xref: /openbmc/linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision 95f7a972194ad20696c36523b54c19a3567e0697)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 #include "mcs.h"
20 
21 #include "rvu_trace.h"
22 #include "rvu_npc_hash.h"
23 
24 #define DRV_NAME	"rvu_af"
25 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
26 
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 				struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 				  struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32 
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 			 int type, int num,
35 			 void (mbox_handler)(struct work_struct *),
36 			 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 	TYPE_AFVF,
39 	TYPE_AFPF,
40 };
41 
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 	{ 0, }  /* end of table */
46 };
47 
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52 
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56 
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60 
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 	struct rvu_hwinfo *hw = rvu->hw;
64 
65 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 	hw->cap.nix_fixed_txschq_mapping = false;
67 	hw->cap.nix_shaping = true;
68 	hw->cap.nix_tx_link_bp = true;
69 	hw->cap.nix_rx_multicast = true;
70 	hw->cap.nix_shaper_toggle_wait = false;
71 	hw->cap.npc_hash_extract = false;
72 	hw->cap.npc_exact_match_enabled = false;
73 	hw->rvu = rvu;
74 
75 	if (is_rvu_pre_96xx_C0(rvu)) {
76 		hw->cap.nix_fixed_txschq_mapping = true;
77 		hw->cap.nix_txsch_per_cgx_lmac = 4;
78 		hw->cap.nix_txsch_per_lbk_lmac = 132;
79 		hw->cap.nix_txsch_per_sdp_lmac = 76;
80 		hw->cap.nix_shaping = false;
81 		hw->cap.nix_tx_link_bp = false;
82 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
83 			hw->cap.nix_rx_multicast = false;
84 	}
85 	if (!is_rvu_pre_96xx_C0(rvu))
86 		hw->cap.nix_shaper_toggle_wait = true;
87 
88 	if (!is_rvu_otx2(rvu))
89 		hw->cap.per_pf_mbox_regs = true;
90 
91 	if (is_rvu_npc_hash_extract_en(rvu))
92 		hw->cap.npc_hash_extract = true;
93 }
94 
95 /* Poll a RVU block's register 'offset', for a 'zero'
96  * or 'nonzero' at bits specified by 'mask'
97  */
98 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
99 {
100 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
101 	bool twice = false;
102 	void __iomem *reg;
103 	u64 reg_val;
104 
105 	reg = rvu->afreg_base + ((block << 28) | offset);
106 again:
107 	reg_val = readq(reg);
108 	if (zero && !(reg_val & mask))
109 		return 0;
110 	if (!zero && (reg_val & mask))
111 		return 0;
112 	if (time_before(jiffies, timeout)) {
113 		usleep_range(1, 5);
114 		goto again;
115 	}
116 	/* In scenarios where CPU is scheduled out before checking
117 	 * 'time_before' (above) and gets scheduled in such that
118 	 * jiffies are beyond timeout value, then check again if HW is
119 	 * done with the operation in the meantime.
120 	 */
121 	if (!twice) {
122 		twice = true;
123 		goto again;
124 	}
125 	return -EBUSY;
126 }
127 
128 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
129 {
130 	int id;
131 
132 	if (!rsrc->bmap)
133 		return -EINVAL;
134 
135 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
136 	if (id >= rsrc->max)
137 		return -ENOSPC;
138 
139 	__set_bit(id, rsrc->bmap);
140 
141 	return id;
142 }
143 
144 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
145 {
146 	int start;
147 
148 	if (!rsrc->bmap)
149 		return -EINVAL;
150 
151 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
152 	if (start >= rsrc->max)
153 		return -ENOSPC;
154 
155 	bitmap_set(rsrc->bmap, start, nrsrc);
156 	return start;
157 }
158 
159 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
160 {
161 	if (!rsrc->bmap)
162 		return;
163 	if (start >= rsrc->max)
164 		return;
165 
166 	bitmap_clear(rsrc->bmap, start, nrsrc);
167 }
168 
169 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
170 {
171 	int start;
172 
173 	if (!rsrc->bmap)
174 		return false;
175 
176 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
177 	if (start >= rsrc->max)
178 		return false;
179 
180 	return true;
181 }
182 
183 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
184 {
185 	if (!rsrc->bmap)
186 		return;
187 
188 	__clear_bit(id, rsrc->bmap);
189 }
190 
191 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
192 {
193 	int used;
194 
195 	if (!rsrc->bmap)
196 		return 0;
197 
198 	used = bitmap_weight(rsrc->bmap, rsrc->max);
199 	return (rsrc->max - used);
200 }
201 
202 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
203 {
204 	if (!rsrc->bmap)
205 		return false;
206 
207 	return !test_bit(id, rsrc->bmap);
208 }
209 
210 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
211 {
212 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
213 			     sizeof(long), GFP_KERNEL);
214 	if (!rsrc->bmap)
215 		return -ENOMEM;
216 	return 0;
217 }
218 
219 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
220 {
221 	kfree(rsrc->bmap);
222 }
223 
224 /* Get block LF's HW index from a PF_FUNC's block slot number */
225 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
226 {
227 	u16 match = 0;
228 	int lf;
229 
230 	mutex_lock(&rvu->rsrc_lock);
231 	for (lf = 0; lf < block->lf.max; lf++) {
232 		if (block->fn_map[lf] == pcifunc) {
233 			if (slot == match) {
234 				mutex_unlock(&rvu->rsrc_lock);
235 				return lf;
236 			}
237 			match++;
238 		}
239 	}
240 	mutex_unlock(&rvu->rsrc_lock);
241 	return -ENODEV;
242 }
243 
244 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
245  * Some silicon variants of OcteonTX2 supports
246  * multiple blocks of same type.
247  *
248  * @pcifunc has to be zero when no LF is yet attached.
249  *
250  * For a pcifunc if LFs are attached from multiple blocks of same type, then
251  * return blkaddr of first encountered block.
