1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Marvell RVU Admin Function driver 3 * 4 * Copyright (C) 2020 Marvell. 5 * 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/pci.h> 10 #include "rvu_struct.h" 11 #include "rvu_reg.h" 12 #include "mbox.h" 13 #include "rvu.h" 14 15 /* CPT PF device id */ 16 #define PCI_DEVID_OTX2_CPT_PF 0xA0FD 17 #define PCI_DEVID_OTX2_CPT10K_PF 0xA0F2 18 19 /* Length of initial context fetch in 128 byte words */ 20 #define CPT_CTX_ILEN 1ULL 21 22 #define cpt_get_eng_sts(e_min, e_max, rsp, etype) \ 23 ({ \ 24 u64 free_sts = 0, busy_sts = 0; \ 25 typeof(rsp) _rsp = rsp; \ 26 u32 e, i; \ 27 \ 28 for (e = (e_min), i = 0; e < (e_max); e++, i++) { \ 29 reg = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_STS(e)); \ 30 if (reg & 0x1) \ 31 busy_sts |= 1ULL << i; \ 32 \ 33 if (reg & 0x2) \ 34 free_sts |= 1ULL << i; \ 35 } \ 36 (_rsp)->busy_sts_##etype = busy_sts; \ 37 (_rsp)->free_sts_##etype = free_sts; \ 38 }) 39 40 static irqreturn_t cpt_af_flt_intr_handler(int vec, void *ptr) 41 { 42 struct rvu_block *block = ptr; 43 struct rvu *rvu = block->rvu; 44 int blkaddr = block->addr; 45 u64 reg, val; 46 int i, eng; 47 u8 grp; 48 49 reg = rvu_read64(rvu, blkaddr, CPT_AF_FLTX_INT(vec)); 50 dev_err_ratelimited(rvu->dev, "Received CPTAF FLT%d irq : 0x%llx", vec, reg); 51 52 i = -1; 53 while ((i = find_next_bit((unsigned long *)®, 64, i + 1)) < 64) { 54 switch (vec) { 55 case 0: 56 eng = i; 57 break; 58 case 1: 59 eng = i + 64; 60 break; 61 case 2: 62 eng = i + 128; 63 break; 64 } 65 grp = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng)) & 0xFF; 66 /* Disable and enable the engine which triggers fault */ 67 rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng), 0x0); 68 val = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng)); 69 rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng), val & ~1ULL); 70 71 rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng), grp); 72 rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng), val | 1ULL); 73 74 spin_lock(&rvu->cpt_intr_lock); 75 block->cpt_flt_eng_map[vec] |= BIT_ULL(i); 76 val = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_STS(eng)); 77 val = val & 0x3; 78 if (val == 0x1 || val == 0x2) 79 block->cpt_rcvrd_eng_map[vec] |= BIT_ULL(i); 80 spin_unlock(&rvu->cpt_intr_lock); 81 } 82 rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT(vec), reg); 83 84 return IRQ_HANDLED; 85 } 86 87 static irqreturn_t rvu_cpt_af_flt0_intr_handler(int irq, void *ptr) 88 { 89 return cpt_af_flt_intr_handler(CPT_AF_INT_VEC_FLT0, ptr); 90 } 91 92 static irqreturn_t rvu_cpt_af_flt1_intr_handler(int irq, void *ptr) 93 { 94 return cpt_af_flt_intr_handler(CPT_AF_INT_VEC_FLT1, ptr); 95 } 96 97 static irqreturn_t rvu_cpt_af_flt2_intr_handler(int irq, void *ptr) 98 { 99 return cpt_af_flt_intr_handler(CPT_10K_AF_INT_VEC_FLT2, ptr); 100 } 101 102 static irqreturn_t rvu_cpt_af_rvu_intr_handler(int irq, void *ptr) 103 { 104 struct rvu_block *block = ptr; 105 struct rvu *rvu = block->rvu; 106 int blkaddr = block->addr; 107 u64 reg; 108 109 reg = rvu_read64(rvu, blkaddr, CPT_AF_RVU_INT); 110 dev_err_ratelimited(rvu->dev, "Received CPTAF RVU irq : 0x%llx", reg); 111 112 rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT, reg); 113 return IRQ_HANDLED; 114 } 115 116 static irqreturn_t rvu_cpt_af_ras_intr_handler(int irq, void *ptr) 117 { 118 struct rvu_block *block = ptr; 119 struct rvu *rvu = block->rvu; 120 int blkaddr = block->addr; 121 u64 reg; 122 123 reg = rvu_read64(rvu, blkaddr, CPT_AF_RAS_INT); 124 dev_err_ratelimited(rvu->dev, "Received CPTAF RAS irq : 0x%llx", reg); 125 126 rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT, reg); 127 return IRQ_HANDLED; 128 } 129 130 static int rvu_cpt_do_register_interrupt(struct rvu_block *block, int irq_offs, 131 irq_handler_t handler, 132 const char *name) 133 { 134 struct rvu *rvu = block->rvu; 135 int ret; 136 137 ret = request_irq(pci_irq_vector(rvu->pdev, irq_offs), handler, 0, 138 name, block); 139 if (ret) { 140 dev_err(rvu->dev, "RVUAF: %s irq registration failed", name); 141 return ret; 142 } 143 144 WARN_ON(rvu->irq_allocated[irq_offs]); 145 rvu->irq_allocated[irq_offs] = true; 146 return 0; 147 } 148 149 static void cpt_10k_unregister_interrupts(struct rvu_block *block, int off) 150 { 151 struct rvu *rvu = block->rvu; 152 int blkaddr = block->addr; 153 int i; 154 155 /* Disable all CPT AF interrupts */ 156 rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(0), ~0ULL); 157 rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(1), ~0ULL); 