1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/pci.h>
16 #include <linux/sysfs.h>
17 
18 #include "cgx.h"
19 #include "rvu.h"
20 #include "rvu_reg.h"
21 #include "ptp.h"
22 
23 #include "rvu_trace.h"
24 
25 #define DRV_NAME	"rvu_af"
26 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
27 
28 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
29 
30 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31 				struct rvu_block *block, int lf);
32 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
33 				  struct rvu_block *block, int lf);
34 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
35 
36 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
37 			 int type, int num,
38 			 void (mbox_handler)(struct work_struct *),
39 			 void (mbox_up_handler)(struct work_struct *));
40 enum {
41 	TYPE_AFVF,
42 	TYPE_AFPF,
43 };
44 
45 /* Supported devices */
46 static const struct pci_device_id rvu_id_table[] = {
47 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
48 	{ 0, }  /* end of table */
49 };
50 
51 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
52 MODULE_DESCRIPTION(DRV_STRING);
53 MODULE_LICENSE("GPL v2");
54 MODULE_DEVICE_TABLE(pci, rvu_id_table);
55 
56 static char *mkex_profile; /* MKEX profile name */
57 module_param(mkex_profile, charp, 0000);
58 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
59 
60 static char *kpu_profile; /* KPU profile name */
61 module_param(kpu_profile, charp, 0000);
62 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
63 
64 static void rvu_setup_hw_capabilities(struct rvu *rvu)
65 {
66 	struct rvu_hwinfo *hw = rvu->hw;
67 
68 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
69 	hw->cap.nix_fixed_txschq_mapping = false;
70 	hw->cap.nix_shaping = true;
71 	hw->cap.nix_tx_link_bp = true;
72 	hw->cap.nix_rx_multicast = true;
73 	hw->rvu = rvu;
74 
75 	if (is_rvu_96xx_B0(rvu)) {
76 		hw->cap.nix_fixed_txschq_mapping = true;
77 		hw->cap.nix_txsch_per_cgx_lmac = 4;
78 		hw->cap.nix_txsch_per_lbk_lmac = 132;
79 		hw->cap.nix_txsch_per_sdp_lmac = 76;
80 		hw->cap.nix_shaping = false;
81 		hw->cap.nix_tx_link_bp = false;
82 		if (is_rvu_96xx_A0(rvu))
83 			hw->cap.nix_rx_multicast = false;
84 	}
85 
86 	if (!is_rvu_otx2(rvu))
87 		hw->cap.per_pf_mbox_regs = true;
88 }
89 
90 /* Poll a RVU block's register 'offset', for a 'zero'
91  * or 'nonzero' at bits specified by 'mask'
92  */
93 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
94 {
95 	unsigned long timeout = jiffies + usecs_to_jiffies(10000);
96 	void __iomem *reg;
97 	u64 reg_val;
98 
99 	reg = rvu->afreg_base + ((block << 28) | offset);
100 again:
101 	reg_val = readq(reg);
102 	if (zero && !(reg_val & mask))
103 		return 0;
104 	if (!zero && (reg_val & mask))
105 		return 0;
106 	if (time_before(jiffies, timeout)) {
107 		usleep_range(1, 5);
108 		goto again;
109 	}
110 	return -EBUSY;
111 }
112 
113 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
114 {
115 	int id;
116 
117 	if (!rsrc->bmap)
118 		return -EINVAL;
119 
120 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
121 	if (id >= rsrc->max)
122 		return -ENOSPC;
123 
124 	__set_bit(id, rsrc->bmap);
125 
126 	return id;
127 }
128 
129 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
130 {
131 	int start;
132 
133 	if (!rsrc->bmap)
134 		return -EINVAL;
135 
136 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
137 	if (start >= rsrc->max)
138 		return -ENOSPC;
139 
140 	bitmap_set(rsrc->bmap, start, nrsrc);
141 	return start;
142 }
143 
144 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
145 {
146 	if (!rsrc->bmap)
147 		return;
148 	if (start >= rsrc->max)
149 		return;
150 
151 	bitmap_clear(rsrc->bmap, start, nrsrc);
152 }
153 
154 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
155 {
156 	int start;
157 
158 	if (!rsrc->bmap)
159 		return false;
160 
161 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
162 	if (start >= rsrc->max)
163 		return false;
164 
165 	return true;
166 }
167 
168 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
169 {
170 	if (!rsrc->bmap)
171 		return;
172 
173 	__clear_bit(id, rsrc->bmap);
174 }
175 
176 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
177 {
178 	int used;
179 
180 	if (!rsrc->bmap)
181 		return 0;
182 
183 	used = bitmap_weight(rsrc->bmap, rsrc->max);
184 	return (rsrc->max - used);
185 }
186 
187 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
188 {
189 	if (!rsrc->bmap)
190 		return false;
191 
192 	return !test_bit(id, rsrc->bmap);
193 }
194 
195 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
196 {
197 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
198 			     sizeof(long), GFP_KERNEL);
199 	if (!rsrc->bmap)
200 		return -ENOMEM;
201 	return 0;
202 }
203 
204 /* Get block LF's HW index from a PF_FUNC's block slot number */
205 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
206 {
207 	u16 match = 0;
208 	int lf;
209 
210 	mutex_lock(&rvu->rsrc_lock);
211 	for (lf = 0; lf < block->lf.max; lf++) {
212 		if (block->fn_map[lf] == pcifunc) {
213 			if (slot == match) {
214 				mutex_unlock(&rvu->rsrc_lock);
215 				return lf;
216 			}
217 			match++;
218 		}
219 	}
220 	mutex_unlock(&rvu->rsrc_lock);
221 	return -ENODEV;
222 }
223 
224 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
225  * Some silicon variants of OcteonTX2 supports
226  * multiple blocks of same type.
227  *
228  * @pcifunc has to be zero when no LF is yet attached.
229  *
230  * For a pcifunc if LFs are attached from multiple blocks of same type, then
231  * return blkaddr of first encountered block.
232  */
233 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
234 {
235 	int devnum, blkaddr = -ENODEV;
236 	u64 cfg, reg;
237 	bool is_pf;
238 
239 	switch (blktype) {
240 	case BLKTYPE_NPC:
241 		blkaddr = BLKADDR_NPC;
242 		goto exit;
243 	case BLKTYPE_NPA:
244 		blkaddr = BLKADDR_NPA;
245 		goto exit;
246 	case BLKTYPE_NIX:
247 		/* For now assume NIX0 */
248 		if (!pcifunc) {
249 			blkaddr = BLKADDR_NIX0;
250 			goto exit;
251 		}
252 		break;
253 	case BLKTYPE_SSO:
254 		blkaddr = BLKADDR_SSO;
255 		goto exit;
256 	case BLKTYPE_SSOW:
257 		blkaddr = BLKADDR_SSOW;
258 		goto exit;
259 	case BLKTYPE_TIM:
260 		blkaddr = BLKADDR_TIM;
261 		goto exit;
262 	case BLKTYPE_CPT:
263 		/* For now assume CPT0 */
264 		if (!pcifunc) {
265 			blkaddr = BLKADDR_CPT0;
266 			goto exit;
267 		}
268 		break;
269 	}
270 
271 	/* Check if this is a RVU PF or VF */
272 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
273 		is_pf = false;
274 		devnum = rvu_get_hwvf(rvu, pcifunc);
275 	} else {
276 		is_pf = true;
277 		devnum = rvu_get_pf(pcifunc);
278 	}
279 
280 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
281 	 * 'BLKADDR_NIX1'.
282 	 */
283 	if (blktype == BLKTYPE_NIX) {
284 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
285 			RVU_PRIV_HWVFX_NIXX_CFG(0);
286 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
287 		if (cfg) {
288 			blkaddr = BLKADDR_NIX0;
289 			goto exit;
290 		}
291 
292 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
293 			RVU_PRIV_HWVFX_NIXX_CFG(1);
294 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
295 		if (cfg)
296 			blkaddr = BLKADDR_NIX1;
297 	}
298 
299 	if (blktype == BLKTYPE_CPT) {
300 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
301 			RVU_PRIV_HWVFX_CPTX_CFG(0);
302 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
303 		if (cfg) {
304 			blkaddr = BLKADDR_CPT0;
305 			goto exit;
306 		}
307 
308 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
309 			RVU_PRIV_HWVFX_CPTX_CFG(1);
310 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
311 		if (cfg)
312 			blkaddr = BLKADDR_CPT1;
313 	}
314 
315 exit:
316 	if (is_block_implemented(rvu->hw, blkaddr))
317 		return blkaddr;
318 	return -ENODEV;
319 }
320 
321 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
322 				struct rvu_block *block, u16 pcifunc,
323 				u16 lf, bool attach)
324 {
325 	int devnum, num_lfs = 0;
326 	bool is_pf;
327 	u64 reg;
328 
329 	if (lf >= block->lf.max) {
330 		dev_err(&rvu->pdev->dev,
331 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
332 			__func__, lf, block->name, block->lf.max);
333 		return;
334 	}
335 
336 	/* Check if this is for a RVU PF or VF */
337 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
338 		is_pf = false;
339 		devnum = rvu_get_hwvf(rvu, pcifunc);
340 	} else {
341 		is_pf = true;
342 		devnum = rvu_get_pf(pcifunc);
343 	}
344 
345 	block->fn_map[lf] = attach ? pcifunc : 0;
346 
347 	switch (block->addr) {
348 	case BLKADDR_NPA:
349 		pfvf->npalf = attach ? true : false;
350 		num_lfs = pfvf->npalf;
351 		break;
352 	case BLKADDR_NIX0:
353 	case BLKADDR_NIX1:
354 		pfvf->nixlf = attach ? true : false;
355 		num_lfs = pfvf->nixlf;
356 		break;
357 	case BLKADDR_SSO:
358 		attach ? pfvf->sso++ : pfvf->sso--;
359 		num_lfs = pfvf->sso;
360 		break;
361 	case BLKADDR_SSOW:
362 		attach ? pfvf->ssow++ : pfvf->ssow--;
363 		num_lfs = pfvf->ssow;
364 		break;
365 	case BLKADDR_TIM:
366 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
367 		num_lfs = pfvf->timlfs;
368 		break;
369 	case BLKADDR_CPT0:
370 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
371 		num_lfs = pfvf->cptlfs;
372 		break;
373 	case BLKADDR_CPT1:
374 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
375 		num_lfs = pfvf->cpt1_lfs;
376 		break;
377 	}
378 
379 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
380 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
381 }
382 
383 inline int rvu_get_pf(u16 pcifunc)
384 {
385 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
386 }
387 
388 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
389 {
390 	u64 cfg;
391 
392 	/* Get numVFs attached to this PF and first HWVF */
393 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
394 	if (numvfs)
395 		*numvfs = (cfg >> 12) & 0xFF;
396 	if (hwvf)
397 		*hwvf = cfg & 0xFFF;
398 }
399 
400 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
401 {
402 	int pf, func;
403 	u64 cfg;
404 
405 	pf = rvu_get_pf(pcifunc);
406 	func = pcifunc & RVU_PFVF_FUNC_MASK;
407 
408 	/* Get first HWVF attached to this PF */
409 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
410 
411 	return ((cfg & 0xFFF) + func - 1);
412 }
413 
414 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
415 {
416 	/* Check if it is a PF or VF */
417 	if (pcifunc & RVU_PFVF_FUNC_MASK)
418 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
419 	else
420 		return &rvu->pf[rvu_get_pf(pcifunc)];
421 }
422 
423 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
424 {
425 	int pf, vf, nvfs;
