1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Admin Function driver
3  *
4  * Copyright (C) 2020 Marvell.
5  */
6 
7 #include <linux/bitfield.h>
8 
9 #include "rvu_struct.h"
10 #include "rvu_reg.h"
11 #include "rvu.h"
12 #include "npc.h"
13 
14 #define NPC_BYTESM		GENMASK_ULL(19, 16)
15 #define NPC_HDR_OFFSET		GENMASK_ULL(15, 8)
16 #define NPC_KEY_OFFSET		GENMASK_ULL(5, 0)
17 #define NPC_LDATA_EN		BIT_ULL(7)
18 
19 static const char * const npc_flow_names[] = {
20 	[NPC_DMAC]	= "dmac",
21 	[NPC_SMAC]	= "smac",
22 	[NPC_ETYPE]	= "ether type",
23 	[NPC_OUTER_VID]	= "outer vlan id",
24 	[NPC_TOS]	= "tos",
25 	[NPC_SIP_IPV4]	= "ipv4 source ip",
26 	[NPC_DIP_IPV4]	= "ipv4 destination ip",
27 	[NPC_SIP_IPV6]	= "ipv6 source ip",
28 	[NPC_DIP_IPV6]	= "ipv6 destination ip",
29 	[NPC_IPPROTO_TCP] = "ip proto tcp",
30 	[NPC_IPPROTO_UDP] = "ip proto udp",
31 	[NPC_IPPROTO_SCTP] = "ip proto sctp",
32 	[NPC_IPPROTO_ICMP] = "ip proto icmp",
33 	[NPC_IPPROTO_ICMP6] = "ip proto icmp6",
34 	[NPC_IPPROTO_AH] = "ip proto AH",
35 	[NPC_IPPROTO_ESP] = "ip proto ESP",
36 	[NPC_SPORT_TCP]	= "tcp source port",
37 	[NPC_DPORT_TCP]	= "tcp destination port",
38 	[NPC_SPORT_UDP]	= "udp source port",
39 	[NPC_DPORT_UDP]	= "udp destination port",
40 	[NPC_SPORT_SCTP] = "sctp source port",
41 	[NPC_DPORT_SCTP] = "sctp destination port",
42 	[NPC_UNKNOWN]	= "unknown",
43 };
44 
45 const char *npc_get_field_name(u8 hdr)
46 {
47 	if (hdr >= ARRAY_SIZE(npc_flow_names))
48 		return npc_flow_names[NPC_UNKNOWN];
49 
50 	return npc_flow_names[hdr];
51 }
52 
53 /* Compute keyword masks and figure out the number of keywords a field
54  * spans in the key.
55  */
56 static void npc_set_kw_masks(struct npc_mcam *mcam, u8 type,
57 			     u8 nr_bits, int start_kwi, int offset, u8 intf)
58 {
59 	struct npc_key_field *field = &mcam->rx_key_fields[type];
60 	u8 bits_in_kw;
61 	int max_kwi;
62 
63 	if (mcam->banks_per_entry == 1)
64 		max_kwi = 1; /* NPC_MCAM_KEY_X1 */
65 	else if (mcam->banks_per_entry == 2)
66 		max_kwi = 3; /* NPC_MCAM_KEY_X2 */
67 	else
68 		max_kwi = 6; /* NPC_MCAM_KEY_X4 */
69 
70 	if (is_npc_intf_tx(intf))
71 		field = &mcam->tx_key_fields[type];
72 
73 	if (offset + nr_bits <= 64) {
74 		/* one KW only */
75 		if (start_kwi > max_kwi)
76 			return;
77 		field->kw_mask[start_kwi] |= GENMASK_ULL(nr_bits - 1, 0)
78 					     << offset;
79 		field->nr_kws = 1;
80 	} else if (offset + nr_bits > 64 &&
81 		   offset + nr_bits <= 128) {
82 		/* two KWs */
83 		if (start_kwi + 1 > max_kwi)
84 			return;
85 		/* first KW mask */
86 		bits_in_kw = 64 - offset;
87 		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
88 					     << offset;
89 		/* second KW mask i.e. mask for rest of bits */
90 		bits_in_kw = nr_bits + offset - 64;
91 		field->kw_mask[start_kwi + 1] |= GENMASK_ULL(bits_in_kw - 1, 0);
92 		field->nr_kws = 2;
93 	} else {
94 		/* three KWs */
95 		if (start_kwi + 2 > max_kwi)
96 			return;
97 		/* first KW mask */
98 		bits_in_kw = 64 - offset;
99 		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
100 					     << offset;
101 		/* second KW mask */
102 		field->kw_mask[start_kwi + 1] = ~0ULL;
103 		/* third KW mask i.e. mask for rest of bits */
104 		bits_in_kw = nr_bits + offset - 128;
105 		field->kw_mask[start_kwi + 2] |= GENMASK_ULL(bits_in_kw - 1, 0);
106 		field->nr_kws = 3;
107 	}
108 }
109 
110 /* Helper function to figure out whether field exists in the key */
111 static bool npc_is_field_present(struct rvu *rvu, enum key_fields type, u8 intf)
112 {
113 	struct npc_mcam *mcam = &rvu->hw->mcam;
114 	struct npc_key_field *input;
115 
116 	input  = &mcam->rx_key_fields[type];
117 	if (is_npc_intf_tx(intf))
118 		input  = &mcam->tx_key_fields[type];
119 
120 	return input->nr_kws > 0;
121 }
122 
123 static bool npc_is_same(struct npc_key_field *input,
124 			struct npc_key_field *field)
125 {
126 	return memcmp(&input->layer_mdata, &field->layer_mdata,
127 		     sizeof(struct npc_layer_mdata)) == 0;
128 }
129 
130 static void npc_set_layer_mdata(struct npc_mcam *mcam, enum key_fields type,
131 				u64 cfg, u8 lid, u8 lt, u8 intf)
132 {
133 	struct npc_key_field *input = &mcam->rx_key_fields[type];
134 
135 	if (is_npc_intf_tx(intf))
136 		input = &mcam->tx_key_fields[type];
137 
138 	input->layer_mdata.hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
139 	input->layer_mdata.key = FIELD_GET(NPC_KEY_OFFSET, cfg);
140 	input->layer_mdata.len = FIELD_GET(NPC_BYTESM, cfg) + 1;
141 	input->layer_mdata.ltype = lt;
142 	input->layer_mdata.lid = lid;
143 }
144 
145 static bool npc_check_overlap_fields(struct npc_key_field *input1,
146 				     struct npc_key_field *input2)
147 {
148 	int kwi;
149 
150 	/* Fields with same layer id and different ltypes are mutually
151 	 * exclusive hence they can be overlapped
152 	 */
153 	if (input1->layer_mdata.lid == input2->layer_mdata.lid &&
154 	    input1->layer_mdata.ltype != input2->layer_mdata.ltype)
155 		return false;
156 
157 	for (kwi = 0; kwi < NPC_MAX_KWS_IN_KEY; kwi++) {
158 		if (input1->kw_mask[kwi] & input2->kw_mask[kwi])
159 			return true;
160 	}
161 
162 	return false;
163 }
164 
165 /* Helper function to check whether given field overlaps with any other fields
166  * in the key. Due to limitations on key size and the key extraction profile in
167  * use higher layers can overwrite lower layer's header fields. Hence overlap
168  * needs to be checked.
