1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 
20 #include "rvu_trace.h"
21 
22 #define DRV_NAME	"rvu_af"
23 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
24 
25 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
26 
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 				struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 				  struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32 
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 			 int type, int num,
35 			 void (mbox_handler)(struct work_struct *),
36 			 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 	TYPE_AFVF,
39 	TYPE_AFPF,
40 };
41 
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 	{ 0, }  /* end of table */
46 };
47 
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52 
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56 
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60 
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 	struct rvu_hwinfo *hw = rvu->hw;
64 
65 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 	hw->cap.nix_fixed_txschq_mapping = false;
67 	hw->cap.nix_shaping = true;
68 	hw->cap.nix_tx_link_bp = true;
69 	hw->cap.nix_rx_multicast = true;
70 	hw->cap.nix_shaper_toggle_wait = false;
71 	hw->rvu = rvu;
72 
73 	if (is_rvu_pre_96xx_C0(rvu)) {
74 		hw->cap.nix_fixed_txschq_mapping = true;
75 		hw->cap.nix_txsch_per_cgx_lmac = 4;
76 		hw->cap.nix_txsch_per_lbk_lmac = 132;
77 		hw->cap.nix_txsch_per_sdp_lmac = 76;
78 		hw->cap.nix_shaping = false;
79 		hw->cap.nix_tx_link_bp = false;
80 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
81 			hw->cap.nix_rx_multicast = false;
82 	}
83 	if (!is_rvu_pre_96xx_C0(rvu))
84 		hw->cap.nix_shaper_toggle_wait = true;
85 
86 	if (!is_rvu_otx2(rvu))
87 		hw->cap.per_pf_mbox_regs = true;
88 }
89 
90 /* Poll a RVU block's register 'offset', for a 'zero'
91  * or 'nonzero' at bits specified by 'mask'
92  */
93 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
94 {
95 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
96 	bool twice = false;
97 	void __iomem *reg;
98 	u64 reg_val;
99 
100 	reg = rvu->afreg_base + ((block << 28) | offset);
101 again:
102 	reg_val = readq(reg);
103 	if (zero && !(reg_val & mask))
104 		return 0;
105 	if (!zero && (reg_val & mask))
106 		return 0;
107 	if (time_before(jiffies, timeout)) {
108 		usleep_range(1, 5);
109 		goto again;
110 	}
111 	/* In scenarios where CPU is scheduled out before checking
112 	 * 'time_before' (above) and gets scheduled in such that
113 	 * jiffies are beyond timeout value, then check again if HW is
114 	 * done with the operation in the meantime.
115 	 */
116 	if (!twice) {
117 		twice = true;
118 		goto again;
119 	}
120 	return -EBUSY;
121 }
122 
123 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
124 {
125 	int id;
126 
127 	if (!rsrc->bmap)
128 		return -EINVAL;
129 
130 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
131 	if (id >= rsrc->max)
132 		return -ENOSPC;
133 
134 	__set_bit(id, rsrc->bmap);
135 
136 	return id;
137 }
138 
139 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
140 {
141 	int start;
142 
143 	if (!rsrc->bmap)
144 		return -EINVAL;
145 
146 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
147 	if (start >= rsrc->max)
148 		return -ENOSPC;
149 
150 	bitmap_set(rsrc->bmap, start, nrsrc);
151 	return start;
152 }
153 
154 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
155 {
156 	if (!rsrc->bmap)
157 		return;
158 	if (start >= rsrc->max)
159 		return;
160 
161 	bitmap_clear(rsrc->bmap, start, nrsrc);
162 }
163 
164 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
165 {
166 	int start;
167 
168 	if (!rsrc->bmap)
169 		return false;
170 
171 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
172 	if (start >= rsrc->max)
173 		return false;
174 
175 	return true;
176 }
177 
178 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
179 {
180 	if (!rsrc->bmap)
181 		return;
182 
183 	__clear_bit(id, rsrc->bmap);
184 }
185 
186 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
187 {
188 	int used;
189 
190 	if (!rsrc->bmap)
191 		return 0;
192 
193 	used = bitmap_weight(rsrc->bmap, rsrc->max);
194 	return (rsrc->max - used);
195 }
196 
197 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
198 {
199 	if (!rsrc->bmap)
200 		return false;
201 
202 	return !test_bit(id, rsrc->bmap);
203 }
204 
205 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
206 {
207 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
208 			     sizeof(long), GFP_KERNEL);
209 	if (!rsrc->bmap)
210 		return -ENOMEM;
211 	return 0;
212 }
213 
214 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
215 {
216 	kfree(rsrc->bmap);
217 }
218 
219 /* Get block LF's HW index from a PF_FUNC's block slot number */
220 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
221 {
222 	u16 match = 0;
223 	int lf;
224 
225 	mutex_lock(&rvu->rsrc_lock);
226 	for (lf = 0; lf < block->lf.max; lf++) {
227 		if (block->fn_map[lf] == pcifunc) {
228 			if (slot == match) {
229 				mutex_unlock(&rvu->rsrc_lock);
230 				return lf;
231 			}
232 			match++;
233 		}
234 	}
235 	mutex_unlock(&rvu->rsrc_lock);
236 	return -ENODEV;
237 }
238 
239 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
240  * Some silicon variants of OcteonTX2 supports
241  * multiple blocks of same type.
242  *
243  * @pcifunc has to be zero when no LF is yet attached.
244  *
245  * For a pcifunc if LFs are attached from multiple blocks of same type, then
246  * return blkaddr of first encountered block.
247  */
248 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
249 {
250 	int devnum, blkaddr = -ENODEV;
251 	u64 cfg, reg;
252 	bool is_pf;
253 
254 	switch (blktype) {
255 	case BLKTYPE_NPC:
256 		blkaddr = BLKADDR_NPC;
257 		goto exit;
258 	case BLKTYPE_NPA:
259 		blkaddr = BLKADDR_NPA;
260 		goto exit;
261 	case BLKTYPE_NIX:
262 		/* For now assume NIX0 */
263 		if (!pcifunc) {
264 			blkaddr = BLKADDR_NIX0;
265 			goto exit;
266 		}
267 		break;
268 	case BLKTYPE_SSO:
269 		blkaddr = BLKADDR_SSO;
270 		goto exit;
271 	case BLKTYPE_SSOW:
272 		blkaddr = BLKADDR_SSOW;
273 		goto exit;
274 	case BLKTYPE_TIM:
275 		blkaddr = BLKADDR_TIM;
276 		goto exit;
277 	case BLKTYPE_CPT:
278 		/* For now assume CPT0 */
279 		if (!pcifunc) {
280 			blkaddr = BLKADDR_CPT0;
281 			goto exit;
282 		}
283 		break;
284 	}
285 
286 	/* Check if this is a RVU PF or VF */
287 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
288 		is_pf = false;
289 		devnum = rvu_get_hwvf(rvu, pcifunc);
290 	} else {
291 		is_pf = true;
292 		devnum = rvu_get_pf(pcifunc);
293 	}
294 
295 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
296 	 * 'BLKADDR_NIX1'.
297 	 */
298 	if (blktype == BLKTYPE_NIX) {
299 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
300 			RVU_PRIV_HWVFX_NIXX_CFG(0);
301 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
302 		if (cfg) {
303 			blkaddr = BLKADDR_NIX0;
304 			goto exit;
305 		}
306 
307 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
308 			RVU_PRIV_HWVFX_NIXX_CFG(1);
309 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
310 		if (cfg)
311 			blkaddr = BLKADDR_NIX1;
312 	}
313 
314 	if (blktype == BLKTYPE_CPT) {
315 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
316 			RVU_PRIV_HWVFX_CPTX_CFG(0);
317 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
318 		if (cfg) {
319 			blkaddr = BLKADDR_CPT0;
320 			goto exit;
321 		}
322 
323 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
324 			RVU_PRIV_HWVFX_CPTX_CFG(1);
325 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
326 		if (cfg)
327 			blkaddr = BLKADDR_CPT1;
328 	}
329 
330 exit:
331 	if (is_block_implemented(rvu->hw, blkaddr))
332 		return blkaddr;
333 	return -ENODEV;
334 }
335 
336 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
337 				struct rvu_block *block, u16 pcifunc,
338 				u16 lf, bool attach)
339 {
340 	int devnum, num_lfs = 0;
341 	bool is_pf;
342 	u64 reg;
343 
344 	if (lf >= block->lf.max) {
345 		dev_err(&rvu->pdev->dev,
346 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
347 			__func__, lf, block->name, block->lf.max);
348 		return;
349 	}
350 
351 	/* Check if this is for a RVU PF or VF */
352 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
353 		is_pf = false;
354 		devnum = rvu_get_hwvf(rvu, pcifunc);
355 	} else {
356 		is_pf = true;
357 		devnum = rvu_get_pf(pcifunc);
358 	}
359 
360 	block->fn_map[lf] = attach ? pcifunc : 0;
361 
362 	switch (block->addr) {
363 	case BLKADDR_NPA:
364 		pfvf->npalf = attach ? true : false;
365 		num_lfs = pfvf->npalf;
366 		break;
367 	case BLKADDR_NIX0:
368 	case BLKADDR_NIX1:
369 		pfvf->nixlf = attach ? true : false;
370 		num_lfs = pfvf->nixlf;
371 		break;
372 	case BLKADDR_SSO:
373 		attach ? pfvf->sso++ : pfvf->sso--;
374 		num_lfs = pfvf->sso;
375 		break;
376 	case BLKADDR_SSOW:
377 		attach ? pfvf->ssow++ : pfvf->ssow--;
378 		num_lfs = pfvf->ssow;
379 		break;
380 	case BLKADDR_TIM:
381 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
382 		num_lfs = pfvf->timlfs;
383 		break;
384 	case BLKADDR_CPT0:
385 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
386 		num_lfs = pfvf->cptlfs;
387 		break;
388 	case BLKADDR_CPT1:
389 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
390 		num_lfs = pfvf->cpt1_lfs;
391 		break;
392 	}
393 
394 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
395 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
396 }
397 
398 inline int rvu_get_pf(u16 pcifunc)
399 {
400 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
401 }
402 
403 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
404 {
405 	u64 cfg;
406 
407 	/* Get numVFs attached to this PF and first HWVF */
408 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
409 	if (numvfs)
410 		*numvfs = (cfg >> 12) & 0xFF;
411 	if (hwvf)
412 		*hwvf = cfg & 0xFFF;
413 }
414 
415 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
416 {
417 	int pf, func;
418 	u64 cfg;
419 
420 	pf = rvu_get_pf(pcifunc);
421 	func = pcifunc & RVU_PFVF_FUNC_MASK;
422 
423 	/* Get first HWVF attached to this PF */
424 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
425 
426 	return ((cfg & 0xFFF) + func - 1);
427 }
428 
429 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
430 {
431 	/* Check if it is a PF or VF */
432 	if (pcifunc & RVU_PFVF_FUNC_MASK)
433 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
434 	else
435 		return &rvu->pf[rvu_get_pf(pcifunc)];
436 }
437 
438 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
439 {
440 	int pf, vf, nvfs;
441 	u64 cfg;
442 
443 	pf = rvu_get_pf(pcifunc);
444 	if (pf >= rvu->hw->total_pfs)
445 		return false;
446 
447 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
448 		return true;
449 
450 	/* Check if VF is within number of VFs attached to this PF */
451 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
452 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
453 	nvfs = (cfg >> 12) & 0xFF;
454 	if (vf >= nvfs)
455 		return false;
456 
457 	return true;
458 }
459 
460 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
461 {
462 	struct rvu_block *block;
463 
464 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
465 		return false;
466 
467 	block = &hw->block[blkaddr];
468 	return block->implemented;
469 }
470 
471 static void rvu_check_block_implemented(struct rvu *rvu)
472 {
473 	struct rvu_hwinfo *hw = rvu->hw;
474 	struct rvu_block *block;
475 	int blkid;
476 	u64 cfg;
477 
478 	/* For each block check if 'implemented' bit is set */
479 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
480 		block = &hw->block[blkid];
481 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
482 		if (cfg & BIT_ULL(11))
483 			block->implemented = true;
484 	}
485 }
486 
487 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
488 {
489 	rvu_write64(rvu, BLKADDR_RVUM,
490 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
491 		    RVU_BLK_RVUM_REVID);
492 }
493 