426 	u64 cfg;
427 
428 	pf = rvu_get_pf(pcifunc);
429 	if (pf >= rvu->hw->total_pfs)
430 		return false;
431 
432 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
433 		return true;
434 
435 	/* Check if VF is within number of VFs attached to this PF */
436 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
437 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
438 	nvfs = (cfg >> 12) & 0xFF;
439 	if (vf >= nvfs)
440 		return false;
441 
442 	return true;
443 }
444 
445 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
446 {
447 	struct rvu_block *block;
448 
449 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
450 		return false;
451 
452 	block = &hw->block[blkaddr];
453 	return block->implemented;
454 }
455 
456 static void rvu_check_block_implemented(struct rvu *rvu)
457 {
458 	struct rvu_hwinfo *hw = rvu->hw;
459 	struct rvu_block *block;
460 	int blkid;
461 	u64 cfg;
462 
463 	/* For each block check if 'implemented' bit is set */
464 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
465 		block = &hw->block[blkid];
466 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
467 		if (cfg & BIT_ULL(11))
468 			block->implemented = true;
469 	}
470 }
471 
472 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
473 {
474 	rvu_write64(rvu, BLKADDR_RVUM,
475 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
476 		    RVU_BLK_RVUM_REVID);
477 }
478 
479 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
480 {
481 	rvu_write64(rvu, BLKADDR_RVUM,
482 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
483 }
484 
485 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
486 {
487 	int err;
488 
489 	if (!block->implemented)
490 		return 0;
491 
492 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
493 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
494 			   true);
495 	return err;
496 }
497 
498 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
499 {
500 	struct rvu_block *block = &rvu->hw->block[blkaddr];
501 
502 	if (!block->implemented)
503 		return;
504 
505 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
506 	rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
507 }
508 
509 static void rvu_reset_all_blocks(struct rvu *rvu)
510 {
511 	/* Do a HW reset of all RVU blocks */
512 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
513 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
514 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
515 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
516 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
517 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
518 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
519 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
520 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
521 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
522 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
523 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
524 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
525 }
526 
527 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
528 {
529 	struct rvu_pfvf *pfvf;
530 	u64 cfg;
531 	int lf;
532 
533 	for (lf = 0; lf < block->lf.max; lf++) {
534 		cfg = rvu_read64(rvu, block->addr,
535 				 block->lfcfg_reg | (lf << block->lfshift));
536 		if (!(cfg & BIT_ULL(63)))
537 			continue;
538 
539 		/* Set this resource as being used */
540 		__set_bit(lf, block->lf.bmap);
541 
542 		/* Get, to whom this LF is attached */
543 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
544 		rvu_update_rsrc_map(rvu, pfvf, block,
545 				    (cfg >> 8) & 0xFFFF, lf, true);
546 
547 		/* Set start MSIX vector for this LF within this PF/VF */
548 		rvu_set_msix_offset(rvu, pfvf, block, lf);
549 	}
550 }
551 
552 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
553 {
554 	int min_vecs;
555 
556 	if (!vf)
557 		goto check_pf;
558 
559 	if (!nvecs) {
560 		dev_warn(rvu->dev,
561 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
562 			 pf, vf - 1, nvecs);
563 	}
564 	return;
565 
566 check_pf:
567 	if (pf == 0)
568 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
569 	else
570 		min_vecs = RVU_PF_INT_VEC_CNT;
571 
572 	if (!(nvecs < min_vecs))
573 		return;
574 	dev_warn(rvu->dev,
575 		 "PF%d is configured with too few vectors, %d, min is %d\n",
576 		 pf, nvecs, min_vecs);
577 }
578 
579 static int rvu_setup_msix_resources(struct rvu *rvu)
580 {
581 	struct rvu_hwinfo *hw = rvu->hw;
582 	int pf, vf, numvfs, hwvf, err;
583 	int nvecs, offset, max_msix;
584 	struct rvu_pfvf *pfvf;
585 	u64 cfg, phy_addr;
586 	dma_addr_t iova;
587 
588 	for (pf = 0; pf < hw->total_pfs; pf++) {
589 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
590 		/* If PF is not enabled, nothing to do */
591 		if (!((cfg >> 20) & 0x01))
592 			continue;
593 
594 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
595 
596 		pfvf = &rvu->pf[pf];
597 		/* Get num of MSIX vectors attached to this PF */
598 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
599 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
600 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
601 
602 		/* Alloc msix bitmap for this PF */
603 		err = rvu_alloc_bitmap(&pfvf->msix);
604 		if (err)
605 			return err;
606 
607 		/* Allocate memory for MSIX vector to RVU block LF mapping */
608 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
609 						sizeof(u16), GFP_KERNEL);
610 		if (!pfvf->msix_lfmap)
611 			return -ENOMEM;
612 
613 		/* For PF0 (AF) firmware will set msix vector offsets for
614 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
615 		 */
616 		if (!pf)
617 			goto setup_vfmsix;
618 
619 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
620 		 * These are allocated on driver init and never freed,
621 		 * so no need to set 'msix_lfmap' for these.
622 		 */
623 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
624 		nvecs = (cfg >> 12) & 0xFF;
625 		cfg &= ~0x7FFULL;
626 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
627 		rvu_write64(rvu, BLKADDR_RVUM,
628 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
629 setup_vfmsix:
630 		/* Alloc msix bitmap for VFs */
631 		for (vf = 0; vf < numvfs; vf++) {
632 			pfvf =  &rvu->hwvf[hwvf + vf];
633 			/* Get num of MSIX vectors attached to this VF */
634 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
635 					 RVU_PRIV_PFX_MSIX_CFG(pf));
636 			pfvf->msix.max = (cfg & 0xFFF) + 1;
637 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
638 
639 			/* Alloc msix bitmap for this VF */
640 			err = rvu_alloc_bitmap(&pfvf->msix);
641 			if (err)
642 				return err;
643 
644 			pfvf->msix_lfmap =
645 				devm_kcalloc(rvu->dev, pfvf->msix.max,
646 					     sizeof(u16), GFP_KERNEL);
647 			if (!pfvf->msix_lfmap)
648 				return -ENOMEM;
649 
650 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
651 			 * These are allocated on driver init and never freed,
652 			 * so no need to set 'msix_lfmap' for these.
653 			 */
654 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
655 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
656 			nvecs = (cfg >> 12) & 0xFF;
657 			cfg &= ~0x7FFULL;
658 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
659 			rvu_write64(rvu, BLKADDR_RVUM,
660 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
661 				    cfg | offset);
662 		}
663 	}
664 
665 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
666 	 * create an IOMMU mapping for the physical address configured by
667 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
668 	 */
669 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
670 	max_msix = cfg & 0xFFFFF;
671 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
672 		phy_addr = rvu->fwdata->msixtr_base;
673 	else
674 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
675 
676 	iova = dma_map_resource(rvu->dev, phy_addr,
677 				max_msix * PCI_MSIX_ENTRY_SIZE,
678 				DMA_BIDIRECTIONAL, 0);
679 
680 	if (dma_mapping_error(rvu->dev, iova))
681 		return -ENOMEM;
682 
683 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
684 	rvu->msix_base_iova = iova;
685 	rvu->msixtr_base_phy = phy_addr;
686 
687 	return 0;
688 }
689 
690 static void rvu_reset_msix(struct rvu *rvu)
691 {
692 	/* Restore msixtr base register */
693 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
694 		    rvu->msixtr_base_phy);
695 }
696 
697 static void rvu_free_hw_resources(struct rvu *rvu)
698 {
699 	struct rvu_hwinfo *hw = rvu->hw;
700 	struct rvu_block *block;
701 	struct rvu_pfvf  *pfvf;
702 	int id, max_msix;
703 	u64 cfg;
704 
705 	rvu_npa_freemem(rvu);
706 	rvu_npc_freemem(rvu);
707 	rvu_nix_freemem(rvu);
708 
709 	/* Free block LF bitmaps */
710 	for (id = 0; id < BLK_COUNT; id++) {
711 		block = &hw->block[id];
712 		kfree(block->lf.bmap);
713 	}
714 
715 	/* Free MSIX bitmaps */
716 	for (id = 0; id < hw->total_pfs; id++) {
717 		pfvf = &rvu->pf[id];
718 		kfree(pfvf->msix.bmap);
719 	}
720 
721 	for (id = 0; id < hw->total_vfs; id++) {
722 		pfvf = &rvu->hwvf[id];
723 		kfree(pfvf->msix.bmap);
724 	}
725 
726 	/* Unmap MSIX vector base IOVA mapping */
727 	if (!rvu->msix_base_iova)
728 		return;
729 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
730 	max_msix = cfg & 0xFFFFF;
731 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
732 			   max_msix * PCI_MSIX_ENTRY_SIZE,
733 			   DMA_BIDIRECTIONAL, 0);
734 
735 	rvu_reset_msix(rvu);
736 	mutex_destroy(&rvu->rsrc_lock);
737 }
738 
739 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
740 {
741 	struct rvu_hwinfo *hw = rvu->hw;
742 	int pf, vf, numvfs, hwvf;
743 	struct rvu_pfvf *pfvf;
744 	u64 *mac;
745 
746 	for (pf = 0; pf < hw->total_pfs; pf++) {
747 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
748 		if (!pf)
749 			goto lbkvf;
750 
751 		if (!is_pf_cgxmapped(rvu, pf))
752 			continue;
753 		/* Assign MAC address to PF */
754 		pfvf = &rvu->pf[pf];
755 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
756 			mac = &rvu->fwdata->pf_macs[pf];
757 			if (*mac)
758 				u64_to_ether_addr(*mac, pfvf->mac_addr);
759 			else
760 				eth_random_addr(pfvf->mac_addr);
761 		} else {
762 			eth_random_addr(pfvf->mac_addr);
763 		}
764 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
765 
766 lbkvf:
767 		/* Assign MAC address to VFs*/
768 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
769 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
770 			pfvf = &rvu->hwvf[hwvf];
771 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
772 				mac = &rvu->fwdata->vf_macs[hwvf];
773 				if (*mac)
774 					u64_to_ether_addr(*mac, pfvf->mac_addr);
775 				else
