xref: /openbmc/linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision a1c7c49c2091926962f8c1c866d386febffec5d8)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 
20 #include "rvu_trace.h"
21 
22 #define DRV_NAME	"rvu_af"
23 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
24 
25 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
26 
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 				struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 				  struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32 
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 			 int type, int num,
35 			 void (mbox_handler)(struct work_struct *),
36 			 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 	TYPE_AFVF,
39 	TYPE_AFPF,
40 };
41 
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 	{ 0, }  /* end of table */
46 };
47 
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52 
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56 
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60 
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 	struct rvu_hwinfo *hw = rvu->hw;
64 
65 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 	hw->cap.nix_fixed_txschq_mapping = false;
67 	hw->cap.nix_shaping = true;
68 	hw->cap.nix_tx_link_bp = true;
69 	hw->cap.nix_rx_multicast = true;
70 	hw->cap.nix_shaper_toggle_wait = false;
71 	hw->rvu = rvu;
72 
73 	if (is_rvu_pre_96xx_C0(rvu)) {
74 		hw->cap.nix_fixed_txschq_mapping = true;
75 		hw->cap.nix_txsch_per_cgx_lmac = 4;
76 		hw->cap.nix_txsch_per_lbk_lmac = 132;
77 		hw->cap.nix_txsch_per_sdp_lmac = 76;
78 		hw->cap.nix_shaping = false;
79 		hw->cap.nix_tx_link_bp = false;
80 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
81 			hw->cap.nix_rx_multicast = false;
82 	}
83 	if (!is_rvu_pre_96xx_C0(rvu))
84 		hw->cap.nix_shaper_toggle_wait = true;
85 
86 	if (!is_rvu_otx2(rvu))
87 		hw->cap.per_pf_mbox_regs = true;
88 }
89 
90 /* Poll a RVU block's register 'offset', for a 'zero'
91  * or 'nonzero' at bits specified by 'mask'
92  */
93 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
94 {
95 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
96 	bool twice = false;
97 	void __iomem *reg;
98 	u64 reg_val;
99 
100 	reg = rvu->afreg_base + ((block << 28) | offset);
101 again:
102 	reg_val = readq(reg);
103 	if (zero && !(reg_val & mask))
104 		return 0;
105 	if (!zero && (reg_val & mask))
106 		return 0;
107 	if (time_before(jiffies, timeout)) {
108 		usleep_range(1, 5);
109 		goto again;
110 	}
111 	/* In scenarios where CPU is scheduled out before checking
112 	 * 'time_before' (above) and gets scheduled in such that
113 	 * jiffies are beyond timeout value, then check again if HW is
114 	 * done with the operation in the meantime.
115 	 */
116 	if (!twice) {
117 		twice = true;
118 		goto again;
119 	}
120 	return -EBUSY;
121 }
122 
123 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
124 {
125 	int id;
126 
127 	if (!rsrc->bmap)
128 		return -EINVAL;
129 
130 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
131 	if (id >= rsrc->max)
132 		return -ENOSPC;
133 
134 	__set_bit(id, rsrc->bmap);
135 
136 	return id;
137 }
138 
139 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
140 {
141 	int start;
142 
143 	if (!rsrc->bmap)
144 		return -EINVAL;
145 
146 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
147 	if (start >= rsrc->max)
148 		return -ENOSPC;
149 
150 	bitmap_set(rsrc->bmap, start, nrsrc);
151 	return start;
152 }
153 
154 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
155 {
156 	if (!rsrc->bmap)
157 		return;
158 	if (start >= rsrc->max)
159 		return;
160 
161 	bitmap_clear(rsrc->bmap, start, nrsrc);
162 }
163 
164 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
165 {
166 	int start;
167 
168 	if (!rsrc->bmap)
169 		return false;
170 
171 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
172 	if (start >= rsrc->max)
173 		return false;
174 
175 	return true;
176 }
177 
178 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
179 {
180 	if (!rsrc->bmap)
181 		return;
182 
183 	__clear_bit(id, rsrc->bmap);
184 }
185 
186 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
187 {
188 	int used;
189 
190 	if (!rsrc->bmap)
191 		return 0;
192 
193 	used = bitmap_weight(rsrc->bmap, rsrc->max);
194 	return (rsrc->max - used);
195 }
196 
197 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
198 {
199 	if (!rsrc->bmap)
200 		return false;
201 
202 	return !test_bit(id, rsrc->bmap);
203 }
204 
205 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
206 {
207 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
208 			     sizeof(long), GFP_KERNEL);
209 	if (!rsrc->bmap)
210 		return -ENOMEM;
211 	return 0;
212 }
213 
214 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
215 {
216 	kfree(rsrc->bmap);
217 }
218 
219 /* Get block LF's HW index from a PF_FUNC's block slot number */
220 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
221 {
222 	u16 match = 0;
223 	int lf;
224 
225 	mutex_lock(&rvu->rsrc_lock);
226 	for (lf = 0; lf < block->lf.max; lf++) {
227 		if (block->fn_map[lf] == pcifunc) {
228 			if (slot == match) {
229 				mutex_unlock(&rvu->rsrc_lock);
230 				return lf;
231 			}
232 			match++;
233 		}
234 	}
235 	mutex_unlock(&rvu->rsrc_lock);
236 	return -ENODEV;
237 }
238 
239 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
240  * Some silicon variants of OcteonTX2 supports
241  * multiple blocks of same type.
242  *
243  * @pcifunc has to be zero when no LF is yet attached.
244  *
245  * For a pcifunc if LFs are attached from multiple blocks of same type, then
246  * return blkaddr of first encountered block.
247  */
248 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
249 {
250 	int devnum, blkaddr = -ENODEV;
251 	u64 cfg, reg;
252 	bool is_pf;
253 
254 	switch (blktype) {
255 	case BLKTYPE_NPC:
256 		blkaddr = BLKADDR_NPC;
257 		goto exit;
258 	case BLKTYPE_NPA:
259 		blkaddr = BLKADDR_NPA;
260 		goto exit;
261 	case BLKTYPE_NIX:
262 		/* For now assume NIX0 */
263 		if (!pcifunc) {
264 			blkaddr = BLKADDR_NIX0;
265 			goto exit;
266 		}
267 		break;
268 	case BLKTYPE_SSO:
269 		blkaddr = BLKADDR_SSO;
270 		goto exit;
271 	case BLKTYPE_SSOW:
272 		blkaddr = BLKADDR_SSOW;
273 		goto exit;
274 	case BLKTYPE_TIM:
275 		blkaddr = BLKADDR_TIM;
276 		goto exit;
277 	case BLKTYPE_CPT:
278 		/* For now assume CPT0 */
279 		if (!pcifunc) {
280 			blkaddr = BLKADDR_CPT0;
281 			goto exit;
282 		}
283 		break;
284 	}
285 
286 	/* Check if this is a RVU PF or VF */
287 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
288 		is_pf = false;
289 		devnum = rvu_get_hwvf(rvu, pcifunc);
290 	} else {
291 		is_pf = true;
292 		devnum = rvu_get_pf(pcifunc);
293 	}
294 
295 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
296 	 * 'BLKADDR_NIX1'.
297 	 */
298 	if (blktype == BLKTYPE_NIX) {
299 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
300 			RVU_PRIV_HWVFX_NIXX_CFG(0);
301 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
302 		if (cfg) {
303 			blkaddr = BLKADDR_NIX0;
304 			goto exit;
305 		}
306 
307 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
308 			RVU_PRIV_HWVFX_NIXX_CFG(1);
309 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
310 		if (cfg)
311 			blkaddr = BLKADDR_NIX1;
312 	}
313 
314 	if (blktype == BLKTYPE_CPT) {
315 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
316 			RVU_PRIV_HWVFX_CPTX_CFG(0);
317 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
318 		if (cfg) {
319 			blkaddr = BLKADDR_CPT0;
320 			goto exit;
321 		}
322 
323 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
324 			RVU_PRIV_HWVFX_CPTX_CFG(1);
325 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
326 		if (cfg)
327 			blkaddr = BLKADDR_CPT1;
328 	}
329 
330 exit:
331 	if (is_block_implemented(rvu->hw, blkaddr))
332 		return blkaddr;
333 	return -ENODEV;
334 }
335 
336 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
337 				struct rvu_block *block, u16 pcifunc,
338 				u16 lf, bool attach)
339 {
340 	int devnum, num_lfs = 0;
341 	bool is_pf;
342 	u64 reg;
343 
344 	if (lf >= block->lf.max) {
345 		dev_err(&rvu->pdev->dev,
346 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
347 			__func__, lf, block->name, block->lf.max);
348 		return;
349 	}
350 
351 	/* Check if this is for a RVU PF or VF */
352 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
353 		is_pf = false;
354 		devnum = rvu_get_hwvf(rvu, pcifunc);
355 	} else {
356 		is_pf = true;
357 		devnum = rvu_get_pf(pcifunc);
358 	}
359 
360 	block->fn_map[lf] = attach ? pcifunc : 0;
361 
362 	switch (block->addr) {
363 	case BLKADDR_NPA:
364 		pfvf->npalf = attach ? true : false;
365 		num_lfs = pfvf->npalf;
366 		break;
367 	case BLKADDR_NIX0:
368 	case BLKADDR_NIX1:
369 		pfvf->nixlf = attach ? true : false;
370 		num_lfs = pfvf->nixlf;
371 		break;
372 	case BLKADDR_SSO:
373 		attach ? pfvf->sso++ : pfvf->sso--;
374 		num_lfs = pfvf->sso;
375 		break;
376 	case BLKADDR_SSOW:
377 		attach ? pfvf->ssow++ : pfvf->ssow--;
378 		num_lfs = pfvf->ssow;
379 		break;
380 	case BLKADDR_TIM:
381 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
382 		num_lfs = pfvf->timlfs;
383 		break;
384 	case BLKADDR_CPT0:
385 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
386 		num_lfs = pfvf->cptlfs;
387 		break;
388 	case BLKADDR_CPT1:
389 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
390 		num_lfs = pfvf->cpt1_lfs;
391 		break;
392 	}
393 
394 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
395 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
396 }
397 
398 inline int rvu_get_pf(u16 pcifunc)
399 {
400 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
401 }
402 
403 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
404 {
405 	u64 cfg;
406 
407 	/* Get numVFs attached to this PF and first HWVF */
408 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
409 	if (numvfs)
410 		*numvfs = (cfg >> 12) & 0xFF;
411 	if (hwvf)
412 		*hwvf = cfg & 0xFFF;
413 }
414 
415 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
416 {
417 	int pf, func;
418 	u64 cfg;
419 
420 	pf = rvu_get_pf(pcifunc);
421 	func = pcifunc & RVU_PFVF_FUNC_MASK;
422 
423 	/* Get first HWVF attached to this PF */
424 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
425 
426 	return ((cfg & 0xFFF) + func - 1);
427 }
428 
429 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
430 {
431 	/* Check if it is a PF or VF */
432 	if (pcifunc & RVU_PFVF_FUNC_MASK)
433 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
434 	else
435 		return &rvu->pf[rvu_get_pf(pcifunc)];
436 }
437 
438 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
439 {
440 	int pf, vf, nvfs;
441 	u64 cfg;
442 
443 	pf = rvu_get_pf(pcifunc);
444 	if (pf >= rvu->hw->total_pfs)
445 		return false;
446 
447 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
448 		return true;
449 
450 	/* Check if VF is within number of VFs attached to this PF */
451 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
452 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
453 	nvfs = (cfg >> 12) & 0xFF;
454 	if (vf >= nvfs)
455 		return false;
456 
457 	return true;
458 }
459 
460 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
461 {
462 	struct rvu_block *block;
463 
464 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
465 		return false;
466 
467 	block = &hw->block[blkaddr];
468 	return block->implemented;
469 }
470 
471 static void rvu_check_block_implemented(struct rvu *rvu)
472 {
473 	struct rvu_hwinfo *hw = rvu->hw;
474 	struct rvu_block *block;
475 	int blkid;
476 	u64 cfg;
477 
478 	/* For each block check if 'implemented' bit is set */
479 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
480 		block = &hw->block[blkid];
481 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
482 		if (cfg & BIT_ULL(11))
483 			block->implemented = true;
484 	}
485 }
486 
487 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
488 {
489 	rvu_write64(rvu, BLKADDR_RVUM,
490 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
491 		    RVU_BLK_RVUM_REVID);
