xref: /openbmc/linux/drivers/net/ethernet/marvell/octeontx2/af/rvu_npc_fs.c (revision 4cfb908054456ad8b6b8cd5108bbdf80faade8cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2020 Marvell.
5  */
6 
7 #include <linux/bitfield.h>
8 
9 #include "rvu_struct.h"
10 #include "rvu_reg.h"
11 #include "rvu.h"
12 #include "npc.h"
13 #include "rvu_npc_fs.h"
14 #include "rvu_npc_hash.h"
15 
16 static const char * const npc_flow_names[] = {
17 	[NPC_DMAC]	= "dmac",
18 	[NPC_SMAC]	= "smac",
19 	[NPC_ETYPE]	= "ether type",
20 	[NPC_VLAN_ETYPE_CTAG] = "vlan ether type ctag",
21 	[NPC_VLAN_ETYPE_STAG] = "vlan ether type stag",
22 	[NPC_OUTER_VID]	= "outer vlan id",
23 	[NPC_TOS]	= "tos",
24 	[NPC_IPFRAG_IPV4] = "fragmented IPv4 header ",
25 	[NPC_SIP_IPV4]	= "ipv4 source ip",
26 	[NPC_DIP_IPV4]	= "ipv4 destination ip",
27 	[NPC_IPFRAG_IPV6] = "fragmented IPv6 header ",
28 	[NPC_SIP_IPV6]	= "ipv6 source ip",
29 	[NPC_DIP_IPV6]	= "ipv6 destination ip",
30 	[NPC_IPPROTO_TCP] = "ip proto tcp",
31 	[NPC_IPPROTO_UDP] = "ip proto udp",
32 	[NPC_IPPROTO_SCTP] = "ip proto sctp",
33 	[NPC_IPPROTO_ICMP] = "ip proto icmp",
34 	[NPC_IPPROTO_ICMP6] = "ip proto icmp6",
35 	[NPC_IPPROTO_AH] = "ip proto AH",
36 	[NPC_IPPROTO_ESP] = "ip proto ESP",
37 	[NPC_SPORT_TCP]	= "tcp source port",
38 	[NPC_DPORT_TCP]	= "tcp destination port",
39 	[NPC_SPORT_UDP]	= "udp source port",
40 	[NPC_DPORT_UDP]	= "udp destination port",
41 	[NPC_SPORT_SCTP] = "sctp source port",
42 	[NPC_DPORT_SCTP] = "sctp destination port",
43 	[NPC_LXMB]	= "Mcast/Bcast header ",
44 	[NPC_UNKNOWN]	= "unknown",
45 };
46 
47 bool npc_is_feature_supported(struct rvu *rvu, u64 features, u8 intf)
48 {
49 	struct npc_mcam *mcam = &rvu->hw->mcam;
50 	u64 mcam_features;
51 	u64 unsupported;
52 
53 	mcam_features = is_npc_intf_tx(intf) ? mcam->tx_features : mcam->rx_features;
54 	unsupported = (mcam_features ^ features) & ~mcam_features;
55 
56 	/* Return false if at least one of the input flows is not extracted */
57 	return !unsupported;
58 }
59 
60 const char *npc_get_field_name(u8 hdr)
61 {
62 	if (hdr >= ARRAY_SIZE(npc_flow_names))
63 		return npc_flow_names[NPC_UNKNOWN];
64 
65 	return npc_flow_names[hdr];
66 }
67 
68 /* Compute keyword masks and figure out the number of keywords a field
69  * spans in the key.
70  */
71 static void npc_set_kw_masks(struct npc_mcam *mcam, u8 type,
72 			     u8 nr_bits, int start_kwi, int offset, u8 intf)
73 {
74 	struct npc_key_field *field = &mcam->rx_key_fields[type];
75 	u8 bits_in_kw;
76 	int max_kwi;
77 
78 	if (mcam->banks_per_entry == 1)
79 		max_kwi = 1; /* NPC_MCAM_KEY_X1 */
80 	else if (mcam->banks_per_entry == 2)
81 		max_kwi = 3; /* NPC_MCAM_KEY_X2 */
82 	else
83 		max_kwi = 6; /* NPC_MCAM_KEY_X4 */
84 
85 	if (is_npc_intf_tx(intf))
86 		field = &mcam->tx_key_fields[type];
87 
88 	if (offset + nr_bits <= 64) {
89 		/* one KW only */
90 		if (start_kwi > max_kwi)
91 			return;
92 		field->kw_mask[start_kwi] |= GENMASK_ULL(nr_bits - 1, 0)
93 					     << offset;
94 		field->nr_kws = 1;
95 	} else if (offset + nr_bits > 64 &&
96 		   offset + nr_bits <= 128) {
97 		/* two KWs */
98 		if (start_kwi + 1 > max_kwi)
99 			return;
100 		/* first KW mask */
101 		bits_in_kw = 64 - offset;
102 		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
103 					     << offset;
104 		/* second KW mask i.e. mask for rest of bits */
105 		bits_in_kw = nr_bits + offset - 64;
106 		field->kw_mask[start_kwi + 1] |= GENMASK_ULL(bits_in_kw - 1, 0);
107 		field->nr_kws = 2;
108 	} else {
109 		/* three KWs */
110 		if (start_kwi + 2 > max_kwi)
111 			return;
112 		/* first KW mask */
113 		bits_in_kw = 64 - offset;
114 		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
115 					     << offset;
116 		/* second KW mask */
117 		field->kw_mask[start_kwi + 1] = ~0ULL;
118 		/* third KW mask i.e. mask for rest of bits */
119 		bits_in_kw = nr_bits + offset - 128;
120 		field->kw_mask[start_kwi + 2] |= GENMASK_ULL(bits_in_kw - 1, 0);
121 		field->nr_kws = 3;
122 	}
123 }
124 
125 /* Helper function to figure out whether field exists in the key */
126 static bool npc_is_field_present(struct rvu *rvu, enum key_fields type, u8 intf)
127 {
128 	struct npc_mcam *mcam = &rvu->hw->mcam;
129 	struct npc_key_field *input;
130 
131 	input  = &mcam->rx_key_fields[type];
132 	if (is_npc_intf_tx(intf))
133 		input  = &mcam->tx_key_fields[type];
134 
135 	return input->nr_kws > 0;
136 }
137 
138 static bool npc_is_same(struct npc_key_field *input,
139 			struct npc_key_field *field)
140 {
141 	return memcmp(&input->layer_mdata, &field->layer_mdata,
142 		     sizeof(struct npc_layer_mdata)) == 0;
143 }
144 
145 static void npc_set_layer_mdata(struct npc_mcam *mcam, enum key_fields type,
146 				u64 cfg, u8 lid, u8 lt, u8 intf)
147 {
148 	struct npc_key_field *input = &mcam->rx_key_fields[type];
149 
150 	if (is_npc_intf_tx(intf))
151 		input = &mcam->tx_key_fields[type];
152 
153 	input->layer_mdata.hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
154 	input->layer_mdata.key = FIELD_GET(NPC_KEY_OFFSET, cfg);
155 	input->layer_mdata.len = FIELD_GET(NPC_BYTESM, cfg) + 1;
156 	input->layer_mdata.ltype = lt;
157 	input->layer_mdata.lid = lid;
158 }
159 
160 static bool npc_check_overlap_fields(struct npc_key_field *input1,
161 				     struct npc_key_field *input2)
162 {
163 	int kwi;
164 
165 	/* Fields with same layer id and different ltypes are mutually
166 	 * exclusive hence they can be overlapped
167 	 */
168 	if (input1->layer_mdata.lid == input2->layer_mdata.lid &&
169 	    input1->layer_mdata.ltype != input2->layer_mdata.ltype)
170 		return false;
171 
172 	for (kwi = 0; kwi < NPC_MAX_KWS_IN_KEY; kwi++) {
173 		if (input1->kw_mask[kwi] & input2->kw_mask[kwi])
174 			return true;
175 	}
176 
177 	return false;
178 }
179 
180 /* Helper function to check whether given field overlaps with any other fields
181  * in the key. Due to limitations on key size and the key extraction profile in
182  * use higher layers can overwrite lower layer's header fields. Hence overlap
183  * needs to be checked.
184  */
185 static bool npc_check_overlap(struct rvu *rvu, int blkaddr,
186 			      enum key_fields type, u8 start_lid, u8 intf)
187 {
188 	struct npc_mcam *mcam = &rvu->hw->mcam;
189 	struct npc_key_field *dummy, *input;
190 	int start_kwi, offset;
191 	u8 nr_bits, lid, lt, ld;
192 	u64 cfg;
193 
194 	dummy = &mcam->rx_key_fields[NPC_UNKNOWN];
195 	input = &mcam->rx_key_fields[type];
196 
197 	if (is_npc_intf_tx(intf)) {
198 		dummy = &mcam->tx_key_fields[NPC_UNKNOWN];
199 		input = &mcam->tx_key_fields[type];
200 	}
201 
202 	for (lid = start_lid; lid < NPC_MAX_LID; lid++) {
203 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
204 			for (ld = 0; ld < NPC_MAX_LD; ld++) {
205 				cfg = rvu_read64(rvu, blkaddr,
206 						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
207 						 (intf, lid, lt, ld));
208 				if (!FIELD_GET(NPC_LDATA_EN, cfg))
209 					continue;
210 				memset(dummy, 0, sizeof(struct npc_key_field));
211 				npc_set_layer_mdata(mcam, NPC_UNKNOWN, cfg,
212 						    lid, lt, intf);
213 				/* exclude input */
214 				if (npc_is_same(input, dummy))
215 					continue;
216 				start_kwi = dummy->layer_mdata.key / 8;
217 				offset = (dummy->layer_mdata.key * 8) % 64;
218 				nr_bits = dummy->layer_mdata.len * 8;
219 				/* form KW masks */
220 				npc_set_kw_masks(mcam, NPC_UNKNOWN, nr_bits,
221 						 start_kwi, offset, intf);
222 				/* check any input field bits falls in any
223 				 * other field bits.
