xref: /openbmc/linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/pci.h>
16 #include <linux/sysfs.h>
17 
18 #include "cgx.h"
19 #include "rvu.h"
20 #include "rvu_reg.h"
21 #include "ptp.h"
22 
23 #include "rvu_trace.h"
24 
25 #define DRV_NAME	"rvu_af"
26 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
27 
28 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
29 
30 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31 				struct rvu_block *block, int lf);
32 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
33 				  struct rvu_block *block, int lf);
34 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
35 
36 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
37 			 int type, int num,
38 			 void (mbox_handler)(struct work_struct *),
39 			 void (mbox_up_handler)(struct work_struct *));
40 enum {
41 	TYPE_AFVF,
42 	TYPE_AFPF,
43 };
44 
45 /* Supported devices */
46 static const struct pci_device_id rvu_id_table[] = {
47 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
48 	{ 0, }  /* end of table */
49 };
50 
51 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
52 MODULE_DESCRIPTION(DRV_STRING);
53 MODULE_LICENSE("GPL v2");
54 MODULE_DEVICE_TABLE(pci, rvu_id_table);
55 
56 static char *mkex_profile; /* MKEX profile name */
57 module_param(mkex_profile, charp, 0000);
58 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
59 
60 static char *kpu_profile; /* KPU profile name */
61 module_param(kpu_profile, charp, 0000);
62 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
63 
64 static void rvu_setup_hw_capabilities(struct rvu *rvu)
65 {
66 	struct rvu_hwinfo *hw = rvu->hw;
67 
68 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
69 	hw->cap.nix_fixed_txschq_mapping = false;
70 	hw->cap.nix_shaping = true;
71 	hw->cap.nix_tx_link_bp = true;
72 	hw->cap.nix_rx_multicast = true;
73 	hw->rvu = rvu;
74 
75 	if (is_rvu_96xx_B0(rvu)) {
76 		hw->cap.nix_fixed_txschq_mapping = true;
77 		hw->cap.nix_txsch_per_cgx_lmac = 4;
78 		hw->cap.nix_txsch_per_lbk_lmac = 132;
79 		hw->cap.nix_txsch_per_sdp_lmac = 76;
80 		hw->cap.nix_shaping = false;
81 		hw->cap.nix_tx_link_bp = false;
82 		if (is_rvu_96xx_A0(rvu))
83 			hw->cap.nix_rx_multicast = false;
84 	}
85 
86 	if (!is_rvu_otx2(rvu))
87 		hw->cap.per_pf_mbox_regs = true;
88 }
89 
90 /* Poll a RVU block's register 'offset', for a 'zero'
91  * or 'nonzero' at bits specified by 'mask'
92  */
93 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
94 {
95 	unsigned long timeout = jiffies + usecs_to_jiffies(10000);
96 	void __iomem *reg;
97 	u64 reg_val;
98 
99 	reg = rvu->afreg_base + ((block << 28) | offset);
100 again:
101 	reg_val = readq(reg);
102 	if (zero && !(reg_val & mask))
103 		return 0;
104 	if (!zero && (reg_val & mask))
105 		return 0;
106 	if (time_before(jiffies, timeout)) {
107 		usleep_range(1, 5);
108 		goto again;
109 	}
110 	return -EBUSY;
111 }
112 
113 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
114 {
115 	int id;
116 
117 	if (!rsrc->bmap)
118 		return -EINVAL;
119 
120 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
121 	if (id >= rsrc->max)
122 		return -ENOSPC;
123 
124 	__set_bit(id, rsrc->bmap);
125 
126 	return id;
127 }
128 
129 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
130 {
131 	int start;
132 
133 	if (!rsrc->bmap)
134 		return -EINVAL;
135 
136 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
137 	if (start >= rsrc->max)
138 		return -ENOSPC;
139 
140 	bitmap_set(rsrc->bmap, start, nrsrc);
141 	return start;
142 }
143 
144 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
145 {
146 	if (!rsrc->bmap)
147 		return;
148 	if (start >= rsrc->max)
149 		return;
150 
151 	bitmap_clear(rsrc->bmap, start, nrsrc);
152 }
153 
154 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
155 {
156 	int start;
157 
158 	if (!rsrc->bmap)
159 		return false;
160 
161 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
162 	if (start >= rsrc->max)
163 		return false;
164 
165 	return true;
166 }
167 
168 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
169 {
170 	if (!rsrc->bmap)
171 		return;
172 
173 	__clear_bit(id, rsrc->bmap);
174 }
175 
176 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
177 {
178 	int used;
179 
180 	if (!rsrc->bmap)
181 		return 0;
182 
183 	used = bitmap_weight(rsrc->bmap, rsrc->max);
184 	return (rsrc->max - used);
185 }
186 
187 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
188 {
189 	if (!rsrc->bmap)
190 		return false;
191 
192 	return !test_bit(id, rsrc->bmap);
193 }
194 
195 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
196 {
197 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
198 			     sizeof(long), GFP_KERNEL);
199 	if (!rsrc->bmap)
200 		return -ENOMEM;
201 	return 0;
202 }
203 
204 /* Get block LF's HW index from a PF_FUNC's block slot number */
205 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
206 {
207 	u16 match = 0;
208 	int lf;
209 
210 	mutex_lock(&rvu->rsrc_lock);
211 	for (lf = 0; lf < block->lf.max; lf++) {
212 		if (block->fn_map[lf] == pcifunc) {
213 			if (slot == match) {
214 				mutex_unlock(&rvu->rsrc_lock);
215 				return lf;
216 			}
217 			match++;
218 		}
219 	}
220 	mutex_unlock(&rvu->rsrc_lock);
221 	return -ENODEV;
222 }
223 
224 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
225  * Some silicon variants of OcteonTX2 supports
226  * multiple blocks of same type.
227  *
228  * @pcifunc has to be zero when no LF is yet attached.
229  *
230  * For a pcifunc if LFs are attached from multiple blocks of same type, then
231  * return blkaddr of first encountered block.
232  */
233 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
234 {
235 	int devnum, blkaddr = -ENODEV;
236 	u64 cfg, reg;
237 	bool is_pf;
238 
239 	switch (blktype) {
240 	case BLKTYPE_NPC:
241 		blkaddr = BLKADDR_NPC;
242 		goto exit;
243 	case BLKTYPE_NPA:
244 		blkaddr = BLKADDR_NPA;
245 		goto exit;
246 	case BLKTYPE_NIX:
247 		/* For now assume NIX0 */
248 		if (!pcifunc) {
249 			blkaddr = BLKADDR_NIX0;
250 			goto exit;
251 		}
252 		break;
253 	case BLKTYPE_SSO:
254 		blkaddr = BLKADDR_SSO;
255 		goto exit;
256 	case BLKTYPE_SSOW:
257 		blkaddr = BLKADDR_SSOW;
258 		goto exit;
259 	case BLKTYPE_TIM:
260 		blkaddr = BLKADDR_TIM;
261 		goto exit;
262 	case BLKTYPE_CPT:
263 		/* For now assume CPT0 */
264 		if (!pcifunc) {
265 			blkaddr = BLKADDR_CPT0;
266 			goto exit;
267 		}
268 		break;
269 	}
270 
271 	/* Check if this is a RVU PF or VF */
272 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
273 		is_pf = false;
274 		devnum = rvu_get_hwvf(rvu, pcifunc);
275 	} else {
276 		is_pf = true;
277 		devnum = rvu_get_pf(pcifunc);
278 	}
279 
280 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
281 	 * 'BLKADDR_NIX1'.
282 	 */
283 	if (blktype == BLKTYPE_NIX) {
284 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
285 			RVU_PRIV_HWVFX_NIXX_CFG(0);
286 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
287 		if (cfg) {
288 			blkaddr = BLKADDR_NIX0;
289 			goto exit;
290 		}
291 
292 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
293 			RVU_PRIV_HWVFX_NIXX_CFG(1);
294 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
295 		if (cfg)
296 			blkaddr = BLKADDR_NIX1;
297 	}
298 
299 	if (blktype == BLKTYPE_CPT) {
300 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
301 			RVU_PRIV_HWVFX_CPTX_CFG(0);
302 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
303 		if (cfg) {
304 			blkaddr = BLKADDR_CPT0;
305 			goto exit;
306 		}
307 
308 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
309 			RVU_PRIV_HWVFX_CPTX_CFG(1);
310 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
311 		if (cfg)
312 			blkaddr = BLKADDR_CPT1;
313 	}
314 
315 exit:
316 	if (is_block_implemented(rvu->hw, blkaddr))
317 		return blkaddr;
318 	return -ENODEV;
319 }
320 
321 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
322 				struct rvu_block *block, u16 pcifunc,
323 				u16 lf, bool attach)
324 {
325 	int devnum, num_lfs = 0;
326 	bool is_pf;
327 	u64 reg;
328 
329 	if (lf >= block->lf.max) {
330 		dev_err(&rvu->pdev->dev,
331 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
332 			__func__, lf, block->name, block->lf.max);
333 		return;
334 	}
335 
336 	/* Check if this is for a RVU PF or VF */
337 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
338 		is_pf = false;
339 		devnum = rvu_get_hwvf(rvu, pcifunc);
340 	} else {
341 		is_pf = true;
342 		devnum = rvu_get_pf(pcifunc);
343 	}
344 
345 	block->fn_map[lf] = attach ? pcifunc : 0;
346 
347 	switch (block->addr) {
348 	case BLKADDR_NPA:
349 		pfvf->npalf = attach ? true : false;
350 		num_lfs = pfvf->npalf;
351 		break;
352 	case BLKADDR_NIX0:
353 	case BLKADDR_NIX1:
354 		pfvf->nixlf = attach ? true : false;
355 		num_lfs = pfvf->nixlf;
356 		break;
357 	case BLKADDR_SSO:
358 		attach ? pfvf->sso++ : pfvf->sso--;
359 		num_lfs = pfvf->sso;
360 		break;
361 	case BLKADDR_SSOW:
362 		attach ? pfvf->ssow++ : pfvf->ssow--;
363 		num_lfs = pfvf->ssow;
364 		break;
365 	case BLKADDR_TIM:
366 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
367 		num_lfs = pfvf->timlfs;
368 		break;
369 	case BLKADDR_CPT0:
370 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
371 		num_lfs = pfvf->cptlfs;
372 		break;
373 	case BLKADDR_CPT1:
374 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
375 		num_lfs = pfvf->cpt1_lfs;
376 		break;
377 	}
378 
379 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
380 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
381 }
382 
383 inline int rvu_get_pf(u16 pcifunc)
384 {
385 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
386 }
387 
388 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
389 {
390 	u64 cfg;
391 
392 	/* Get numVFs attached to this PF and first HWVF */
393 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
394 	*numvfs = (cfg >> 12) & 0xFF;
395 	*hwvf = cfg & 0xFFF;
396 }
397 
398 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
399 {
400 	int pf, func;
401 	u64 cfg;
402 
403 	pf = rvu_get_pf(pcifunc);
404 	func = pcifunc & RVU_PFVF_FUNC_MASK;
405 
406 	/* Get first HWVF attached to this PF */
407 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
408 
409 	return ((cfg & 0xFFF) + func - 1);
410 }
411 
412 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
413 {
414 	/* Check if it is a PF or VF */
415 	if (pcifunc & RVU_PFVF_FUNC_MASK)
416 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
417 	else
418 		return &rvu->pf[rvu_get_pf(pcifunc)];
419 }
420 
421 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
422 {
423 	int pf, vf, nvfs;
424 	u64 cfg;