492 }
493 
494 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
495 {
496 	rvu_write64(rvu, BLKADDR_RVUM,
497 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
498 }
499 
500 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
501 {
502 	int err;
503 
504 	if (!block->implemented)
505 		return 0;
506 
507 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
508 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
509 			   true);
510 	return err;
511 }
512 
513 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
514 {
515 	struct rvu_block *block = &rvu->hw->block[blkaddr];
516 	int err;
517 
518 	if (!block->implemented)
519 		return;
520 
521 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
522 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
523 	if (err)
524 		dev_err(rvu->dev, "HW block:%d reset failed\n", blkaddr);
525 }
526 
527 static void rvu_reset_all_blocks(struct rvu *rvu)
528 {
529 	/* Do a HW reset of all RVU blocks */
530 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
531 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
532 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
533 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
534 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
535 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
536 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
537 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
538 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
539 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
540 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
541 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
542 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
543 }
544 
545 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
546 {
547 	struct rvu_pfvf *pfvf;
548 	u64 cfg;
549 	int lf;
550 
551 	for (lf = 0; lf < block->lf.max; lf++) {
552 		cfg = rvu_read64(rvu, block->addr,
553 				 block->lfcfg_reg | (lf << block->lfshift));
554 		if (!(cfg & BIT_ULL(63)))
555 			continue;
556 
557 		/* Set this resource as being used */
558 		__set_bit(lf, block->lf.bmap);
559 
560 		/* Get, to whom this LF is attached */
561 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
562 		rvu_update_rsrc_map(rvu, pfvf, block,
563 				    (cfg >> 8) & 0xFFFF, lf, true);
564 
565 		/* Set start MSIX vector for this LF within this PF/VF */
566 		rvu_set_msix_offset(rvu, pfvf, block, lf);
567 	}
568 }
569 
570 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
571 {
572 	int min_vecs;
573 
574 	if (!vf)
575 		goto check_pf;
576 
577 	if (!nvecs) {
578 		dev_warn(rvu->dev,
579 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
580 			 pf, vf - 1, nvecs);
581 	}
582 	return;
583 
584 check_pf:
585 	if (pf == 0)
586 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
587 	else
588 		min_vecs = RVU_PF_INT_VEC_CNT;
589 
590 	if (!(nvecs < min_vecs))
591 		return;
592 	dev_warn(rvu->dev,
593 		 "PF%d is configured with too few vectors, %d, min is %d\n",
594 		 pf, nvecs, min_vecs);
595 }
596 
597 static int rvu_setup_msix_resources(struct rvu *rvu)
598 {
599 	struct rvu_hwinfo *hw = rvu->hw;
600 	int pf, vf, numvfs, hwvf, err;
601 	int nvecs, offset, max_msix;
602 	struct rvu_pfvf *pfvf;
603 	u64 cfg, phy_addr;
604 	dma_addr_t iova;
605 
606 	for (pf = 0; pf < hw->total_pfs; pf++) {
607 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
608 		/* If PF is not enabled, nothing to do */
609 		if (!((cfg >> 20) & 0x01))
610 			continue;
611 
612 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
613 
614 		pfvf = &rvu->pf[pf];
615 		/* Get num of MSIX vectors attached to this PF */
616 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
617 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
618 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
619 
620 		/* Alloc msix bitmap for this PF */
621 		err = rvu_alloc_bitmap(&pfvf->msix);
622 		if (err)
623 			return err;
624 
625 		/* Allocate memory for MSIX vector to RVU block LF mapping */
626 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
627 						sizeof(u16), GFP_KERNEL);
628 		if (!pfvf->msix_lfmap)
629 			return -ENOMEM;
630 
631 		/* For PF0 (AF) firmware will set msix vector offsets for
632 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
633 		 */
634 		if (!pf)
635 			goto setup_vfmsix;
636 
637 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
638 		 * These are allocated on driver init and never freed,
639 		 * so no need to set 'msix_lfmap' for these.
640 		 */
641 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
642 		nvecs = (cfg >> 12) & 0xFF;
643 		cfg &= ~0x7FFULL;
644 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
645 		rvu_write64(rvu, BLKADDR_RVUM,
646 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
647 setup_vfmsix:
648 		/* Alloc msix bitmap for VFs */
649 		for (vf = 0; vf < numvfs; vf++) {
650 			pfvf =  &rvu->hwvf[hwvf + vf];
651 			/* Get num of MSIX vectors attached to this VF */
652 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
653 					 RVU_PRIV_PFX_MSIX_CFG(pf));
654 			pfvf->msix.max = (cfg & 0xFFF) + 1;
655 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
656 
657 			/* Alloc msix bitmap for this VF */
658 			err = rvu_alloc_bitmap(&pfvf->msix);
659 			if (err)
660 				return err;
661 
662 			pfvf->msix_lfmap =
663 				devm_kcalloc(rvu->dev, pfvf->msix.max,
664 					     sizeof(u16), GFP_KERNEL);
665 			if (!pfvf->msix_lfmap)
666 				return -ENOMEM;
667 
668 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
669 			 * These are allocated on driver init and never freed,
670 			 * so no need to set 'msix_lfmap' for these.
671 			 */
672 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
673 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
674 			nvecs = (cfg >> 12) & 0xFF;
675 			cfg &= ~0x7FFULL;
676 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
677 			rvu_write64(rvu, BLKADDR_RVUM,
678 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
679 				    cfg | offset);
680 		}
681 	}
682 
683 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
684 	 * create an IOMMU mapping for the physical address configured by
685 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
686 	 */
687 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
688 	max_msix = cfg & 0xFFFFF;
689 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
690 		phy_addr = rvu->fwdata->msixtr_base;
691 	else
692 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
693 
694 	iova = dma_map_resource(rvu->dev, phy_addr,
695 				max_msix * PCI_MSIX_ENTRY_SIZE,
696 				DMA_BIDIRECTIONAL, 0);
697 
698 	if (dma_mapping_error(rvu->dev, iova))
699 		return -ENOMEM;
700 
701 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
702 	rvu->msix_base_iova = iova;
703 	rvu->msixtr_base_phy = phy_addr;
704 
705 	return 0;
706 }
707 
708 static void rvu_reset_msix(struct rvu *rvu)
709 {
710 	/* Restore msixtr base register */
711 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
712 		    rvu->msixtr_base_phy);
713 }
714 
715 static void rvu_free_hw_resources(struct rvu *rvu)
716 {
717 	struct rvu_hwinfo *hw = rvu->hw;
718 	struct rvu_block *block;
719 	struct rvu_pfvf  *pfvf;
720 	int id, max_msix;
721 	u64 cfg;
722 
723 	rvu_npa_freemem(rvu);
724 	rvu_npc_freemem(rvu);
725 	rvu_nix_freemem(rvu);
726 
727 	/* Free block LF bitmaps */
728 	for (id = 0; id < BLK_COUNT; id++) {
729 		block = &hw->block[id];
730 		kfree(block->lf.bmap);
731 	}
732 
733 	/* Free MSIX bitmaps */
734 	for (id = 0; id < hw->total_pfs; id++) {
735 		pfvf = &rvu->pf[id];
736 		kfree(pfvf->msix.bmap);
737 	}
738 
739 	for (id = 0; id < hw->total_vfs; id++) {
740 		pfvf = &rvu->hwvf[id];
741 		kfree(pfvf->msix.bmap);
742 	}
743 
744 	/* Unmap MSIX vector base IOVA mapping */
745 	if (!rvu->msix_base_iova)
746 		return;
747 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
748 	max_msix = cfg & 0xFFFFF;
749 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
750 			   max_msix * PCI_MSIX_ENTRY_SIZE,
751 			   DMA_BIDIRECTIONAL, 0);
752 
753 	rvu_reset_msix(rvu);
754 	mutex_destroy(&rvu->rsrc_lock);
755 }
756 
757 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
758 {
759 	struct rvu_hwinfo *hw = rvu->hw;
760 	int pf, vf, numvfs, hwvf;
761 	struct rvu_pfvf *pfvf;
762 	u64 *mac;
763 
764 	for (pf = 0; pf < hw->total_pfs; pf++) {
765 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
766 		if (!pf)
767 			goto lbkvf;
768 
769 		if (!is_pf_cgxmapped(rvu, pf))
770 			continue;
771 		/* Assign MAC address to PF */
772 		pfvf = &rvu->pf[pf];
773 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
774 			mac = &rvu->fwdata->pf_macs[pf];
775 			if (*mac)
776 				u64_to_ether_addr(*mac, pfvf->mac_addr);
777 			else
778 				eth_random_addr(pfvf->mac_addr);
779 		} else {
780 			eth_random_addr(pfvf->mac_addr);
781 		}
782 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
783 
784 lbkvf:
785 		/* Assign MAC address to VFs*/
786 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
787 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
788 			pfvf = &rvu->hwvf[hwvf];
789 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
790 				mac = &rvu->fwdata->vf_macs[hwvf];
791 				if (*mac)
792 					u64_to_ether_addr(*mac, pfvf->mac_addr);
793 				else
794 					eth_random_addr(pfvf->mac_addr);
795 			} else {
796 				eth_random_addr(pfvf->mac_addr);
797 			}
798 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
799 		}
800 	}
801 }
802 
803 static int rvu_fwdata_init(struct rvu *rvu)
804 {
805 	u64 fwdbase;
806 	int err;
807 
808 	/* Get firmware data base address */
809 	err = cgx_get_fwdata_base(&fwdbase);
810 	if (err)
811 		goto fail;
812 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
813 	if (!rvu->fwdata)
814 		goto fail;
815 	if (!is_rvu_fwdata_valid(rvu)) {
816 		dev_err(rvu->dev,
817 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
818 		iounmap(rvu->fwdata);
819 		rvu->fwdata = NULL;
820 		return -EINVAL;
821 	}
822 	return 0;
823 fail:
824 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
825 	return -EIO;
826 }
827 
828 static void rvu_fwdata_exit(struct rvu *rvu)
829 {
830 	if (rvu->fwdata)
831 		iounmap(rvu->fwdata);
832 }
833 
834 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
835 {
836 	struct rvu_hwinfo *hw = rvu->hw;
837 	struct rvu_block *block;
838 	int blkid;
839 	u64 cfg;
840 
841 	/* Init NIX LF's bitmap */
842 	block = &hw->block[blkaddr];
843 	if (!block->implemented)
844 		return 0;
845 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
846 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
847 	block->lf.max = cfg & 0xFFF;
848 	block->addr = blkaddr;
849 	block->type = BLKTYPE_NIX;
850 	block->lfshift = 8;
851 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
852 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
853 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
854 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
855 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
856 	block->lfreset_reg = NIX_AF_LF_RST;
857 	block->rvu = rvu;
858 	sprintf(block->name, "NIX%d", blkid);
859 	rvu->nix_blkaddr[blkid] = blkaddr;
860 	return rvu_alloc_bitmap(&block->lf);
861 }
862 
863 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
864 {
865 	struct rvu_hwinfo *hw = rvu->hw;
866 	struct rvu_block *block;
867 	int blkid;
868 	u64 cfg;
869 
870 	/* Init CPT LF's bitmap */
871 	block = &hw->block[blkaddr];
872 	if (!block->implemented)
873 		return 0;
874 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
875 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
876 	block->lf.max = cfg & 0xFF;
877 	block->addr = blkaddr;
878 	block->type = BLKTYPE_CPT;
879 	block->multislot = true;
880 	block->lfshift = 3;
881 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
882 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
883 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
884 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
885 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