494 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
495 {
496 	rvu_write64(rvu, BLKADDR_RVUM,
497 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
498 }
499 
500 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
501 {
502 	int err;
503 
504 	if (!block->implemented)
505 		return 0;
506 
507 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
508 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
509 			   true);
510 	return err;
511 }
512 
513 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
514 {
515 	struct rvu_block *block = &rvu->hw->block[blkaddr];
516 	int err;
517 
518 	if (!block->implemented)
519 		return;
520 
521 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
522 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
523 	if (err)
524 		dev_err(rvu->dev, "HW block:%d reset failed\n", blkaddr);
525 }
526 
527 static void rvu_reset_all_blocks(struct rvu *rvu)
528 {
529 	/* Do a HW reset of all RVU blocks */
530 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
531 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
532 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
533 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
534 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
535 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
536 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
537 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
538 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
539 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
540 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
541 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
542 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
543 }
544 
545 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
546 {
547 	struct rvu_pfvf *pfvf;
548 	u64 cfg;
549 	int lf;
550 
551 	for (lf = 0; lf < block->lf.max; lf++) {
552 		cfg = rvu_read64(rvu, block->addr,
553 				 block->lfcfg_reg | (lf << block->lfshift));
554 		if (!(cfg & BIT_ULL(63)))
555 			continue;
556 
557 		/* Set this resource as being used */
558 		__set_bit(lf, block->lf.bmap);
559 
560 		/* Get, to whom this LF is attached */
561 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
562 		rvu_update_rsrc_map(rvu, pfvf, block,
563 				    (cfg >> 8) & 0xFFFF, lf, true);
564 
565 		/* Set start MSIX vector for this LF within this PF/VF */
566 		rvu_set_msix_offset(rvu, pfvf, block, lf);
567 	}
568 }
569 
570 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
571 {
572 	int min_vecs;
573 
574 	if (!vf)
575 		goto check_pf;
576 
577 	if (!nvecs) {
578 		dev_warn(rvu->dev,
579 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
580 			 pf, vf - 1, nvecs);
581 	}
582 	return;
583 
584 check_pf:
585 	if (pf == 0)
586 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
587 	else
588 		min_vecs = RVU_PF_INT_VEC_CNT;
589 
590 	if (!(nvecs < min_vecs))
591 		return;
592 	dev_warn(rvu->dev,
593 		 "PF%d is configured with too few vectors, %d, min is %d\n",
594 		 pf, nvecs, min_vecs);
595 }
596 
597 static int rvu_setup_msix_resources(struct rvu *rvu)
598 {
599 	struct rvu_hwinfo *hw = rvu->hw;
600 	int pf, vf, numvfs, hwvf, err;
601 	int nvecs, offset, max_msix;
602 	struct rvu_pfvf *pfvf;
603 	u64 cfg, phy_addr;
604 	dma_addr_t iova;
605 
606 	for (pf = 0; pf < hw->total_pfs; pf++) {
607 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
608 		/* If PF is not enabled, nothing to do */
609 		if (!((cfg >> 20) & 0x01))
610 			continue;
611 
612 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
613 
614 		pfvf = &rvu->pf[pf];
615 		/* Get num of MSIX vectors attached to this PF */
616 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
617 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
618 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
619 
620 		/* Alloc msix bitmap for this PF */
621 		err = rvu_alloc_bitmap(&pfvf->msix);
622 		if (err)
623 			return err;
624 
625 		/* Allocate memory for MSIX vector to RVU block LF mapping */
626 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
627 						sizeof(u16), GFP_KERNEL);
628 		if (!pfvf->msix_lfmap)
629 			return -ENOMEM;
630 
631 		/* For PF0 (AF) firmware will set msix vector offsets for
632 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
633 		 */
634 		if (!pf)
635 			goto setup_vfmsix;
636 
637 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
638 		 * These are allocated on driver init and never freed,
639 		 * so no need to set 'msix_lfmap' for these.
640 		 */
641 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
642 		nvecs = (cfg >> 12) & 0xFF;
643 		cfg &= ~0x7FFULL;
644 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
645 		rvu_write64(rvu, BLKADDR_RVUM,
646 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
647 setup_vfmsix:
648 		/* Alloc msix bitmap for VFs */
649 		for (vf = 0; vf < numvfs; vf++) {
650 			pfvf =  &rvu->hwvf[hwvf + vf];
651 			/* Get num of MSIX vectors attached to this VF */
652 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
653 					 RVU_PRIV_PFX_MSIX_CFG(pf));
654 			pfvf->msix.max = (cfg & 0xFFF) + 1;
655 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
656 
657 			/* Alloc msix bitmap for this VF */
658 			err = rvu_alloc_bitmap(&pfvf->msix);
659 			if (err)
660 				return err;
661 
662 			pfvf->msix_lfmap =
663 				devm_kcalloc(rvu->dev, pfvf->msix.max,
664 					     sizeof(u16), GFP_KERNEL);
665 			if (!pfvf->msix_lfmap)
666 				return -ENOMEM;
667 
668 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
669 			 * These are allocated on driver init and never freed,
670 			 * so no need to set 'msix_lfmap' for these.
671 			 */
672 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
673 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
674 			nvecs = (cfg >> 12) & 0xFF;
675 			cfg &= ~0x7FFULL;
676 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
677 			rvu_write64(rvu, BLKADDR_RVUM,
678 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
679 				    cfg | offset);
680 		}
681 	}
682 
683 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
684 	 * create an IOMMU mapping for the physical address configured by
685 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
686 	 */
687 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
688 	max_msix = cfg & 0xFFFFF;
689 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
690 		phy_addr = rvu->fwdata->msixtr_base;
691 	else
692 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
693 
694 	iova = dma_map_resource(rvu->dev, phy_addr,
695 				max_msix * PCI_MSIX_ENTRY_SIZE,
696 				DMA_BIDIRECTIONAL, 0);
697 
698 	if (dma_mapping_error(rvu->dev, iova))
699 		return -ENOMEM;
700 
701 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
702 	rvu->msix_base_iova = iova;
703 	rvu->msixtr_base_phy = phy_addr;
704 
705 	return 0;
706 }
707 
708 static void rvu_reset_msix(struct rvu *rvu)
709 {
710 	/* Restore msixtr base register */
711 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
712 		    rvu->msixtr_base_phy);
713 }
714 
715 static void rvu_free_hw_resources(struct rvu *rvu)
716 {
717 	struct rvu_hwinfo *hw = rvu->hw;
718 	struct rvu_block *block;
719 	struct rvu_pfvf  *pfvf;
720 	int id, max_msix;
721 	u64 cfg;
722 
723 	rvu_npa_freemem(rvu);
724 	rvu_npc_freemem(rvu);
725 	rvu_nix_freemem(rvu);
726 
727 	/* Free block LF bitmaps */
728 	for (id = 0; id < BLK_COUNT; id++) {
729 		block = &hw->block[id];
730 		kfree(block->lf.bmap);
731 	}
732 
733 	/* Free MSIX bitmaps */
734 	for (id = 0; id < hw->total_pfs; id++) {
735 		pfvf = &rvu->pf[id];
736 		kfree(pfvf->msix.bmap);
737 	}
738 
739 	for (id = 0; id < hw->total_vfs; id++) {
740 		pfvf = &rvu->hwvf[id];
741 		kfree(pfvf->msix.bmap);
742 	}
743 
744 	/* Unmap MSIX vector base IOVA mapping */
745 	if (!rvu->msix_base_iova)
746 		return;
747 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
748 	max_msix = cfg & 0xFFFFF;
749 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
750 			   max_msix * PCI_MSIX_ENTRY_SIZE,
751 			   DMA_BIDIRECTIONAL, 0);
752 
753 	rvu_reset_msix(rvu);
754 	mutex_destroy(&rvu->rsrc_lock);
755 }
756 
757 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
758 {
759 	struct rvu_hwinfo *hw = rvu->hw;
760 	int pf, vf, numvfs, hwvf;
761 	struct rvu_pfvf *pfvf;
762 	u64 *mac;
763 
764 	for (pf = 0; pf < hw->total_pfs; pf++) {
765 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
766 		if (!pf)
767 			goto lbkvf;
768 
769 		if (!is_pf_cgxmapped(rvu, pf))
770 			continue;
771 		/* Assign MAC address to PF */
772 		pfvf = &rvu->pf[pf];
773 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
774 			mac = &rvu->fwdata->pf_macs[pf];
775 			if (*mac)
776 				u64_to_ether_addr(*mac, pfvf->mac_addr);
777 			else
778 				eth_random_addr(pfvf->mac_addr);
779 		} else {
780 			eth_random_addr(pfvf->mac_addr);
781 		}
782 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
783 
784 lbkvf:
785 		/* Assign MAC address to VFs*/
786 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
787 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
788 			pfvf = &rvu->hwvf[hwvf];
789 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
790 				mac = &rvu->fwdata->vf_macs[hwvf];
791 				if (*mac)
792 					u64_to_ether_addr(*mac, pfvf->mac_addr);
793 				else
794 					eth_random_addr(pfvf->mac_addr);
795 			} else {
796 				eth_random_addr(pfvf->mac_addr);
797 			}
798 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
799 		}
800 	}
801 }
802 
803 static int rvu_fwdata_init(struct rvu *rvu)
804 {
805 	u64 fwdbase;
806 	int err;
807 
808 	/* Get firmware data base address */
809 	err = cgx_get_fwdata_base(&fwdbase);
810 	if (err)
811 		goto fail;
812 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
813 	if (!rvu->fwdata)
814 		goto fail;
815 	if (!is_rvu_fwdata_valid(rvu)) {
816 		dev_err(rvu->dev,
817 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
818 		iounmap(rvu->fwdata);
819 		rvu->fwdata = NULL;
820 		return -EINVAL;
821 	}
822 	return 0;
823 fail:
824 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
825 	return -EIO;
826 }
827 
828 static void rvu_fwdata_exit(struct rvu *rvu)
829 {
830 	if (rvu->fwdata)
831 		iounmap(rvu->fwdata);
832 }
833 
834 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
835 {
836 	struct rvu_hwinfo *hw = rvu->hw;
837 	struct rvu_block *block;
838 	int blkid;
839 	u64 cfg;
840 
841 	/* Init NIX LF's bitmap */
842 	block = &hw->block[blkaddr];
843 	if (!block->implemented)
844 		return 0;
845 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
846 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
847 	block->lf.max = cfg & 0xFFF;
848 	block->addr = blkaddr;
849 	block->type = BLKTYPE_NIX;
850 	block->lfshift = 8;
851 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
852 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
853 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
854 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
855 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
856 	block->lfreset_reg = NIX_AF_LF_RST;
857 	sprintf(block->name, "NIX%d", blkid);
858 	rvu->nix_blkaddr[blkid] = blkaddr;
859 	return rvu_alloc_bitmap(&block->lf);
860 }
861 
862 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
863 {
864 	struct rvu_hwinfo *hw = rvu->hw;
865 	struct rvu_block *block;
866 	int blkid;
867 	u64 cfg;
868 
869 	/* Init CPT LF's bitmap */
870 	block = &hw->block[blkaddr];
871 	if (!block->implemented)
872 		return 0;
873 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
874 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
875 	block->lf.max = cfg & 0xFF;
876 	block->addr = blkaddr;
877 	block->type = BLKTYPE_CPT;
878 	block->multislot = true;
879 	block->lfshift = 3;
880 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
881 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
882 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
883 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