776 					eth_random_addr(pfvf->mac_addr);
777 			} else {
778 				eth_random_addr(pfvf->mac_addr);
779 			}
780 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
781 		}
782 	}
783 }
784 
785 static int rvu_fwdata_init(struct rvu *rvu)
786 {
787 	u64 fwdbase;
788 	int err;
789 
790 	/* Get firmware data base address */
791 	err = cgx_get_fwdata_base(&fwdbase);
792 	if (err)
793 		goto fail;
794 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
795 	if (!rvu->fwdata)
796 		goto fail;
797 	if (!is_rvu_fwdata_valid(rvu)) {
798 		dev_err(rvu->dev,
799 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
800 		iounmap(rvu->fwdata);
801 		rvu->fwdata = NULL;
802 		return -EINVAL;
803 	}
804 	return 0;
805 fail:
806 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
807 	return -EIO;
808 }
809 
810 static void rvu_fwdata_exit(struct rvu *rvu)
811 {
812 	if (rvu->fwdata)
813 		iounmap(rvu->fwdata);
814 }
815 
816 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
817 {
818 	struct rvu_hwinfo *hw = rvu->hw;
819 	struct rvu_block *block;
820 	int blkid;
821 	u64 cfg;
822 
823 	/* Init NIX LF's bitmap */
824 	block = &hw->block[blkaddr];
825 	if (!block->implemented)
826 		return 0;
827 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
828 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
829 	block->lf.max = cfg & 0xFFF;
830 	block->addr = blkaddr;
831 	block->type = BLKTYPE_NIX;
832 	block->lfshift = 8;
833 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
834 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
835 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
836 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
837 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
838 	block->lfreset_reg = NIX_AF_LF_RST;
839 	sprintf(block->name, "NIX%d", blkid);
840 	rvu->nix_blkaddr[blkid] = blkaddr;
841 	return rvu_alloc_bitmap(&block->lf);
842 }
843 
844 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
845 {
846 	struct rvu_hwinfo *hw = rvu->hw;
847 	struct rvu_block *block;
848 	int blkid;
849 	u64 cfg;
850 
851 	/* Init CPT LF's bitmap */
852 	block = &hw->block[blkaddr];
853 	if (!block->implemented)
854 		return 0;
855 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
856 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
857 	block->lf.max = cfg & 0xFF;
858 	block->addr = blkaddr;
859 	block->type = BLKTYPE_CPT;
860 	block->multislot = true;
861 	block->lfshift = 3;
862 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
863 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
864 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
865 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
866 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
867 	block->lfreset_reg = CPT_AF_LF_RST;
868 	sprintf(block->name, "CPT%d", blkid);
869 	return rvu_alloc_bitmap(&block->lf);
870 }
871 
872 static void rvu_get_lbk_bufsize(struct rvu *rvu)
873 {
874 	struct pci_dev *pdev = NULL;
875 	void __iomem *base;
876 	u64 lbk_const;
877 
878 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
879 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
880 	if (!pdev)
881 		return;
882 
883 	base = pci_ioremap_bar(pdev, 0);
884 	if (!base)
885 		goto err_put;
886 
887 	lbk_const = readq(base + LBK_CONST);
888 
889 	/* cache fifo size */
890 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
891 
892 	iounmap(base);
893 err_put:
894 	pci_dev_put(pdev);
895 }
896 
897 static int rvu_setup_hw_resources(struct rvu *rvu)
898 {
899 	struct rvu_hwinfo *hw = rvu->hw;
900 	struct rvu_block *block;
901 	int blkid, err;
902 	u64 cfg;
903 
904 	/* Get HW supported max RVU PF & VF count */
905 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
906 	hw->total_pfs = (cfg >> 32) & 0xFF;
907 	hw->total_vfs = (cfg >> 20) & 0xFFF;
908 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
909 
910 	/* Init NPA LF's bitmap */
911 	block = &hw->block[BLKADDR_NPA];
912 	if (!block->implemented)
913 		goto nix;
914 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
915 	block->lf.max = (cfg >> 16) & 0xFFF;
916 	block->addr = BLKADDR_NPA;
917 	block->type = BLKTYPE_NPA;
918 	block->lfshift = 8;
919 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
920 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
921 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
922 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
923 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
924 	block->lfreset_reg = NPA_AF_LF_RST;
925 	sprintf(block->name, "NPA");
926 	err = rvu_alloc_bitmap(&block->lf);
927 	if (err)
928 		return err;
929 
930 nix:
931 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
932 	if (err)
933 		return err;
934 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
935 	if (err)
936 		return err;
937 
938 	/* Init SSO group's bitmap */
939 	block = &hw->block[BLKADDR_SSO];
940 	if (!block->implemented)
941 		goto ssow;
942 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
943 	block->lf.max = cfg & 0xFFFF;
944 	block->addr = BLKADDR_SSO;
945 	block->type = BLKTYPE_SSO;
946 	block->multislot = true;
947 	block->lfshift = 3;
948 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
949 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
950 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
951 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
952 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
953 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
954 	sprintf(block->name, "SSO GROUP");
955 	err = rvu_alloc_bitmap(&block->lf);
956 	if (err)
957 		return err;
958 
959 ssow:
960 	/* Init SSO workslot's bitmap */
961 	block = &hw->block[BLKADDR_SSOW];
962 	if (!block->implemented)
963 		goto tim;
964 	block->lf.max = (cfg >> 56) & 0xFF;
965 	block->addr = BLKADDR_SSOW;
966 	block->type = BLKTYPE_SSOW;
967 	block->multislot = true;
968 	block->lfshift = 3;
969 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
970 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
971 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
972 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
973 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
974 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
975 	sprintf(block->name, "SSOWS");
976 	err = rvu_alloc_bitmap(&block->lf);
977 	if (err)
978 		return err;
979 
980 tim:
981 	/* Init TIM LF's bitmap */
982 	block = &hw->block[BLKADDR_TIM];
983 	if (!block->implemented)
984 		goto cpt;
985 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
986 	block->lf.max = cfg & 0xFFFF;
987 	block->addr = BLKADDR_TIM;
988 	block->type = BLKTYPE_TIM;
989 	block->multislot = true;
990 	block->lfshift = 3;
991 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
992 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
993 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
994 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
995 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
996 	block->lfreset_reg = TIM_AF_LF_RST;
997 	sprintf(block->name, "TIM");
998 	err = rvu_alloc_bitmap(&block->lf);
999 	if (err)
1000 		return err;
1001 
1002 cpt:
1003 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1004 	if (err)
1005 		return err;
1006 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1007 	if (err)
1008 		return err;
1009 
1010 	/* Allocate memory for PFVF data */
1011 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1012 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1013 	if (!rvu->pf)
1014 		return -ENOMEM;
1015 
1016 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1017 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1018 	if (!rvu->hwvf)
1019 		return -ENOMEM;
1020 
1021 	mutex_init(&rvu->rsrc_lock);
1022 
1023 	rvu_fwdata_init(rvu);
1024 
1025 	err = rvu_setup_msix_resources(rvu);
1026 	if (err)
1027 		return err;
1028 
1029 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1030 		block = &hw->block[blkid];
1031 		if (!block->lf.bmap)
1032 			continue;
1033 
1034 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1035 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1036 					     sizeof(u16), GFP_KERNEL);
1037 		if (!block->fn_map) {
1038 			err = -ENOMEM;
1039 			goto msix_err;
1040 		}
1041 
1042 		/* Scan all blocks to check if low level firmware has
1043 		 * already provisioned any of the resources to a PF/VF.
1044 		 */
1045 		rvu_scan_block(rvu, block);
1046 	}
1047 
1048 	err = rvu_set_channels_base(rvu);
1049 	if (err)
1050 		goto msix_err;
1051 
1052 	err = rvu_npc_init(rvu);
1053 	if (err)
1054 		goto npc_err;
1055 
1056 	err = rvu_cgx_init(rvu);
1057 	if (err)
1058 		goto cgx_err;
1059 
1060 	/* Assign MACs for CGX mapped functions */
1061 	rvu_setup_pfvf_macaddress(rvu);
1062 
1063 	err = rvu_npa_init(rvu);
1064 	if (err)
1065 		goto npa_err;
1066 
1067 	rvu_get_lbk_bufsize(rvu);
1068 
1069 	err = rvu_nix_init(rvu);
1070 	if (err)
1071 		goto nix_err;
1072 
1073 	rvu_program_channels(rvu);
1074 
1075 	return 0;
1076 
1077 nix_err:
1078 	rvu_nix_freemem(rvu);
1079 npa_err:
1080 	rvu_npa_freemem(rvu);
1081 cgx_err:
1082 	rvu_cgx_exit(rvu);
1083 npc_err:
1084 	rvu_npc_freemem(rvu);
1085 	rvu_fwdata_exit(rvu);
1086 msix_err:
1087 	rvu_reset_msix(rvu);
1088 	return err;
1089 }
1090 
1091 /* NPA and NIX admin queue APIs */
1092 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1093 {
1094 	if (!aq)
1095 		return;
1096 
1097 	qmem_free(rvu->dev, aq->inst);
1098 	qmem_free(rvu->dev, aq->res);
1099 	devm_kfree(rvu->dev, aq);
1100 }
1101 
1102 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1103 		 int qsize, int inst_size, int res_size)
1104 {
1105 	struct admin_queue *aq;
1106 	int err;
1107 
1108 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1109 	if (!*ad_queue)
1110 		return -ENOMEM;
1111 	aq = *ad_queue;
1112 
1113 	/* Alloc memory for instructions i.e AQ */
1114 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1115 	if (err) {
1116 		devm_kfree(rvu->dev, aq);
1117 		return err;
1118 	}
1119 
1120 	/* Alloc memory for results */
1121 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1122 	if (err) {
1123 		rvu_aq_free(rvu, aq);
1124 		return err;
1125 	}
1126 
1127 	spin_lock_init(&aq->lock);
1128 	return 0;
1129 }
1130 
1131 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1132 			   struct ready_msg_rsp *rsp)
1133 {
1134 	if (rvu->fwdata) {
1135 		rsp->rclk_freq = rvu->fwdata->rclk;
1136 		rsp->sclk_freq = rvu->fwdata->sclk;
1137 	}
1138 	return 0;
1139 }
1140 
1141 /* Get current count of a RVU block's LF/slots
1142  * provisioned to a given RVU func.