886 	block->lfreset_reg = CPT_AF_LF_RST;
887 	block->rvu = rvu;
888 	sprintf(block->name, "CPT%d", blkid);
889 	return rvu_alloc_bitmap(&block->lf);
890 }
891 
892 static void rvu_get_lbk_bufsize(struct rvu *rvu)
893 {
894 	struct pci_dev *pdev = NULL;
895 	void __iomem *base;
896 	u64 lbk_const;
897 
898 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
899 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
900 	if (!pdev)
901 		return;
902 
903 	base = pci_ioremap_bar(pdev, 0);
904 	if (!base)
905 		goto err_put;
906 
907 	lbk_const = readq(base + LBK_CONST);
908 
909 	/* cache fifo size */
910 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
911 
912 	iounmap(base);
913 err_put:
914 	pci_dev_put(pdev);
915 }
916 
917 static int rvu_setup_hw_resources(struct rvu *rvu)
918 {
919 	struct rvu_hwinfo *hw = rvu->hw;
920 	struct rvu_block *block;
921 	int blkid, err;
922 	u64 cfg;
923 
924 	/* Get HW supported max RVU PF & VF count */
925 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
926 	hw->total_pfs = (cfg >> 32) & 0xFF;
927 	hw->total_vfs = (cfg >> 20) & 0xFFF;
928 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
929 
930 	/* Init NPA LF's bitmap */
931 	block = &hw->block[BLKADDR_NPA];
932 	if (!block->implemented)
933 		goto nix;
934 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
935 	block->lf.max = (cfg >> 16) & 0xFFF;
936 	block->addr = BLKADDR_NPA;
937 	block->type = BLKTYPE_NPA;
938 	block->lfshift = 8;
939 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
940 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
941 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
942 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
943 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
944 	block->lfreset_reg = NPA_AF_LF_RST;
945 	block->rvu = rvu;
946 	sprintf(block->name, "NPA");
947 	err = rvu_alloc_bitmap(&block->lf);
948 	if (err) {
949 		dev_err(rvu->dev,
950 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
951 		return err;
952 	}
953 
954 nix:
955 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
956 	if (err) {
957 		dev_err(rvu->dev,
958 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
959 		return err;
960 	}
961 
962 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
963 	if (err) {
964 		dev_err(rvu->dev,
965 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
966 		return err;
967 	}
968 
969 	/* Init SSO group's bitmap */
970 	block = &hw->block[BLKADDR_SSO];
971 	if (!block->implemented)
972 		goto ssow;
973 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
974 	block->lf.max = cfg & 0xFFFF;
975 	block->addr = BLKADDR_SSO;
976 	block->type = BLKTYPE_SSO;
977 	block->multislot = true;
978 	block->lfshift = 3;
979 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
980 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
981 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
982 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
983 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
984 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
985 	block->rvu = rvu;
986 	sprintf(block->name, "SSO GROUP");
987 	err = rvu_alloc_bitmap(&block->lf);
988 	if (err) {
989 		dev_err(rvu->dev,
990 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
991 		return err;
992 	}
993 
994 ssow:
995 	/* Init SSO workslot's bitmap */
996 	block = &hw->block[BLKADDR_SSOW];
997 	if (!block->implemented)
998 		goto tim;
999 	block->lf.max = (cfg >> 56) & 0xFF;
1000 	block->addr = BLKADDR_SSOW;
1001 	block->type = BLKTYPE_SSOW;
1002 	block->multislot = true;
1003 	block->lfshift = 3;
1004 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1005 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1006 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1007 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1008 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1009 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1010 	block->rvu = rvu;
1011 	sprintf(block->name, "SSOWS");
1012 	err = rvu_alloc_bitmap(&block->lf);
1013 	if (err) {
1014 		dev_err(rvu->dev,
1015 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
1016 		return err;
1017 	}
1018 
1019 tim:
1020 	/* Init TIM LF's bitmap */
1021 	block = &hw->block[BLKADDR_TIM];
1022 	if (!block->implemented)
1023 		goto cpt;
1024 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1025 	block->lf.max = cfg & 0xFFFF;
1026 	block->addr = BLKADDR_TIM;
1027 	block->type = BLKTYPE_TIM;
1028 	block->multislot = true;
1029 	block->lfshift = 3;
1030 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1031 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1032 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1033 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1034 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1035 	block->lfreset_reg = TIM_AF_LF_RST;
1036 	block->rvu = rvu;
1037 	sprintf(block->name, "TIM");
1038 	err = rvu_alloc_bitmap(&block->lf);
1039 	if (err) {
1040 		dev_err(rvu->dev,
1041 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1042 		return err;
1043 	}
1044 
1045 cpt:
1046 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1047 	if (err) {
1048 		dev_err(rvu->dev,
1049 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1050 		return err;
1051 	}
1052 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1053 	if (err) {
1054 		dev_err(rvu->dev,
1055 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1056 		return err;
1057 	}
1058 
1059 	/* Allocate memory for PFVF data */
1060 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1061 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1062 	if (!rvu->pf) {
1063 		dev_err(rvu->dev,
1064 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1065 		return -ENOMEM;
1066 	}
1067 
1068 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1069 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1070 	if (!rvu->hwvf) {
1071 		dev_err(rvu->dev,
1072 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1073 		return -ENOMEM;
1074 	}
1075 
1076 	mutex_init(&rvu->rsrc_lock);
1077 
1078 	rvu_fwdata_init(rvu);
1079 
1080 	err = rvu_setup_msix_resources(rvu);
1081 	if (err) {
1082 		dev_err(rvu->dev,
1083 			"%s: Failed to setup MSIX resources\n", __func__);
1084 		return err;
1085 	}
1086 
1087 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1088 		block = &hw->block[blkid];
1089 		if (!block->lf.bmap)
1090 			continue;
1091 
1092 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1093 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1094 					     sizeof(u16), GFP_KERNEL);
1095 		if (!block->fn_map) {
1096 			err = -ENOMEM;
1097 			goto msix_err;
1098 		}
1099 
1100 		/* Scan all blocks to check if low level firmware has
1101 		 * already provisioned any of the resources to a PF/VF.
1102 		 */
1103 		rvu_scan_block(rvu, block);
1104 	}
1105 
1106 	err = rvu_set_channels_base(rvu);
1107 	if (err)
1108 		goto msix_err;
1109 
1110 	err = rvu_npc_init(rvu);
1111 	if (err) {
1112 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1113 		goto npc_err;
1114 	}
1115 
1116 	err = rvu_cgx_init(rvu);
1117 	if (err) {
1118 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1119 		goto cgx_err;
1120 	}
1121 
1122 	/* Assign MACs for CGX mapped functions */
1123 	rvu_setup_pfvf_macaddress(rvu);
1124 
1125 	err = rvu_npa_init(rvu);
1126 	if (err) {
1127 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1128 		goto npa_err;
1129 	}
1130 
1131 	rvu_get_lbk_bufsize(rvu);
1132 
1133 	err = rvu_nix_init(rvu);
1134 	if (err) {
1135 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1136 		goto nix_err;
1137 	}
1138 
1139 	err = rvu_sdp_init(rvu);
1140 	if (err) {
1141 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1142 		goto nix_err;
1143 	}
1144 
1145 	rvu_program_channels(rvu);
1146 
1147 	return 0;
1148 
1149 nix_err:
1150 	rvu_nix_freemem(rvu);
1151 npa_err:
1152 	rvu_npa_freemem(rvu);
1153 cgx_err:
1154 	rvu_cgx_exit(rvu);
1155 npc_err:
1156 	rvu_npc_freemem(rvu);
1157 	rvu_fwdata_exit(rvu);
1158 msix_err:
1159 	rvu_reset_msix(rvu);
1160 	return err;
1161 }
1162 
1163 /* NPA and NIX admin queue APIs */
1164 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1165 {
1166 	if (!aq)
1167 		return;
1168 
1169 	qmem_free(rvu->dev, aq->inst);
1170 	qmem_free(rvu->dev, aq->res);
1171 	devm_kfree(rvu->dev, aq);
1172 }
1173 
1174 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1175 		 int qsize, int inst_size, int res_size)
1176 {
1177 	struct admin_queue *aq;
1178 	int err;
1179 
1180 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1181 	if (!*ad_queue)
1182 		return -ENOMEM;
1183 	aq = *ad_queue;
1184 
1185 	/* Alloc memory for instructions i.e AQ */
1186 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1187 	if (err) {
1188 		devm_kfree(rvu->dev, aq);
1189 		return err;
1190 	}
1191 
1192 	/* Alloc memory for results */
1193 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1194 	if (err) {
1195 		rvu_aq_free(rvu, aq);
1196 		return err;
1197 	}
1198 
1199 	spin_lock_init(&aq->lock);
1200 	return 0;
1201 }
1202 
1203 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1204 			   struct ready_msg_rsp *rsp)
1205 {
1206 	if (rvu->fwdata) {
1207 		rsp->rclk_freq = rvu->fwdata->rclk;
1208 		rsp->sclk_freq = rvu->fwdata->sclk;
1209 	}
1210 	return 0;
1211 }
1212 
1213 /* Get current count of a RVU block's LF/slots
1214  * provisioned to a given RVU func.
1215  */
1216 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1217 {
1218 	switch (blkaddr) {
1219 	case BLKADDR_NPA:
1220 		return pfvf->npalf ? 1 : 0;
1221 	case BLKADDR_NIX0:
1222 	case BLKADDR_NIX1:
1223 		return pfvf->nixlf ? 1 : 0;
1224 	case BLKADDR_SSO:
1225 		return pfvf->sso;
1226 	case BLKADDR_SSOW:
1227 		return pfvf->ssow;
1228 	case BLKADDR_TIM:
1229 		return pfvf->timlfs;
1230 	case BLKADDR_CPT0:
1231 		return pfvf->cptlfs;
1232 	case BLKADDR_CPT1:
1233 		return pfvf->cpt1_lfs;
1234 	}
1235 	return 0;
1236 }
1237 
1238 /* Return true if LFs of block type are attached to pcifunc */
1239 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1240 {
1241 	switch (blktype) {
1242 	case BLKTYPE_NPA:
1243 		return pfvf->npalf ? 1 : 0;
1244 	case BLKTYPE_NIX:
1245 		return pfvf->nixlf ? 1 : 0;
1246 	case BLKTYPE_SSO:
1247 		return !!pfvf->sso;
1248 	case BLKTYPE_SSOW:
1249 		return !!pfvf->ssow;
1250 	case BLKTYPE_TIM:
1251 		return !!pfvf->timlfs;
1252 	case BLKTYPE_CPT:
1253 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1254 	}
1255 
1256 	return false;
1257 }
1258 
1259 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1260 {
1261 	struct rvu_pfvf *pfvf;
1262 
1263 	if (!is_pf_func_valid(rvu, pcifunc))
1264 		return false;
1265 
1266 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1267 
1268 	/* Check if this PFFUNC has a LF of type blktype attached */
1269 	if (!is_blktype_attached(pfvf, blktype))
1270 		return false;
1271 
1272 	return true;
1273 }
1274 
1275 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1276 			   int pcifunc, int slot)
1277 {
1278 	u64 val;
1279 
1280 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1281 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1282 	/* Wait for the lookup to finish */
1283 	/* TODO: put some timeout here */
1284 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1285 		;
1286 
1287 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1288 
1289 	/* Check LF valid bit */
1290 	if (!(val & (1ULL << 12)))
1291 		return -1;
1292 
1293 	return (val & 0xFFF);
1294 }
1295 
1296 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1297 			      u16 global_slot, u16 *slot_in_block)
1298 {
1299 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1300 	int numlfs, total_lfs = 0, nr_blocks = 0;
1301 	int i, num_blkaddr[BLK_COUNT] = { 0 };
1302 	struct rvu_block *block;
1303 	int blkaddr;
1304 	u16 start_slot;
1305 
1306 	if (!is_blktype_attached(pfvf, blktype))
1307 		return -ENODEV;
1308 
1309 	/* Get all the block addresses from which LFs are attached to
1310 	 * the given pcifunc in num_blkaddr[].