884 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
885 	block->lfreset_reg = CPT_AF_LF_RST;
886 	sprintf(block->name, "CPT%d", blkid);
887 	return rvu_alloc_bitmap(&block->lf);
888 }
889 
890 static void rvu_get_lbk_bufsize(struct rvu *rvu)
891 {
892 	struct pci_dev *pdev = NULL;
893 	void __iomem *base;
894 	u64 lbk_const;
895 
896 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
897 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
898 	if (!pdev)
899 		return;
900 
901 	base = pci_ioremap_bar(pdev, 0);
902 	if (!base)
903 		goto err_put;
904 
905 	lbk_const = readq(base + LBK_CONST);
906 
907 	/* cache fifo size */
908 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
909 
910 	iounmap(base);
911 err_put:
912 	pci_dev_put(pdev);
913 }
914 
915 static int rvu_setup_hw_resources(struct rvu *rvu)
916 {
917 	struct rvu_hwinfo *hw = rvu->hw;
918 	struct rvu_block *block;
919 	int blkid, err;
920 	u64 cfg;
921 
922 	/* Get HW supported max RVU PF & VF count */
923 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
924 	hw->total_pfs = (cfg >> 32) & 0xFF;
925 	hw->total_vfs = (cfg >> 20) & 0xFFF;
926 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
927 
928 	/* Init NPA LF's bitmap */
929 	block = &hw->block[BLKADDR_NPA];
930 	if (!block->implemented)
931 		goto nix;
932 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
933 	block->lf.max = (cfg >> 16) & 0xFFF;
934 	block->addr = BLKADDR_NPA;
935 	block->type = BLKTYPE_NPA;
936 	block->lfshift = 8;
937 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
938 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
939 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
940 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
941 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
942 	block->lfreset_reg = NPA_AF_LF_RST;
943 	sprintf(block->name, "NPA");
944 	err = rvu_alloc_bitmap(&block->lf);
945 	if (err) {
946 		dev_err(rvu->dev,
947 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
948 		return err;
949 	}
950 
951 nix:
952 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
953 	if (err) {
954 		dev_err(rvu->dev,
955 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
956 		return err;
957 	}
958 
959 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
960 	if (err) {
961 		dev_err(rvu->dev,
962 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
963 		return err;
964 	}
965 
966 	/* Init SSO group's bitmap */
967 	block = &hw->block[BLKADDR_SSO];
968 	if (!block->implemented)
969 		goto ssow;
970 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
971 	block->lf.max = cfg & 0xFFFF;
972 	block->addr = BLKADDR_SSO;
973 	block->type = BLKTYPE_SSO;
974 	block->multislot = true;
975 	block->lfshift = 3;
976 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
977 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
978 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
979 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
980 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
981 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
982 	sprintf(block->name, "SSO GROUP");
983 	err = rvu_alloc_bitmap(&block->lf);
984 	if (err) {
985 		dev_err(rvu->dev,
986 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
987 		return err;
988 	}
989 
990 ssow:
991 	/* Init SSO workslot's bitmap */
992 	block = &hw->block[BLKADDR_SSOW];
993 	if (!block->implemented)
994 		goto tim;
995 	block->lf.max = (cfg >> 56) & 0xFF;
996 	block->addr = BLKADDR_SSOW;
997 	block->type = BLKTYPE_SSOW;
998 	block->multislot = true;
999 	block->lfshift = 3;
1000 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1001 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1002 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1003 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1004 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1005 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1006 	sprintf(block->name, "SSOWS");
1007 	err = rvu_alloc_bitmap(&block->lf);
1008 	if (err) {
1009 		dev_err(rvu->dev,
1010 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
1011 		return err;
1012 	}
1013 
1014 tim:
1015 	/* Init TIM LF's bitmap */
1016 	block = &hw->block[BLKADDR_TIM];
1017 	if (!block->implemented)
1018 		goto cpt;
1019 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1020 	block->lf.max = cfg & 0xFFFF;
1021 	block->addr = BLKADDR_TIM;
1022 	block->type = BLKTYPE_TIM;
1023 	block->multislot = true;
1024 	block->lfshift = 3;
1025 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1026 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1027 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1028 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1029 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1030 	block->lfreset_reg = TIM_AF_LF_RST;
1031 	sprintf(block->name, "TIM");
1032 	err = rvu_alloc_bitmap(&block->lf);
1033 	if (err) {
1034 		dev_err(rvu->dev,
1035 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1036 		return err;
1037 	}
1038 
1039 cpt:
1040 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1041 	if (err) {
1042 		dev_err(rvu->dev,
1043 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1044 		return err;
1045 	}
1046 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1047 	if (err) {
1048 		dev_err(rvu->dev,
1049 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1050 		return err;
1051 	}
1052 
1053 	/* Allocate memory for PFVF data */
1054 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1055 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1056 	if (!rvu->pf) {
1057 		dev_err(rvu->dev,
1058 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1059 		return -ENOMEM;
1060 	}
1061 
1062 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1063 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1064 	if (!rvu->hwvf) {
1065 		dev_err(rvu->dev,
1066 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1067 		return -ENOMEM;
1068 	}
1069 
1070 	mutex_init(&rvu->rsrc_lock);
1071 
1072 	rvu_fwdata_init(rvu);
1073 
1074 	err = rvu_setup_msix_resources(rvu);
1075 	if (err) {
1076 		dev_err(rvu->dev,
1077 			"%s: Failed to setup MSIX resources\n", __func__);
1078 		return err;
1079 	}
1080 
1081 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1082 		block = &hw->block[blkid];
1083 		if (!block->lf.bmap)
1084 			continue;
1085 
1086 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1087 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1088 					     sizeof(u16), GFP_KERNEL);
1089 		if (!block->fn_map) {
1090 			err = -ENOMEM;
1091 			goto msix_err;
1092 		}
1093 
1094 		/* Scan all blocks to check if low level firmware has
1095 		 * already provisioned any of the resources to a PF/VF.
1096 		 */
1097 		rvu_scan_block(rvu, block);
1098 	}
1099 
1100 	err = rvu_set_channels_base(rvu);
1101 	if (err)
1102 		goto msix_err;
1103 
1104 	err = rvu_npc_init(rvu);
1105 	if (err) {
1106 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1107 		goto npc_err;
1108 	}
1109 
1110 	err = rvu_cgx_init(rvu);
1111 	if (err) {
1112 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1113 		goto cgx_err;
1114 	}
1115 
1116 	/* Assign MACs for CGX mapped functions */
1117 	rvu_setup_pfvf_macaddress(rvu);
1118 
1119 	err = rvu_npa_init(rvu);
1120 	if (err) {
1121 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1122 		goto npa_err;
1123 	}
1124 
1125 	rvu_get_lbk_bufsize(rvu);
1126 
1127 	err = rvu_nix_init(rvu);
1128 	if (err) {
1129 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1130 		goto nix_err;
1131 	}
1132 
1133 	err = rvu_sdp_init(rvu);
1134 	if (err) {
1135 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1136 		goto nix_err;
1137 	}
1138 
1139 	rvu_program_channels(rvu);
1140 
1141 	return 0;
1142 
1143 nix_err:
1144 	rvu_nix_freemem(rvu);
1145 npa_err:
1146 	rvu_npa_freemem(rvu);
1147 cgx_err:
1148 	rvu_cgx_exit(rvu);
1149 npc_err:
1150 	rvu_npc_freemem(rvu);
1151 	rvu_fwdata_exit(rvu);
1152 msix_err:
1153 	rvu_reset_msix(rvu);
1154 	return err;
1155 }
1156 
1157 /* NPA and NIX admin queue APIs */
1158 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1159 {
1160 	if (!aq)
1161 		return;
1162 
1163 	qmem_free(rvu->dev, aq->inst);
1164 	qmem_free(rvu->dev, aq->res);
1165 	devm_kfree(rvu->dev, aq);
1166 }
1167 
1168 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1169 		 int qsize, int inst_size, int res_size)
1170 {
1171 	struct admin_queue *aq;
1172 	int err;
1173 
1174 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1175 	if (!*ad_queue)
1176 		return -ENOMEM;
1177 	aq = *ad_queue;
1178 
1179 	/* Alloc memory for instructions i.e AQ */
1180 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1181 	if (err) {
1182 		devm_kfree(rvu->dev, aq);
1183 		return err;
1184 	}
1185 
1186 	/* Alloc memory for results */
1187 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1188 	if (err) {
1189 		rvu_aq_free(rvu, aq);
1190 		return err;
1191 	}
1192 
1193 	spin_lock_init(&aq->lock);
1194 	return 0;
1195 }
1196 
1197 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1198 			   struct ready_msg_rsp *rsp)
1199 {
1200 	if (rvu->fwdata) {
1201 		rsp->rclk_freq = rvu->fwdata->rclk;
1202 		rsp->sclk_freq = rvu->fwdata->sclk;
1203 	}
1204 	return 0;
1205 }
1206 
1207 /* Get current count of a RVU block's LF/slots
1208  * provisioned to a given RVU func.
1209  */
1210 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1211 {
1212 	switch (blkaddr) {
1213 	case BLKADDR_NPA:
1214 		return pfvf->npalf ? 1 : 0;
1215 	case BLKADDR_NIX0:
1216 	case BLKADDR_NIX1:
1217 		return pfvf->nixlf ? 1 : 0;
1218 	case BLKADDR_SSO:
1219 		return pfvf->sso;
1220 	case BLKADDR_SSOW:
1221 		return pfvf->ssow;
1222 	case BLKADDR_TIM:
1223 		return pfvf->timlfs;
1224 	case BLKADDR_CPT0:
1225 		return pfvf->cptlfs;
1226 	case BLKADDR_CPT1:
1227 		return pfvf->cpt1_lfs;
1228 	}
1229 	return 0;
1230 }
1231 
1232 /* Return true if LFs of block type are attached to pcifunc */
1233 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1234 {
1235 	switch (blktype) {
1236 	case BLKTYPE_NPA:
1237 		return pfvf->npalf ? 1 : 0;
1238 	case BLKTYPE_NIX:
1239 		return pfvf->nixlf ? 1 : 0;
1240 	case BLKTYPE_SSO:
1241 		return !!pfvf->sso;
1242 	case BLKTYPE_SSOW:
1243 		return !!pfvf->ssow;
1244 	case BLKTYPE_TIM:
1245 		return !!pfvf->timlfs;
1246 	case BLKTYPE_CPT:
1247 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1248 	}
1249 
1250 	return false;
1251 }
1252 
1253 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1254 {
1255 	struct rvu_pfvf *pfvf;
1256 
1257 	if (!is_pf_func_valid(rvu, pcifunc))
1258 		return false;
1259 
1260 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1261 
1262 	/* Check if this PFFUNC has a LF of type blktype attached */
1263 	if (!is_blktype_attached(pfvf, blktype))
1264 		return false;
1265 
1266 	return true;
1267 }
1268 
1269 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1270 			   int pcifunc, int slot)
1271 {
1272 	u64 val;
1273 
1274 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1275 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1276 	/* Wait for the lookup to finish */
1277 	/* TODO: put some timeout here */
1278 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1279 		;
1280 
1281 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1282 
1283 	/* Check LF valid bit */
1284 	if (!(val & (1ULL << 12)))
1285 		return -1;
1286 
1287 	return (val & 0xFFF);
1288 }
1289 
1290 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1291 			      u16 global_slot, u16 *slot_in_block)
1292 {
1293 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1294 	int numlfs, total_lfs = 0, nr_blocks = 0;
1295 	int i, num_blkaddr[BLK_COUNT] = { 0 };
1296 	struct rvu_block *block;
1297 	int blkaddr;
1298 	u16 start_slot;
1299 
1300 	if (!is_blktype_attached(pfvf, blktype))
1301 		return -ENODEV;
1302 
1303 	/* Get all the block addresses from which LFs are attached to
1304 	 * the given pcifunc in num_blkaddr[].
