_ESP, 851 0, ~0ULL, 0, intf); 852 853 #define NPC_WRITE_FLOW(field, member, val_lo, val_hi, mask_lo, mask_hi) \ 854 do { \ 855 if (features & BIT_ULL((field))) { \ 856 npc_update_entry(rvu, (field), entry, (val_lo), (val_hi), \ 857 (mask_lo), (mask_hi), intf); \ 858 memcpy(&opkt->member, &pkt->member, sizeof(pkt->member)); \ 859 memcpy(&omask->member, &mask->member, sizeof(mask->member)); \ 860 } \ 861 } while (0) 862 863 NPC_WRITE_FLOW(NPC_DMAC, dmac, dmac_val, 0, dmac_mask, 0); 864 865 NPC_WRITE_FLOW(NPC_SMAC, smac, smac_val, 0, smac_mask, 0); 866 NPC_WRITE_FLOW(NPC_ETYPE, etype, ntohs(pkt->etype), 0, 867 ntohs(mask->etype), 0); 868 NPC_WRITE_FLOW(NPC_TOS, tos, pkt->tos, 0, mask->tos, 0); 869 NPC_WRITE_FLOW(NPC_SIP_IPV4, ip4src, ntohl(pkt->ip4src), 0, 870 ntohl(mask->ip4src), 0); 871 NPC_WRITE_FLOW(NPC_DIP_IPV4, ip4dst, ntohl(pkt->ip4dst), 0, 872 ntohl(mask->ip4dst), 0); 873 NPC_WRITE_FLOW(NPC_SPORT_TCP, sport, ntohs(pkt->sport), 0, 874 ntohs(mask->sport), 0); 875 NPC_WRITE_FLOW(NPC_SPORT_UDP, sport, ntohs(pkt->sport), 0, 876 ntohs(mask->sport), 0); 877 NPC_WRITE_FLOW(NPC_DPORT_TCP, dport, ntohs(pkt->dport), 0, 878 ntohs(mask->dport), 0); 879 NPC_WRITE_FLOW(NPC_DPORT_UDP, dport, ntohs(pkt->dport), 0, 880 ntohs(mask->dport), 0); 881 NPC_WRITE_FLOW(NPC_SPORT_SCTP, sport, ntohs(pkt->sport), 0, 882 ntohs(mask->sport), 0); 883 NPC_WRITE_FLOW(NPC_DPORT_SCTP, dport, ntohs(pkt->dport), 0, 884 ntohs(mask->dport), 0); 885 886 NPC_WRITE_FLOW(NPC_OUTER_VID, vlan_tci, ntohs(pkt->vlan_tci), 0, 887 ntohs(mask->vlan_tci), 0); 888 889 npc_update_ipv6_flow(rvu, entry, features, pkt, mask, output, intf); 890 npc_update_vlan_features(rvu, entry, features, intf); 891 892 npc_update_field_hash(rvu, intf, entry, blkaddr, features, 893 pkt, mask, opkt, omask); 894 } 895 896 static struct rvu_npc_mcam_rule *rvu_mcam_find_rule(struct npc_mcam *mcam, u16 entry) 897 { 898 struct rvu_npc_mcam_rule *iter; 899 900 mutex_lock(&mcam->lock); 901 list_for_each_entry(iter, &mcam->mcam_rules, list) { 902 if (iter->entry == entry) { 903 mutex_unlock(&mcam->lock); 904 return iter; 905 } 906 } 907 mutex_unlock(&mcam->lock); 908 909 return NULL; 910 } 911 912 static void rvu_mcam_add_rule(struct npc_mcam *mcam, 913 struct rvu_npc_mcam_rule *rule) 914 { 915 struct list_head *head = &mcam->mcam_rules; 916 struct rvu_npc_mcam_rule *iter; 917 918 mutex_lock(&mcam->lock); 919 list_for_each_entry(iter, &mcam->mcam_rules, list) { 920 if (iter->entry > rule->entry) 921 break; 922 head = &iter->list; 923 } 924 925 list_add(&rule->list, head); 926 mutex_unlock(&mcam->lock); 927 } 928 929 static void rvu_mcam_remove_counter_from_rule(struct rvu *rvu, u16 pcifunc, 930 struct rvu_npc_mcam_rule *rule) 931 { 932 struct npc_mcam_oper_counter_req free_req = { 0 }; 933 struct msg_rsp free_rsp; 934 935 if (!rule->has_cntr) 936 return; 937 938 free_req.hdr.pcifunc = pcifunc; 939 free_req.cntr = rule->cntr; 940 941 rvu_mbox_handler_npc_mcam_free_counter(rvu, &free_req, &free_rsp); 942 rule->has_cntr = false; 943 } 944 945 static void rvu_mcam_add_counter_to_rule(struct rvu *rvu, u16 pcifunc, 946 struct rvu_npc_mcam_rule *rule, 947 struct npc_install_flow_rsp *rsp) 948 { 949 struct npc_mcam_alloc_counter_req cntr_req = { 0 }; 950 struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 }; 951 int err; 952 953 cntr_req.hdr.pcifunc = pcifunc; 954 cntr_req.contig = true; 955 cntr_req.count = 1; 956 957 /* we try to allocate a counter to track the stats of this 958 * rule. If counter could not be allocated then proceed 959 * without counter because counters are limited than entries. 960 */ 961 err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req, 962 &cntr_rsp); 963 if (!err && cntr_rsp.count) { 964 rule->cntr = cntr_rsp.cntr; 965 rule->has_cntr = true; 966 rsp->counter = rule->cntr; 967 } else { 968 rsp->counter = err; 969 } 970 } 971 972 static void npc_update_rx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf, 973 struct mcam_entry *entry, 974 struct npc_install_flow_req *req, 975 u16 target, bool pf_set_vfs_mac) 976 { 977 struct rvu_switch *rswitch = &rvu->rswitch; 978 struct nix_rx_action action; 979 980 if (rswitch->mode == DEVLINK_ESWITCH_MODE_SWITCHDEV && pf_set_vfs_mac) 981 req->chan_mask = 0x0; /* Do not care channel */ 982 983 npc_update_entry(rvu, NPC_CHAN, entry, req->channel, 0, req->chan_mask, 984 0, NIX_INTF_RX); 985 986 *(u64 *)&action = 0x00; 987 action.pf_func = target; 988 action.op = req->op; 989 action.index = req->index; 990 action.match_id = req->match_id; 991 action.flow_key_alg = req->flow_key_alg; 992 993 if (req->op == NIX_RX_ACTION_DEFAULT && pfvf->def_ucast_rule) 994 action = pfvf->def_ucast_rule->rx_action; 995 996 entry->action = *(u64 *)&action; 997 998 /* VTAG0 starts at 0th byte of LID_B. 999 * VTAG1 starts at 4th byte of LID_B. 1000 */ 1001 entry->vtag_action = FIELD_PREP(RX_VTAG0_VALID_BIT, req->vtag0_valid) | 1002 FIELD_PREP(RX_VTAG0_TYPE_MASK, req->vtag0_type) | 1003 FIELD_PREP(RX_VTAG0_LID_MASK, NPC_LID_LB) | 1004 FIELD_PREP(RX_VTAG0_RELPTR_MASK, 0) | 1005 FIELD_PREP(RX_VTAG1_VALID_BIT, req->vtag1_valid) | 1006 FIELD_PREP(RX_VTAG1_TYPE_MASK, req->vtag1_type) | 1007 FIELD_PREP(RX_VTAG1_LID_MASK, NPC_LID_LB) | 1008 FIELD_PREP(RX_VTAG1_RELPTR_MASK, 4); 1009 } 1010 1011 static void npc_update_tx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf, 1012 struct mcam_entry *entry, 1013 struct npc_install_flow_req *req, u16 target) 1014 { 1015 struct nix_tx_action action; 1016 u64 mask = ~0ULL; 1017 1018 /* If AF is installing then do not care about 1019 * PF_FUNC in Send Descriptor 1020 */ 1021 if (is_pffunc_af(req->hdr.pcifunc)) 1022 mask = 0; 1023 1024 npc_update_entry(rvu, NPC_PF_FUNC, entry, (__force u16)htons(target), 1025 0, mask, 0, NIX_INTF_TX); 1026 1027 *(u64 *)&action = 0x00; 1028 action.op = req->op; 1029 action.index = req->index; 1030 action.match_id = req->match_id; 1031 1032 entry->action = *(u64 *)&action; 1033 1034 /* VTAG0 starts at 0th byte of LID_B. 1035 * VTAG1 starts at 4th byte of LID_B. 1036 */ 1037 entry->vtag_action = FIELD_PREP(TX_VTAG0_DEF_MASK, req->vtag0_def) | 1038 FIELD_PREP(TX_VTAG0_OP_MASK, req->vtag0_op) | 1039 FIELD_PREP(TX_VTAG0_LID_MASK, NPC_LID_LA) | 1040 FIELD_PREP(TX_VTAG0_RELPTR_MASK, 20) | 1041 FIELD_PREP(TX_VTAG1_DEF_MASK, req->vtag1_def) | 1042 FIELD_PREP(TX_VTAG1_OP_MASK, req->vtag1_op) | 1043 FIELD_PREP(TX_VTAG1_LID_MASK, NPC_LID_LA) | 1044 FIELD_PREP(TX_VTAG1_RELPTR_MASK, 24); 1045 } 1046 1047 static int npc_install_flow(struct rvu *rvu, int blkaddr, u16 target, 1048 int nixlf, struct rvu_pfvf *pfvf, 1049 struct npc_install_flow_req *req, 1050 struct npc_install_flow_rsp *rsp, bool enable, 1051 bool pf_set_vfs_mac) 1052 { 1053 struct rvu_npc_mcam_rule *def_ucast_rule = pfvf->def_ucast_rule; 1054 u64 features, installed_features, missing_features = 0; 1055 struct npc_mcam_write_entry_req write_req = { 0 }; 1056 struct npc_mcam *mcam = &rvu->hw->mcam; 1057 struct rvu_npc_mcam_rule dummy = { 0 }; 1058 struct rvu_npc_mcam_rule *rule; 1059 u16 owner = req->hdr.pcifunc; 1060 struct msg_rsp write_rsp; 1061 struct mcam_entry *entry; 1062 bool new = false; 1063 u16 entry_index; 1064 int err; 1065 1066 installed_features = req->features; 1067 features = req->features; 1068 entry = &write_req.entry_data; 1069 entry_index = req->entry; 1070 1071 npc_update_flow(rvu, entry, features, &req->packet, &req->mask, &dummy, 1072 req->intf, blkaddr); 1073 1074 if (is_npc_intf_rx(req->intf)) 1075 npc_update_rx_entry(rvu, pfvf, entry, req, target, pf_set_vfs_mac); 1076 else 1077 npc_update_tx_entry(rvu, pfvf, entry, req, target); 1078 1079 /* Default unicast rules do not exist for TX */ 1080 if (is_npc_intf_tx(req->intf)) 1081 goto find_rule; 1082 1083 if (req->default_rule) { 1084 entry_index = npc_get_nixlf_mcam_index(mcam, target, nixlf, 1085 NIXLF_UCAST_ENTRY); 1086 enable = is_mcam_entry_enabled(rvu, mcam, blkaddr, entry_index); 1087 } 1088 1089 /* update mcam entry with default unicast rule attributes */ 1090 if (def_ucast_rule && (req->default_rule && req->append)) { 1091 missing_features = (def_ucast_rule->features ^ features) & 1092 def_ucast_rule->features; 1093 if (missing_features) 1094 npc_update_flow(rvu, entry, missing_features, 1095 &def_ucast_rule->packet, 1096 &def_ucast_rule->mask, 1097 &dummy, req->intf, 1098 blkaddr); 1099 installed_features = req->features | missing_features; 1100 } 1101 1102 find_rule: 1103 rule = rvu_mcam_find_rule(mcam, entry_index); 1104 if (!rule) { 1105 rule = kzalloc(sizeof(*rule), GFP_KERNEL); 1106 if (!rule) 1107 return -ENOMEM; 1108 new = true; 1109 } 1110 1111 /* allocate new counter if rule has no counter */ 1112 if (!req->default_rule && req->set_cntr && !rule->has_cntr) 1113 rvu_mcam_add_counter_to_rule(rvu, owner, rule, rsp); 1114 1115 /* if user wants to delete an existing counter for a rule then 1116 * free the counter 1117 */ 1118 if (!req->set_cntr && rule->has_cntr) 1119 rvu_mcam_remove_counter_from_rule(rvu, owner, rule); 1120 1121 write_req.hdr.pcifunc = owner; 1122 1123 /* AF owns the default rules so change the owner just to relax 1124 * the checks in rvu_mbox_handler_npc_mcam_write_entry 1125 */ 1126 if (req->default_rule) 1127 write_req.hdr.pcifunc = 0; 1128 1129 write_req.entry = entry_index; 1130 write_req.intf = req->intf; 1131 write_req.enable_entry = (u8)enable; 1132 /* if counter is available then clear and use it */ 1133 if (req->set_cntr && rule->has_cntr) { 1134 rvu_write64(rvu, blkaddr, NPC_AF_MATCH_STATX(rule->cntr), 0x00); 1135 write_req.set_cntr = 1; 1136 write_req.cntr = rule->cntr; 1137 } 1138 1139 /* update rule */ 1140 memcpy(&rule->packet, &dummy.packet, sizeof(rule->packet)); 1141 memcpy(&rule->mask, &dummy.mask, sizeof(rule->mask)); 1142 rule->entry = entry_index; 1143 memcpy(&rule->rx_action, &entry->action, sizeof(struct nix_rx_action)); 1144 if (is_npc_intf_tx(req->intf)) 1145 memcpy(&rule->tx_action, &entry->action, 1146 sizeof(struct nix_tx_action)); 1147 rule->vtag_action = entry->vtag_action; 1148 rule->features = installed_features; 1149 rule->default_rule = req->default_rule; 1150 rule->owner = owner; 1151 rule->enable = enable; 1152 rule->chan_mask = write_req.entry_data.kw_mask[0] & NPC_KEX_CHAN_MASK; 1153 rule->chan = write_req.entry_data.kw[0] & NPC_KEX_CHAN_MASK; 1154 rule->chan &= rule->chan_mask; 1155 if (is_npc_intf_tx(req->intf)) 1156 rule->intf = pfvf->nix_tx_intf; 1157 else 1158 rule->intf = pfvf->nix_rx_intf; 1159 1160 if (new) 1161 rvu_mcam_add_rule(mcam, rule); 1162 if (req->default_rule) 1163 pfvf->def_ucast_rule = rule; 1164 1165 /* write to mcam entry registers */ 1166 err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, 1167 &write_rsp); 1168 if (err) { 1169 rvu_mcam_remove_counter_from_rule(rvu, owner, rule); 1170 if (new) { 1171 list_del(&rule->list); 1172 kfree(rule); 1173 } 1174 return err; 1175 } 1176 1177 /* VF's MAC address is being changed via PF */ 1178 if (pf_set_vfs_mac) { 1179 ether_addr_copy(pfvf->default_mac, req->packet.dmac); 1180 ether_addr_copy(pfvf->mac_addr, req->packet.dmac); 1181 set_bit(PF_SET_VF_MAC, &pfvf->flags); 1182 } 1183 1184 if (test_bit(PF_SET_VF_CFG, &pfvf->flags) && 1185 req->vtag0_type == NIX_AF_LFX_RX_VTAG_TYPE7) 1186 rule->vfvlan_cfg = true; 1187 1188 if (is_npc_intf_rx(req->intf) && req->match_id && 1189 (req->op == NIX_RX_ACTIONOP_UCAST || req->op == NIX_RX_ACTIONOP_RSS)) 1190 return rvu_nix_setup_ratelimit_aggr(rvu, req->hdr.pcifunc, 1191 req->index, req->match_id); 1192 1193 return 0; 1194 } 1195 1196 int rvu_mbox_handler_npc_install_flow(struct rvu *rvu, 1197 struct npc_install_flow_req *req, 1198 struct npc_install_flow_rsp *rsp) 1199 { 1200 bool from_vf = !!