1311 	 */
1312 	for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1313 		block = &rvu->hw->block[blkaddr];
1314 		if (block->type != blktype)
1315 			continue;
1316 		if (!is_block_implemented(rvu->hw, blkaddr))
1317 			continue;
1318 
1319 		numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1320 		if (numlfs) {
1321 			total_lfs += numlfs;
1322 			num_blkaddr[nr_blocks] = blkaddr;
1323 			nr_blocks++;
1324 		}
1325 	}
1326 
1327 	if (global_slot >= total_lfs)
1328 		return -ENODEV;
1329 
1330 	/* Based on the given global slot number retrieve the
1331 	 * correct block address out of all attached block
1332 	 * addresses and slot number in that block.
1333 	 */
1334 	total_lfs = 0;
1335 	blkaddr = -ENODEV;
1336 	for (i = 0; i < nr_blocks; i++) {
1337 		numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1338 		total_lfs += numlfs;
1339 		if (global_slot < total_lfs) {
1340 			blkaddr = num_blkaddr[i];
1341 			start_slot = total_lfs - numlfs;
1342 			*slot_in_block = global_slot - start_slot;
1343 			break;
1344 		}
1345 	}
1346 
1347 	return blkaddr;
1348 }
1349 
1350 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1351 {
1352 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1353 	struct rvu_hwinfo *hw = rvu->hw;
1354 	struct rvu_block *block;
1355 	int slot, lf, num_lfs;
1356 	int blkaddr;
1357 
1358 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1359 	if (blkaddr < 0)
1360 		return;
1361 
1362 	if (blktype == BLKTYPE_NIX)
1363 		rvu_nix_reset_mac(pfvf, pcifunc);
1364 
1365 	block = &hw->block[blkaddr];
1366 
1367 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1368 	if (!num_lfs)
1369 		return;
1370 
1371 	for (slot = 0; slot < num_lfs; slot++) {
1372 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1373 		if (lf < 0) /* This should never happen */
1374 			continue;
1375 
1376 		/* Disable the LF */
1377 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1378 			    (lf << block->lfshift), 0x00ULL);
1379 
1380 		/* Update SW maintained mapping info as well */
1381 		rvu_update_rsrc_map(rvu, pfvf, block,
1382 				    pcifunc, lf, false);
1383 
1384 		/* Free the resource */
1385 		rvu_free_rsrc(&block->lf, lf);
1386 
1387 		/* Clear MSIX vector offset for this LF */
1388 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1389 	}
1390 }
1391 
1392 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1393 			    u16 pcifunc)
1394 {
1395 	struct rvu_hwinfo *hw = rvu->hw;
1396 	bool detach_all = true;
1397 	struct rvu_block *block;
1398 	int blkid;
1399 
1400 	mutex_lock(&rvu->rsrc_lock);
1401 
1402 	/* Check for partial resource detach */
1403 	if (detach && detach->partial)
1404 		detach_all = false;
1405 
1406 	/* Check for RVU block's LFs attached to this func,
1407 	 * if so, detach them.
1408 	 */
1409 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1410 		block = &hw->block[blkid];
1411 		if (!block->lf.bmap)
1412 			continue;
1413 		if (!detach_all && detach) {
1414 			if (blkid == BLKADDR_NPA && !detach->npalf)
1415 				continue;
1416 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1417 				continue;
1418 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1419 				continue;
1420 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1421 				continue;
1422 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1423 				continue;
1424 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1425 				continue;
1426 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1427 				continue;
1428 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1429 				continue;
1430 		}
1431 		rvu_detach_block(rvu, pcifunc, block->type);
1432 	}
1433 
1434 	mutex_unlock(&rvu->rsrc_lock);
1435 	return 0;
1436 }
1437 
1438 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1439 				      struct rsrc_detach *detach,
1440 				      struct msg_rsp *rsp)
1441 {
1442 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1443 }
1444 
1445 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1446 {
1447 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1448 	int blkaddr = BLKADDR_NIX0, vf;
1449 	struct rvu_pfvf *pf;
1450 
1451 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1452 
1453 	/* All CGX mapped PFs are set with assigned NIX block during init */
1454 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1455 		blkaddr = pf->nix_blkaddr;
1456 	} else if (is_afvf(pcifunc)) {
1457 		vf = pcifunc - 1;
1458 		/* Assign NIX based on VF number. All even numbered VFs get
1459 		 * NIX0 and odd numbered gets NIX1
1460 		 */
1461 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1462 		/* NIX1 is not present on all silicons */
1463 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1464 			blkaddr = BLKADDR_NIX0;
1465 	}
1466 
1467 	/* if SDP1 then the blkaddr is NIX1 */
1468 	if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1469 		blkaddr = BLKADDR_NIX1;
1470 
1471 	switch (blkaddr) {
1472 	case BLKADDR_NIX1:
1473 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1474 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1475 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1476 		break;
1477 	case BLKADDR_NIX0:
1478 	default:
1479 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1480 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1481 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1482 		break;
1483 	}
1484 
1485 	return pfvf->nix_blkaddr;
1486 }
1487 
1488 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1489 				  u16 pcifunc, struct rsrc_attach *attach)
1490 {
1491 	int blkaddr;
1492 
1493 	switch (blktype) {
1494 	case BLKTYPE_NIX:
1495 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1496 		break;
1497 	case BLKTYPE_CPT:
1498 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1499 			return rvu_get_blkaddr(rvu, blktype, 0);
1500 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1501 			  BLKADDR_CPT0;
1502 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1503 			return -ENODEV;
1504 		break;
1505 	default:
1506 		return rvu_get_blkaddr(rvu, blktype, 0);
1507 	}
1508 
1509 	if (is_block_implemented(rvu->hw, blkaddr))
1510 		return blkaddr;
1511 
1512 	return -ENODEV;
1513 }
1514 
1515 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1516 			     int num_lfs, struct rsrc_attach *attach)
1517 {
1518 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1519 	struct rvu_hwinfo *hw = rvu->hw;
1520 	struct rvu_block *block;
1521 	int slot, lf;
1522 	int blkaddr;
1523 	u64 cfg;
1524 
1525 	if (!num_lfs)
1526 		return;
1527 
1528 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1529 	if (blkaddr < 0)
1530 		return;
1531 
1532 	block = &hw->block[blkaddr];
1533 	if (!block->lf.bmap)
1534 		return;
1535 
1536 	for (slot = 0; slot < num_lfs; slot++) {
1537 		/* Allocate the resource */
1538 		lf = rvu_alloc_rsrc(&block->lf);
1539 		if (lf < 0)
1540 			return;
1541 
1542 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1543 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1544 			    (lf << block->lfshift), cfg);
1545 		rvu_update_rsrc_map(rvu, pfvf, block,
1546 				    pcifunc, lf, true);
1547 
1548 		/* Set start MSIX vector for this LF within this PF/VF */
1549 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1550 	}
1551 }
1552 
1553 static int rvu_check_rsrc_availability(struct rvu *rvu,
1554 				       struct rsrc_attach *req, u16 pcifunc)
1555 {
1556 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1557 	int free_lfs, mappedlfs, blkaddr;
1558 	struct rvu_hwinfo *hw = rvu->hw;
1559 	struct rvu_block *block;
1560 
1561 	/* Only one NPA LF can be attached */
1562 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1563 		block = &hw->block[BLKADDR_NPA];
1564 		free_lfs = rvu_rsrc_free_count(&block->lf);
1565 		if (!free_lfs)
1566 			goto fail;
1567 	} else if (req->npalf) {
1568 		dev_err(&rvu->pdev->dev,
1569 			"Func 0x%x: Invalid req, already has NPA\n",
1570 			 pcifunc);
1571 		return -EINVAL;
1572 	}
1573 
1574 	/* Only one NIX LF can be attached */
1575 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1576 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1577 						 pcifunc, req);
1578 		if (blkaddr < 0)
1579 			return blkaddr;
1580 		block = &hw->block[blkaddr];
1581 		free_lfs = rvu_rsrc_free_count(&block->lf);
1582 		if (!free_lfs)
1583 			goto fail;
1584 	} else if (req->nixlf) {
1585 		dev_err(&rvu->pdev->dev,
1586 			"Func 0x%x: Invalid req, already has NIX\n",
1587 			pcifunc);
1588 		return -EINVAL;
1589 	}
1590 
1591 	if (req->sso) {
1592 		block = &hw->block[BLKADDR_SSO];
1593 		/* Is request within limits ? */
1594 		if (req->sso > block->lf.max) {
1595 			dev_err(&rvu->pdev->dev,
1596 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1597 				 pcifunc, req->sso, block->lf.max);
1598 			return -EINVAL;
1599 		}
1600 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1601 		free_lfs = rvu_rsrc_free_count(&block->lf);
1602 		/* Check if additional resources are available */
1603 		if (req->sso > mappedlfs &&
1604 		    ((req->sso - mappedlfs) > free_lfs))
1605 			goto fail;
1606 	}
1607 
1608 	if (req->ssow) {
1609 		block = &hw->block[BLKADDR_SSOW];
1610 		if (req->ssow > block->lf.max) {
1611 			dev_err(&rvu->pdev->dev,
1612 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1613 				 pcifunc, req->sso, block->lf.max);
1614 			return -EINVAL;
1615 		}
1616 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1617 		free_lfs = rvu_rsrc_free_count(&block->lf);
1618 		if (req->ssow > mappedlfs &&
1619 		    ((req->ssow - mappedlfs) > free_lfs))
1620 			goto fail;
1621 	}
1622 
1623 	if (req->timlfs) {
1624 		block = &hw->block[BLKADDR_TIM];
1625 		if (req->timlfs > block->lf.max) {
1626 			dev_err(&rvu->pdev->dev,
1627 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1628 				 pcifunc, req->timlfs, block->lf.max);
1629 			return -EINVAL;
1630 		}
1631 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1632 		free_lfs = rvu_rsrc_free_count(&block->lf);
1633 		if (req->timlfs > mappedlfs &&
1634 		    ((req->timlfs - mappedlfs) > free_lfs))
1635 			goto fail;
1636 	}
1637 
1638 	if (req->cptlfs) {
1639 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1640 						 pcifunc, req);
1641 		if (blkaddr < 0)
1642 			return blkaddr;
1643 		block = &hw->block[blkaddr];
1644 		if (req->cptlfs > block->lf.max) {
1645 			dev_err(&rvu->pdev->dev,
1646 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1647 				 pcifunc, req->cptlfs, block->lf.max);
1648 			return -EINVAL;
1649 		}
1650 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1651 		free_lfs = rvu_rsrc_free_count(&block->lf);
1652 		if (req->cptlfs > mappedlfs &&
1653 		    ((req->cptlfs - mappedlfs) > free_lfs))
1654 			goto fail;
1655 	}
1656 
1657 	return 0;
1658 
1659 fail:
1660 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1661 	return -ENOSPC;
1662 }
1663 
1664 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1665 				       struct rsrc_attach *attach)
1666 {
1667 	int blkaddr, num_lfs;
1668 
1669 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1670 					 attach->hdr.pcifunc, attach);
1671 	if (blkaddr < 0)
1672 		return false;
1673 
1674 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1675 					blkaddr);
1676 	/* Requester already has LFs from given block ? */
1677 	return !!num_lfs;
1678 }
1679 
1680 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1681 				      struct rsrc_attach *attach,
1682 				      struct msg_rsp *rsp)
1683 {
1684 	u16 pcifunc = attach->hdr.pcifunc;
1685 	int err;
1686 
1687 	/* If first request, detach all existing attached resources */
1688 	if (!attach->modify)
1689 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1690 
1691 	mutex_lock(&rvu->rsrc_lock);
1692 
1693 	/* Check if the request can be accommodated */
1694 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1695 	if (err)
1696 		goto exit;
1697 
1698 	/* Now attach the requested resources */
1699 	if (attach->npalf)
1700 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1701 
1702 	if (attach->nixlf)
1703 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1704 
1705 	if (attach->sso) {
1706 		/* RVU func doesn't know which exact LF or slot is attached
1707 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1708 		 * request, simply detach all existing attached LFs/slots
1709 		 * and attach a fresh.