1305 	 */
1306 	for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1307 		block = &rvu->hw->block[blkaddr];
1308 		if (block->type != blktype)
1309 			continue;
1310 		if (!is_block_implemented(rvu->hw, blkaddr))
1311 			continue;
1312 
1313 		numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1314 		if (numlfs) {
1315 			total_lfs += numlfs;
1316 			num_blkaddr[nr_blocks] = blkaddr;
1317 			nr_blocks++;
1318 		}
1319 	}
1320 
1321 	if (global_slot >= total_lfs)
1322 		return -ENODEV;
1323 
1324 	/* Based on the given global slot number retrieve the
1325 	 * correct block address out of all attached block
1326 	 * addresses and slot number in that block.
1327 	 */
1328 	total_lfs = 0;
1329 	blkaddr = -ENODEV;
1330 	for (i = 0; i < nr_blocks; i++) {
1331 		numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1332 		total_lfs += numlfs;
1333 		if (global_slot < total_lfs) {
1334 			blkaddr = num_blkaddr[i];
1335 			start_slot = total_lfs - numlfs;
1336 			*slot_in_block = global_slot - start_slot;
1337 			break;
1338 		}
1339 	}
1340 
1341 	return blkaddr;
1342 }
1343 
1344 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1345 {
1346 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1347 	struct rvu_hwinfo *hw = rvu->hw;
1348 	struct rvu_block *block;
1349 	int slot, lf, num_lfs;
1350 	int blkaddr;
1351 
1352 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1353 	if (blkaddr < 0)
1354 		return;
1355 
1356 	if (blktype == BLKTYPE_NIX)
1357 		rvu_nix_reset_mac(pfvf, pcifunc);
1358 
1359 	block = &hw->block[blkaddr];
1360 
1361 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1362 	if (!num_lfs)
1363 		return;
1364 
1365 	for (slot = 0; slot < num_lfs; slot++) {
1366 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1367 		if (lf < 0) /* This should never happen */
1368 			continue;
1369 
1370 		/* Disable the LF */
1371 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1372 			    (lf << block->lfshift), 0x00ULL);
1373 
1374 		/* Update SW maintained mapping info as well */
1375 		rvu_update_rsrc_map(rvu, pfvf, block,
1376 				    pcifunc, lf, false);
1377 
1378 		/* Free the resource */
1379 		rvu_free_rsrc(&block->lf, lf);
1380 
1381 		/* Clear MSIX vector offset for this LF */
1382 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1383 	}
1384 }
1385 
1386 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1387 			    u16 pcifunc)
1388 {
1389 	struct rvu_hwinfo *hw = rvu->hw;
1390 	bool detach_all = true;
1391 	struct rvu_block *block;
1392 	int blkid;
1393 
1394 	mutex_lock(&rvu->rsrc_lock);
1395 
1396 	/* Check for partial resource detach */
1397 	if (detach && detach->partial)
1398 		detach_all = false;
1399 
1400 	/* Check for RVU block's LFs attached to this func,
1401 	 * if so, detach them.
1402 	 */
1403 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1404 		block = &hw->block[blkid];
1405 		if (!block->lf.bmap)
1406 			continue;
1407 		if (!detach_all && detach) {
1408 			if (blkid == BLKADDR_NPA && !detach->npalf)
1409 				continue;
1410 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1411 				continue;
1412 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1413 				continue;
1414 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1415 				continue;
1416 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1417 				continue;
1418 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1419 				continue;
1420 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1421 				continue;
1422 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1423 				continue;
1424 		}
1425 		rvu_detach_block(rvu, pcifunc, block->type);
1426 	}
1427 
1428 	mutex_unlock(&rvu->rsrc_lock);
1429 	return 0;
1430 }
1431 
1432 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1433 				      struct rsrc_detach *detach,
1434 				      struct msg_rsp *rsp)
1435 {
1436 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1437 }
1438 
1439 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1440 {
1441 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1442 	int blkaddr = BLKADDR_NIX0, vf;
1443 	struct rvu_pfvf *pf;
1444 
1445 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1446 
1447 	/* All CGX mapped PFs are set with assigned NIX block during init */
1448 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1449 		blkaddr = pf->nix_blkaddr;
1450 	} else if (is_afvf(pcifunc)) {
1451 		vf = pcifunc - 1;
1452 		/* Assign NIX based on VF number. All even numbered VFs get
1453 		 * NIX0 and odd numbered gets NIX1
1454 		 */
1455 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1456 		/* NIX1 is not present on all silicons */
1457 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1458 			blkaddr = BLKADDR_NIX0;
1459 	}
1460 
1461 	/* if SDP1 then the blkaddr is NIX1 */
1462 	if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1463 		blkaddr = BLKADDR_NIX1;
1464 
1465 	switch (blkaddr) {
1466 	case BLKADDR_NIX1:
1467 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1468 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1469 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1470 		break;
1471 	case BLKADDR_NIX0:
1472 	default:
1473 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1474 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1475 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1476 		break;
1477 	}
1478 
1479 	return pfvf->nix_blkaddr;
1480 }
1481 
1482 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1483 				  u16 pcifunc, struct rsrc_attach *attach)
1484 {
1485 	int blkaddr;
1486 
1487 	switch (blktype) {
1488 	case BLKTYPE_NIX:
1489 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1490 		break;
1491 	case BLKTYPE_CPT:
1492 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1493 			return rvu_get_blkaddr(rvu, blktype, 0);
1494 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1495 			  BLKADDR_CPT0;
1496 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1497 			return -ENODEV;
1498 		break;
1499 	default:
1500 		return rvu_get_blkaddr(rvu, blktype, 0);
1501 	}
1502 
1503 	if (is_block_implemented(rvu->hw, blkaddr))
1504 		return blkaddr;
1505 
1506 	return -ENODEV;
1507 }
1508 
1509 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1510 			     int num_lfs, struct rsrc_attach *attach)
1511 {
1512 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1513 	struct rvu_hwinfo *hw = rvu->hw;
1514 	struct rvu_block *block;
1515 	int slot, lf;
1516 	int blkaddr;
1517 	u64 cfg;
1518 
1519 	if (!num_lfs)
1520 		return;
1521 
1522 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1523 	if (blkaddr < 0)
1524 		return;
1525 
1526 	block = &hw->block[blkaddr];
1527 	if (!block->lf.bmap)
1528 		return;
1529 
1530 	for (slot = 0; slot < num_lfs; slot++) {
1531 		/* Allocate the resource */
1532 		lf = rvu_alloc_rsrc(&block->lf);
1533 		if (lf < 0)
1534 			return;
1535 
1536 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1537 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1538 			    (lf << block->lfshift), cfg);
1539 		rvu_update_rsrc_map(rvu, pfvf, block,
1540 				    pcifunc, lf, true);
1541 
1542 		/* Set start MSIX vector for this LF within this PF/VF */
1543 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1544 	}
1545 }
1546 
1547 static int rvu_check_rsrc_availability(struct rvu *rvu,
1548 				       struct rsrc_attach *req, u16 pcifunc)
1549 {
1550 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1551 	int free_lfs, mappedlfs, blkaddr;
1552 	struct rvu_hwinfo *hw = rvu->hw;
1553 	struct rvu_block *block;
1554 
1555 	/* Only one NPA LF can be attached */
1556 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1557 		block = &hw->block[BLKADDR_NPA];
1558 		free_lfs = rvu_rsrc_free_count(&block->lf);
1559 		if (!free_lfs)
1560 			goto fail;
1561 	} else if (req->npalf) {
1562 		dev_err(&rvu->pdev->dev,
1563 			"Func 0x%x: Invalid req, already has NPA\n",
1564 			 pcifunc);
1565 		return -EINVAL;
1566 	}
1567 
1568 	/* Only one NIX LF can be attached */
1569 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1570 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1571 						 pcifunc, req);
1572 		if (blkaddr < 0)
1573 			return blkaddr;
1574 		block = &hw->block[blkaddr];
1575 		free_lfs = rvu_rsrc_free_count(&block->lf);
1576 		if (!free_lfs)
1577 			goto fail;
1578 	} else if (req->nixlf) {
1579 		dev_err(&rvu->pdev->dev,
1580 			"Func 0x%x: Invalid req, already has NIX\n",
1581 			pcifunc);
1582 		return -EINVAL;
1583 	}
1584 
1585 	if (req->sso) {
1586 		block = &hw->block[BLKADDR_SSO];
1587 		/* Is request within limits ? */
1588 		if (req->sso > block->lf.max) {
1589 			dev_err(&rvu->pdev->dev,
1590 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1591 				 pcifunc, req->sso, block->lf.max);
1592 			return -EINVAL;
1593 		}
1594 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1595 		free_lfs = rvu_rsrc_free_count(&block->lf);
1596 		/* Check if additional resources are available */
1597 		if (req->sso > mappedlfs &&
1598 		    ((req->sso - mappedlfs) > free_lfs))
1599 			goto fail;
1600 	}
1601 
1602 	if (req->ssow) {
1603 		block = &hw->block[BLKADDR_SSOW];
1604 		if (req->ssow > block->lf.max) {
1605 			dev_err(&rvu->pdev->dev,
1606 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1607 				 pcifunc, req->sso, block->lf.max);
1608 			return -EINVAL;
1609 		}
1610 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1611 		free_lfs = rvu_rsrc_free_count(&block->lf);
1612 		if (req->ssow > mappedlfs &&
1613 		    ((req->ssow - mappedlfs) > free_lfs))
1614 			goto fail;
1615 	}
1616 
1617 	if (req->timlfs) {
1618 		block = &hw->block[BLKADDR_TIM];
1619 		if (req->timlfs > block->lf.max) {
1620 			dev_err(&rvu->pdev->dev,
1621 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1622 				 pcifunc, req->timlfs, block->lf.max);
1623 			return -EINVAL;
1624 		}
1625 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1626 		free_lfs = rvu_rsrc_free_count(&block->lf);
1627 		if (req->timlfs > mappedlfs &&
1628 		    ((req->timlfs - mappedlfs) > free_lfs))
1629 			goto fail;
1630 	}
1631 
1632 	if (req->cptlfs) {
1633 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1634 						 pcifunc, req);
1635 		if (blkaddr < 0)
1636 			return blkaddr;
1637 		block = &hw->block[blkaddr];
1638 		if (req->cptlfs > block->lf.max) {
1639 			dev_err(&rvu->pdev->dev,
1640 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1641 				 pcifunc, req->cptlfs, block->lf.max);
1642 			return -EINVAL;
1643 		}
1644 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1645 		free_lfs = rvu_rsrc_free_count(&block->lf);
1646 		if (req->cptlfs > mappedlfs &&
1647 		    ((req->cptlfs - mappedlfs) > free_lfs))
1648 			goto fail;
1649 	}
1650 
1651 	return 0;
1652 
1653 fail:
1654 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1655 	return -ENOSPC;
1656 }
1657 
1658 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1659 				       struct rsrc_attach *attach)
1660 {
1661 	int blkaddr, num_lfs;
1662 
1663 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1664 					 attach->hdr.pcifunc, attach);
1665 	if (blkaddr < 0)
1666 		return false;
1667 
1668 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1669 					blkaddr);
1670 	/* Requester already has LFs from given block ? */
1671 	return !!num_lfs;
1672 }
1673 
1674 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1675 				      struct rsrc_attach *attach,
1676 				      struct msg_rsp *rsp)
1677 {
1678 	u16 pcifunc = attach->hdr.pcifunc;
1679 	int err;
1680 
1681 	/* If first request, detach all existing attached resources */
1682 	if (!attach->modify)
1683 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1684 
1685 	mutex_lock(&rvu->rsrc_lock);
1686 
1687 	/* Check if the request can be accommodated */
1688 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1689 	if (err)
1690 		goto exit;
1691 
1692 	/* Now attach the requested resources */
1693 	if (attach->npalf)
1694 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1695 
1696 	if (attach->nixlf)
1697 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1698 
1699 	if (attach->sso) {
1700 		/* RVU func doesn't know which exact LF or slot is attached
1701 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1702 		 * request, simply detach all existing attached LFs/slots
1703 		 * and attach a fresh.
