xref: /openbmc/linux/drivers/net/ethernet/marvell/octeontx2/af/rvu_npc_fs.c (revision 2154aca21408752eaa3eeaf2ba6e942724ff2a4d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2020 Marvell.
5  */
6 
7 #include <linux/bitfield.h>
8 
9 #include "rvu_struct.h"
10 #include "rvu_reg.h"
11 #include "rvu.h"
12 #include "npc.h"
13 #include "rvu_npc_fs.h"
14 #include "rvu_npc_hash.h"
15 
16 #define NPC_BYTESM		GENMASK_ULL(19, 16)
17 #define NPC_HDR_OFFSET		GENMASK_ULL(15, 8)
18 #define NPC_KEY_OFFSET		GENMASK_ULL(5, 0)
19 #define NPC_LDATA_EN		BIT_ULL(7)
20 
21 static const char * const npc_flow_names[] = {
22 	[NPC_DMAC]	= "dmac",
23 	[NPC_SMAC]	= "smac",
24 	[NPC_ETYPE]	= "ether type",
25 	[NPC_VLAN_ETYPE_CTAG] = "vlan ether type ctag",
26 	[NPC_VLAN_ETYPE_STAG] = "vlan ether type stag",
27 	[NPC_OUTER_VID]	= "outer vlan id",
28 	[NPC_TOS]	= "tos",
29 	[NPC_SIP_IPV4]	= "ipv4 source ip",
30 	[NPC_DIP_IPV4]	= "ipv4 destination ip",
31 	[NPC_SIP_IPV6]	= "ipv6 source ip",
32 	[NPC_DIP_IPV6]	= "ipv6 destination ip",
33 	[NPC_IPPROTO_TCP] = "ip proto tcp",
34 	[NPC_IPPROTO_UDP] = "ip proto udp",
35 	[NPC_IPPROTO_SCTP] = "ip proto sctp",
36 	[NPC_IPPROTO_ICMP] = "ip proto icmp",
37 	[NPC_IPPROTO_ICMP6] = "ip proto icmp6",
38 	[NPC_IPPROTO_AH] = "ip proto AH",
39 	[NPC_IPPROTO_ESP] = "ip proto ESP",
40 	[NPC_SPORT_TCP]	= "tcp source port",
41 	[NPC_DPORT_TCP]	= "tcp destination port",
42 	[NPC_SPORT_UDP]	= "udp source port",
43 	[NPC_DPORT_UDP]	= "udp destination port",
44 	[NPC_SPORT_SCTP] = "sctp source port",
45 	[NPC_DPORT_SCTP] = "sctp destination port",
46 	[NPC_UNKNOWN]	= "unknown",
47 };
48 
49 const char *npc_get_field_name(u8 hdr)
50 {
51 	if (hdr >= ARRAY_SIZE(npc_flow_names))
52 		return npc_flow_names[NPC_UNKNOWN];
53 
54 	return npc_flow_names[hdr];
55 }
56 
57 /* Compute keyword masks and figure out the number of keywords a field
58  * spans in the key.
59  */
60 static void npc_set_kw_masks(struct npc_mcam *mcam, u8 type,
61 			     u8 nr_bits, int start_kwi, int offset, u8 intf)
62 {
63 	struct npc_key_field *field = &mcam->rx_key_fields[type];
64 	u8 bits_in_kw;
65 	int max_kwi;
66 
67 	if (mcam->banks_per_entry == 1)
68 		max_kwi = 1; /* NPC_MCAM_KEY_X1 */
69 	else if (mcam->banks_per_entry == 2)
70 		max_kwi = 3; /* NPC_MCAM_KEY_X2 */
71 	else
72 		max_kwi = 6; /* NPC_MCAM_KEY_X4 */
73 
74 	if (is_npc_intf_tx(intf))
75 		field = &mcam->tx_key_fields[type];
76 
77 	if (offset + nr_bits <= 64) {
78 		/* one KW only */
79 		if (start_kwi > max_kwi)
80 			return;
81 		field->kw_mask[start_kwi] |= GENMASK_ULL(nr_bits - 1, 0)
82 					     << offset;
83 		field->nr_kws = 1;
84 	} else if (offset + nr_bits > 64 &&
85 		   offset + nr_bits <= 128) {
86 		/* two KWs */
87 		if (start_kwi + 1 > max_kwi)
88 			return;
89 		/* first KW mask */
90 		bits_in_kw = 64 - offset;
91 		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
92 					     << offset;
93 		/* second KW mask i.e. mask for rest of bits */
94 		bits_in_kw = nr_bits + offset - 64;
95 		field->kw_mask[start_kwi + 1] |= GENMASK_ULL(bits_in_kw - 1, 0);
96 		field->nr_kws = 2;
97 	} else {
98 		/* three KWs */
99 		if (start_kwi + 2 > max_kwi)
100 			return;
101 		/* first KW mask */
102 		bits_in_kw = 64 - offset;
103 		field->kw_mask[start_kwi] |= GENMASK_ULL(bits_in_kw - 1, 0)
104 					     << offset;
105 		/* second KW mask */
106 		field->kw_mask[start_kwi + 1] = ~0ULL;
107 		/* third KW mask i.e. mask for rest of bits */
108 		bits_in_kw = nr_bits + offset - 128;
109 		field->kw_mask[start_kwi + 2] |= GENMASK_ULL(bits_in_kw - 1, 0);
110 		field->nr_kws = 3;
111 	}
112 }
113 
114 /* Helper function to figure out whether field exists in the key */
115 static bool npc_is_field_present(struct rvu *rvu, enum key_fields type, u8 intf)
116 {
117 	struct npc_mcam *mcam = &rvu->hw->mcam;
118 	struct npc_key_field *input;
119 
120 	input  = &mcam->rx_key_fields[type];
121 	if (is_npc_intf_tx(intf))
122 		input  = &mcam->tx_key_fields[type];
123 
124 	return input->nr_kws > 0;
125 }
126 
127 static bool npc_is_same(struct npc_key_field *input,
128 			struct npc_key_field *field)
129 {
130 	return memcmp(&input->layer_mdata, &field->layer_mdata,
131 		     sizeof(struct npc_layer_mdata)) == 0;
132 }
133 
134 static void npc_set_layer_mdata(struct npc_mcam *mcam, enum key_fields type,
135 				u64 cfg, u8 lid, u8 lt, u8 intf)
136 {
137 	struct npc_key_field *input = &mcam->rx_key_fields[type];
138 
139 	if (is_npc_intf_tx(intf))
140 		input = &mcam->tx_key_fields[type];
141 
142 	input->layer_mdata.hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
143 	input->layer_mdata.key = FIELD_GET(NPC_KEY_OFFSET, cfg);
144 	input->layer_mdata.len = FIELD_GET(NPC_BYTESM, cfg) + 1;
145 	input->layer_mdata.ltype = lt;
146 	input->layer_mdata.lid = lid;
147 }
148 
149 static bool npc_check_overlap_fields(struct npc_key_field *input1,
150 				     struct npc_key_field *input2)
151 {
152 	int kwi;
153 
154 	/* Fields with same layer id and different ltypes are mutually
155 	 * exclusive hence they can be overlapped
156 	 */
157 	if (input1->layer_mdata.lid == input2->layer_mdata.lid &&
158 	    input1->layer_mdata.ltype != input2->layer_mdata.ltype)
159 		return false;
160 
161 	for (kwi = 0; kwi < NPC_MAX_KWS_IN_KEY; kwi++) {
162 		if (input1->kw_mask[kwi] & input2->kw_mask[kwi])
163 			return true;
164 	}
165 
166 	return false;
167 }
168 
169 /* Helper function to check whether given field overlaps with any other fields
170  * in the key. Due to limitations on key size and the key extraction profile in
171  * use higher layers can overwrite lower layer's header fields. Hence overlap
172  * needs to be checked.
173  */
174 static bool npc_check_overlap(struct rvu *rvu, int blkaddr,
175 			      enum key_fields type, u8 start_lid, u8 intf)
176 {
177 	struct npc_mcam *mcam = &rvu->hw->mcam;
178 	struct npc_key_field *dummy, *input;
179 	int start_kwi, offset;
180 	u8 nr_bits, lid, lt, ld;
181 	u64 cfg;
182 
183 	dummy = &mcam->rx_key_fields[NPC_UNKNOWN];
184 	input = &mcam->rx_key_fields[type];
185 
186 	if (is_npc_intf_tx(intf)) {
187 		dummy = &mcam->tx_key_fields[NPC_UNKNOWN];
188 		input = &mcam->tx_key_fields[type];
189 	}
190 
191 	for (lid = start_lid; lid < NPC_MAX_LID; lid++) {
192 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
193 			for (ld = 0; ld < NPC_MAX_LD; ld++) {
194 				cfg = rvu_read64(rvu, blkaddr,
195 						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
196 						 (intf, lid, lt, ld));
197 				if (!FIELD_GET(NPC_LDATA_EN, cfg))
198 					continue;
199 				memset(dummy, 0, sizeof(struct npc_key_field));
200 				npc_set_layer_mdata(mcam, NPC_UNKNOWN, cfg,
201 						    lid, lt, intf);
202 				/* exclude input */
203 				if (npc_is_same(input, dummy))
204 					continue;
205 				start_kwi = dummy->layer_mdata.key / 8;
206 				offset = (dummy->layer_mdata.key * 8) % 64;
207 				nr_bits = dummy->layer_mdata.len * 8;
208 				/* form KW masks */
209 				npc_set_kw_masks(mcam, NPC_UNKNOWN, nr_bits,
210 						 start_kwi, offset, intf);
211 				/* check any input field bits falls in any
212 				 * other field bits.