252  */
253 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
254 {
255 	int devnum, blkaddr = -ENODEV;
256 	u64 cfg, reg;
257 	bool is_pf;
258 
259 	switch (blktype) {
260 	case BLKTYPE_NPC:
261 		blkaddr = BLKADDR_NPC;
262 		goto exit;
263 	case BLKTYPE_NPA:
264 		blkaddr = BLKADDR_NPA;
265 		goto exit;
266 	case BLKTYPE_NIX:
267 		/* For now assume NIX0 */
268 		if (!pcifunc) {
269 			blkaddr = BLKADDR_NIX0;
270 			goto exit;
271 		}
272 		break;
273 	case BLKTYPE_SSO:
274 		blkaddr = BLKADDR_SSO;
275 		goto exit;
276 	case BLKTYPE_SSOW:
277 		blkaddr = BLKADDR_SSOW;
278 		goto exit;
279 	case BLKTYPE_TIM:
280 		blkaddr = BLKADDR_TIM;
281 		goto exit;
282 	case BLKTYPE_CPT:
283 		/* For now assume CPT0 */
284 		if (!pcifunc) {
285 			blkaddr = BLKADDR_CPT0;
286 			goto exit;
287 		}
288 		break;
289 	}
290 
291 	/* Check if this is a RVU PF or VF */
292 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
293 		is_pf = false;
294 		devnum = rvu_get_hwvf(rvu, pcifunc);
295 	} else {
296 		is_pf = true;
297 		devnum = rvu_get_pf(pcifunc);
298 	}
299 
300 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
301 	 * 'BLKADDR_NIX1'.
302 	 */
303 	if (blktype == BLKTYPE_NIX) {
304 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
305 			RVU_PRIV_HWVFX_NIXX_CFG(0);
306 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
307 		if (cfg) {
308 			blkaddr = BLKADDR_NIX0;
309 			goto exit;
310 		}
311 
312 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
313 			RVU_PRIV_HWVFX_NIXX_CFG(1);
314 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
315 		if (cfg)
316 			blkaddr = BLKADDR_NIX1;
317 	}
318 
319 	if (blktype == BLKTYPE_CPT) {
320 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
321 			RVU_PRIV_HWVFX_CPTX_CFG(0);
322 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
323 		if (cfg) {
324 			blkaddr = BLKADDR_CPT0;
325 			goto exit;
326 		}
327 
328 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
329 			RVU_PRIV_HWVFX_CPTX_CFG(1);
330 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
331 		if (cfg)
332 			blkaddr = BLKADDR_CPT1;
333 	}
334 
335 exit:
336 	if (is_block_implemented(rvu->hw, blkaddr))
337 		return blkaddr;
338 	return -ENODEV;
339 }
340 
341 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
342 				struct rvu_block *block, u16 pcifunc,
343 				u16 lf, bool attach)
344 {
345 	int devnum, num_lfs = 0;
346 	bool is_pf;
347 	u64 reg;
348 
349 	if (lf >= block->lf.max) {
350 		dev_err(&rvu->pdev->dev,
351 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
352 			__func__, lf, block->name, block->lf.max);
353 		return;
354 	}
355 
356 	/* Check if this is for a RVU PF or VF */
357 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
358 		is_pf = false;
359 		devnum = rvu_get_hwvf(rvu, pcifunc);
360 	} else {
361 		is_pf = true;
362 		devnum = rvu_get_pf(pcifunc);
363 	}
364 
365 	block->fn_map[lf] = attach ? pcifunc : 0;
366 
367 	switch (block->addr) {
368 	case BLKADDR_NPA:
369 		pfvf->npalf = attach ? true : false;
370 		num_lfs = pfvf->npalf;
371 		break;
372 	case BLKADDR_NIX0:
373 	case BLKADDR_NIX1:
374 		pfvf->nixlf = attach ? true : false;
375 		num_lfs = pfvf->nixlf;
376 		break;
377 	case BLKADDR_SSO:
378 		attach ? pfvf->sso++ : pfvf->sso--;
379 		num_lfs = pfvf->sso;
380 		break;
381 	case BLKADDR_SSOW:
382 		attach ? pfvf->ssow++ : pfvf->ssow--;
383 		num_lfs = pfvf->ssow;
384 		break;
385 	case BLKADDR_TIM:
386 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
387 		num_lfs = pfvf->timlfs;
388 		break;
389 	case BLKADDR_CPT0:
390 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
391 		num_lfs = pfvf->cptlfs;
392 		break;
393 	case BLKADDR_CPT1:
394 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
395 		num_lfs = pfvf->cpt1_lfs;
396 		break;
397 	}
398 
399 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
400 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
401 }
402 
403 inline int rvu_get_pf(u16 pcifunc)
404 {
405 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
406 }
407 
408 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
409 {
410 	u64 cfg;
411 
412 	/* Get numVFs attached to this PF and first HWVF */
413 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
414 	if (numvfs)
415 		*numvfs = (cfg >> 12) & 0xFF;
416 	if (hwvf)
417 		*hwvf = cfg & 0xFFF;
418 }
419 
420 int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
421 {
422 	int pf, func;
423 	u64 cfg;
424 
425 	pf = rvu_get_pf(pcifunc);
426 	func = pcifunc & RVU_PFVF_FUNC_MASK;
427 
428 	/* Get first HWVF attached to this PF */
429 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
430 
431 	return ((cfg & 0xFFF) + func - 1);
432 }
433 
434 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
435 {
436 	/* Check if it is a PF or VF */
437 	if (pcifunc & RVU_PFVF_FUNC_MASK)
438 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
439 	else
440 		return &rvu->pf[rvu_get_pf(pcifunc)];
441 }
442 
443 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
444 {
445 	int pf, vf, nvfs;
446 	u64 cfg;
447 
448 	pf = rvu_get_pf(pcifunc);
449 	if (pf >= rvu->hw->total_pfs)
450 		return false;
451 
452 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
453 		return true;
454 
455 	/* Check if VF is within number of VFs attached to this PF */
456 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
457 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
458 	nvfs = (cfg >> 12) & 0xFF;
459 	if (vf >= nvfs)
460 		return false;
461 
462 	return true;
463 }
464 
465 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
466 {
467 	struct rvu_block *block;
468 
469 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
470 		return false;
471 
472 	block = &hw->block[blkaddr];
473 	return block->implemented;
474 }
475 
476 static void rvu_check_block_implemented(struct rvu *rvu)
477 {
478 	struct rvu_hwinfo *hw = rvu->hw;
479 	struct rvu_block *block;
480 	int blkid;
481 	u64 cfg;
482 
483 	/* For each block check if 'implemented' bit is set */
484 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
485 		block = &hw->block[blkid];