1704 		 */
1705 		if (attach->modify)
1706 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1707 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1708 				 attach->sso, attach);
1709 	}
1710 
1711 	if (attach->ssow) {
1712 		if (attach->modify)
1713 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1714 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1715 				 attach->ssow, attach);
1716 	}
1717 
1718 	if (attach->timlfs) {
1719 		if (attach->modify)
1720 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1721 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1722 				 attach->timlfs, attach);
1723 	}
1724 
1725 	if (attach->cptlfs) {
1726 		if (attach->modify &&
1727 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1728 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1729 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1730 				 attach->cptlfs, attach);
1731 	}
1732 
1733 exit:
1734 	mutex_unlock(&rvu->rsrc_lock);
1735 	return err;
1736 }
1737 
1738 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1739 			       int blkaddr, int lf)
1740 {
1741 	u16 vec;
1742 
1743 	if (lf < 0)
1744 		return MSIX_VECTOR_INVALID;
1745 
1746 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1747 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1748 			return vec;
1749 	}
1750 	return MSIX_VECTOR_INVALID;
1751 }
1752 
1753 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1754 				struct rvu_block *block, int lf)
1755 {
1756 	u16 nvecs, vec, offset;
1757 	u64 cfg;
1758 
1759 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1760 			 (lf << block->lfshift));
1761 	nvecs = (cfg >> 12) & 0xFF;
1762 
1763 	/* Check and alloc MSIX vectors, must be contiguous */
1764 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1765 		return;
1766 
1767 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1768 
1769 	/* Config MSIX offset in LF */
1770 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1771 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1772 
1773 	/* Update the bitmap as well */
1774 	for (vec = 0; vec < nvecs; vec++)
1775 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1776 }
1777 
1778 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1779 				  struct rvu_block *block, int lf)
1780 {
1781 	u16 nvecs, vec, offset;
1782 	u64 cfg;
1783 
1784 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1785 			 (lf << block->lfshift));
1786 	nvecs = (cfg >> 12) & 0xFF;
1787 
1788 	/* Clear MSIX offset in LF */
1789 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1790 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1791 
1792 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1793 
1794 	/* Update the mapping */
1795 	for (vec = 0; vec < nvecs; vec++)
1796 		pfvf->msix_lfmap[offset + vec] = 0;
1797 
1798 	/* Free the same in MSIX bitmap */
1799 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1800 }
1801 
1802 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1803 				 struct msix_offset_rsp *rsp)
1804 {
1805 	struct rvu_hwinfo *hw = rvu->hw;
1806 	u16 pcifunc = req->hdr.pcifunc;
1807 	struct rvu_pfvf *pfvf;
1808 	int lf, slot, blkaddr;
1809 
1810 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1811 	if (!pfvf->msix.bmap)
1812 		return 0;
1813 
1814 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1815 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1816 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1817 
1818 	/* Get BLKADDR from which LFs are attached to pcifunc */
1819 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1820 	if (blkaddr < 0) {
1821 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1822 	} else {
1823 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1824 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1825 	}
1826 
1827 	rsp->sso = pfvf->sso;
1828 	for (slot = 0; slot < rsp->sso; slot++) {
1829 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1830 		rsp->sso_msixoff[slot] =
1831 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1832 	}
1833 
1834 	rsp->ssow = pfvf->ssow;
1835 	for (slot = 0; slot < rsp->ssow; slot++) {
1836 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1837 		rsp->ssow_msixoff[slot] =
1838 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1839 	}
1840 
1841 	rsp->timlfs = pfvf->timlfs;
1842 	for (slot = 0; slot < rsp->timlfs; slot++) {
1843 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1844 		rsp->timlf_msixoff[slot] =
1845 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1846 	}
1847 
1848 	rsp->cptlfs = pfvf->cptlfs;
1849 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1850 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1851 		rsp->cptlf_msixoff[slot] =
1852 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1853 	}
1854 
1855 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1856 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1857 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1858 		rsp->cpt1_lf_msixoff[slot] =
1859 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1860 	}
1861 
1862 	return 0;
1863 }
1864 
1865 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1866 				   struct free_rsrcs_rsp *rsp)
1867 {
1868 	struct rvu_hwinfo *hw = rvu->hw;
1869 	struct rvu_block *block;
1870 	struct nix_txsch *txsch;
1871 	struct nix_hw *nix_hw;
1872 
1873 	mutex_lock(&rvu->rsrc_lock);
1874 
1875 	block = &hw->block[BLKADDR_NPA];
1876 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1877 
1878 	block = &hw->block[BLKADDR_NIX0];
1879 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1880 
1881 	block = &hw->block[BLKADDR_NIX1];
1882 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1883 
1884 	block = &hw->block[BLKADDR_SSO];
1885 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1886 
1887 	block = &hw->block[BLKADDR_SSOW];
1888 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1889 
1890 	block = &hw->block[BLKADDR_TIM];
1891 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1892 
1893 	block = &hw->block[BLKADDR_CPT0];
1894 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1895 
1896 	block = &hw->block[BLKADDR_CPT1];
1897 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1898 
1899 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1900 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1901 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1902 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1903 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1904 		/* NIX1 */
1905 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1906 			goto out;
1907 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1908 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1909 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1910 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1911 	} else {
1912 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1913 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1914 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
1915 				rvu_rsrc_free_count(&txsch->schq);
1916 
1917 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1918 		rsp->schq[NIX_TXSCH_LVL_TL4] =
1919 				rvu_rsrc_free_count(&txsch->schq);
1920 
1921 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1922 		rsp->schq[NIX_TXSCH_LVL_TL3] =
1923 				rvu_rsrc_free_count(&txsch->schq);
1924 
1925 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1926 		rsp->schq[NIX_TXSCH_LVL_TL2] =
1927 				rvu_rsrc_free_count(&txsch->schq);
1928 
1929 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1930 			goto out;
1931 
1932 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1933 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1934 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1935 				rvu_rsrc_free_count(&txsch->schq);
1936 
1937 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1938 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1939 				rvu_rsrc_free_count(&txsch->schq);
1940 
1941 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1942 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1943 				rvu_rsrc_free_count(&txsch->schq);
1944 
1945 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1946 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1947 				rvu_rsrc_free_count(&txsch->schq);
1948 	}
1949 
1950 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1951 out:
1952 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1953 	mutex_unlock(&rvu->rsrc_lock);
1954 
1955 	return 0;
1956 }
1957 
1958 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1959 			    struct msg_rsp *rsp)
1960 {
1961 	u16 pcifunc = req->hdr.pcifunc;
1962 	u16 vf, numvfs;
1963 	u64 cfg;
1964 
1965 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1966 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1967 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1968 	numvfs = (cfg >> 12) & 0xFF;
1969 
1970 	if (vf && vf <= numvfs)
1971 		__rvu_flr_handler(rvu, pcifunc);
1972 	else
1973 		return RVU_INVALID_VF_ID;
1974 
1975 	return 0;
1976 }
1977 
1978 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1979 				struct get_hw_cap_rsp *rsp)
1980 {
1981 	struct rvu_hwinfo *hw = rvu->hw;
1982 
1983 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1984 	rsp->nix_shaping = hw->cap.nix_shaping;
1985 
1986 	return 0;
1987 }
1988 
1989 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
1990 				 struct msg_rsp *rsp)
1991 {
1992 	struct rvu_hwinfo *hw = rvu->hw;
1993 	u16 pcifunc = req->hdr.pcifunc;
1994 	struct rvu_pfvf *pfvf;
1995 	int blkaddr, nixlf;
1996 	u16 target;
1997 
1998 	/* Only PF can add VF permissions */
1999 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
2000 		return -EOPNOTSUPP;
2001 
2002 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2003 	pfvf = rvu_get_pfvf(rvu, target);
2004 
2005 	if (req->flags & RESET_VF_PERM) {
2006 		pfvf->flags &= RVU_CLEAR_VF_PERM;
2007 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2008 		 (req->flags & VF_TRUSTED)) {
2009 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2010 		/* disable multicast and promisc entries */
2011 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2012 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2013 			if (blkaddr < 0)
2014 				return 0;
2015 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2016 					   target, 0);
2017 			if (nixlf < 0)
2018 				return 0;
2019 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2020 						     NIXLF_ALLMULTI_ENTRY,
2021 						     false);
2022 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2023 						     NIXLF_PROMISC_ENTRY,
2024 						     false);
2025 		}
2026 	}
2027 
2028 	return 0;
2029 }
2030 
2031 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2032 				struct mbox_msghdr *req)
2033 {
2034 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2035 
2036 	/* Check if valid, if not reply with a invalid msg */
2037 	if (req->sig != OTX2_MBOX_REQ_SIG)
2038 		goto bad_message;
2039 
2040 	switch (req->id) {
2041 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
2042 	case _id: {							\
2043 		struct _rsp_type *rsp;					\
2044 		int err;						\
2045 									\
2046 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