213 				 */
214 				if (npc_check_overlap_fields(dummy, input))
215 					return true;
216 			}
217 		}
218 	}
219 
220 	return false;
221 }
222 
223 static bool npc_check_field(struct rvu *rvu, int blkaddr, enum key_fields type,
224 			    u8 intf)
225 {
226 	if (!npc_is_field_present(rvu, type, intf) ||
227 	    npc_check_overlap(rvu, blkaddr, type, 0, intf))
228 		return false;
229 	return true;
230 }
231 
232 static void npc_scan_exact_result(struct npc_mcam *mcam, u8 bit_number,
233 				  u8 key_nibble, u8 intf)
234 {
235 	u8 offset = (key_nibble * 4) % 64; /* offset within key word */
236 	u8 kwi = (key_nibble * 4) / 64; /* which word in key */
237 	u8 nr_bits = 4; /* bits in a nibble */
238 	u8 type;
239 
240 	switch (bit_number) {
241 	case 40 ... 43:
242 		type = NPC_EXACT_RESULT;
243 		break;
244 
245 	default:
246 		return;
247 	}
248 	npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
249 }
250 
251 static void npc_scan_parse_result(struct npc_mcam *mcam, u8 bit_number,
252 				  u8 key_nibble, u8 intf)
253 {
254 	u8 offset = (key_nibble * 4) % 64; /* offset within key word */
255 	u8 kwi = (key_nibble * 4) / 64; /* which word in key */
256 	u8 nr_bits = 4; /* bits in a nibble */
257 	u8 type;
258 
259 	switch (bit_number) {
260 	case 0 ... 2:
261 		type = NPC_CHAN;
262 		break;
263 	case 3:
264 		type = NPC_ERRLEV;
265 		break;
266 	case 4 ... 5:
267 		type = NPC_ERRCODE;
268 		break;
269 	case 6:
270 		type = NPC_LXMB;
271 		break;
272 	/* check for LTYPE only as of now */
273 	case 9:
274 		type = NPC_LA;
275 		break;
276 	case 12:
277 		type = NPC_LB;
278 		break;
279 	case 15:
280 		type = NPC_LC;
281 		break;
282 	case 18:
283 		type = NPC_LD;
284 		break;
285 	case 21:
286 		type = NPC_LE;
287 		break;
288 	case 24:
289 		type = NPC_LF;
290 		break;
291 	case 27:
292 		type = NPC_LG;
293 		break;
294 	case 30:
295 		type = NPC_LH;
296 		break;
297 	default:
298 		return;
299 	}
300 
301 	npc_set_kw_masks(mcam, type, nr_bits, kwi, offset, intf);
302 }
303 
304 static void npc_handle_multi_layer_fields(struct rvu *rvu, int blkaddr, u8 intf)
305 {
306 	struct npc_mcam *mcam = &rvu->hw->mcam;
307 	struct npc_key_field *key_fields;
308 	/* Ether type can come from three layers
309 	 * (ethernet, single tagged, double tagged)
310 	 */
311 	struct npc_key_field *etype_ether;
312 	struct npc_key_field *etype_tag1;
313 	struct npc_key_field *etype_tag2;
314 	/* Outer VLAN TCI can come from two layers
315 	 * (single tagged, double tagged)
316 	 */
317 	struct npc_key_field *vlan_tag1;
318 	struct npc_key_field *vlan_tag2;
319 	u64 *features;
320 	u8 start_lid;
321 	int i;
322 
323 	key_fields = mcam->rx_key_fields;
324 	features = &mcam->rx_features;
325 
326 	if (is_npc_intf_tx(intf)) {
327 		key_fields = mcam->tx_key_fields;
328 		features = &mcam->tx_features;
329 	}
330 
331 	/* Handle header fields which can come from multiple layers like
332 	 * etype, outer vlan tci. These fields should have same position in
333 	 * the key otherwise to install a mcam rule more than one entry is
334 	 * needed which complicates mcam space management.
335 	 */
336 	etype_ether = &key_fields[NPC_ETYPE_ETHER];
337 	etype_tag1 = &key_fields[NPC_ETYPE_TAG1];
338 	etype_tag2 = &key_fields[NPC_ETYPE_TAG2];
339 	vlan_tag1 = &key_fields[NPC_VLAN_TAG1];
340 	vlan_tag2 = &key_fields[NPC_VLAN_TAG2];
341 
342 	/* if key profile programmed does not extract Ethertype at all */
343 	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws)
344 		goto vlan_tci;
345 
346 	/* if key profile programmed extracts Ethertype from one layer */
347 	if (etype_ether->nr_kws && !etype_tag1->nr_kws && !etype_tag2->nr_kws)
348 		key_fields[NPC_ETYPE] = *etype_ether;
349 	if (!etype_ether->nr_kws && etype_tag1->nr_kws && !etype_tag2->nr_kws)
350 		key_fields[NPC_ETYPE] = *etype_tag1;
351 	if (!etype_ether->nr_kws && !etype_tag1->nr_kws && etype_tag2->nr_kws)
352 		key_fields[NPC_ETYPE] = *etype_tag2;
353 
354 	/* if key profile programmed extracts Ethertype from multiple layers */
355 	if (etype_ether->nr_kws && etype_tag1->nr_kws) {
356 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
357 			if (etype_ether->kw_mask[i] != etype_tag1->kw_mask[i])
358 				goto vlan_tci;
359 		}
360 		key_fields[NPC_ETYPE] = *etype_tag1;
361 	}
362 	if (etype_ether->nr_kws && etype_tag2->nr_kws) {
363 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
364 			if (etype_ether->kw_mask[i] != etype_tag2->kw_mask[i])
365 				goto vlan_tci;
366 		}
367 		key_fields[NPC_ETYPE] = *etype_tag2;
368 	}
369 	if (etype_tag1->nr_kws && etype_tag2->nr_kws) {
370 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
371 			if (etype_tag1->kw_mask[i] != etype_tag2->kw_mask[i])
372 				goto vlan_tci;
373 		}
374 		key_fields[NPC_ETYPE] = *etype_tag2;
375 	}
376 
377 	/* check none of higher layers overwrite Ethertype */
378 	start_lid = key_fields[NPC_ETYPE].layer_mdata.lid + 1;
379 	if (npc_check_overlap(rvu, blkaddr, NPC_ETYPE, start_lid, intf))
380 		goto vlan_tci;
381 	*features |= BIT_ULL(NPC_ETYPE);
382 vlan_tci:
383 	/* if key profile does not extract outer vlan tci at all */
384 	if (!vlan_tag1->nr_kws && !vlan_tag2->nr_kws)
385 		goto done;
386 
387 	/* if key profile extracts outer vlan tci from one layer */
388 	if (vlan_tag1->nr_kws && !vlan_tag2->nr_kws)
389 		key_fields[NPC_OUTER_VID] = *vlan_tag1;
390 	if (!vlan_tag1->nr_kws && vlan_tag2->nr_kws)
391 		key_fields[NPC_OUTER_VID] = *vlan_tag2;
392 
393 	/* if key profile extracts outer vlan tci from multiple layers */
394 	if (vlan_tag1->nr_kws && vlan_tag2->nr_kws) {
395 		for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
396 			if (vlan_tag1->kw_mask[i] != vlan_tag2->kw_mask[i])
397 				goto done;
398 		}
399 		key_fields[NPC_OUTER_VID] = *vlan_tag2;
400 	}
401 	/* check none of higher layers overwrite outer vlan tci */
402 	start_lid = key_fields[NPC_OUTER_VID].layer_mdata.lid + 1;
403 	if (npc_check_overlap(rvu, blkaddr, NPC_OUTER_VID, start_lid, intf))
404 		goto done;
405 	*features |= BIT_ULL(NPC_OUTER_VID);
406 done:
407 	return;
408 }
409 
410 static void npc_scan_ldata(struct rvu *rvu, int blkaddr, u8 lid,
411 			   u8 lt, u64 cfg, u8 intf)
412 {
413 	struct npc_mcam *mcam = &rvu->hw->mcam;
414 	u8 hdr, key, nr_bytes, bit_offset;
415 	u8 la_ltype, la_start;
416 	/* starting KW index and starting bit position */
417 	int start_kwi, offset;
418 
419 	nr_bytes = FIELD_GET(NPC_BYTESM, cfg) + 1;
420 	hdr = FIELD_GET(NPC_HDR_OFFSET, cfg);
421 	key = FIELD_GET(NPC_KEY_OFFSET, cfg);
422 	start_kwi = key / 8;
423 	offset = (key * 8) % 64;
424 
425 	/* For Tx, Layer A has NIX_INST_HDR_S(64 bytes) preceding
426 	 * ethernet header.