158 rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(2), 0xFFFF); 159 160 rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1); 161 rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1); 162 163 for (i = 0; i < CPT_10K_AF_INT_VEC_CNT; i++) 164 if (rvu->irq_allocated[off + i]) { 165 free_irq(pci_irq_vector(rvu->pdev, off + i), block); 166 rvu->irq_allocated[off + i] = false; 167 } 168 } 169 170 static void cpt_unregister_interrupts(struct rvu *rvu, int blkaddr) 171 { 172 struct rvu_hwinfo *hw = rvu->hw; 173 struct rvu_block *block; 174 int i, offs; 175 176 if (!is_block_implemented(rvu->hw, blkaddr)) 177 return; 178 offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF; 179 if (!offs) { 180 dev_warn(rvu->dev, 181 "Failed to get CPT_AF_INT vector offsets\n"); 182 return; 183 } 184 block = &hw->block[blkaddr]; 185 if (!is_rvu_otx2(rvu)) 186 return cpt_10k_unregister_interrupts(block, offs); 187 188 /* Disable all CPT AF interrupts */ 189 for (i = 0; i < CPT_AF_INT_VEC_RVU; i++) 190 rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(i), ~0ULL); 191 rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1); 192 rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1); 193 194 for (i = 0; i < CPT_AF_INT_VEC_CNT; i++) 195 if (rvu->irq_allocated[offs + i]) { 196 free_irq(pci_irq_vector(rvu->pdev, offs + i), block); 197 rvu->irq_allocated[offs + i] = false; 198 } 199 } 200 201 void rvu_cpt_unregister_interrupts(struct rvu *rvu) 202 { 203 cpt_unregister_interrupts(rvu, BLKADDR_CPT0); 204 cpt_unregister_interrupts(rvu, BLKADDR_CPT1); 205 } 206 207 static int cpt_10k_register_interrupts(struct rvu_block *block, int off) 208 { 209 struct rvu *rvu = block->rvu; 210 int blkaddr = block->addr; 211 irq_handler_t flt_fn; 212 int i, ret; 213 214 for (i = CPT_10K_AF_INT_VEC_FLT0; i < CPT_10K_AF_INT_VEC_RVU; i++) { 215 sprintf(&rvu->irq_name[(off + i) * NAME_SIZE], "CPTAF FLT%d", i); 216 217 switch (i) { 218 case CPT_10K_AF_INT_VEC_FLT0: 219 flt_fn = rvu_cpt_af_flt0_intr_handler; 220 break; 221 case CPT_10K_AF_INT_VEC_FLT1: 222 flt_fn = rvu_cpt_af_flt1_intr_handler; 223 break; 224 case CPT_10K_AF_INT_VEC_FLT2: 225 flt_fn = rvu_cpt_af_flt2_intr_handler; 226 break; 227 } 228 ret = rvu_cpt_do_register_interrupt(block, off + i, 229 flt_fn, &rvu->irq_name[(off + i) * NAME_SIZE]); 230 if (ret) 231 goto err; 232 if (i == CPT_10K_AF_INT_VEC_FLT2) 233 rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), 0xFFFF); 234 else 235 rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), ~0ULL); 236 } 237 238 ret = rvu_cpt_do_register_interrupt(block, off + CPT_10K_AF_INT_VEC_RVU, 239 rvu_cpt_af_rvu_intr_handler, 240 "CPTAF RVU"); 241 if (ret) 242 goto err; 243 rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1); 244 245 ret = rvu_cpt_do_register_interrupt(block, off + CPT_10K_AF_INT_VEC_RAS, 246 rvu_cpt_af_ras_intr_handler, 247 "CPTAF RAS"); 248 if (ret) 249 goto err; 250 rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1); 251 252 return 0; 253 err: 254 rvu_cpt_unregister_interrupts(rvu); 255 return ret; 256 } 257 258 static int cpt_register_interrupts(struct rvu *rvu, int blkaddr) 259 { 260 struct rvu_hwinfo *hw = rvu->hw; 261 struct rvu_block *block; 262 irq_handler_t flt_fn; 263 int i, offs, ret = 0; 264 265 if (!is_block_implemented(rvu->hw, blkaddr)) 266 return 0; 267 268 block = &hw->block[blkaddr]; 269 offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF; 270 if (!offs) { 271 dev_warn(rvu->dev, 272 "Failed to get CPT_AF_INT vector offsets\n"); 273 return 0; 274 } 275 276 if (!is_rvu_otx2(rvu)) 277 return cpt_10k_register_interrupts(block, offs); 278 279 for (i = CPT_AF_INT_VEC_FLT0; i < CPT_AF_INT_VEC_RVU; i++) { 280 sprintf(&rvu->irq_name[(offs + i) * NAME_SIZE], "CPTAF FLT%d", i); 281 switch (i) { 282 case CPT_AF_INT_VEC_FLT0: 283 flt_fn = rvu_cpt_af_flt0_intr_handler; 284 break; 285 case CPT_AF_INT_VEC_FLT1: 286 flt_fn = rvu_cpt_af_flt1_intr_handler; 287 break; 288 } 289 ret = rvu_cpt_do_register_interrupt(block, offs + i, 290 flt_fn, &rvu->irq_name[(offs + i) * NAME_SIZE]); 291 if (ret) 292 goto err; 293 rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), ~0ULL); 294 } 295 296 ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RVU, 297 rvu_cpt_af_rvu_intr_handler, 298 "CPTAF RVU"); 299 if (ret) 300 goto err; 301 rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1); 302 303 ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RAS, 304 rvu_cpt_af_ras_intr_handler, 305 "CPTAF RAS"); 306 if (ret) 307 goto err; 308 rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1); 309 310 return 0; 311 err: 312 rvu_cpt_unregister_interrupts(rvu); 313 return ret; 314 } 315 316 int rvu_cpt_register_interrupts(struct rvu *rvu) 317 { 318 int ret; 319 320 ret = cpt_register_interrupts(rvu, BLKADDR_CPT0); 321 if (ret) 322 return ret; 323 324 return cpt_register_interrupts(rvu, BLKADDR_CPT1); 325 } 326 327 static int get_cpt_pf_num(struct rvu *rvu) 328 { 329 int i, domain_nr, cpt_pf_num = -1; 330 struct pci_dev *pdev; 331 332 domain_nr = pci_domain_nr(rvu->pdev->bus); 333 for (i = 0; i < rvu->hw->total_pfs; i++) { 334 pdev = pci_get_domain_bus_and_slot(domain_nr, i + 1, 0); 335 if (!pdev) 336 continue; 337 338 if (pdev->device == PCI_DEVID_OTX2_CPT_PF || 339 pdev->device == PCI_DEVID_OTX2_CPT10K_PF) { 340 cpt_pf_num = i; 341 put_device(&pdev->dev); 342 break; 343 } 344 put_device(&pdev->dev); 345 } 346 return cpt_pf_num; 347 } 348 349 static bool is_cpt_pf(struct rvu *rvu, u16 pcifunc) 350 { 351 int cpt_pf_num = rvu->cpt_pf_num; 352 353 if (rvu_get_pf(pcifunc) != cpt_pf_num) 354 return false; 355 if (pcifunc & RVU_PFVF_FUNC_MASK) 356 return false; 357 358 return true; 359 } 360 361 static bool is_cpt_vf(struct rvu *rvu, u16 pcifunc) 362 { 363 int cpt_pf_num = rvu->cpt_pf_num; 364 365 if (rvu_get_pf(pcifunc) != cpt_pf_num) 366 return false; 367 if (!(pcifunc & RVU_PFVF_FUNC_MASK)) 368 return false; 369 370 return true; 371 } 372 373 static int validate_and_get_cpt_blkaddr(int req_blkaddr) 374 { 375 int blkaddr; 376 377 blkaddr = req_blkaddr ? req_blkaddr : BLKADDR_CPT0; 378 if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1) 379 return -EINVAL; 380 381 return blkaddr; 382 } 383 384 int rvu_mbox_handler_cpt_lf_alloc(struct rvu *rvu, 385 struct cpt_lf_alloc_req_msg *req, 386 struct msg_rsp *rsp) 387 { 388 u16 pcifunc = req->hdr.pcifunc; 389 struct rvu_block *block; 390 int cptlf, blkaddr; 391 int num_lfs, slot; 392 u64 val; 393 394 blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); 395 if (blkaddr < 0) 396 return blkaddr; 397 398 if (req->eng_grpmsk == 0x0) 399 return CPT_AF_ERR_GRP_INVALID; 400 401 block = &rvu->hw->block[blkaddr]; 402 num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc), 403 block->addr); 404 if (!num_lfs) 405 return CPT_AF_ERR_LF_INVALID; 406 407 /* Check if requested 'CPTLF <=> NIXLF' mapping is valid */ 408 if (req->nix_pf_func) { 409 /* If default, use 'this' CPTLF's PFFUNC */ 410 if (req->nix_pf_func == RVU_DEFAULT_PF_FUNC) 411 req->nix_pf_func = pcifunc; 412 if (!is_pffunc_map_valid(rvu, req->nix_pf_func, BLKTYPE_NIX)) 413 return CPT_AF_ERR_NIX_PF_FUNC_INVALID; 414 } 415 416 /* Check if requested 'CPTLF <=> SSOLF' mapping is valid */ 417 if (req->sso_pf_func) { 418 /* If default, use 'this' CPTLF's PFFUNC */ 419 if (req->sso_pf_func == RVU_DEFAULT_PF_FUNC) 420 req->sso_pf_func = pcifunc; 421 if (!is_pffunc_map_valid(rvu, req->sso_pf_func, BLKTYPE_SSO)) 422 return CPT_AF_ERR_SSO_PF_FUNC_INVALID; 423 } 424 425 for (slot = 0; slot < num_lfs; slot++) { 426 cptlf = rvu_get_lf(rvu, block, pcifunc, slot); 427 if (cptlf < 0) 428 return CPT_AF_ERR_LF_INVALID; 429 430 /* Set CPT LF group and priority */ 431 val = (u64)req->eng_grpmsk << 48 | 1; 432 if (!is_rvu_otx2(rvu)) { 433 if (req->ctx_ilen_valid) 434 val |= (req->ctx_ilen << 17); 435 else 436 val |= (CPT_CTX_ILEN << 17); 437 } 438 439 rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val); 440 441 /* Set CPT LF NIX_PF_FUNC and SSO_PF_FUNC. EXE_LDWB is set 442 * on reset. 443 */ 444 val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf)); 445 val &= ~(GENMASK_ULL(63, 48) | GENMASK_ULL(47, 32)); 446 val |= ((u64)req->nix_pf_func << 48 | 447 (u64)req->sso_pf_func << 32); 448 rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val); 449 } 450 451 return 0; 452 } 453 454 static int cpt_lf_free(struct rvu *rvu, struct msg_req *req, int blkaddr) 455 { 456 u16 pcifunc = req->hdr.pcifunc; 457 int num_lfs, cptlf, slot, err; 458 struct rvu_block *block; 459 460 block = &rvu->hw->block[blkaddr]; 461 num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc), 462 block->addr); 463 if (!num_lfs) 464 return 0; 465 466 for (slot = 0; slot < num_lfs; slot++) { 467 cptlf = rvu_get_lf(rvu, block, pcifunc, slot); 468 if (cptlf < 0) 469 return CPT_AF_ERR_LF_INVALID; 470 471 /* Perform teardown */ 472 rvu_cpt_lf_teardown(rvu, pcifunc, blkaddr, cptlf, slot); 473 474 /* Reset LF */ 475 err = rvu_lf_reset(rvu, block, cptlf); 476 if (err) { 477 dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n", 478 block->addr, cptlf); 479 } 480 } 481 482 return 