169  */
170 static bool npc_check_overlap(struct rvu *rvu, int blkaddr,
171 			      enum key_fields type, u8 start_lid, u8 intf)
172 {
173 	struct npc_mcam *mcam = &rvu->hw->mcam;
174 	struct npc_key_field *dummy, *input;
175 	int start_kwi, offset;
176 	u8 nr_bits, lid, lt, ld;
177 	u64 cfg;
178 
179 	dummy = &mcam->rx_key_fields[NPC_UNKNOWN];
180 	input = &mcam->rx_key_fields[type];
181 
182 	if (is_npc_intf_tx(intf)) {
183 		dummy = &mcam->tx_key_fields[NPC_UNKNOWN];
184 		input = &mcam->tx_key_fields[type];
185 	}
186 
187 	for (lid = start_lid; lid < NPC_MAX_LID; lid++) {
188 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
189 			for (ld = 0; ld < NPC_MAX_LD; ld++) {
190 				cfg = rvu_read64(rvu, blkaddr,
191 						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
192 						 (intf, lid, lt, ld));
193 				if (!FIELD_GET(NPC_LDATA_EN, cfg))
194 					continue;
195 				memset(dummy, 0, sizeof(struct npc_key_field));
196 				npc_set_layer_mdata(mcam, NPC_UNKNOWN, cfg,
197 						    lid, lt, intf);
198 				/* exclude input */
199 				if (npc_is_same(input, dummy))
200 					continue;
201 				start_kwi = dummy->layer_mdata.key / 8;
202 				offset = (dummy->layer_mdata.key * 8) % 64;
203 				nr_bits = dummy->layer_mdata.len * 8;
204 				/* form KW masks */
205 				npc_set_kw_masks(mcam, NPC_UNKNOWN, nr_bits,
206 						 start_kwi, offset, intf);
207 				/* check any input field bits falls in any
208 				 * other field bits.
209 				 */
210 				if (npc_check_overlap_fields(dummy, input))
211 					return true;
212 			}
213 		}
214 	}
215 
216 	return false;
217 }
218 
219 static bool npc_check_field(struct rvu *rvu, int blkaddr, enum key_fields type,
220 			    u8 intf)
221 {
222 	if (!npc_is_field_present(rvu, type, intf) ||
223 	    npc_check_overlap(rvu, blkaddr, type, 0, intf))
224 		return false;
225 	return true;
226 }
227 
228 static void npc_scan_parse_result(struct npc_mcam *mcam, u8 bit_number,
229 				  u8 key_nibble, u8 intf)
230 {
231 	u8 offset = (key_nibble * 4) % 64; /* offset within key word */
232 	u8 kwi = (key_nibble * 4) / 64; /* which word in key */
233 	u8 nr_bits = 4; /* bits in a nibble */
234 	u8 type;
235 
236 	switch (bit_number) {
237 	case 0 ... 2:
238 		type = NPC_CHAN;
239 		break;
240 	case 3:
241 		type = NPC_ERRLEV;
242 		break;
243 	case 4 ... 5:
244 		type = NPC_ERRCODE;
245 		break;
246 	case 6:
247 		type = NPC_LXMB;
248 		break;
249 	/* check for LTYPE only as of now */
250 	case 9:
251 		type = NPC_LA;
252 		break;
253 	case 12:
254 		type = NPC_LB;
255 		break;
256 	case 15:
257 		type = NPC_LC;
258 		break;
259 	case 18:
260 		type = NPC_LD;
261 		break;
262 	case 21:
263 		type = NPC_LE;
264 		break;
265 	case 24:
266 		type = NPC_LF;
267 		break;
268 	case 27:
269 		type = NPC_LG;
270 		break;
271 	case 30:
272 		type = NPC_LH;
273 		break;
274 	default:
275 		return;
276 	}
277 	npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
278 }
279 
280 static void npc_handle_multi_layer_fields(struct rvu *rvu, int blkaddr, u8 intf)
281 {
282 	struct npc_mcam *mcam = &rvu->hw->mcam;
283 	struct npc_key_field *key_fields;
284 	/* Ether type can come from three layers
285 	 * (ethernet, single tagged, double tagged)
286 	 */
287 	struct npc_key_field *etype_ether;
288 	struct npc_key_field *etype_tag1;
289 	struct npc_key_field *etype_tag2;
290 	/* Outer VLAN TCI can come from two layers
291 	 * (single tagged, double tagged)
292 	 */
293 	struct npc_key_field *vlan_tag1;
294 	struct npc_key_field *vlan_tag2;
295 	u64 *features;
296 	u8 start_lid;
297 	int i;
298 
299 	key_fields = mcam->rx_key_fields;
300 	features = &mcam->rx_features;
301 
302 	if (is_npc_intf_tx(intf)) {
303 		key_fields = mcam->tx_key_fields;
304 		features = &mcam->tx_features;
305 	}
306 
307 	/* Handle header fields which can come from multiple layers like
308 	 * etype, outer vlan tci. These fields should have same position in
309 	 * the key otherwise to install a mcam rule more than one entry is
310 	 * needed which complicates mcam space management.
311 	 */
312 	etype_ether = &key_fields[NPC_ETYPE_ETHER];
313 	etype_tag1 = &key_fields[NPC_ETYPE_TAG1];
314 	etype_tag2 = &key_fields[NPC_ETYPE_TAG2];
315 	vlan_tag1 = &key_fields[NPC_VLAN_TAG1];
316 	vlan_tag2 = &key_fields[NPC_VLAN_TAG2];
317 
318 	/* if key profile programmed does not extract Ethertype at all */
319 	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws)
320 		goto vlan_tci;
321 
322 	/* if key profile programmed extracts Ethertype from one layer */
323 	if (etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws)
324 		key_fields[NPC_ETYPE] = *etype_ether;
325 	if (!etype_ether->nr_kws && etype_tag1->nr_kws && !etype_tag2->nr_kws)
326 		key_fields[NPC_ETYPE] = *etype_tag1;
327 	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && etype_tag2->nr_kws)
328 		key_fields[NPC_ETYPE] = *etype_tag2;
329 
330 	/* if key profile programmed extracts Ethertype from multiple layers */
331 	if (etype_ether->nr_kws && etype_tag1->nr_kws) {
332 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
333 			if (etype_ether->kw_mask[i] != etype_tag1->kw_mask[i])
334 				goto vlan_tci;
335 		}
336 		key_fields[NPC_ETYPE] = *etype_tag1;
337 	}
338 	if (etype_ether->nr_kws && etype_tag2->nr_kws) {
339 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
340 			if (etype_ether->kw_mask[i] != etype_tag2->kw_mask[i])
341 				goto vlan_tci;
342 		}
343 		key_fields[NPC_ETYPE] = *etype_tag2;
344 	}
345 	if (etype_tag1->nr_kws && etype_tag2->nr_kws) {
346 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
347 			if (etype_tag1->kw_mask[i] != etype_tag2->kw_mask[i])
348 				goto vlan_tci;
349 		}
350 		key_fields[NPC_ETYPE] = *etype_tag2;
351 	}
352 
353 	/* check none of higher layers overwrite Ethertype */
354 	start_lid = key_fields[NPC_ETYPE].layer_mdata.lid + 1;
355 	if (npc_check_overlap(rvu, blkaddr, NPC_ETYPE, start_lid, intf))
356 		goto vlan_tci;
357 	*features |= BIT_ULL(NPC_ETYPE);
358 vlan_tci:
359 	/* if key profile does not extract outer vlan tci at all */
360 	if (!vlan_tag1->nr_kws && !vlan_tag2->nr_kws)
361 		goto done;
362 
363 	/* if key profile extracts outer vlan tci from one layer */
364 	if (vlan_tag1->nr_kws && !vlan_tag2->nr_kws)
365 		key_fields[NPC_OUTER_VID] = *vlan_tag1;
366 	if (!vlan_tag1->nr_kws && vlan_tag2->nr_kws)
367 		key_fields[NPC_OUTER_VID] = *vlan_tag2;
368 
369 	/* if key profile extracts outer vlan tci from multiple layers */
370 	if (vlan_tag1->nr_kws && vlan_tag2->nr_kws) {
371 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
372 			if (vlan_tag1->kw_mask[i] != vlan_tag2->kw_mask[i])
373 				goto done;
374 		}
375 		key_fields[NPC_OUTER_VID] = *vlan_tag2;
376 	}
377 	/* check none of higher layers overwrite outer vlan tci */
378 	start_lid = key_fields[NPC_OUTER_VID].layer_mdata.lid + 1;
379 	if (npc_check_overlap(rvu, blkaddr, NPC_OUTER_VID, start_lid, intf))
380 		goto done;
381 	*features |= BIT_ULL(NPC_OUTER_VID);
382 done:
383 	return;
384 }
385 
386 static void npc_scan_ldata(struct rvu *rvu, int blkaddr, u8 lid,
387 			   u8 lt, u64 cfg, u8 intf)
388 {
389 	struct npc_mcam *mcam = &rvu->hw->mcam;
390 	u8 hdr, key, nr_bytes, bit_offset;
391 	u8 la_ltype, la_start;
392 	/* starting KW index and starting bit position */
393 	int start_kwi, offset;
394 
395 	nr_bytes = FIELD_GET(NPC_BYTESM, cfg) + 1;
396 	hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
397 	key = FIELD_GET(NPC_KEY_OFFSET, cfg);
398 	start_kwi = key / 8;
399 	offset = (key * 8) % 64;
400 
401 	/* For Tx, Layer A has NIX_INST_HDR_S(64 bytes) preceding
402 	 * ethernet header.