1710 		 */
1711 		if (attach->modify)
1712 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1713 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1714 				 attach->sso, attach);
1715 	}
1716 
1717 	if (attach->ssow) {
1718 		if (attach->modify)
1719 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1720 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1721 				 attach->ssow, attach);
1722 	}
1723 
1724 	if (attach->timlfs) {
1725 		if (attach->modify)
1726 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1727 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1728 				 attach->timlfs, attach);
1729 	}
1730 
1731 	if (attach->cptlfs) {
1732 		if (attach->modify &&
1733 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1734 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1735 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1736 				 attach->cptlfs, attach);
1737 	}
1738 
1739 exit:
1740 	mutex_unlock(&rvu->rsrc_lock);
1741 	return err;
1742 }
1743 
1744 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1745 			       int blkaddr, int lf)
1746 {
1747 	u16 vec;
1748 
1749 	if (lf < 0)
1750 		return MSIX_VECTOR_INVALID;
1751 
1752 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1753 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1754 			return vec;
1755 	}
1756 	return MSIX_VECTOR_INVALID;
1757 }
1758 
1759 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1760 				struct rvu_block *block, int lf)
1761 {
1762 	u16 nvecs, vec, offset;
1763 	u64 cfg;
1764 
1765 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1766 			 (lf << block->lfshift));
1767 	nvecs = (cfg >> 12) & 0xFF;
1768 
1769 	/* Check and alloc MSIX vectors, must be contiguous */
1770 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1771 		return;
1772 
1773 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1774 
1775 	/* Config MSIX offset in LF */
1776 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1777 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1778 
1779 	/* Update the bitmap as well */
1780 	for (vec = 0; vec < nvecs; vec++)
1781 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1782 }
1783 
1784 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1785 				  struct rvu_block *block, int lf)
1786 {
1787 	u16 nvecs, vec, offset;
1788 	u64 cfg;
1789 
1790 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1791 			 (lf << block->lfshift));
1792 	nvecs = (cfg >> 12) & 0xFF;
1793 
1794 	/* Clear MSIX offset in LF */
1795 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1796 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1797 
1798 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1799 
1800 	/* Update the mapping */
1801 	for (vec = 0; vec < nvecs; vec++)
1802 		pfvf->msix_lfmap[offset + vec] = 0;
1803 
1804 	/* Free the same in MSIX bitmap */
1805 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1806 }
1807 
1808 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1809 				 struct msix_offset_rsp *rsp)
1810 {
1811 	struct rvu_hwinfo *hw = rvu->hw;
1812 	u16 pcifunc = req->hdr.pcifunc;
1813 	struct rvu_pfvf *pfvf;
1814 	int lf, slot, blkaddr;
1815 
1816 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1817 	if (!pfvf->msix.bmap)
1818 		return 0;
1819 
1820 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1821 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1822 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1823 
1824 	/* Get BLKADDR from which LFs are attached to pcifunc */
1825 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1826 	if (blkaddr < 0) {
1827 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1828 	} else {
1829 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1830 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1831 	}
1832 
1833 	rsp->sso = pfvf->sso;
1834 	for (slot = 0; slot < rsp->sso; slot++) {
1835 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1836 		rsp->sso_msixoff[slot] =
1837 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1838 	}
1839 
1840 	rsp->ssow = pfvf->ssow;
1841 	for (slot = 0; slot < rsp->ssow; slot++) {
1842 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1843 		rsp->ssow_msixoff[slot] =
1844 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1845 	}
1846 
1847 	rsp->timlfs = pfvf->timlfs;
1848 	for (slot = 0; slot < rsp->timlfs; slot++) {
1849 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1850 		rsp->timlf_msixoff[slot] =
1851 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1852 	}
1853 
1854 	rsp->cptlfs = pfvf->cptlfs;
1855 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1856 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1857 		rsp->cptlf_msixoff[slot] =
1858 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1859 	}
1860 
1861 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1862 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1863 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1864 		rsp->cpt1_lf_msixoff[slot] =
1865 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1866 	}
1867 
1868 	return 0;
1869 }
1870 
1871 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1872 				   struct free_rsrcs_rsp *rsp)
1873 {
1874 	struct rvu_hwinfo *hw = rvu->hw;
1875 	struct rvu_block *block;
1876 	struct nix_txsch *txsch;
1877 	struct nix_hw *nix_hw;
1878 
1879 	mutex_lock(&rvu->rsrc_lock);
1880 
1881 	block = &hw->block[BLKADDR_NPA];
1882 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1883 
1884 	block = &hw->block[BLKADDR_NIX0];
1885 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1886 
1887 	block = &hw->block[BLKADDR_NIX1];
1888 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1889 
1890 	block = &hw->block[BLKADDR_SSO];
1891 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1892 
1893 	block = &hw->block[BLKADDR_SSOW];
1894 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1895 
1896 	block = &hw->block[BLKADDR_TIM];
1897 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1898 
1899 	block = &hw->block[BLKADDR_CPT0];
1900 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1901 
1902 	block = &hw->block[BLKADDR_CPT1];
1903 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1904 
1905 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1906 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1907 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1908 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1909 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1910 		/* NIX1 */
1911 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1912 			goto out;
1913 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1914 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1915 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1916 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1917 	} else {
1918 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1919 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1920 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
1921 				rvu_rsrc_free_count(&txsch->schq);
1922 
1923 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1924 		rsp->schq[NIX_TXSCH_LVL_TL4] =
1925 				rvu_rsrc_free_count(&txsch->schq);
1926 
1927 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1928 		rsp->schq[NIX_TXSCH_LVL_TL3] =
1929 				rvu_rsrc_free_count(&txsch->schq);
1930 
1931 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1932 		rsp->schq[NIX_TXSCH_LVL_TL2] =
1933 				rvu_rsrc_free_count(&txsch->schq);
1934 
1935 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1936 			goto out;
1937 
1938 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1939 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1940 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1941 				rvu_rsrc_free_count(&txsch->schq);
1942 
1943 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1944 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1945 				rvu_rsrc_free_count(&txsch->schq);
1946 
1947 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1948 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1949 				rvu_rsrc_free_count(&txsch->schq);
1950 
1951 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1952 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1953 				rvu_rsrc_free_count(&txsch->schq);
1954 	}
1955 
1956 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1957 out:
1958 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1959 	mutex_unlock(&rvu->rsrc_lock);
1960 
1961 	return 0;
1962 }
1963 
1964 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1965 			    struct msg_rsp *rsp)
1966 {
1967 	u16 pcifunc = req->hdr.pcifunc;
1968 	u16 vf, numvfs;
1969 	u64 cfg;
1970 
1971 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1972 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1973 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1974 	numvfs = (cfg >> 12) & 0xFF;
1975 
1976 	if (vf && vf <= numvfs)
1977 		__rvu_flr_handler(rvu, pcifunc);
1978 	else
1979 		return RVU_INVALID_VF_ID;
1980 
1981 	return 0;
1982 }
1983 
1984 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1985 				struct get_hw_cap_rsp *rsp)
1986 {
1987 	struct rvu_hwinfo *hw = rvu->hw;
1988 
1989 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1990 	rsp->nix_shaping = hw->cap.nix_shaping;
1991 
1992 	return 0;
1993 }
1994 
1995 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
1996 				 struct msg_rsp *rsp)
1997 {
1998 	struct rvu_hwinfo *hw = rvu->hw;
1999 	u16 pcifunc = req->hdr.pcifunc;
2000 	struct rvu_pfvf *pfvf;
2001 	int blkaddr, nixlf;
2002 	u16 target;
2003 
2004 	/* Only PF can add VF permissions */
2005 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
2006 		return -EOPNOTSUPP;
2007 
2008 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2009 	pfvf = rvu_get_pfvf(rvu, target);
2010 
2011 	if (req->flags & RESET_VF_PERM) {
2012 		pfvf->flags &= RVU_CLEAR_VF_PERM;
2013 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2014 		 (req->flags & VF_TRUSTED)) {
2015 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2016 		/* disable multicast and promisc entries */
2017 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2018 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2019 			if (blkaddr < 0)
2020 				return 0;
2021 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2022 					   target, 0);
2023 			if (nixlf < 0)
2024 				return 0;
2025 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2026 						     NIXLF_ALLMULTI_ENTRY,
2027 						     false);
2028 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2029 						     NIXLF_PROMISC_ENTRY,
2030 						     false);
2031 		}
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2038 				struct mbox_msghdr *req)
2039 {
2040 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2041 
2042 	/* Check if valid, if not reply with a invalid msg */
2043 	if (req->sig != OTX2_MBOX_REQ_SIG)
2044 		goto bad_message;
2045 
2046 	switch (req->id) {
2047 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
2048 	case _id: {							\
2049 		struct _rsp_type *rsp;					\
2050 		int err;						\
2051 									\
2052 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