486 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
487 		if (cfg & BIT_ULL(11))
488 			block->implemented = true;
489 	}
490 }
491 
492 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
493 {
494 	rvu_write64(rvu, BLKADDR_RVUM,
495 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
496 		    RVU_BLK_RVUM_REVID);
497 }
498 
499 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
500 {
501 	rvu_write64(rvu, BLKADDR_RVUM,
502 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
503 }
504 
505 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
506 {
507 	int err;
508 
509 	if (!block->implemented)
510 		return 0;
511 
512 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
513 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
514 			   true);
515 	return err;
516 }
517 
518 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
519 {
520 	struct rvu_block *block = &rvu->hw->block[blkaddr];
521 	int err;
522 
523 	if (!block->implemented)
524 		return;
525 
526 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
527 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
528 	if (err) {
529 		dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
530 		while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
531 			;
532 	}
533 }
534 
535 static void rvu_reset_all_blocks(struct rvu *rvu)
536 {
537 	/* Do a HW reset of all RVU blocks */
538 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
539 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
540 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
541 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
542 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
543 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
544 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
545 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
546 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
547 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
548 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
549 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
550 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
551 }
552 
553 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
554 {
555 	struct rvu_pfvf *pfvf;
556 	u64 cfg;
557 	int lf;
558 
559 	for (lf = 0; lf < block->lf.max; lf++) {
560 		cfg = rvu_read64(rvu, block->addr,
561 				 block->lfcfg_reg | (lf << block->lfshift));
562 		if (!(cfg & BIT_ULL(63)))
563 			continue;
564 
565 		/* Set this resource as being used */
566 		__set_bit(lf, block->lf.bmap);
567 
568 		/* Get, to whom this LF is attached */
569 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
570 		rvu_update_rsrc_map(rvu, pfvf, block,
571 				    (cfg >> 8) & 0xFFFF, lf, true);
572 
573 		/* Set start MSIX vector for this LF within this PF/VF */
574 		rvu_set_msix_offset(rvu, pfvf, block, lf);
575 	}
576 }
577 
578 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
579 {
580 	int min_vecs;
581 
582 	if (!vf)
583 		goto check_pf;
584 
585 	if (!nvecs) {
586 		dev_warn(rvu->dev,
587 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
588 			 pf, vf - 1, nvecs);
589 	}
590 	return;
591 
592 check_pf:
593 	if (pf == 0)
594 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
595 	else
596 		min_vecs = RVU_PF_INT_VEC_CNT;
597 
598 	if (!(nvecs < min_vecs))
599 		return;
600 	dev_warn(rvu->dev,
601 		 "PF%d is configured with too few vectors, %d, min is %d\n",
602 		 pf, nvecs, min_vecs);
603 }
604 
605 static int rvu_setup_msix_resources(struct rvu *rvu)
606 {
607 	struct rvu_hwinfo *hw = rvu->hw;
608 	int pf, vf, numvfs, hwvf, err;
609 	int nvecs, offset, max_msix;
610 	struct rvu_pfvf *pfvf;
611 	u64 cfg, phy_addr;
612 	dma_addr_t iova;
613 
614 	for (pf = 0; pf < hw->total_pfs; pf++) {
615 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
616 		/* If PF is not enabled, nothing to do */
617 		if (!((cfg >> 20) & 0x01))
618 			continue;
619 
620 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
621 
622 		pfvf = &rvu->pf[pf];
623 		/* Get num of MSIX vectors attached to this PF */
624 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
625 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
626 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
627 
628 		/* Alloc msix bitmap for this PF */
629 		err = rvu_alloc_bitmap(&pfvf->msix);
630 		if (err)
631 			return err;
632 
633 		/* Allocate memory for MSIX vector to RVU block LF mapping */
634 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
635 						sizeof(u16), GFP_KERNEL);
636 		if (!pfvf->msix_lfmap)
637 			return -ENOMEM;
638 
639 		/* For PF0 (AF) firmware will set msix vector offsets for
640 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
641 		 */
642 		if (!pf)
643 			goto setup_vfmsix;
644 
645 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
646 		 * These are allocated on driver init and never freed,
647 		 * so no need to set 'msix_lfmap' for these.
648 		 */
649 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
650 		nvecs = (cfg >> 12) & 0xFF;
651 		cfg &= ~0x7FFULL;
652 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
653 		rvu_write64(rvu, BLKADDR_RVUM,
654 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
655 setup_vfmsix:
656 		/* Alloc msix bitmap for VFs */
657 		for (vf = 0; vf < numvfs; vf++) {
658 			pfvf =  &rvu->hwvf[hwvf + vf];
659 			/* Get num of MSIX vectors attached to this VF */
660 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
661 					 RVU_PRIV_PFX_MSIX_CFG(pf));
662 			pfvf->msix.max = (cfg & 0xFFF) + 1;
663 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
664 
665 			/* Alloc msix bitmap for this VF */
666 			err = rvu_alloc_bitmap(&pfvf->msix);
667 			if (err)
668 				return err;
669 
670 			pfvf->msix_lfmap =
671 				devm_kcalloc(rvu->dev, pfvf->msix.max,
672 					     sizeof(u16), GFP_KERNEL);
673 			if (!pfvf->msix_lfmap)
674 				return -ENOMEM;
675 
676 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
677 			 * These are allocated on driver init and never freed,
678 			 * so no need to set 'msix_lfmap' for these.