224 				 */
225 				if (npc_check_overlap_fields(dummy, input))
226 					return true;
227 			}
228 		}
229 	}
230 
231 	return false;
232 }
233 
234 static bool npc_check_field(struct rvu *rvu, int blkaddr, enum key_fields type,
235 			    u8 intf)
236 {
237 	if (!npc_is_field_present(rvu, type, intf) ||
238 	    npc_check_overlap(rvu, blkaddr, type, 0, intf))
239 		return false;
240 	return true;
241 }
242 
243 static void npc_scan_exact_result(struct npc_mcam *mcam, u8 bit_number,
244 				  u8 key_nibble, u8 intf)
245 {
246 	u8 offset = (key_nibble * 4) % 64; /* offset within key word */
247 	u8 kwi = (key_nibble * 4) / 64; /* which word in key */
248 	u8 nr_bits = 4; /* bits in a nibble */
249 	u8 type;
250 
251 	switch (bit_number) {
252 	case 40 ... 43:
253 		type = NPC_EXACT_RESULT;
254 		break;
255 
256 	default:
257 		return;
258 	}
259 	npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
260 }
261 
262 static void npc_scan_parse_result(struct npc_mcam *mcam, u8 bit_number,
263 				  u8 key_nibble, u8 intf)
264 {
265 	u8 offset = (key_nibble * 4) % 64; /* offset within key word */
266 	u8 kwi = (key_nibble * 4) / 64; /* which word in key */
267 	u8 nr_bits = 4; /* bits in a nibble */
268 	u8 type;
269 
270 	switch (bit_number) {
271 	case 0 ... 2:
272 		type = NPC_CHAN;
273 		break;
274 	case 3:
275 		type = NPC_ERRLEV;
276 		break;
277 	case 4 ... 5:
278 		type = NPC_ERRCODE;
279 		break;
280 	case 6:
281 		type = NPC_LXMB;
282 		break;
283 	/* check for LTYPE only as of now */
284 	case 9:
285 		type = NPC_LA;
286 		break;
287 	case 12:
288 		type = NPC_LB;
289 		break;
290 	case 15:
291 		type = NPC_LC;
292 		break;
293 	case 18:
294 		type = NPC_LD;
295 		break;
296 	case 21:
297 		type = NPC_LE;
298 		break;
299 	case 24:
300 		type = NPC_LF;
301 		break;
302 	case 27:
303 		type = NPC_LG;
304 		break;
305 	case 30:
306 		type = NPC_LH;
307 		break;
308 	default:
309 		return;
310 	}
311 
312 	npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
313 }
314 
315 static void npc_handle_multi_layer_fields(struct rvu *rvu, int blkaddr, u8 intf)
316 {
317 	struct npc_mcam *mcam = &rvu->hw->mcam;
318 	struct npc_key_field *key_fields;
319 	/* Ether type can come from three layers
320 	 * (ethernet, single tagged, double tagged)
321 	 */
322 	struct npc_key_field *etype_ether;
323 	struct npc_key_field *etype_tag1;
324 	struct npc_key_field *etype_tag2;
325 	/* Outer VLAN TCI can come from two layers
326 	 * (single tagged, double tagged)
327 	 */
328 	struct npc_key_field *vlan_tag1;
329 	struct npc_key_field *vlan_tag2;
330 	u64 *features;
331 	u8 start_lid;
332 	int i;
333 
334 	key_fields = mcam->rx_key_fields;
335 	features = &mcam->rx_features;
336 
337 	if (is_npc_intf_tx(intf)) {
338 		key_fields = mcam->tx_key_fields;
339 		features = &mcam->tx_features;
340 	}
341 
342 	/* Handle header fields which can come from multiple layers like
343 	 * etype, outer vlan tci. These fields should have same position in
344 	 * the key otherwise to install a mcam rule more than one entry is
345 	 * needed which complicates mcam space management.
346 	 */
347 	etype_ether = &key_fields[NPC_ETYPE_ETHER];
348 	etype_tag1 = &key_fields[NPC_ETYPE_TAG1];
349 	etype_tag2 = &key_fields[NPC_ETYPE_TAG2];
350 	vlan_tag1 = &key_fields[NPC_VLAN_TAG1];
351 	vlan_tag2 = &key_fields[NPC_VLAN_TAG2];
352 
353 	/* if key profile programmed does not extract Ethertype at all */
354 	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws) {
355 		dev_err(rvu->dev, "mkex: Ethertype is not extracted.\n");
356 		goto vlan_tci;
357 	}
358 
359 	/* if key profile programmed extracts Ethertype from one layer */
360 	if (etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws)
361 		key_fields[NPC_ETYPE] = *etype_ether;
362 	if (!etype_ether->nr_kws && etype_tag1->nr_kws && !etype_tag2->nr_kws)
363 		key_fields[NPC_ETYPE] = *etype_tag1;
364 	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && etype_tag2->nr_kws)
365 		key_fields[NPC_ETYPE] = *etype_tag2;
366 
367 	/* if key profile programmed extracts Ethertype from multiple layers */
368 	if (etype_ether->nr_kws && etype_tag1->nr_kws) {
369 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
370 			if (etype_ether->kw_mask[i] != etype_tag1->kw_mask[i]) {
371 				dev_err(rvu->dev, "mkex: Etype pos is different for untagged and tagged pkts.\n");
372 				goto vlan_tci;
373 			}
374 		}
375 		key_fields[NPC_ETYPE] = *etype_tag1;
376 	}
377 	if (etype_ether->nr_kws && etype_tag2->nr_kws) {
378 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
379 			if (etype_ether->kw_mask[i] != etype_tag2->kw_mask[i]) {
380 				dev_err(rvu->dev, "mkex: Etype pos is different for untagged and double tagged pkts.\n");
381 				goto vlan_tci;
382 			}
383 		}
384 		key_fields[NPC_ETYPE] = *etype_tag2;
385 	}
386 	if (etype_tag1->nr_kws && etype_tag2->nr_kws) {
387 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
388 			if (etype_tag1->kw_mask[i] != etype_tag2->kw_mask[i]) {
389 				dev_err(rvu->dev, "mkex: Etype pos is different for tagged and double tagged pkts.\n");
390 				goto vlan_tci;
391 			}
392 		}
393 		key_fields[NPC_ETYPE] = *etype_tag2;
394 	}
395 
396 	/* check none of higher layers overwrite Ethertype */
397 	start_lid = key_fields[NPC_ETYPE].layer_mdata.lid + 1;
398 	if (npc_check_overlap(rvu, blkaddr, NPC_ETYPE, start_lid, intf)) {
399 		dev_err(rvu->dev, "mkex: Ethertype is overwritten by higher layers.\n");
400 		goto vlan_tci;
401 	}
402 	*features |= BIT_ULL(NPC_ETYPE);
403 vlan_tci:
404 	/* if key profile does not extract outer vlan tci at all */
405 	if (!vlan_tag1->nr_kws && !vlan_tag2->nr_kws) {
406 		dev_err(rvu->dev, "mkex: Outer vlan tci is not extracted.\n");
407 		goto done;
408 	}
409 
410 	/* if key profile extracts outer vlan tci from one layer */
411 	if (vlan_tag1->nr_kws && !vlan_tag2->nr_kws)
412 		key_fields[NPC_OUTER_VID] = *vlan_tag1;
413 	if (!vlan_tag1->nr_kws && vlan_tag2->nr_kws)
414 		key_fields[NPC_OUTER_VID] = *vlan_tag2;
415 
416 	/* if key profile extracts outer vlan tci from multiple layers */
417 	if (vlan_tag1->nr_kws && vlan_tag2->nr_kws) {
418 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
419 			if (vlan_tag1->kw_mask[i] != vlan_tag2->kw_mask[i]) {
420 				dev_err(rvu->dev, "mkex: Out vlan tci pos is different for tagged and double tagged pkts.\n");
421 				goto done;
422 			}
423 		}
424 		key_fields[NPC_OUTER_VID] = *vlan_tag2;
425 	}
426 	/* check none of higher layers overwrite outer vlan tci */
427 	start_lid = key_fields[NPC_OUTER_VID].layer_mdata.lid + 1;
428 	if (npc_check_overlap(rvu, blkaddr, NPC_OUTER_VID, start_lid, intf)) {
429 		dev_err(rvu->dev, "mkex: Outer vlan tci is overwritten by higher layers.\n");
430 		goto done;
431 	}
432 	*features |= BIT_ULL(NPC_OUTER_VID);
433 done:
434 	return;
435 }
436 
437 static void npc_scan_ldata(struct rvu *rvu, int blkaddr, u8 lid,
438 			   u8 lt, u64 cfg, u8 intf)
439 {
440 	struct npc_mcam_kex_hash *mkex_hash = rvu->kpu.mkex_hash;
441 	struct npc_mcam *mcam = &rvu->hw->mcam;
442 	u8 hdr, key, nr_bytes, bit_offset;
443 	u8 la_ltype, la_start;
444 	/* starting KW index and starting bit position */
445 	int start_kwi, offset;
446 
447 	nr_bytes = FIELD_GET(NPC_BYTESM, cfg) + 1;
448 	hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
449 	key = FIELD_GET(NPC_KEY_OFFSET, cfg);
450 
451 	/* For Tx, Layer A has NIX_INST_HDR_S(64 bytes) preceding
452 	 * ethernet header.