425 
426 	pf = rvu_get_pf(pcifunc);
427 	if (pf >= rvu->hw->total_pfs)
428 		return false;
429 
430 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
431 		return true;
432 
433 	/* Check if VF is within number of VFs attached to this PF */
434 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
435 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
436 	nvfs = (cfg >> 12) & 0xFF;
437 	if (vf >= nvfs)
438 		return false;
439 
440 	return true;
441 }
442 
443 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
444 {
445 	struct rvu_block *block;
446 
447 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
448 		return false;
449 
450 	block = &hw->block[blkaddr];
451 	return block->implemented;
452 }
453 
454 static void rvu_check_block_implemented(struct rvu *rvu)
455 {
456 	struct rvu_hwinfo *hw = rvu->hw;
457 	struct rvu_block *block;
458 	int blkid;
459 	u64 cfg;
460 
461 	/* For each block check if 'implemented' bit is set */
462 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
463 		block = &hw->block[blkid];
464 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
465 		if (cfg & BIT_ULL(11))
466 			block->implemented = true;
467 	}
468 }
469 
470 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
471 {
472 	rvu_write64(rvu, BLKADDR_RVUM,
473 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
474 		    RVU_BLK_RVUM_REVID);
475 }
476 
477 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
478 {
479 	rvu_write64(rvu, BLKADDR_RVUM,
480 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
481 }
482 
483 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
484 {
485 	int err;
486 
487 	if (!block->implemented)
488 		return 0;
489 
490 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
491 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
492 			   true);
493 	return err;
494 }
495 
496 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
497 {
498 	struct rvu_block *block = &rvu->hw->block[blkaddr];
499 
500 	if (!block->implemented)
501 		return;
502 
503 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
504 	rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
505 }
506 
507 static void rvu_reset_all_blocks(struct rvu *rvu)
508 {
509 	/* Do a HW reset of all RVU blocks */
510 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
511 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
512 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
513 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
514 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
515 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
516 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
517 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
518 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
519 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
520 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
521 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
522 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
523 }
524 
525 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
526 {
527 	struct rvu_pfvf *pfvf;
528 	u64 cfg;
529 	int lf;
530 
531 	for (lf = 0; lf < block->lf.max; lf++) {
532 		cfg = rvu_read64(rvu, block->addr,
533 				 block->lfcfg_reg | (lf << block->lfshift));
534 		if (!(cfg & BIT_ULL(63)))
535 			continue;
536 
537 		/* Set this resource as being used */
538 		__set_bit(lf, block->lf.bmap);
539 
540 		/* Get, to whom this LF is attached */
541 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
542 		rvu_update_rsrc_map(rvu, pfvf, block,
543 				    (cfg >> 8) & 0xFFFF, lf, true);
544 
545 		/* Set start MSIX vector for this LF within this PF/VF */
546 		rvu_set_msix_offset(rvu, pfvf, block, lf);
547 	}
548 }
549 
550 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
551 {
552 	int min_vecs;
553 
554 	if (!vf)
555 		goto check_pf;
556 
557 	if (!nvecs) {
558 		dev_warn(rvu->dev,
559 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
560 			 pf, vf - 1, nvecs);
561 	}
562 	return;
563 
564 check_pf:
565 	if (pf == 0)
566 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
567 	else
568 		min_vecs = RVU_PF_INT_VEC_CNT;
569 
570 	if (!(nvecs < min_vecs))
571 		return;
572 	dev_warn(rvu->dev,
573 		 "PF%d is configured with too few vectors, %d, min is %d\n",
574 		 pf, nvecs, min_vecs);
575 }
576 
577 static int rvu_setup_msix_resources(struct rvu *rvu)
578 {
579 	struct rvu_hwinfo *hw = rvu->hw;
580 	int pf, vf, numvfs, hwvf, err;
581 	int nvecs, offset, max_msix;
582 	struct rvu_pfvf *pfvf;
583 	u64 cfg, phy_addr;
584 	dma_addr_t iova;
585 
586 	for (pf = 0; pf < hw->total_pfs; pf++) {
587 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
588 		/* If PF is not enabled, nothing to do */
589 		if (!((cfg >> 20) & 0x01))
590 			continue;
591 
592 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
593 
594 		pfvf = &rvu->pf[pf];
595 		/* Get num of MSIX vectors attached to this PF */
596 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
597 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
598 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
599 
600 		/* Alloc msix bitmap for this PF */
601 		err = rvu_alloc_bitmap(&pfvf->msix);
602 		if (err)
603 			return err;
604 
605 		/* Allocate memory for MSIX vector to RVU block LF mapping */
606 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
607 						sizeof(u16), GFP_KERNEL);
608 		if (!pfvf->msix_lfmap)
609 			return -ENOMEM;
610 
611 		/* For PF0 (AF) firmware will set msix vector offsets for
612 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
613 		 */
614 		if (!pf)
615 			goto setup_vfmsix;
616 
617 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
618 		 * These are allocated on driver init and never freed,
619 		 * so no need to set 'msix_lfmap' for these.
620 		 */
621 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
622 		nvecs = (cfg >> 12) & 0xFF;
623 		cfg &= ~0x7FFULL;
624 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
625 		rvu_write64(rvu, BLKADDR_RVUM,
626 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
627 setup_vfmsix:
628 		/* Alloc msix bitmap for VFs */
629 		for (vf = 0; vf < numvfs; vf++) {
630 			pfvf =  &rvu->hwvf[hwvf + vf];
631 			/* Get num of MSIX vectors attached to this VF */
632 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
633 					 RVU_PRIV_PFX_MSIX_CFG(pf));
634 			pfvf->msix.max = (cfg & 0xFFF) + 1;
635 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
636 
637 			/* Alloc msix bitmap for this VF */
638 			err = rvu_alloc_bitmap(&pfvf->msix);
639 			if (err)
640 				return err;
641 
642 			pfvf->msix_lfmap =
643 				devm_kcalloc(rvu->dev, pfvf->msix.max,
644 					     sizeof(u16), GFP_KERNEL);
645 			if (!pfvf->msix_lfmap)
646 				return -ENOMEM;
647 
648 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
649 			 * These are allocated on driver init and never freed,
650 			 * so no need to set 'msix_lfmap' for these.
651 			 */
652 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
653 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
654 			nvecs = (cfg >> 12) & 0xFF;
655 			cfg &= ~0x7FFULL;
656 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
657 			rvu_write64(rvu, BLKADDR_RVUM,
658 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
659 				    cfg | offset);
660 		}
661 	}
662 
663 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
664 	 * create an IOMMU mapping for the physical address configured by
665 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
666 	 */
667 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
668 	max_msix = cfg & 0xFFFFF;
669 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
670 		phy_addr = rvu->fwdata->msixtr_base;
671 	else
672 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
673 
674 	iova = dma_map_resource(rvu->dev, phy_addr,
675 				max_msix * PCI_MSIX_ENTRY_SIZE,
676 				DMA_BIDIRECTIONAL, 0);
677 
678 	if (dma_mapping_error(rvu->dev, iova))
679 		return -ENOMEM;
680 
681 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
682 	rvu->msix_base_iova = iova;
683 	rvu->msixtr_base_phy = phy_addr;
684 
685 	return 0;
686 }
687 
688 static void rvu_reset_msix(struct rvu *rvu)
689 {
690 	/* Restore msixtr base register */
691 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
692 		    rvu->msixtr_base_phy);
693 }
694 
695 static void rvu_free_hw_resources(struct rvu *rvu)
696 {
697 	struct rvu_hwinfo *hw = rvu->hw;
698 	struct rvu_block *block;
699 	struct rvu_pfvf  *pfvf;
700 	int id, max_msix;
701 	u64 cfg;
702 
703 	rvu_npa_freemem(rvu);
704 	rvu_npc_freemem(rvu);
705 	rvu_nix_freemem(rvu);
706 
707 	/* Free block LF bitmaps */
708 	for (id = 0; id < BLK_COUNT; id++) {
709 		block = &hw->block[id];
710 		kfree(block->lf.bmap);
711 	}
712 
713 	/* Free MSIX bitmaps */
714 	for (id = 0; id < hw->total_pfs; id++) {
715 		pfvf = &rvu->pf[id];
716 		kfree(pfvf->msix.bmap);
717 	}
718 
719 	for (id = 0; id < hw->total_vfs; id++) {
720 		pfvf = &rvu->hwvf[id];
721 		kfree(pfvf->msix.bmap);
722 	}
723 
724 	/* Unmap MSIX vector base IOVA mapping */
725 	if (!rvu->msix_base_iova)
726 		return;
727 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
728 	max_msix = cfg & 0xFFFFF;
729 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
730 			   max_msix * PCI_MSIX_ENTRY_SIZE,
731 			   DMA_BIDIRECTIONAL, 0);
732 
733 	rvu_reset_msix(rvu);
734 	mutex_destroy(&rvu->rsrc_lock);
735 }
736 
737 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
738 {
739 	struct rvu_hwinfo *hw = rvu->hw;
740 	int pf, vf, numvfs, hwvf;
741 	struct rvu_pfvf *pfvf;
742 	u64 *mac;
743 
744 	for (pf = 0; pf < hw->total_pfs; pf++) {
745 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
746 		if (!pf)
747 			goto lbkvf;
748 
749 		if (!is_pf_cgxmapped(rvu, pf))
750 			continue;
751 		/* Assign MAC address to PF */
752 		pfvf = &rvu->pf[pf];
753 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
754 			mac = &rvu->fwdata->pf_macs[pf];
755 			if (*mac)
756 				u64_to_ether_addr(*mac, pfvf->mac_addr);
757 			else
758 				eth_random_addr(pfvf->mac_addr);
759 		} else {
760 			eth_random_addr(pfvf->mac_addr);
761 		}
762 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
763 
764 lbkvf:
765 		/* Assign MAC address to VFs*/
766 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
767 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
768 			pfvf = &rvu->hwvf[hwvf];
769 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
770 				mac = &rvu->fwdata->vf_macs[hwvf];
771 				if (*mac)
772 					u64_to_ether_addr(*mac, pfvf->mac_addr);
773 				else