2053 			mbox, devid,					\
2054 			sizeof(struct _rsp_type));			\
2055 		/* some handlers should complete even if reply */	\
2056 		/* could not be allocated */				\
2057 		if (!rsp &&						\
2058 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
2059 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
2060 		    _id != MBOX_MSG_VF_FLR)				\
2061 			return -ENOMEM;					\
2062 		if (rsp) {						\
2063 			rsp->hdr.id = _id;				\
2064 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
2065 			rsp->hdr.pcifunc = req->pcifunc;		\
2066 			rsp->hdr.rc = 0;				\
2067 		}							\
2068 									\
2069 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
2070 						    (struct _req_type *)req, \
2071 						    rsp);		\
2072 		if (rsp && err)						\
2073 			rsp->hdr.rc = err;				\
2074 									\
2075 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
2076 		return rsp ? err : -ENOMEM;				\
2077 	}
2078 MBOX_MESSAGES
2079 #undef M
2080 
2081 bad_message:
2082 	default:
2083 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2084 		return -ENODEV;
2085 	}
2086 }
2087 
2088 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
2089 {
2090 	struct rvu *rvu = mwork->rvu;
2091 	int offset, err, id, devid;
2092 	struct otx2_mbox_dev *mdev;
2093 	struct mbox_hdr *req_hdr;
2094 	struct mbox_msghdr *msg;
2095 	struct mbox_wq_info *mw;
2096 	struct otx2_mbox *mbox;
2097 
2098 	switch (type) {
2099 	case TYPE_AFPF:
2100 		mw = &rvu->afpf_wq_info;
2101 		break;
2102 	case TYPE_AFVF:
2103 		mw = &rvu->afvf_wq_info;
2104 		break;
2105 	default:
2106 		return;
2107 	}
2108 
2109 	devid = mwork - mw->mbox_wrk;
2110 	mbox = &mw->mbox;
2111 	mdev = &mbox->dev[devid];
2112 
2113 	/* Process received mbox messages */
2114 	req_hdr = mdev->mbase + mbox->rx_start;
2115 	if (mw->mbox_wrk[devid].num_msgs == 0)
2116 		return;
2117 
2118 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2119 
2120 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2121 		msg = mdev->mbase + offset;
2122 
2123 		/* Set which PF/VF sent this message based on mbox IRQ */
2124 		switch (type) {
2125 		case TYPE_AFPF:
2126 			msg->pcifunc &=
2127 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2128 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2129 			break;
2130 		case TYPE_AFVF:
2131 			msg->pcifunc &=
2132 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2133 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2134 			break;
2135 		}
2136 
2137 		err = rvu_process_mbox_msg(mbox, devid, msg);
2138 		if (!err) {
2139 			offset = mbox->rx_start + msg->next_msgoff;
2140 			continue;
2141 		}
2142 
2143 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2144 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2145 				 err, otx2_mbox_id2name(msg->id),
2146 				 msg->id, rvu_get_pf(msg->pcifunc),
2147 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2148 		else
2149 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2150 				 err, otx2_mbox_id2name(msg->id),
2151 				 msg->id, devid);
2152 	}
2153 	mw->mbox_wrk[devid].num_msgs = 0;
2154 
2155 	/* Send mbox responses to VF/PF */
2156 	otx2_mbox_msg_send(mbox, devid);
2157 }
2158 
2159 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2160 {
2161 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2162 
2163 	__rvu_mbox_handler(mwork, TYPE_AFPF);
2164 }
2165 
2166 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2167 {
2168 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2169 
2170 	__rvu_mbox_handler(mwork, TYPE_AFVF);
2171 }
2172 
2173 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2174 {
2175 	struct rvu *rvu = mwork->rvu;
2176 	struct otx2_mbox_dev *mdev;
2177 	struct mbox_hdr *rsp_hdr;
2178 	struct mbox_msghdr *msg;
2179 	struct mbox_wq_info *mw;
2180 	struct otx2_mbox *mbox;
2181 	int offset, id, devid;
2182 
2183 	switch (type) {
2184 	case TYPE_AFPF:
2185 		mw = &rvu->afpf_wq_info;
2186 		break;
2187 	case TYPE_AFVF:
2188 		mw = &rvu->afvf_wq_info;
2189 		break;
2190 	default:
2191 		return;
2192 	}
2193 
2194 	devid = mwork - mw->mbox_wrk_up;
2195 	mbox = &mw->mbox_up;
2196 	mdev = &mbox->dev[devid];
2197 
2198 	rsp_hdr = mdev->mbase + mbox->rx_start;
2199 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2200 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2201 		return;
2202 	}
2203 
2204 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2205 
2206 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2207 		msg = mdev->mbase + offset;
2208 
2209 		if (msg->id >= MBOX_MSG_MAX) {
2210 			dev_err(rvu->dev,
2211 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2212 			goto end;
2213 		}
2214 
2215 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2216 			dev_err(rvu->dev,
2217 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2218 				msg->sig, msg->id);
2219 			goto end;
2220 		}
2221 
2222 		switch (msg->id) {
2223 		case MBOX_MSG_CGX_LINK_EVENT:
2224 			break;
2225 		default:
2226 			if (msg->rc)
2227 				dev_err(rvu->dev,
2228 					"Mbox msg response has err %d, ID 0x%x\n",
2229 					msg->rc, msg->id);
2230 			break;
2231 		}
2232 end:
2233 		offset = mbox->rx_start + msg->next_msgoff;
2234 		mdev->msgs_acked++;
2235 	}
2236 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2237 
2238 	otx2_mbox_reset(mbox, devid);
2239 }
2240 
2241 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2242 {
2243 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2244 
2245 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2246 }
2247 
2248 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2249 {
2250 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2251 
2252 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2253 }
2254 
2255 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2256 				int num, int type)
2257 {
2258 	struct rvu_hwinfo *hw = rvu->hw;
2259 	int region;
2260 	u64 bar4;
2261 
2262 	/* For cn10k platform VF mailbox regions of a PF follows after the
2263 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2264 	 * RVU_PF_VF_BAR4_ADDR register.
2265 	 */
2266 	if (type == TYPE_AFVF) {
2267 		for (region = 0; region < num; region++) {
2268 			if (hw->cap.per_pf_mbox_regs) {
2269 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2270 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2271 						  MBOX_SIZE;
2272 				bar4 += region * MBOX_SIZE;
2273 			} else {
2274 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2275 				bar4 += region * MBOX_SIZE;
2276 			}
2277 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2278 			if (!mbox_addr[region])
2279 				goto error;
2280 		}
2281 		return 0;
2282 	}
2283 
2284 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2285 	 * PF registers. Whereas for Octeontx2 it is read from
2286 	 * RVU_AF_PF_BAR4_ADDR register.
2287 	 */
2288 	for (region = 0; region < num; region++) {
2289 		if (hw->cap.per_pf_mbox_regs) {
2290 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2291 					  RVU_AF_PFX_BAR4_ADDR(region));
2292 		} else {
2293 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2294 					  RVU_AF_PF_BAR4_ADDR);
2295 			bar4 += region * MBOX_SIZE;
2296 		}
2297 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2298 		if (!mbox_addr[region])
2299 			goto error;
2300 	}
2301 	return 0;
2302 
2303 error:
2304 	while (region--)
2305 		iounmap((void __iomem *)mbox_addr[region]);
2306 	return -ENOMEM;
2307 }
2308 
2309 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2310 			 int type, int num,
2311 			 void (mbox_handler)(struct work_struct *),
2312 			 void (mbox_up_handler)(struct work_struct *))
2313 {
2314 	int err = -EINVAL, i, dir, dir_up;
2315 	void __iomem *reg_base;
2316 	struct rvu_work *mwork;
2317 	void **mbox_regions;
2318 	const char *name;
2319 
2320 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2321 	if (!mbox_regions)
2322 		return -ENOMEM;
2323 
2324 	switch (type) {
2325 	case TYPE_AFPF:
2326 		name = "rvu_afpf_mailbox";
2327 		dir = MBOX_DIR_AFPF;
2328 		dir_up = MBOX_DIR_AFPF_UP;
2329 		reg_base = rvu->afreg_base;
2330 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2331 		if (err)
2332 			goto free_regions;
2333 		break;
2334 	case TYPE_AFVF:
2335 		name = "rvu_afvf_mailbox";
2336 		dir = MBOX_DIR_PFVF;
2337 		dir_up = MBOX_DIR_PFVF_UP;
2338 		reg_base = rvu->pfreg_base;
2339 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2340 		if (err)
2341 			goto free_regions;
2342 		break;
2343 	default:
2344 		goto free_regions;
2345 	}
2346 
2347 	mw->mbox_wq = alloc_workqueue(name,
2348 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2349 				      num);
2350 	if (!mw->mbox_wq) {
2351 		err = -ENOMEM;
2352 		goto unmap_regions;
2353 	}
2354 
2355 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2356 				    sizeof(struct rvu_work), GFP_KERNEL);
2357 	if (!mw->mbox_wrk) {
2358 		err = -ENOMEM;
2359 		goto exit;
2360 	}
2361 
2362 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2363 				       sizeof(struct rvu_work), GFP_KERNEL);
2364 	if (!mw->mbox_wrk_up) {
2365 		err = -ENOMEM;
2366 		goto exit;
2367 	}
2368 
2369 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2370 				     reg_base, dir, num);
2371 	if (err)
2372 		goto exit;
2373 
2374 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2375 				     reg_base, dir_up, num);
2376 	if (err)
2377 		goto exit;
2378 
2379 	for (i = 0; i < num; i++) {
2380 		mwork = &mw->mbox_wrk[i];
2381 		mwork->rvu = rvu;
2382 		INIT_WORK(&mwork->work, mbox_handler);
2383 
2384 		mwork = &mw->mbox_wrk_up[i];
2385 		mwork->rvu = rvu;
2386 		INIT_WORK(&mwork->work, mbox_up_handler);
2387 	}
2388 	kfree(mbox_regions);
2389 	return 0;
2390 
2391 exit:
2392 	destroy_workqueue(mw->mbox_wq);
2393 unmap_regions:
2394 	while (num--)
2395 		iounmap((void __iomem *)mbox_regions[num]);
2396 free_regions:
2397 	kfree(mbox_regions);
2398 	return err;
2399 }
2400 
2401 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2402 {
2403 	struct otx2_mbox *mbox = &mw->mbox;
2404 	struct otx2_mbox_dev *mdev;
2405 	int devid;
2406 
2407 	if (mw->mbox_wq) {
2408 		destroy_workqueue(mw->mbox_wq);
2409 		mw->mbox_wq = NULL;
2410 	}
2411 
2412 	for (devid = 0; devid < mbox->ndevs; devid++) {
2413 		mdev = &mbox->dev[devid];
2414 		if (mdev->hwbase)
2415 			iounmap((void __iomem *)mdev->hwbase);
2416 	}
2417 
2418 	otx2_mbox_destroy(&mw->mbox);
2419 	otx2_mbox_destroy(&mw->mbox_up);
2420 }
2421 
2422 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2423 			   int mdevs, u64 intr)
2424 {
2425 	struct otx2_mbox_dev *mdev;
2426 	struct otx2_mbox *mbox;
2427 	struct mbox_hdr *hdr;
2428 	int i;
2429 
2430 	for (i = first; i < mdevs; i++) {
2431 		/* start from 0 */
2432 		if (!(intr & BIT_ULL(i - first)))
2433 			continue;
2434 
2435 		mbox = &mw->mbox;
2436 		mdev = &mbox->dev[i];
2437 		hdr = mdev->mbase + mbox->rx_start;
2438 
2439 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2440 		 * handler to  ensure that it holds a correct value next time
2441 		 * when the interrupt handler is called.
2442 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2443 		 * pf>mbox.up_num_msgs holds the data for use in
2444 		 * pfaf_mbox_up_handler.