453 	 */
454 	if (is_npc_intf_tx(intf)) {
455 		la_ltype = NPC_LT_LA_IH_NIX_ETHER;
456 		la_start = 8;
457 	} else {
458 		la_ltype = NPC_LT_LA_ETHER;
459 		la_start = 0;
460 	}
461 
462 #define NPC_SCAN_HDR(name, hlid, hlt, hstart, hlen)			       \
463 do {									       \
464 	start_kwi = key / 8;						       \
465 	offset = (key * 8) % 64;					       \
466 	if (lid == (hlid) && lt == (hlt)) {				       \
467 		if ((hstart) >= hdr &&					       \
468 		    ((hstart) + (hlen)) <= (hdr + nr_bytes)) {	               \
469 			bit_offset = (hdr + nr_bytes - (hstart) - (hlen)) * 8; \
470 			npc_set_layer_mdata(mcam, (name), cfg, lid, lt, intf); \
471 			offset += bit_offset;				       \
472 			start_kwi += offset / 64;			       \
473 			offset %= 64;					       \
474 			npc_set_kw_masks(mcam, (name), (hlen) * 8,	       \
475 					 start_kwi, offset, intf);	       \
476 		}							       \
477 	}								       \
478 } while (0)
479 
480 	/* List LID, LTYPE, start offset from layer and length(in bytes) of
481 	 * packet header fields below.
482 	 * Example: Source IP is 4 bytes and starts at 12th byte of IP header
483 	 */
484 	NPC_SCAN_HDR(NPC_TOS, NPC_LID_LC, NPC_LT_LC_IP, 1, 1);
485 	NPC_SCAN_HDR(NPC_IPFRAG_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 6, 1);
486 	NPC_SCAN_HDR(NPC_SIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 12, 4);
487 	NPC_SCAN_HDR(NPC_DIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 16, 4);
488 	NPC_SCAN_HDR(NPC_IPFRAG_IPV6, NPC_LID_LC, NPC_LT_LC_IP6_EXT, 6, 1);
489 	if (rvu->hw->cap.npc_hash_extract) {
490 		if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][0])
491 			NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 4);
492 		else
493 			NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
494 
495 		if (mkex_hash->lid_lt_ld_hash_en[intf][lid][lt][1])
496 			NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 4);
497 		else
498 			NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
499 	} else {
500 		NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
501 		NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
502 	}
503 
504 	NPC_SCAN_HDR(NPC_SPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 0, 2);
505 	NPC_SCAN_HDR(NPC_DPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 2, 2);
506 	NPC_SCAN_HDR(NPC_SPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 0, 2);
507 	NPC_SCAN_HDR(NPC_DPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 2, 2);
508 	NPC_SCAN_HDR(NPC_SPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 0, 2);
509 	NPC_SCAN_HDR(NPC_DPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 2, 2);
510 	NPC_SCAN_HDR(NPC_ETYPE_ETHER, NPC_LID_LA, NPC_LT_LA_ETHER, 12, 2);
511 	NPC_SCAN_HDR(NPC_ETYPE_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 4, 2);
512 	NPC_SCAN_HDR(NPC_ETYPE_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 8, 2);
513 	NPC_SCAN_HDR(NPC_VLAN_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 2, 2);
514 	NPC_SCAN_HDR(NPC_VLAN_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 2, 2);
515 	NPC_SCAN_HDR(NPC_DMAC, NPC_LID_LA, la_ltype, la_start, 6);
516 	/* SMAC follows the DMAC(which is 6 bytes) */
517 	NPC_SCAN_HDR(NPC_SMAC, NPC_LID_LA, la_ltype, la_start + 6, 6);
518 	/* PF_FUNC is 2 bytes at 0th byte of NPC_LT_LA_IH_NIX_ETHER */
519 	NPC_SCAN_HDR(NPC_PF_FUNC, NPC_LID_LA, NPC_LT_LA_IH_NIX_ETHER, 0, 2);
520 }
521 
522 static void npc_set_features(struct rvu *rvu, int blkaddr, u8 intf)
523 {
524 	struct npc_mcam *mcam = &rvu->hw->mcam;
525 	u64 *features = &mcam->rx_features;
526 	u64 tcp_udp_sctp;
527 	int hdr;
528 
529 	if (is_npc_intf_tx(intf))
530 		features = &mcam->tx_features;
531 
532 	for (hdr = NPC_DMAC; hdr < NPC_HEADER_FIELDS_MAX; hdr++) {
533 		if (npc_check_field(rvu, blkaddr, hdr, intf))
534 			*features |= BIT_ULL(hdr);
535 	}
536 
537 	tcp_udp_sctp = BIT_ULL(NPC_SPORT_TCP) | BIT_ULL(NPC_SPORT_UDP) |
538 		       BIT_ULL(NPC_DPORT_TCP) | BIT_ULL(NPC_DPORT_UDP) |
539 		       BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP);
540 
541 	/* for tcp/udp/sctp corresponding layer type should be in the key */
542 	if (*features & tcp_udp_sctp) {
543 		if (!npc_check_field(rvu, blkaddr, NPC_LD, intf))
544 			*features &= ~tcp_udp_sctp;
545 		else
546 			*features |= BIT_ULL(NPC_IPPROTO_TCP) |
547 				     BIT_ULL(NPC_IPPROTO_UDP) |
548 				     BIT_ULL(NPC_IPPROTO_SCTP);
549 	}
550 
551 	/* for AH/ICMP/ICMPv6/, check if corresponding layer type is present in the key */
552 	if (npc_check_field(rvu, blkaddr, NPC_LD, intf)) {
553 		*features |= BIT_ULL(NPC_IPPROTO_AH);
554 		*features |= BIT_ULL(NPC_IPPROTO_ICMP);
555 		*features |= BIT_ULL(NPC_IPPROTO_ICMP6);
556 	}
557 
558 	/* for ESP, check if corresponding layer type is present in the key */
559 	if (npc_check_field(rvu, blkaddr, NPC_LE, intf))
560 		*features |= BIT_ULL(NPC_IPPROTO_ESP);
561 
562 	/* for vlan corresponding layer type should be in the key */
563 	if (*features & BIT_ULL(NPC_OUTER_VID))
564 		if (!npc_check_field(rvu, blkaddr, NPC_LB, intf))
565 			*features &= ~BIT_ULL(NPC_OUTER_VID);
566 
567 	/* for vlan ethertypes corresponding layer type should be in the key */
568 	if (npc_check_field(rvu, blkaddr, NPC_LB, intf))
569 		*features |= BIT_ULL(NPC_VLAN_ETYPE_CTAG) |
570 			     BIT_ULL(NPC_VLAN_ETYPE_STAG);
571 
572 	/* for L2M/L2B/L3M/L3B, check if the type is present in the key */
573 	if (npc_check_field(rvu, blkaddr, NPC_LXMB, intf))
574 		*features |= BIT_ULL(NPC_LXMB);
575 }
576 
577 /* Scan key extraction profile and record how fields of our interest
578  * fill the key structure. Also verify Channel and DMAC exists in
579  * key and not overwritten by other header fields.
580  */
581 static int npc_scan_kex(struct rvu *rvu, int blkaddr, u8 intf)
582 {
583 	struct npc_mcam *mcam = &rvu->hw->mcam;
584 	u8 lid, lt, ld, bitnr;
585 	u64 cfg, masked_cfg;
586 	u8 key_nibble = 0;
587 
588 	/* Scan and note how parse result is going to be in key.
589 	 * A bit set in PARSE_NIBBLE_ENA corresponds to a nibble from
590 	 * parse result in the key. The enabled nibbles from parse result
591 	 * will be concatenated in key.
592 	 */
593 	cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(intf));
594 	masked_cfg = cfg & NPC_PARSE_NIBBLE;
595 	for_each_set_bit(bitnr, (unsigned long *)&masked_cfg, 31) {
596 		npc_scan_parse_result(mcam, bitnr, key_nibble, intf);
597 		key_nibble++;
598 	}
599 
600 	/* Ignore exact match bits for mcam entries except the first rule
601 	 * which is drop on hit. This first rule is configured explitcitly by
602 	 * exact match code.