427 	 */
428 	if (is_npc_intf_tx(intf)) {
429 		la_ltype = NPC_LT_LA_IH_NIX_ETHER;
430 		la_start = 8;
431 	} else {
432 		la_ltype = NPC_LT_LA_ETHER;
433 		la_start = 0;
434 	}
435 
436 #define NPC_SCAN_HDR(name, hlid, hlt, hstart, hlen)			       \
437 do {									       \
438 	if (lid == (hlid) && lt == (hlt)) {				       \
439 		if ((hstart) >= hdr &&					       \
440 		    ((hstart) + (hlen)) <= (hdr + nr_bytes)) {	               \
441 			bit_offset = (hdr + nr_bytes - (hstart) - (hlen)) * 8; \
442 			npc_set_layer_mdata(mcam, (name), cfg, lid, lt, intf); \
443 			npc_set_kw_masks(mcam, (name), (hlen) * 8,	       \
444 					 start_kwi, offset + bit_offset, intf);\
445 		}							       \
446 	}								       \
447 } while (0)
448 
449 	/* List LID, LTYPE, start offset from layer and length(in bytes) of
450 	 * packet header fields below.
451 	 * Example: Source IP is 4 bytes and starts at 12th byte of IP header
452 	 */
453 	NPC_SCAN_HDR(NPC_TOS, NPC_LID_LC, NPC_LT_LC_IP, 1, 1);
454 	NPC_SCAN_HDR(NPC_SIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 12, 4);
455 	NPC_SCAN_HDR(NPC_DIP_IPV4, NPC_LID_LC, NPC_LT_LC_IP, 16, 4);
456 	NPC_SCAN_HDR(NPC_SIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 8, 16);
457 	NPC_SCAN_HDR(NPC_DIP_IPV6, NPC_LID_LC, NPC_LT_LC_IP6, 24, 16);
458 	NPC_SCAN_HDR(NPC_SPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 0, 2);
459 	NPC_SCAN_HDR(NPC_DPORT_UDP, NPC_LID_LD, NPC_LT_LD_UDP, 2, 2);
460 	NPC_SCAN_HDR(NPC_SPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 0, 2);
461 	NPC_SCAN_HDR(NPC_DPORT_TCP, NPC_LID_LD, NPC_LT_LD_TCP, 2, 2);
462 	NPC_SCAN_HDR(NPC_SPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 0, 2);
463 	NPC_SCAN_HDR(NPC_DPORT_SCTP, NPC_LID_LD, NPC_LT_LD_SCTP, 2, 2);
464 	NPC_SCAN_HDR(NPC_ETYPE_ETHER, NPC_LID_LA, NPC_LT_LA_ETHER, 12, 2);
465 	NPC_SCAN_HDR(NPC_ETYPE_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 4, 2);
466 	NPC_SCAN_HDR(NPC_ETYPE_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 8, 2);
467 	NPC_SCAN_HDR(NPC_VLAN_TAG1, NPC_LID_LB, NPC_LT_LB_CTAG, 2, 2);
468 	NPC_SCAN_HDR(NPC_VLAN_TAG2, NPC_LID_LB, NPC_LT_LB_STAG_QINQ, 2, 2);
469 	NPC_SCAN_HDR(NPC_DMAC, NPC_LID_LA, la_ltype, la_start, 6);
470 	/* SMAC follows the DMAC(which is 6 bytes) */
471 	NPC_SCAN_HDR(NPC_SMAC, NPC_LID_LA, la_ltype, la_start + 6, 6);
472 	/* PF_FUNC is 2 bytes at 0th byte of NPC_LT_LA_IH_NIX_ETHER */
473 	NPC_SCAN_HDR(NPC_PF_FUNC, NPC_LID_LA, NPC_LT_LA_IH_NIX_ETHER, 0, 2);
474 }
475 
476 static void npc_set_features(struct rvu *rvu, int blkaddr, u8 intf)
477 {
478 	struct npc_mcam *mcam = &rvu->hw->mcam;
479 	u64 *features = &mcam->rx_features;
480 	u64 tcp_udp_sctp;
481 	int hdr;
482 
483 	if (is_npc_intf_tx(intf))
484 		features = &mcam->tx_features;
485 
486 	for (hdr = NPC_DMAC; hdr < NPC_HEADER_FIELDS_MAX; hdr++) {
487 		if (npc_check_field(rvu, blkaddr, hdr, intf))
488 			*features |= BIT_ULL(hdr);
489 	}
490 
491 	tcp_udp_sctp = BIT_ULL(NPC_SPORT_TCP) | BIT_ULL(NPC_SPORT_UDP) |
492 		       BIT_ULL(NPC_DPORT_TCP) | BIT_ULL(NPC_DPORT_UDP) |
493 		       BIT_ULL(NPC_SPORT_SCTP) | BIT_ULL(NPC_DPORT_SCTP);
494 
495 	/* for tcp/udp/sctp corresponding layer type should be in the key */
496 	if (*features & tcp_udp_sctp) {
497 		if (!npc_check_field(rvu, blkaddr, NPC_LD, intf))
498 			*features &= ~tcp_udp_sctp;
499 		else
500 			*features |= BIT_ULL(NPC_IPPROTO_TCP) |
501 				     BIT_ULL(NPC_IPPROTO_UDP) |
502 				     BIT_ULL(NPC_IPPROTO_SCTP);
503 	}
504 
505 	/* for AH/ICMP/ICMPv6/, check if corresponding layer type is present in the key */
506 	if (npc_check_field(rvu, blkaddr, NPC_LD, intf)) {
507 		*features |= BIT_ULL(NPC_IPPROTO_AH);
508 		*features |= BIT_ULL(NPC_IPPROTO_ICMP);
509 		*features |= BIT_ULL(NPC_IPPROTO_ICMP6);
510 	}
511 
512 	/* for ESP, check if corresponding layer type is present in the key */
513 	if (npc_check_field(rvu, blkaddr, NPC_LE, intf))
514 		*features |= BIT_ULL(NPC_IPPROTO_ESP);
515 
516 	/* for vlan corresponding layer type should be in the key */
517 	if (*features & BIT_ULL(NPC_OUTER_VID))
518 		if (!npc_check_field(rvu, blkaddr, NPC_LB, intf))
519 			*features &= ~BIT_ULL(NPC_OUTER_VID);
520 
521 	/* for vlan ethertypes corresponding layer type should be in the key */
522 	if (npc_check_field(rvu, blkaddr, NPC_LB, intf))
523 		*features |= BIT_ULL(NPC_VLAN_ETYPE_CTAG) |
524 			     BIT_ULL(NPC_VLAN_ETYPE_STAG);
525 }
526 
527 /* Scan key extraction profile and record how fields of our interest
528  * fill the key structure. Also verify Channel and DMAC exists in
529  * key and not overwritten by other header fields.
530  */
531 static int npc_scan_kex(struct rvu *rvu, int blkaddr, u8 intf)
532 {
533 	struct npc_mcam *mcam = &rvu->hw->mcam;
534 	u8 lid, lt, ld, bitnr;
535 	u64 cfg, masked_cfg;
536 	u8 key_nibble = 0;
537 
538 	/* Scan and note how parse result is going to be in key.
539 	 * A bit set in PARSE_NIBBLE_ENA corresponds to a nibble from
540 	 * parse result in the key. The enabled nibbles from parse result
541 	 * will be concatenated in key.
542 	 */
543 	cfg = rvu_read64(rvu, blkaddr, NPC_AF_INTFX_KEX_CFG(intf));
544 	masked_cfg = cfg & NPC_PARSE_NIBBLE;
545 	for_each_set_bit(bitnr, (unsigned long *)&masked_cfg, 31) {
546 		npc_scan_parse_result(mcam, bitnr, key_nibble, intf);
547 		key_nibble++;
548 	}
549 
550 	/* Ignore exact match bits for mcam entries except the first rule
551 	 * which is drop on hit. This first rule is configured explitcitly by
552 	 * exact match code.