679 			 */
680 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
681 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
682 			nvecs = (cfg >> 12) & 0xFF;
683 			cfg &= ~0x7FFULL;
684 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
685 			rvu_write64(rvu, BLKADDR_RVUM,
686 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
687 				    cfg | offset);
688 		}
689 	}
690 
691 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
692 	 * create an IOMMU mapping for the physical address configured by
693 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
694 	 */
695 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
696 	max_msix = cfg & 0xFFFFF;
697 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
698 		phy_addr = rvu->fwdata->msixtr_base;
699 	else
700 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
701 
702 	iova = dma_map_resource(rvu->dev, phy_addr,
703 				max_msix * PCI_MSIX_ENTRY_SIZE,
704 				DMA_BIDIRECTIONAL, 0);
705 
706 	if (dma_mapping_error(rvu->dev, iova))
707 		return -ENOMEM;
708 
709 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
710 	rvu->msix_base_iova = iova;
711 	rvu->msixtr_base_phy = phy_addr;
712 
713 	return 0;
714 }
715 
716 static void rvu_reset_msix(struct rvu *rvu)
717 {
718 	/* Restore msixtr base register */
719 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
720 		    rvu->msixtr_base_phy);
721 }
722 
723 static void rvu_free_hw_resources(struct rvu *rvu)
724 {
725 	struct rvu_hwinfo *hw = rvu->hw;
726 	struct rvu_block *block;
727 	struct rvu_pfvf  *pfvf;
728 	int id, max_msix;
729 	u64 cfg;
730 
731 	rvu_npa_freemem(rvu);
732 	rvu_npc_freemem(rvu);
733 	rvu_nix_freemem(rvu);
734 
735 	/* Free block LF bitmaps */
736 	for (id = 0; id < BLK_COUNT; id++) {
737 		block = &hw->block[id];
738 		kfree(block->lf.bmap);
739 	}
740 
741 	/* Free MSIX bitmaps */
742 	for (id = 0; id < hw->total_pfs; id++) {
743 		pfvf = &rvu->pf[id];
744 		kfree(pfvf->msix.bmap);
745 	}
746 
747 	for (id = 0; id < hw->total_vfs; id++) {
748 		pfvf = &rvu->hwvf[id];
749 		kfree(pfvf->msix.bmap);
750 	}
751 
752 	/* Unmap MSIX vector base IOVA mapping */
753 	if (!rvu->msix_base_iova)
754 		return;
755 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
756 	max_msix = cfg & 0xFFFFF;
757 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
758 			   max_msix * PCI_MSIX_ENTRY_SIZE,
759 			   DMA_BIDIRECTIONAL, 0);
760 
761 	rvu_reset_msix(rvu);
762 	mutex_destroy(&rvu->rsrc_lock);
763 }
764 
765 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
766 {
767 	struct rvu_hwinfo *hw = rvu->hw;
768 	int pf, vf, numvfs, hwvf;
769 	struct rvu_pfvf *pfvf;
770 	u64 *mac;
771 
772 	for (pf = 0; pf < hw->total_pfs; pf++) {
773 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
774 		if (!pf)
775 			goto lbkvf;
776 
777 		if (!is_pf_cgxmapped(rvu, pf))
778 			continue;
779 		/* Assign MAC address to PF */
780 		pfvf = &rvu->pf[pf];
781 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
782 			mac = &rvu->fwdata->pf_macs[pf];
783 			if (*mac)
784 				u64_to_ether_addr(*mac, pfvf->mac_addr);
785 			else
786 				eth_random_addr(pfvf->mac_addr);
787 		} else {
788 			eth_random_addr(pfvf->mac_addr);
789 		}
790 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
791 
792 lbkvf:
793 		/* Assign MAC address to VFs*/
794 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
795 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
796 			pfvf = &rvu->hwvf[hwvf];
797 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
798 				mac = &rvu->fwdata->vf_macs[hwvf];
799 				if (*mac)
800 					u64_to_ether_addr(*mac, pfvf->mac_addr);
801 				else
802 					eth_random_addr(pfvf->mac_addr);
803 			} else {
804 				eth_random_addr(pfvf->mac_addr);
805 			}
806 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
807 		}
808 	}
809 }
810 
811 static int rvu_fwdata_init(struct rvu *rvu)
812 {
813 	u64 fwdbase;
814 	int err;
815 
816 	/* Get firmware data base address */
817 	err = cgx_get_fwdata_base(&fwdbase);
818 	if (err)
819 		goto fail;
820 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
821 	if (!rvu->fwdata)
822 		goto fail;
823 	if (!is_rvu_fwdata_valid(rvu)) {
824 		dev_err(rvu->dev,
825 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
826 		iounmap(rvu->fwdata);
827 		rvu->fwdata = NULL;
828 		return -EINVAL;
829 	}
830 	return 0;
831 fail:
832 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
833 	return -EIO;
834 }
835 
836 static void rvu_fwdata_exit(struct rvu *rvu)
837 {
838 	if (rvu->fwdata)
839 		iounmap(rvu->fwdata);
840 }
841 
842 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
843 {
844 	struct rvu_hwinfo *hw = rvu->hw;
845 	struct rvu_block *block;
846 	int blkid;
847 	u64 cfg;
848 
849 	/* Init NIX LF's bitmap */
850 	block = &hw->block[blkaddr];
851 	if (!block->implemented)
852 		return 0;
853 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
854 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
855 	block->lf.max = cfg & 0xFFF;
856 	block->addr = blkaddr;
857 	block->type = BLKTYPE_NIX;
858 	block->lfshift = 8;
859 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
860 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
861 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
862 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
863 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
864 	block->lfreset_reg = NIX_AF_LF_RST;
865 	block->rvu = rvu;
866 	sprintf(block->name, "NIX%d", blkid);
867 	rvu->nix_blkaddr[blkid] = blkaddr;
868 	return rvu_alloc_bitmap(&block->lf);
869 }
870 
871 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
872 {
873 	struct rvu_hwinfo *hw = rvu->hw;
874 	struct rvu_block *block;
875 	int blkid;
876 	u64 cfg;
877 
878 	/* Init CPT LF's bitmap */
879 	block = &hw->block[blkaddr];
880 	if (!block->implemented)
881 		return 0;
882 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
883 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
884 	block->lf.max = cfg & 0xFF;
885 	block->addr = blkaddr;
886 	block->type = BLKTYPE_CPT;
887 	block->multislot = true;
888 	block->lfshift = 3;
889 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
890 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
891 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
892 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
893 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
894 	block->lfreset_reg = CPT_AF_LF_RST;
895 	block->rvu = rvu;
896 	sprintf(block->name, "CPT%d", blkid);
897 	return rvu_alloc_bitmap(&block->lf);
898 }
899 
900 static void rvu_get_lbk_bufsize(struct rvu *rvu)