0; 483 } 484 485 int rvu_mbox_handler_cpt_lf_free(struct rvu *rvu, struct msg_req *req, 486 struct msg_rsp *rsp) 487 { 488 int ret; 489 490 ret = cpt_lf_free(rvu, req, BLKADDR_CPT0); 491 if (ret) 492 return ret; 493 494 if (is_block_implemented(rvu->hw, BLKADDR_CPT1)) 495 ret = cpt_lf_free(rvu, req, BLKADDR_CPT1); 496 497 return ret; 498 } 499 500 static int cpt_inline_ipsec_cfg_inbound(struct rvu *rvu, int blkaddr, u8 cptlf, 501 struct cpt_inline_ipsec_cfg_msg *req) 502 { 503 u16 sso_pf_func = req->sso_pf_func; 504 u8 nix_sel; 505 u64 val; 506 507 val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf)); 508 if (req->enable && (val & BIT_ULL(16))) { 509 /* IPSec inline outbound path is already enabled for a given 510 * CPT LF, HRM states that inline inbound & outbound paths 511 * must not be enabled at the same time for a given CPT LF 512 */ 513 return CPT_AF_ERR_INLINE_IPSEC_INB_ENA; 514 } 515 /* Check if requested 'CPTLF <=> SSOLF' mapping is valid */ 516 if (sso_pf_func && !is_pffunc_map_valid(rvu, sso_pf_func, BLKTYPE_SSO)) 517 return CPT_AF_ERR_SSO_PF_FUNC_INVALID; 518 519 nix_sel = (blkaddr == BLKADDR_CPT1) ? 1 : 0; 520 /* Enable CPT LF for IPsec inline inbound operations */ 521 if (req->enable) 522 val |= BIT_ULL(9); 523 else 524 val &= ~BIT_ULL(9); 525 526 val |= (u64)nix_sel << 8; 527 rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val); 528 529 if (sso_pf_func) { 530 /* Set SSO_PF_FUNC */ 531 val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf)); 532 val |= (u64)sso_pf_func << 32; 533 val |= (u64)req->nix_pf_func << 48; 534 rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val); 535 } 536 if (req->sso_pf_func_ovrd) 537 /* Set SSO_PF_FUNC_OVRD for inline IPSec */ 538 rvu_write64(rvu, blkaddr, CPT_AF_ECO, 0x1); 539 540 /* Configure the X2P Link register with the cpt base channel number and 541 * range of channels it should propagate to X2P 542 */ 543 if (!is_rvu_otx2(rvu)) { 544 val = (ilog2(NIX_CHAN_CPT_X2P_MASK + 1) << 16); 545 val |= (u64)rvu->hw->cpt_chan_base; 546 547 rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0), val); 548 rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1), val); 549 } 550 551 return 0; 552 } 553 554 static int cpt_inline_ipsec_cfg_outbound(struct rvu *rvu, int blkaddr, u8 cptlf, 555 struct cpt_inline_ipsec_cfg_msg *req) 556 { 557 u16 nix_pf_func = req->nix_pf_func; 558 int nix_blkaddr; 559 u8 nix_sel; 560 u64 val; 561 562 val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf)); 563 if (req->enable && (val & BIT_ULL(9))) { 564 /* IPSec inline inbound path is already enabled for a given 565 * CPT LF, HRM states that inline inbound & outbound paths 566 * must not be enabled at the same time for a given CPT LF 567 */ 568 return CPT_AF_ERR_INLINE_IPSEC_OUT_ENA; 569 } 570 571 /* Check if requested 'CPTLF <=> NIXLF' mapping is valid */ 572 if (nix_pf_func && !is_pffunc_map_valid(rvu, nix_pf_func, BLKTYPE_NIX)) 573 return CPT_AF_ERR_NIX_PF_FUNC_INVALID; 574 575 /* Enable CPT LF for IPsec inline outbound operations */ 576 if (req->enable) 577 val |= BIT_ULL(16); 578 else 579 val &= ~BIT_ULL(16); 580 rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val); 581 582 if (nix_pf_func) { 583 /* Set NIX_PF_FUNC */ 584 val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf)); 585 val |= (u64)nix_pf_func << 48; 586 rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val); 587 588 nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, nix_pf_func); 589 nix_sel = (nix_blkaddr == BLKADDR_NIX0) ? 0 : 1; 590 591 val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf)); 592 val |= (u64)nix_sel << 8; 593 rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val); 594 } 595 596 return 0; 597 } 598 599 int rvu_mbox_handler_cpt_inline_ipsec_cfg(struct rvu *rvu, 600 struct cpt_inline_ipsec_cfg_msg *req, 601 struct msg_rsp *rsp) 602 { 603 u16 pcifunc = req->hdr.pcifunc; 604 struct rvu_block *block; 605 int cptlf, blkaddr, ret; 606 u16 actual_slot; 607 608 blkaddr = rvu_get_blkaddr_from_slot(rvu, BLKTYPE_CPT, pcifunc, 609 req->slot, &actual_slot); 610 if (blkaddr < 0) 611 return CPT_AF_ERR_LF_INVALID; 612 613 block = &rvu->hw->block[blkaddr]; 614 615 cptlf = rvu_get_lf(rvu, block, pcifunc, actual_slot); 616 if (cptlf < 0) 617 return CPT_AF_ERR_LF_INVALID; 618 619 switch (req->dir) { 620 case CPT_INLINE_INBOUND: 621 ret = cpt_inline_ipsec_cfg_inbound(rvu, blkaddr, cptlf, req); 622 break; 623 624 case CPT_INLINE_OUTBOUND: 625 ret = cpt_inline_ipsec_cfg_outbound(rvu, blkaddr, cptlf, req); 626 break; 627 628 default: 629 