774 					eth_random_addr(pfvf->mac_addr);
775 			} else {
776 				eth_random_addr(pfvf->mac_addr);
777 			}
778 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
779 		}
780 	}
781 }
782 
783 static int rvu_fwdata_init(struct rvu *rvu)
784 {
785 	u64 fwdbase;
786 	int err;
787 
788 	/* Get firmware data base address */
789 	err = cgx_get_fwdata_base(&fwdbase);
790 	if (err)
791 		goto fail;
792 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
793 	if (!rvu->fwdata)
794 		goto fail;
795 	if (!is_rvu_fwdata_valid(rvu)) {
796 		dev_err(rvu->dev,
797 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
798 		iounmap(rvu->fwdata);
799 		rvu->fwdata = NULL;
800 		return -EINVAL;
801 	}
802 	return 0;
803 fail:
804 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
805 	return -EIO;
806 }
807 
808 static void rvu_fwdata_exit(struct rvu *rvu)
809 {
810 	if (rvu->fwdata)
811 		iounmap(rvu->fwdata);
812 }
813 
814 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
815 {
816 	struct rvu_hwinfo *hw = rvu->hw;
817 	struct rvu_block *block;
818 	int blkid;
819 	u64 cfg;
820 
821 	/* Init NIX LF's bitmap */
822 	block = &hw->block[blkaddr];
823 	if (!block->implemented)
824 		return 0;
825 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
826 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
827 	block->lf.max = cfg & 0xFFF;
828 	block->addr = blkaddr;
829 	block->type = BLKTYPE_NIX;
830 	block->lfshift = 8;
831 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
832 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
833 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
834 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
835 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
836 	block->lfreset_reg = NIX_AF_LF_RST;
837 	sprintf(block->name, "NIX%d", blkid);
838 	rvu->nix_blkaddr[blkid] = blkaddr;
839 	return rvu_alloc_bitmap(&block->lf);
840 }
841 
842 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
843 {
844 	struct rvu_hwinfo *hw = rvu->hw;
845 	struct rvu_block *block;
846 	int blkid;
847 	u64 cfg;
848 
849 	/* Init CPT LF's bitmap */
850 	block = &hw->block[blkaddr];
851 	if (!block->implemented)
852 		return 0;
853 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
854 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
855 	block->lf.max = cfg & 0xFF;
856 	block->addr = blkaddr;
857 	block->type = BLKTYPE_CPT;
858 	block->multislot = true;
859 	block->lfshift = 3;
860 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
861 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
862 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
863 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
864 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
865 	block->lfreset_reg = CPT_AF_LF_RST;
866 	sprintf(block->name, "CPT%d", blkid);
867 	return rvu_alloc_bitmap(&block->lf);
868 }
869 
870 static void rvu_get_lbk_bufsize(struct rvu *rvu)
871 {
872 	struct pci_dev *pdev = NULL;
873 	void __iomem *base;
874 	u64 lbk_const;
875 
876 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
877 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
878 	if (!pdev)
879 		return;
880 
881 	base = pci_ioremap_bar(pdev, 0);
882 	if (!base)
883 		goto err_put;
884 
885 	lbk_const = readq(base + LBK_CONST);
886 
887 	/* cache fifo size */
888 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
889 
890 	iounmap(base);
891 err_put:
892 	pci_dev_put(pdev);
893 }
894 
895 static int rvu_setup_hw_resources(struct rvu *rvu)
896 {
897 	struct rvu_hwinfo *hw = rvu->hw;
898 	struct rvu_block *block;
899 	int blkid, err;
900 	u64 cfg;
901 
902 	/* Get HW supported max RVU PF & VF count */
903 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
904 	hw->total_pfs = (cfg >> 32) & 0xFF;
905 	hw->total_vfs = (cfg >> 20) & 0xFFF;
906 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
907 
908 	/* Init NPA LF's bitmap */
909 	block = &hw->block[BLKADDR_NPA];
910 	if (!block->implemented)
911 		goto nix;
912 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
913 	block->lf.max = (cfg >> 16) & 0xFFF;
914 	block->addr = BLKADDR_NPA;
915 	block->type = BLKTYPE_NPA;
916 	block->lfshift = 8;
917 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
918 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
919 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
920 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
921 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
922 	block->lfreset_reg = NPA_AF_LF_RST;
923 	sprintf(block->name, "NPA");
924 	err = rvu_alloc_bitmap(&block->lf);
925 	if (err)
926 		return err;
927 
928 nix:
929 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
930 	if (err)
931 		return err;
932 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
933 	if (err)
934 		return err;
935 
936 	/* Init SSO group's bitmap */
937 	block = &hw->block[BLKADDR_SSO];
938 	if (!block->implemented)
939 		goto ssow;
940 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
941 	block->lf.max = cfg & 0xFFFF;
942 	block->addr = BLKADDR_SSO;
943 	block->type = BLKTYPE_SSO;
944 	block->multislot = true;
945 	block->lfshift = 3;
946 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
947 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
948 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
949 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
950 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
951 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
952 	sprintf(block->name, "SSO GROUP");
953 	err = rvu_alloc_bitmap(&block->lf);
954 	if (err)
955 		return err;
956 
957 ssow:
958 	/* Init SSO workslot's bitmap */
959 	block = &hw->block[BLKADDR_SSOW];
960 	if (!block->implemented)
961 		goto tim;
962 	block->lf.max = (cfg >> 56) & 0xFF;
963 	block->addr = BLKADDR_SSOW;
964 	block->type = BLKTYPE_SSOW;
965 	block->multislot = true;
966 	block->lfshift = 3;
967 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
968 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
969 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
970 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
971 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
972 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
973 	sprintf(block->name, "SSOWS");
974 	err = rvu_alloc_bitmap(&block->lf);
975 	if (err)
976 		return err;
977 
978 tim:
979 	/* Init TIM LF's bitmap */
980 	block = &hw->block[BLKADDR_TIM];
981 	if (!block->implemented)
982 		goto cpt;
983 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
984 	block->lf.max = cfg & 0xFFFF;
985 	block->addr = BLKADDR_TIM;
986 	block->type = BLKTYPE_TIM;
987 	block->multislot = true;
988 	block->lfshift = 3;
989 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
990 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
991 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
992 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
993 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
994 	block->lfreset_reg = TIM_AF_LF_RST;
995 	sprintf(block->name, "TIM");
996 	err = rvu_alloc_bitmap(&block->lf);
997 	if (err)
998 		return err;
999 
1000 cpt:
1001 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1002 	if (err)
1003 		return err;
1004 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1005 	if (err)
1006 		return err;
1007 
1008 	/* Allocate memory for PFVF data */
1009 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1010 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1011 	if (!rvu->pf)
1012 		return -ENOMEM;
1013 
1014 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1015 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1016 	if (!rvu->hwvf)
1017 		return -ENOMEM;
1018 
1019 	mutex_init(&rvu->rsrc_lock);
1020 
1021 	rvu_fwdata_init(rvu);
1022 
1023 	err = rvu_setup_msix_resources(rvu);
1024 	if (err)
1025 		return err;
1026 
1027 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1028 		block = &hw->block[blkid];
1029 		if (!block->lf.bmap)
1030 			continue;
1031 
1032 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1033 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1034 					     sizeof(u16), GFP_KERNEL);
1035 		if (!block->fn_map) {
1036 			err = -ENOMEM;
1037 			goto msix_err;
1038 		}
1039 
1040 		/* Scan all blocks to check if low level firmware has
1041 		 * already provisioned any of the resources to a PF/VF.
1042 		 */
1043 		rvu_scan_block(rvu, block);
1044 	}
1045 
1046 	err = rvu_set_channels_base(rvu);
1047 	if (err)
1048 		goto msix_err;
1049 
1050 	err = rvu_npc_init(rvu);
1051 	if (err)
1052 		goto npc_err;
1053 
1054 	err = rvu_cgx_init(rvu);
1055 	if (err)
1056 		goto cgx_err;
1057 
1058 	/* Assign MACs for CGX mapped functions */
1059 	rvu_setup_pfvf_macaddress(rvu);
1060 
1061 	err = rvu_npa_init(rvu);
1062 	if (err)
1063 		goto npa_err;
1064 
1065 	rvu_get_lbk_bufsize(rvu);
1066 
1067 	err = rvu_nix_init(rvu);
1068 	if (err)
1069 		goto nix_err;
1070 
1071 	rvu_program_channels(rvu);
1072 
1073 	return 0;
1074 
1075 nix_err:
1076 	rvu_nix_freemem(rvu);
1077 npa_err:
1078 	rvu_npa_freemem(rvu);
1079 cgx_err:
1080 	rvu_cgx_exit(rvu);
1081 npc_err:
1082 	rvu_npc_freemem(rvu);
1083 	rvu_fwdata_exit(rvu);
1084 msix_err:
1085 	rvu_reset_msix(rvu);
1086 	return err;
1087 }
1088 
1089 /* NPA and NIX admin queue APIs */
1090 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1091 {
1092 	if (!aq)
1093 		return;
1094 
1095 	qmem_free(rvu->dev, aq->inst);
1096 	qmem_free(rvu->dev, aq->res);
1097 	devm_kfree(rvu->dev, aq);
1098 }
1099 
1100 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1101 		 int qsize, int inst_size, int res_size)
1102 {
1103 	struct admin_queue *aq;
1104 	int err;
1105 
1106 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1107 	if (!*ad_queue)
1108 		return -ENOMEM;
1109 	aq = *ad_queue;
1110 
1111 	/* Alloc memory for instructions i.e AQ */
1112 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1113 	if (err) {
1114 		devm_kfree(rvu->dev, aq);
1115 		return err;
1116 	}
1117 
1118 	/* Alloc memory for results */
1119 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1120 	if (err) {
1121 		rvu_aq_free(rvu, aq);
1122 		return err;
1123 	}
1124 
1125 	spin_lock_init(&aq->lock);
1126 	return 0;
1127 }
1128 
1129 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1130 			   struct ready_msg_rsp *rsp)
1131 {
1132 	if (rvu->fwdata) {
1133 		rsp->rclk_freq = rvu->fwdata->rclk;
1134 		rsp->sclk_freq = rvu->fwdata->sclk;
1135 	}
1136 	return 0;
1137 }
1138 
1139 /* Get current count of a RVU block's LF/slots
1140  * provisioned to a given RVU func.