553 	 */
554 	masked_cfg = cfg & NPC_EXACT_NIBBLE;
555 	bitnr = NPC_EXACT_NIBBLE_START;
556 	for_each_set_bit_from(bitnr, (unsigned long *)&masked_cfg,
557 			      NPC_EXACT_NIBBLE_START) {
558 		npc_scan_exact_result(mcam, bitnr, key_nibble, intf);
559 		key_nibble++;
560 	}
561 
562 	/* Scan and note how layer data is going to be in key */
563 	for (lid = 0; lid < NPC_MAX_LID; lid++) {
564 		for (lt = 0; lt < NPC_MAX_LT; lt++) {
565 			for (ld = 0; ld < NPC_MAX_LD; ld++) {
566 				cfg = rvu_read64(rvu, blkaddr,
567 						 NPC_AF_INTFX_LIDX_LTX_LDX_CFG
568 						 (intf, lid, lt, ld));
569 				if (!FIELD_GET(NPC_LDATA_EN, cfg))
570 					continue;
571 				npc_scan_ldata(rvu, blkaddr, lid, lt, cfg,
572 					       intf);
573 			}
574 		}
575 	}
576 
577 	return 0;
578 }
579 
580 static int npc_scan_verify_kex(struct rvu *rvu, int blkaddr)
581 {
582 	int err;
583 
584 	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_RX);
585 	if (err)
586 		return err;
587 
588 	err = npc_scan_kex(rvu, blkaddr, NIX_INTF_TX);
589 	if (err)
590 		return err;
591 
592 	/* Channel is mandatory */
593 	if (!npc_is_field_present(rvu, NPC_CHAN, NIX_INTF_RX)) {
594 		dev_err(rvu->dev, "Channel not present in Key\n");
595 		return -EINVAL;
596 	}
597 	/* check that none of the fields overwrite channel */
598 	if (npc_check_overlap(rvu, blkaddr, NPC_CHAN, 0, NIX_INTF_RX)) {
599 		dev_err(rvu->dev, "Channel cannot be overwritten\n");
600 		return -EINVAL;
601 	}
602 	/* DMAC should be present in key for unicast filter to work */
603 	if (!npc_is_field_present(rvu, NPC_DMAC, NIX_INTF_RX)) {
604 		dev_err(rvu->dev, "DMAC not present in Key\n");
605 		return -EINVAL;
606 	}
607 	/* check that none of the fields overwrite DMAC */
608 	if (npc_check_overlap(rvu, blkaddr, NPC_DMAC, 0, NIX_INTF_RX)) {
609 		dev_err(rvu->dev, "DMAC cannot be overwritten\n");
610 		return -EINVAL;
611 	}
612 
613 	npc_set_features(rvu, blkaddr, NIX_INTF_TX);
614 	npc_set_features(rvu, blkaddr, NIX_INTF_RX);
615 	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_TX);
616 	npc_handle_multi_layer_fields(rvu, blkaddr, NIX_INTF_RX);
617 
618 	return 0;
619 }
620 
621 int npc_flow_steering_init(struct rvu *rvu, int blkaddr)
622 {
623 	struct npc_mcam *mcam = &rvu->hw->mcam;
624 
625 	INIT_LIST_HEAD(&mcam->mcam_rules);
626 
627 	return npc_scan_verify_kex(rvu, blkaddr);
628 }
629 
630 static int npc_check_unsupported_flows(struct rvu *rvu, u64 features, u8 intf)
631 {
632 	struct npc_mcam *mcam = &rvu->hw->mcam;
633 	u64 *mcam_features = &mcam->rx_features;
634 	u64 unsupported;
635 	u8 bit;
636 
637 	if (is_npc_intf_tx(intf))
638 		mcam_features = &mcam->tx_features;
639 
640 	unsupported = (*mcam_features ^ features) & ~(*mcam_features);
641 	if (unsupported) {
642 		dev_info(rvu->dev, "Unsupported flow(s):\n");
643 		for_each_set_bit(bit, (unsigned long *)&unsupported, 64)
644 			dev_info(rvu->dev, "%s ", npc_get_field_name(bit));
645 		return -EOPNOTSUPP;
646 	}
647 
648 	return 0;
649 }
650 
651 /* npc_update_entry - Based on the masks generated during
652  * the key scanning, updates the given entry with value and
653  * masks for the field of interest. Maximum 16 bytes of a packet
654  * header can be extracted by HW hence lo and hi are sufficient.
655  * When field bytes are less than or equal to 8 then hi should be
656  * 0 for value and mask.
657  *
658  * If exact match of value is required then mask should be all 1's.
659  * If any bits in mask are 0 then corresponding bits in value are
660  * dont care.
661  */
662 void npc_update_entry(struct rvu *rvu, enum key_fields type,
663 		      struct mcam_entry *entry, u64 val_lo,
664 		      u64 val_hi, u64 mask_lo, u64 mask_hi, u8 intf)
665 {
666 	struct npc_mcam *mcam = &rvu->hw->mcam;
667 	struct mcam_entry dummy = { {0} };
668 	struct npc_key_field *field;
669 	u64 kw1, kw2, kw3;
670 	u8 shift;
671 	int i;
672 
673 	field = &mcam->rx_key_fields[type];
674 	if (is_npc_intf_tx(intf))
675 		field = &mcam->tx_key_fields[type];
676 
677 	if (!field->nr_kws)
678 		return;
679 
680 	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
681 		if (!field->kw_mask[i])
682 			continue;
683 		/* place key value in kw[x] */
684 		shift = __ffs64(field->kw_mask[i]);
685 		/* update entry value */
686 		kw1 = (val_lo << shift) & field->kw_mask[i];
687 		dummy.kw[i] = kw1;
688 		/* update entry mask */
689 		kw1 = (mask_lo << shift) & field->kw_mask[i];
690 		dummy.kw_mask[i] = kw1;
691 
692 		if (field->nr_kws == 1)
693 			break;
694 		/* place remaining bits of key value in kw[x + 1] */
695 		if (field->nr_kws == 2) {
696 			/* update entry value */
697 			kw2 = shift ? val_lo >> (64 - shift) : 0;
698 			kw2 |= (val_hi << shift);
699 			kw2 &= field->kw_mask[i + 1];
700 			dummy.kw[i + 1] = kw2;
701 			/* update entry mask */
702 			kw2 = shift ? mask_lo >> (64 - shift) : 0;
703 			kw2 |= (mask_hi << shift);
704 			kw2 &= field->kw_mask[i + 1];
705 			dummy.kw_mask[i + 1] = kw2;
706 			break;
707 		}
708 		/* place remaining bits of key value in kw[x + 1], kw[x + 2] */
709 		if (field->nr_kws == 3) {
710 			/* update entry value */
711 			kw2 = shift ? val_lo >> (64 - shift) : 0;
712 			kw2 |= (val_hi << shift);
713 			kw2 &= field->kw_mask[i + 1];
714 			kw3 = shift ? val_hi >> (64 - shift) : 0;
715 			kw3 &= field->kw_mask[i + 2];
716 			dummy.kw[i + 1] = kw2;
717 			dummy.kw[i + 2] = kw3;
718 			/* update entry mask */
719 			kw2 = shift ? mask_lo >> (64 - shift) : 0;
720 			kw2 |= (mask_hi << shift);
721 			kw2 &= field->kw_mask[i + 1];
722 			kw3 = shift ? mask_hi >> (64 - shift) : 0;
723 			kw3 &= field->kw_mask[i + 2];
724 			dummy.kw_mask[i + 1] = kw2;
725 			dummy.kw_mask[i + 2] = kw3;
726 			break;
727 		}
728 	}
729 	/* dummy is ready with values and masks for given key
730 	 * field now clear and update input entry with those
731 	 */
732 	for (i = 0; i < NPC_MAX_KWS_IN_KEY; i++) {
733 		if (!field->kw_mask[i])
734 			continue;
735 		entry->kw[i] &= ~field->kw_mask[i];
736 		entry->kw_mask[i] &= ~field->kw_mask[i];
737 
738 		entry->kw[i] |= dummy.kw[i];
739 		entry->kw_mask[i] |= dummy.kw_mask[i];
740 	}
741 }
742 
743 static void npc_update_ipv6_flow(struct rvu *rvu, struct mcam_entry *entry,
744 				 u64 features, struct flow_msg *pkt,
745 				 struct flow_msg *mask,
746 				 struct rvu_npc_mcam_rule *output, u8 intf)
747 {
748 	u32 src_ip[IPV6_WORDS], src_ip_mask[IPV6_WORDS];
749 	u32 dst_ip[IPV6_WORDS], dst_ip_mask[IPV6_WORDS];
750 	struct flow_msg *opkt = &output->packet;
751 	struct flow_msg *omask = &output->mask;
752 	u64 mask_lo, mask_hi;
753 	u64 val_lo, val_hi;
754 
755 	/* For an ipv6 address fe80::2c68:63ff:fe5e:2d0a the packet
756 	 * values to be programmed in MCAM should as below:
757 	 * val_high: 0xfe80000000000000
758 	 * val_low: 0x2c6863fffe5e2d0a
759 	 */
760 	if (features & BIT_ULL(NPC_SIP_IPV6)) {
761 		be32_to_cpu_array(src_ip_mask, mask->ip6src, IPV6_WORDS);
762 		be32_to_cpu_array(src_ip, pkt->ip6src, IPV6_WORDS);
763 
764 		mask_hi = (u64)src_ip_mask[0] << 32 | src_ip_mask[1];
765 		mask_lo = (u64)src_ip_mask[2] << 32 | src_ip_mask[3];
766 		val_hi = (u64)src_ip[0] << 32 | src_ip[1];
767 		val_lo = (u64)src_ip[2] << 32 | src_ip[3];
768 