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK); 1201 struct rvu_switch *rswitch = &rvu->rswitch; 1202 int blkaddr, nixlf, err; 1203 struct rvu_pfvf *pfvf; 1204 bool pf_set_vfs_mac = false; 1205 bool enable = true; 1206 u16 target; 1207 1208 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 1209 if (blkaddr < 0) { 1210 dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__); 1211 return NPC_MCAM_INVALID_REQ; 1212 } 1213 1214 if (!is_npc_interface_valid(rvu, req->intf)) 1215 return NPC_FLOW_INTF_INVALID; 1216 1217 if (from_vf && req->default_rule) 1218 return NPC_FLOW_VF_PERM_DENIED; 1219 1220 /* Each PF/VF info is maintained in struct rvu_pfvf. 1221 * rvu_pfvf for the target PF/VF needs to be retrieved 1222 * hence modify pcifunc accordingly. 1223 */ 1224 1225 /* AF installing for a PF/VF */ 1226 if (!req->hdr.pcifunc) 1227 target = req->vf; 1228 /* PF installing for its VF */ 1229 else if (!from_vf && req->vf) { 1230 target = (req->hdr.pcifunc & ~RVU_PFVF_FUNC_MASK) | req->vf; 1231 pf_set_vfs_mac = req->default_rule && 1232 (req->features & BIT_ULL(NPC_DMAC)); 1233 } 1234 /* msg received from PF/VF */ 1235 else 1236 target = req->hdr.pcifunc; 1237 1238 /* ignore chan_mask in case pf func is not AF, revisit later */ 1239 if (!is_pffunc_af(req->hdr.pcifunc)) 1240 req->chan_mask = 0xFFF; 1241 1242 err = npc_check_unsupported_flows(rvu, req->features, req->intf); 1243 if (err) 1244 return NPC_FLOW_NOT_SUPPORTED; 1245 1246 pfvf = rvu_get_pfvf(rvu, target); 1247 1248 /* PF installing for its VF */ 1249 if (req->hdr.pcifunc && !from_vf && req->vf) 1250 set_bit(PF_SET_VF_CFG, &pfvf->flags); 1251 1252 /* update req destination mac addr */ 1253 if ((req->features & BIT_ULL(NPC_DMAC)) && is_npc_intf_rx(req->intf) && 1254 is_zero_ether_addr(req->packet.dmac)) { 1255 ether_addr_copy(req->packet.dmac, pfvf->mac_addr); 1256 eth_broadcast_addr((u8 *)&req->mask.dmac); 1257 } 1258 1259 /* Proceed if NIXLF is attached or not for TX rules */ 1260 err = nix_get_nixlf(rvu, target, &nixlf, NULL); 1261 if (err && is_npc_intf_rx(req->intf) && !pf_set_vfs_mac) 1262 return NPC_FLOW_NO_NIXLF; 1263 1264 /* don't enable rule when nixlf not attached or initialized */ 1265 if (!(is_nixlf_attached(rvu, target) && 1266 test_bit(NIXLF_INITIALIZED, &pfvf->flags))) 1267 enable = false; 1268 1269 /* Packets reaching NPC in Tx path implies that a 1270 * NIXLF is properly setup and transmitting. 