2047 			mbox, devid,					\
2048 			sizeof(struct _rsp_type));			\
2049 		/* some handlers should complete even if reply */	\
2050 		/* could not be allocated */				\
2051 		if (!rsp &&						\
2052 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
2053 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
2054 		    _id != MBOX_MSG_VF_FLR)				\
2055 			return -ENOMEM;					\
2056 		if (rsp) {						\
2057 			rsp->hdr.id = _id;				\
2058 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
2059 			rsp->hdr.pcifunc = req->pcifunc;		\
2060 			rsp->hdr.rc = 0;				\
2061 		}							\
2062 									\
2063 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
2064 						    (struct _req_type *)req, \
2065 						    rsp);		\
2066 		if (rsp && err)						\
2067 			rsp->hdr.rc = err;				\
2068 									\
2069 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
2070 		return rsp ? err : -ENOMEM;				\
2071 	}
2072 MBOX_MESSAGES
2073 #undef M
2074 
2075 bad_message:
2076 	default:
2077 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2078 		return -ENODEV;
2079 	}
2080 }
2081 
2082 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
2083 {
2084 	struct rvu *rvu = mwork->rvu;
2085 	int offset, err, id, devid;
2086 	struct otx2_mbox_dev *mdev;
2087 	struct mbox_hdr *req_hdr;
2088 	struct mbox_msghdr *msg;
2089 	struct mbox_wq_info *mw;
2090 	struct otx2_mbox *mbox;
2091 
2092 	switch (type) {
2093 	case TYPE_AFPF:
2094 		mw = &rvu->afpf_wq_info;
2095 		break;
2096 	case TYPE_AFVF:
2097 		mw = &rvu->afvf_wq_info;
2098 		break;
2099 	default:
2100 		return;
2101 	}
2102 
2103 	devid = mwork - mw->mbox_wrk;
2104 	mbox = &mw->mbox;
2105 	mdev = &mbox->dev[devid];
2106 
2107 	/* Process received mbox messages */
2108 	req_hdr = mdev->mbase + mbox->rx_start;
2109 	if (mw->mbox_wrk[devid].num_msgs == 0)
2110 		return;
2111 
2112 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2113 
2114 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2115 		msg = mdev->mbase + offset;
2116 
2117 		/* Set which PF/VF sent this message based on mbox IRQ */
2118 		switch (type) {
2119 		case TYPE_AFPF:
2120 			msg->pcifunc &=
2121 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2122 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2123 			break;
2124 		case TYPE_AFVF:
2125 			msg->pcifunc &=
2126 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2127 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2128 			break;
2129 		}
2130 
2131 		err = rvu_process_mbox_msg(mbox, devid, msg);
2132 		if (!err) {
2133 			offset = mbox->rx_start + msg->next_msgoff;
2134 			continue;
2135 		}
2136 
2137 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2138 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2139 				 err, otx2_mbox_id2name(msg->id),
2140 				 msg->id, rvu_get_pf(msg->pcifunc),
2141 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2142 		else
2143 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2144 				 err, otx2_mbox_id2name(msg->id),
2145 				 msg->id, devid);
2146 	}
2147 	mw->mbox_wrk[devid].num_msgs = 0;
2148 
2149 	/* Send mbox responses to VF/PF */
2150 	otx2_mbox_msg_send(mbox, devid);
2151 }
2152 
2153 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2154 {
2155 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2156 
2157 	__rvu_mbox_handler(mwork, TYPE_AFPF);
2158 }
2159 
2160 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2161 {
2162 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2163 
2164 	__rvu_mbox_handler(mwork, TYPE_AFVF);
2165 }
2166 
2167 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2168 {
2169 	struct rvu *rvu = mwork->rvu;
2170 	struct otx2_mbox_dev *mdev;
2171 	struct mbox_hdr *rsp_hdr;
2172 	struct mbox_msghdr *msg;
2173 	struct mbox_wq_info *mw;
2174 	struct otx2_mbox *mbox;
2175 	int offset, id, devid;
2176 
2177 	switch (type) {
2178 	case TYPE_AFPF:
2179 		mw = &rvu->afpf_wq_info;
2180 		break;
2181 	case TYPE_AFVF:
2182 		mw = &rvu->afvf_wq_info;
2183 		break;
2184 	default:
2185 		return;
2186 	}
2187 
2188 	devid = mwork - mw->mbox_wrk_up;
2189 	mbox = &mw->mbox_up;
2190 	mdev = &mbox->dev[devid];
2191 
2192 	rsp_hdr = mdev->mbase + mbox->rx_start;
2193 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2194 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2195 		return;
2196 	}
2197 
2198 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2199 
2200 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2201 		msg = mdev->mbase + offset;
2202 
2203 		if (msg->id >= MBOX_MSG_MAX) {
2204 			dev_err(rvu->dev,
2205 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2206 			goto end;
2207 		}
2208 
2209 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2210 			dev_err(rvu->dev,
2211 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2212 				msg->sig, msg->id);
2213 			goto end;
2214 		}
2215 
2216 		switch (msg->id) {
2217 		case MBOX_MSG_CGX_LINK_EVENT:
2218 			break;
2219 		default:
2220 			if (msg->rc)
2221 				dev_err(rvu->dev,
2222 					"Mbox msg response has err %d, ID 0x%x\n",
2223 					msg->rc, msg->id);
2224 			break;
2225 		}
2226 end:
2227 		offset = mbox->rx_start + msg->next_msgoff;
2228 		mdev->msgs_acked++;
2229 	}
2230 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2231 
2232 	otx2_mbox_reset(mbox, devid);
2233 }
2234 
2235 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2236 {
2237 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2238 
2239 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2240 }
2241 
2242 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2243 {
2244 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2245 
2246 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2247 }
2248 
2249 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2250 				int num, int type)
2251 {
2252 	struct rvu_hwinfo *hw = rvu->hw;
2253 	int region;
2254 	u64 bar4;
2255 
2256 	/* For cn10k platform VF mailbox regions of a PF follows after the
2257 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2258 	 * RVU_PF_VF_BAR4_ADDR register.
2259 	 */
2260 	if (type == TYPE_AFVF) {
2261 		for (region = 0; region < num; region++) {
2262 			if (hw->cap.per_pf_mbox_regs) {
2263 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2264 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2265 						  MBOX_SIZE;
2266 				bar4 += region * MBOX_SIZE;
2267 			} else {
2268 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2269 				bar4 += region * MBOX_SIZE;
2270 			}
2271 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2272 			if (!mbox_addr[region])
2273 				goto error;
2274 		}
2275 		return 0;
2276 	}
2277 
2278 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2279 	 * PF registers. Whereas for Octeontx2 it is read from
2280 	 * RVU_AF_PF_BAR4_ADDR register.
2281 	 */
2282 	for (region = 0; region < num; region++) {
2283 		if (hw->cap.per_pf_mbox_regs) {
2284 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2285 					  RVU_AF_PFX_BAR4_ADDR(region));
2286 		} else {
2287 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2288 					  RVU_AF_PF_BAR4_ADDR);
2289 			bar4 += region * MBOX_SIZE;
2290 		}
2291 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2292 		if (!mbox_addr[region])
2293 			goto error;
2294 	}
2295 	return 0;
2296 
2297 error:
2298 	while (region--)
2299 		iounmap((void __iomem *)mbox_addr[region]);
2300 	return -ENOMEM;
2301 }
2302 
2303 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2304 			 int type, int num,
2305 			 void (mbox_handler)(struct work_struct *),
2306 			 void (mbox_up_handler)(struct work_struct *))
2307 {
2308 	int err = -EINVAL, i, dir, dir_up;
2309 	void __iomem *reg_base;
2310 	struct rvu_work *mwork;
2311 	void **mbox_regions;
2312 	const char *name;
2313 
2314 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2315 	if (!mbox_regions)
2316 		return -ENOMEM;
2317 
2318 	switch (type) {
2319 	case TYPE_AFPF:
2320 		name = "rvu_afpf_mailbox";
2321 		dir = MBOX_DIR_AFPF;
2322 		dir_up = MBOX_DIR_AFPF_UP;
2323 		reg_base = rvu->afreg_base;
2324 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2325 		if (err)
2326 			goto free_regions;
2327 		break;
2328 	case TYPE_AFVF:
2329 		name = "rvu_afvf_mailbox";
2330 		dir = MBOX_DIR_PFVF;
2331 		dir_up = MBOX_DIR_PFVF_UP;
2332 		reg_base = rvu->pfreg_base;
2333 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2334 		if (err)
2335 			goto free_regions;
2336 		break;
2337 	default:
2338 		return err;
2339 	}
2340 
2341 	mw->mbox_wq = alloc_workqueue(name,
2342 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2343 				      num);
2344 	if (!mw->mbox_wq) {
2345 		err = -ENOMEM;
2346 		goto unmap_regions;
2347 	}
2348 
2349 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2350 				    sizeof(struct rvu_work), GFP_KERNEL);
2351 	if (!mw->mbox_wrk) {
2352 		err = -ENOMEM;
2353 		goto exit;
2354 	}
2355 
2356 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2357 				       sizeof(struct rvu_work), GFP_KERNEL);
2358 	if (!mw->mbox_wrk_up) {
2359 		err = -ENOMEM;
2360 		goto exit;
2361 	}
2362 
2363 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2364 				     reg_base, dir, num);
2365 	if (err)
2366 		goto exit;
2367 
2368 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2369 				     reg_base, dir_up, num);
2370 	if (err)
2371 		goto exit;
2372 
2373 	for (i = 0; i < num; i++) {
2374 		mwork = &mw->mbox_wrk[i];
2375 		mwork->rvu = rvu;
2376 		INIT_WORK(&mwork->work, mbox_handler);
2377 
2378 		mwork = &mw->mbox_wrk_up[i];
2379 		mwork->rvu = rvu;
2380 		INIT_WORK(&mwork->work, mbox_up_handler);
2381 	}
2382 	kfree(mbox_regions);
2383 	return 0;
2384 
2385 exit:
2386 	destroy_workqueue(mw->mbox_wq);
2387 unmap_regions:
2388 	while (num--)
2389 		iounmap((void __iomem *)mbox_regions[num]);
2390 free_regions:
2391 	kfree(mbox_regions);
2392 	return err;
2393 }
2394 
2395 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2396 {
2397 	struct otx2_mbox *mbox = &mw->mbox;
2398 	struct otx2_mbox_dev *mdev;
2399 	int devid;
2400 
2401 	if (mw->mbox_wq) {
2402 		flush_workqueue(mw->mbox_wq);
2403 		destroy_workqueue(mw->mbox_wq);
2404 		mw->mbox_wq = NULL;
2405 	}
2406 
2407 	for (devid = 0; devid < mbox->ndevs; devid++) {
2408 		mdev = &mbox->dev[devid];
2409 		if (mdev->hwbase)
2410 			iounmap((void __iomem *)mdev->hwbase);
2411 	}
2412 
2413 	otx2_mbox_destroy(&mw->mbox);
2414 	otx2_mbox_destroy(&mw->mbox_up);
2415 }
2416 
2417 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2418 			   int mdevs, u64 intr)
2419 {
2420 	struct otx2_mbox_dev *mdev;
2421 	struct otx2_mbox *mbox;
2422 	struct mbox_hdr *hdr;
2423 	int i;
2424 
2425 	for (i = first; i < mdevs; i++) {
2426 		/* start from 0 */
2427 		if (!(intr & BIT_ULL(i - first)))
2428 			continue;
2429 
2430 		mbox = &mw->mbox;
2431 		mdev = &mbox->dev[i];
2432 		hdr = mdev->mbase + mbox->rx_start;
2433 
2434 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2435 		 * handler to  ensure that it holds a correct value next time
2436 		 * when the interrupt handler is called.
2437 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2438 		 * pf>mbox.up_num_msgs holds the data for use in
2439 		 * pfaf_mbox_up_handler.