901 {
902 	struct pci_dev *pdev = NULL;
903 	void __iomem *base;
904 	u64 lbk_const;
905 
906 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
907 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
908 	if (!pdev)
909 		return;
910 
911 	base = pci_ioremap_bar(pdev, 0);
912 	if (!base)
913 		goto err_put;
914 
915 	lbk_const = readq(base + LBK_CONST);
916 
917 	/* cache fifo size */
918 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
919 
920 	iounmap(base);
921 err_put:
922 	pci_dev_put(pdev);
923 }
924 
925 static int rvu_setup_hw_resources(struct rvu *rvu)
926 {
927 	struct rvu_hwinfo *hw = rvu->hw;
928 	struct rvu_block *block;
929 	int blkid, err;
930 	u64 cfg;
931 
932 	/* Get HW supported max RVU PF & VF count */
933 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
934 	hw->total_pfs = (cfg >> 32) & 0xFF;
935 	hw->total_vfs = (cfg >> 20) & 0xFFF;
936 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
937 
938 	/* Init NPA LF's bitmap */
939 	block = &hw->block[BLKADDR_NPA];
940 	if (!block->implemented)
941 		goto nix;
942 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
943 	block->lf.max = (cfg >> 16) & 0xFFF;
944 	block->addr = BLKADDR_NPA;
945 	block->type = BLKTYPE_NPA;
946 	block->lfshift = 8;
947 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
948 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
949 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
950 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
951 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
952 	block->lfreset_reg = NPA_AF_LF_RST;
953 	block->rvu = rvu;
954 	sprintf(block->name, "NPA");
955 	err = rvu_alloc_bitmap(&block->lf);
956 	if (err) {
957 		dev_err(rvu->dev,
958 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
959 		return err;
960 	}
961 
962 nix:
963 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
964 	if (err) {
965 		dev_err(rvu->dev,
966 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
967 		return err;
968 	}
969 
970 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
971 	if (err) {
972 		dev_err(rvu->dev,
973 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
974 		return err;
975 	}
976 
977 	/* Init SSO group's bitmap */
978 	block = &hw->block[BLKADDR_SSO];
979 	if (!block->implemented)
980 		goto ssow;
981 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
982 	block->lf.max = cfg & 0xFFFF;
983 	block->addr = BLKADDR_SSO;
984 	block->type = BLKTYPE_SSO;
985 	block->multislot = true;
986 	block->lfshift = 3;
987 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
988 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
989 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
990 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
991 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
992 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
993 	block->rvu = rvu;
994 	sprintf(block->name, "SSO GROUP");
995 	err = rvu_alloc_bitmap(&block->lf);
996 	if (err) {
997 		dev_err(rvu->dev,
998 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
999 		return err;
1000 	}
1001 
1002 ssow:
1003 	/* Init SSO workslot's bitmap */
1004 	block = &hw->block[BLKADDR_SSOW];
1005 	if (!block->implemented)
1006 		goto tim;
1007 	block->lf.max = (cfg >> 56) & 0xFF;
1008 	block->addr = BLKADDR_SSOW;
1009 	block->type = BLKTYPE_SSOW;
1010 	block->multislot = true;
1011 	block->lfshift = 3;
1012 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1013 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1014 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1015 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1016 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1017 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1018 	block->rvu = rvu;
1019 	sprintf(block->name, "SSOWS");
1020 	err = rvu_alloc_bitmap(&block->lf);
1021 	if (err) {
1022 		dev_err(rvu->dev,
1023 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
1024 		return err;
1025 	}
1026 
1027 tim:
1028 	/* Init TIM LF's bitmap */
1029 	block = &hw->block[BLKADDR_TIM];
1030 	if (!block->implemented)
1031 		goto cpt;
1032 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1033 	block->lf.max = cfg & 0xFFFF;
1034 	block->addr = BLKADDR_TIM;
1035 	block->type = BLKTYPE_TIM;
1036 	block->multislot = true;
1037 	block->lfshift = 3;
1038 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1039 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1040 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1041 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1042 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1043 	block->lfreset_reg = TIM_AF_LF_RST;
1044 	block->rvu = rvu;
1045 	sprintf(block->name, "TIM");
1046 	err = rvu_alloc_bitmap(&block->lf);
1047 	if (err) {
1048 		dev_err(rvu->dev,
1049 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1050 		return err;
1051 	}
1052 
1053 cpt:
1054 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1055 	if (err) {
1056 		dev_err(rvu->dev,
1057 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1058 		return err;
1059 	}
1060 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1061 	if (err) {
1062 		dev_err(rvu->dev,
1063 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1064 		return err;
1065 	}
1066 
1067 	/* Allocate memory for PFVF data */
1068 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1069 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1070 	if (!rvu->pf) {
1071 		dev_err(rvu->dev,
1072 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1073 		return -ENOMEM;
1074 	}
1075 
1076 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1077 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1078 	if (!rvu->hwvf) {
1079 		dev_err(rvu->dev,
1080 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1081 		return -ENOMEM;
1082 	}
1083 
1084 	mutex_init(&rvu->rsrc_lock);
1085 
1086 	rvu_fwdata_init(rvu);
1087 
1088 	err = rvu_setup_msix_resources(rvu);
1089 	if (err) {
1090 		dev_err(rvu->dev,
1091 			"%s: Failed to setup MSIX resources\n", __func__);
1092 		return err;
1093 	}
1094 
1095 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1096 		block = &hw->block[blkid];
1097 		if (!block->lf.bmap)
1098 			continue;
1099 
1100 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1101 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1102 					     sizeof(u16), GFP_KERNEL);
1103 		if (!block->fn_map) {
1104 			err = -ENOMEM;
1105 			goto msix_err;
1106 		}
1107 
1108 		/* Scan all blocks to check if low level firmware has
1109 		 * already provisioned any of the resources to a PF/VF.