1143  */
1144 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1145 {
1146 	switch (blkaddr) {
1147 	case BLKADDR_NPA:
1148 		return pfvf->npalf ? 1 : 0;
1149 	case BLKADDR_NIX0:
1150 	case BLKADDR_NIX1:
1151 		return pfvf->nixlf ? 1 : 0;
1152 	case BLKADDR_SSO:
1153 		return pfvf->sso;
1154 	case BLKADDR_SSOW:
1155 		return pfvf->ssow;
1156 	case BLKADDR_TIM:
1157 		return pfvf->timlfs;
1158 	case BLKADDR_CPT0:
1159 		return pfvf->cptlfs;
1160 	case BLKADDR_CPT1:
1161 		return pfvf->cpt1_lfs;
1162 	}
1163 	return 0;
1164 }
1165 
1166 /* Return true if LFs of block type are attached to pcifunc */
1167 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1168 {
1169 	switch (blktype) {
1170 	case BLKTYPE_NPA:
1171 		return pfvf->npalf ? 1 : 0;
1172 	case BLKTYPE_NIX:
1173 		return pfvf->nixlf ? 1 : 0;
1174 	case BLKTYPE_SSO:
1175 		return !!pfvf->sso;
1176 	case BLKTYPE_SSOW:
1177 		return !!pfvf->ssow;
1178 	case BLKTYPE_TIM:
1179 		return !!pfvf->timlfs;
1180 	case BLKTYPE_CPT:
1181 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1182 	}
1183 
1184 	return false;
1185 }
1186 
1187 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1188 {
1189 	struct rvu_pfvf *pfvf;
1190 
1191 	if (!is_pf_func_valid(rvu, pcifunc))
1192 		return false;
1193 
1194 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1195 
1196 	/* Check if this PFFUNC has a LF of type blktype attached */
1197 	if (!is_blktype_attached(pfvf, blktype))
1198 		return false;
1199 
1200 	return true;
1201 }
1202 
1203 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1204 			   int pcifunc, int slot)
1205 {
1206 	u64 val;
1207 
1208 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1209 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1210 	/* Wait for the lookup to finish */
1211 	/* TODO: put some timeout here */
1212 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1213 		;
1214 
1215 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1216 
1217 	/* Check LF valid bit */
1218 	if (!(val & (1ULL << 12)))
1219 		return -1;
1220 
1221 	return (val & 0xFFF);
1222 }
1223 
1224 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1225 {
1226 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1227 	struct rvu_hwinfo *hw = rvu->hw;
1228 	struct rvu_block *block;
1229 	int slot, lf, num_lfs;
1230 	int blkaddr;
1231 
1232 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1233 	if (blkaddr < 0)
1234 		return;
1235 
1236 	if (blktype == BLKTYPE_NIX)
1237 		rvu_nix_reset_mac(pfvf, pcifunc);
1238 
1239 	block = &hw->block[blkaddr];
1240 
1241 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1242 	if (!num_lfs)
1243 		return;
1244 
1245 	for (slot = 0; slot < num_lfs; slot++) {
1246 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1247 		if (lf < 0) /* This should never happen */
1248 			continue;
1249 
1250 		/* Disable the LF */
1251 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1252 			    (lf << block->lfshift), 0x00ULL);
1253 
1254 		/* Update SW maintained mapping info as well */
1255 		rvu_update_rsrc_map(rvu, pfvf, block,
1256 				    pcifunc, lf, false);
1257 
1258 		/* Free the resource */
1259 		rvu_free_rsrc(&block->lf, lf);
1260 
1261 		/* Clear MSIX vector offset for this LF */
1262 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1263 	}
1264 }
1265 
1266 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1267 			    u16 pcifunc)
1268 {
1269 	struct rvu_hwinfo *hw = rvu->hw;
1270 	bool detach_all = true;
1271 	struct rvu_block *block;
1272 	int blkid;
1273 
1274 	mutex_lock(&rvu->rsrc_lock);
1275 
1276 	/* Check for partial resource detach */
1277 	if (detach && detach->partial)
1278 		detach_all = false;
1279 
1280 	/* Check for RVU block's LFs attached to this func,
1281 	 * if so, detach them.
1282 	 */
1283 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1284 		block = &hw->block[blkid];
1285 		if (!block->lf.bmap)
1286 			continue;
1287 		if (!detach_all && detach) {
1288 			if (blkid == BLKADDR_NPA && !detach->npalf)
1289 				continue;
1290 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1291 				continue;
1292 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1293 				continue;
1294 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1295 				continue;
1296 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1297 				continue;
1298 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1299 				continue;
1300 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1301 				continue;
1302 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1303 				continue;
1304 		}
1305 		rvu_detach_block(rvu, pcifunc, block->type);
1306 	}
1307 
1308 	mutex_unlock(&rvu->rsrc_lock);
1309 	return 0;
1310 }
1311 
1312 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1313 				      struct rsrc_detach *detach,
1314 				      struct msg_rsp *rsp)
1315 {
1316 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1317 }
1318 
1319 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1320 {
1321 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1322 	int blkaddr = BLKADDR_NIX0, vf;
1323 	struct rvu_pfvf *pf;
1324 
1325 	/* All CGX mapped PFs are set with assigned NIX block during init */
1326 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1327 		pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1328 		blkaddr = pf->nix_blkaddr;
1329 	} else if (is_afvf(pcifunc)) {
1330 		vf = pcifunc - 1;
1331 		/* Assign NIX based on VF number. All even numbered VFs get
1332 		 * NIX0 and odd numbered gets NIX1
1333 		 */
1334 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1335 		/* NIX1 is not present on all silicons */
1336 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1337 			blkaddr = BLKADDR_NIX0;
1338 	}
1339 
1340 	switch (blkaddr) {
1341 	case BLKADDR_NIX1:
1342 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1343 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1344 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1345 		break;
1346 	case BLKADDR_NIX0:
1347 	default:
1348 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1349 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1350 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1351 		break;
1352 	}
1353 
1354 	return pfvf->nix_blkaddr;
1355 }
1356 
1357 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1358 				  u16 pcifunc, struct rsrc_attach *attach)
1359 {
1360 	int blkaddr;
1361 
1362 	switch (blktype) {
1363 	case BLKTYPE_NIX:
1364 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1365 		break;
1366 	case BLKTYPE_CPT:
1367 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1368 			return rvu_get_blkaddr(rvu, blktype, 0);
1369 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1370 			  BLKADDR_CPT0;
1371 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1372 			return -ENODEV;
1373 		break;
1374 	default:
1375 		return rvu_get_blkaddr(rvu, blktype, 0);
1376 	}
1377 
1378 	if (is_block_implemented(rvu->hw, blkaddr))
1379 		return blkaddr;
1380 
1381 	return -ENODEV;
1382 }
1383 
1384 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1385 			     int num_lfs, struct rsrc_attach *attach)
1386 {
1387 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1388 	struct rvu_hwinfo *hw = rvu->hw;
1389 	struct rvu_block *block;
1390 	int slot, lf;
1391 	int blkaddr;
1392 	u64 cfg;
1393 
1394 	if (!num_lfs)
1395 		return;
1396 
1397 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1398 	if (blkaddr < 0)
1399 		return;
1400 
1401 	block = &hw->block[blkaddr];
1402 	if (!block->lf.bmap)
1403 		return;
1404 
1405 	for (slot = 0; slot < num_lfs; slot++) {
1406 		/* Allocate the resource */
1407 		lf = rvu_alloc_rsrc(&block->lf);
1408 		if (lf < 0)
1409 			return;
1410 
1411 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1412 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1413 			    (lf << block->lfshift), cfg);
1414 		rvu_update_rsrc_map(rvu, pfvf, block,
1415 				    pcifunc, lf, true);
1416 
1417 		/* Set start MSIX vector for this LF within this PF/VF */
1418 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1419 	}
1420 }
1421 
1422 static int rvu_check_rsrc_availability(struct rvu *rvu,
1423 				       struct rsrc_attach *req, u16 pcifunc)
1424 {
1425 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1426 	int free_lfs, mappedlfs, blkaddr;
1427 	struct rvu_hwinfo *hw = rvu->hw;
1428 	struct rvu_block *block;
1429 
1430 	/* Only one NPA LF can be attached */
1431 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1432 		block = &hw->block[BLKADDR_NPA];
1433 		free_lfs = rvu_rsrc_free_count(&block->lf);
1434 		if (!free_lfs)
1435 			goto fail;
1436 	} else if (req->npalf) {
1437 		dev_err(&rvu->pdev->dev,
1438 			"Func 0x%x: Invalid req, already has NPA\n",
1439 			 pcifunc);
1440 		return -EINVAL;
1441 	}
1442 
1443 	/* Only one NIX LF can be attached */
1444 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1445 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1446 						 pcifunc, req);
1447 		if (blkaddr < 0)
1448 			return blkaddr;
1449 		block = &hw->block[blkaddr];
1450 		free_lfs = rvu_rsrc_free_count(&block->lf);
1451 		if (!free_lfs)
1452 			goto fail;
1453 	} else if (req->nixlf) {
1454 		dev_err(&rvu->pdev->dev,
1455 			"Func 0x%x: Invalid req, already has NIX\n",
1456 			pcifunc);
1457 		return -EINVAL;
1458 	}
1459 
1460 	if (req->sso) {
1461 		block = &hw->block[BLKADDR_SSO];
1462 		/* Is request within limits ? */
1463 		if (req->sso > block->lf.max) {
1464 			dev_err(&rvu->pdev->dev,
1465 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1466 				 pcifunc, req->sso, block->lf.max);
1467 			return -EINVAL;
1468 		}
1469 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1470 		free_lfs = rvu_rsrc_free_count(&block->lf);
1471 		/* Check if additional resources are available */
1472 		if (req->sso > mappedlfs &&
1473 		    ((req->sso - mappedlfs) > free_lfs))
1474 			goto fail;
1475 	}
1476 
1477 	if (req->ssow) {
1478 		block = &hw->block[BLKADDR_SSOW];
1479 		if (req->ssow > block->lf.max) {
1480 			dev_err(&rvu->pdev->dev,
1481 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1482 				 pcifunc, req->sso, block->lf.max);
1483 			return -EINVAL;
1484 		}
1485 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1486 		free_lfs = rvu_rsrc_free_count(&block->lf);
1487 		if (req->ssow > mappedlfs &&
1488 		    ((req->ssow - mappedlfs) > free_lfs))
1489 			goto fail;
1490 	}
1491 
1492 	if (req->timlfs) {
1493 		block = &hw->block[BLKADDR_TIM];
1494 		if (req->timlfs > block->lf.max) {
1495 			dev_err(&rvu->pdev->dev,
1496 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1497 				 pcifunc, req->timlfs, block->lf.max);
1498 			return -EINVAL;
1499 		}
1500 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1501 		free_lfs = rvu_rsrc_free_count(&block->lf);
1502 		if (req->timlfs > mappedlfs &&
1503 		    ((req->timlfs - mappedlfs) > free_lfs))
1504 			goto fail;
1505 	}
1506 
1507 	if (req->cptlfs) {
1508 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1509 						 pcifunc, req);
1510 		if (blkaddr < 0)
1511 			return blkaddr;
1512 		block = &hw->block[blkaddr];
1513 		if (req->cptlfs > block->lf.max) {
1514 			dev_err(&rvu->pdev->dev,
1515 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1516 				 pcifunc, req->cptlfs, block->lf.max);
1517 			return -EINVAL;
1518 		}
1519 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1520 		free_lfs = rvu_rsrc_free_count(&block->lf);
1521 		if (req->cptlfs > mappedlfs &&
1522 		    ((req->cptlfs - mappedlfs) > free_lfs))
1523 			goto fail;
1524 	}
1525 
1526 	return 0;
1527 
1528 fail:
1529 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1530 	return -ENOSPC;
1531 }
1532 
1533 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1534 				       struct rsrc_attach *attach)
1535 {
1536 	int blkaddr, num_lfs;
1537 
1538 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1539 					 attach->hdr.pcifunc, attach);
1540 	if (blkaddr < 0)
1541 		return false;
1542 
1543 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1544 					blkaddr);
1545 	/* Requester already has LFs from given block ? */
1546 	return !!num_lfs;
1547 }
1548 
1549 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1550 				      struct rsrc_attach *attach,
1551 				      struct msg_rsp *rsp)
1552 {
1553 	u16 pcifunc = attach->hdr.pcifunc;
1554 	int err;
1555 
1556 	/* If first request, detach all existing attached resources */
1557 	if (!attach->modify)
1558 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1559 
1560 	mutex_lock(&rvu->rsrc_lock);
1561 
1562 	/* Check if the request can be accommodated */
1563 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1564 	if (err)
1565 		goto exit;
1566 
1567 	/* Now attach the requested resources */
1568 	if (attach->npalf)
1569 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1570 
1571 	if (attach->nixlf)
1572 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1573 
1574 	if (attach->sso) {
1575 		/* RVU func doesn't know which exact LF or slot is attached
1576 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1577 		 * request, simply detach all existing attached LFs/slots
1578 		 * and attach a fresh.