403 	 */
404 	if (is_npc_intf_tx(intf)) {
405 		la_ltype = NPC_LT_LA_IH_NIX_ETHER;
406 		la_start = 8;
407 	} else {
408 		la_ltype = NPC_LT_LA_ETHER;
409 		la_start = 0;
410 	}
411 
412 #define NPC_SCAN_HDR(name, hlid, hlt, hstart, hlen)			       \
413 do {									       \
414 	if (lid == (hlid) && lt == (hlt)) {				       \
415 		if ((hstart) >= hdr &&					       \
416 		    ((hstart) + (hlen)) <= (hdr + nr_bytes)) {	               \
417 			bit_offset = (hdr + nr_bytes - (hstart) - (hlen)) * 8; \
418 			npc_set_layer_mdata(mcam, (name), cfg, lid, lt, intf); \
419 			npc_set_kw_masks(mcam, (name), (hlen) * 8,	       \
420 					 start_kwi, offset + bit_offset, intf);\
421 		}							       \
422 	}								       \
423 } while (0)
424 
425 	/* List LID, LTYPE, start offset from layer and length(in bytes) of
426 	 * packet header fields below.
427 	 * Example: Source IP is 4 bytes and starts at 12th byte of IP header
428 	 */
429 	NPC_SCAN_HDR(NPC_TOS, NPC_LID_LC, NPC_LT_LC_IP, 1, 1);
430 	NPC_SCAN_HDR(NPC_SIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 12, 4);
431 	NPC_SCAN_HDR(NPC_DIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 16, 4);
432 	NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
433 	NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
434 	NPC_SCAN_HDR(NPC_SPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 0, 2);
435 	NPC_SCAN_HDR(NPC_DPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 2, 2);
436 	NPC_SCAN_HDR(NPC_SPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 0, 2);
437 	NPC_SCAN_HDR(NPC_DPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 2, 2);
438 	NPC_SCAN_HDR(NPC_SPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 0, 2);
439 	NPC_SCAN_HDR(NPC_DPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 2, 2);
440 	NPC_SCAN_HDR(NPC_ETYPE_ETHER, NPC_LID_LA, NPC_LT_LA_ETHER, 12, 2);
441 	NPC_SCAN_HDR(NPC_ETYPE_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 4, 2);
442 	NPC_SCAN_HDR(NPC_ETYPE_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 8, 2);
443 	NPC_SCAN_HDR(NPC_VLAN_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 2, 2);
444 	NPC_SCAN_HDR(NPC_VLAN_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 2, 2);
445 	NPC_SCAN_HDR(NPC_DMAC, NPC_LID_LA, la_ltype, la_start, 6);
446 	NPC_SCAN_HDR(NPC_SMAC, NPC_LID_LA, la_ltype, la_start, 6);
447 	/* PF_FUNC is 2 bytes at 0th byte of NPC_LT_LA_IH_NIX_ETHER */
448 	NPC_SCAN_HDR(NPC_PF_FUNC, NPC_LID_LA, NPC_LT_LA_IH_NIX_ETHER, 0, 2);
449 }
450 
451 static void npc_set_features(struct rvu *rvu, int blkaddr, u8 intf)
452 {
453 	struct npc_mcam *mcam = &rvu->hw->mcam;
454 	u64 *features = &mcam->rx_features;
455 	u64 tcp_udp_sctp;
456 	int hdr;
457 
458 	if (is_npc_intf_tx(intf))
459 		features = &mcam->tx_features;
460 
461 	for (hdr = NPC_DMAC; hdr < NPC_HEADER_FIELDS_MAX; hdr++) {
462 		if (npc_check_field(rvu, blkaddr, hdr, intf))
463 			*features |= BIT_ULL(hdr);
464 	}
465 
466 	tcp_udp_sctp = BIT_ULL(NPC_SPORT_TCP) | BIT_ULL(NPC_SPORT_UDP) |
467 		       BIT_ULL(NPC_DPORT_TCP) | BIT_ULL(NPC_DPORT_UDP) |
468 		       BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP);
469 
470 	/* for tcp/udp/sctp corresponding layer type should be in the key */
471 	if (*features & tcp_udp_sctp) {
472 		if (!npc_check_field(rvu, blkaddr, NPC_LD, intf))
473 			*features &= ~tcp_udp_sctp;
474 		else
475 			*features |= BIT_ULL(NPC_IPPROTO_TCP) |
476 				     BIT_ULL(NPC_IPPROTO_UDP) |
477 				     BIT_ULL(NPC_IPPROTO_SCTP);
478 	}
479 
480 	/* for AH/ICMP/ICMPv6/, check if corresponding layer type is present in the key */
481 	if (npc_check_field(rvu, blkaddr, NPC_LD, intf)) {
482 		*features |= BIT_ULL(NPC_IPPROTO_AH);
483 		*features |= BIT_ULL(NPC_IPPROTO_ICMP);
484 		*features |= BIT_ULL(NPC_IPPROTO_ICMP6);
485 	}
486 
487 	/* for ESP, check if corresponding layer type is present in the key */
488 	if (npc_check_field(rvu, blkaddr, NPC_LE, intf))
489 		*features |= BIT_ULL(NPC_IPPROTO_ESP);
490 
491 	/* for vlan corresponding layer type should be in the key */
492 	if (*features & BIT_ULL(NPC_OUTER_VID))
493 		if (!npc_check_field(rvu, blkaddr, NPC_LB, intf))
494 			*features &= ~BIT_ULL(NPC_OUTER_VID);
495 }
496 
497 /* Scan key extraction profile and record how fields of our interest
498  * fill the key structure. Also verify Channel and DMAC exists in
499  * key and not overwritten by other header fields.
500  */
501 static int npc_scan_kex(struct rvu *rvu, int blkaddr, u8 intf)
502 {
503 	struct npc_mcam *mcam = &rvu->hw->mcam;
504 	u8 lid, lt, ld, bitnr;
505 	u8 key_nibble = 0;
506 	u64 cfg;
507 
508 	/* Scan and note how parse result is going to be in key.
509 	 * A bit set in PARSE_NIBBLE_ENA corresponds to a nibble from
510 	 * parse result in the key. The enabled nibbles from parse result
511 	 * will be concatenated in key.