1110 		 */
1111 		rvu_scan_block(rvu, block);
1112 	}
1113 
1114 	err = rvu_set_channels_base(rvu);
1115 	if (err)
1116 		goto msix_err;
1117 
1118 	err = rvu_npc_init(rvu);
1119 	if (err) {
1120 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1121 		goto npc_err;
1122 	}
1123 
1124 	err = rvu_cgx_init(rvu);
1125 	if (err) {
1126 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1127 		goto cgx_err;
1128 	}
1129 
1130 	err = rvu_npc_exact_init(rvu);
1131 	if (err) {
1132 		dev_err(rvu->dev, "failed to initialize exact match table\n");
1133 		return err;
1134 	}
1135 
1136 	/* Assign MACs for CGX mapped functions */
1137 	rvu_setup_pfvf_macaddress(rvu);
1138 
1139 	err = rvu_npa_init(rvu);
1140 	if (err) {
1141 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1142 		goto npa_err;
1143 	}
1144 
1145 	rvu_get_lbk_bufsize(rvu);
1146 
1147 	err = rvu_nix_init(rvu);
1148 	if (err) {
1149 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1150 		goto nix_err;
1151 	}
1152 
1153 	err = rvu_sdp_init(rvu);
1154 	if (err) {
1155 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1156 		goto nix_err;
1157 	}
1158 
1159 	rvu_program_channels(rvu);
1160 	cgx_start_linkup(rvu);
1161 
1162 	err = rvu_mcs_init(rvu);
1163 	if (err) {
1164 		dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
1165 		goto nix_err;
1166 	}
1167 
1168 	err = rvu_cpt_init(rvu);
1169 	if (err) {
1170 		dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__);
1171 		goto mcs_err;
1172 	}
1173 
1174 	return 0;
1175 
1176 mcs_err:
1177 	rvu_mcs_exit(rvu);
1178 nix_err:
1179 	rvu_nix_freemem(rvu);
1180 npa_err:
1181 	rvu_npa_freemem(rvu);
1182 cgx_err:
1183 	rvu_cgx_exit(rvu);
1184 npc_err:
1185 	rvu_npc_freemem(rvu);
1186 	rvu_fwdata_exit(rvu);
1187 msix_err:
1188 	rvu_reset_msix(rvu);
1189 	return err;
1190 }
1191 
1192 /* NPA and NIX admin queue APIs */
1193 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1194 {
1195 	if (!aq)
1196 		return;
1197 
1198 	qmem_free(rvu->dev, aq->inst);
1199 	qmem_free(rvu->dev, aq->res);
1200 	devm_kfree(rvu->dev, aq);
1201 }
1202 
1203 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1204 		 int qsize, int inst_size, int res_size)
1205 {
1206 	struct admin_queue *aq;
1207 	int err;
1208 
1209 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1210 	if (!*ad_queue)
1211 		return -ENOMEM;
1212 	aq = *ad_queue;
1213 
1214 	/* Alloc memory for instructions i.e AQ */
1215 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1216 	if (err) {
1217 		devm_kfree(rvu->dev, aq);
1218 		return err;
1219 	}
1220 
1221 	/* Alloc memory for results */
1222 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1223 	if (err) {
1224 		rvu_aq_free(rvu, aq);
1225 		return err;
1226 	}
1227 
1228 	spin_lock_init(&aq->lock);
1229 	return 0;
1230 }
1231 
1232 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1233 			   struct ready_msg_rsp *rsp)
1234 {
1235 	if (rvu->fwdata) {
1236 		rsp->rclk_freq = rvu->fwdata->rclk;
1237 		rsp->sclk_freq = rvu->fwdata->sclk;
1238 	}
1239 	return 0;
1240 }
1241 
1242 /* Get current count of a RVU block's LF/slots
1243  * provisioned to a given RVU func.
1244  */
1245 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1246 {
1247 	switch (blkaddr) {
1248 	case BLKADDR_NPA:
1249 		return pfvf->npalf ? 1 : 0;
1250 	case BLKADDR_NIX0:
1251 	case BLKADDR_NIX1:
1252 		return pfvf->nixlf ? 1 : 0;
1253 	case BLKADDR_SSO:
1254 		return pfvf->sso;
1255 	case BLKADDR_SSOW:
1256 		return pfvf->ssow;
1257 	case BLKADDR_TIM:
1258 		return pfvf->timlfs;
1259 	case BLKADDR_CPT0:
1260 		return pfvf->cptlfs;
1261 	case BLKADDR_CPT1:
1262 		return pfvf->cpt1_lfs;
1263 	}
1264 	return 0;
1265 }
1266 
1267 /* Return true if LFs of block type are attached to pcifunc */
1268 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1269 {
1270 	switch (blktype) {
1271 	case BLKTYPE_NPA:
1272 		return pfvf->npalf ? 1 : 0;
1273 	case BLKTYPE_NIX:
1274 		return pfvf->nixlf ? 1 : 0;
1275 	case BLKTYPE_SSO:
1276 		return !!pfvf->sso;
1277 	case BLKTYPE_SSOW:
1278 		return !!pfvf->ssow;
1279 	case BLKTYPE_TIM:
1280 		return !!pfvf->timlfs;
1281 	case BLKTYPE_CPT:
1282 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1283 	}
1284 
1285 	return false;
1286 }
1287 
1288 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1289 {
1290 	struct rvu_pfvf *pfvf;
1291 
1292 	if (!is_pf_func_valid(rvu, pcifunc))
1293 		return false;
1294 
1295 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1296 
1297 	/* Check if this PFFUNC has a LF of type blktype attached */
1298 	if (!is_blktype_attached(pfvf, blktype))
1299 		return false;
1300 
1301 	return true;
1302 }
1303 
1304 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1305 			   int pcifunc, int slot)
1306 {
1307 	u64 val;
1308 
1309 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1310 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1311 	/* Wait for the lookup to finish */
1312 	/* TODO: put some timeout here */
1313 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1314 		;
1315 
1316 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1317 
1318 	/* Check LF valid bit */
1319 	if (!(val & (1ULL << 12)))
1320 		return -1;
1321 
1322 	return (val & 0xFFF);
1323 }
1324 
1325 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1326 			      u16 global_slot, u16 *slot_in_block)
1327 {
1328 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1329 	int numlfs, total_lfs = 0, nr_blocks = 0;
1330 	int i, num_blkaddr[BLK_COUNT] = { 0 };
1331 	struct rvu_block *block;
1332 	int blkaddr;
1333 	u16 start_slot;
1334 
1335 	if (!is_blktype_attached(pfvf, blktype))
1336 		return -ENODEV;
1337 
1338 	/* Get all the block addresses from which LFs are attached to
1339 	 * the given pcifunc in num_blkaddr[].