1141  */
1142 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1143 {
1144 	switch (blkaddr) {
1145 	case BLKADDR_NPA:
1146 		return pfvf->npalf ? 1 : 0;
1147 	case BLKADDR_NIX0:
1148 	case BLKADDR_NIX1:
1149 		return pfvf->nixlf ? 1 : 0;
1150 	case BLKADDR_SSO:
1151 		return pfvf->sso;
1152 	case BLKADDR_SSOW:
1153 		return pfvf->ssow;
1154 	case BLKADDR_TIM:
1155 		return pfvf->timlfs;
1156 	case BLKADDR_CPT0:
1157 		return pfvf->cptlfs;
1158 	case BLKADDR_CPT1:
1159 		return pfvf->cpt1_lfs;
1160 	}
1161 	return 0;
1162 }
1163 
1164 /* Return true if LFs of block type are attached to pcifunc */
1165 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1166 {
1167 	switch (blktype) {
1168 	case BLKTYPE_NPA:
1169 		return pfvf->npalf ? 1 : 0;
1170 	case BLKTYPE_NIX:
1171 		return pfvf->nixlf ? 1 : 0;
1172 	case BLKTYPE_SSO:
1173 		return !!pfvf->sso;
1174 	case BLKTYPE_SSOW:
1175 		return !!pfvf->ssow;
1176 	case BLKTYPE_TIM:
1177 		return !!pfvf->timlfs;
1178 	case BLKTYPE_CPT:
1179 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1180 	}
1181 
1182 	return false;
1183 }
1184 
1185 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1186 {
1187 	struct rvu_pfvf *pfvf;
1188 
1189 	if (!is_pf_func_valid(rvu, pcifunc))
1190 		return false;
1191 
1192 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1193 
1194 	/* Check if this PFFUNC has a LF of type blktype attached */
1195 	if (!is_blktype_attached(pfvf, blktype))
1196 		return false;
1197 
1198 	return true;
1199 }
1200 
1201 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1202 			   int pcifunc, int slot)
1203 {
1204 	u64 val;
1205 
1206 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1207 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1208 	/* Wait for the lookup to finish */
1209 	/* TODO: put some timeout here */
1210 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1211 		;
1212 
1213 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1214 
1215 	/* Check LF valid bit */
1216 	if (!(val & (1ULL << 12)))
1217 		return -1;
1218 
1219 	return (val & 0xFFF);
1220 }
1221 
1222 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1223 {
1224 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1225 	struct rvu_hwinfo *hw = rvu->hw;
1226 	struct rvu_block *block;
1227 	int slot, lf, num_lfs;
1228 	int blkaddr;
1229 
1230 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1231 	if (blkaddr < 0)
1232 		return;
1233 
1234 	if (blktype == BLKTYPE_NIX)
1235 		rvu_nix_reset_mac(pfvf, pcifunc);
1236 
1237 	block = &hw->block[blkaddr];
1238 
1239 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1240 	if (!num_lfs)
1241 		return;
1242 
1243 	for (slot = 0; slot < num_lfs; slot++) {
1244 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1245 		if (lf < 0) /* This should never happen */
1246 			continue;
1247 
1248 		/* Disable the LF */
1249 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1250 			    (lf << block->lfshift), 0x00ULL);
1251 
1252 		/* Update SW maintained mapping info as well */
1253 		rvu_update_rsrc_map(rvu, pfvf, block,
1254 				    pcifunc, lf, false);
1255 
1256 		/* Free the resource */
1257 		rvu_free_rsrc(&block->lf, lf);
1258 
1259 		/* Clear MSIX vector offset for this LF */
1260 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1261 	}
1262 }
1263 
1264 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1265 			    u16 pcifunc)
1266 {
1267 	struct rvu_hwinfo *hw = rvu->hw;
1268 	bool detach_all = true;
1269 	struct rvu_block *block;
1270 	int blkid;
1271 
1272 	mutex_lock(&rvu->rsrc_lock);
1273 
1274 	/* Check for partial resource detach */
1275 	if (detach && detach->partial)
1276 		detach_all = false;
1277 
1278 	/* Check for RVU block's LFs attached to this func,
1279 	 * if so, detach them.
1280 	 */
1281 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1282 		block = &hw->block[blkid];
1283 		if (!block->lf.bmap)
1284 			continue;
1285 		if (!detach_all && detach) {
1286 			if (blkid == BLKADDR_NPA && !detach->npalf)
1287 				continue;
1288 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1289 				continue;
1290 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1291 				continue;
1292 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1293 				continue;
1294 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1295 				continue;
1296 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1297 				continue;
1298 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1299 				continue;
1300 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1301 				continue;
1302 		}
1303 		rvu_detach_block(rvu, pcifunc, block->type);
1304 	}
1305 
1306 	mutex_unlock(&rvu->rsrc_lock);
1307 	return 0;
1308 }
1309 
1310 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1311 				      struct rsrc_detach *detach,
1312 				      struct msg_rsp *rsp)
1313 {
1314 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1315 }
1316 
1317 static int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1318 {
1319 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1320 	int blkaddr = BLKADDR_NIX0, vf;
1321 	struct rvu_pfvf *pf;
1322 
1323 	/* All CGX mapped PFs are set with assigned NIX block during init */
1324 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1325 		pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1326 		blkaddr = pf->nix_blkaddr;
1327 	} else if (is_afvf(pcifunc)) {
1328 		vf = pcifunc - 1;
1329 		/* Assign NIX based on VF number. All even numbered VFs get
1330 		 * NIX0 and odd numbered gets NIX1
1331 		 */
1332 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1333 		/* NIX1 is not present on all silicons */
1334 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1335 			blkaddr = BLKADDR_NIX0;
1336 	}
1337 
1338 	switch (blkaddr) {
1339 	case BLKADDR_NIX1:
1340 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1341 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1342 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1343 		break;
1344 	case BLKADDR_NIX0:
1345 	default:
1346 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1347 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1348 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1349 		break;
1350 	}
1351 
1352 	return pfvf->nix_blkaddr;
1353 }
1354 
1355 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1356 				  u16 pcifunc, struct rsrc_attach *attach)
1357 {
1358 	int blkaddr;
1359 
1360 	switch (blktype) {
1361 	case BLKTYPE_NIX:
1362 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1363 		break;
1364 	case BLKTYPE_CPT:
1365 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1366 			return rvu_get_blkaddr(rvu, blktype, 0);
1367 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1368 			  BLKADDR_CPT0;
1369 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1370 			return -ENODEV;
1371 		break;
1372 	default:
1373 		return rvu_get_blkaddr(rvu, blktype, 0);
1374 	}
1375 
1376 	if (is_block_implemented(rvu->hw, blkaddr))
1377 		return blkaddr;
1378 
1379 	return -ENODEV;
1380 }
1381 
1382 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1383 			     int num_lfs, struct rsrc_attach *attach)
1384 {
1385 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1386 	struct rvu_hwinfo *hw = rvu->hw;
1387 	struct rvu_block *block;
1388 	int slot, lf;
1389 	int blkaddr;
1390 	u64 cfg;
1391 
1392 	if (!num_lfs)
1393 		return;
1394 
1395 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1396 	if (blkaddr < 0)
1397 		return;
1398 
1399 	block = &hw->block[blkaddr];
1400 	if (!block->lf.bmap)
1401 		return;
1402 
1403 	for (slot = 0; slot < num_lfs; slot++) {
1404 		/* Allocate the resource */
1405 		lf = rvu_alloc_rsrc(&block->lf);
1406 		if (lf < 0)
1407 			return;
1408 
1409 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1410 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1411 			    (lf << block->lfshift), cfg);
1412 		rvu_update_rsrc_map(rvu, pfvf, block,
1413 				    pcifunc, lf, true);
1414 
1415 		/* Set start MSIX vector for this LF within this PF/VF */
1416 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1417 	}
1418 }
1419 
1420 static int rvu_check_rsrc_availability(struct rvu *rvu,
1421 				       struct rsrc_attach *req, u16 pcifunc)
1422 {
1423 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1424 	int free_lfs, mappedlfs, blkaddr;
1425 	struct rvu_hwinfo *hw = rvu->hw;
1426 	struct rvu_block *block;
1427 
1428 	/* Only one NPA LF can be attached */
1429 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1430 		block = &hw->block[BLKADDR_NPA];
1431 		free_lfs = rvu_rsrc_free_count(&block->lf);
1432 		if (!free_lfs)
1433 			goto fail;
1434 	} else if (req->npalf) {
1435 		dev_err(&rvu->pdev->dev,
1436 			"Func 0x%x: Invalid req, already has NPA\n",
1437 			 pcifunc);
1438 		return -EINVAL;
1439 	}
1440 
1441 	/* Only one NIX LF can be attached */
1442 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1443 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1444 						 pcifunc, req);
1445 		if (blkaddr < 0)
1446 			return blkaddr;
1447 		block = &hw->block[blkaddr];
1448 		free_lfs = rvu_rsrc_free_count(&block->lf);
1449 		if (!free_lfs)
1450 			goto fail;
1451 	} else if (req->nixlf) {
1452 		dev_err(&rvu->pdev->dev,
1453 			"Func 0x%x: Invalid req, already has NIX\n",
1454 			pcifunc);
1455 		return -EINVAL;
1456 	}
1457 
1458 	if (req->sso) {
1459 		block = &hw->block[BLKADDR_SSO];
1460 		/* Is request within limits ? */
1461 		if (req->sso > block->lf.max) {
1462 			dev_err(&rvu->pdev->dev,
1463 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1464 				 pcifunc, req->sso, block->lf.max);
1465 			return -EINVAL;
1466 		}
1467 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1468 		free_lfs = rvu_rsrc_free_count(&block->lf);
1469 		/* Check if additional resources are available */
1470 		if (req->sso > mappedlfs &&
1471 		    ((req->sso - mappedlfs) > free_lfs))
1472 			goto fail;
1473 	}
1474 
1475 	if (req->ssow) {
1476 		block = &hw->block[BLKADDR_SSOW];
1477 		if (req->ssow > block->lf.max) {
1478 			dev_err(&rvu->pdev->dev,
1479 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1480 				 pcifunc, req->sso, block->lf.max);
1481 			return -EINVAL;
1482 		}
1483 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1484 		free_lfs = rvu_rsrc_free_count(&block->lf);
1485 		if (req->ssow > mappedlfs &&
1486 		    ((req->ssow - mappedlfs) > free_lfs))
1487 			goto fail;
1488 	}
1489 
1490 	if (req->timlfs) {
1491 		block = &hw->block[BLKADDR_TIM];
1492 		if (req->timlfs > block->lf.max) {
1493 			dev_err(&rvu->pdev->dev,
1494 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1495 				 pcifunc, req->timlfs, block->lf.max);
1496 			return -EINVAL;
1497 		}
1498 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1499 		free_lfs = rvu_rsrc_free_count(&block->lf);
1500 		if (req->timlfs > mappedlfs &&
1501 		    ((req->timlfs - mappedlfs) > free_lfs))
1502 			goto fail;
1503 	}
1504 
1505 	if (req->cptlfs) {
1506 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1507 						 pcifunc, req);
1508 		if (blkaddr < 0)
1509 			return blkaddr;
1510 		block = &hw->block[blkaddr];
1511 		if (req->cptlfs > block->lf.max) {
1512 			dev_err(&rvu->pdev->dev,
1513 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1514 				 pcifunc, req->cptlfs, block->lf.max);
1515 			return -EINVAL;
1516 		}
1517 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1518 		free_lfs = rvu_rsrc_free_count(&block->lf);
1519 		if (req->cptlfs > mappedlfs &&
1520 		    ((req->cptlfs - mappedlfs) > free_lfs))
1521 			goto fail;
1522 	}
1523 
1524 	return 0;
1525 
1526 fail:
1527 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1528 	return -ENOSPC;
1529 }
1530 
1531 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1532 				       struct rsrc_attach *attach)
1533 {
1534 	int blkaddr, num_lfs;
1535 
1536 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1537 					 attach->hdr.pcifunc, attach);
1538 	if (blkaddr < 0)
1539 		return false;
1540 
1541 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1542 					blkaddr);
1543 	/* Requester already has LFs from given block ? */
1544 	return !!num_lfs;
1545 }
1546 
1547 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1548 				      struct rsrc_attach *attach,
1549 				      struct msg_rsp *rsp)
1550 {
1551 	u16 pcifunc = attach->hdr.pcifunc;
1552 	int err;
1553 
1554 	/* If first request, detach all existing attached resources */
1555 	if (!attach->modify)
1556 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1557 
1558 	mutex_lock(&rvu->rsrc_lock);
1559 
1560 	/* Check if the request can be accommodated */
1561 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1562 	if (err)
1563 		goto exit;
1564 
1565 	/* Now attach the requested resources */
1566 	if (attach->npalf)
1567 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1568 
1569 	if (attach->nixlf)
1570 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1571 
1572 	if (attach->sso) {
1573 		/* RVU func doesn't know which exact LF or slot is attached
1574 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1575 		 * request, simply detach all existing attached LFs/slots
1576 		 * and attach a fresh.