2440 		 */
2441 
2442 		if (hdr->num_msgs) {
2443 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2444 			hdr->num_msgs = 0;
2445 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2446 		}
2447 		mbox = &mw->mbox_up;
2448 		mdev = &mbox->dev[i];
2449 		hdr = mdev->mbase + mbox->rx_start;
2450 		if (hdr->num_msgs) {
2451 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2452 			hdr->num_msgs = 0;
2453 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2454 		}
2455 	}
2456 }
2457 
2458 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2459 {
2460 	struct rvu *rvu = (struct rvu *)rvu_irq;
2461 	int vfs = rvu->vfs;
2462 	u64 intr;
2463 
2464 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2465 	/* Clear interrupts */
2466 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2467 	if (intr)
2468 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2469 
2470 	/* Sync with mbox memory region */
2471 	rmb();
2472 
2473 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2474 
2475 	/* Handle VF interrupts */
2476 	if (vfs > 64) {
2477 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2478 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2479 
2480 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2481 		vfs -= 64;
2482 	}
2483 
2484 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2485 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2486 	if (intr)
2487 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2488 
2489 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2490 
2491 	return IRQ_HANDLED;
2492 }
2493 
2494 static void rvu_enable_mbox_intr(struct rvu *rvu)
2495 {
2496 	struct rvu_hwinfo *hw = rvu->hw;
2497 
2498 	/* Clear spurious irqs, if any */
2499 	rvu_write64(rvu, BLKADDR_RVUM,
2500 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2501 
2502 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2503 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2504 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2505 }
2506 
2507 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2508 {
2509 	struct rvu_block *block;
2510 	int slot, lf, num_lfs;
2511 	int err;
2512 
2513 	block = &rvu->hw->block[blkaddr];
2514 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2515 					block->addr);
2516 	if (!num_lfs)
2517 		return;
2518 	for (slot = 0; slot < num_lfs; slot++) {
2519 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2520 		if (lf < 0)
2521 			continue;
2522 
2523 		/* Cleanup LF and reset it */
2524 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2525 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2526 		else if (block->addr == BLKADDR_NPA)
2527 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2528 		else if ((block->addr == BLKADDR_CPT0) ||
2529 			 (block->addr == BLKADDR_CPT1))
2530 			rvu_cpt_lf_teardown(rvu, pcifunc, lf, slot);
2531 
2532 		err = rvu_lf_reset(rvu, block, lf);
2533 		if (err) {
2534 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2535 				block->addr, lf);
2536 		}
2537 	}
2538 }
2539 
2540 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2541 {
2542 	mutex_lock(&rvu->flr_lock);
2543 	/* Reset order should reflect inter-block dependencies:
2544 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2545 	 * 2. Flush and reset SSO/SSOW
2546 	 * 3. Cleanup pools (NPA)
2547 	 */
2548 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2549 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2550 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2551 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2552 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2553 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2554 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2555 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2556 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2557 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2558 	mutex_unlock(&rvu->flr_lock);
2559 }
2560 
2561 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2562 {
2563 	int reg = 0;
2564 
2565 	/* pcifunc = 0(PF0) | (vf + 1) */
2566 	__rvu_flr_handler(rvu, vf + 1);
2567 
2568 	if (vf >= 64) {
2569 		reg = 1;
2570 		vf = vf - 64;
2571 	}
2572 
2573 	/* Signal FLR finish and enable IRQ */
2574 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2575 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2576 }
2577 
2578 static void rvu_flr_handler(struct work_struct *work)
2579 {
2580 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2581 	struct rvu *rvu = flrwork->rvu;
2582 	u16 pcifunc, numvfs, vf;
2583 	u64 cfg;
2584 	int pf;
2585 
2586 	pf = flrwork - rvu->flr_wrk;
2587 	if (pf >= rvu->hw->total_pfs) {
2588 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2589 		return;
2590 	}
2591 
2592 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2593 	numvfs = (cfg >> 12) & 0xFF;
2594 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2595 
2596 	for (vf = 0; vf < numvfs; vf++)
2597 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2598 
2599 	__rvu_flr_handler(rvu, pcifunc);
2600 
2601 	/* Signal FLR finish */
2602 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2603 
2604 	/* Enable interrupt */
2605 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2606 }
2607 
2608 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2609 {
2610 	int dev, vf, reg = 0;
2611 	u64 intr;
2612 
2613 	if (start_vf >= 64)
2614 		reg = 1;
2615 
2616 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2617 	if (!intr)
2618 		return;
2619 
2620 	for (vf = 0; vf < numvfs; vf++) {
2621 		if (!(intr & BIT_ULL(vf)))
2622 			continue;
2623 		/* Clear and disable the interrupt */
2624 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2625 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2626 
2627 		dev = vf + start_vf + rvu->hw->total_pfs;
2628 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2629 	}
2630 }
2631 
2632 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2633 {
2634 	struct rvu *rvu = (struct rvu *)rvu_irq;
2635 	u64 intr;
2636 	u8  pf;
2637 
2638 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2639 	if (!intr)
2640 		goto afvf_flr;
2641 
2642 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2643 		if (intr & (1ULL << pf)) {
2644 			/* clear interrupt */
2645 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2646 				    BIT_ULL(pf));
2647 			/* Disable the interrupt */
2648 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2649 				    BIT_ULL(pf));
2650 			/* PF is already dead do only AF related operations */
2651 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2652 		}
2653 	}
2654 
2655 afvf_flr:
2656 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2657 	if (rvu->vfs > 64)
2658 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2659 
2660 	return IRQ_HANDLED;
2661 }
2662 
2663 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2664 {
2665 	int vf;
2666 
2667 	/* Nothing to be done here other than clearing the
2668 	 * TRPEND bit.
2669 	 */
2670 	for (vf = 0; vf < 64; vf++) {
2671 		if (intr & (1ULL << vf)) {
2672 			/* clear the trpend due to ME(master enable) */
2673 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2674 			/* clear interrupt */
2675 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2676 		}
2677 	}
2678 }
2679 
2680 /* Handles ME interrupts from VFs of AF */
2681 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2682 {
2683 	struct rvu *rvu = (struct rvu *)rvu_irq;
2684 	int vfset;
2685 	u64 intr;
2686 
2687 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2688 
2689 	for (vfset = 0; vfset <= 1; vfset++) {
2690 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2691 		if (intr)
2692 			rvu_me_handle_vfset(rvu, vfset, intr);
2693 	}
2694 
2695 	return IRQ_HANDLED;
2696 }
2697 
2698 /* Handles ME interrupts from PFs */
2699 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2700 {
2701 	struct rvu *rvu = (struct rvu *)rvu_irq;
2702 	u64 intr;
2703 	u8  pf;
2704 
2705 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2706 
2707 	/* Nothing to be done here other than clearing the
2708 	 * TRPEND bit.
2709 	 */
2710 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2711 		if (intr & (1ULL << pf)) {
2712 			/* clear the trpend due to ME(master enable) */
2713 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2714 				    BIT_ULL(pf));
2715 			/* clear interrupt */
2716 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2717 				    BIT_ULL(pf));
2718 		}
2719 	}
2720 
2721 	return IRQ_HANDLED;
2722 }
2723 
2724 static void rvu_unregister_interrupts(struct rvu *rvu)
2725 {
2726 	int irq;
2727 
2728 	/* Disable the Mbox interrupt */
2729 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2730 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2731 
2732 	/* Disable the PF FLR interrupt */
2733 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2734 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2735 
2736 	/* Disable the PF ME interrupt */
2737 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2738 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2739 
2740 	for (irq = 0; irq < rvu->num_vec; irq++) {
2741 		if (rvu->irq_allocated[irq]) {
2742 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2743 			rvu->irq_allocated[irq] = false;
2744 		}
2745 	}
2746 
2747 	pci_free_irq_vectors(rvu->pdev);
2748 	rvu->num_vec = 0;
2749 }
2750 
2751 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2752 {
2753 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2754 	int offset;
2755 
2756 	pfvf = &rvu->pf[0];
2757 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2758 
2759 	/* Make sure there are enough MSIX vectors configured so that
2760 	 * VF interrupts can be handled. Offset equal to zero means
2761 	 * that PF vectors are not configured and overlapping AF vectors.
2762 	 */
2763 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2764 	       offset;
2765 }
2766 
2767 static int rvu_register_interrupts(struct rvu *rvu)
2768 {
2769 	int ret, offset, pf_vec_start;
2770 
2771 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2772 
2773 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2774 					   NAME_SIZE, GFP_KERNEL);
2775 	if (!rvu->irq_name)
2776 		return -ENOMEM;
2777 
2778 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2779 					  sizeof(bool), GFP_KERNEL);
2780 	if (!rvu->irq_allocated)
2781 		return -ENOMEM;
2782 
2783 	/* Enable MSI-X */
2784 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2785 				    rvu->num_vec, PCI_IRQ_MSIX);
2786 	if (ret < 0) {
2787 		dev_err(rvu->dev,
2788 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2789 			rvu->num_vec, ret);
2790 		return ret;
2791 	}
2792 
2793 	/* Register mailbox interrupt handler */
2794 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2795 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2796 			  rvu_mbox_intr_handler, 0,
2797 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2798 	if (ret) {
2799 		dev_err(rvu->dev,
2800 			"RVUAF: IRQ registration failed for mbox irq\n");
2801 		goto fail;
2802 	}
2803 
2804 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2805 
2806 	/* Enable mailbox interrupts from all PFs */
2807 	rvu_enable_mbox_intr(rvu);
2808 
2809 	/* Register FLR interrupt handler */
2810 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2811 		"RVUAF FLR");
2812 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2813 			  rvu_flr_intr_handler, 0,
2814 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2815 			  rvu);
2816 	if (ret) {
2817 		dev_err(rvu->dev,
2818 			"RVUAF: IRQ registration failed for FLR\n");
2819 		goto fail;
2820 	}
2821 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2822 
2823 	/* Enable FLR interrupt for all PFs*/
2824 	rvu_write64(rvu, BLKADDR_RVUM,
2825 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2826 
2827 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2828 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2829 
2830 	/* Register ME interrupt handler */
2831 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2832 		"RVUAF ME");
2833 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2834 			  rvu_me_pf_intr_handler, 0,
2835 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2836 			  rvu);
2837 	if (ret) {
2838 		dev_err(rvu->dev,
2839 			"RVUAF: IRQ registration failed for ME\n");
2840 	}
2841 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2842 
2843 	/* Clear TRPEND bit for all PF */
2844 	rvu_write64(rvu, BLKADDR_RVUM,
2845 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2846 	/* Enable ME interrupt for all PFs*/
2847 	rvu_write64(rvu, BLKADDR_RVUM,
2848 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2849 
2850 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2851 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2852 
2853 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2854 		return 0;
2855 
2856 	/* Get PF MSIX vectors offset. */
2857 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2858 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2859 
2860 	/* Register MBOX0 interrupt. */
2861 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2862 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2863 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2864 			  rvu_mbox_intr_handler, 0,
2865 			  &rvu->irq_name[offset * NAME_SIZE],
2866 			  rvu);
2867 	if (ret)
2868 		dev_err(rvu->dev,
2869 			"RVUAF: IRQ registration failed for Mbox0\n");
2870 
2871 	rvu->irq_allocated[offset] = true;
2872 
2873 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2874 	 * simply increment current offset by 1.
2875 	 */
2876 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2877 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2878 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2879 			  rvu_mbox_intr_handler, 0,
2880 			  &rvu->irq_name[offset * NAME_SIZE],
2881 			  rvu);
2882 	if (ret)
2883 		dev_err(rvu->dev,
2884 			"RVUAF: IRQ registration failed for Mbox1\n");
2885 
2886 	rvu->irq_allocated[offset] = true;
2887 
2888 	/* Register FLR interrupt handler for AF's VFs */
2889 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2890 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2891 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2892 			  rvu_flr_intr_handler, 0,
2893 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2894 	if (ret) {
2895 		dev_err(rvu->dev,
2896 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2897 		goto fail;
2898 	}
2899 	rvu->irq_allocated[offset] = true;
2900 
2901 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2902 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2903 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2904 			  rvu_flr_intr_handler, 0,
2905 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2906 	if (ret) {
2907 		dev_err(rvu->dev,
2908 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2909 		goto fail;
2910 	}
2911 	rvu->irq_allocated[offset] = true;
2912 
2913 	/* Register ME interrupt handler for AF's VFs */
2914 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2915 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2916 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2917 			  rvu_me_vf_intr_handler, 0,
2918 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2919 	if (ret) {
2920 		dev_err(rvu->dev,
2921 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2922 		goto fail;
2923 	}
2924 	rvu->irq_allocated[offset] = true;
2925 
2926 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2927 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2928 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2929 			  rvu_me_vf_intr_handler, 0,
2930 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2931 	if (ret) {
2932 		dev_err(rvu->dev,
2933 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2934 		goto fail;
2935 	}
2936 	rvu->irq_allocated[offset] = true;
2937 	return 0;
2938 
2939 fail:
2940 	rvu_unregister_interrupts(rvu);
2941 	return ret;
2942 }
2943 
2944 static void rvu_flr_wq_destroy(struct rvu *rvu)
2945 {
2946 	if (rvu->flr_wq) {
2947 		flush_workqueue(rvu->flr_wq);
2948 		destroy_workqueue(rvu->flr_wq);
2949 		rvu->flr_wq = NULL;
2950 	}
2951 }
2952 
2953 static int rvu_flr_init(struct rvu *rvu)
2954 {
2955 	int dev, num_devs;
2956 	u64 cfg;
2957 	int pf;
2958 
2959 	/* Enable FLR for all PFs*/
2960 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2961 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2962 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2963 			    cfg | BIT_ULL(22));
2964 	}
2965 
2966 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2967 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2968 				       1);
2969 	if (!rvu->flr_wq)
2970 		return -ENOMEM;
2971 
2972 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2973 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2974 				    sizeof(struct rvu_work), GFP_KERNEL);
2975 	if (!rvu->flr_wrk) {
2976 		destroy_workqueue(rvu->flr_wq);
2977 		return -ENOMEM;
2978 	}
2979 
2980 	for (dev = 0; dev < num_devs; dev++) {
2981 		rvu->flr_wrk[dev].rvu = rvu;
2982 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2983 	}
2984 
2985 	mutex_init(&rvu->flr_lock);
2986 
2987 	return 0;
2988 }
2989 
2990 static void rvu_disable_afvf_intr(struct rvu *rvu)
2991 {
2992 	int vfs = rvu->vfs;
2993 
2994 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2995 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2996 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2997 	if (vfs <= 64)
2998 		return;
2999 
3000 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3001 		      INTR_MASK(vfs - 64));
3002 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3003 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3004 }
3005 
3006 static void rvu_enable_afvf_intr(struct rvu *rvu)
3007 {
3008 	int vfs = rvu->vfs;
3009 
3010 	/* Clear any pending interrupts and enable AF VF interrupts for
3011 	 * the first 64 VFs.