603 	 */
604 	masked_cfg = cfg & NPC_EXACT_NIBBLE;
605 	bitnr = NPC_EXACT_NIBBLE_START;
606 	for_each_set_bit_from(bitnr, (unsigned long *)&masked_cfg, NPC_EXACT_NIBBLE_END + 1) {
607 		npc_scan_exact_result(mcam, bitnr, key_nibble, intf);
608 		key_nibble++;
609 	}
610 
611 	/* Scan and note how layer data is going to be in key */
612 	for (lid = 0; lid < NPC_MAX_LID; lid++) {
613 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
614 			for (ld = 0; ld < NPC_MAX_LD; ld++) {
615 				cfg = rvu_read64(rvu, blkaddr,
616 						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
617 						 (intf, lid, lt, ld));
618 				if (!FIELD_GET(NPC_LDATA_EN, cfg))
619 					continue;
620 				npc_scan_ldata(rvu, blkaddr, lid, lt, cfg,
621 					       intf);
622 			}
623 		}
624 	}
625 
626 	return 0;
627 }
628 
629 static int npc_scan_verify_kex(struct rvu *rvu, int blkaddr)
630 {
631 	int err;
632 
633 	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_RX);
634 	if (err)
635 		return err;
636 
637 	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_TX);
638 	if (err)
639 		return err;
640 
641 	/* Channel is mandatory */
642 	if (!npc_is_field_present(rvu, NPC_CHAN, NIX_INTF_RX)) {
643 		dev_err(rvu->dev, "Channel not present in Key\n");
644 		return -EINVAL;
645 	}
646 	/* check that none of the fields overwrite channel */
647 	if (npc_check_overlap(rvu, blkaddr, NPC_CHAN, 0, NIX_INTF_RX)) {
648 		dev_err(rvu->dev, "Channel cannot be overwritten\n");
649 		return -EINVAL;
650 	}
651 
652 	npc_set_features(rvu, blkaddr, NIX_INTF_TX);
653 	npc_set_features(rvu, blkaddr, NIX_INTF_RX);
654 	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_TX);
655 	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_RX);
656 
657 	return 0;
658 }
659 
660 int npc_flow_steering_init(struct rvu *rvu, int blkaddr)
661 {
662 	struct npc_mcam *mcam = &rvu->hw->mcam;
663 
664 	INIT_LIST_HEAD(&mcam->mcam_rules);
665 
666 	return npc_scan_verify_kex(rvu, blkaddr);
667 }
668 
669 static int npc_check_unsupported_flows(struct rvu *rvu, u64 features, u8 intf)
670 {
671 	struct npc_mcam *mcam = &rvu->hw->mcam;
672 	u64 *mcam_features = &mcam->rx_features;
673 	u64 unsupported;
674 	u8 bit;
675 
676 	if (is_npc_intf_tx(intf))
677 		mcam_features = &mcam->tx_features;
678 
679 	unsupported = (*mcam_features ^ features) & ~(*mcam_features);
680 	if (unsupported) {
681 		dev_warn(rvu->dev, "Unsupported flow(s):\n");
682 		for_each_set_bit(bit, (unsigned long *)&unsupported, 64)
683 			dev_warn(rvu->dev, "%s ", npc_get_field_name(bit));
684 		return -EOPNOTSUPP;
685 	}
686 
687 	return 0;
688 }
689 
690 /* npc_update_entry - Based on the masks generated during
691  * the key scanning, updates the given entry with value and
692  * masks for the field of interest. Maximum 16 bytes of a packet
693  * header can be extracted by HW hence lo and hi are sufficient.
694  * When field bytes are less than or equal to 8 then hi should be
695  * 0 for value and mask.
696  *
697  * If exact match of value is required then mask should be all 1's.
698  * If any bits in mask are 0 then corresponding bits in value are
699  * dont care.
700  */
701 void npc_update_entry(struct rvu *rvu, enum key_fields type,
702 		      struct mcam_entry *entry, u64 val_lo,
703 		      u64 val_hi, u64 mask_lo, u64 mask_hi, u8 intf)
704 {
705 	struct npc_mcam *mcam = &rvu->hw->mcam;
706 	struct mcam_entry dummy = { {0} };
707 	struct npc_key_field *field;
708 	u64 kw1, kw2, kw3;
709 	u8 shift;
710 	int i;
711 
712 	field = &mcam->rx_key_fields[type];
713 	if (is_npc_intf_tx(intf))
714 		field = &mcam->tx_key_fields[type];
715 
716 	if (!field->nr_kws)
717 		return;
718 
719 	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
720 		if (!field->kw_mask[i])
721 			continue;
722 		/* place key value in kw[x] */
723 		shift = __ffs64(field->kw_mask[i]);
724 		/* update entry value */
725 		kw1 = (val_lo << shift) & field->kw_mask[i];
726 		dummy.kw[i] = kw1;
727 		/* update entry mask */
728 		kw1 = (mask_lo << shift) & field->kw_mask[i];
729 		dummy.kw_mask[i] = kw1;
730 
731 		if (field->nr_kws == 1)
732 			break;
733 		/* place remaining bits of key value in kw[x + 1] */
734 		if (field->nr_kws == 2) {
735 			/* update entry value */
736 			kw2 = shift ? val_lo >> (64 - shift) : 0;
737 			kw2 |= (val_hi << shift);
738 			kw2 &= field->kw_mask[i + 1];
739 			dummy.kw[i + 1] = kw2;
740 			/* update entry mask */
741 			kw2 = shift ? mask_lo >> (64 - shift) : 0;
742 			kw2 |= (mask_hi << shift);
743 			kw2 &= field->kw_mask[i + 1];
744 			dummy.kw_mask[i + 1] = kw2;
745 			break;
746 		}
747 		/* place remaining bits of key value in kw[x + 1], kw[x + 2] */
748 		if (field->nr_kws == 3) {
749 			/* update entry value */
750 			kw2 = shift ? val_lo >> (64 - shift) : 0;
751 			kw2 |= (val_hi << shift);
752 			kw2 &= field->kw_mask[i + 1];
753 			kw3 = shift ? val_hi >> (64 - shift) : 0;
754 			kw3 &= field->kw_mask[i + 2];
755 			dummy.kw[i + 1] = kw2;
756 			dummy.kw[i + 2] = kw3;
757 			/* update entry mask */
758 			kw2 = shift ? mask_lo >> (64 - shift) : 0;
759 			kw2 |= (mask_hi << shift);
760 			kw2 &= field->kw_mask[i + 1];
761 			kw3 = shift ? mask_hi >> (64 - shift) : 0;
762 			kw3 &= field->kw_mask[i + 2];
763 			dummy.kw_mask[i + 1] = kw2;
764 			dummy.kw_mask[i + 2] = kw3;
765 			break;
766 		}
767 	}
768 	/* dummy is ready with values and masks for given key
769 	 * field now clear and update input entry with those
770 	 */
771 	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
772 		if (!field->kw_mask[i])
773 			continue;
774 		entry->kw[i] &= ~field->kw_mask[i];
775 		entry->kw_mask[i] &= ~field->kw_mask[i];
776 
777 		entry->kw[i] |= dummy.kw[i];
778 		entry->kw_mask[i] |= dummy.kw_mask[i];
779 	}
780 }
781 
782 static void npc_update_ipv6_flow(struct rvu *rvu, struct mcam_entry *entry,
783 				 u64 features, struct flow_msg *pkt,
784 				 struct flow_msg *mask,
785 				 struct rvu_npc_mcam_rule *output, u8 intf)
786 {
787 	u32 src_ip[IPV6_WORDS], src_ip_mask[IPV6_WORDS];
788 	u32 dst_ip[IPV6_WORDS], dst_ip_mask[IPV6_WORDS];
789 	struct flow_msg *opkt = &output->packet;
790 	struct flow_msg *omask = &output->mask;
791 	u64 mask_lo, mask_hi;
792 	u64 val_lo, val_hi;
793 
794 	/* For an ipv6 address fe80::2c68:63ff:fe5e:2d0a the packet
795 	 * values to be programmed in MCAM should as below:
796 	 * val_high: 0xfe80000000000000
797 	 * val_low: 0x2c6863fffe5e2d0a
798 	 */
799 	if (features & BIT_ULL(NPC_SIP_IPV6)) {
800 		be32_to_cpu_array(src_ip_mask, mask->ip6src, IPV6_WORDS);
801 		be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS);
802 
803 		mask_hi = (u64)src_ip_mask[0] << 32 | src_ip_mask[1];
804 		mask_lo = (u64)src_ip_mask[2] << 32 | src_ip_mask[3];
805 		val_hi = (u64)src_ip[0] << 32 | src_ip[1];
806 		val_lo = (u64)src_ip[2] << 32 | src_ip[3];
807 
808 		npc_update_entry(rvu, NPC_SIP_IPV6, entry, val_lo, val_hi,
809 				 mask_lo, mask_hi, intf);
810 		memcpy(opkt->ip6src, pkt->ip6src, sizeof(opkt->ip6src));
811 		memcpy(omask->ip6src, mask->ip6src, sizeof(omask->ip6src));
812 	}
813 	if (features & BIT_ULL(NPC_DIP_IPV6)) {
814 		be32_to_cpu_array(dst_ip_mask, mask->ip6dst, IPV6_WORDS);
815 		be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS);
816 