512 	 */
513 	cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(intf));
514 	cfg &= NPC_PARSE_NIBBLE;
515 	for_each_set_bit(bitnr, (unsigned long *)&cfg, 31) {
516 		npc_scan_parse_result(mcam, bitnr, key_nibble, intf);
517 		key_nibble++;
518 	}
519 
520 	/* Scan and note how layer data is going to be in key */
521 	for (lid = 0; lid < NPC_MAX_LID; lid++) {
522 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
523 			for (ld = 0; ld < NPC_MAX_LD; ld++) {
524 				cfg = rvu_read64(rvu, blkaddr,
525 						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
526 						 (intf, lid, lt, ld));
527 				if (!FIELD_GET(NPC_LDATA_EN, cfg))
528 					continue;
529 				npc_scan_ldata(rvu, blkaddr, lid, lt, cfg,
530 					       intf);
531 			}
532 		}
533 	}
534 
535 	return 0;
536 }
537 
538 static int npc_scan_verify_kex(struct rvu *rvu, int blkaddr)
539 {
540 	int err;
541 
542 	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_RX);
543 	if (err)
544 		return err;
545 
546 	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_TX);
547 	if (err)
548 		return err;
549 
550 	/* Channel is mandatory */
551 	if (!npc_is_field_present(rvu, NPC_CHAN, NIX_INTF_RX)) {
552 		dev_err(rvu->dev, "Channel not present in Key\n");
553 		return -EINVAL;
554 	}
555 	/* check that none of the fields overwrite channel */
556 	if (npc_check_overlap(rvu, blkaddr, NPC_CHAN, 0, NIX_INTF_RX)) {
557 		dev_err(rvu->dev, "Channel cannot be overwritten\n");
558 		return -EINVAL;
559 	}
560 	/* DMAC should be present in key for unicast filter to work */
561 	if (!npc_is_field_present(rvu, NPC_DMAC, NIX_INTF_RX)) {
562 		dev_err(rvu->dev, "DMAC not present in Key\n");
563 		return -EINVAL;
564 	}
565 	/* check that none of the fields overwrite DMAC */
566 	if (npc_check_overlap(rvu, blkaddr, NPC_DMAC, 0, NIX_INTF_RX)) {
567 		dev_err(rvu->dev, "DMAC cannot be overwritten\n");
568 		return -EINVAL;
569 	}
570 
571 	npc_set_features(rvu, blkaddr, NIX_INTF_TX);
572 	npc_set_features(rvu, blkaddr, NIX_INTF_RX);
573 	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_TX);
574 	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_RX);
575 
576 	return 0;
577 }
578 
579 int npc_flow_steering_init(struct rvu *rvu, int blkaddr)
580 {
581 	struct npc_mcam *mcam = &rvu->hw->mcam;
582 
583 	INIT_LIST_HEAD(&mcam->mcam_rules);
584 
585 	return npc_scan_verify_kex(rvu, blkaddr);
586 }
587 
588 static int npc_check_unsupported_flows(struct rvu *rvu, u64 features, u8 intf)
589 {
590 	struct npc_mcam *mcam = &rvu->hw->mcam;
591 	u64 *mcam_features = &mcam->rx_features;
592 	u64 unsupported;
593 	u8 bit;
594 
595 	if (is_npc_intf_tx(intf))
596 		mcam_features = &mcam->tx_features;
597 
598 	unsupported = (*mcam_features ^ features) & ~(*mcam_features);
599 	if (unsupported) {
600 		dev_info(rvu->dev, "Unsupported flow(s):\n");
601 		for_each_set_bit(bit, (unsigned long *)&unsupported, 64)
602 			dev_info(rvu->dev, "%s ", npc_get_field_name(bit));
603 		return NIX_AF_ERR_NPC_KEY_NOT_SUPP;
604 	}
605 
606 	return 0;
607 }
608 
609 /* npc_update_entry - Based on the masks generated during
610  * the key scanning, updates the given entry with value and
611  * masks for the field of interest. Maximum 16 bytes of a packet
612  * header can be extracted by HW hence lo and hi are sufficient.
613  * When field bytes are less than or equal to 8 then hi should be
614  * 0 for value and mask.
615  *
616  * If exact match of value is required then mask should be all 1's.
617  * If any bits in mask are 0 then corresponding bits in value are
618  * dont care.
619  */
620 static void npc_update_entry(struct rvu *rvu, enum key_fields type,
621 			     struct mcam_entry *entry, u64 val_lo,
622 			     u64 val_hi, u64 mask_lo, u64 mask_hi, u8 intf)
623 {
624 	struct npc_mcam *mcam = &rvu->hw->mcam;
625 	struct mcam_entry dummy = { {0} };
626 	struct npc_key_field *field;
627 	u64 kw1, kw2, kw3;
628 	u8 shift;
629 	int i;
630 
631 	field = &mcam->rx_key_fields[type];
632 	if (is_npc_intf_tx(intf))
633 		field = &mcam->tx_key_fields[type];
634 
635 	if (!field->nr_kws)
636 		return;
637 
638 	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
639 		if (!field->kw_mask[i])
640 			continue;
641 		/* place key value in kw[x] */
642 		shift = __ffs64(field->kw_mask[i]);
643 		/* update entry value */
644 		kw1 = (val_lo << shift) & field->kw_mask[i];
645 		dummy.kw[i] = kw1;
646 		/* update entry mask */
647 		kw1 = (mask_lo << shift) & field->kw_mask[i];
648 		dummy.kw_mask[i] = kw1;
649 
650 		if (field->nr_kws == 1)
651 			break;
652 		/* place remaining bits of key value in kw[x + 1] */
653 		if (field->nr_kws == 2) {
654 			/* update entry value */
655 			kw2 = shift ? val_lo >> (64 - shift) : 0;
656 			kw2 |= (val_hi << shift);
657 			kw2 &= field->kw_mask[i + 1];
658 			dummy.kw[i + 1] = kw2;
659 			/* update entry mask */
660 			kw2 = shift ? mask_lo >> (64 - shift) : 0;
661 			kw2 |= (mask_hi << shift);
662 			kw2 &= field->kw_mask[i + 1];
663 			dummy.kw_mask[i + 1] = kw2;
664 			break;
665 		}
666 		/* place remaining bits of key value in kw[x + 1], kw[x + 2] */
667 		if (field->nr_kws == 3) {
668 			/* update entry value */
669 			kw2 = shift ? val_lo >> (64 - shift) : 0;
670 			kw2 |= (val_hi << shift);
671 			kw2 &= field->kw_mask[i + 1];
672 			kw3 = shift ? val_hi >> (64 - shift) : 0;
673 			kw3 &= field->kw_mask[i + 2];
674 			dummy.kw[i + 1] = kw2;
675 			dummy.kw[i + 2] = kw3;
676 			/* update entry mask */
677 			kw2 = shift ? mask_lo >> (64 - shift) : 0;
678 			kw2 |= (mask_hi << shift);
679 			kw2 &= field->kw_mask[i + 1];
680 			kw3 = shift ? mask_hi >> (64 - shift) : 0;
681 			kw3 &= field->kw_mask[i + 2];
682 			dummy.kw_mask[i + 1] = kw2;
683 			dummy.kw_mask[i + 2] = kw3;
684 			break;
685 		}
686 	}
687 	/* dummy is ready with values and masks for given key
688 	 * field now clear and update input entry with those
689 	 */
690 	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
691 		if (!field->kw_mask[i])
692 			continue;
693 		entry->kw[i] &= ~field->kw_mask[i];
694 		entry->kw_mask[i] &= ~field->kw_mask[i];
695 
696 		entry->kw[i] |= dummy.kw[i];
697 		entry->kw_mask[i] |= dummy.kw_mask[i];
698 	}
699 }
700 
701 #define IPV6_WORDS     4
702 
703 static void npc_update_ipv6_flow(struct rvu *rvu, struct mcam_entry *entry,
704 				 u64 features, struct flow_msg *pkt,
705 				 struct flow_msg *mask,
706 				 struct rvu_npc_mcam_rule *output, u8 intf)
707 {
708 	u32 src_ip[IPV6_WORDS], src_ip_mask[IPV6_WORDS];
709 	u32 dst_ip[IPV6_WORDS], dst_ip_mask[IPV6_WORDS];
710 	struct flow_msg *opkt = &output->packet;
711 	struct flow_msg *omask = &output->mask;
712 	u64 mask_lo, mask_hi;
713 	u64 val_lo, val_hi;
714 
715 	/* For an ipv6 address fe80::2c68:63ff:fe5e:2d0a the packet
716 	 * values to be programmed in MCAM should as below:
717 	 * val_high: 0xfe80000000000000