769 		npc_update_entry(rvu, NPC_SIP_IPV6, entry, val_lo, val_hi,
770 				 mask_lo, mask_hi, intf);
771 		memcpy(opkt->ip6src, pkt->ip6src, sizeof(opkt->ip6src));
772 		memcpy(omask->ip6src, mask->ip6src, sizeof(omask->ip6src));
773 	}
774 	if (features & BIT_ULL(NPC_DIP_IPV6)) {
775 		be32_to_cpu_array(dst_ip_mask, mask->ip6dst, IPV6_WORDS);
776 		be32_to_cpu_array(dst_ip, pkt->ip6dst, IPV6_WORDS);
777 
778 		mask_hi = (u64)dst_ip_mask[0] << 32 | dst_ip_mask[1];
779 		mask_lo = (u64)dst_ip_mask[2] << 32 | dst_ip_mask[3];
780 		val_hi = (u64)dst_ip[0] << 32 | dst_ip[1];
781 		val_lo = (u64)dst_ip[2] << 32 | dst_ip[3];
782 
783 		npc_update_entry(rvu, NPC_DIP_IPV6, entry, val_lo, val_hi,
784 				 mask_lo, mask_hi, intf);
785 		memcpy(opkt->ip6dst, pkt->ip6dst, sizeof(opkt->ip6dst));
786 		memcpy(omask->ip6dst, mask->ip6dst, sizeof(omask->ip6dst));
787 	}
788 }
789 
790 static void npc_update_vlan_features(struct rvu *rvu, struct mcam_entry *entry,
791 				     u64 features, u8 intf)
792 {
793 	bool ctag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_CTAG));
794 	bool stag = !!(features & BIT_ULL(NPC_VLAN_ETYPE_STAG));
795 	bool vid = !!(features & BIT_ULL(NPC_OUTER_VID));
796 
797 	/* If only VLAN id is given then always match outer VLAN id */
798 	if (vid && !ctag && !stag) {
799 		npc_update_entry(rvu, NPC_LB, entry,
800 				 NPC_LT_LB_STAG_QINQ | NPC_LT_LB_CTAG, 0,
801 				 NPC_LT_LB_STAG_QINQ & NPC_LT_LB_CTAG, 0, intf);
802 		return;
803 	}
804 	if (ctag)
805 		npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_CTAG, 0,
806 				 ~0ULL, 0, intf);
807 	if (stag)
808 		npc_update_entry(rvu, NPC_LB, entry, NPC_LT_LB_STAG_QINQ, 0,
809 				 ~0ULL, 0, intf);
810 }
811 
812 static void npc_update_flow(struct rvu *rvu, struct mcam_entry *entry,
813 			    u64 features, struct flow_msg *pkt,
814 			    struct flow_msg *mask,
815 			    struct rvu_npc_mcam_rule *output, u8 intf,
816 			    int blkaddr)
817 {
818 	u64 dmac_mask = ether_addr_to_u64(mask->dmac);
819 	u64 smac_mask = ether_addr_to_u64(mask->smac);
820 	u64 dmac_val = ether_addr_to_u64(pkt->dmac);
821 	u64 smac_val = ether_addr_to_u64(pkt->smac);
822 	struct flow_msg *opkt = &output->packet;
823 	struct flow_msg *omask = &output->mask;
824 
825 	if (!features)
826 		return;
827 
828 	/* For tcp/udp/sctp LTYPE should be present in entry */
829 	if (features & BIT_ULL(NPC_IPPROTO_TCP))
830 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_TCP,
831 				 0, ~0ULL, 0, intf);
832 	if (features & BIT_ULL(NPC_IPPROTO_UDP))
833 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_UDP,
834 				 0, ~0ULL, 0, intf);
835 	if (features & BIT_ULL(NPC_IPPROTO_SCTP))
836 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_SCTP,
837 				 0, ~0ULL, 0, intf);
838 	if (features & BIT_ULL(NPC_IPPROTO_ICMP))
839 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP,
840 				 0, ~0ULL, 0, intf);
841 	if (features & BIT_ULL(NPC_IPPROTO_ICMP6))
842 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_ICMP6,
843 				 0, ~0ULL, 0, intf);
844 
845 	/* For AH, LTYPE should be present in entry */
846 	if (features & BIT_ULL(NPC_IPPROTO_AH))
847 		npc_update_entry(rvu, NPC_LD, entry, NPC_LT_LD_AH,
848 				 0, ~0ULL, 0, intf);
849 	/* For ESP, LTYPE should be present in entry */
850 	if (features & BIT_ULL(NPC_IPPROTO_ESP))
851 		npc_update_entry(rvu, NPC_LE, entry, NPC_LT_LE_ESP,
852 				 0, ~0ULL, 0, intf);
853 
854 #define NPC_WRITE_FLOW(field, member, val_lo, val_hi, mask_lo, mask_hi)	      \
855 do {									      \
856 	if (features & BIT_ULL((field))) {				      \
857 		npc_update_entry(rvu, (field), entry, (val_lo), (val_hi),     \
858 				 (mask_lo), (mask_hi), intf);		      \
859 		memcpy(&opkt->member, &pkt->member, sizeof(pkt->member));     \
860 		memcpy(&omask->member, &mask->member, sizeof(mask->member));  \
861 	}								      \
862 } while (0)
863 
864 	NPC_WRITE_FLOW(NPC_DMAC, dmac, dmac_val, 0, dmac_mask, 0);
865 
866 	NPC_WRITE_FLOW(NPC_SMAC, smac, smac_val, 0, smac_mask, 0);
867 	NPC_WRITE_FLOW(NPC_ETYPE, etype, ntohs(pkt->etype), 0,
868 		       ntohs(mask->etype), 0);
869 	NPC_WRITE_FLOW(NPC_TOS, tos, pkt->tos, 0, mask->tos, 0);
870 	NPC_WRITE_FLOW(NPC_SIP_IPV4, ip4src, ntohl(pkt->ip4src), 0,
871 		       ntohl(mask->ip4src), 0);
872 	NPC_WRITE_FLOW(NPC_DIP_IPV4, ip4dst, ntohl(pkt->ip4dst), 0,
873 		       ntohl(mask->ip4dst), 0);
874 	NPC_WRITE_FLOW(NPC_SPORT_TCP, sport, ntohs(pkt->sport), 0,
875 		       ntohs(mask->sport), 0);
876 	NPC_WRITE_FLOW(NPC_SPORT_UDP, sport, ntohs(pkt->sport), 0,
877 		       ntohs(mask->sport), 0);
878 	NPC_WRITE_FLOW(NPC_DPORT_TCP, dport, ntohs(pkt->dport), 0,
879 		       ntohs(mask->dport), 0);
880 	NPC_WRITE_FLOW(NPC_DPORT_UDP, dport, ntohs(pkt->dport), 0,
881 		       ntohs(mask->dport), 0);
882 	NPC_WRITE_FLOW(NPC_SPORT_SCTP, sport, ntohs(pkt->sport), 0,
883 		       ntohs(mask->sport), 0);
884 	NPC_WRITE_FLOW(NPC_DPORT_SCTP, dport, ntohs(pkt->dport), 0,
885 		       ntohs(mask->dport), 0);
886 
887 	NPC_WRITE_FLOW(NPC_OUTER_VID, vlan_tci, ntohs(pkt->vlan_tci), 0,
888 		       ntohs(mask->vlan_tci), 0);
889 
890 	npc_update_ipv6_flow(rvu, entry, features, pkt, mask, output, intf);
891 	npc_update_vlan_features(rvu, entry, features, intf);
892 
893 	npc_update_field_hash(rvu, intf, entry, blkaddr, features,
894 			      pkt, mask, opkt, omask);
895 }
896 
897 static struct rvu_npc_mcam_rule *rvu_mcam_find_rule(struct npc_mcam *mcam, u16 entry)
898 {
899 	struct rvu_npc_mcam_rule *iter;
900 
901 	mutex_lock(&mcam->lock);
902 	list_for_each_entry(iter, &mcam->mcam_rules, list) {
903 		if (iter->entry == entry) {
904 			mutex_unlock(&mcam->lock);
905 			return iter;
906 		}
907 	}
908 	mutex_unlock(&mcam->lock);
909 
910 	return NULL;
911 }
912 
913 static void rvu_mcam_add_rule(struct npc_mcam *mcam,
914 			      struct rvu_npc_mcam_rule *rule)
915 {
916 	struct list_head *head = &mcam->mcam_rules;
917 	struct rvu_npc_mcam_rule *iter;
918 
919 	mutex_lock(&mcam->lock);
920 	list_for_each_entry(iter, &mcam->mcam_rules, list) {
921 		if (iter->entry > rule->entry)
922 			break;
923 		head = &iter->list;
924 	}
925 
926 	list_add(&rule->list, head);
927 	mutex_unlock(&mcam->lock);
928 }
929 
930 static void rvu_mcam_remove_counter_from_rule(struct rvu *rvu, u16 pcifunc,
931 					      struct rvu_npc_mcam_rule *rule)
932 {
933 	struct npc_mcam_oper_counter_req free_req = { 0 };
934 	struct msg_rsp free_rsp;
935 
936 	if (!rule->has_cntr)
937 		return;
938 
939 	free_req.hdr.pcifunc = pcifunc;
940 	free_req.cntr = rule->cntr;
941 
942 	rvu_mbox_handler_npc_mcam_free_counter(rvu, &free_req, &free_rsp);
943 	rule->has_cntr = false;
944 }
945 
946 static void rvu_mcam_add_counter_to_rule(struct rvu *rvu, u16 pcifunc,
947 					 struct rvu_npc_mcam_rule *rule,
948 					 struct npc_install_flow_rsp *rsp)
949 {
950 	struct npc_mcam_alloc_counter_req cntr_req = { 0 };
951 	struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
952 	int err;
953 
954 	cntr_req.hdr.pcifunc = pcifunc;
955 	cntr_req.contig = true;
956 	cntr_req.count = 1;
957 
958 	/* we try to allocate a counter to track the stats of this
959 	 * rule. If counter could not be allocated then proceed
960 	 * without counter because counters are limited than entries.