1577 		 */
1578 		if (attach->modify)
1579 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1580 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1581 				 attach->sso, attach);
1582 	}
1583 
1584 	if (attach->ssow) {
1585 		if (attach->modify)
1586 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1587 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1588 				 attach->ssow, attach);
1589 	}
1590 
1591 	if (attach->timlfs) {
1592 		if (attach->modify)
1593 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1594 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1595 				 attach->timlfs, attach);
1596 	}
1597 
1598 	if (attach->cptlfs) {
1599 		if (attach->modify &&
1600 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1601 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1602 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1603 				 attach->cptlfs, attach);
1604 	}
1605 
1606 exit:
1607 	mutex_unlock(&rvu->rsrc_lock);
1608 	return err;
1609 }
1610 
1611 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1612 			       int blkaddr, int lf)
1613 {
1614 	u16 vec;
1615 
1616 	if (lf < 0)
1617 		return MSIX_VECTOR_INVALID;
1618 
1619 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1620 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1621 			return vec;
1622 	}
1623 	return MSIX_VECTOR_INVALID;
1624 }
1625 
1626 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1627 				struct rvu_block *block, int lf)
1628 {
1629 	u16 nvecs, vec, offset;
1630 	u64 cfg;
1631 
1632 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1633 			 (lf << block->lfshift));
1634 	nvecs = (cfg >> 12) & 0xFF;
1635 
1636 	/* Check and alloc MSIX vectors, must be contiguous */
1637 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1638 		return;
1639 
1640 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1641 
1642 	/* Config MSIX offset in LF */
1643 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1644 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1645 
1646 	/* Update the bitmap as well */
1647 	for (vec = 0; vec < nvecs; vec++)
1648 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1649 }
1650 
1651 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1652 				  struct rvu_block *block, int lf)
1653 {
1654 	u16 nvecs, vec, offset;
1655 	u64 cfg;
1656 
1657 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1658 			 (lf << block->lfshift));
1659 	nvecs = (cfg >> 12) & 0xFF;
1660 
1661 	/* Clear MSIX offset in LF */
1662 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1663 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1664 
1665 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1666 
1667 	/* Update the mapping */
1668 	for (vec = 0; vec < nvecs; vec++)
1669 		pfvf->msix_lfmap[offset + vec] = 0;
1670 
1671 	/* Free the same in MSIX bitmap */
1672 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1673 }
1674 
1675 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1676 				 struct msix_offset_rsp *rsp)
1677 {
1678 	struct rvu_hwinfo *hw = rvu->hw;
1679 	u16 pcifunc = req->hdr.pcifunc;
1680 	struct rvu_pfvf *pfvf;
1681 	int lf, slot, blkaddr;
1682 
1683 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1684 	if (!pfvf->msix.bmap)
1685 		return 0;
1686 
1687 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1688 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1689 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1690 
1691 	/* Get BLKADDR from which LFs are attached to pcifunc */
1692 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1693 	if (blkaddr < 0) {
1694 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1695 	} else {
1696 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1697 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1698 	}
1699 
1700 	rsp->sso = pfvf->sso;
1701 	for (slot = 0; slot < rsp->sso; slot++) {
1702 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1703 		rsp->sso_msixoff[slot] =
1704 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1705 	}
1706 
1707 	rsp->ssow = pfvf->ssow;
1708 	for (slot = 0; slot < rsp->ssow; slot++) {
1709 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1710 		rsp->ssow_msixoff[slot] =
1711 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1712 	}
1713 
1714 	rsp->timlfs = pfvf->timlfs;
1715 	for (slot = 0; slot < rsp->timlfs; slot++) {
1716 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1717 		rsp->timlf_msixoff[slot] =
1718 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1719 	}
1720 
1721 	rsp->cptlfs = pfvf->cptlfs;
1722 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1723 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1724 		rsp->cptlf_msixoff[slot] =
1725 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1726 	}
1727 
1728 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1729 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1730 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1731 		rsp->cpt1_lf_msixoff[slot] =
1732 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1733 	}
1734 
1735 	return 0;
1736 }
1737 
1738 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1739 			    struct msg_rsp *rsp)
1740 {
1741 	u16 pcifunc = req->hdr.pcifunc;
1742 	u16 vf, numvfs;
1743 	u64 cfg;
1744 
1745 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1746 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1747 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1748 	numvfs = (cfg >> 12) & 0xFF;
1749 
1750 	if (vf && vf <= numvfs)
1751 		__rvu_flr_handler(rvu, pcifunc);
1752 	else
1753 		return RVU_INVALID_VF_ID;
1754 
1755 	return 0;
1756 }
1757 
1758 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1759 				struct get_hw_cap_rsp *rsp)
1760 {
1761 	struct rvu_hwinfo *hw = rvu->hw;
1762 
1763 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1764 	rsp->nix_shaping = hw->cap.nix_shaping;
1765 
1766 	return 0;
1767 }
1768 
1769 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
1770 				 struct msg_rsp *rsp)
1771 {
1772 	struct rvu_hwinfo *hw = rvu->hw;
1773 	u16 pcifunc = req->hdr.pcifunc;
1774 	struct rvu_pfvf *pfvf;
1775 	int blkaddr, nixlf;
1776 	u16 target;
1777 
1778 	/* Only PF can add VF permissions */
1779 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
1780 		return -EOPNOTSUPP;
1781 
1782 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
1783 	pfvf = rvu_get_pfvf(rvu, target);
1784 
1785 	if (req->flags & RESET_VF_PERM) {
1786 		pfvf->flags &= RVU_CLEAR_VF_PERM;
1787 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
1788 		 (req->flags & VF_TRUSTED)) {
1789 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
1790 		/* disable multicast and promisc entries */
1791 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
1792 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
1793 			if (blkaddr < 0)
1794 				return 0;
1795 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
1796 					   target, 0);
1797 			if (nixlf < 0)
1798 				return 0;
1799 			npc_enadis_default_mce_entry(rvu, target, nixlf,
1800 						     NIXLF_ALLMULTI_ENTRY,
1801 						     false);
1802 			npc_enadis_default_mce_entry(rvu, target, nixlf,
1803 						     NIXLF_PROMISC_ENTRY,
1804 						     false);
1805 		}
1806 	}
1807 
1808 	return 0;
1809 }
1810 
1811 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1812 				struct mbox_msghdr *req)
1813 {
1814 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1815 
1816 	/* Check if valid, if not reply with a invalid msg */
1817 	if (req->sig != OTX2_MBOX_REQ_SIG)
1818 		goto bad_message;
1819 
1820 	switch (req->id) {
1821 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1822 	case _id: {							\
1823 		struct _rsp_type *rsp;					\
1824 		int err;						\
1825 									\
1826 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1827 			mbox, devid,					\
1828 			sizeof(struct _rsp_type));			\
1829 		/* some handlers should complete even if reply */	\
1830 		/* could not be allocated */				\
1831 		if (!rsp &&						\
1832 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1833 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
1834 		    _id != MBOX_MSG_VF_FLR)				\
1835 			return -ENOMEM;					\
1836 		if (rsp) {						\
1837 			rsp->hdr.id = _id;				\
1838 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
1839 			rsp->hdr.pcifunc = req->pcifunc;		\
1840 			rsp->hdr.rc = 0;				\
1841 		}							\
1842 									\
1843 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
1844 						    (struct _req_type *)req, \
1845 						    rsp);		\
1846 		if (rsp && err)						\
1847 			rsp->hdr.rc = err;				\
1848 									\
1849 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
1850 		return rsp ? err : -ENOMEM;				\
1851 	}
1852 MBOX_MESSAGES
1853 #undef M
1854 
1855 bad_message:
1856 	default:
1857 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
1858 		return -ENODEV;
1859 	}
1860 }
1861 
1862 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
1863 {
1864 	struct rvu *rvu = mwork->rvu;
1865 	int offset, err, id, devid;
1866 	struct otx2_mbox_dev *mdev;
1867 	struct mbox_hdr *req_hdr;
1868 	struct mbox_msghdr *msg;
1869 	struct mbox_wq_info *mw;
1870 	struct otx2_mbox *mbox;
1871 
1872 	switch (type) {
1873 	case TYPE_AFPF:
1874 		mw = &rvu->afpf_wq_info;
1875 		break;
1876 	case TYPE_AFVF:
1877 		mw = &rvu->afvf_wq_info;
1878 		break;
1879 	default:
1880 		return;
1881 	}
1882 
1883 	devid = mwork - mw->mbox_wrk;
1884 	mbox = &mw->mbox;
1885 	mdev = &mbox->dev[devid];
1886 
1887 	/* Process received mbox messages */
1888 	req_hdr = mdev->mbase + mbox->rx_start;
1889 	if (mw->mbox_wrk[devid].num_msgs == 0)
1890 		return;
1891 
1892 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
1893 
1894 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
1895 		msg = mdev->mbase + offset;
1896 
1897 		/* Set which PF/VF sent this message based on mbox IRQ */
1898 		switch (type) {
1899 		case TYPE_AFPF:
1900 			msg->pcifunc &=
1901 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
1902 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
1903 			break;
1904 		case TYPE_AFVF:
1905 			msg->pcifunc &=
1906 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
1907 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
1908 			break;
1909 		}
1910 
1911 		err = rvu_process_mbox_msg(mbox, devid, msg);
1912 		if (!err) {
1913 			offset = mbox->rx_start + msg->next_msgoff;
1914 			continue;
1915 		}
1916 
1917 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
1918 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
1919 				 err, otx2_mbox_id2name(msg->id),
1920 				 msg->id, rvu_get_pf(msg->pcifunc),
1921 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
1922 		else
1923 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
1924 				 err, otx2_mbox_id2name(msg->id),
1925 				 msg->id, devid);
1926 	}
1927 	mw->mbox_wrk[devid].num_msgs = 0;
1928 
1929 	/* Send mbox responses to VF/PF */
1930 	otx2_mbox_msg_send(mbox, devid);
1931 }
1932 
1933 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
1934 {
1935 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1936 
1937 	__rvu_mbox_handler(mwork, TYPE_AFPF);
1938 }
1939 
1940 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
1941 {
1942 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1943 
1944 	__rvu_mbox_handler(mwork, TYPE_AFVF);
1945 }
1946 
1947 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
1948 {
1949 	struct rvu *rvu = mwork->rvu;
1950 	struct otx2_mbox_dev *mdev;
1951 	struct mbox_hdr *rsp_hdr;
1952 	struct mbox_msghdr *msg;
1953 	struct mbox_wq_info *mw;
1954 	struct otx2_mbox *mbox;
1955 	int offset, id, devid;
1956 
1957 	switch (type) {
1958 	case TYPE_AFPF:
1959 		mw = &rvu->afpf_wq_info;
1960 		break;
1961 	case TYPE_AFVF:
1962 		mw = &rvu->afvf_wq_info;
1963 		break;
1964 	default:
1965 		return;
1966 	}
1967 
1968 	devid = mwork - mw->mbox_wrk_up;
1969 	mbox = &mw->mbox_up;
1970 	mdev = &mbox->dev[devid];
1971 
1972 	rsp_hdr = mdev->mbase + mbox->rx_start;
1973 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
1974 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
1975 		return;
1976 	}
1977 
1978 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
1979 
1980 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
1981 		msg = mdev->mbase + offset;
1982 
1983 		if (msg->id >= MBOX_MSG_MAX) {
1984 			dev_err(rvu->dev,
1985 				"Mbox msg with unknown ID 0x%x\n", msg->id);
1986 			goto end;
1987 		}
1988 
1989 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
1990 			dev_err(rvu->dev,
1991 				"Mbox msg with wrong signature %x, ID 0x%x\n",
1992 				msg->sig, msg->id);
1993 			goto end;
1994 		}
1995 
1996 		switch (msg->id) {
1997 		case MBOX_MSG_CGX_LINK_EVENT:
1998 			break;
1999 		default:
2000 			if (msg->rc)
2001 				dev_err(rvu->dev,
2002 					"Mbox msg response has err %d, ID 0x%x\n",
2003 					msg->rc, msg->id);
2004 			break;
2005 		}
2006 end:
2007 		offset = mbox->rx_start + msg->next_msgoff;
2008 		mdev->msgs_acked++;
2009 	}
2010 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2011 
2012 	otx2_mbox_reset(mbox, devid);
2013 }
2014 
2015 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2016 {
2017 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2018 
2019 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2020 }
2021 
2022 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2023 {
2024 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2025 
2026 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2027 }
2028 
2029 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2030 				int num, int type)
2031 {
2032 	struct rvu_hwinfo *hw = rvu->hw;
2033 	int region;
2034 	u64 bar4;
2035 
2036 	/* For cn10k platform VF mailbox regions of a PF follows after the
2037 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2038 	 * RVU_PF_VF_BAR4_ADDR register.