718 	 * val_low: 0x2c6863fffe5e2d0a
719 	 */
720 	if (features & BIT_ULL(NPC_SIP_IPV6)) {
721 		be32_to_cpu_array(src_ip_mask, mask->ip6src, IPV6_WORDS);
722 		be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS);
723 
724 		mask_hi = (u64)src_ip_mask[0] << 32 | src_ip_mask[1];
725 		mask_lo = (u64)src_ip_mask[2] << 32 | src_ip_mask[3];
726 		val_hi = (u64)src_ip[0] << 32 | src_ip[1];
727 		val_lo = (u64)src_ip[2] << 32 | src_ip[3];
728 
729 		npc_update_entry(rvu, NPC_SIP_IPV6, entry, val_lo, val_hi,
730 				 mask_lo, mask_hi, intf);
731 		memcpy(opkt->ip6src, pkt->ip6src, sizeof(opkt->ip6src));
732 		memcpy(omask->ip6src, mask->ip6src, sizeof(omask->ip6src));
733 	}
734 	if (features & BIT_ULL(NPC_DIP_IPV6)) {
735 		be32_to_cpu_array(dst_ip_mask, mask->ip6dst, IPV6_WORDS);
736 		be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS);
737 
738 		mask_hi = (u64)dst_ip_mask[0] << 32 | dst_ip_mask[1];
739 		mask_lo = (u64)dst_ip_mask[2] << 32 | dst_ip_mask[3];
740 		val_hi = (u64)dst_ip[0] << 32 | dst_ip[1];
741 		val_lo = (u64)dst_ip[2] << 32 | dst_ip[3];
742 
743 		npc_update_entry(rvu, NPC_DIP_IPV6, entry, val_lo, val_hi,
744 				 mask_lo, mask_hi, intf);
745 		memcpy(opkt->ip6dst, pkt->ip6dst, sizeof(opkt->ip6dst));
746 		memcpy(omask->ip6dst, mask->ip6dst, sizeof(omask->ip6dst));
747 	}
748 }
749 
750 static void npc_update_flow(struct rvu *rvu, struct mcam_entry *entry,
751 			    u64 features, struct flow_msg *pkt,
752 			    struct flow_msg *mask,
753 			    struct rvu_npc_mcam_rule *output, u8 intf)
754 {
755 	u64 dmac_mask = ether_addr_to_u64(mask->dmac);
756 	u64 smac_mask = ether_addr_to_u64(mask->smac);
757 	u64 dmac_val = ether_addr_to_u64(pkt->dmac);
758 	u64 smac_val = ether_addr_to_u64(pkt->smac);
759 	struct flow_msg *opkt = &output->packet;
760 	struct flow_msg *omask = &output->mask;
761 
762 	if (!features)
763 		return;
764 
765 	/* For tcp/udp/sctp LTYPE should be present in entry */
766 	if (features & BIT_ULL(NPC_IPPROTO_TCP))
767 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_TCP,
768 				 0, ~0ULL, 0, intf);
769 	if (features & BIT_ULL(NPC_IPPROTO_UDP))
770 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_UDP,
771 				 0, ~0ULL, 0, intf);
772 	if (features & BIT_ULL(NPC_IPPROTO_SCTP))
773 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_SCTP,
774 				 0, ~0ULL, 0, intf);
775 	if (features & BIT_ULL(NPC_IPPROTO_ICMP))
776 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP,
777 				 0, ~0ULL, 0, intf);
778 	if (features & BIT_ULL(NPC_IPPROTO_ICMP6))
779 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP6,
780 				 0, ~0ULL, 0, intf);
781 
782 	if (features & BIT_ULL(NPC_OUTER_VID))
783 		npc_update_entry(rvu, NPC_LB, entry,
784 				 NPC_LT_LB_STAG_QINQ | NPC_LT_LB_CTAG, 0,
785 				 NPC_LT_LB_STAG_QINQ & NPC_LT_LB_CTAG, 0, intf);
786 
787 	/* For AH, LTYPE should be present in entry */
788 	if (features & BIT_ULL(NPC_IPPROTO_AH))
789 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_AH,
790 				 0, ~0ULL, 0, intf);
791 	/* For ESP, LTYPE should be present in entry */
792 	if (features & BIT_ULL(NPC_IPPROTO_ESP))
793 		npc_update_entry(rvu, NPC_LE, entry, NPC_LT_LE_ESP,
794 				 0, ~0ULL, 0, intf);
795 
796 #define NPC_WRITE_FLOW(field, member, val_lo, val_hi, mask_lo, mask_hi)	      \
797 do {									      \
798 	if (features & BIT_ULL((field))) {				      \
799 		npc_update_entry(rvu, (field), entry, (val_lo), (val_hi),     \
800 				 (mask_lo), (mask_hi), intf);		      \
801 		memcpy(&opkt->member, &pkt->member, sizeof(pkt->member));     \
802 		memcpy(&omask->member, &mask->member, sizeof(mask->member));  \
803 	}								      \
804 } while (0)
805 
806 	NPC_WRITE_FLOW(NPC_DMAC, dmac, dmac_val, 0, dmac_mask, 0);
807 	NPC_WRITE_FLOW(NPC_SMAC, smac, smac_val, 0, smac_mask, 0);
808 	NPC_WRITE_FLOW(NPC_ETYPE, etype, ntohs(pkt->etype), 0,
809 		       ntohs(mask->etype), 0);
810 	NPC_WRITE_FLOW(NPC_TOS, tos, pkt->tos, 0, mask->tos, 0);
811 	NPC_WRITE_FLOW(NPC_SIP_IPV4, ip4src, ntohl(pkt->ip4src), 0,
812 		       ntohl(mask->ip4src), 0);
813 	NPC_WRITE_FLOW(NPC_DIP_IPV4, ip4dst, ntohl(pkt->ip4dst), 0,
814 		       ntohl(mask->ip4dst), 0);
815 	NPC_WRITE_FLOW(NPC_SPORT_TCP, sport, ntohs(pkt->sport), 0,
816 		       ntohs(mask->sport), 0);
817 	NPC_WRITE_FLOW(NPC_SPORT_UDP, sport, ntohs(pkt->sport), 0,
818 		       ntohs(mask->sport), 0);
819 	NPC_WRITE_FLOW(NPC_DPORT_TCP, dport, ntohs(pkt->dport), 0,
820 		       ntohs(mask->dport), 0);
821 	NPC_WRITE_FLOW(NPC_DPORT_UDP, dport, ntohs(pkt->dport), 0,
822 		       ntohs(mask->dport), 0);
823 	NPC_WRITE_FLOW(NPC_SPORT_SCTP, sport, ntohs(pkt->sport), 0,
824 		       ntohs(mask->sport), 0);
825 	NPC_WRITE_FLOW(NPC_DPORT_SCTP, dport, ntohs(pkt->dport), 0,
826 		       ntohs(mask->dport), 0);
827 
828 	NPC_WRITE_FLOW(NPC_OUTER_VID, vlan_tci, ntohs(pkt->vlan_tci), 0,
829 		       ntohs(mask->vlan_tci), 0);
830 
831 	npc_update_ipv6_flow(rvu, entry, features, pkt, mask, output, intf);
832 }
833 
834 static struct rvu_npc_mcam_rule *rvu_mcam_find_rule(struct npc_mcam *mcam,
835 						    u16 entry)
836 {
837 	struct rvu_npc_mcam_rule *iter;
838 
839 	mutex_lock(&mcam->lock);
840 	list_for_each_entry(iter, &mcam->mcam_rules, list) {
841 		if (iter->entry == entry) {
842 			mutex_unlock(&mcam->lock);
843 			return iter;
844 		}
845 	}
846 	mutex_unlock(&mcam->lock);
847 
848 	return NULL;
849 }
850 
851 static void rvu_mcam_add_rule(struct npc_mcam *mcam,
852 			      struct rvu_npc_mcam_rule *rule)
853 {
854 	struct list_head *head = &mcam->mcam_rules;
855 	struct rvu_npc_mcam_rule *iter;
856 
857 	mutex_lock(&mcam->lock);
858 	list_for_each_entry(iter, &mcam->mcam_rules, list) {
859 		if (iter->entry > rule->entry)
860 			break;
861 		head = &iter->list;
862 	}
863 
864 	list_add(&rule->list, head);
865 	mutex_unlock(&mcam->lock);
866 }
867 
868 static void rvu_mcam_remove_counter_from_rule(struct rvu *rvu, u16 pcifunc,
869 					      struct rvu_npc_mcam_rule *rule)
870 {
871 	struct npc_mcam_oper_counter_req free_req = { 0 };
872 	struct msg_rsp free_rsp;
873 
874 	if (!rule->has_cntr)
875 		return;
876 
877 	free_req.hdr.pcifunc = pcifunc;
878 	free_req.cntr = rule->cntr;
879 
880 	rvu_mbox_handler_npc_mcam_free_counter(rvu, &free_req, &free_rsp);
881 	rule->has_cntr = false;
882 }
883 
884 static void rvu_mcam_add_counter_to_rule(struct rvu *rvu, u16 pcifunc,
885 					 struct rvu_npc_mcam_rule *rule,
886 					 struct npc_install_flow_rsp *rsp)
887 {
888 	struct npc_mcam_alloc_counter_req cntr_req = { 0 };
889 	struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
890 	int err;
891 
892 	cntr_req.hdr.pcifunc = pcifunc;
893 	cntr_req.contig = true;
894 	cntr_req.count = 1;
895 
896 	/* we try to allocate a counter to track the stats of this
897 	 * rule. If counter could not be allocated then proceed
898 	 * without counter because counters are limited than entries.