1579 		 */
1580 		if (attach->modify)
1581 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1582 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1583 				 attach->sso, attach);
1584 	}
1585 
1586 	if (attach->ssow) {
1587 		if (attach->modify)
1588 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1589 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1590 				 attach->ssow, attach);
1591 	}
1592 
1593 	if (attach->timlfs) {
1594 		if (attach->modify)
1595 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1596 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1597 				 attach->timlfs, attach);
1598 	}
1599 
1600 	if (attach->cptlfs) {
1601 		if (attach->modify &&
1602 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1603 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1604 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1605 				 attach->cptlfs, attach);
1606 	}
1607 
1608 exit:
1609 	mutex_unlock(&rvu->rsrc_lock);
1610 	return err;
1611 }
1612 
1613 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1614 			       int blkaddr, int lf)
1615 {
1616 	u16 vec;
1617 
1618 	if (lf < 0)
1619 		return MSIX_VECTOR_INVALID;
1620 
1621 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1622 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1623 			return vec;
1624 	}
1625 	return MSIX_VECTOR_INVALID;
1626 }
1627 
1628 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1629 				struct rvu_block *block, int lf)
1630 {
1631 	u16 nvecs, vec, offset;
1632 	u64 cfg;
1633 
1634 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1635 			 (lf << block->lfshift));
1636 	nvecs = (cfg >> 12) & 0xFF;
1637 
1638 	/* Check and alloc MSIX vectors, must be contiguous */
1639 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1640 		return;
1641 
1642 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1643 
1644 	/* Config MSIX offset in LF */
1645 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1646 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1647 
1648 	/* Update the bitmap as well */
1649 	for (vec = 0; vec < nvecs; vec++)
1650 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1651 }
1652 
1653 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1654 				  struct rvu_block *block, int lf)
1655 {
1656 	u16 nvecs, vec, offset;
1657 	u64 cfg;
1658 
1659 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1660 			 (lf << block->lfshift));
1661 	nvecs = (cfg >> 12) & 0xFF;
1662 
1663 	/* Clear MSIX offset in LF */
1664 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1665 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1666 
1667 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1668 
1669 	/* Update the mapping */
1670 	for (vec = 0; vec < nvecs; vec++)
1671 		pfvf->msix_lfmap[offset + vec] = 0;
1672 
1673 	/* Free the same in MSIX bitmap */
1674 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1675 }
1676 
1677 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1678 				 struct msix_offset_rsp *rsp)
1679 {
1680 	struct rvu_hwinfo *hw = rvu->hw;
1681 	u16 pcifunc = req->hdr.pcifunc;
1682 	struct rvu_pfvf *pfvf;
1683 	int lf, slot, blkaddr;
1684 
1685 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1686 	if (!pfvf->msix.bmap)
1687 		return 0;
1688 
1689 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1690 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1691 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1692 
1693 	/* Get BLKADDR from which LFs are attached to pcifunc */
1694 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1695 	if (blkaddr < 0) {
1696 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1697 	} else {
1698 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1699 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1700 	}
1701 
1702 	rsp->sso = pfvf->sso;
1703 	for (slot = 0; slot < rsp->sso; slot++) {
1704 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1705 		rsp->sso_msixoff[slot] =
1706 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1707 	}
1708 
1709 	rsp->ssow = pfvf->ssow;
1710 	for (slot = 0; slot < rsp->ssow; slot++) {
1711 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1712 		rsp->ssow_msixoff[slot] =
1713 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1714 	}
1715 
1716 	rsp->timlfs = pfvf->timlfs;
1717 	for (slot = 0; slot < rsp->timlfs; slot++) {
1718 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1719 		rsp->timlf_msixoff[slot] =
1720 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1721 	}
1722 
1723 	rsp->cptlfs = pfvf->cptlfs;
1724 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1725 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1726 		rsp->cptlf_msixoff[slot] =
1727 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1728 	}
1729 
1730 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1731 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1732 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1733 		rsp->cpt1_lf_msixoff[slot] =
1734 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1735 	}
1736 
1737 	return 0;
1738 }
1739 
1740 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1741 			    struct msg_rsp *rsp)
1742 {
1743 	u16 pcifunc = req->hdr.pcifunc;
1744 	u16 vf, numvfs;
1745 	u64 cfg;
1746 
1747 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1748 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1749 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1750 	numvfs = (cfg >> 12) & 0xFF;
1751 
1752 	if (vf && vf <= numvfs)
1753 		__rvu_flr_handler(rvu, pcifunc);
1754 	else
1755 		return RVU_INVALID_VF_ID;
1756 
1757 	return 0;
1758 }
1759 
1760 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1761 				struct get_hw_cap_rsp *rsp)
1762 {
1763 	struct rvu_hwinfo *hw = rvu->hw;
1764 
1765 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1766 	rsp->nix_shaping = hw->cap.nix_shaping;
1767 
1768 	return 0;
1769 }
1770 
1771 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
1772 				 struct msg_rsp *rsp)
1773 {
1774 	struct rvu_hwinfo *hw = rvu->hw;
1775 	u16 pcifunc = req->hdr.pcifunc;
1776 	struct rvu_pfvf *pfvf;
1777 	int blkaddr, nixlf;
1778 	u16 target;
1779 
1780 	/* Only PF can add VF permissions */
1781 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
1782 		return -EOPNOTSUPP;
1783 
1784 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
1785 	pfvf = rvu_get_pfvf(rvu, target);
1786 
1787 	if (req->flags & RESET_VF_PERM) {
1788 		pfvf->flags &= RVU_CLEAR_VF_PERM;
1789 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
1790 		 (req->flags & VF_TRUSTED)) {
1791 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
1792 		/* disable multicast and promisc entries */
1793 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
1794 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
1795 			if (blkaddr < 0)
1796 				return 0;
1797 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
1798 					   target, 0);
1799 			if (nixlf < 0)
1800 				return 0;
1801 			npc_enadis_default_mce_entry(rvu, target, nixlf,
1802 						     NIXLF_ALLMULTI_ENTRY,
1803 						     false);
1804 			npc_enadis_default_mce_entry(rvu, target, nixlf,
1805 						     NIXLF_PROMISC_ENTRY,
1806 						     false);
1807 		}
1808 	}
1809 
1810 	return 0;
1811 }
1812 
1813 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1814 				struct mbox_msghdr *req)
1815 {
1816 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1817 
1818 	/* Check if valid, if not reply with a invalid msg */
1819 	if (req->sig != OTX2_MBOX_REQ_SIG)
1820 		goto bad_message;
1821 
1822 	switch (req->id) {
1823 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1824 	case _id: {							\
1825 		struct _rsp_type *rsp;					\
1826 		int err;						\
1827 									\
1828 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1829 			mbox, devid,					\
1830 			sizeof(struct _rsp_type));			\
1831 		/* some handlers should complete even if reply */	\
1832 		/* could not be allocated */				\
1833 		if (!rsp &&						\
1834 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1835 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
1836 		    _id != MBOX_MSG_VF_FLR)				\
1837 			return -ENOMEM;					\
1838 		if (rsp) {						\
1839 			rsp->hdr.id = _id;				\
1840 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
1841 			rsp->hdr.pcifunc = req->pcifunc;		\
1842 			rsp->hdr.rc = 0;				\
1843 		}							\
1844 									\
1845 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
1846 						    (struct _req_type *)req, \
1847 						    rsp);		\
1848 		if (rsp && err)						\
1849 			rsp->hdr.rc = err;				\
1850 									\
1851 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
1852 		return rsp ? err : -ENOMEM;				\
1853 	}
1854 MBOX_MESSAGES
1855 #undef M
1856 
1857 bad_message:
1858 	default:
1859 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
1860 		return -ENODEV;
1861 	}
1862 }
1863 
1864 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
1865 {
1866 	struct rvu *rvu = mwork->rvu;
1867 	int offset, err, id, devid;
1868 	struct otx2_mbox_dev *mdev;
1869 	struct mbox_hdr *req_hdr;
1870 	struct mbox_msghdr *msg;
1871 	struct mbox_wq_info *mw;
1872 	struct otx2_mbox *mbox;
1873 
1874 	switch (type) {
1875 	case TYPE_AFPF:
1876 		mw = &rvu->afpf_wq_info;
1877 		break;
1878 	case TYPE_AFVF:
1879 		mw = &rvu->afvf_wq_info;
1880 		break;
1881 	default:
1882 		return;
1883 	}
1884 
1885 	devid = mwork - mw->mbox_wrk;
1886 	mbox = &mw->mbox;
1887 	mdev = &mbox->dev[devid];
1888 
1889 	/* Process received mbox messages */
1890 	req_hdr = mdev->mbase + mbox->rx_start;
1891 	if (mw->mbox_wrk[devid].num_msgs == 0)
1892 		return;
1893 
1894 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
1895 
1896 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
1897 		msg = mdev->mbase + offset;
1898 
1899 		/* Set which PF/VF sent this message based on mbox IRQ */
1900 		switch (type) {
1901 		case TYPE_AFPF:
1902 			msg->pcifunc &=
1903 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
1904 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
1905 			break;
1906 		case TYPE_AFVF:
1907 			msg->pcifunc &=
1908 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
1909 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
1910 			break;
1911 		}
1912 
1913 		err = rvu_process_mbox_msg(mbox, devid, msg);
1914 		if (!err) {
1915 			offset = mbox->rx_start + msg->next_msgoff;
1916 			continue;
1917 		}
1918 
1919 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
1920 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
1921 				 err, otx2_mbox_id2name(msg->id),
1922 				 msg->id, rvu_get_pf(msg->pcifunc),
1923 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
1924 		else
1925 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
1926 				 err, otx2_mbox_id2name(msg->id),
1927 				 msg->id, devid);
1928 	}
1929 	mw->mbox_wrk[devid].num_msgs = 0;
1930 
1931 	/* Send mbox responses to VF/PF */
1932 	otx2_mbox_msg_send(mbox, devid);
1933 }
1934 
1935 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
1936 {
1937 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1938 
1939 	__rvu_mbox_handler(mwork, TYPE_AFPF);
1940 }
1941 
1942 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
1943 {
1944 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1945 
1946 	__rvu_mbox_handler(mwork, TYPE_AFVF);
1947 }
1948 
1949 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
1950 {
1951 	struct rvu *rvu = mwork->rvu;
1952 	struct otx2_mbox_dev *mdev;
1953 	struct mbox_hdr *rsp_hdr;
1954 	struct mbox_msghdr *msg;
1955 	struct mbox_wq_info *mw;
1956 	struct otx2_mbox *mbox;
1957 	int offset, id, devid;
1958 
1959 	switch (type) {
1960 	case TYPE_AFPF:
1961 		mw = &rvu->afpf_wq_info;
1962 		break;
1963 	case TYPE_AFVF:
1964 		mw = &rvu->afvf_wq_info;
1965 		break;
1966 	default:
1967 		return;
1968 	}
1969 
1970 	devid = mwork - mw->mbox_wrk_up;
1971 	mbox = &mw->mbox_up;
1972 	mdev = &mbox->dev[devid];
1973 
1974 	rsp_hdr = mdev->mbase + mbox->rx_start;
1975 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
1976 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
1977 		return;
1978 	}
1979 
1980 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
1981 
1982 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
1983 		msg = mdev->mbase + offset;
1984 
1985 		if (msg->id >= MBOX_MSG_MAX) {
1986 			dev_err(rvu->dev,
1987 				"Mbox msg with unknown ID 0x%x\n", msg->id);
1988 			goto end;
1989 		}
1990 
1991 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
1992 			dev_err(rvu->dev,
1993 				"Mbox msg with wrong signature %x, ID 0x%x\n",
1994 				msg->sig, msg->id);
1995 			goto end;
1996 		}
1997 
1998 		switch (msg->id) {
1999 		case MBOX_MSG_CGX_LINK_EVENT:
2000 			break;
2001 		default:
2002 			if (msg->rc)
2003 				dev_err(rvu->dev,
2004 					"Mbox msg response has err %d, ID 0x%x\n",
2005 					msg->rc, msg->id);
2006 			break;
2007 		}
2008 end:
2009 		offset = mbox->rx_start + msg->next_msgoff;
2010 		mdev->msgs_acked++;
2011 	}
2012 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2013 
2014 	otx2_mbox_reset(mbox, devid);
2015 }
2016 
2017 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2018 {
2019 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2020 
2021 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2022 }
2023 
2024 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2025 {
2026 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2027 
2028 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2029 }
2030 
2031 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2032 				int num, int type)
2033 {
2034 	struct rvu_hwinfo *hw = rvu->hw;
2035 	int region;
2036 	u64 bar4;
2037 
2038 	/* For cn10k platform VF mailbox regions of a PF follows after the
2039 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2040 	 * RVU_PF_VF_BAR4_ADDR register.