return CPT_AF_ERR_PARAM; 630 } 631 632 return ret; 633 } 634 635 static bool is_valid_offset(struct rvu *rvu, struct cpt_rd_wr_reg_msg *req) 636 { 637 u64 offset = req->reg_offset; 638 int blkaddr, num_lfs, lf; 639 struct rvu_block *block; 640 struct rvu_pfvf *pfvf; 641 642 blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); 643 if (blkaddr < 0) 644 return false; 645 646 /* Registers that can be accessed from PF/VF */ 647 if ((offset & 0xFF000) == CPT_AF_LFX_CTL(0) || 648 (offset & 0xFF000) == CPT_AF_LFX_CTL2(0)) { 649 if (offset & 7) 650 return false; 651 652 lf = (offset & 0xFFF) >> 3; 653 block = &rvu->hw->block[blkaddr]; 654 pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc); 655 num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr); 656 if (lf >= num_lfs) 657 /* Slot is not valid for that PF/VF */ 658 return false; 659 660 /* Translate local LF used by VFs to global CPT LF */ 661 lf = rvu_get_lf(rvu, &rvu->hw->block[blkaddr], 662 req->hdr.pcifunc, lf); 663 if (lf < 0) 664 return false; 665 666 return true; 667 } else if (!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK)) { 668 /* Registers that can be accessed from PF */ 669 switch (offset) { 670 case CPT_AF_DIAG: 671 case CPT_AF_CTL: 672 case CPT_AF_PF_FUNC: 673 case CPT_AF_BLK_RST: 674 case CPT_AF_CONSTANTS1: 675 case CPT_AF_CTX_FLUSH_TIMER: 676 return true; 677 } 678 679 switch (offset & 0xFF000) { 680 case CPT_AF_EXEX_STS(0): 681 case CPT_AF_EXEX_CTL(0): 682 case CPT_AF_EXEX_CTL2(0): 683 case CPT_AF_EXEX_UCODE_BASE(0): 684 if (offset & 7) 685 return false; 686 break; 687 default: 688 return false; 689 } 690 return true; 691 } 692 return false; 693 } 694 695 int rvu_mbox_handler_cpt_rd_wr_register(struct rvu *rvu, 696 struct cpt_rd_wr_reg_msg *req, 697 struct cpt_rd_wr_reg_msg *rsp) 698 { 699 int blkaddr; 700 701 blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); 702 if (blkaddr < 0) 703 return blkaddr; 704 705 /* This message is accepted only if sent from CPT PF/VF */ 706 if (!is_cpt_pf(rvu, req->hdr.pcifunc) && 707 !is_cpt_vf(rvu, req->hdr.pcifunc)) 708 return CPT_AF_ERR_ACCESS_DENIED; 709 710 rsp->reg_offset = req->reg_offset; 711 rsp->ret_val = req->ret_val; 712 rsp->is_write = req->is_write; 713 714 if (!is_valid_offset(rvu, req)) 715 return CPT_AF_ERR_ACCESS_DENIED; 716 717 if (req->is_write) 718 rvu_write64(rvu, blkaddr, req->reg_offset, req->val); 719 else 720 rsp->val = rvu_read64(rvu, blkaddr, req->reg_offset); 721 722 return 0; 723 } 724 725 static void get_ctx_pc(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr) 726 { 727 if (is_rvu_otx2(rvu)) 728 return; 729 730 rsp->ctx_mis_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_MIS_PC); 731 rsp->ctx_hit_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_HIT_PC); 732 rsp->ctx_aop_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_AOP_PC); 733 rsp->ctx_aop_lat_pc = rvu_read64(rvu, blkaddr, 734 CPT_AF_CTX_AOP_LATENCY_PC); 735 rsp->ctx_ifetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_IFETCH_PC); 736 rsp->ctx_ifetch_lat_pc = rvu_read64(rvu, blkaddr, 737 CPT_AF_CTX_IFETCH_LATENCY_PC); 738 rsp->ctx_ffetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC); 739 rsp->ctx_ffetch_lat_pc = rvu_read64(rvu, blkaddr, 740 CPT_AF_CTX_FFETCH_LATENCY_PC); 741 rsp->ctx_wback_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC); 742 rsp->ctx_wback_lat_pc = rvu_read64(rvu, blkaddr, 743 CPT_AF_CTX_FFETCH_LATENCY_PC); 744 rsp->ctx_psh_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC); 745 rsp->ctx_psh_lat_pc = rvu_read64(rvu, blkaddr, 746 CPT_AF_CTX_FFETCH_LATENCY_PC); 747 rsp->ctx_err = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ERR); 748 rsp->ctx_enc_id = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ENC_ID); 749 rsp->ctx_flush_timer = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FLUSH_TIMER); 750 751 rsp->rxc_time = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME); 752 rsp->rxc_time_cfg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG); 753 rsp->rxc_active_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS); 754 rsp->rxc_zombie_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS); 755 rsp->rxc_dfrg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_DFRG); 756 rsp->x2p_link_cfg0 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0)); 757 rsp->x2p_link_cfg1 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1)); 758 } 759 760 static void get_eng_sts(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr) 761 { 762 u16 max_ses, max_ies, max_aes; 763 u32 e_min = 0, e_max = 0; 764 u64 reg; 765 766 reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS1); 767 max_ses = reg & 0xffff; 768 max_ies = (reg >> 16) & 0xffff; 769 max_aes = (reg >> 32) & 0xffff; 770 771 /* Get AE status */ 772 e_min = max_ses + max_ies; 773 e_max = max_ses + max_ies + max_aes; 774 cpt_get_eng_sts(e_min, e_max, rsp, ae); 775 /* Get SE status */ 776 e_min = 0; 777 e_max = max_ses; 778 cpt_get_eng_sts(e_min, e_max, rsp, se); 779 /* Get IE status */ 780 e_min = max_ses; 781 e_max = max_ses + max_ies; 782 cpt_get_eng_sts(e_min, e_max, rsp, ie); 783 } 784 785 int rvu_mbox_handler_cpt_sts(struct rvu *rvu, struct cpt_sts_req *req, 786 struct cpt_sts_rsp *rsp) 787 { 788 int blkaddr; 789 790 blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); 791 if (blkaddr < 0) 792 return blkaddr; 793 794 /* This message is accepted only if sent from CPT PF/VF */ 795 if (!is_cpt_pf(rvu, req->hdr.pcifunc) && 796 !is_cpt_vf(rvu, req->hdr.pcifunc)) 797 return CPT_AF_ERR_ACCESS_DENIED; 798 799 get_ctx_pc(rvu, rsp, blkaddr); 800 801 /* Get CPT engines status */ 802 get_eng_sts(rvu, rsp, blkaddr); 803 804 /* Read CPT instruction PC registers */ 805 rsp->inst_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_REQ_PC); 806 rsp->inst_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_LATENCY_PC); 807 rsp->rd_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_REQ_PC); 808 rsp->rd_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_LATENCY_PC); 809 rsp->rd_uc_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_UC_PC); 810 rsp->active_cycles_pc = rvu_read64(rvu, blkaddr, 811 CPT_AF_ACTIVE_CYCLES_PC); 812 rsp->exe_err_info = rvu_read64(rvu, blkaddr, CPT_AF_EXE_ERR_INFO); 813 rsp->cptclk_cnt = rvu_read64(rvu, blkaddr, CPT_AF_CPTCLK_CNT); 814 rsp->diag = rvu_read64(rvu, blkaddr, CPT_AF_DIAG); 815 816 return 0; 817 } 818 819 #define RXC_ZOMBIE_THRES GENMASK_ULL(59, 48) 820 #define RXC_ZOMBIE_LIMIT GENMASK_ULL(43, 32) 821 #define RXC_ACTIVE_THRES GENMASK_ULL(27, 16) 822 #define RXC_ACTIVE_LIMIT GENMASK_ULL(11, 0) 823 #define RXC_ACTIVE_COUNT GENMASK_ULL(60, 48) 824 #define RXC_ZOMBIE_COUNT GENMASK_ULL(60, 48) 825 826 static void cpt_rxc_time_cfg(struct rvu *rvu, struct cpt_rxc_time_cfg_req *req, 827 int blkaddr, struct cpt_rxc_time_cfg_req *save) 828 { 829 u64 dfrg_reg; 830 831 if (save) { 832 /* Save older config */ 833 dfrg_reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_DFRG); 834 save->zombie_thres = FIELD_GET(RXC_ZOMBIE_THRES, dfrg_reg); 835 save->zombie_limit = FIELD_GET(RXC_ZOMBIE_LIMIT, dfrg_reg); 836 save->active_thres = FIELD_GET(RXC_ACTIVE_THRES, dfrg_reg); 837 save->active_limit = FIELD_GET(RXC_ACTIVE_LIMIT, dfrg_reg); 838 839 save->step = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG); 840 } 841 842 dfrg_reg = FIELD_PREP(RXC_ZOMBIE_THRES, req->zombie_thres); 843 dfrg_reg |= FIELD_PREP(RXC_ZOMBIE_LIMIT, req->zombie_limit); 844 dfrg_reg |= FIELD_PREP(RXC_ACTIVE_THRES, req->active_thres); 845 dfrg_reg |= FIELD_PREP(RXC_ACTIVE_LIMIT, req->active_limit); 846 847 rvu_write64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG, req->step); 848 rvu_write64(rvu, blkaddr, CPT_AF_RXC_DFRG, dfrg_reg); 849 } 850 851 int rvu_mbox_handler_cpt_rxc_time_cfg(struct rvu *rvu, 852 struct cpt_rxc_time_cfg_req *req, 853 struct msg_rsp *rsp) 854 { 855 int blkaddr; 856 857 blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); 858 if (blkaddr < 0) 859 return blkaddr; 860 861 /* This message is accepted only if sent from CPT PF/VF */ 862 if (!is_cpt_pf(rvu, req->hdr.pcifunc) && 863 !is_cpt_vf(rvu, req->hdr.pcifunc)) 864 return CPT_AF_ERR_ACCESS_DENIED; 865 866 cpt_rxc_time_cfg(rvu, req, blkaddr, NULL); 867 868 return 0; 869 } 870 871 int rvu_mbox_handler_cpt_ctx_cache_sync(struct rvu *rvu, struct msg_req *req, 872 struct msg_rsp *rsp) 873 { 874 return rvu_cpt_ctx_flush(rvu, req->hdr.pcifunc); 875 } 876 877 int rvu_mbox_handler_cpt_lf_reset(struct rvu *rvu, struct cpt_lf_rst_req *req, 878 struct msg_rsp *rsp) 879 { 880 u16 pcifunc = req->hdr.pcifunc; 881 struct rvu_block *block; 882 int cptlf, blkaddr, ret; 883 u16 actual_slot; 884 u64 ctl, ctl2; 885 886 blkaddr = rvu_get_blkaddr_from_slot(rvu, BLKTYPE_CPT, pcifunc, 887 req->slot, &actual_slot); 888 if (blkaddr < 0) 889 return CPT_AF_ERR_LF_INVALID; 890 891 block = &rvu->hw->block[blkaddr]; 892 893 cptlf = rvu_get_lf(rvu, block, pcifunc, actual_slot); 894 if (cptlf < 0) 895 return CPT_AF_ERR_LF_INVALID; 896 ctl = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf)); 897 ctl2 = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf)); 