899 	 */
900 	err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req,
901 						      &cntr_rsp);
902 	if (!err && cntr_rsp.count) {
903 		rule->cntr = cntr_rsp.cntr;
904 		rule->has_cntr = true;
905 		rsp->counter = rule->cntr;
906 	} else {
907 		rsp->counter = err;
908 	}
909 }
910 
911 static void npc_update_rx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
912 				struct mcam_entry *entry,
913 				struct npc_install_flow_req *req, u16 target)
914 {
915 	struct nix_rx_action action;
916 	u64 chan_mask;
917 
918 	chan_mask = req->chan_mask ? req->chan_mask : ~0ULL;
919 	npc_update_entry(rvu, NPC_CHAN, entry, req->channel, 0, chan_mask, 0,
920 			 NIX_INTF_RX);
921 
922 	*(u64 *)&action = 0x00;
923 	action.pf_func = target;
924 	action.op = req->op;
925 	action.index = req->index;
926 	action.match_id = req->match_id;
927 	action.flow_key_alg = req->flow_key_alg;
928 
929 	if (req->op == NIX_RX_ACTION_DEFAULT && pfvf->def_ucast_rule)
930 		action = pfvf->def_ucast_rule->rx_action;
931 
932 	entry->action = *(u64 *)&action;
933 
934 	/* VTAG0 starts at 0th byte of LID_B.
935 	 * VTAG1 starts at 4th byte of LID_B.
936 	 */
937 	entry->vtag_action = FIELD_PREP(RX_VTAG0_VALID_BIT, req->vtag0_valid) |
938 			     FIELD_PREP(RX_VTAG0_TYPE_MASK, req->vtag0_type) |
939 			     FIELD_PREP(RX_VTAG0_LID_MASK, NPC_LID_LB) |
940 			     FIELD_PREP(RX_VTAG0_RELPTR_MASK, 0) |
941 			     FIELD_PREP(RX_VTAG1_VALID_BIT, req->vtag1_valid) |
942 			     FIELD_PREP(RX_VTAG1_TYPE_MASK, req->vtag1_type) |
943 			     FIELD_PREP(RX_VTAG1_LID_MASK, NPC_LID_LB) |
944 			     FIELD_PREP(RX_VTAG1_RELPTR_MASK, 4);
945 }
946 
947 static void npc_update_tx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
948 				struct mcam_entry *entry,
949 				struct npc_install_flow_req *req, u16 target)
950 {
951 	struct nix_tx_action action;
952 
953 	npc_update_entry(rvu, NPC_PF_FUNC, entry, (__force u16)htons(target),
954 			 0, ~0ULL, 0, NIX_INTF_TX);
955 
956 	*(u64 *)&action = 0x00;
957 	action.op = req->op;
958 	action.index = req->index;
959 	action.match_id = req->match_id;
960 
961 	entry->action = *(u64 *)&action;
962 
963 	/* VTAG0 starts at 0th byte of LID_B.
964 	 * VTAG1 starts at 4th byte of LID_B.
965 	 */
966 	entry->vtag_action = FIELD_PREP(TX_VTAG0_DEF_MASK, req->vtag0_def) |
967 			     FIELD_PREP(TX_VTAG0_OP_MASK, req->vtag0_op) |
968 			     FIELD_PREP(TX_VTAG0_LID_MASK, NPC_LID_LA) |
969 			     FIELD_PREP(TX_VTAG0_RELPTR_MASK, 20) |
970 			     FIELD_PREP(TX_VTAG1_DEF_MASK, req->vtag1_def) |
971 			     FIELD_PREP(TX_VTAG1_OP_MASK, req->vtag1_op) |
972 			     FIELD_PREP(TX_VTAG1_LID_MASK, NPC_LID_LA) |
973 			     FIELD_PREP(TX_VTAG1_RELPTR_MASK, 24);
974 }
975 
976 static int npc_install_flow(struct rvu *rvu, int blkaddr, u16 target,
977 			    int nixlf, struct rvu_pfvf *pfvf,
978 			    struct npc_install_flow_req *req,
979 			    struct npc_install_flow_rsp *rsp, bool enable,
980 			    bool pf_set_vfs_mac)
981 {
982 	struct rvu_npc_mcam_rule *def_ucast_rule = pfvf->def_ucast_rule;
983 	u64 features, installed_features, missing_features = 0;
984 	struct npc_mcam_write_entry_req write_req = { 0 };
985 	struct npc_mcam *mcam = &rvu->hw->mcam;
986 	struct rvu_npc_mcam_rule dummy = { 0 };
987 	struct rvu_npc_mcam_rule *rule;
988 	bool new = false, msg_from_vf;
989 	u16 owner = req->hdr.pcifunc;
990 	struct msg_rsp write_rsp;
991 	struct mcam_entry *entry;
992 	int entry_index, err;
993 
994 	msg_from_vf = !!(owner & RVU_PFVF_FUNC_MASK);
995 
996 	installed_features = req->features;
997 	features = req->features;
998 	entry = &write_req.entry_data;
999 	entry_index = req->entry;
1000 
1001 	npc_update_flow(rvu, entry, features, &req->packet, &req->mask, &dummy,
1002 			req->intf);
1003 
1004 	if (is_npc_intf_rx(req->intf))
1005 		npc_update_rx_entry(rvu, pfvf, entry, req, target);
1006 	else
1007 		npc_update_tx_entry(rvu, pfvf, entry, req, target);
1008 
1009 	/* Default unicast rules do not exist for TX */
1010 	if (is_npc_intf_tx(req->intf))
1011 		goto find_rule;
1012 
1013 	if (req->default_rule) {
1014 		entry_index = npc_get_nixlf_mcam_index(mcam, target, nixlf,
1015 						       NIXLF_UCAST_ENTRY);
1016 		enable = is_mcam_entry_enabled(rvu, mcam, blkaddr, entry_index);
1017 	}
1018 
1019 	/* update mcam entry with default unicast rule attributes */
1020 	if (def_ucast_rule && (msg_from_vf || (req->default_rule && req->append))) {
1021 		missing_features = (def_ucast_rule->features ^ features) &
1022 					def_ucast_rule->features;
1023 		if (missing_features)
1024 			npc_update_flow(rvu, entry, missing_features,
1025 					&def_ucast_rule->packet,
1026 					&def_ucast_rule->mask,
1027 					&dummy, req->intf);
1028 		installed_features = req->features | missing_features;
1029 	}
1030 
1031 find_rule:
1032 	rule = rvu_mcam_find_rule(mcam, entry_index);
1033 	if (!rule) {
1034 		rule = kzalloc(sizeof(*rule), GFP_KERNEL);
1035 		if (!rule)
1036 			return -ENOMEM;
1037 		new = true;
1038 	}
1039 
1040 	/* allocate new counter if rule has no counter */
1041 	if (!req->default_rule && req->set_cntr && !rule->has_cntr)
1042 		rvu_mcam_add_counter_to_rule(rvu, owner, rule, rsp);
1043 
1044 	/* if user wants to delete an existing counter for a rule then