961 	 */
962 	err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req,
963 						      &cntr_rsp);
964 	if (!err && cntr_rsp.count) {
965 		rule->cntr = cntr_rsp.cntr;
966 		rule->has_cntr = true;
967 		rsp->counter = rule->cntr;
968 	} else {
969 		rsp->counter = err;
970 	}
971 }
972 
973 static void npc_update_rx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
974 				struct mcam_entry *entry,
975 				struct npc_install_flow_req *req,
976 				u16 target, bool pf_set_vfs_mac)
977 {
978 	struct rvu_switch *rswitch = &rvu->rswitch;
979 	struct nix_rx_action action;
980 
981 	if (rswitch->mode == DEVLINK_ESWITCH_MODE_SWITCHDEV && pf_set_vfs_mac)
982 		req->chan_mask = 0x0; /* Do not care channel */
983 
984 	npc_update_entry(rvu, NPC_CHAN, entry, req->channel, 0, req->chan_mask,
985 			 0, NIX_INTF_RX);
986 
987 	*(u64 *)&action = 0x00;
988 	action.pf_func = target;
989 	action.op = req->op;
990 	action.index = req->index;
991 	action.match_id = req->match_id;
992 	action.flow_key_alg = req->flow_key_alg;
993 
994 	if (req->op == NIX_RX_ACTION_DEFAULT && pfvf->def_ucast_rule)
995 		action = pfvf->def_ucast_rule->rx_action;
996 
997 	entry->action = *(u64 *)&action;
998 
999 	/* VTAG0 starts at 0th byte of LID_B.
1000 	 * VTAG1 starts at 4th byte of LID_B.
1001 	 */
1002 	entry->vtag_action = FIELD_PREP(RX_VTAG0_VALID_BIT, req->vtag0_valid) |
1003 			     FIELD_PREP(RX_VTAG0_TYPE_MASK, req->vtag0_type) |
1004 			     FIELD_PREP(RX_VTAG0_LID_MASK, NPC_LID_LB) |
1005 			     FIELD_PREP(RX_VTAG0_RELPTR_MASK, 0) |
1006 			     FIELD_PREP(RX_VTAG1_VALID_BIT, req->vtag1_valid) |
1007 			     FIELD_PREP(RX_VTAG1_TYPE_MASK, req->vtag1_type) |
1008 			     FIELD_PREP(RX_VTAG1_LID_MASK, NPC_LID_LB) |
1009 			     FIELD_PREP(RX_VTAG1_RELPTR_MASK, 4);
1010 }
1011 
1012 static void npc_update_tx_entry(struct rvu *rvu, struct rvu_pfvf *pfvf,
1013 				struct mcam_entry *entry,
1014 				struct npc_install_flow_req *req, u16 target)
1015 {
1016 	struct nix_tx_action action;
1017 	u64 mask = ~0ULL;
1018 
1019 	/* If AF is installing then do not care about
1020 	 * PF_FUNC in Send Descriptor
1021 	 */
1022 	if (is_pffunc_af(req->hdr.pcifunc))
1023 		mask = 0;
1024 
1025 	npc_update_entry(rvu, NPC_PF_FUNC, entry, (__force u16)htons(target),
1026 			 0, mask, 0, NIX_INTF_TX);
1027 
1028 	*(u64 *)&action = 0x00;
1029 	action.op = req->op;
1030 	action.index = req->index;
1031 	action.match_id = req->match_id;
1032 
1033 	entry->action = *(u64 *)&action;
1034 
1035 	/* VTAG0 starts at 0th byte of LID_B.
1036 	 * VTAG1 starts at 4th byte of LID_B.
1037 	 */
1038 	entry->vtag_action = FIELD_PREP(TX_VTAG0_DEF_MASK, req->vtag0_def) |
1039 			     FIELD_PREP(TX_VTAG0_OP_MASK, req->vtag0_op) |
1040 			     FIELD_PREP(TX_VTAG0_LID_MASK, NPC_LID_LA) |
1041 			     FIELD_PREP(TX_VTAG0_RELPTR_MASK, 20) |
1042 			     FIELD_PREP(TX_VTAG1_DEF_MASK, req->vtag1_def) |
1043 			     FIELD_PREP(TX_VTAG1_OP_MASK, req->vtag1_op) |
1044 			     FIELD_PREP(TX_VTAG1_LID_MASK, NPC_LID_LA) |
1045 			     FIELD_PREP(TX_VTAG1_RELPTR_MASK, 24);
1046 }
1047 
1048 static int npc_install_flow(struct rvu *rvu, int blkaddr, u16 target,
1049 			    int nixlf, struct rvu_pfvf *pfvf,
1050 			    struct npc_install_flow_req *req,
1051 			    struct npc_install_flow_rsp *rsp, bool enable,
1052 			    bool pf_set_vfs_mac)
1053 {
1054 	struct rvu_npc_mcam_rule *def_ucast_rule = pfvf->def_ucast_rule;
1055 	u64 features, installed_features, missing_features = 0;
1056 	struct npc_mcam_write_entry_req write_req = { 0 };
1057 	struct npc_mcam *mcam = &rvu->hw->mcam;
1058 	struct rvu_npc_mcam_rule dummy = { 0 };
1059 	struct rvu_npc_mcam_rule *rule;
1060 	u16 owner = req->hdr.pcifunc;
1061 	struct msg_rsp write_rsp;
1062 	struct mcam_entry *entry;
1063 	bool new = false;
1064 	u16 entry_index;
1065 	int err;
1066 
1067 	installed_features = req->features;
1068 	features = req->features;
1069 	entry = &write_req.entry_data;
1070 	entry_index = req->entry;
1071 
1072 	npc_update_flow(rvu, entry, features, &req->packet, &req->mask, &dummy,
1073 			req->intf, blkaddr);
1074 
1075 	if (is_npc_intf_rx(req->intf))
1076 		npc_update_rx_entry(rvu, pfvf, entry, req, target, pf_set_vfs_mac);
1077 	else
1078 		npc_update_tx_entry(rvu, pfvf, entry, req, target);
1079 
1080 	/* Default unicast rules do not exist for TX */
1081 	if (is_npc_intf_tx(req->intf))
1082 		goto find_rule;
1083 
1084 	if (req->default_rule) {
1085 		entry_index = npc_get_nixlf_mcam_index(mcam, target, nixlf,
1086 						       NIXLF_UCAST_ENTRY);
1087 		enable = is_mcam_entry_enabled(rvu, mcam, blkaddr, entry_index);
1088 	}
1089 
1090 	/* update mcam entry with default unicast rule attributes */
1091 	if (def_ucast_rule && (req->default_rule && req->append)) {
1092 		missing_features = (def_ucast_rule->features ^ features) &
1093 					def_ucast_rule->features;
1094 		if (missing_features)
1095 			npc_update_flow(rvu, entry, missing_features,
1096 					&def_ucast_rule->packet,
1097 					&def_ucast_rule->mask,
1098 					&dummy, req->intf,
1099 					blkaddr);
1100 		installed_features = req->features | missing_features;
1101 	}
1102 
1103 find_rule:
1104 	rule = rvu_mcam_find_rule(mcam, entry_index);
1105 	if (!rule) {
1106 		rule = kzalloc(sizeof(*rule), GFP_KERNEL);
1107 		if (!rule)
1108 			return -ENOMEM;
1109 		new = true;
1110 	}
1111 
1112 	/* allocate new counter if rule has no counter */
1113 	if (!req->default_rule && req->set_cntr && !rule->has_cntr)
1114 		rvu_mcam_add_counter_to_rule(rvu, owner, rule, rsp);
1115 
1116 	/* if user wants to delete an existing counter for a rule then
1117 	 * free the counter
1118 	 */
1119 	if (!req->set_cntr && rule->has_cntr)
1120 		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1121 
1122 	write_req.hdr.pcifunc = owner;
1123 
1124 	/* AF owns the default rules so change the owner just to relax
1125 	 * the checks in rvu_mbox_handler_npc_mcam_write_entry
1126 	 */
1127 	if (req->default_rule)
1128 		write_req.hdr.pcifunc = 0;
1129 
1130 	write_req.entry = entry_index;
1131 	write_req.intf = req->intf;
1132 	write_req.enable_entry = (u8)enable;
1133 	/* if counter is available then clear and use it */
1134 	if (req->set_cntr && rule->has_cntr) {
1135 		rvu_write64(rvu, blkaddr, NPC_AF_MATCH_STATX(rule->cntr), 0x00);
1136 		write_req.set_cntr = 1;
1137 		write_req.cntr = rule->cntr;
1138 	}
1139 
1140 	/* update rule */
1141 	memcpy(&rule->packet, &dummy.packet, sizeof(rule->packet));
1142 	memcpy(&rule->mask, &dummy.mask, sizeof(rule->mask));
1143 	rule->entry = entry_index;
1144 	memcpy(&rule->rx_action, &entry->action, sizeof(struct nix_rx_action));
1145 	if (is_npc_intf_tx(req->intf))
1146 		memcpy(&rule->tx_action, &entry->action,
1147 		       sizeof(struct nix_tx_action));
1148 	rule->vtag_action = entry->vtag_action;
1149 	rule->features = installed_features;
1150 	rule->default_rule = req->default_rule;