2039 	 */
2040 	if (type == TYPE_AFVF) {
2041 		for (region = 0; region < num; region++) {
2042 			if (hw->cap.per_pf_mbox_regs) {
2043 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2044 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2045 						  MBOX_SIZE;
2046 				bar4 += region * MBOX_SIZE;
2047 			} else {
2048 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2049 				bar4 += region * MBOX_SIZE;
2050 			}
2051 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2052 			if (!mbox_addr[region])
2053 				goto error;
2054 		}
2055 		return 0;
2056 	}
2057 
2058 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2059 	 * PF registers. Whereas for Octeontx2 it is read from
2060 	 * RVU_AF_PF_BAR4_ADDR register.
2061 	 */
2062 	for (region = 0; region < num; region++) {
2063 		if (hw->cap.per_pf_mbox_regs) {
2064 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2065 					  RVU_AF_PFX_BAR4_ADDR(region));
2066 		} else {
2067 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2068 					  RVU_AF_PF_BAR4_ADDR);
2069 			bar4 += region * MBOX_SIZE;
2070 		}
2071 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2072 		if (!mbox_addr[region])
2073 			goto error;
2074 	}
2075 	return 0;
2076 
2077 error:
2078 	while (region--)
2079 		iounmap((void __iomem *)mbox_addr[region]);
2080 	return -ENOMEM;
2081 }
2082 
2083 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2084 			 int type, int num,
2085 			 void (mbox_handler)(struct work_struct *),
2086 			 void (mbox_up_handler)(struct work_struct *))
2087 {
2088 	int err = -EINVAL, i, dir, dir_up;
2089 	void __iomem *reg_base;
2090 	struct rvu_work *mwork;
2091 	void **mbox_regions;
2092 	const char *name;
2093 
2094 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2095 	if (!mbox_regions)
2096 		return -ENOMEM;
2097 
2098 	switch (type) {
2099 	case TYPE_AFPF:
2100 		name = "rvu_afpf_mailbox";
2101 		dir = MBOX_DIR_AFPF;
2102 		dir_up = MBOX_DIR_AFPF_UP;
2103 		reg_base = rvu->afreg_base;
2104 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2105 		if (err)
2106 			goto free_regions;
2107 		break;
2108 	case TYPE_AFVF:
2109 		name = "rvu_afvf_mailbox";
2110 		dir = MBOX_DIR_PFVF;
2111 		dir_up = MBOX_DIR_PFVF_UP;
2112 		reg_base = rvu->pfreg_base;
2113 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2114 		if (err)
2115 			goto free_regions;
2116 		break;
2117 	default:
2118 		return err;
2119 	}
2120 
2121 	mw->mbox_wq = alloc_workqueue(name,
2122 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2123 				      num);
2124 	if (!mw->mbox_wq) {
2125 		err = -ENOMEM;
2126 		goto unmap_regions;
2127 	}
2128 
2129 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2130 				    sizeof(struct rvu_work), GFP_KERNEL);
2131 	if (!mw->mbox_wrk) {
2132 		err = -ENOMEM;
2133 		goto exit;
2134 	}
2135 
2136 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2137 				       sizeof(struct rvu_work), GFP_KERNEL);
2138 	if (!mw->mbox_wrk_up) {
2139 		err = -ENOMEM;
2140 		goto exit;
2141 	}
2142 
2143 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2144 				     reg_base, dir, num);
2145 	if (err)
2146 		goto exit;
2147 
2148 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2149 				     reg_base, dir_up, num);
2150 	if (err)
2151 		goto exit;
2152 
2153 	for (i = 0; i < num; i++) {
2154 		mwork = &mw->mbox_wrk[i];
2155 		mwork->rvu = rvu;
2156 		INIT_WORK(&mwork->work, mbox_handler);
2157 
2158 		mwork = &mw->mbox_wrk_up[i];
2159 		mwork->rvu = rvu;
2160 		INIT_WORK(&mwork->work, mbox_up_handler);
2161 	}
2162 	kfree(mbox_regions);
2163 	return 0;
2164 
2165 exit:
2166 	destroy_workqueue(mw->mbox_wq);
2167 unmap_regions:
2168 	while (num--)
2169 		iounmap((void __iomem *)mbox_regions[num]);
2170 free_regions:
2171 	kfree(mbox_regions);
2172 	return err;
2173 }
2174 
2175 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2176 {
2177 	struct otx2_mbox *mbox = &mw->mbox;
2178 	struct otx2_mbox_dev *mdev;
2179 	int devid;
2180 
2181 	if (mw->mbox_wq) {
2182 		flush_workqueue(mw->mbox_wq);
2183 		destroy_workqueue(mw->mbox_wq);
2184 		mw->mbox_wq = NULL;
2185 	}
2186 
2187 	for (devid = 0; devid < mbox->ndevs; devid++) {
2188 		mdev = &mbox->dev[devid];
2189 		if (mdev->hwbase)
2190 			iounmap((void __iomem *)mdev->hwbase);
2191 	}
2192 
2193 	otx2_mbox_destroy(&mw->mbox);
2194 	otx2_mbox_destroy(&mw->mbox_up);
2195 }
2196 
2197 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2198 			   int mdevs, u64 intr)
2199 {
2200 	struct otx2_mbox_dev *mdev;
2201 	struct otx2_mbox *mbox;
2202 	struct mbox_hdr *hdr;
2203 	int i;
2204 
2205 	for (i = first; i < mdevs; i++) {
2206 		/* start from 0 */
2207 		if (!(intr & BIT_ULL(i - first)))
2208 			continue;
2209 
2210 		mbox = &mw->mbox;
2211 		mdev = &mbox->dev[i];
2212 		hdr = mdev->mbase + mbox->rx_start;
2213 
2214 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2215 		 * handler to  ensure that it holds a correct value next time
2216 		 * when the interrupt handler is called.
2217 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2218 		 * pf>mbox.up_num_msgs holds the data for use in
2219 		 * pfaf_mbox_up_handler.