1271 * Hence rules can be enabled for Tx. 1272 */ 1273 if (is_npc_intf_tx(req->intf)) 1274 enable = true; 1275 1276 /* Do not allow requests from uninitialized VFs */ 1277 if (from_vf && !enable) 1278 return NPC_FLOW_VF_NOT_INIT; 1279 1280 /* PF sets VF mac & VF NIXLF is not attached, update the mac addr */ 1281 if (pf_set_vfs_mac && !enable) { 1282 ether_addr_copy(pfvf->default_mac, req->packet.dmac); 1283 ether_addr_copy(pfvf->mac_addr, req->packet.dmac); 1284 set_bit(PF_SET_VF_MAC, &pfvf->flags); 1285 return 0; 1286 } 1287 1288 mutex_lock(&rswitch->switch_lock); 1289 err = npc_install_flow(rvu, blkaddr, target, nixlf, pfvf, 1290 req, rsp, enable, pf_set_vfs_mac); 1291 mutex_unlock(&rswitch->switch_lock); 1292 1293 return err; 1294 } 1295 1296 static int npc_delete_flow(struct rvu *rvu, struct rvu_npc_mcam_rule *rule, 1297 u16 pcifunc) 1298 { 1299 struct npc_mcam_ena_dis_entry_req dis_req = { 0 }; 1300 struct msg_rsp dis_rsp; 1301 1302 if (rule->default_rule) 1303 return 0; 1304 1305 if (rule->has_cntr) 1306 rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule); 1307 1308 dis_req.hdr.pcifunc = pcifunc; 1309 dis_req.entry = rule->entry; 1310 1311 list_del(&rule->list); 1312 kfree(rule); 1313 1314 return rvu_mbox_handler_npc_mcam_dis_entry(rvu, &dis_req, &dis_rsp); 1315 } 1316 1317 int rvu_mbox_handler_npc_delete_flow(struct rvu *rvu, 1318 struct npc_delete_flow_req *req, 1319 struct msg_rsp *rsp) 1320 { 1321 struct npc_mcam *mcam = &rvu->hw->mcam; 1322 struct rvu_npc_mcam_rule *iter, *tmp; 1323 u16 pcifunc = req->hdr.pcifunc; 1324 struct list_head del_list; 1325 1326 INIT_LIST_HEAD(&del_list); 1327 1328 mutex_lock(&mcam->lock); 1329 list_for_each_entry_safe(iter, tmp, &mcam->mcam_rules, list) { 1330 if (iter->owner == pcifunc) { 1331 /* All rules */ 1332 if (req->all) { 1333 list_move_tail(&iter->list, &del_list); 1334 /* Range of rules */ 1335 } else if (req->end && iter->entry >= req->start && 1336 iter->entry <= req->end) { 1337 list_move_tail(&iter->list, &del_list); 1338 /* single rule */ 1339 } else if (req->entry == iter->entry) { 1340 list_move_tail(&iter->list, &del_list); 1341 break; 1342 } 1343 } 1344 } 1345 mutex_unlock(&mcam->lock); 1346 1347 list_for_each_entry_safe(iter, tmp, &del_list, list) { 1348 u16 entry = iter->entry; 1349 1350 /* clear the mcam entry target pcifunc */ 1351 mcam->entry2target_pffunc[entry] = 0x0; 1352 if (npc_delete_flow(rvu, iter, pcifunc)) 1353 dev_err(rvu->dev, "rule deletion failed for entry:%u", 1354 entry); 1355 } 1356 1357 return 0; 1358 } 1359 1360 static int npc_update_dmac_value(struct rvu *rvu, int npcblkaddr, 1361 struct rvu_npc_mcam_rule *rule, 1362 struct rvu_pfvf *pfvf) 1363 { 1364 struct npc_mcam_write_entry_req write_req = { 0 }; 1365 struct mcam_entry *entry = &write_req.entry_data; 1366 struct npc_mcam *mcam = &rvu->hw->mcam; 1367 struct msg_rsp rsp; 1368 u8 intf, enable; 1369 int err; 1370 1371 ether_addr_copy(rule->packet.dmac, pfvf->mac_addr); 1372 1373 npc_read_mcam_entry(rvu, mcam, npcblkaddr, rule->entry, 1374 entry, &intf, &enable); 1375 1376 npc_update_entry(rvu, NPC_DMAC, entry, 1377 ether_addr_to_u64(pfvf->mac_addr), 0, 1378 0xffffffffffffull, 0, intf); 1379 1380 write_req.hdr.pcifunc = rule->owner; 1381 write_req.entry = rule->entry; 1382 write_req.intf = pfvf->nix_rx_intf; 1383 1384 mutex_unlock(&mcam->lock); 1385 err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, &rsp); 1386 mutex_lock(&mcam->lock); 1387 1388 return err; 1389 } 1390 1391 void npc_mcam_enable_flows(struct rvu *rvu, u16 target) 1392 { 1393 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, target); 1394 struct rvu_npc_mcam_rule *def_ucast_rule; 1395 struct npc_mcam *mcam = &rvu->hw->mcam; 1396 struct rvu_npc_mcam_rule *rule; 1397 int blkaddr, bank, index; 1398 u64 def_action; 1399 1400 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 1401 if (blkaddr < 0) 1402 return; 1403 1404 def_ucast_rule = pfvf->def_ucast_rule; 1405 1406 mutex_lock(&mcam->lock); 1407 list_for_each_entry(rule, &mcam->mcam_rules, list) { 1408 if (is_npc_intf_rx(rule->intf) && 1409 rule->rx_action.pf_func == target && !rule->enable) { 1410 if (rule->default_rule) { 1411 npc_enable_mcam_entry(rvu, mcam, blkaddr, 1412 rule->entry, true); 1413 rule->enable = true; 1414 continue; 1415 } 1416 1417 if (rule->vfvlan_cfg) 1418 npc_update_dmac_value(rvu, blkaddr, rule, pfvf); 1419 1420 if (rule->rx_action.op == NIX_RX_ACTION_DEFAULT) { 1421 if (!def_ucast_rule) 1422 continue; 1423 /* Use default unicast entry action */ 1424 rule->rx_action = def_ucast_rule->rx_action; 1425 def_action = *(u64 *)&def_ucast_rule->rx_action; 1426 bank = npc_get_bank(mcam, rule->entry); 1427 rvu_write64(rvu, blkaddr, 1428 NPC_AF_MCAMEX_BANKX_ACTION 1429 (rule->entry, bank), def_action); 1430 } 1431 1432 npc_enable_mcam_entry(rvu, mcam, blkaddr, 1433 rule->entry, true); 1434 rule->enable = true; 1435 } 1436 } 1437 1438 /* Enable MCAM entries installed by PF with target as VF pcifunc */ 1439 for (index = 0; index < mcam->bmap_entries; index++) { 1440 if (mcam->entry2target_pffunc[index] == target) 1441 npc_enable_mcam_entry(rvu, mcam, blkaddr, 1442 index, true); 1443 } 1444 mutex_unlock(&mcam->lock); 1445 } 1446 1447 void npc_mcam_disable_flows(struct rvu *rvu, u16 target) 1448 { 1449 struct npc_mcam *mcam = &rvu->hw->mcam; 1450 int blkaddr, index; 1451 1452 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 1453 if (blkaddr < 0) 1454 return; 1455 1456 mutex_lock(&mcam->lock); 1457 /* Disable MCAM entries installed by PF with target as VF pcifunc */ 1458 for (index = 0; index < mcam->bmap_entries; index++) { 1459 if (mcam->entry2target_pffunc[index] == target) 1460 npc_enable_mcam_entry(rvu, mcam, blkaddr, 1461 index, false); 1462 } 1463 mutex_unlock(&mcam->lock); 1464 } 1465 1466 /* single drop on non hit rule starting from 0th index. This an extension 1467 * to RPM mac filter to support more rules. 