2041 	 */
2042 	if (type == TYPE_AFVF) {
2043 		for (region = 0; region < num; region++) {
2044 			if (hw->cap.per_pf_mbox_regs) {
2045 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2046 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2047 						  MBOX_SIZE;
2048 				bar4 += region * MBOX_SIZE;
2049 			} else {
2050 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2051 				bar4 += region * MBOX_SIZE;
2052 			}
2053 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2054 			if (!mbox_addr[region])
2055 				goto error;
2056 		}
2057 		return 0;
2058 	}
2059 
2060 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2061 	 * PF registers. Whereas for Octeontx2 it is read from
2062 	 * RVU_AF_PF_BAR4_ADDR register.
2063 	 */
2064 	for (region = 0; region < num; region++) {
2065 		if (hw->cap.per_pf_mbox_regs) {
2066 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2067 					  RVU_AF_PFX_BAR4_ADDR(region));
2068 		} else {
2069 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2070 					  RVU_AF_PF_BAR4_ADDR);
2071 			bar4 += region * MBOX_SIZE;
2072 		}
2073 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2074 		if (!mbox_addr[region])
2075 			goto error;
2076 	}
2077 	return 0;
2078 
2079 error:
2080 	while (region--)
2081 		iounmap((void __iomem *)mbox_addr[region]);
2082 	return -ENOMEM;
2083 }
2084 
2085 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2086 			 int type, int num,
2087 			 void (mbox_handler)(struct work_struct *),
2088 			 void (mbox_up_handler)(struct work_struct *))
2089 {
2090 	int err = -EINVAL, i, dir, dir_up;
2091 	void __iomem *reg_base;
2092 	struct rvu_work *mwork;
2093 	void **mbox_regions;
2094 	const char *name;
2095 
2096 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2097 	if (!mbox_regions)
2098 		return -ENOMEM;
2099 
2100 	switch (type) {
2101 	case TYPE_AFPF:
2102 		name = "rvu_afpf_mailbox";
2103 		dir = MBOX_DIR_AFPF;
2104 		dir_up = MBOX_DIR_AFPF_UP;
2105 		reg_base = rvu->afreg_base;
2106 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2107 		if (err)
2108 			goto free_regions;
2109 		break;
2110 	case TYPE_AFVF:
2111 		name = "rvu_afvf_mailbox";
2112 		dir = MBOX_DIR_PFVF;
2113 		dir_up = MBOX_DIR_PFVF_UP;
2114 		reg_base = rvu->pfreg_base;
2115 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2116 		if (err)
2117 			goto free_regions;
2118 		break;
2119 	default:
2120 		return err;
2121 	}
2122 
2123 	mw->mbox_wq = alloc_workqueue(name,
2124 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2125 				      num);
2126 	if (!mw->mbox_wq) {
2127 		err = -ENOMEM;
2128 		goto unmap_regions;
2129 	}
2130 
2131 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2132 				    sizeof(struct rvu_work), GFP_KERNEL);
2133 	if (!mw->mbox_wrk) {
2134 		err = -ENOMEM;
2135 		goto exit;
2136 	}
2137 
2138 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2139 				       sizeof(struct rvu_work), GFP_KERNEL);
2140 	if (!mw->mbox_wrk_up) {
2141 		err = -ENOMEM;
2142 		goto exit;
2143 	}
2144 
2145 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2146 				     reg_base, dir, num);
2147 	if (err)
2148 		goto exit;
2149 
2150 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2151 				     reg_base, dir_up, num);
2152 	if (err)
2153 		goto exit;
2154 
2155 	for (i = 0; i < num; i++) {
2156 		mwork = &mw->mbox_wrk[i];
2157 		mwork->rvu = rvu;
2158 		INIT_WORK(&mwork->work, mbox_handler);
2159 
2160 		mwork = &mw->mbox_wrk_up[i];
2161 		mwork->rvu = rvu;
2162 		INIT_WORK(&mwork->work, mbox_up_handler);
2163 	}
2164 	kfree(mbox_regions);
2165 	return 0;
2166 
2167 exit:
2168 	destroy_workqueue(mw->mbox_wq);
2169 unmap_regions:
2170 	while (num--)
2171 		iounmap((void __iomem *)mbox_regions[num]);
2172 free_regions:
2173 	kfree(mbox_regions);
2174 	return err;
2175 }
2176 
2177 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2178 {
2179 	struct otx2_mbox *mbox = &mw->mbox;
2180 	struct otx2_mbox_dev *mdev;
2181 	int devid;
2182 
2183 	if (mw->mbox_wq) {
2184 		flush_workqueue(mw->mbox_wq);
2185 		destroy_workqueue(mw->mbox_wq);
2186 		mw->mbox_wq = NULL;
2187 	}
2188 
2189 	for (devid = 0; devid < mbox->ndevs; devid++) {
2190 		mdev = &mbox->dev[devid];
2191 		if (mdev->hwbase)
2192 			iounmap((void __iomem *)mdev->hwbase);
2193 	}
2194 
2195 	otx2_mbox_destroy(&mw->mbox);
2196 	otx2_mbox_destroy(&mw->mbox_up);
2197 }
2198 
2199 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2200 			   int mdevs, u64 intr)
2201 {
2202 	struct otx2_mbox_dev *mdev;
2203 	struct otx2_mbox *mbox;
2204 	struct mbox_hdr *hdr;
2205 	int i;
2206 
2207 	for (i = first; i < mdevs; i++) {
2208 		/* start from 0 */
2209 		if (!(intr & BIT_ULL(i - first)))
2210 			continue;
2211 
2212 		mbox = &mw->mbox;
2213 		mdev = &mbox->dev[i];
2214 		hdr = mdev->mbase + mbox->rx_start;
2215 
2216 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2217 		 * handler to  ensure that it holds a correct value next time
2218 		 * when the interrupt handler is called.
2219 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2220 		 * pf>mbox.up_num_msgs holds the data for use in
2221 		 * pfaf_mbox_up_handler.