898 899 ret = rvu_lf_reset(rvu, block, cptlf); 900 if (ret) 901 dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n", 902 block->addr, cptlf); 903 904 rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), ctl); 905 rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), ctl2); 906 907 return 0; 908 } 909 910 int rvu_mbox_handler_cpt_flt_eng_info(struct rvu *rvu, struct cpt_flt_eng_info_req *req, 911 struct cpt_flt_eng_info_rsp *rsp) 912 { 913 struct rvu_block *block; 914 unsigned long flags; 915 int blkaddr, vec; 916 917 blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr); 918 if (blkaddr < 0) 919 return blkaddr; 920 921 block = &rvu->hw->block[blkaddr]; 922 for (vec = 0; vec < CPT_10K_AF_INT_VEC_RVU; vec++) { 923 spin_lock_irqsave(&rvu->cpt_intr_lock, flags); 924 rsp->flt_eng_map[vec] = block->cpt_flt_eng_map[vec]; 925 rsp->rcvrd_eng_map[vec] = block->cpt_rcvrd_eng_map[vec]; 926 if (req->reset) { 927 block->cpt_flt_eng_map[vec] = 0x0; 928 block->cpt_rcvrd_eng_map[vec] = 0x0; 929 } 930 spin_unlock_irqrestore(&rvu->cpt_intr_lock, flags); 931 } 932 return 0; 933 } 934 935 static void cpt_rxc_teardown(struct rvu *rvu, int blkaddr) 936 { 937 struct cpt_rxc_time_cfg_req req, prev; 938 int timeout = 2000; 939 u64 reg; 940 941 if (is_rvu_otx2(rvu)) 942 return; 943 944 /* Set time limit to minimum values, so that rxc entries will be 945 * flushed out quickly. 946 */ 947 req.step = 1; 948 req.zombie_thres = 1; 949 req.zombie_limit = 1; 950 req.active_thres = 1; 951 req.active_limit = 1; 952 953 cpt_rxc_time_cfg(rvu, &req, blkaddr, &prev); 954 955 do { 956 reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS); 957 udelay(1); 958 if (FIELD_GET(RXC_ACTIVE_COUNT, reg)) 959 timeout--; 960 else 961 break; 962 } while (timeout); 963 964 if (timeout == 0) 965 dev_warn(rvu->dev, "Poll for RXC active count hits hard loop counter\n"); 966 967 timeout = 2000; 968 do { 969 reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS); 970 udelay(1); 971 if (FIELD_GET(RXC_ZOMBIE_COUNT, reg)) 972 timeout--; 973 else 974 break; 975 } while (timeout); 976 977 if (timeout == 0) 978 dev_warn(rvu->dev, "Poll for RXC zombie count hits hard loop counter\n"); 979 980 /* Restore config */ 981 cpt_rxc_time_cfg(rvu, &prev, blkaddr, NULL); 982 } 983 984 #define INFLIGHT GENMASK_ULL(8, 0) 985 #define GRB_CNT GENMASK_ULL(39, 32) 986 #define GWB_CNT GENMASK_ULL(47, 40) 987 #define XQ_XOR GENMASK_ULL(63, 63) 988 #define DQPTR GENMASK_ULL(19, 0) 989 #define NQPTR GENMASK_ULL(51, 32) 990 991 static void cpt_lf_disable_iqueue(struct rvu *rvu, int blkaddr, int slot) 992 { 993 int timeout = 1000000; 994 u64 inprog, inst_ptr; 995 u64 qsize, pending; 996 int i = 0; 997 998 /* Disable instructions enqueuing */ 999 rvu_write64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTL), 0x0); 1000 1001 inprog = rvu_read64(rvu, blkaddr, 1002 CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG)); 1003 inprog |= BIT_ULL(16); 1004 rvu_write64(rvu, blkaddr, 1005 CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG), inprog); 1006 1007 qsize = rvu_read64(rvu, blkaddr, 1008 CPT_AF_BAR2_ALIASX(slot, CPT_LF_Q_SIZE)) & 0x7FFF; 1009 do { 1010 inst_ptr = rvu_read64(rvu, blkaddr, 1011 CPT_AF_BAR2_ALIASX(slot, CPT_LF_Q_INST_PTR)); 1012 pending = (FIELD_GET(XQ_XOR, inst_ptr) * qsize * 40) + 1013 FIELD_GET(NQPTR, inst_ptr) - 1014 FIELD_GET(DQPTR, inst_ptr); 1015 udelay(1); 1016 timeout--; 1017 } while ((pending != 0) && (timeout != 0)); 1018 1019 if (timeout == 0) 1020 dev_warn(rvu->dev, "TIMEOUT: CPT poll on pending instructions\n"); 1021 1022 timeout = 1000000; 1023 /* Wait for CPT queue to become execution-quiescent */ 1024 do { 1025 inprog = rvu_read64(rvu, blkaddr, 1026 CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG)); 1027 1028 if ((FIELD_GET(INFLIGHT, inprog) == 0) && 1029 (FIELD_GET(GRB_CNT, inprog) == 0)) { 1030 i++; 1031 } else { 1032 i = 0; 1033 timeout--; 1034 } 1035 } while ((timeout != 0) && (i < 10)); 1036 1037 if (timeout == 0) 1038 dev_warn(rvu->dev, "TIMEOUT: CPT poll on inflight count\n"); 1039 /* Wait for 2 us to flush all queue writes to memory */ 1040 udelay(2); 1041 } 1042 1043 int rvu_cpt_lf_teardown(struct rvu *rvu, u16 pcifunc, int blkaddr, int lf, int slot) 1044 { 1045 u64 reg; 1046 1047 if (is_cpt_pf(rvu, pcifunc) || is_cpt_vf(rvu, pcifunc)) 1048 cpt_rxc_teardown(rvu, blkaddr); 1049 1050 mutex_lock(&rvu->alias_lock); 1051 /* Enable BAR2 ALIAS for this pcifunc. */ 1052 reg = BIT_ULL(16) | pcifunc; 1053 rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg); 1054 1055 