817 		mask_hi = (u64)dst_ip_mask[0] << 32 | dst_ip_mask[1];
818 		mask_lo = (u64)dst_ip_mask[2] << 32 | dst_ip_mask[3];
819 		val_hi = (u64)dst_ip[0] << 32 | dst_ip[1];
820 		val_lo = (u64)dst_ip[2] << 32 | dst_ip[3];
821 
822 		npc_update_entry(rvu, NPC_DIP_IPV6, entry, val_lo, val_hi,
823 				 mask_lo, mask_hi, intf);
824 		memcpy(opkt->ip6dst, pkt->ip6dst, sizeof(opkt->ip6dst));
825 		memcpy(omask->ip6dst, mask->ip6dst, sizeof(omask->ip6dst));
826 	}
827 }
828 
829 static void npc_update_vlan_features(struct rvu *rvu, struct mcam_entry *entry,
830 				     u64 features, u8 intf)
831 {
832 	bool ctag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_CTAG));
833 	bool stag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_STAG));
834 	bool vid = !!(features & BIT_ULL(NPC_OUTER_VID));
835 
836 	/* If only VLAN id is given then always match outer VLAN id */
837 	if (vid && !ctag && !stag) {
838 		npc_update_entry(rvu, NPC_LB, entry,
839 				 NPC_LT_LB_STAG_QINQ | NPC_LT_LB_CTAG, 0,
840 				 NPC_LT_LB_STAG_QINQ & NPC_LT_LB_CTAG, 0, intf);
841 		return;
842 	}
843 	if (ctag)
844 		npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_CTAG, 0,
845 				 ~0ULL, 0, intf);
846 	if (stag)
847 		npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_STAG_QINQ, 0,
848 				 ~0ULL, 0, intf);
849 }
850 
851 static void npc_update_flow(struct rvu *rvu, struct mcam_entry *entry,
852 			    u64 features, struct flow_msg *pkt,
853 			    struct flow_msg *mask,
854 			    struct rvu_npc_mcam_rule *output, u8 intf,
855 			    int blkaddr)
856 {
857 	u64 dmac_mask = ether_addr_to_u64(mask->dmac);
858 	u64 smac_mask = ether_addr_to_u64(mask->smac);
859 	u64 dmac_val = ether_addr_to_u64(pkt->dmac);
860 	u64 smac_val = ether_addr_to_u64(pkt->smac);
861 	struct flow_msg *opkt = &output->packet;
862 	struct flow_msg *omask = &output->mask;
863 
864 	if (!features)
865 		return;
866 
867 	/* For tcp/udp/sctp LTYPE should be present in entry */
868 	if (features & BIT_ULL(NPC_IPPROTO_TCP))
869 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_TCP,
870 				 0, ~0ULL, 0, intf);
871 	if (features & BIT_ULL(NPC_IPPROTO_UDP))
872 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_UDP,
873 				 0, ~0ULL, 0, intf);
874 	if (features & BIT_ULL(NPC_IPPROTO_SCTP))
875 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_SCTP,
876 				 0, ~0ULL, 0, intf);
877 	if (features & BIT_ULL(NPC_IPPROTO_ICMP))
878 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP,
879 				 0, ~0ULL, 0, intf);
880 	if (features & BIT_ULL(NPC_IPPROTO_ICMP6))
881 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP6,
882 				 0, ~0ULL, 0, intf);
883 
884 	/* For AH, LTYPE should be present in entry */
885 	if (features & BIT_ULL(NPC_IPPROTO_AH))
886 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_AH,
887 				 0, ~0ULL, 0, intf);
888 	/* For ESP, LTYPE should be present in entry */
889 	if (features & BIT_ULL(NPC_IPPROTO_ESP))
890 		npc_update_entry(rvu, NPC_LE, entry, NPC_LT_LE_ESP,
891 				 0, ~0ULL, 0, intf);
892 
893 	if (features & BIT_ULL(NPC_LXMB)) {
894 		output->lxmb = is_broadcast_ether_addr(pkt->dmac) ? 2 : 1;
895 		npc_update_entry(rvu, NPC_LXMB, entry, output->lxmb, 0,
896 				 output->lxmb, 0, intf);
897 	}
898 #define NPC_WRITE_FLOW(field, member, val_lo, val_hi, mask_lo, mask_hi)	      \
899 do {									      \
900 	if (features & BIT_ULL((field))) {				      \
901 		npc_update_entry(rvu, (field), entry, (val_lo), (val_hi),     \
902 				 (mask_lo), (mask_hi), intf);		      \
903 		memcpy(&opkt->member, &pkt->member, sizeof(pkt->member));     \
904 		memcpy(&omask->member, &mask->member, sizeof(mask->member));  \
905 	}								      \
906 } while (0)
907 
908 	NPC_WRITE_FLOW(NPC_DMAC, dmac, dmac_val, 0, dmac_mask, 0);
909 
910 	NPC_WRITE_FLOW(NPC_SMAC, smac, smac_val, 0, smac_mask, 0);
911 	NPC_WRITE_FLOW(NPC_ETYPE, etype, ntohs(pkt->etype), 0,
912 		       ntohs(mask->etype), 0);
913 	NPC_WRITE_FLOW(NPC_TOS, tos, pkt->tos, 0, mask->tos, 0);
914 	NPC_WRITE_FLOW(NPC_IPFRAG_IPV4, ip_flag, pkt->ip_flag, 0,
915 		       mask->ip_flag, 0);
916 	NPC_WRITE_FLOW(NPC_SIP_IPV4, ip4src, ntohl(pkt->ip4src), 0,
917 		       ntohl(mask->ip4src), 0);
918 	NPC_WRITE_FLOW(NPC_DIP_IPV4, ip4dst, ntohl(pkt->ip4dst), 0,
919 		       ntohl(mask->ip4dst), 0);
920 	NPC_WRITE_FLOW(NPC_SPORT_TCP, sport, ntohs(pkt->sport), 0,
921 		       ntohs(mask->sport), 0);
922 	NPC_WRITE_FLOW(NPC_SPORT_UDP, sport, ntohs(pkt->sport), 0,
923 		       ntohs(mask->sport), 0);
924 	NPC_WRITE_FLOW(NPC_DPORT_TCP, dport, ntohs(pkt->dport), 0,
925 		       ntohs(mask->dport), 0);
926 	NPC_WRITE_FLOW(NPC_DPORT_UDP, dport, ntohs(pkt->dport), 0,
927 		       ntohs(mask->dport), 0);
928 	NPC_WRITE_FLOW(NPC_SPORT_SCTP, sport, ntohs(pkt->sport), 0,
929 		       ntohs(mask->sport), 0);
930 	NPC_WRITE_FLOW(NPC_DPORT_SCTP, dport, ntohs(pkt->dport), 0,
931 		       ntohs(mask->dport), 0);
932 
933 	NPC_WRITE_FLOW(NPC_OUTER_VID, vlan_tci, ntohs(pkt->vlan_tci), 0,
934 		       ntohs(mask->vlan_tci), 0);
935 
936 	NPC_WRITE_FLOW(NPC_IPFRAG_IPV6, next_header, pkt->next_header, 0,
937 		       mask->next_header, 0);
938 	npc_update_ipv6_flow(rvu, entry, features, pkt, mask, output, intf);
939 	npc_update_vlan_features(rvu, entry, features, intf);
940 
941 	npc_update_field_hash(rvu, intf, entry, blkaddr, features,
942 			      pkt, mask, opkt, omask);
943 }
944 
945 static struct rvu_npc_mcam_rule *rvu_mcam_find_rule(struct npc_mcam *mcam, u16 entry)
946 {
947 	struct rvu_npc_mcam_rule *iter;
948 
949 	mutex_lock(&mcam->lock);
950 	list_for_each_entry(iter, &mcam->mcam_rules, list) {
951 		if (iter->entry == entry) {
952 			mutex_unlock(&mcam->lock);
953 			return iter;
954 		}
955 	}
956 	mutex_unlock(&mcam->lock);
957 
958 	return NULL;
959 }
960 
961 static void rvu_mcam_add_rule(struct npc_mcam *mcam,
962 			      struct rvu_npc_mcam_rule *rule)
963 {
964 	struct list_head *head = &mcam->mcam_rules;
965 	struct rvu_npc_mcam_rule *iter;
966 
967 	mutex_lock(&mcam->lock);
968 	list_for_each_entry(iter, &mcam->mcam_rules, list) {
969 		if (iter->entry > rule->entry)
970 			break;
971 		head = &iter->list;
972 	}
973 
974 	list_add(&rule->list, head);
975 	mutex_unlock(&mcam->lock);
976 }
977 
978 static void rvu_mcam_remove_counter_from_rule(struct rvu *rvu, u16 pcifunc,
979 					      struct rvu_npc_mcam_rule *rule)
980 {
981 	struct npc_mcam_oper_counter_req free_req = { 0 };
982 	struct msg_rsp free_rsp;
983 
984 	if (!rule->has_cntr)
985 		return;
986 
987 	free_req.hdr.pcifunc = pcifunc;
988 	free_req.cntr = rule->cntr;
989 
990 	rvu_mbox_handler_npc_mcam_free_counter(rvu, &free_req, &free_rsp);
991 	rule->has_cntr = false;
992 }
993 
994 static void rvu_mcam_add_counter_to_rule(struct rvu *rvu, u16 pcifunc,
995 					 struct rvu_npc_mcam_rule *rule,
996 					 struct npc_install_flow_rsp *rsp)
997 {
998 	struct npc_mcam_alloc_counter_req cntr_req = { 0 };
999 	struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
1000 	int err;
1001 
1002 	cntr_req.hdr.pcifunc = pcifunc;
1003 	cntr_req.contig = true;
1004 	cntr_req.count = 1;
1005 
1006 	/* we try to allocate a counter to track the stats of this
1007 	 * rule. If counter could not be allocated then proceed
1008 	 * without counter because counters are limited than entries.