2220 		 */
2221 
2222 		if (hdr->num_msgs) {
2223 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2224 			hdr->num_msgs = 0;
2225 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2226 		}
2227 		mbox = &mw->mbox_up;
2228 		mdev = &mbox->dev[i];
2229 		hdr = mdev->mbase + mbox->rx_start;
2230 		if (hdr->num_msgs) {
2231 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2232 			hdr->num_msgs = 0;
2233 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2234 		}
2235 	}
2236 }
2237 
2238 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2239 {
2240 	struct rvu *rvu = (struct rvu *)rvu_irq;
2241 	int vfs = rvu->vfs;
2242 	u64 intr;
2243 
2244 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2245 	/* Clear interrupts */
2246 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2247 	if (intr)
2248 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2249 
2250 	/* Sync with mbox memory region */
2251 	rmb();
2252 
2253 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2254 
2255 	/* Handle VF interrupts */
2256 	if (vfs > 64) {
2257 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2258 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2259 
2260 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2261 		vfs -= 64;
2262 	}
2263 
2264 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2265 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2266 	if (intr)
2267 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2268 
2269 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2270 
2271 	return IRQ_HANDLED;
2272 }
2273 
2274 static void rvu_enable_mbox_intr(struct rvu *rvu)
2275 {
2276 	struct rvu_hwinfo *hw = rvu->hw;
2277 
2278 	/* Clear spurious irqs, if any */
2279 	rvu_write64(rvu, BLKADDR_RVUM,
2280 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2281 
2282 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2283 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2284 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2285 }
2286 
2287 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2288 {
2289 	struct rvu_block *block;
2290 	int slot, lf, num_lfs;
2291 	int err;
2292 
2293 	block = &rvu->hw->block[blkaddr];
2294 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2295 					block->addr);
2296 	if (!num_lfs)
2297 		return;
2298 	for (slot = 0; slot < num_lfs; slot++) {
2299 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2300 		if (lf < 0)
2301 			continue;
2302 
2303 		/* Cleanup LF and reset it */
2304 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2305 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2306 		else if (block->addr == BLKADDR_NPA)
2307 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2308 		else if ((block->addr == BLKADDR_CPT0) ||
2309 			 (block->addr == BLKADDR_CPT1))
2310 			rvu_cpt_lf_teardown(rvu, pcifunc, lf, slot);
2311 
2312 		err = rvu_lf_reset(rvu, block, lf);
2313 		if (err) {
2314 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2315 				block->addr, lf);
2316 		}
2317 	}
2318 }
2319 
2320 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2321 {
2322 	mutex_lock(&rvu->flr_lock);
2323 	/* Reset order should reflect inter-block dependencies:
2324 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2325 	 * 2. Flush and reset SSO/SSOW
2326 	 * 3. Cleanup pools (NPA)
2327 	 */
2328 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2329 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2330 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2331 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2332 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2333 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2334 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2335 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2336 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2337 	mutex_unlock(&rvu->flr_lock);
2338 }
2339 
2340 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2341 {
2342 	int reg = 0;
2343 
2344 	/* pcifunc = 0(PF0) | (vf + 1) */
2345 	__rvu_flr_handler(rvu, vf + 1);
2346 
2347 	if (vf >= 64) {
2348 		reg = 1;
2349 		vf = vf - 64;
2350 	}
2351 
2352 	/* Signal FLR finish and enable IRQ */
2353 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2354 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2355 }
2356 
2357 static void rvu_flr_handler(struct work_struct *work)
2358 {
2359 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2360 	struct rvu *rvu = flrwork->rvu;
2361 	u16 pcifunc, numvfs, vf;
2362 	u64 cfg;
2363 	int pf;
2364 
2365 	pf = flrwork - rvu->flr_wrk;
2366 	if (pf >= rvu->hw->total_pfs) {
2367 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2368 		return;
2369 	}
2370 
2371 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2372 	numvfs = (cfg >> 12) & 0xFF;
2373 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2374 
2375 	for (vf = 0; vf < numvfs; vf++)
2376 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2377 
2378 	__rvu_flr_handler(rvu, pcifunc);
2379 
2380 	/* Signal FLR finish */
2381 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2382 
2383 	/* Enable interrupt */
2384 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2385 }
2386 
2387 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2388 {
2389 	int dev, vf, reg = 0;
2390 	u64 intr;
2391 
2392 	if (start_vf >= 64)
2393 		reg = 1;
2394 
2395 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2396 	if (!intr)
2397 		return;
2398 
2399 	for (vf = 0; vf < numvfs; vf++) {
2400 		if (!(intr & BIT_ULL(vf)))
2401 			continue;
2402 		dev = vf + start_vf + rvu->hw->total_pfs;
2403 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2404 		/* Clear and disable the interrupt */
2405 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2406 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2407 	}
2408 }
2409 
2410 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2411 {
2412 	struct rvu *rvu = (struct rvu *)rvu_irq;
2413 	u64 intr;
2414 	u8  pf;
2415 
2416 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2417 	if (!intr)
2418 		goto afvf_flr;
2419 
2420 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2421 		if (intr & (1ULL << pf)) {
2422 			/* PF is already dead do only AF related operations */
2423 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2424 			/* clear interrupt */
2425 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2426 				    BIT_ULL(pf));
2427 			/* Disable the interrupt */
2428 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2429 				    BIT_ULL(pf));
2430 		}
2431 	}
2432 
2433 afvf_flr:
2434 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2435 	if (rvu->vfs > 64)
2436 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2437 
2438 	return IRQ_HANDLED;
2439 }
2440 
2441 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2442 {
2443 	int vf;
2444 
2445 	/* Nothing to be done here other than clearing the
2446 	 * TRPEND bit.
2447 	 */
2448 	for (vf = 0; vf < 64; vf++) {
2449 		if (intr & (1ULL << vf)) {
2450 			/* clear the trpend due to ME(master enable) */
2451 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2452 			/* clear interrupt */
2453 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2454 		}
2455 	}
2456 }
2457 
2458 /* Handles ME interrupts from VFs of AF */
2459 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2460 {
2461 	struct rvu *rvu = (struct rvu *)rvu_irq;
2462 	int vfset;
2463 	u64 intr;
2464 
2465 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2466 
2467 	for (vfset = 0; vfset <= 1; vfset++) {
2468 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2469 		if (intr)
2470 			rvu_me_handle_vfset(rvu, vfset, intr);
2471 	}
2472 
2473 	return IRQ_HANDLED;
2474 }
2475 
2476 /* Handles ME interrupts from PFs */
2477 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2478 {
2479 	struct rvu *rvu = (struct rvu *)rvu_irq;
2480 	u64 intr;
2481 	u8  pf;
2482 
2483 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2484 
2485 	/* Nothing to be done here other than clearing the
2486 	 * TRPEND bit.
2487 	 */
2488 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2489 		if (intr & (1ULL << pf)) {
2490 			/* clear the trpend due to ME(master enable) */
2491 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2492 				    BIT_ULL(pf));
2493 			/* clear interrupt */
2494 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2495 				    BIT_ULL(pf));
2496 		}
2497 	}
2498 
2499 	return IRQ_HANDLED;
2500 }
2501 
2502 static void rvu_unregister_interrupts(struct rvu *rvu)
2503 {
2504 	int irq;
2505 
2506 	/* Disable the Mbox interrupt */
2507 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2508 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2509 
2510 	/* Disable the PF FLR interrupt */
2511 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2512 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2513 
2514 	/* Disable the PF ME interrupt */
2515 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2516 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2517 
2518 	for (irq = 0; irq < rvu->num_vec; irq++) {
2519 		if (rvu->irq_allocated[irq]) {
2520 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2521 			rvu->irq_allocated[irq] = false;
2522 		}
2523 	}
2524 
2525 	pci_free_irq_vectors(rvu->pdev);
2526 	rvu->num_vec = 0;
2527 }
2528 
2529 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2530 {
2531 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2532 	int offset;
2533 
2534 	pfvf = &rvu->pf[0];
2535 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2536 
2537 	/* Make sure there are enough MSIX vectors configured so that
2538 	 * VF interrupts can be handled. Offset equal to zero means
2539 	 * that PF vectors are not configured and overlapping AF vectors.
2540 	 */
2541 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2542 	       offset;
2543 }
2544 
2545 static int rvu_register_interrupts(struct rvu *rvu)
2546 {
2547 	int ret, offset, pf_vec_start;
2548 
2549 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2550 
2551 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2552 					   NAME_SIZE, GFP_KERNEL);
2553 	if (!rvu->irq_name)
2554 		return -ENOMEM;
2555 
2556 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2557 					  sizeof(bool), GFP_KERNEL);
2558 	if (!rvu->irq_allocated)
2559 		return -ENOMEM;
2560 
2561 	/* Enable MSI-X */
2562 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2563 				    rvu->num_vec, PCI_IRQ_MSIX);
2564 	if (ret < 0) {
2565 		dev_err(rvu->dev,
2566 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2567 			rvu->num_vec, ret);
2568 		return ret;
2569 	}
2570 
2571 	/* Register mailbox interrupt handler */
2572 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2573 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2574 			  rvu_mbox_intr_handler, 0,
2575 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2576 	if (ret) {
2577 		dev_err(rvu->dev,
2578 			"RVUAF: IRQ registration failed for mbox irq\n");
2579 		goto fail;
2580 	}
2581 
2582 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2583 
2584 	/* Enable mailbox interrupts from all PFs */
2585 	rvu_enable_mbox_intr(rvu);
2586 
2587 	/* Register FLR interrupt handler */
2588 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2589 		"RVUAF FLR");
2590 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2591 			  rvu_flr_intr_handler, 0,
2592 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2593 			  rvu);
2594 	if (ret) {
2595 		dev_err(rvu->dev,
2596 			"RVUAF: IRQ registration failed for FLR\n");
2597 		goto fail;
2598 	}
2599 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2600 
2601 	/* Enable FLR interrupt for all PFs*/
2602 	rvu_write64(rvu, BLKADDR_RVUM,
2603 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2604 
2605 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2606 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2607 
2608 	/* Register ME interrupt handler */
2609 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2610 		"RVUAF ME");
2611 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2612 			  rvu_me_pf_intr_handler, 0,
2613 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2614 			  rvu);
2615 	if (ret) {
2616 		dev_err(rvu->dev,
2617 			"RVUAF: IRQ registration failed for ME\n");
2618 	}
2619 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2620 
2621 	/* Clear TRPEND bit for all PF */
2622 	rvu_write64(rvu, BLKADDR_RVUM,
2623 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2624 	/* Enable ME interrupt for all PFs*/
2625 	rvu_write64(rvu, BLKADDR_RVUM,
2626 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2627 
2628 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2629 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2630 
2631 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2632 		return 0;
2633 
2634 	/* Get PF MSIX vectors offset. */
2635 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2636 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2637 
2638 	/* Register MBOX0 interrupt. */
2639 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2640 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2641 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2642 			  rvu_mbox_intr_handler, 0,
2643 			  &rvu->irq_name[offset * NAME_SIZE],
2644 			  rvu);
2645 	if (ret)
2646 		dev_err(rvu->dev,
2647 			"RVUAF: IRQ registration failed for Mbox0\n");
2648 
2649 	rvu->irq_allocated[offset] = true;
2650 
2651 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2652 	 * simply increment current offset by 1.
2653 	 */
2654 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2655 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2656 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2657 			  rvu_mbox_intr_handler, 0,
2658 			  &rvu->irq_name[offset * NAME_SIZE],
2659 			  rvu);
2660 	if (ret)
2661 		dev_err(rvu->dev,
2662 			"RVUAF: IRQ registration failed for Mbox1\n");
2663 
2664 	rvu->irq_allocated[offset] = true;
2665 
2666 	/* Register FLR interrupt handler for AF's VFs */
2667 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2668 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2669 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2670 			  rvu_flr_intr_handler, 0,
2671 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2672 	if (ret) {
2673 		dev_err(rvu->dev,
2674 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2675 		goto fail;
2676 	}
2677 	rvu->irq_allocated[offset] = true;
2678 
2679 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2680 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2681 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2682 			  rvu_flr_intr_handler, 0,
2683 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2684 	if (ret) {
2685 		dev_err(rvu->dev,
2686 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2687 		goto fail;
2688 	}
2689 	rvu->irq_allocated[offset] = true;
2690 
2691 	/* Register ME interrupt handler for AF's VFs */
2692 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2693 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2694 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2695 			  rvu_me_vf_intr_handler, 0,
2696 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2697 	if (ret) {
2698 		dev_err(rvu->dev,
2699 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2700 		goto fail;
2701 	}
2702 	rvu->irq_allocated[offset] = true;
2703 
2704 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2705 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2706 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2707 			  rvu_me_vf_intr_handler, 0,
2708 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2709 	if (ret) {
2710 		dev_err(rvu->dev,
2711 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2712 		goto fail;
2713 	}
2714 	rvu->irq_allocated[offset] = true;
2715 	return 0;
2716 
2717 fail:
2718 	rvu_unregister_interrupts(rvu);
2719 	return ret;
2720 }
2721 
2722 static void rvu_flr_wq_destroy(struct rvu *rvu)
2723 {
2724 	if (rvu->flr_wq) {
2725 		flush_workqueue(rvu->flr_wq);
2726 		destroy_workqueue(rvu->flr_wq);
2727 		rvu->flr_wq = NULL;
2728 	}
2729 }
2730 
2731 static int rvu_flr_init(struct rvu *rvu)
2732 {
2733 	int dev, num_devs;
2734 	u64 cfg;
2735 	int pf;
2736 
2737 	/* Enable FLR for all PFs*/
2738 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2739 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2740 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2741 			    cfg | BIT_ULL(22));
2742 	}
2743 
2744 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2745 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2746 				       1);
2747 	if (!rvu->flr_wq)
2748 		return -ENOMEM;
2749 
2750 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2751 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2752 				    sizeof(struct rvu_work), GFP_KERNEL);
2753 	if (!rvu->flr_wrk) {
2754 		destroy_workqueue(rvu->flr_wq);
2755 		return -ENOMEM;
2756 	}
2757 
2758 	for (dev = 0; dev < num_devs; dev++) {
2759 		rvu->flr_wrk[dev].rvu = rvu;
2760 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2761 	}
2762 
2763 	mutex_init(&rvu->flr_lock);
2764 
2765 	return 0;
2766 }
2767 
2768 static void rvu_disable_afvf_intr(struct rvu *rvu)
2769 {
2770 	int vfs = rvu->vfs;
2771 
2772 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2773 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2774 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2775 	if (vfs <= 64)
2776 		return;
2777 
2778 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2779 		      INTR_MASK(vfs - 64));
2780 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2781 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2782 }
2783 
2784 static void rvu_enable_afvf_intr(struct rvu *rvu)
2785 {
2786 	int vfs = rvu->vfs;
2787 
2788 	/* Clear any pending interrupts and enable AF VF interrupts for
2789 	 * the first 64 VFs.