1468 */ 1469 int npc_install_mcam_drop_rule(struct rvu *rvu, int mcam_idx, u16 *counter_idx, 1470 u64 chan_val, u64 chan_mask, u64 exact_val, u64 exact_mask, 1471 u64 bcast_mcast_val, u64 bcast_mcast_mask) 1472 { 1473 struct npc_mcam_alloc_counter_req cntr_req = { 0 }; 1474 struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 }; 1475 struct npc_mcam_write_entry_req req = { 0 }; 1476 struct npc_mcam *mcam = &rvu->hw->mcam; 1477 struct rvu_npc_mcam_rule *rule; 1478 struct msg_rsp rsp; 1479 bool enabled; 1480 int blkaddr; 1481 int err; 1482 1483 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0); 1484 if (blkaddr < 0) { 1485 dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__); 1486 return -ENODEV; 1487 } 1488 1489 /* Bail out if no exact match support */ 1490 if (!rvu_npc_exact_has_match_table(rvu)) { 1491 dev_info(rvu->dev, "%s: No support for exact match feature\n", __func__); 1492 return -EINVAL; 1493 } 1494 1495 /* If 0th entry is already used, return err */ 1496 enabled = is_mcam_entry_enabled(rvu, mcam, blkaddr, mcam_idx); 1497 if (enabled) { 1498 dev_err(rvu->dev, "%s: failed to add single drop on non hit rule at %d th index\n", 1499 __func__, mcam_idx); 1500 return -EINVAL; 1501 } 1502 1503 /* Add this entry to mcam rules list */ 1504 rule = kzalloc(sizeof(*rule), GFP_KERNEL); 1505 if (!rule) 1506 return -ENOMEM; 1507 1508 /* Disable rule by default. Enable rule when first dmac filter is 1509 * installed 1510 */ 1511 rule->enable = false; 1512 rule->chan = chan_val; 1513 rule->chan_mask = chan_mask; 1514 rule->entry = mcam_idx; 1515 rvu_mcam_add_rule(mcam, rule); 1516 1517 /* Reserve slot 0 */ 1518 npc_mcam_rsrcs_reserve(rvu, blkaddr, mcam_idx); 1519 1520 /* Allocate counter for this single drop on non hit rule */ 1521 cntr_req.hdr.pcifunc = 0; /* AF request */ 1522 cntr_req.contig = true; 1523 cntr_req.count = 1; 1524 err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req, &cntr_rsp); 1525 if (err) { 1526 dev_err(rvu->dev, "%s: Err to allocate cntr for drop rule (err=%d)\n", 1527 __func__, err); 1528 return -EFAULT; 1529 } 1530 *counter_idx = cntr_rsp.cntr; 1531 1532 /* Fill in fields for this mcam entry */ 1533 npc_update_entry(rvu, NPC_EXACT_RESULT, &req.entry_data, exact_val, 0, 1534 exact_mask, 0, NIX_INTF_RX); 1535 npc_update_entry(rvu, NPC_CHAN, &req.entry_data, chan_val, 0, 1536 chan_mask, 0, NIX_INTF_RX); 1537 npc_update_entry(rvu, NPC_LXMB, &req.entry_data, bcast_mcast_val, 0, 1538 bcast_mcast_mask, 0, NIX_INTF_RX); 1539 1540 req.intf = NIX_INTF_RX; 1541 req.set_cntr = true; 1542 req.cntr = cntr_rsp.cntr; 1543 req.entry = mcam_idx; 1544 1545 err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &req, &rsp); 1546 if (err) { 1547 dev_err(rvu->dev, "%s: Installation of single drop on non hit rule at %d failed\n", 1548 __func__, mcam_idx); 1549 return err; 1550 } 1551 1552 dev_err(rvu->dev, "%s: Installed single drop on non hit rule at %d, cntr=%d\n", 1553 __func__, mcam_idx, req.cntr); 1554 1555 /* disable entry at Bank 0, index 0 */ 1556 npc_enable_mcam_entry(rvu, mcam, blkaddr, mcam_idx, false); 1557 1558 return 0; 1559 } 1560