3012 	 */
3013 	/* Mbox */
3014 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3015 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3016 
3017 	/* FLR */
3018 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3019 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3020 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3021 
3022 	/* Same for remaining VFs, if any. */
3023 	if (vfs <= 64)
3024 		return;
3025 
3026 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3027 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3028 		      INTR_MASK(vfs - 64));
3029 
3030 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3031 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3032 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3033 }
3034 
3035 int rvu_get_num_lbk_chans(void)
3036 {
3037 	struct pci_dev *pdev;
3038 	void __iomem *base;
3039 	int ret = -EIO;
3040 
3041 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3042 			      NULL);
3043 	if (!pdev)
3044 		goto err;
3045 
3046 	base = pci_ioremap_bar(pdev, 0);
3047 	if (!base)
3048 		goto err_put;
3049 
3050 	/* Read number of available LBK channels from LBK(0)_CONST register. */
3051 	ret = (readq(base + 0x10) >> 32) & 0xffff;
3052 	iounmap(base);
3053 err_put:
3054 	pci_dev_put(pdev);
3055 err:
3056 	return ret;
3057 }
3058 
3059 static int rvu_enable_sriov(struct rvu *rvu)
3060 {
3061 	struct pci_dev *pdev = rvu->pdev;
3062 	int err, chans, vfs;
3063 
3064 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3065 		dev_warn(&pdev->dev,
3066 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
3067 		return 0;
3068 	}
3069 
3070 	chans = rvu_get_num_lbk_chans();
3071 	if (chans < 0)
3072 		return chans;
3073 
3074 	vfs = pci_sriov_get_totalvfs(pdev);
3075 
3076 	/* Limit VFs in case we have more VFs than LBK channels available. */
3077 	if (vfs > chans)
3078 		vfs = chans;
3079 
3080 	if (!vfs)
3081 		return 0;
3082 
3083 	/* LBK channel number 63 is used for switching packets between
3084 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3085 	 */
3086 	if (vfs > 62)
3087 		vfs = 62;
3088 
3089 	/* Save VFs number for reference in VF interrupts handlers.
3090 	 * Since interrupts might start arriving during SRIOV enablement
3091 	 * ordinary API cannot be used to get number of enabled VFs.
3092 	 */
3093 	rvu->vfs = vfs;
3094 
3095 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3096 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3097 	if (err)
3098 		return err;
3099 
3100 	rvu_enable_afvf_intr(rvu);
3101 	/* Make sure IRQs are enabled before SRIOV. */
3102 	mb();
3103 
3104 	err = pci_enable_sriov(pdev, vfs);
3105 	if (err) {
3106 		rvu_disable_afvf_intr(rvu);
3107 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3108 		return err;
3109 	}
3110 
3111 	return 0;
3112 }
3113 
3114 static void rvu_disable_sriov(struct rvu *rvu)
3115 {
3116 	rvu_disable_afvf_intr(rvu);
3117 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3118 	pci_disable_sriov(rvu->pdev);
3119 }
3120 
3121 static void rvu_update_module_params(struct rvu *rvu)
3122 {
3123 	const char *default_pfl_name = "default";
3124 
3125 	strscpy(rvu->mkex_pfl_name,
3126 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3127 	strscpy(rvu->kpu_pfl_name,
3128 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3129 }
3130 
3131 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3132 {
3133 	struct device *dev = &pdev->dev;
3134 	struct rvu *rvu;
3135 	int    err;
3136 
3137 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3138 	if (!rvu)
3139 		return -ENOMEM;
3140 
3141 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3142 	if (!rvu->hw) {
3143 		devm_kfree(dev, rvu);
3144 		return -ENOMEM;
3145 	}
3146 
3147 	pci_set_drvdata(pdev, rvu);
3148 	rvu->pdev = pdev;
3149 	rvu->dev = &pdev->dev;
3150 
3151 	err = pci_enable_device(pdev);
3152 	if (err) {
3153 		dev_err(dev, "Failed to enable PCI device\n");
3154 		goto err_freemem;
3155 	}
3156 
3157 	err = pci_request_regions(pdev, DRV_NAME);
3158 	if (err) {
3159 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3160 		goto err_disable_device;
3161 	}
3162 
3163 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3164 	if (err) {
3165 		dev_err(dev, "DMA mask config failed, abort\n");
3166 		goto err_release_regions;
3167 	}
3168 
3169 	pci_set_master(pdev);
3170 
3171 	rvu->ptp = ptp_get();
3172 	if (IS_ERR(rvu->ptp)) {
3173 		err = PTR_ERR(rvu->ptp);
3174 		if (err == -EPROBE_DEFER)
3175 			goto err_release_regions;
3176 		rvu->ptp = NULL;
3177 	}
3178 
3179 	/* Map Admin function CSRs */
3180 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3181 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3182 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3183 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3184 		err = -ENOMEM;
3185 		goto err_put_ptp;
3186 	}
3187 
3188 	/* Store module params in rvu structure */
3189 	rvu_update_module_params(rvu);
3190 
3191 	/* Check which blocks the HW supports */
3192 	rvu_check_block_implemented(rvu);
3193 
3194 	rvu_reset_all_blocks(rvu);
3195 
3196 	rvu_setup_hw_capabilities(rvu);
3197 
3198 	err = rvu_setup_hw_resources(rvu);
3199 	if (err)
3200 		goto err_put_ptp;
3201 
3202 	/* Init mailbox btw AF and PFs */
3203 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3204 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3205 			    rvu_afpf_mbox_up_handler);
3206 	if (err) {
3207 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3208 		goto err_hwsetup;
3209 	}
3210 
3211 	err = rvu_flr_init(rvu);
3212 	if (err) {
3213 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3214 		goto err_mbox;
3215 	}
3216 
3217 	err = rvu_register_interrupts(rvu);
3218 	if (err) {
3219 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3220 		goto err_flr;
3221 	}
3222 
3223 	err = rvu_register_dl(rvu);
3224 	if (err) {
3225 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3226 		goto err_irq;
3227 	}
3228 
3229 	rvu_setup_rvum_blk_revid(rvu);
3230 
3231 	/* Enable AF's VFs (if any) */
3232 	err = rvu_enable_sriov(rvu);
3233 	if (err) {
3234 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3235 		goto err_dl;
3236 	}
3237 
3238 	/* Initialize debugfs */
3239 	rvu_dbg_init(rvu);
3240 
3241 	mutex_init(&rvu->rswitch.switch_lock);
3242 
3243 	if (rvu->fwdata)
3244 		ptp_start(rvu->ptp, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3245 			  rvu->fwdata->ptp_ext_tstamp);
3246 
3247 	return 0;
3248 err_dl:
3249 	rvu_unregister_dl(rvu);
3250 err_irq:
3251 	rvu_unregister_interrupts(rvu);
3252 err_flr:
3253 	rvu_flr_wq_destroy(rvu);
3254 err_mbox:
3255 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3256 err_hwsetup:
3257 	rvu_cgx_exit(rvu);
3258 	rvu_fwdata_exit(rvu);
3259 	rvu_reset_all_blocks(rvu);
3260 	rvu_free_hw_resources(rvu);
3261 	rvu_clear_rvum_blk_revid(rvu);
3262 err_put_ptp:
3263 	ptp_put(rvu->ptp);
3264 err_release_regions:
3265 	pci_release_regions(pdev);
3266 err_disable_device:
3267 	pci_disable_device(pdev);
3268 err_freemem:
3269 	pci_set_drvdata(pdev, NULL);
3270 	devm_kfree(&pdev->dev, rvu->hw);
3271 	devm_kfree(dev, rvu);
3272 	return err;
3273 }
3274 
3275 static void rvu_remove(struct pci_dev *pdev)
3276 {
3277 	struct rvu *rvu = pci_get_drvdata(pdev);
3278 
3279 	rvu_dbg_exit(rvu);
3280 	rvu_unregister_dl(rvu);
3281 	rvu_unregister_interrupts(rvu);
3282 	rvu_flr_wq_destroy(rvu);
3283 	rvu_cgx_exit(rvu);
3284 	rvu_fwdata_exit(rvu);
3285 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3286 	rvu_disable_sriov(rvu);
3287 	rvu_reset_all_blocks(rvu);
3288 	rvu_free_hw_resources(rvu);
3289 	rvu_clear_rvum_blk_revid(rvu);
3290 	ptp_put(rvu->ptp);
3291 	pci_release_regions(pdev);
3292 	pci_disable_device(pdev);
3293 	pci_set_drvdata(pdev, NULL);
3294 
3295 	devm_kfree(&pdev->dev, rvu->hw);
3296 	devm_kfree(&pdev->dev, rvu);
3297 }
3298 
3299 static struct pci_driver rvu_driver = {
3300 	.name = DRV_NAME,
3301 	.id_table = rvu_id_table,
3302 	.probe = rvu_probe,
3303 	.remove = rvu_remove,
3304 };
3305 
3306 static int __init rvu_init_module(void)
3307 {
3308 	int err;
3309 
3310 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3311 
3312 	err = pci_register_driver(&cgx_driver);
3313 	if (err < 0)
3314 		return err;
3315 
3316 	err = pci_register_driver(&ptp_driver);
3317 	if (err < 0)
3318 		goto ptp_err;
3319 
3320 	err =  pci_register_driver(&rvu_driver);
3321 	if (err < 0)
3322 		goto rvu_err;
3323 
3324 	return 0;
3325 rvu_err:
3326 	pci_unregister_driver(&ptp_driver);
3327 ptp_err:
3328 	pci_unregister_driver(&cgx_driver);
3329 
3330 	return err;
3331 }
3332 
3333 static void __exit rvu_cleanup_module(void)
3334 {
3335 	pci_unregister_driver(&rvu_driver);
3336 	pci_unregister_driver(&ptp_driver);
3337 	pci_unregister_driver(&cgx_driver);
3338 }
3339 
3340 module_init(rvu_init_module);
3341 module_exit(rvu_cleanup_module);
3342