1045 	 * free the counter
1046 	 */
1047 	if (!req->set_cntr && rule->has_cntr)
1048 		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1049 
1050 	write_req.hdr.pcifunc = owner;
1051 
1052 	/* AF owns the default rules so change the owner just to relax
1053 	 * the checks in rvu_mbox_handler_npc_mcam_write_entry
1054 	 */
1055 	if (req->default_rule)
1056 		write_req.hdr.pcifunc = 0;
1057 
1058 	write_req.entry = entry_index;
1059 	write_req.intf = req->intf;
1060 	write_req.enable_entry = (u8)enable;
1061 	/* if counter is available then clear and use it */
1062 	if (req->set_cntr && rule->has_cntr) {
1063 		rvu_write64(rvu, blkaddr, NPC_AF_MATCH_STATX(rule->cntr), 0x00);
1064 		write_req.set_cntr = 1;
1065 		write_req.cntr = rule->cntr;
1066 	}
1067 
1068 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req,
1069 						    &write_rsp);
1070 	if (err) {
1071 		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1072 		if (new)
1073 			kfree(rule);
1074 		return err;
1075 	}
1076 	/* update rule */
1077 	memcpy(&rule->packet, &dummy.packet, sizeof(rule->packet));
1078 	memcpy(&rule->mask, &dummy.mask, sizeof(rule->mask));
1079 	rule->entry = entry_index;
1080 	memcpy(&rule->rx_action, &entry->action, sizeof(struct nix_rx_action));
1081 	if (is_npc_intf_tx(req->intf))
1082 		memcpy(&rule->tx_action, &entry->action,
1083 		       sizeof(struct nix_tx_action));
1084 	rule->vtag_action = entry->vtag_action;
1085 	rule->features = installed_features;
1086 	rule->default_rule = req->default_rule;
1087 	rule->owner = owner;
1088 	rule->enable = enable;
1089 	if (is_npc_intf_tx(req->intf))
1090 		rule->intf = pfvf->nix_tx_intf;
1091 	else
1092 		rule->intf = pfvf->nix_rx_intf;
1093 
1094 	if (new)
1095 		rvu_mcam_add_rule(mcam, rule);
1096 	if (req->default_rule)
1097 		pfvf->def_ucast_rule = rule;
1098 
1099 	/* VF's MAC address is being changed via PF  */
1100 	if (pf_set_vfs_mac) {
1101 		ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1102 		ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1103 		set_bit(PF_SET_VF_MAC, &pfvf->flags);
1104 	}
1105 
1106 	if (test_bit(PF_SET_VF_CFG, &pfvf->flags) &&
1107 	    req->vtag0_type == NIX_AF_LFX_RX_VTAG_TYPE7)
1108 		rule->vfvlan_cfg = true;
1109 
1110 	if (is_npc_intf_rx(req->intf) && req->match_id &&
1111 	    (req->op == NIX_RX_ACTIONOP_UCAST || req->op == NIX_RX_ACTIONOP_RSS))
1112 		return rvu_nix_setup_ratelimit_aggr(rvu, req->hdr.pcifunc,
1113 					     req->index, req->match_id);
1114 
1115 	return 0;
1116 }
1117 
1118 int rvu_mbox_handler_npc_install_flow(struct rvu *rvu,
1119 				      struct npc_install_flow_req *req,
1120 				      struct npc_install_flow_rsp *rsp)
1121 {
1122 	bool from_vf = !!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK);
1123 	int blkaddr, nixlf, err;
1124 	struct rvu_pfvf *pfvf;
1125 	bool pf_set_vfs_mac = false;
1126 	bool enable = true;
1127 	u16 target;
1128 
1129 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1130 	if (blkaddr < 0) {
1131 		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1132 		return -ENODEV;
1133 	}
1134 
1135 	if (!is_npc_interface_valid(rvu, req->intf))
1136 		return -EINVAL;
1137 
1138 	if (from_vf && req->default_rule)
1139 		return NPC_MCAM_PERM_DENIED;
1140 
1141 	/* Each PF/VF info is maintained in struct rvu_pfvf.
1142 	 * rvu_pfvf for the target PF/VF needs to be retrieved
1143 	 * hence modify pcifunc accordingly.
1144 	 */
1145 
1146 	/* AF installing for a PF/VF */
1147 	if (!req->hdr.pcifunc)
1148 		target = req->vf;
1149 	/* PF installing for its VF */
1150 	else if (!from_vf && req->vf) {
1151 		target = (req->hdr.pcifunc & ~RVU_PFVF_FUNC_MASK) | req->vf;
1152 		pf_set_vfs_mac = req->default_rule &&
1153 				(req->features & BIT_ULL(NPC_DMAC));
1154 	}
1155 	/* msg received from PF/VF */
1156 	else
1157 		target = req->hdr.pcifunc;
1158 
1159 	/* ignore chan_mask in case pf func is not AF, revisit later */
1160 	if (!is_pffunc_af(req->hdr.pcifunc))
1161 		req->chan_mask = 0xFFF;
1162 
1163 	err = npc_check_unsupported_flows(rvu, req->features, req->intf);
1164 	if (err)
1165 		return err;
1166 
1167 	if (npc_mcam_verify_channel(rvu, target, req->intf, req->channel))
1168 		return -EINVAL;
1169 
1170 	pfvf = rvu_get_pfvf(rvu, target);
1171 
1172 	/* PF installing for its VF */
1173 	if (req->hdr.pcifunc && !from_vf && req->vf)
1174 		set_bit(PF_SET_VF_CFG, &pfvf->flags);
1175 
1176 	/* update req destination mac addr */
1177 	if ((req->features & BIT_ULL(NPC_DMAC)) && is_npc_intf_rx(req->intf) &&
1178 	    is_zero_ether_addr(req->packet.dmac)) {
1179 		ether_addr_copy(req->packet.dmac, pfvf->mac_addr);
1180 		eth_broadcast_addr((u8 *)&req->mask.dmac);
1181 	}
1182 
1183 	err = nix_get_nixlf(rvu, target, &nixlf, NULL);
1184 	if (err && is_npc_intf_rx(req->intf) && !pf_set_vfs_mac)
1185 		return -EINVAL;
1186 
1187 	/* don't enable rule when nixlf not attached or initialized */
1188 	if (!(is_nixlf_attached(rvu, target) &&
1189 	      test_bit(NIXLF_INITIALIZED, &pfvf->flags)))
1190 		enable = false;
1191 
1192 	/* Packets reaching NPC in Tx path implies that a
1193 	 * NIXLF is properly setup and transmitting.
1194 	 * Hence rules can be enabled for Tx.