cpt_lf_disable_iqueue(rvu, blkaddr, slot); 1056 1057 rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0); 1058 mutex_unlock(&rvu->alias_lock); 1059 1060 return 0; 1061 } 1062 1063 #define CPT_RES_LEN 16 1064 #define CPT_SE_IE_EGRP 1ULL 1065 1066 static int cpt_inline_inb_lf_cmd_send(struct rvu *rvu, int blkaddr, 1067 int nix_blkaddr) 1068 { 1069 int cpt_pf_num = rvu->cpt_pf_num; 1070 struct cpt_inst_lmtst_req *req; 1071 dma_addr_t res_daddr; 1072 int timeout = 3000; 1073 u8 cpt_idx; 1074 u64 *inst; 1075 u16 *res; 1076 int rc; 1077 1078 res = kzalloc(CPT_RES_LEN, GFP_KERNEL); 1079 if (!res) 1080 return -ENOMEM; 1081 1082 res_daddr = dma_map_single(rvu->dev, res, CPT_RES_LEN, 1083 DMA_BIDIRECTIONAL); 1084 if (dma_mapping_error(rvu->dev, res_daddr)) { 1085 dev_err(rvu->dev, "DMA mapping failed for CPT result\n"); 1086 rc = -EFAULT; 1087 goto res_free; 1088 } 1089 *res = 0xFFFF; 1090 1091 /* Send mbox message to CPT PF */ 1092 req = (struct cpt_inst_lmtst_req *) 1093 otx2_mbox_alloc_msg_rsp(&rvu->afpf_wq_info.mbox_up, 1094 cpt_pf_num, sizeof(*req), 1095 sizeof(struct msg_rsp)); 1096 if (!req) { 1097 rc = -ENOMEM; 1098 goto res_daddr_unmap; 1099 } 1100 req->hdr.sig = OTX2_MBOX_REQ_SIG; 1101 req->hdr.id = MBOX_MSG_CPT_INST_LMTST; 1102 1103 inst = req->inst; 1104 /* Prepare CPT_INST_S */ 1105 inst[0] = 0; 1106 inst[1] = res_daddr; 1107 /* AF PF FUNC */ 1108 inst[2] = 0; 1109 /* Set QORD */ 1110 inst[3] = 1; 1111 inst[4] = 0; 1112 inst[5] = 0; 1113 inst[6] = 0; 1114 /* Set EGRP */ 1115 inst[7] = CPT_SE_IE_EGRP << 61; 1116 1117 /* Subtract 1 from the NIX-CPT credit count to preserve 1118 * credit counts. 1119 */ 1120 cpt_idx = (blkaddr == BLKADDR_CPT0) ? 0 : 1; 1121 rvu_write64(rvu, nix_blkaddr, NIX_AF_RX_CPTX_CREDIT(cpt_idx), 1122 BIT_ULL(22) - 1); 1123 1124 otx2_mbox_msg_send(&rvu->afpf_wq_info.mbox_up, cpt_pf_num); 1125 rc = otx2_mbox_wait_for_rsp(&rvu->afpf_wq_info.mbox_up, cpt_pf_num); 1126 if (rc) 1127 dev_warn(rvu->dev, "notification to pf %d failed\n", 1128 cpt_pf_num); 1129 /* Wait for CPT instruction to be completed */ 1130 do { 1131 mdelay(1); 1132 if (*res == 0xFFFF) 1133 timeout--; 1134 else 1135 break; 1136 } while (timeout); 1137 1138 if (timeout == 0) 1139 dev_warn(rvu->dev, "Poll for result hits hard loop counter\n"); 1140 1141 res_daddr_unmap: 1142 dma_unmap_single(rvu->dev, res_daddr, CPT_RES_LEN, DMA_BIDIRECTIONAL); 1143 res_free: 1144 kfree(res); 1145 1146 return 0; 1147 } 1148 1149 #define CTX_CAM_PF_FUNC GENMASK_ULL(61, 46) 1150 #define CTX_CAM_CPTR GENMASK_ULL(45, 0) 1151 1152 int rvu_cpt_ctx_flush(struct rvu *rvu, u16 pcifunc) 1153 { 1154 int nix_blkaddr, blkaddr; 1155 u16 max_ctx_entries, i; 1156 int slot = 0, num_lfs; 1157 u64 reg, cam_data; 1158 int rc; 1159 1160 nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); 1161 if (nix_blkaddr < 0) 1162 return -EINVAL; 1163 1164 if (is_rvu_otx2(rvu)) 1165 return 0; 1166 1167 blkaddr = (nix_blkaddr == BLKADDR_NIX1) ? BLKADDR_CPT1 : BLKADDR_CPT0; 1168 1169 /* Submit CPT_INST_S to track when all packets have been 1170 * flushed through for the NIX PF FUNC in inline inbound case. 1171 */ 1172 rc = cpt_inline_inb_lf_cmd_send(rvu, blkaddr, nix_blkaddr); 1173 if (rc) 1174 return rc; 1175 1176 /* Wait for rxc entries to be flushed out */ 1177 cpt_rxc_teardown(rvu, blkaddr); 1178 1179 reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0); 1180 max_ctx_entries = (reg >> 48) & 0xFFF; 1181 1182 mutex_lock(&rvu->rsrc_lock); 1183 1184 num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc), 1185 blkaddr); 1186 if (num_lfs == 0) { 1187 dev_warn(rvu->dev, "CPT LF is not configured\n"); 1188 goto unlock; 1189 } 1190 1191 /* Enable BAR2 ALIAS for this pcifunc. */ 1192 reg = BIT_ULL(16) | pcifunc; 1193 rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg); 1194 1195 for (i = 0; i < max_ctx_entries; i++) { 1196 cam_data = rvu_read64(rvu, blkaddr, CPT_AF_CTX_CAM_DATA(i)); 1197 1198 if ((FIELD_GET(CTX_CAM_PF_FUNC, cam_data) == pcifunc) && 1199 FIELD_GET(CTX_CAM_CPTR, cam_data)) { 1200 reg = BIT_ULL(46) | FIELD_GET(CTX_CAM_CPTR, cam_data); 1201 rvu_write64(rvu, blkaddr, 1202 CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTX_FLUSH), 1203 reg); 1204 } 1205 } 1206 rvu_bar2_sel_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0); 1207 1208 unlock: 1209 mutex_unlock(&rvu->rsrc_lock); 1210 1211 return 0; 1212 } 1213 1214 int rvu_cpt_init(struct rvu *rvu) 1215 { 1216 /* Retrieve CPT PF number */ 1217 rvu->cpt_pf_num = get_cpt_pf_num(rvu); 1218 spin_lock_init(&rvu->cpt_intr_lock); 1219 1220 return 0; 1221 } 1222