1151 	rule->owner = owner;
1152 	rule->enable = enable;
1153 	rule->chan_mask = write_req.entry_data.kw_mask[0] & NPC_KEX_CHAN_MASK;
1154 	rule->chan = write_req.entry_data.kw[0] & NPC_KEX_CHAN_MASK;
1155 	rule->chan &= rule->chan_mask;
1156 	if (is_npc_intf_tx(req->intf))
1157 		rule->intf = pfvf->nix_tx_intf;
1158 	else
1159 		rule->intf = pfvf->nix_rx_intf;
1160 
1161 	if (new)
1162 		rvu_mcam_add_rule(mcam, rule);
1163 	if (req->default_rule)
1164 		pfvf->def_ucast_rule = rule;
1165 
1166 	/* write to mcam entry registers */
1167 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req,
1168 						    &write_rsp);
1169 	if (err) {
1170 		rvu_mcam_remove_counter_from_rule(rvu, owner, rule);
1171 		if (new) {
1172 			list_del(&rule->list);
1173 			kfree(rule);
1174 		}
1175 		return err;
1176 	}
1177 
1178 	/* VF's MAC address is being changed via PF  */
1179 	if (pf_set_vfs_mac) {
1180 		ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1181 		ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1182 		set_bit(PF_SET_VF_MAC, &pfvf->flags);
1183 	}
1184 
1185 	if (test_bit(PF_SET_VF_CFG, &pfvf->flags) &&
1186 	    req->vtag0_type == NIX_AF_LFX_RX_VTAG_TYPE7)
1187 		rule->vfvlan_cfg = true;
1188 
1189 	if (is_npc_intf_rx(req->intf) && req->match_id &&
1190 	    (req->op == NIX_RX_ACTIONOP_UCAST || req->op == NIX_RX_ACTIONOP_RSS))
1191 		return rvu_nix_setup_ratelimit_aggr(rvu, req->hdr.pcifunc,
1192 					     req->index, req->match_id);
1193 
1194 	return 0;
1195 }
1196 
1197 int rvu_mbox_handler_npc_install_flow(struct rvu *rvu,
1198 				      struct npc_install_flow_req *req,
1199 				      struct npc_install_flow_rsp *rsp)
1200 {
1201 	bool from_vf = !!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK);
1202 	struct rvu_switch *rswitch = &rvu->rswitch;
1203 	int blkaddr, nixlf, err;
1204 	struct rvu_pfvf *pfvf;
1205 	bool pf_set_vfs_mac = false;
1206 	bool enable = true;
1207 	u16 target;
1208 
1209 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1210 	if (blkaddr < 0) {
1211 		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1212 		return NPC_MCAM_INVALID_REQ;
1213 	}
1214 
1215 	if (!is_npc_interface_valid(rvu, req->intf))
1216 		return NPC_FLOW_INTF_INVALID;
1217 
1218 	if (from_vf && req->default_rule)
1219 		return NPC_FLOW_VF_PERM_DENIED;
1220 
1221 	/* Each PF/VF info is maintained in struct rvu_pfvf.
1222 	 * rvu_pfvf for the target PF/VF needs to be retrieved
1223 	 * hence modify pcifunc accordingly.
1224 	 */
1225 
1226 	/* AF installing for a PF/VF */
1227 	if (!req->hdr.pcifunc)
1228 		target = req->vf;
1229 	/* PF installing for its VF */
1230 	else if (!from_vf && req->vf) {
1231 		target = (req->hdr.pcifunc & ~RVU_PFVF_FUNC_MASK) | req->vf;
1232 		pf_set_vfs_mac = req->default_rule &&
1233 				(req->features & BIT_ULL(NPC_DMAC));
1234 	}
1235 	/* msg received from PF/VF */
1236 	else
1237 		target = req->hdr.pcifunc;
1238 
1239 	/* ignore chan_mask in case pf func is not AF, revisit later */
1240 	if (!is_pffunc_af(req->hdr.pcifunc))
1241 		req->chan_mask = 0xFFF;
1242 
1243 	err = npc_check_unsupported_flows(rvu, req->features, req->intf);
1244 	if (err)
1245 		return NPC_FLOW_NOT_SUPPORTED;
1246 
1247 	pfvf = rvu_get_pfvf(rvu, target);
1248 
1249 	/* PF installing for its VF */
1250 	if (req->hdr.pcifunc && !from_vf && req->vf)
1251 		set_bit(PF_SET_VF_CFG, &pfvf->flags);
1252 
1253 	/* update req destination mac addr */
1254 	if ((req->features & BIT_ULL(NPC_DMAC)) && is_npc_intf_rx(req->intf) &&
1255 	    is_zero_ether_addr(req->packet.dmac)) {
1256 		ether_addr_copy(req->packet.dmac, pfvf->mac_addr);
1257 		eth_broadcast_addr((u8 *)&req->mask.dmac);
1258 	}
1259 
1260 	/* Proceed if NIXLF is attached or not for TX rules */
1261 	err = nix_get_nixlf(rvu, target, &nixlf, NULL);
1262 	if (err && is_npc_intf_rx(req->intf) && !pf_set_vfs_mac)
1263 		return NPC_FLOW_NO_NIXLF;
1264 
1265 	/* don't enable rule when nixlf not attached or initialized */
1266 	if (!(is_nixlf_attached(rvu, target) &&
1267 	      test_bit(NIXLF_INITIALIZED, &pfvf->flags)))
1268 		enable = false;
1269 
1270 	/* Packets reaching NPC in Tx path implies that a
1271 	 * NIXLF is properly setup and transmitting.
1272 	 * Hence rules can be enabled for Tx.
1273 	 */
1274 	if (is_npc_intf_tx(req->intf))
1275 		enable = true;
1276 
1277 	/* Do not allow requests from uninitialized VFs */
1278 	if (from_vf && !enable)
1279 		return NPC_FLOW_VF_NOT_INIT;
1280 
1281 	/* PF sets VF mac & VF NIXLF is not attached, update the mac addr */
1282 	if (pf_set_vfs_mac && !enable) {
1283 		ether_addr_copy(pfvf->default_mac, req->packet.dmac);
1284 		ether_addr_copy(pfvf->mac_addr, req->packet.dmac);
1285 		set_bit(PF_SET_VF_MAC, &pfvf->flags);
1286 		return 0;
1287 	}
1288 
1289 	mutex_lock(&rswitch->switch_lock);
1290 	err = npc_install_flow(rvu, blkaddr, target, nixlf, pfvf,
1291 			       req, rsp, enable, pf_set_vfs_mac);
1292 	mutex_unlock(&rswitch->switch_lock);
1293 
1294 	return err;
1295 }
1296 
1297 static int npc_delete_flow(struct rvu *rvu, struct rvu_npc_mcam_rule *rule,
1298 			   u16 pcifunc)
1299 {
1300 	struct npc_mcam_ena_dis_entry_req dis_req = { 0 };
1301 	struct msg_rsp dis_rsp;
1302 
1303 	if (rule->default_rule)
1304 		return 0;
1305 
1306 	if (rule->has_cntr)
1307 		rvu_mcam_remove_counter_from_rule(rvu, pcifunc, rule);
1308 
1309 	dis_req.hdr.pcifunc = pcifunc;
1310 	dis_req.entry = rule->entry;
1311 
1312 	list_del(&rule->list);
1313 	kfree(rule);
1314 
1315 	return rvu_mbox_handler_npc_mcam_dis_entry(rvu, &dis_req, &dis_rsp);
1316 }
1317 
1318 int rvu_mbox_handler_npc_delete_flow(struct rvu *rvu,
1319 				     struct npc_delete_flow_req *req,
1320 				     struct msg_rsp *rsp)
1321 {
1322 	struct npc_mcam *mcam = &rvu->hw->mcam;
1323 	struct rvu_npc_mcam_rule *iter, *tmp;
1324 	u16 pcifunc = req->hdr.pcifunc;
1325 	struct list_head del_list;
1326 
1327 	INIT_LIST_HEAD(&del_list);
1328 
1329 	mutex_lock(&mcam->lock);
1330 	list_for_each_entry_safe(iter, tmp, &mcam->mcam_rules, list) {
1331 		if (iter->owner == pcifunc) {
1332 			/* All rules */
1333 			if (req->all) {
1334 				list_move_tail(&iter->list, &del_list);
1335 			/* Range of rules */
1336 			} else if (req->end && iter->entry >= req->start &&
1337 				   iter->entry <= req->end) {
1338 				list_move_tail(&iter->list, &del_list);
1339 			/* single rule */
1340 			} else if (req->entry == iter->entry) {
1341 				list_move_tail(&iter->list, &del_list);
1342 				break;
1343 			}
1344 		}
1345 	}
1346 	mutex_unlock(&mcam->lock);
1347 
1348 	list_for_each_entry_safe(iter, tmp, &del_list, list) {
1349 		u16 entry = iter->entry;
1350 
1351 		/* clear the mcam entry target pcifunc */
1352 		mcam->entry2target_pffunc[entry] = 0x0;
1353 		if (npc_delete_flow(rvu, iter, pcifunc))
1354 			dev_err(rvu->dev, "rule deletion failed for entry:%u",
1355 				entry);