1195 	 */
1196 	if (is_npc_intf_tx(req->intf))
1197 		enable = true;
1198 
1199 	/* Do not allow requests from uninitialized VFs */
1200 	if (from_vf && !enable)
1201 		return -EINVAL;
1202 
1203 	/* PF sets VF mac & VF NIXLF is not attached, update the mac addr */
1204 	if (pf_set_vfs_mac && !enable) {
1205 		ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1206 		ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1207 		set_bit(PF_SET_VF_MAC, &pfvf->flags);
1208 		return 0;
1209 	}
1210 
1211 	/* If message is from VF then its flow should not overlap with
1212 	 * reserved unicast flow.
1213 	 */
1214 	if (from_vf && pfvf->def_ucast_rule && is_npc_intf_rx(req->intf) &&
1215 	    pfvf->def_ucast_rule->features & req->features)
1216 		return -EINVAL;
1217 
1218 	return npc_install_flow(rvu, blkaddr, target, nixlf, pfvf, req, rsp,
1219 				enable, pf_set_vfs_mac);
1220 }
1221 
1222 static int npc_delete_flow(struct rvu *rvu, struct rvu_npc_mcam_rule *rule,
1223 			   u16 pcifunc)
1224 {
1225 	struct npc_mcam_ena_dis_entry_req dis_req = { 0 };
1226 	struct msg_rsp dis_rsp;
1227 
1228 	if (rule->default_rule)
1229 		return 0;
1230 
1231 	if (rule->has_cntr)
1232 		rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule);
1233 
1234 	dis_req.hdr.pcifunc = pcifunc;
1235 	dis_req.entry = rule->entry;
1236 
1237 	list_del(&rule->list);
1238 	kfree(rule);
1239 
1240 	return rvu_mbox_handler_npc_mcam_dis_entry(rvu, &dis_req, &dis_rsp);
1241 }
1242 
1243 int rvu_mbox_handler_npc_delete_flow(struct rvu *rvu,
1244 				     struct npc_delete_flow_req *req,
1245 				     struct msg_rsp *rsp)
1246 {
1247 	struct npc_mcam *mcam = &rvu->hw->mcam;
1248 	struct rvu_npc_mcam_rule *iter, *tmp;
1249 	u16 pcifunc = req->hdr.pcifunc;
1250 	struct list_head del_list;
1251 
1252 	INIT_LIST_HEAD(&del_list);
1253 
1254 	mutex_lock(&mcam->lock);
1255 	list_for_each_entry_safe(iter, tmp, &mcam->mcam_rules, list) {
1256 		if (iter->owner == pcifunc) {
1257 			/* All rules */
1258 			if (req->all) {
1259 				list_move_tail(&iter->list, &del_list);
1260 			/* Range of rules */
1261 			} else if (req->end && iter->entry >= req->start &&
1262 				   iter->entry <= req->end) {
1263 				list_move_tail(&iter->list, &del_list);
1264 			/* single rule */
1265 			} else if (req->entry == iter->entry) {
1266 				list_move_tail(&iter->list, &del_list);
1267 				break;
1268 			}
1269 		}
1270 	}
1271 	mutex_unlock(&mcam->lock);
1272 
1273 	list_for_each_entry_safe(iter, tmp, &del_list, list) {
1274 		u16 entry = iter->entry;
1275 
1276 		/* clear the mcam entry target pcifunc */
1277 		mcam->entry2target_pffunc[entry] = 0x0;
1278 		if (npc_delete_flow(rvu, iter, pcifunc))
1279 			dev_err(rvu->dev, "rule deletion failed for entry:%u",
1280 				entry);
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 static int npc_update_dmac_value(struct rvu *rvu, int npcblkaddr,
1287 				 struct rvu_npc_mcam_rule *rule,
1288 				 struct rvu_pfvf *pfvf)
1289 {
1290 	struct npc_mcam_write_entry_req write_req = { 0 };
1291 	struct mcam_entry *entry = &write_req.entry_data;
1292 	struct npc_mcam *mcam = &rvu->hw->mcam;
1293 	struct msg_rsp rsp;
1294 	u8 intf, enable;
1295 	int err;
1296 
1297 	ether_addr_copy(rule->packet.dmac, pfvf->mac_addr);
1298 
1299 	npc_read_mcam_entry(rvu, mcam, npcblkaddr, rule->entry,
1300 			    entry, &intf,  &enable);
1301 
1302 	npc_update_entry(rvu, NPC_DMAC, entry,
1303 			 ether_addr_to_u64(pfvf->mac_addr), 0,
1304 			 0xffffffffffffull, 0, intf);
1305 
1306 	write_req.hdr.pcifunc = rule->owner;
1307 	write_req.entry = rule->entry;
1308 	write_req.intf = pfvf->nix_rx_intf;
1309 
1310 	mutex_unlock(&mcam->lock);
1311 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, &rsp);
1312 	mutex_lock(&mcam->lock);
1313 
1314 	return err;
1315 }
1316 
1317 void npc_mcam_enable_flows(struct rvu *rvu, u16 target)
1318 {
1319 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, target);
1320 	struct rvu_npc_mcam_rule *def_ucast_rule;
1321 	struct npc_mcam *mcam = &rvu->hw->mcam;
1322 	struct rvu_npc_mcam_rule *rule;
1323 	int blkaddr, bank, index;
1324 	u64 def_action;
1325 
1326 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1327 	if (blkaddr < 0)
1328 		return;
1329 
1330 	def_ucast_rule = pfvf->def_ucast_rule;
1331 
1332 	mutex_lock(&mcam->lock);
1333 	list_for_each_entry(rule, &mcam->mcam_rules, list) {
1334 		if (is_npc_intf_rx(rule->intf) &&
1335 		    rule->rx_action.pf_func == target && !rule->enable) {
1336 			if (rule->default_rule) {
1337 				npc_enable_mcam_entry(rvu, mcam, blkaddr,
1338 						      rule->entry, true);
1339 				rule->enable = true;
1340 				continue;
1341 			}
1342 
1343 			if (rule->vfvlan_cfg)
1344 				npc_update_dmac_value(rvu, blkaddr, rule, pfvf);
1345 
1346 			if (rule->rx_action.op == NIX_RX_ACTION_DEFAULT) {
1347 				if (!def_ucast_rule)
1348 					continue;
1349 				/* Use default unicast entry action */
1350 				rule->rx_action = def_ucast_rule->rx_action;
1351 				def_action = *(u64 *)&def_ucast_rule->rx_action;
1352 				bank = npc_get_bank(mcam, rule->entry);
1353 				rvu_write64(rvu, blkaddr,
1354 					    NPC_AF_MCAMEX_BANKX_ACTION
1355 					    (rule->entry, bank), def_action);
1356 			}
1357 
1358 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1359 					      rule->entry, true);
1360 			rule->enable = true;
1361 		}
1362 	}
1363 
1364 	/* Enable MCAM entries installed by PF with target as VF pcifunc */
1365 	for (index = 0; index < mcam->bmap_entries; index++) {
1366 		if (mcam->entry2target_pffunc[index] == target)
1367 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1368 					      index, true);
1369 	}
1370 	mutex_unlock(&mcam->lock);
1371 }
1372 
1373 void npc_mcam_disable_flows(struct rvu *rvu, u16 target)
1374 {
1375 	struct npc_mcam *mcam = &rvu->hw->mcam;
1376 	int blkaddr, index;
1377 
1378 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1379 	if (blkaddr < 0)
1380 		return;
1381 
1382 	mutex_lock(&mcam->lock);
1383 	/* Disable MCAM entries installed by PF with target as VF pcifunc */
1384 	for (index = 0; index < mcam->bmap_entries; index++) {
1385 		if (mcam->entry2target_pffunc[index] == target)
1386 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1387 					      index, false);
1388 	}
1389 	mutex_unlock(&mcam->lock);
1390 }
1391