1009 	 */
1010 	err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req,
1011 						      &cntr_rsp);
1012 	if (!err && cntr_rsp.count) {
1013 		rule->cntr = cntr_rsp.cntr;
1014 		rule->has_cntr = true;
1015 		rsp->counter = rule->cntr;
1016 	} else {
1017 		rsp->counter = err;
1018 	}
1019 }
1020 
1021 static void npc_update_rx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
1022 				struct mcam_entry *entry,
1023 				struct npc_install_flow_req *req,
1024 				u16 target, bool pf_set_vfs_mac)
1025 {
1026 	struct rvu_switch *rswitch = &rvu->rswitch;
1027 	struct nix_rx_action action;
1028 
1029 	if (rswitch->mode == DEVLINK_ESWITCH_MODE_SWITCHDEV && pf_set_vfs_mac)
1030 		req->chan_mask = 0x0; /* Do not care channel */
1031 
1032 	npc_update_entry(rvu, NPC_CHAN, entry, req->channel, 0, req->chan_mask,
1033 			 0, NIX_INTF_RX);
1034 
1035 	*(u64 *)&action = 0x00;
1036 	action.pf_func = target;
1037 	action.op = req->op;
1038 	action.index = req->index;
1039 	action.match_id = req->match_id;
1040 	action.flow_key_alg = req->flow_key_alg;
1041 
1042 	if (req->op == NIX_RX_ACTION_DEFAULT) {
1043 		if (pfvf->def_ucast_rule) {
1044 			action = pfvf->def_ucast_rule->rx_action;
1045 		} else {
1046 			/* For profiles which do not extract DMAC, the default
1047 			 * unicast entry is unused. Hence modify action for the
1048 			 * requests which use same action as default unicast
1049 			 * entry
1050 			 */
1051 			*(u64 *)&action = 0;
1052 			action.pf_func = target;
1053 			action.op = NIX_RX_ACTIONOP_UCAST;
1054 		}
1055 	}
1056 
1057 	entry->action = *(u64 *)&action;
1058 
1059 	/* VTAG0 starts at 0th byte of LID_B.
1060 	 * VTAG1 starts at 4th byte of LID_B.
1061 	 */
1062 	entry->vtag_action = FIELD_PREP(RX_VTAG0_VALID_BIT, req->vtag0_valid) |
1063 			     FIELD_PREP(RX_VTAG0_TYPE_MASK, req->vtag0_type) |
1064 			     FIELD_PREP(RX_VTAG0_LID_MASK, NPC_LID_LB) |
1065 			     FIELD_PREP(RX_VTAG0_RELPTR_MASK, 0) |
1066 			     FIELD_PREP(RX_VTAG1_VALID_BIT, req->vtag1_valid) |
1067 			     FIELD_PREP(RX_VTAG1_TYPE_MASK, req->vtag1_type) |
1068 			     FIELD_PREP(RX_VTAG1_LID_MASK, NPC_LID_LB) |
1069 			     FIELD_PREP(RX_VTAG1_RELPTR_MASK, 4);
1070 }
1071 
1072 static void npc_update_tx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
1073 				struct mcam_entry *entry,
1074 				struct npc_install_flow_req *req, u16 target)
1075 {
1076 	struct nix_tx_action action;
1077 	u64 mask = ~0ULL;
1078 
1079 	/* If AF is installing then do not care about
1080 	 * PF_FUNC in Send Descriptor
1081 	 */
1082 	if (is_pffunc_af(req->hdr.pcifunc))
1083 		mask = 0;
1084 
1085 	npc_update_entry(rvu, NPC_PF_FUNC, entry, (__force u16)htons(target),
1086 			 0, mask, 0, NIX_INTF_TX);
1087 
1088 	*(u64 *)&action = 0x00;
1089 	action.op = req->op;
1090 	action.index = req->index;
1091 	action.match_id = req->match_id;
1092 
1093 	entry->action = *(u64 *)&action;
1094 
1095 	/* VTAG0 starts at 0th byte of LID_B.
1096 	 * VTAG1 starts at 4th byte of LID_B.
1097 	 */
1098 	entry->vtag_action = FIELD_PREP(TX_VTAG0_DEF_MASK, req->vtag0_def) |
1099 			     FIELD_PREP(TX_VTAG0_OP_MASK, req->vtag0_op) |
1100 			     FIELD_PREP(TX_VTAG0_LID_MASK, NPC_LID_LA) |
1101 			     FIELD_PREP(TX_VTAG0_RELPTR_MASK, 20) |
1102 			     FIELD_PREP(TX_VTAG1_DEF_MASK, req->vtag1_def) |
1103 			     FIELD_PREP(TX_VTAG1_OP_MASK, req->vtag1_op) |
1104 			     FIELD_PREP(TX_VTAG1_LID_MASK, NPC_LID_LA) |
1105 			     FIELD_PREP(TX_VTAG1_RELPTR_MASK, 24);
1106 }
1107 
1108 static int npc_install_flow(struct rvu *rvu, int blkaddr, u16 target,
1109 			    int nixlf, struct rvu_pfvf *pfvf,
1110 			    struct npc_install_flow_req *req,
1111 			    struct npc_install_flow_rsp *rsp, bool enable,
1112 			    bool pf_set_vfs_mac)
1113 {
1114 	struct rvu_npc_mcam_rule *def_ucast_rule = pfvf->def_ucast_rule;
1115 	u64 features, installed_features, missing_features = 0;
1116 	struct npc_mcam_write_entry_req write_req = { 0 };
1117 	struct npc_mcam *mcam = &rvu->hw->mcam;
1118 	struct rvu_npc_mcam_rule dummy = { 0 };
1119 	struct rvu_npc_mcam_rule *rule;
1120 	u16 owner = req->hdr.pcifunc;
1121 	struct msg_rsp write_rsp;
1122 	struct mcam_entry *entry;
1123 	bool new = false;
1124 	u16 entry_index;
1125 	int err;
1126 
1127 	installed_features = req->features;
1128 	features = req->features;
1129 	entry = &write_req.entry_data;
1130 	entry_index = req->entry;
1131 
1132 	npc_update_flow(rvu, entry, features, &req->packet, &req->mask, &dummy,
1133 			req->intf, blkaddr);
1134 
1135 	if (is_npc_intf_rx(req->intf))
1136 		npc_update_rx_entry(rvu, pfvf, entry, req, target, pf_set_vfs_mac);
1137 	else
1138 		npc_update_tx_entry(rvu, pfvf, entry, req, target);
1139 
1140 	/* Default unicast rules do not exist for TX */
1141 	if (is_npc_intf_tx(req->intf))
1142 		goto find_rule;
1143 
1144 	if (req->default_rule) {
1145 		entry_index = npc_get_nixlf_mcam_index(mcam, target, nixlf,
1146 						       NIXLF_UCAST_ENTRY);
1147 		enable = is_mcam_entry_enabled(rvu, mcam, blkaddr, entry_index);
1148 	}
1149 
1150 	/* update mcam entry with default unicast rule attributes */
1151 	if (def_ucast_rule && (req->default_rule && req->append)) {
1152 		missing_features = (def_ucast_rule->features ^ features) &
1153 					def_ucast_rule->features;
1154 		if (missing_features)
1155 			npc_update_flow(rvu, entry, missing_features,
1156 					&def_ucast_rule->packet,
1157 					&def_ucast_rule->mask,
1158 					&dummy, req->intf,
1159 					blkaddr);
1160 		installed_features = req->features | missing_features;
1161 	}
1162 
1163 find_rule:
1164 	rule = rvu_mcam_find_rule(mcam, entry_index);
1165 	if (!rule) {
1166 		rule = kzalloc(sizeof(*rule), GFP_KERNEL);
1167 		if (!rule)
1168 			return -ENOMEM;
1169 		new = true;
1170 	}
1171 
1172 	/* allocate new counter if rule has no counter */
1173 	if (!req->default_rule && req->set_cntr && !rule->has_cntr)
1174 		rvu_mcam_add_counter_to_rule(rvu, owner, rule, rsp);
1175 
1176 	/* if user wants to delete an existing counter for a rule then
1177 	 * free the counter
1178 	 */
1179 	if (!req->set_cntr && rule->has_cntr)
1180 		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1181 
1182 	write_req.hdr.pcifunc = owner;
1183 
1184 	/* AF owns the default rules so change the owner just to relax
1185 	 * the checks in rvu_mbox_handler_npc_mcam_write_entry
1186 	 */
1187 	if (req->default_rule)
1188 		write_req.hdr.pcifunc = 0;
1189 
1190 	write_req.entry = entry_index;
1191 	write_req.intf = req->intf;
1192 	write_req.enable_entry = (u8)enable;
1193 	/* if counter is available then clear and use it */
1194 	if (req->set_cntr && rule->has_cntr) {
1195 		rvu_write64(rvu, blkaddr, NPC_AF_MATCH_STATX(rule->cntr), 0x00);
1196 		write_req.set_cntr = 1;
1197 		write_req.cntr = rule->cntr;
1198 	}
1199 
1200 	/* update rule */
1201 	memcpy(&rule->packet, &dummy.packet, sizeof(rule->packet));
1202 	memcpy(&rule->mask, &dummy.mask, sizeof(rule->mask));
1203 	rule->entry = entry_index;
1204 	memcpy(&rule->rx_action, &entry->action, sizeof(struct nix_rx_action));
1205 	if (is_npc_intf_tx(req->intf))
1206 		memcpy(&rule->tx_action, &entry->action,
1207 		       sizeof(struct nix_tx_action));
1208 	rule->vtag_action = entry->vtag_action;
1209 	rule->features = installed_features;
1210 	rule->default_rule = req->default_rule;
1211 	rule->owner = owner;
1212 	rule->enable = enable;
1213 	rule->chan_mask = write_req.entry_data.kw_mask[0] & NPC_KEX_CHAN_MASK;
1214 	rule->chan = write_req.entry_data.kw[0] & NPC_KEX_CHAN_MASK;
1215 	rule->chan &= rule->chan_mask;
1216 	rule->lxmb = dummy.lxmb;
1217 	if (is_npc_intf_tx(req->intf))
1218 		rule->intf = pfvf->nix_tx_intf;
1219 	else
1220 		rule->intf = pfvf->nix_rx_intf;
1221 
1222 	if (new)
1223 		rvu_mcam_add_rule(mcam, rule);
1224 	if (req->default_rule)
1225 		pfvf->def_ucast_rule = rule;
1226 
1227 	/* write to mcam entry registers */
1228 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req,
1229 						    &write_rsp);
1230 	if (err) {
1231 		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1232 		if (new) {
1233 			list_del(&rule->list);
1234 			kfree(rule);
1235 		}
1236 		return err;
1237 	}
1238 
1239 	/* VF's MAC address is being changed via PF  */
1240 	if (pf_set_vfs_mac) {
1241 		ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1242 		ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1243 		set_bit(PF_SET_VF_MAC, &pfvf->flags);
1244 	}
1245 
1246 	if (test_bit(PF_SET_VF_CFG, &pfvf->flags) &&
1247 	    req->vtag0_type == NIX_AF_LFX_RX_VTAG_TYPE7)
1248 		rule->vfvlan_cfg = true;
1249 
1250 	if (is_npc_intf_rx(req->intf) && req->match_id &&
1251 	    (req->op == NIX_RX_ACTIONOP_UCAST || req->op == NIX_RX_ACTIONOP_RSS))
1252 		return rvu_nix_setup_ratelimit_aggr(rvu, req->hdr.pcifunc,
1253 					     req->index, req->match_id);
1254 
1255 	return 0;
1256 }
1257 
1258 int rvu_mbox_handler_npc_install_flow(struct rvu *rvu,
1259 				      struct npc_install_flow_req *req,
1260 				      struct npc_install_flow_rsp *rsp)
1261 {
1262 	bool from_vf = !!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK);
1263 	struct rvu_switch *rswitch = &rvu->rswitch;
1264 	int blkaddr, nixlf, err;
1265 	struct rvu_pfvf *pfvf;
1266 	bool pf_set_vfs_mac = false;
1267 	bool enable = true;
1268 	u16 target;
1269 
1270 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1271 	if (blkaddr < 0) {
1272 		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1273 		return NPC_MCAM_INVALID_REQ;
1274 	}
1275 
1276 	if (!is_npc_interface_valid(rvu, req->intf))
1277 		return NPC_FLOW_INTF_INVALID;
1278 
1279 	/* If DMAC is not extracted in MKEX, rules installed by AF
1280 	 * can rely on L2MB bit set by hardware protocol checker for
1281 	 * broadcast and multicast addresses.