1340 	 */
1341 	for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1342 		block = &rvu->hw->block[blkaddr];
1343 		if (block->type != blktype)
1344 			continue;
1345 		if (!is_block_implemented(rvu->hw, blkaddr))
1346 			continue;
1347 
1348 		numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1349 		if (numlfs) {
1350 			total_lfs += numlfs;
1351 			num_blkaddr[nr_blocks] = blkaddr;
1352 			nr_blocks++;
1353 		}
1354 	}
1355 
1356 	if (global_slot >= total_lfs)
1357 		return -ENODEV;
1358 
1359 	/* Based on the given global slot number retrieve the
1360 	 * correct block address out of all attached block
1361 	 * addresses and slot number in that block.
1362 	 */
1363 	total_lfs = 0;
1364 	blkaddr = -ENODEV;
1365 	for (i = 0; i < nr_blocks; i++) {
1366 		numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1367 		total_lfs += numlfs;
1368 		if (global_slot < total_lfs) {
1369 			blkaddr = num_blkaddr[i];
1370 			start_slot = total_lfs - numlfs;
1371 			*slot_in_block = global_slot - start_slot;
1372 			break;
1373 		}
1374 	}
1375 
1376 	return blkaddr;
1377 }
1378 
1379 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1380 {
1381 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1382 	struct rvu_hwinfo *hw = rvu->hw;
1383 	struct rvu_block *block;
1384 	int slot, lf, num_lfs;
1385 	int blkaddr;
1386 
1387 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1388 	if (blkaddr < 0)
1389 		return;
1390 
1391 	if (blktype == BLKTYPE_NIX)
1392 		rvu_nix_reset_mac(pfvf, pcifunc);
1393 
1394 	block = &hw->block[blkaddr];
1395 
1396 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1397 	if (!num_lfs)
1398 		return;
1399 
1400 	for (slot = 0; slot < num_lfs; slot++) {
1401 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1402 		if (lf < 0) /* This should never happen */
1403 			continue;
1404 
1405 		/* Disable the LF */
1406 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1407 			    (lf << block->lfshift), 0x00ULL);
1408 
1409 		/* Update SW maintained mapping info as well */
1410 		rvu_update_rsrc_map(rvu, pfvf, block,
1411 				    pcifunc, lf, false);
1412 
1413 		/* Free the resource */
1414 		rvu_free_rsrc(&block->lf, lf);
1415 
1416 		/* Clear MSIX vector offset for this LF */
1417 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1418 	}
1419 }
1420 
1421 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1422 			    u16 pcifunc)
1423 {
1424 	struct rvu_hwinfo *hw = rvu->hw;
1425 	bool detach_all = true;
1426 	struct rvu_block *block;
1427 	int blkid;
1428 
1429 	mutex_lock(&rvu->rsrc_lock);
1430 
1431 	/* Check for partial resource detach */
1432 	if (detach && detach->partial)
1433 		detach_all = false;
1434 
1435 	/* Check for RVU block's LFs attached to this func,
1436 	 * if so, detach them.
1437 	 */
1438 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1439 		block = &hw->block[blkid];
1440 		if (!block->lf.bmap)
1441 			continue;
1442 		if (!detach_all && detach) {
1443 			if (blkid == BLKADDR_NPA && !detach->npalf)
1444 				continue;
1445 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1446 				continue;
1447 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1448 				continue;
1449 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1450 				continue;
1451 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1452 				continue;
1453 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1454 				continue;
1455 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1456 				continue;
1457 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1458 				continue;
1459 		}
1460 		rvu_detach_block(rvu, pcifunc, block->type);
1461 	}
1462 
1463 	mutex_unlock(&rvu->rsrc_lock);
1464 	return 0;
1465 }
1466 
1467 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1468 				      struct rsrc_detach *detach,
1469 				      struct msg_rsp *rsp)
1470 {
1471 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1472 }
1473 
1474 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1475 {
1476 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1477 	int blkaddr = BLKADDR_NIX0, vf;
1478 	struct rvu_pfvf *pf;
1479 
1480 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1481 
1482 	/* All CGX mapped PFs are set with assigned NIX block during init */
1483 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1484 		blkaddr = pf->nix_blkaddr;
1485 	} else if (is_afvf(pcifunc)) {
1486 		vf = pcifunc - 1;
1487 		/* Assign NIX based on VF number. All even numbered VFs get
1488 		 * NIX0 and odd numbered gets NIX1
1489 		 */
1490 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1491 		/* NIX1 is not present on all silicons */
1492 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1493 			blkaddr = BLKADDR_NIX0;
1494 	}
1495 
1496 	/* if SDP1 then the blkaddr is NIX1 */
1497 	if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1498 		blkaddr = BLKADDR_NIX1;
1499 
1500 	switch (blkaddr) {
1501 	case BLKADDR_NIX1:
1502 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1503 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1504 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1505 		break;
1506 	case BLKADDR_NIX0:
1507 	default:
1508 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1509 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1510 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1511 		break;
1512 	}
1513 
1514 	return pfvf->nix_blkaddr;
1515 }
1516 
1517 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1518 				  u16 pcifunc, struct rsrc_attach *attach)
1519 {
1520 	int blkaddr;
1521 
1522 	switch (blktype) {
1523 	case BLKTYPE_NIX:
1524 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1525 		break;
1526 	case BLKTYPE_CPT:
1527 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1528 			return rvu_get_blkaddr(rvu, blktype, 0);
1529 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1530 			  BLKADDR_CPT0;
1531 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1532 			return -ENODEV;
1533 		break;
1534 	default:
1535 		return rvu_get_blkaddr(rvu, blktype, 0);
1536 	}
1537 
1538 	if (is_block_implemented(rvu->hw, blkaddr))
1539 		return blkaddr;
1540 
1541 	return -ENODEV;
1542 }