2790 	 */
2791 	/* Mbox */
2792 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2793 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2794 
2795 	/* FLR */
2796 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2797 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2798 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2799 
2800 	/* Same for remaining VFs, if any. */
2801 	if (vfs <= 64)
2802 		return;
2803 
2804 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2805 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2806 		      INTR_MASK(vfs - 64));
2807 
2808 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2809 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2810 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2811 }
2812 
2813 int rvu_get_num_lbk_chans(void)
2814 {
2815 	struct pci_dev *pdev;
2816 	void __iomem *base;
2817 	int ret = -EIO;
2818 
2819 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2820 			      NULL);
2821 	if (!pdev)
2822 		goto err;
2823 
2824 	base = pci_ioremap_bar(pdev, 0);
2825 	if (!base)
2826 		goto err_put;
2827 
2828 	/* Read number of available LBK channels from LBK(0)_CONST register. */
2829 	ret = (readq(base + 0x10) >> 32) & 0xffff;
2830 	iounmap(base);
2831 err_put:
2832 	pci_dev_put(pdev);
2833 err:
2834 	return ret;
2835 }
2836 
2837 static int rvu_enable_sriov(struct rvu *rvu)
2838 {
2839 	struct pci_dev *pdev = rvu->pdev;
2840 	int err, chans, vfs;
2841 
2842 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2843 		dev_warn(&pdev->dev,
2844 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
2845 		return 0;
2846 	}
2847 
2848 	chans = rvu_get_num_lbk_chans();
2849 	if (chans < 0)
2850 		return chans;
2851 
2852 	vfs = pci_sriov_get_totalvfs(pdev);
2853 
2854 	/* Limit VFs in case we have more VFs than LBK channels available. */
2855 	if (vfs > chans)
2856 		vfs = chans;
2857 
2858 	if (!vfs)
2859 		return 0;
2860 
2861 	/* Save VFs number for reference in VF interrupts handlers.
2862 	 * Since interrupts might start arriving during SRIOV enablement
2863 	 * ordinary API cannot be used to get number of enabled VFs.
2864 	 */
2865 	rvu->vfs = vfs;
2866 
2867 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
2868 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
2869 	if (err)
2870 		return err;
2871 
2872 	rvu_enable_afvf_intr(rvu);
2873 	/* Make sure IRQs are enabled before SRIOV. */
2874 	mb();
2875 
2876 	err = pci_enable_sriov(pdev, vfs);
2877 	if (err) {
2878 		rvu_disable_afvf_intr(rvu);
2879 		rvu_mbox_destroy(&rvu->afvf_wq_info);
2880 		return err;
2881 	}
2882 
2883 	return 0;
2884 }
2885 
2886 static void rvu_disable_sriov(struct rvu *rvu)
2887 {
2888 	rvu_disable_afvf_intr(rvu);
2889 	rvu_mbox_destroy(&rvu->afvf_wq_info);
2890 	pci_disable_sriov(rvu->pdev);
2891 }
2892 
2893 static void rvu_update_module_params(struct rvu *rvu)
2894 {
2895 	const char *default_pfl_name = "default";
2896 
2897 	strscpy(rvu->mkex_pfl_name,
2898 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
2899 	strscpy(rvu->kpu_pfl_name,
2900 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
2901 }
2902 
2903 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2904 {
2905 	struct device *dev = &pdev->dev;
2906 	struct rvu *rvu;
2907 	int    err;
2908 
2909 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
2910 	if (!rvu)
2911 		return -ENOMEM;
2912 
2913 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
2914 	if (!rvu->hw) {
2915 		devm_kfree(dev, rvu);
2916 		return -ENOMEM;
2917 	}
2918 
2919 	pci_set_drvdata(pdev, rvu);
2920 	rvu->pdev = pdev;
2921 	rvu->dev = &pdev->dev;
2922 
2923 	err = pci_enable_device(pdev);
2924 	if (err) {
2925 		dev_err(dev, "Failed to enable PCI device\n");
2926 		goto err_freemem;
2927 	}
2928 
2929 	err = pci_request_regions(pdev, DRV_NAME);
2930 	if (err) {
2931 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2932 		goto err_disable_device;
2933 	}
2934 
2935 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
2936 	if (err) {
2937 		dev_err(dev, "DMA mask config failed, abort\n");
2938 		goto err_release_regions;
2939 	}
2940 
2941 	pci_set_master(pdev);
2942 
2943 	rvu->ptp = ptp_get();
2944 	if (IS_ERR(rvu->ptp)) {
2945 		err = PTR_ERR(rvu->ptp);
2946 		if (err == -EPROBE_DEFER)
2947 			goto err_release_regions;
2948 		rvu->ptp = NULL;
2949 	}
2950 
2951 	/* Map Admin function CSRs */
2952 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
2953 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
2954 	if (!rvu->afreg_base || !rvu->pfreg_base) {
2955 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
2956 		err = -ENOMEM;
2957 		goto err_put_ptp;
2958 	}
2959 
2960 	/* Store module params in rvu structure */
2961 	rvu_update_module_params(rvu);
2962 
2963 	/* Check which blocks the HW supports */
2964 	rvu_check_block_implemented(rvu);
2965 
2966 	rvu_reset_all_blocks(rvu);
2967 
2968 	rvu_setup_hw_capabilities(rvu);
2969 
2970 	err = rvu_setup_hw_resources(rvu);
2971 	if (err)
2972 		goto err_put_ptp;
2973 
2974 	/* Init mailbox btw AF and PFs */
2975 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
2976 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
2977 			    rvu_afpf_mbox_up_handler);
2978 	if (err)
2979 		goto err_hwsetup;
2980 
2981 	err = rvu_flr_init(rvu);
2982 	if (err)
2983 		goto err_mbox;
2984 
2985 	err = rvu_register_interrupts(rvu);
2986 	if (err)
2987 		goto err_flr;
2988 
2989 	err = rvu_register_dl(rvu);
2990 	if (err)
2991 		goto err_irq;
2992 
2993 	rvu_setup_rvum_blk_revid(rvu);
2994 
2995 	/* Enable AF's VFs (if any) */
2996 	err = rvu_enable_sriov(rvu);
2997 	if (err)
2998 		goto err_dl;
2999 
3000 	/* Initialize debugfs */
3001 	rvu_dbg_init(rvu);
3002 
3003 	return 0;
3004 err_dl:
3005 	rvu_unregister_dl(rvu);
3006 err_irq:
3007 	rvu_unregister_interrupts(rvu);
3008 err_flr:
3009 	rvu_flr_wq_destroy(rvu);
3010 err_mbox:
3011 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3012 err_hwsetup:
3013 	rvu_cgx_exit(rvu);
3014 	rvu_fwdata_exit(rvu);
3015 	rvu_reset_all_blocks(rvu);
3016 	rvu_free_hw_resources(rvu);
3017 	rvu_clear_rvum_blk_revid(rvu);
3018 err_put_ptp:
3019 	ptp_put(rvu->ptp);
3020 err_release_regions:
3021 	pci_release_regions(pdev);
3022 err_disable_device:
3023 	pci_disable_device(pdev);
3024 err_freemem:
3025 	pci_set_drvdata(pdev, NULL);
3026 	devm_kfree(&pdev->dev, rvu->hw);
3027 	devm_kfree(dev, rvu);
3028 	return err;
3029 }
3030 
3031 static void rvu_remove(struct pci_dev *pdev)
3032 {
3033 	struct rvu *rvu = pci_get_drvdata(pdev);
3034 
3035 	rvu_dbg_exit(rvu);
3036 	rvu_unregister_dl(rvu);
3037 	rvu_unregister_interrupts(rvu);
3038 	rvu_flr_wq_destroy(rvu);
3039 	rvu_cgx_exit(rvu);
3040 	rvu_fwdata_exit(rvu);
3041 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3042 	rvu_disable_sriov(rvu);
3043 	rvu_reset_all_blocks(rvu);
3044 	rvu_free_hw_resources(rvu);
3045 	rvu_clear_rvum_blk_revid(rvu);
3046 	ptp_put(rvu->ptp);
3047 	pci_release_regions(pdev);
3048 	pci_disable_device(pdev);
3049 	pci_set_drvdata(pdev, NULL);
3050 
3051 	devm_kfree(&pdev->dev, rvu->hw);
3052 	devm_kfree(&pdev->dev, rvu);
3053 }
3054 
3055 static struct pci_driver rvu_driver = {
3056 	.name = DRV_NAME,
3057 	.id_table = rvu_id_table,
3058 	.probe = rvu_probe,
3059 	.remove = rvu_remove,
3060 };
3061 
3062 static int __init rvu_init_module(void)
3063 {
3064 	int err;
3065 
3066 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3067 
3068 	err = pci_register_driver(&cgx_driver);
3069 	if (err < 0)
3070 		return err;
3071 
3072 	err = pci_register_driver(&ptp_driver);
3073 	if (err < 0)
3074 		goto ptp_err;
3075 
3076 	err =  pci_register_driver(&rvu_driver);
3077 	if (err < 0)
3078 		goto rvu_err;
3079 
3080 	return 0;
3081 rvu_err:
3082 	pci_unregister_driver(&ptp_driver);
3083 ptp_err:
3084 	pci_unregister_driver(&cgx_driver);
3085 
3086 	return err;
3087 }
3088 
3089 static void __exit rvu_cleanup_module(void)
3090 {
3091 	pci_unregister_driver(&rvu_driver);
3092 	pci_unregister_driver(&ptp_driver);
3093 	pci_unregister_driver(&cgx_driver);
3094 }
3095 
3096 module_init(rvu_init_module);
3097 module_exit(rvu_cleanup_module);
3098