2445 		 */
2446 
2447 		if (hdr->num_msgs) {
2448 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2449 			hdr->num_msgs = 0;
2450 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2451 		}
2452 		mbox = &mw->mbox_up;
2453 		mdev = &mbox->dev[i];
2454 		hdr = mdev->mbase + mbox->rx_start;
2455 		if (hdr->num_msgs) {
2456 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2457 			hdr->num_msgs = 0;
2458 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2459 		}
2460 	}
2461 }
2462 
2463 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2464 {
2465 	struct rvu *rvu = (struct rvu *)rvu_irq;
2466 	int vfs = rvu->vfs;
2467 	u64 intr;
2468 
2469 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2470 	/* Clear interrupts */
2471 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2472 	if (intr)
2473 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2474 
2475 	/* Sync with mbox memory region */
2476 	rmb();
2477 
2478 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2479 
2480 	/* Handle VF interrupts */
2481 	if (vfs > 64) {
2482 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2483 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2484 
2485 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2486 		vfs -= 64;
2487 	}
2488 
2489 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2490 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2491 	if (intr)
2492 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2493 
2494 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2495 
2496 	return IRQ_HANDLED;
2497 }
2498 
2499 static void rvu_enable_mbox_intr(struct rvu *rvu)
2500 {
2501 	struct rvu_hwinfo *hw = rvu->hw;
2502 
2503 	/* Clear spurious irqs, if any */
2504 	rvu_write64(rvu, BLKADDR_RVUM,
2505 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2506 
2507 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2508 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2509 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2510 }
2511 
2512 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2513 {
2514 	struct rvu_block *block;
2515 	int slot, lf, num_lfs;
2516 	int err;
2517 
2518 	block = &rvu->hw->block[blkaddr];
2519 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2520 					block->addr);
2521 	if (!num_lfs)
2522 		return;
2523 	for (slot = 0; slot < num_lfs; slot++) {
2524 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2525 		if (lf < 0)
2526 			continue;
2527 
2528 		/* Cleanup LF and reset it */
2529 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2530 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2531 		else if (block->addr == BLKADDR_NPA)
2532 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2533 		else if ((block->addr == BLKADDR_CPT0) ||
2534 			 (block->addr == BLKADDR_CPT1))
2535 			rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2536 					    slot);
2537 
2538 		err = rvu_lf_reset(rvu, block, lf);
2539 		if (err) {
2540 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2541 				block->addr, lf);
2542 		}
2543 	}
2544 }
2545 
2546 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2547 {
2548 	mutex_lock(&rvu->flr_lock);
2549 	/* Reset order should reflect inter-block dependencies:
2550 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2551 	 * 2. Flush and reset SSO/SSOW
2552 	 * 3. Cleanup pools (NPA)
2553 	 */
2554 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2555 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2556 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2557 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2558 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2559 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2560 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2561 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2562 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2563 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2564 	mutex_unlock(&rvu->flr_lock);
2565 }
2566 
2567 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2568 {
2569 	int reg = 0;
2570 
2571 	/* pcifunc = 0(PF0) | (vf + 1) */
2572 	__rvu_flr_handler(rvu, vf + 1);
2573 
2574 	if (vf >= 64) {
2575 		reg = 1;
2576 		vf = vf - 64;
2577 	}
2578 
2579 	/* Signal FLR finish and enable IRQ */
2580 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2581 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2582 }
2583 
2584 static void rvu_flr_handler(struct work_struct *work)
2585 {
2586 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2587 	struct rvu *rvu = flrwork->rvu;
2588 	u16 pcifunc, numvfs, vf;
2589 	u64 cfg;
2590 	int pf;
2591 
2592 	pf = flrwork - rvu->flr_wrk;
2593 	if (pf >= rvu->hw->total_pfs) {
2594 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2595 		return;
2596 	}
2597 
2598 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2599 	numvfs = (cfg >> 12) & 0xFF;
2600 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2601 
2602 	for (vf = 0; vf < numvfs; vf++)
2603 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2604 
2605 	__rvu_flr_handler(rvu, pcifunc);
2606 
2607 	/* Signal FLR finish */
2608 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2609 
2610 	/* Enable interrupt */
2611 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2612 }
2613 
2614 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2615 {
2616 	int dev, vf, reg = 0;
2617 	u64 intr;
2618 
2619 	if (start_vf >= 64)
2620 		reg = 1;
2621 
2622 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2623 	if (!intr)
2624 		return;
2625 
2626 	for (vf = 0; vf < numvfs; vf++) {
2627 		if (!(intr & BIT_ULL(vf)))
2628 			continue;
2629 		/* Clear and disable the interrupt */
2630 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2631 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2632 
2633 		dev = vf + start_vf + rvu->hw->total_pfs;
2634 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2635 	}
2636 }
2637 
2638 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2639 {
2640 	struct rvu *rvu = (struct rvu *)rvu_irq;
2641 	u64 intr;
2642 	u8  pf;
2643 
2644 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2645 	if (!intr)
2646 		goto afvf_flr;
2647 
2648 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2649 		if (intr & (1ULL << pf)) {
2650 			/* clear interrupt */
2651 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2652 				    BIT_ULL(pf));
2653 			/* Disable the interrupt */
2654 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2655 				    BIT_ULL(pf));
2656 			/* PF is already dead do only AF related operations */
2657 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2658 		}
2659 	}
2660 
2661 afvf_flr:
2662 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2663 	if (rvu->vfs > 64)
2664 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2665 
2666 	return IRQ_HANDLED;
2667 }
2668 
2669 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2670 {
2671 	int vf;
2672 
2673 	/* Nothing to be done here other than clearing the
2674 	 * TRPEND bit.
2675 	 */
2676 	for (vf = 0; vf < 64; vf++) {
2677 		if (intr & (1ULL << vf)) {
2678 			/* clear the trpend due to ME(master enable) */
2679 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2680 			/* clear interrupt */
2681 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2682 		}
2683 	}
2684 }
2685 
2686 /* Handles ME interrupts from VFs of AF */
2687 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2688 {
2689 	struct rvu *rvu = (struct rvu *)rvu_irq;
2690 	int vfset;
2691 	u64 intr;
2692 
2693 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2694 
2695 	for (vfset = 0; vfset <= 1; vfset++) {
2696 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2697 		if (intr)
2698 			rvu_me_handle_vfset(rvu, vfset, intr);
2699 	}
2700 
2701 	return IRQ_HANDLED;
2702 }
2703 
2704 /* Handles ME interrupts from PFs */
2705 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2706 {
2707 	struct rvu *rvu = (struct rvu *)rvu_irq;
2708 	u64 intr;
2709 	u8  pf;
2710 
2711 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2712 
2713 	/* Nothing to be done here other than clearing the
2714 	 * TRPEND bit.
2715 	 */
2716 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2717 		if (intr & (1ULL << pf)) {
2718 			/* clear the trpend due to ME(master enable) */
2719 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2720 				    BIT_ULL(pf));
2721 			/* clear interrupt */
2722 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2723 				    BIT_ULL(pf));
2724 		}
2725 	}
2726 
2727 	return IRQ_HANDLED;
2728 }
2729 
2730 static void rvu_unregister_interrupts(struct rvu *rvu)
2731 {
2732 	int irq;
2733 
2734 	rvu_cpt_unregister_interrupts(rvu);
2735 
2736 	/* Disable the Mbox interrupt */
2737 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2738 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2739 
2740 	/* Disable the PF FLR interrupt */
2741 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2742 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2743 
2744 	/* Disable the PF ME interrupt */
2745 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2746 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2747 
2748 	for (irq = 0; irq < rvu->num_vec; irq++) {
2749 		if (rvu->irq_allocated[irq]) {
2750 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2751 			rvu->irq_allocated[irq] = false;
2752 		}
2753 	}
2754 
2755 	pci_free_irq_vectors(rvu->pdev);
2756 	rvu->num_vec = 0;
2757 }
2758 
2759 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2760 {
2761 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2762 	int offset;
2763 
2764 	pfvf = &rvu->pf[0];
2765 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2766 
2767 	/* Make sure there are enough MSIX vectors configured so that
2768 	 * VF interrupts can be handled. Offset equal to zero means
2769 	 * that PF vectors are not configured and overlapping AF vectors.
2770 	 */
2771 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2772 	       offset;
2773 }
2774 
2775 static int rvu_register_interrupts(struct rvu *rvu)
2776 {
2777 	int ret, offset, pf_vec_start;
2778 
2779 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2780 
2781 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2782 					   NAME_SIZE, GFP_KERNEL);
2783 	if (!rvu->irq_name)
2784 		return -ENOMEM;
2785 
2786 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2787 					  sizeof(bool), GFP_KERNEL);
2788 	if (!rvu->irq_allocated)
2789 		return -ENOMEM;
2790 
2791 	/* Enable MSI-X */
2792 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2793 				    rvu->num_vec, PCI_IRQ_MSIX);
2794 	if (ret < 0) {
2795 		dev_err(rvu->dev,
2796 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2797 			rvu->num_vec, ret);
2798 		return ret;
2799 	}
2800 
2801 	/* Register mailbox interrupt handler */
2802 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2803 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2804 			  rvu_mbox_intr_handler, 0,
2805 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2806 	if (ret) {
2807 		dev_err(rvu->dev,
2808 			"RVUAF: IRQ registration failed for mbox irq\n");
2809 		goto fail;
2810 	}
2811 
2812 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2813 
2814 	/* Enable mailbox interrupts from all PFs */
2815 	rvu_enable_mbox_intr(rvu);
2816 
2817 	/* Register FLR interrupt handler */
2818 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2819 		"RVUAF FLR");
2820 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2821 			  rvu_flr_intr_handler, 0,
2822 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2823 			  rvu);
2824 	if (ret) {
2825 		dev_err(rvu->dev,
2826 			"RVUAF: IRQ registration failed for FLR\n");
2827 		goto fail;
2828 	}
2829 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2830 
2831 	/* Enable FLR interrupt for all PFs*/
2832 	rvu_write64(rvu, BLKADDR_RVUM,
2833 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2834 
2835 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2836 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2837 
2838 	/* Register ME interrupt handler */
2839 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2840 		"RVUAF ME");
2841 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2842 			  rvu_me_pf_intr_handler, 0,
2843 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2844 			  rvu);
2845 	if (ret) {
2846 		dev_err(rvu->dev,
2847 			"RVUAF: IRQ registration failed for ME\n");
2848 	}
2849 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2850 
2851 	/* Clear TRPEND bit for all PF */
2852 	rvu_write64(rvu, BLKADDR_RVUM,
2853 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2854 	/* Enable ME interrupt for all PFs*/
2855 	rvu_write64(rvu, BLKADDR_RVUM,
2856 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2857 
2858 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2859 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2860 
2861 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2862 		return 0;
2863 
2864 	/* Get PF MSIX vectors offset. */
2865 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2866 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2867 
2868 	/* Register MBOX0 interrupt. */
2869 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2870 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2871 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2872 			  rvu_mbox_intr_handler, 0,
2873 			  &rvu->irq_name[offset * NAME_SIZE],
2874 			  rvu);
2875 	if (ret)
2876 		dev_err(rvu->dev,
2877 			"RVUAF: IRQ registration failed for Mbox0\n");
2878 
2879 	rvu->irq_allocated[offset] = true;
2880 
2881 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2882 	 * simply increment current offset by 1.
2883 	 */
2884 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2885 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2886 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2887 			  rvu_mbox_intr_handler, 0,
2888 			  &rvu->irq_name[offset * NAME_SIZE],
2889 			  rvu);
2890 	if (ret)
2891 		dev_err(rvu->dev,
2892 			"RVUAF: IRQ registration failed for Mbox1\n");
2893 
2894 	rvu->irq_allocated[offset] = true;
2895 
2896 	/* Register FLR interrupt handler for AF's VFs */
2897 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2898 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2899 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2900 			  rvu_flr_intr_handler, 0,
2901 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2902 	if (ret) {
2903 		dev_err(rvu->dev,
2904 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2905 		goto fail;
2906 	}
2907 	rvu->irq_allocated[offset] = true;
2908 
2909 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2910 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2911 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2912 			  rvu_flr_intr_handler, 0,
2913 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2914 	if (ret) {
2915 		dev_err(rvu->dev,
2916 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2917 		goto fail;
2918 	}
2919 	rvu->irq_allocated[offset] = true;
2920 
2921 	/* Register ME interrupt handler for AF's VFs */
2922 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2923 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2924 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2925 			  rvu_me_vf_intr_handler, 0,
2926 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2927 	if (ret) {
2928 		dev_err(rvu->dev,
2929 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2930 		goto fail;
2931 	}
2932 	rvu->irq_allocated[offset] = true;
2933 
2934 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2935 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2936 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2937 			  rvu_me_vf_intr_handler, 0,
2938 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2939 	if (ret) {
2940 		dev_err(rvu->dev,
2941 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2942 		goto fail;
2943 	}
2944 	rvu->irq_allocated[offset] = true;
2945 
2946 	ret = rvu_cpt_register_interrupts(rvu);
2947 	if (ret)
2948 		goto fail;
2949 
2950 	return 0;
2951 
2952 fail:
2953 	rvu_unregister_interrupts(rvu);
2954 	return ret;
2955 }
2956 
2957 static void rvu_flr_wq_destroy(struct rvu *rvu)
2958 {
2959 	if (rvu->flr_wq) {
2960 		destroy_workqueue(rvu->flr_wq);
2961 		rvu->flr_wq = NULL;
2962 	}
2963 }
2964 
2965 static int rvu_flr_init(struct rvu *rvu)
2966 {
2967 	int dev, num_devs;
2968 	u64 cfg;
2969 	int pf;
2970 
2971 	/* Enable FLR for all PFs*/
2972 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2973 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2974 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2975 			    cfg | BIT_ULL(22));
2976 	}
2977 
2978 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2979 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2980 				       1);
2981 	if (!rvu->flr_wq)
2982 		return -ENOMEM;
2983 
2984 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2985 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2986 				    sizeof(struct rvu_work), GFP_KERNEL);
2987 	if (!rvu->flr_wrk) {
2988 		destroy_workqueue(rvu->flr_wq);
2989 		return -ENOMEM;
2990 	}
2991 
2992 	for (dev = 0; dev < num_devs; dev++) {
2993 		rvu->flr_wrk[dev].rvu = rvu;
2994 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2995 	}
2996 
2997 	mutex_init(&rvu->flr_lock);
2998 
2999 	return 0;
3000 }
3001 
3002 static void rvu_disable_afvf_intr(struct rvu *rvu)
3003 {
3004 	int vfs = rvu->vfs;
3005 
3006 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3007 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3008 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3009 	if (vfs <= 64)
3010 		return;
3011 
3012 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3013 		      INTR_MASK(vfs - 64));
3014 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3015 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3016 }
3017 
3018 static void rvu_enable_afvf_intr(struct rvu *rvu)
3019 {
3020 	int vfs = rvu->vfs;
3021 
3022 	/* Clear any pending interrupts and enable AF VF interrupts for
3023 	 * the first 64 VFs.