2222 		 */
2223 
2224 		if (hdr->num_msgs) {
2225 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2226 			hdr->num_msgs = 0;
2227 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2228 		}
2229 		mbox = &mw->mbox_up;
2230 		mdev = &mbox->dev[i];
2231 		hdr = mdev->mbase + mbox->rx_start;
2232 		if (hdr->num_msgs) {
2233 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2234 			hdr->num_msgs = 0;
2235 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2236 		}
2237 	}
2238 }
2239 
2240 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2241 {
2242 	struct rvu *rvu = (struct rvu *)rvu_irq;
2243 	int vfs = rvu->vfs;
2244 	u64 intr;
2245 
2246 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2247 	/* Clear interrupts */
2248 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2249 	if (intr)
2250 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2251 
2252 	/* Sync with mbox memory region */
2253 	rmb();
2254 
2255 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2256 
2257 	/* Handle VF interrupts */
2258 	if (vfs > 64) {
2259 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2260 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2261 
2262 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2263 		vfs -= 64;
2264 	}
2265 
2266 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2267 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2268 	if (intr)
2269 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2270 
2271 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2272 
2273 	return IRQ_HANDLED;
2274 }
2275 
2276 static void rvu_enable_mbox_intr(struct rvu *rvu)
2277 {
2278 	struct rvu_hwinfo *hw = rvu->hw;
2279 
2280 	/* Clear spurious irqs, if any */
2281 	rvu_write64(rvu, BLKADDR_RVUM,
2282 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2283 
2284 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2285 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2286 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2287 }
2288 
2289 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2290 {
2291 	struct rvu_block *block;
2292 	int slot, lf, num_lfs;
2293 	int err;
2294 
2295 	block = &rvu->hw->block[blkaddr];
2296 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2297 					block->addr);
2298 	if (!num_lfs)
2299 		return;
2300 	for (slot = 0; slot < num_lfs; slot++) {
2301 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2302 		if (lf < 0)
2303 			continue;
2304 
2305 		/* Cleanup LF and reset it */
2306 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2307 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2308 		else if (block->addr == BLKADDR_NPA)
2309 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2310 		else if ((block->addr == BLKADDR_CPT0) ||
2311 			 (block->addr == BLKADDR_CPT1))
2312 			rvu_cpt_lf_teardown(rvu, pcifunc, lf, slot);
2313 
2314 		err = rvu_lf_reset(rvu, block, lf);
2315 		if (err) {
2316 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2317 				block->addr, lf);
2318 		}
2319 	}
2320 }
2321 
2322 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2323 {
2324 	mutex_lock(&rvu->flr_lock);
2325 	/* Reset order should reflect inter-block dependencies:
2326 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2327 	 * 2. Flush and reset SSO/SSOW
2328 	 * 3. Cleanup pools (NPA)
2329 	 */
2330 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2331 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2332 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2333 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2334 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2335 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2336 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2337 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2338 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2339 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2340 	mutex_unlock(&rvu->flr_lock);
2341 }
2342 
2343 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2344 {
2345 	int reg = 0;
2346 
2347 	/* pcifunc = 0(PF0) | (vf + 1) */
2348 	__rvu_flr_handler(rvu, vf + 1);
2349 
2350 	if (vf >= 64) {
2351 		reg = 1;
2352 		vf = vf - 64;
2353 	}
2354 
2355 	/* Signal FLR finish and enable IRQ */
2356 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2357 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2358 }
2359 
2360 static void rvu_flr_handler(struct work_struct *work)
2361 {
2362 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2363 	struct rvu *rvu = flrwork->rvu;
2364 	u16 pcifunc, numvfs, vf;
2365 	u64 cfg;
2366 	int pf;
2367 
2368 	pf = flrwork - rvu->flr_wrk;
2369 	if (pf >= rvu->hw->total_pfs) {
2370 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2371 		return;
2372 	}
2373 
2374 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2375 	numvfs = (cfg >> 12) & 0xFF;
2376 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2377 
2378 	for (vf = 0; vf < numvfs; vf++)
2379 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2380 
2381 	__rvu_flr_handler(rvu, pcifunc);
2382 
2383 	/* Signal FLR finish */
2384 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2385 
2386 	/* Enable interrupt */
2387 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2388 }
2389 
2390 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2391 {
2392 	int dev, vf, reg = 0;
2393 	u64 intr;
2394 
2395 	if (start_vf >= 64)
2396 		reg = 1;
2397 
2398 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2399 	if (!intr)
2400 		return;
2401 
2402 	for (vf = 0; vf < numvfs; vf++) {
2403 		if (!(intr & BIT_ULL(vf)))
2404 			continue;
2405 		dev = vf + start_vf + rvu->hw->total_pfs;
2406 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2407 		/* Clear and disable the interrupt */
2408 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2409 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2410 	}
2411 }
2412 
2413 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2414 {
2415 	struct rvu *rvu = (struct rvu *)rvu_irq;
2416 	u64 intr;
2417 	u8  pf;
2418 
2419 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2420 	if (!intr)
2421 		goto afvf_flr;
2422 
2423 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2424 		if (intr & (1ULL << pf)) {
2425 			/* PF is already dead do only AF related operations */
2426 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2427 			/* clear interrupt */
2428 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2429 				    BIT_ULL(pf));
2430 			/* Disable the interrupt */
2431 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2432 				    BIT_ULL(pf));
2433 		}
2434 	}
2435 
2436 afvf_flr:
2437 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2438 	if (rvu->vfs > 64)
2439 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2440 
2441 	return IRQ_HANDLED;
2442 }
2443 
2444 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2445 {
2446 	int vf;
2447 
2448 	/* Nothing to be done here other than clearing the
2449 	 * TRPEND bit.
2450 	 */
2451 	for (vf = 0; vf < 64; vf++) {
2452 		if (intr & (1ULL << vf)) {
2453 			/* clear the trpend due to ME(master enable) */
2454 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2455 			/* clear interrupt */
2456 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2457 		}
2458 	}
2459 }
2460 
2461 /* Handles ME interrupts from VFs of AF */
2462 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2463 {
2464 	struct rvu *rvu = (struct rvu *)rvu_irq;
2465 	int vfset;
2466 	u64 intr;
2467 
2468 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2469 
2470 	for (vfset = 0; vfset <= 1; vfset++) {
2471 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2472 		if (intr)
2473 			rvu_me_handle_vfset(rvu, vfset, intr);
2474 	}
2475 
2476 	return IRQ_HANDLED;
2477 }
2478 
2479 /* Handles ME interrupts from PFs */
2480 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2481 {
2482 	struct rvu *rvu = (struct rvu *)rvu_irq;
2483 	u64 intr;
2484 	u8  pf;
2485 
2486 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2487 
2488 	/* Nothing to be done here other than clearing the
2489 	 * TRPEND bit.
2490 	 */
2491 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2492 		if (intr & (1ULL << pf)) {
2493 			/* clear the trpend due to ME(master enable) */
2494 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2495 				    BIT_ULL(pf));
2496 			/* clear interrupt */
2497 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2498 				    BIT_ULL(pf));
2499 		}
2500 	}
2501 
2502 	return IRQ_HANDLED;
2503 }
2504 
2505 static void rvu_unregister_interrupts(struct rvu *rvu)
2506 {
2507 	int irq;
2508 
2509 	/* Disable the Mbox interrupt */
2510 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2511 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2512 
2513 	/* Disable the PF FLR interrupt */
2514 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2515 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2516 
2517 	/* Disable the PF ME interrupt */
2518 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2519 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2520 
2521 	for (irq = 0; irq < rvu->num_vec; irq++) {
2522 		if (rvu->irq_allocated[irq]) {
2523 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2524 			rvu->irq_allocated[irq] = false;
2525 		}
2526 	}
2527 
2528 	pci_free_irq_vectors(rvu->pdev);
2529 	rvu->num_vec = 0;
2530 }
2531 
2532 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2533 {
2534 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2535 	int offset;
2536 
2537 	pfvf = &rvu->pf[0];
2538 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2539 
2540 	/* Make sure there are enough MSIX vectors configured so that
2541 	 * VF interrupts can be handled. Offset equal to zero means
2542 	 * that PF vectors are not configured and overlapping AF vectors.
2543 	 */
2544 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2545 	       offset;
2546 }
2547 
2548 static int rvu_register_interrupts(struct rvu *rvu)
2549 {
2550 	int ret, offset, pf_vec_start;
2551 
2552 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2553 
2554 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2555 					   NAME_SIZE, GFP_KERNEL);
2556 	if (!rvu->irq_name)
2557 		return -ENOMEM;
2558 
2559 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2560 					  sizeof(bool), GFP_KERNEL);
2561 	if (!rvu->irq_allocated)
2562 		return -ENOMEM;
2563 
2564 	/* Enable MSI-X */
2565 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2566 				    rvu->num_vec, PCI_IRQ_MSIX);
2567 	if (ret < 0) {
2568 		dev_err(rvu->dev,
2569 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2570 			rvu->num_vec, ret);
2571 		return ret;
2572 	}
2573 
2574 	/* Register mailbox interrupt handler */
2575 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2576 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2577 			  rvu_mbox_intr_handler, 0,
2578 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2579 	if (ret) {
2580 		dev_err(rvu->dev,
2581 			"RVUAF: IRQ registration failed for mbox irq\n");
2582 		goto fail;
2583 	}
2584 
2585 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2586 
2587 	/* Enable mailbox interrupts from all PFs */
2588 	rvu_enable_mbox_intr(rvu);
2589 
2590 	/* Register FLR interrupt handler */
2591 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2592 		"RVUAF FLR");
2593 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2594 			  rvu_flr_intr_handler, 0,
2595 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2596 			  rvu);
2597 	if (ret) {
2598 		dev_err(rvu->dev,
2599 			"RVUAF: IRQ registration failed for FLR\n");
2600 		goto fail;
2601 	}
2602 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2603 
2604 	/* Enable FLR interrupt for all PFs*/
2605 	rvu_write64(rvu, BLKADDR_RVUM,
2606 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2607 
2608 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2609 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2610 
2611 	/* Register ME interrupt handler */
2612 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2613 		"RVUAF ME");
2614 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2615 			  rvu_me_pf_intr_handler, 0,
2616 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2617 			  rvu);
2618 	if (ret) {
2619 		dev_err(rvu->dev,
2620 			"RVUAF: IRQ registration failed for ME\n");
2621 	}
2622 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2623 
2624 	/* Clear TRPEND bit for all PF */
2625 	rvu_write64(rvu, BLKADDR_RVUM,
2626 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2627 	/* Enable ME interrupt for all PFs*/
2628 	rvu_write64(rvu, BLKADDR_RVUM,
2629 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2630 
2631 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2632 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2633 
2634 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2635 		return 0;
2636 
2637 	/* Get PF MSIX vectors offset. */
2638 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2639 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2640 
2641 	/* Register MBOX0 interrupt. */
2642 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2643 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2644 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2645 			  rvu_mbox_intr_handler, 0,
2646 			  &rvu->irq_name[offset * NAME_SIZE],
2647 			  rvu);
2648 	if (ret)
2649 		dev_err(rvu->dev,
2650 			"RVUAF: IRQ registration failed for Mbox0\n");
2651 
2652 	rvu->irq_allocated[offset] = true;
2653 
2654 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2655 	 * simply increment current offset by 1.
2656 	 */
2657 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2658 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2659 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2660 			  rvu_mbox_intr_handler, 0,
2661 			  &rvu->irq_name[offset * NAME_SIZE],
2662 			  rvu);
2663 	if (ret)
2664 		dev_err(rvu->dev,
2665 			"RVUAF: IRQ registration failed for Mbox1\n");
2666 
2667 	rvu->irq_allocated[offset] = true;
2668 
2669 	/* Register FLR interrupt handler for AF's VFs */
2670 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2671 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2672 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2673 			  rvu_flr_intr_handler, 0,
2674 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2675 	if (ret) {
2676 		dev_err(rvu->dev,
2677 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2678 		goto fail;
2679 	}
2680 	rvu->irq_allocated[offset] = true;
2681 
2682 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2683 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2684 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2685 			  rvu_flr_intr_handler, 0,
2686 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2687 	if (ret) {
2688 		dev_err(rvu->dev,
2689 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2690 		goto fail;
2691 	}
2692 	rvu->irq_allocated[offset] = true;
2693 
2694 	/* Register ME interrupt handler for AF's VFs */
2695 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2696 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2697 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2698 			  rvu_me_vf_intr_handler, 0,
2699 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2700 	if (ret) {
2701 		dev_err(rvu->dev,
2702 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2703 		goto fail;
2704 	}
2705 	rvu->irq_allocated[offset] = true;
2706 
2707 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2708 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2709 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2710 			  rvu_me_vf_intr_handler, 0,
2711 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2712 	if (ret) {
2713 		dev_err(rvu->dev,
2714 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2715 		goto fail;
2716 	}
2717 	rvu->irq_allocated[offset] = true;
2718 	return 0;
2719 
2720 fail:
2721 	rvu_unregister_interrupts(rvu);
2722 	return ret;
2723 }
2724 
2725 static void rvu_flr_wq_destroy(struct rvu *rvu)
2726 {
2727 	if (rvu->flr_wq) {
2728 		flush_workqueue(rvu->flr_wq);
2729 		destroy_workqueue(rvu->flr_wq);
2730 		rvu->flr_wq = NULL;
2731 	}
2732 }
2733 
2734 static int rvu_flr_init(struct rvu *rvu)
2735 {
2736 	int dev, num_devs;
2737 	u64 cfg;
2738 	int pf;
2739 
2740 	/* Enable FLR for all PFs*/
2741 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2742 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2743 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2744 			    cfg | BIT_ULL(22));
2745 	}
2746 
2747 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2748 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2749 				       1);
2750 	if (!rvu->flr_wq)
2751 		return -ENOMEM;
2752 
2753 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2754 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2755 				    sizeof(struct rvu_work), GFP_KERNEL);
2756 	if (!rvu->flr_wrk) {
2757 		destroy_workqueue(rvu->flr_wq);
2758 		return -ENOMEM;
2759 	}
2760 
2761 	for (dev = 0; dev < num_devs; dev++) {
2762 		rvu->flr_wrk[dev].rvu = rvu;
2763 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2764 	}
2765 
2766 	mutex_init(&rvu->flr_lock);
2767 
2768 	return 0;
2769 }
2770 
2771 static void rvu_disable_afvf_intr(struct rvu *rvu)
2772 {
2773 	int vfs = rvu->vfs;
2774 
2775 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2776 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2777 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2778 	if (vfs <= 64)
2779 		return;
2780 
2781 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2782 		      INTR_MASK(vfs - 64));
2783 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2784 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2785 }
2786 
2787 static void rvu_enable_afvf_intr(struct rvu *rvu)
2788 {
2789 	int vfs = rvu->vfs;
2790 
2791 	/* Clear any pending interrupts and enable AF VF interrupts for
2792 	 * the first 64 VFs.