1282 	 */
1283 	if (npc_check_field(rvu, blkaddr, NPC_DMAC, req->intf))
1284 		goto process_flow;
1285 
1286 	if (is_pffunc_af(req->hdr.pcifunc) &&
1287 	    req->features & BIT_ULL(NPC_DMAC)) {
1288 		if (is_unicast_ether_addr(req->packet.dmac)) {
1289 			dev_warn(rvu->dev,
1290 				 "%s: mkex profile does not support ucast flow\n",
1291 				 __func__);
1292 			return NPC_FLOW_NOT_SUPPORTED;
1293 		}
1294 
1295 		if (!npc_is_field_present(rvu, NPC_LXMB, req->intf)) {
1296 			dev_warn(rvu->dev,
1297 				 "%s: mkex profile does not support bcast/mcast flow",
1298 				 __func__);
1299 			return NPC_FLOW_NOT_SUPPORTED;
1300 		}
1301 
1302 		/* Modify feature to use LXMB instead of DMAC */
1303 		req->features &= ~BIT_ULL(NPC_DMAC);
1304 		req->features |= BIT_ULL(NPC_LXMB);
1305 	}
1306 
1307 process_flow:
1308 	if (from_vf && req->default_rule)
1309 		return NPC_FLOW_VF_PERM_DENIED;
1310 
1311 	/* Each PF/VF info is maintained in struct rvu_pfvf.
1312 	 * rvu_pfvf for the target PF/VF needs to be retrieved
1313 	 * hence modify pcifunc accordingly.
1314 	 */
1315 
1316 	/* AF installing for a PF/VF */
1317 	if (!req->hdr.pcifunc)
1318 		target = req->vf;
1319 	/* PF installing for its VF */
1320 	else if (!from_vf && req->vf) {
1321 		target = (req->hdr.pcifunc & ~RVU_PFVF_FUNC_MASK) | req->vf;
1322 		pf_set_vfs_mac = req->default_rule &&
1323 				(req->features & BIT_ULL(NPC_DMAC));
1324 	}
1325 	/* msg received from PF/VF */
1326 	else
1327 		target = req->hdr.pcifunc;
1328 
1329 	/* ignore chan_mask in case pf func is not AF, revisit later */
1330 	if (!is_pffunc_af(req->hdr.pcifunc))
1331 		req->chan_mask = 0xFFF;
1332 
1333 	err = npc_check_unsupported_flows(rvu, req->features, req->intf);
1334 	if (err)
1335 		return NPC_FLOW_NOT_SUPPORTED;
1336 
1337 	pfvf = rvu_get_pfvf(rvu, target);
1338 
1339 	/* PF installing for its VF */
1340 	if (req->hdr.pcifunc && !from_vf && req->vf)
1341 		set_bit(PF_SET_VF_CFG, &pfvf->flags);
1342 
1343 	/* update req destination mac addr */
1344 	if ((req->features & BIT_ULL(NPC_DMAC)) && is_npc_intf_rx(req->intf) &&
1345 	    is_zero_ether_addr(req->packet.dmac)) {
1346 		ether_addr_copy(req->packet.dmac, pfvf->mac_addr);
1347 		eth_broadcast_addr((u8 *)&req->mask.dmac);
1348 	}
1349 
1350 	/* Proceed if NIXLF is attached or not for TX rules */
1351 	err = nix_get_nixlf(rvu, target, &nixlf, NULL);
1352 	if (err && is_npc_intf_rx(req->intf) && !pf_set_vfs_mac)
1353 		return NPC_FLOW_NO_NIXLF;
1354 
1355 	/* don't enable rule when nixlf not attached or initialized */
1356 	if (!(is_nixlf_attached(rvu, target) &&
1357 	      test_bit(NIXLF_INITIALIZED, &pfvf->flags)))
1358 		enable = false;
1359 
1360 	/* Packets reaching NPC in Tx path implies that a
1361 	 * NIXLF is properly setup and transmitting.
1362 	 * Hence rules can be enabled for Tx.
1363 	 */
1364 	if (is_npc_intf_tx(req->intf))
1365 		enable = true;
1366 
1367 	/* Do not allow requests from uninitialized VFs */
1368 	if (from_vf && !enable)
1369 		return NPC_FLOW_VF_NOT_INIT;
1370 
1371 	/* PF sets VF mac & VF NIXLF is not attached, update the mac addr */
1372 	if (pf_set_vfs_mac && !enable) {
1373 		ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1374 		ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1375 		set_bit(PF_SET_VF_MAC, &pfvf->flags);
1376 		return 0;
1377 	}
1378 
1379 	mutex_lock(&rswitch->switch_lock);
1380 	err = npc_install_flow(rvu, blkaddr, target, nixlf, pfvf,
1381 			       req, rsp, enable, pf_set_vfs_mac);
1382 	mutex_unlock(&rswitch->switch_lock);
1383 
1384 	return err;
1385 }
1386 
1387 static int npc_delete_flow(struct rvu *rvu, struct rvu_npc_mcam_rule *rule,
1388 			   u16 pcifunc)
1389 {
1390 	struct npc_mcam_ena_dis_entry_req dis_req = { 0 };
1391 	struct msg_rsp dis_rsp;
1392 
1393 	if (rule->default_rule)
1394 		return 0;
1395 
1396 	if (rule->has_cntr)
1397 		rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule);
1398 
1399 	dis_req.hdr.pcifunc = pcifunc;
1400 	dis_req.entry = rule->entry;
1401 
1402 	list_del(&rule->list);
1403 	kfree(rule);
1404 
1405 	return rvu_mbox_handler_npc_mcam_dis_entry(rvu, &dis_req, &dis_rsp);
1406 }
1407 
1408 int rvu_mbox_handler_npc_delete_flow(struct rvu *rvu,
1409 				     struct npc_delete_flow_req *req,
1410 				     struct msg_rsp *rsp)
1411 {
1412 	struct npc_mcam *mcam = &rvu->hw->mcam;
1413 	struct rvu_npc_mcam_rule *iter, *tmp;
1414 	u16 pcifunc = req->hdr.pcifunc;
1415 	struct list_head del_list;
1416 
1417 	INIT_LIST_HEAD(&del_list);
1418 
1419 	mutex_lock(&mcam->lock);
1420 	list_for_each_entry_safe(iter, tmp, &mcam->mcam_rules, list) {
1421 		if (iter->owner == pcifunc) {
1422 			/* All rules */
1423 			if (req->all) {
1424 				list_move_tail(&iter->list, &del_list);
1425 			/* Range of rules */
1426 			} else if (req->end && iter->entry >= req->start &&
1427 				   iter->entry <= req->end) {
1428 				list_move_tail(&iter->list, &del_list);
1429 			/* single rule */
1430 			} else if (req->entry == iter->entry) {
1431 				list_move_tail(&iter->list, &del_list);
1432 				break;
1433 			}
1434 		}
1435 	}
1436 	mutex_unlock(&mcam->lock);
1437 
1438 	list_for_each_entry_safe(iter, tmp, &del_list, list) {
1439 		u16 entry = iter->entry;
1440 
1441 		/* clear the mcam entry target pcifunc */
1442 		mcam->entry2target_pffunc[entry] = 0x0;
1443 		if (npc_delete_flow(rvu, iter, pcifunc))
1444 			dev_err(rvu->dev, "rule deletion failed for entry:%u",
1445 				entry);
1446 	}
1447 
1448 	return 0;
1449 }
1450 
1451 static int npc_update_dmac_value(struct rvu *rvu, int npcblkaddr,
1452 				 struct rvu_npc_mcam_rule *rule,
1453 				 struct rvu_pfvf *pfvf)
1454 {
1455 	struct npc_mcam_write_entry_req write_req = { 0 };
1456 	struct mcam_entry *entry = &write_req.entry_data;
1457 	struct npc_mcam *mcam = &rvu->hw->mcam;
1458 	struct msg_rsp rsp;
1459 	u8 intf, enable;
1460 	int err;
1461 
1462 	ether_addr_copy(rule->packet.dmac, pfvf->mac_addr);
1463 
1464 	npc_read_mcam_entry(rvu, mcam, npcblkaddr, rule->entry,
1465 			    entry, &intf,  &enable);
1466 
1467 	npc_update_entry(rvu, NPC_DMAC, entry,
1468 			 ether_addr_to_u64(pfvf->mac_addr), 0,
1469 			 0xffffffffffffull, 0, intf);
1470 
1471 	write_req.hdr.pcifunc = rule->owner;
1472 	write_req.entry = rule->entry;
1473 	write_req.intf = pfvf->nix_rx_intf;
1474 
1475 	mutex_unlock(&mcam->lock);
1476 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, &rsp);
1477 	mutex_lock(&mcam->lock);
1478 