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 static int npc_update_dmac_value(struct rvu *rvu, int npcblkaddr,
1362 				 struct rvu_npc_mcam_rule *rule,
1363 				 struct rvu_pfvf *pfvf)
1364 {
1365 	struct npc_mcam_write_entry_req write_req = { 0 };
1366 	struct mcam_entry *entry = &write_req.entry_data;
1367 	struct npc_mcam *mcam = &rvu->hw->mcam;
1368 	struct msg_rsp rsp;
1369 	u8 intf, enable;
1370 	int err;
1371 
1372 	ether_addr_copy(rule->packet.dmac, pfvf->mac_addr);
1373 
1374 	npc_read_mcam_entry(rvu, mcam, npcblkaddr, rule->entry,
1375 			    entry, &intf,  &enable);
1376 
1377 	npc_update_entry(rvu, NPC_DMAC, entry,
1378 			 ether_addr_to_u64(pfvf->mac_addr), 0,
1379 			 0xffffffffffffull, 0, intf);
1380 
1381 	write_req.hdr.pcifunc = rule->owner;
1382 	write_req.entry = rule->entry;
1383 	write_req.intf = pfvf->nix_rx_intf;
1384 
1385 	mutex_unlock(&mcam->lock);
1386 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &write_req, &rsp);
1387 	mutex_lock(&mcam->lock);
1388 
1389 	return err;
1390 }
1391 
1392 void npc_mcam_enable_flows(struct rvu *rvu, u16 target)
1393 {
1394 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, target);
1395 	struct rvu_npc_mcam_rule *def_ucast_rule;
1396 	struct npc_mcam *mcam = &rvu->hw->mcam;
1397 	struct rvu_npc_mcam_rule *rule;
1398 	int blkaddr, bank, index;
1399 	u64 def_action;
1400 
1401 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1402 	if (blkaddr < 0)
1403 		return;
1404 
1405 	def_ucast_rule = pfvf->def_ucast_rule;
1406 
1407 	mutex_lock(&mcam->lock);
1408 	list_for_each_entry(rule, &mcam->mcam_rules, list) {
1409 		if (is_npc_intf_rx(rule->intf) &&
1410 		    rule->rx_action.pf_func == target && !rule->enable) {
1411 			if (rule->default_rule) {
1412 				npc_enable_mcam_entry(rvu, mcam, blkaddr,
1413 						      rule->entry, true);
1414 				rule->enable = true;
1415 				continue;
1416 			}
1417 
1418 			if (rule->vfvlan_cfg)
1419 				npc_update_dmac_value(rvu, blkaddr, rule, pfvf);
1420 
1421 			if (rule->rx_action.op == NIX_RX_ACTION_DEFAULT) {
1422 				if (!def_ucast_rule)
1423 					continue;
1424 				/* Use default unicast entry action */
1425 				rule->rx_action = def_ucast_rule->rx_action;
1426 				def_action = *(u64 *)&def_ucast_rule->rx_action;
1427 				bank = npc_get_bank(mcam, rule->entry);
1428 				rvu_write64(rvu, blkaddr,
1429 					    NPC_AF_MCAMEX_BANKX_ACTION
1430 					    (rule->entry, bank), def_action);
1431 			}
1432 
1433 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1434 					      rule->entry, true);
1435 			rule->enable = true;
1436 		}
1437 	}
1438 
1439 	/* Enable MCAM entries installed by PF with target as VF pcifunc */
1440 	for (index = 0; index < mcam->bmap_entries; index++) {
1441 		if (mcam->entry2target_pffunc[index] == target)
1442 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1443 					      index, true);
1444 	}
1445 	mutex_unlock(&mcam->lock);
1446 }
1447 
1448 void npc_mcam_disable_flows(struct rvu *rvu, u16 target)
1449 {
1450 	struct npc_mcam *mcam = &rvu->hw->mcam;
1451 	int blkaddr, index;
1452 
1453 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1454 	if (blkaddr < 0)
1455 		return;
1456 
1457 	mutex_lock(&mcam->lock);
1458 	/* Disable MCAM entries installed by PF with target as VF pcifunc */
1459 	for (index = 0; index < mcam->bmap_entries; index++) {
1460 		if (mcam->entry2target_pffunc[index] == target)
1461 			npc_enable_mcam_entry(rvu, mcam, blkaddr,
1462 					      index, false);
1463 	}
1464 	mutex_unlock(&mcam->lock);
1465 }
1466 
1467 /* single drop on non hit rule starting from 0th index. This an extension
1468  * to RPM mac filter to support more rules.
1469  */
1470 int npc_install_mcam_drop_rule(struct rvu *rvu, int mcam_idx, u16 *counter_idx,
1471 			       u64 chan_val, u64 chan_mask, u64 exact_val, u64 exact_mask,
1472 			       u64 bcast_mcast_val, u64 bcast_mcast_mask)
1473 {
1474 	struct npc_mcam_alloc_counter_req cntr_req = { 0 };
1475 	struct npc_mcam_alloc_counter_rsp cntr_rsp = { 0 };
1476 	struct npc_mcam_write_entry_req req = { 0 };
1477 	struct npc_mcam *mcam = &rvu->hw->mcam;
1478 	struct rvu_npc_mcam_rule *rule;
1479 	struct msg_rsp rsp;
1480 	bool enabled;
1481 	int blkaddr;
1482 	int err;
1483 
1484 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPC, 0);
1485 	if (blkaddr < 0) {
1486 		dev_err(rvu->dev, "%s: NPC block not implemented\n", __func__);
1487 		return -ENODEV;
1488 	}
1489 
1490 	/* Bail out if no exact match support */
1491 	if (!rvu_npc_exact_has_match_table(rvu)) {
1492 		dev_info(rvu->dev, "%s: No support for exact match feature\n", __func__);
1493 		return -EINVAL;
1494 	}
1495 
1496 	/* If 0th entry is already used, return err */
1497 	enabled = is_mcam_entry_enabled(rvu, mcam, blkaddr, mcam_idx);
1498 	if (enabled) {
1499 		dev_err(rvu->dev, "%s: failed to add single drop on non hit rule at %d th index\n",
1500 			__func__, mcam_idx);
1501 		return	-EINVAL;
1502 	}
1503 
1504 	/* Add this entry to mcam rules list */
1505 	rule = kzalloc(sizeof(*rule), GFP_KERNEL);
1506 	if (!rule)
1507 		return -ENOMEM;
1508 
1509 	/* Disable rule by default. Enable rule when first dmac filter is
1510 	 * installed
1511 	 */
1512 	rule->enable = false;
1513 	rule->chan = chan_val;
1514 	rule->chan_mask = chan_mask;
1515 	rule->entry = mcam_idx;
1516 	rvu_mcam_add_rule(mcam, rule);
1517 
1518 	/* Reserve slot 0 */
1519 	npc_mcam_rsrcs_reserve(rvu, blkaddr, mcam_idx);
1520 
1521 	/* Allocate counter for this single drop on non hit rule */
1522 	cntr_req.hdr.pcifunc = 0; /* AF request */
1523 	cntr_req.contig = true;
1524 	cntr_req.count = 1;
1525 	err = rvu_mbox_handler_npc_mcam_alloc_counter(rvu, &cntr_req, &cntr_rsp);
1526 	if (err) {
1527 		dev_err(rvu->dev, "%s: Err to allocate cntr for drop rule (err=%d)\n",
1528 			__func__, err);
1529 		return	-EFAULT;
1530 	}
1531 	*counter_idx = cntr_rsp.cntr;
1532 
1533 	/* Fill in fields for this mcam entry */
1534 	npc_update_entry(rvu, NPC_EXACT_RESULT, &req.entry_data, exact_val, 0,
1535 			 exact_mask, 0, NIX_INTF_RX);
1536 	npc_update_entry(rvu, NPC_CHAN, &req.entry_data, chan_val, 0,
1537 			 chan_mask, 0, NIX_INTF_RX);
1538 	npc_update_entry(rvu, NPC_LXMB, &req.entry_data, bcast_mcast_val, 0,
1539 			 bcast_mcast_mask, 0, NIX_INTF_RX);
1540 
1541 	req.intf = NIX_INTF_RX;
1542 	req.set_cntr = true;
1543 	req.cntr = cntr_rsp.cntr;
1544 	req.entry = mcam_idx;
1545 
1546 	err = rvu_mbox_handler_npc_mcam_write_entry(rvu, &req, &rsp);
1547 	if (err) {
1548 		dev_err(rvu->dev, "%s: Installation of single drop on non hit rule at %d failed\n",
1549 			__func__, mcam_idx);
1550 		return err;
1551 	}
1552 
1553 	dev_err(rvu->dev, "%s: Installed single drop on non hit rule at %d, cntr=%d\n",
1554 		__func__, mcam_idx, req.cntr);
1555 
1556 	/* disable entry at Bank 0, index 0 */
1557 	npc_enable_mcam_entry(rvu, mcam, blkaddr, mcam_idx, false);
1558 
1559 	return 0;
1560 }
1561