2793 	 */
2794 	/* Mbox */
2795 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2796 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2797 
2798 	/* FLR */
2799 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2800 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2801 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2802 
2803 	/* Same for remaining VFs, if any. */
2804 	if (vfs <= 64)
2805 		return;
2806 
2807 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2808 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2809 		      INTR_MASK(vfs - 64));
2810 
2811 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2812 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2813 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2814 }
2815 
2816 int rvu_get_num_lbk_chans(void)
2817 {
2818 	struct pci_dev *pdev;
2819 	void __iomem *base;
2820 	int ret = -EIO;
2821 
2822 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2823 			      NULL);
2824 	if (!pdev)
2825 		goto err;
2826 
2827 	base = pci_ioremap_bar(pdev, 0);
2828 	if (!base)
2829 		goto err_put;
2830 
2831 	/* Read number of available LBK channels from LBK(0)_CONST register. */
2832 	ret = (readq(base + 0x10) >> 32) & 0xffff;
2833 	iounmap(base);
2834 err_put:
2835 	pci_dev_put(pdev);
2836 err:
2837 	return ret;
2838 }
2839 
2840 static int rvu_enable_sriov(struct rvu *rvu)
2841 {
2842 	struct pci_dev *pdev = rvu->pdev;
2843 	int err, chans, vfs;
2844 
2845 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2846 		dev_warn(&pdev->dev,
2847 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
2848 		return 0;
2849 	}
2850 
2851 	chans = rvu_get_num_lbk_chans();
2852 	if (chans < 0)
2853 		return chans;
2854 
2855 	vfs = pci_sriov_get_totalvfs(pdev);
2856 
2857 	/* Limit VFs in case we have more VFs than LBK channels available. */
2858 	if (vfs > chans)
2859 		vfs = chans;
2860 
2861 	if (!vfs)
2862 		return 0;
2863 
2864 	/* LBK channel number 63 is used for switching packets between
2865 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
2866 	 */
2867 	if (vfs > 62)
2868 		vfs = 62;
2869 
2870 	/* Save VFs number for reference in VF interrupts handlers.
2871 	 * Since interrupts might start arriving during SRIOV enablement
2872 	 * ordinary API cannot be used to get number of enabled VFs.
2873 	 */
2874 	rvu->vfs = vfs;
2875 
2876 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
2877 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
2878 	if (err)
2879 		return err;
2880 
2881 	rvu_enable_afvf_intr(rvu);
2882 	/* Make sure IRQs are enabled before SRIOV. */
2883 	mb();
2884 
2885 	err = pci_enable_sriov(pdev, vfs);
2886 	if (err) {
2887 		rvu_disable_afvf_intr(rvu);
2888 		rvu_mbox_destroy(&rvu->afvf_wq_info);
2889 		return err;
2890 	}
2891 
2892 	return 0;
2893 }
2894 
2895 static void rvu_disable_sriov(struct rvu *rvu)
2896 {
2897 	rvu_disable_afvf_intr(rvu);
2898 	rvu_mbox_destroy(&rvu->afvf_wq_info);
2899 	pci_disable_sriov(rvu->pdev);
2900 }
2901 
2902 static void rvu_update_module_params(struct rvu *rvu)
2903 {
2904 	const char *default_pfl_name = "default";
2905 
2906 	strscpy(rvu->mkex_pfl_name,
2907 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
2908 	strscpy(rvu->kpu_pfl_name,
2909 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
2910 }
2911 
2912 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2913 {
2914 	struct device *dev = &pdev->dev;
2915 	struct rvu *rvu;
2916 	int    err;
2917 
2918 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
2919 	if (!rvu)
2920 		return -ENOMEM;
2921 
2922 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
2923 	if (!rvu->hw) {
2924 		devm_kfree(dev, rvu);
2925 		return -ENOMEM;
2926 	}
2927 
2928 	pci_set_drvdata(pdev, rvu);
2929 	rvu->pdev = pdev;
2930 	rvu->dev = &pdev->dev;
2931 
2932 	err = pci_enable_device(pdev);
2933 	if (err) {
2934 		dev_err(dev, "Failed to enable PCI device\n");
2935 		goto err_freemem;
2936 	}
2937 
2938 	err = pci_request_regions(pdev, DRV_NAME);
2939 	if (err) {
2940 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2941 		goto err_disable_device;
2942 	}
2943 
2944 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
2945 	if (err) {
2946 		dev_err(dev, "DMA mask config failed, abort\n");
2947 		goto err_release_regions;
2948 	}
2949 
2950 	pci_set_master(pdev);
2951 
2952 	rvu->ptp = ptp_get();
2953 	if (IS_ERR(rvu->ptp)) {
2954 		err = PTR_ERR(rvu->ptp);
2955 		if (err == -EPROBE_DEFER)
2956 			goto err_release_regions;
2957 		rvu->ptp = NULL;
2958 	}
2959 
2960 	/* Map Admin function CSRs */
2961 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
2962 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
2963 	if (!rvu->afreg_base || !rvu->pfreg_base) {
2964 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
2965 		err = -ENOMEM;
2966 		goto err_put_ptp;
2967 	}
2968 
2969 	/* Store module params in rvu structure */
2970 	rvu_update_module_params(rvu);
2971 
2972 	/* Check which blocks the HW supports */
2973 	rvu_check_block_implemented(rvu);
2974 
2975 	rvu_reset_all_blocks(rvu);
2976 
2977 	rvu_setup_hw_capabilities(rvu);
2978 
2979 	err = rvu_setup_hw_resources(rvu);
2980 	if (err)
2981 		goto err_put_ptp;
2982 
2983 	/* Init mailbox btw AF and PFs */
2984 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
2985 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
2986 			    rvu_afpf_mbox_up_handler);
2987 	if (err)
2988 		goto err_hwsetup;
2989 
2990 	err = rvu_flr_init(rvu);
2991 	if (err)
2992 		goto err_mbox;
2993 
2994 	err = rvu_register_interrupts(rvu);
2995 	if (err)
2996 		goto err_flr;
2997 
2998 	err = rvu_register_dl(rvu);
2999 	if (err)
3000 		goto err_irq;
3001 
3002 	rvu_setup_rvum_blk_revid(rvu);
3003 
3004 	/* Enable AF's VFs (if any) */
3005 	err = rvu_enable_sriov(rvu);
3006 	if (err)
3007 		goto err_dl;
3008 
3009 	/* Initialize debugfs */
3010 	rvu_dbg_init(rvu);
3011 
3012 	mutex_init(&rvu->rswitch.switch_lock);
3013 
3014 	return 0;
3015 err_dl:
3016 	rvu_unregister_dl(rvu);
3017 err_irq:
3018 	rvu_unregister_interrupts(rvu);
3019 err_flr:
3020 	rvu_flr_wq_destroy(rvu);
3021 err_mbox:
3022 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3023 err_hwsetup:
3024 	rvu_cgx_exit(rvu);
3025 	rvu_fwdata_exit(rvu);
3026 	rvu_reset_all_blocks(rvu);
3027 	rvu_free_hw_resources(rvu);
3028 	rvu_clear_rvum_blk_revid(rvu);
3029 err_put_ptp:
3030 	ptp_put(rvu->ptp);
3031 err_release_regions:
3032 	pci_release_regions(pdev);
3033 err_disable_device:
3034 	pci_disable_device(pdev);
3035 err_freemem:
3036 	pci_set_drvdata(pdev, NULL);
3037 	devm_kfree(&pdev->dev, rvu->hw);
3038 	devm_kfree(dev, rvu);
3039 	return err;
3040 }
3041 
3042 static void rvu_remove(struct pci_dev *pdev)
3043 {
3044 	struct rvu *rvu = pci_get_drvdata(pdev);
3045 
3046 	rvu_dbg_exit(rvu);
3047 	rvu_unregister_dl(rvu);
3048 	rvu_unregister_interrupts(rvu);
3049 	rvu_flr_wq_destroy(rvu);
3050 	rvu_cgx_exit(rvu);
3051 	rvu_fwdata_exit(rvu);
3052 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3053 	rvu_disable_sriov(rvu);
3054 	rvu_reset_all_blocks(rvu);
3055 	rvu_free_hw_resources(rvu);
3056 	rvu_clear_rvum_blk_revid(rvu);
3057 	ptp_put(rvu->ptp);
3058 	pci_release_regions(pdev);
3059 	pci_disable_device(pdev);
3060 	pci_set_drvdata(pdev, NULL);
3061 
3062 	devm_kfree(&pdev->dev, rvu->hw);
3063 	devm_kfree(&pdev->dev, rvu);
3064 }
3065 
3066 static struct pci_driver rvu_driver = {
3067 	.name = DRV_NAME,
3068 	.id_table = rvu_id_table,
3069 	.probe = rvu_probe,
3070 	.remove = rvu_remove,
3071 };
3072 
3073 static int __init rvu_init_module(void)
3074 {
3075 	int err;
3076 
3077 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3078 
3079 	err = pci_register_driver(&cgx_driver);
3080 	if (err < 0)
3081 		return err;
3082 
3083 	err = pci_register_driver(&ptp_driver);
3084 	if (err < 0)
3085 		goto ptp_err;
3086 
3087 	err =  pci_register_driver(&rvu_driver);
3088 	if (err < 0)
3089 		goto rvu_err;
3090 
3091 	return 0;
3092 rvu_err:
3093 	pci_unregister_driver(&ptp_driver);
3094 ptp_err:
3095 	pci_unregister_driver(&cgx_driver);
3096 
3097 	return err;
3098 }
3099 
3100 static void __exit rvu_cleanup_module(void)
3101 {
3102 	pci_unregister_driver(&rvu_driver);
3103 	pci_unregister_driver(&ptp_driver);
3104 	pci_unregister_driver(&cgx_driver);
3105 }
3106 
3107 module_init(rvu_init_module);
3108 module_exit(rvu_cleanup_module);
3109