1479 	return err;
1480 }
1481 
1482 void npc_mcam_enable_flows(struct rvu *rvu, u16 target)
1483 {
1484 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, target);
1485 	struct rvu_npc_mcam_rule *def_ucast_rule;
1486 	struct npc_mcam *mcam = &rvu->hw->mcam;
1487 	struct rvu_npc_mcam_rule *rule;
1488 	int blkaddr, bank, index;
1489 	u64 def_action;
1490 
1491 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1492 	if (blkaddr < 0)
1493 		return;
1494 
1495 	def_ucast_rule = pfvf->def_ucast_rule;
1496 
1497 	mutex_lock(&mcam->lock);
1498 	list_for_each_entry(rule, &mcam->mcam_rules, list) {
1499 		if (is_npc_intf_rx(rule->intf) &&
1500 		    rule->rx_action.pf_func == target && !rule->enable) {
1501 			if (rule->default_rule) {
1502 				npc_enable_mcam_entry(rvu, mcam, blkaddr,
1503 						      rule->entry, true);
1504 				rule->enable = true;
1505 				continue;
1506 			}
1507 
1508 			if (rule->vfvlan_cfg)
1509 				npc_update_dmac_value(rvu, blkaddr, rule, pfvf);
1510 
1511 			if (rule->rx_action.op == NIX_RX_ACTION_DEFAULT) {
1512 				if (!def_ucast_rule)
1513 					continue;
1514 				/* Use default unicast entry action */
1515 				rule->rx_action = def_ucast_rule->rx_action;
1516 				def_action = *(u64 *)&def_ucast_rule->rx_action;
1517 				bank = npc_get_bank(mcam, rule->entry);
1518 				rvu_write64(rvu, blkaddr,
1519 					    NPC_AF_MCAMEX_BANKX_ACTION
1520 					    (rule->entry, bank), def_action);
1521 			}
1522 
1523 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1524 					      rule->entry, true);
1525 			rule->enable = true;
1526 		}
1527 	}
1528 
1529 	/* Enable MCAM entries installed by PF with target as VF pcifunc */
1530 	for (index = 0; index < mcam->bmap_entries; index++) {
1531 		if (mcam->entry2target_pffunc[index] == target)
1532 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1533 					      index, true);
1534 	}
1535 	mutex_unlock(&mcam->lock);
1536 }
1537 
1538 void npc_mcam_disable_flows(struct rvu *rvu, u16 target)
1539 {
1540 	struct npc_mcam *mcam = &rvu->hw->mcam;
1541 	int blkaddr, index;
1542 
1543 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1544 	if (blkaddr < 0)
1545 		return;
1546 
1547 	mutex_lock(&mcam->lock);
1548 	/* Disable MCAM entries installed by PF with target as VF pcifunc */
1549 	for (index = 0; index < mcam->bmap_entries; index++) {
1550 		if (mcam->entry2target_pffunc[index] == target)
1551 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1552 					      index, false);
1553 	}
1554 	mutex_unlock(&mcam->lock);
1555 }
1556 
1557 /* single drop on non hit rule starting from 0th index. This an extension
1558  * to RPM mac filter to support more rules.
1559  */
1560 int npc_install_mcam_drop_rule(struct rvu *rvu, int mcam_idx, u16 *counter_idx,
1561 			       u64 chan_val, u64 chan_mask, u64 exact_val, u64 exact_mask,
1562 			       u64 bcast_mcast_val, u64 bcast_mcast_mask)
1563 {
1564 	struct npc_mcam_alloc_counter_req cntr_req = { 0 };
1565 	struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
1566 	struct npc_mcam_write_entry_req req = { 0 };
1567 	struct npc_mcam *mcam = &rvu->hw->mcam;
1568 	struct rvu_npc_mcam_rule *rule;
1569 	struct msg_rsp rsp;
1570 	bool enabled;
1571 	int blkaddr;
1572 	int err;
1573 
1574 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1575 	if (blkaddr < 0) {
1576 		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1577 		return -ENODEV;
1578 	}
1579 
1580 	/* Bail out if no exact match support */
1581 	if (!rvu_npc_exact_has_match_table(rvu)) {
1582 		dev_info(rvu->dev, "%s: No support for exact match feature\n", __func__);
1583 		return -EINVAL;
1584 	}
1585 
1586 	/* If 0th entry is already used, return err */
1587 	enabled = is_mcam_entry_enabled(rvu, mcam, blkaddr, mcam_idx);
1588 	if (enabled) {
1589 		dev_err(rvu->dev, "%s: failed to add single drop on non hit rule at %d th index\n",
1590 			__func__, mcam_idx);
1591 		return	-EINVAL;
1592 	}
1593 
1594 	/* Add this entry to mcam rules list */
1595 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
1596 	if (!rule)
1597 		return -ENOMEM;
1598 
1599 	/* Disable rule by default. Enable rule when first dmac filter is
1600 	 * installed
1601 	 */
1602 	rule->enable = false;
1603 	rule->chan = chan_val;
1604 	rule->chan_mask = chan_mask;
1605 	rule->entry = mcam_idx;
1606 	rvu_mcam_add_rule(mcam, rule);
1607 
1608 	/* Reserve slot 0 */
1609 	npc_mcam_rsrcs_reserve(rvu, blkaddr, mcam_idx);
1610 
1611 	/* Allocate counter for this single drop on non hit rule */
1612 	cntr_req.hdr.pcifunc = 0; /* AF request */
1613 	cntr_req.contig = true;
1614 	cntr_req.count = 1;
1615 	err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req, &cntr_rsp);
1616 	if (err) {
1617 		dev_err(rvu->dev, "%s: Err to allocate cntr for drop rule (err=%d)\n",
1618 			__func__, err);
1619 		return	-EFAULT;
1620 	}
1621 	*counter_idx = cntr_rsp.cntr;
1622 
1623 	/* Fill in fields for this mcam entry */
1624 	npc_update_entry(rvu, NPC_EXACT_RESULT, &req.entry_data, exact_val, 0,
1625 			 exact_mask, 0, NIX_INTF_RX);
1626 	npc_update_entry(rvu, NPC_CHAN, &req.entry_data, chan_val, 0,
1627 			 chan_mask, 0, NIX_INTF_RX);
1628 	npc_update_entry(rvu, NPC_LXMB, &req.entry_data, bcast_mcast_val, 0,
1629 			 bcast_mcast_mask, 0, NIX_INTF_RX);
1630 
1631 	req.intf = NIX_INTF_RX;
1632 	req.set_cntr = true;
1633 	req.cntr = cntr_rsp.cntr;
1634 	req.entry = mcam_idx;
1635 
1636 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &req, &rsp);
1637 	if (err) {
1638 		dev_err(rvu->dev, "%s: Installation of single drop on non hit rule at %d failed\n",
1639 			__func__, mcam_idx);
1640 		return err;
1641 	}
1642 
1643 	dev_err(rvu->dev, "%s: Installed single drop on non hit rule at %d, cntr=%d\n",
1644 		__func__, mcam_idx, req.cntr);
1645 
1646 	/* disable entry at Bank 0, index 0 */
1647 	npc_enable_mcam_entry(rvu, mcam, blkaddr, mcam_idx, false);
1648 
1649 	return 0;
1650 }
1651 
1652 int rvu_mbox_handler_npc_get_field_status(struct rvu *rvu,
1653 					  struct npc_get_field_status_req *req,
1654 					  struct npc_get_field_status_rsp *rsp)
1655 {
1656 	int blkaddr;
1657 
1658 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1659 	if (blkaddr < 0)
1660 		return NPC_MCAM_INVALID_REQ;
1661 
1662 	if (!is_npc_interface_valid(rvu, req->intf))
1663 		return NPC_FLOW_INTF_INVALID;
1664 
1665 	if (npc_check_field(rvu, blkaddr, req->field, req->intf))
1666 		rsp->enable = 1;
1667 
1668 	return 0;
1669 }
1670