3024 	 */
3025 	/* Mbox */
3026 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3027 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3028 
3029 	/* FLR */
3030 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3031 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3032 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3033 
3034 	/* Same for remaining VFs, if any. */
3035 	if (vfs <= 64)
3036 		return;
3037 
3038 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3039 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3040 		      INTR_MASK(vfs - 64));
3041 
3042 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3043 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3044 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3045 }
3046 
3047 int rvu_get_num_lbk_chans(void)
3048 {
3049 	struct pci_dev *pdev;
3050 	void __iomem *base;
3051 	int ret = -EIO;
3052 
3053 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3054 			      NULL);
3055 	if (!pdev)
3056 		goto err;
3057 
3058 	base = pci_ioremap_bar(pdev, 0);
3059 	if (!base)
3060 		goto err_put;
3061 
3062 	/* Read number of available LBK channels from LBK(0)_CONST register. */
3063 	ret = (readq(base + 0x10) >> 32) & 0xffff;
3064 	iounmap(base);
3065 err_put:
3066 	pci_dev_put(pdev);
3067 err:
3068 	return ret;
3069 }
3070 
3071 static int rvu_enable_sriov(struct rvu *rvu)
3072 {
3073 	struct pci_dev *pdev = rvu->pdev;
3074 	int err, chans, vfs;
3075 
3076 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3077 		dev_warn(&pdev->dev,
3078 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
3079 		return 0;
3080 	}
3081 
3082 	chans = rvu_get_num_lbk_chans();
3083 	if (chans < 0)
3084 		return chans;
3085 
3086 	vfs = pci_sriov_get_totalvfs(pdev);
3087 
3088 	/* Limit VFs in case we have more VFs than LBK channels available. */
3089 	if (vfs > chans)
3090 		vfs = chans;
3091 
3092 	if (!vfs)
3093 		return 0;
3094 
3095 	/* LBK channel number 63 is used for switching packets between
3096 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3097 	 */
3098 	if (vfs > 62)
3099 		vfs = 62;
3100 
3101 	/* Save VFs number for reference in VF interrupts handlers.
3102 	 * Since interrupts might start arriving during SRIOV enablement
3103 	 * ordinary API cannot be used to get number of enabled VFs.
3104 	 */
3105 	rvu->vfs = vfs;
3106 
3107 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3108 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3109 	if (err)
3110 		return err;
3111 
3112 	rvu_enable_afvf_intr(rvu);
3113 	/* Make sure IRQs are enabled before SRIOV. */
3114 	mb();
3115 
3116 	err = pci_enable_sriov(pdev, vfs);
3117 	if (err) {
3118 		rvu_disable_afvf_intr(rvu);
3119 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3120 		return err;
3121 	}
3122 
3123 	return 0;
3124 }
3125 
3126 static void rvu_disable_sriov(struct rvu *rvu)
3127 {
3128 	rvu_disable_afvf_intr(rvu);
3129 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3130 	pci_disable_sriov(rvu->pdev);
3131 }
3132 
3133 static void rvu_update_module_params(struct rvu *rvu)
3134 {
3135 	const char *default_pfl_name = "default";
3136 
3137 	strscpy(rvu->mkex_pfl_name,
3138 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3139 	strscpy(rvu->kpu_pfl_name,
3140 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3141 }
3142 
3143 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3144 {
3145 	struct device *dev = &pdev->dev;
3146 	struct rvu *rvu;
3147 	int    err;
3148 
3149 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3150 	if (!rvu)
3151 		return -ENOMEM;
3152 
3153 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3154 	if (!rvu->hw) {
3155 		devm_kfree(dev, rvu);
3156 		return -ENOMEM;
3157 	}
3158 
3159 	pci_set_drvdata(pdev, rvu);
3160 	rvu->pdev = pdev;
3161 	rvu->dev = &pdev->dev;
3162 
3163 	err = pci_enable_device(pdev);
3164 	if (err) {
3165 		dev_err(dev, "Failed to enable PCI device\n");
3166 		goto err_freemem;
3167 	}
3168 
3169 	err = pci_request_regions(pdev, DRV_NAME);
3170 	if (err) {
3171 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3172 		goto err_disable_device;
3173 	}
3174 
3175 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3176 	if (err) {
3177 		dev_err(dev, "DMA mask config failed, abort\n");
3178 		goto err_release_regions;
3179 	}
3180 
3181 	pci_set_master(pdev);
3182 
3183 	rvu->ptp = ptp_get();
3184 	if (IS_ERR(rvu->ptp)) {
3185 		err = PTR_ERR(rvu->ptp);
3186 		if (err == -EPROBE_DEFER)
3187 			goto err_release_regions;
3188 		rvu->ptp = NULL;
3189 	}
3190 
3191 	/* Map Admin function CSRs */
3192 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3193 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3194 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3195 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3196 		err = -ENOMEM;
3197 		goto err_put_ptp;
3198 	}
3199 
3200 	/* Store module params in rvu structure */
3201 	rvu_update_module_params(rvu);
3202 
3203 	/* Check which blocks the HW supports */
3204 	rvu_check_block_implemented(rvu);
3205 
3206 	rvu_reset_all_blocks(rvu);
3207 
3208 	rvu_setup_hw_capabilities(rvu);
3209 
3210 	err = rvu_setup_hw_resources(rvu);
3211 	if (err)
3212 		goto err_put_ptp;
3213 
3214 	/* Init mailbox btw AF and PFs */
3215 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3216 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3217 			    rvu_afpf_mbox_up_handler);
3218 	if (err) {
3219 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3220 		goto err_hwsetup;
3221 	}
3222 
3223 	err = rvu_flr_init(rvu);
3224 	if (err) {
3225 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3226 		goto err_mbox;
3227 	}
3228 
3229 	err = rvu_register_interrupts(rvu);
3230 	if (err) {
3231 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3232 		goto err_flr;
3233 	}
3234 
3235 	err = rvu_register_dl(rvu);
3236 	if (err) {
3237 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3238 		goto err_irq;
3239 	}
3240 
3241 	rvu_setup_rvum_blk_revid(rvu);
3242 
3243 	/* Enable AF's VFs (if any) */
3244 	err = rvu_enable_sriov(rvu);
3245 	if (err) {
3246 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3247 		goto err_dl;
3248 	}
3249 
3250 	/* Initialize debugfs */
3251 	rvu_dbg_init(rvu);
3252 
3253 	mutex_init(&rvu->rswitch.switch_lock);
3254 
3255 	if (rvu->fwdata)
3256 		ptp_start(rvu->ptp, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3257 			  rvu->fwdata->ptp_ext_tstamp);
3258 
3259 	return 0;
3260 err_dl:
3261 	rvu_unregister_dl(rvu);
3262 err_irq:
3263 	rvu_unregister_interrupts(rvu);
3264 err_flr:
3265 	rvu_flr_wq_destroy(rvu);
3266 err_mbox:
3267 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3268 err_hwsetup:
3269 	rvu_cgx_exit(rvu);
3270 	rvu_fwdata_exit(rvu);
3271 	rvu_reset_all_blocks(rvu);
3272 	rvu_free_hw_resources(rvu);
3273 	rvu_clear_rvum_blk_revid(rvu);
3274 err_put_ptp:
3275 	ptp_put(rvu->ptp);
3276 err_release_regions:
3277 	pci_release_regions(pdev);
3278 err_disable_device:
3279 	pci_disable_device(pdev);
3280 err_freemem:
3281 	pci_set_drvdata(pdev, NULL);
3282 	devm_kfree(&pdev->dev, rvu->hw);
3283 	devm_kfree(dev, rvu);
3284 	return err;
3285 }
3286 
3287 static void rvu_remove(struct pci_dev *pdev)
3288 {
3289 	struct rvu *rvu = pci_get_drvdata(pdev);
3290 
3291 	rvu_dbg_exit(rvu);
3292 	rvu_unregister_dl(rvu);
3293 	rvu_unregister_interrupts(rvu);
3294 	rvu_flr_wq_destroy(rvu);
3295 	rvu_cgx_exit(rvu);
3296 	rvu_fwdata_exit(rvu);
3297 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3298 	rvu_disable_sriov(rvu);
3299 	rvu_reset_all_blocks(rvu);
3300 	rvu_free_hw_resources(rvu);
3301 	rvu_clear_rvum_blk_revid(rvu);
3302 	ptp_put(rvu->ptp);
3303 	pci_release_regions(pdev);
3304 	pci_disable_device(pdev);
3305 	pci_set_drvdata(pdev, NULL);
3306 
3307 	devm_kfree(&pdev->dev, rvu->hw);
3308 	devm_kfree(&pdev->dev, rvu);
3309 }
3310 
3311 static struct pci_driver rvu_driver = {
3312 	.name = DRV_NAME,
3313 	.id_table = rvu_id_table,
3314 	.probe = rvu_probe,
3315 	.remove = rvu_remove,
3316 };
3317 
3318 static int __init rvu_init_module(void)
3319 {
3320 	int err;
3321 
3322 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3323 
3324 	err = pci_register_driver(&cgx_driver);
3325 	if (err < 0)
3326 		return err;
3327 
3328 	err = pci_register_driver(&ptp_driver);
3329 	if (err < 0)
3330 		goto ptp_err;
3331 
3332 	err =  pci_register_driver(&rvu_driver);
3333 	if (err < 0)
3334 		goto rvu_err;
3335 
3336 	return 0;
3337 rvu_err:
3338 	pci_unregister_driver(&ptp_driver);
3339 ptp_err:
3340 	pci_unregister_driver(&cgx_driver);
3341 
3342 	return err;
3343 }
3344 
3345 static void __exit rvu_cleanup_module(void)
3346 {
3347 	pci_unregister_driver(&rvu_driver);
3348 	pci_unregister_driver(&ptp_driver);
3349 	pci_unregister_driver(&cgx_driver);
3350 }
3351 
3352 module_init(rvu_init_module);
3353 module_exit(rvu_cleanup_module);
3354