1543 
1544 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1545 			     int num_lfs, struct rsrc_attach *attach)
1546 {
1547 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1548 	struct rvu_hwinfo *hw = rvu->hw;
1549 	struct rvu_block *block;
1550 	int slot, lf;
1551 	int blkaddr;
1552 	u64 cfg;
1553 
1554 	if (!num_lfs)
1555 		return;
1556 
1557 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1558 	if (blkaddr < 0)
1559 		return;
1560 
1561 	block = &hw->block[blkaddr];
1562 	if (!block->lf.bmap)
1563 		return;
1564 
1565 	for (slot = 0; slot < num_lfs; slot++) {
1566 		/* Allocate the resource */
1567 		lf = rvu_alloc_rsrc(&block->lf);
1568 		if (lf < 0)
1569 			return;
1570 
1571 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1572 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1573 			    (lf << block->lfshift), cfg);
1574 		rvu_update_rsrc_map(rvu, pfvf, block,
1575 				    pcifunc, lf, true);
1576 
1577 		/* Set start MSIX vector for this LF within this PF/VF */
1578 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1579 	}
1580 }
1581 
1582 static int rvu_check_rsrc_availability(struct rvu *rvu,
1583 				       struct rsrc_attach *req, u16 pcifunc)
1584 {
1585 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1586 	int free_lfs, mappedlfs, blkaddr;
1587 	struct rvu_hwinfo *hw = rvu->hw;
1588 	struct rvu_block *block;
1589 
1590 	/* Only one NPA LF can be attached */
1591 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1592 		block = &hw->block[BLKADDR_NPA];
1593 		free_lfs = rvu_rsrc_free_count(&block->lf);
1594 		if (!free_lfs)
1595 			goto fail;
1596 	} else if (req->npalf) {
1597 		dev_err(&rvu->pdev->dev,
1598 			"Func 0x%x: Invalid req, already has NPA\n",
1599 			 pcifunc);
1600 		return -EINVAL;
1601 	}
1602 
1603 	/* Only one NIX LF can be attached */
1604 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1605 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1606 						 pcifunc, req);
1607 		if (blkaddr < 0)
1608 			return blkaddr;
1609 		block = &hw->block[blkaddr];
1610 		free_lfs = rvu_rsrc_free_count(&block->lf);
1611 		if (!free_lfs)
1612 			goto fail;
1613 	} else if (req->nixlf) {
1614 		dev_err(&rvu->pdev->dev,
1615 			"Func 0x%x: Invalid req, already has NIX\n",
1616 			pcifunc);
1617 		return -EINVAL;
1618 	}
1619 
1620 	if (req->sso) {
1621 		block = &hw->block[BLKADDR_SSO];
1622 		/* Is request within limits ? */
1623 		if (req->sso > block->lf.max) {
1624 			dev_err(&rvu->pdev->dev,
1625 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1626 				 pcifunc, req->sso, block->lf.max);
1627 			return -EINVAL;
1628 		}
1629 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1630 		free_lfs = rvu_rsrc_free_count(&block->lf);
1631 		/* Check if additional resources are available */
1632 		if (req->sso > mappedlfs &&
1633 		    ((req->sso - mappedlfs) > free_lfs))
1634 			goto fail;
1635 	}
1636 
1637 	if (req->ssow) {
1638 		block = &hw->block[BLKADDR_SSOW];
1639 		if (req->ssow > block->lf.max) {
1640 			dev_err(&rvu->pdev->dev,
1641 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1642 				 pcifunc, req->ssow, block->lf.max);
1643 			return -EINVAL;
1644 		}
1645 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1646 		free_lfs = rvu_rsrc_free_count(&block->lf);
1647 		if (req->ssow > mappedlfs &&
1648 		    ((req->ssow - mappedlfs) > free_lfs))
1649 			goto fail;
1650 	}
1651 
1652 	if (req->timlfs) {
1653 		block = &hw->block[BLKADDR_TIM];
1654 		if (req->timlfs > block->lf.max) {
1655 			dev_err(&rvu->pdev->dev,
1656 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1657 				 pcifunc, req->timlfs, block->lf.max);
1658 			return -EINVAL;
1659 		}
1660 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1661 		free_lfs = rvu_rsrc_free_count(&block->lf);
1662 		if (req->timlfs > mappedlfs &&
1663 		    ((req->timlfs - mappedlfs) > free_lfs))
1664 			goto fail;
1665 	}
1666 
1667 	if (req->cptlfs) {
1668 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1669 						 pcifunc, req);
1670 		if (blkaddr < 0)
1671 			return blkaddr;
1672 		block = &hw->block[blkaddr];
1673 		if (req->cptlfs > block->lf.max) {
1674 			dev_err(&rvu->pdev->dev,
1675 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1676 				 pcifunc, req->cptlfs, block->lf.max);
1677 			return -EINVAL;
1678 		}
1679 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1680 		free_lfs = rvu_rsrc_free_count(&block->lf);
1681 		if (req->cptlfs > mappedlfs &&
1682 		    ((req->cptlfs - mappedlfs) > free_lfs))
1683 			goto fail;
1684 	}
1685 
1686 	return 0;
1687 
1688 fail:
1689 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1690 	return -ENOSPC;
1691 }
1692 
1693 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1694 				       struct rsrc_attach *attach)
1695 {
1696 	int blkaddr, num_lfs;
1697 
1698 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1699 					 attach->hdr.pcifunc, attach);
1700 	if (blkaddr < 0)
1701 		return false;
1702 
1703 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1704 					blkaddr);
1705 	/* Requester already has LFs from given block ? */
1706 	return !!num_lfs;
1707 }
1708 
1709 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1710 				      struct rsrc_attach *attach,
1711 				      struct msg_rsp *rsp)
1712 {
1713 	u16 pcifunc = attach->hdr.pcifunc;
1714 	int err;
1715 
1716 	/* If first request, detach all existing attached resources */
1717 	if (!attach->modify)
1718 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1719 
1720 	mutex_lock(&rvu->rsrc_lock);
1721 
1722 	/* Check if the request can be accommodated */
1723 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1724 	if (err)
1725 		goto exit;
1726 
1727 	/* Now attach the requested resources */
1728 	if (attach->npalf)
1729 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1730 
1731 	if (attach->nixlf)
1732 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1733 
1734 	if (attach->sso) {
1735 		/* RVU func doesn't know which exact LF or slot is attached
1736 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1737 		 * request, simply detach all existing attached LFs/slots
1738 		 * and attach a fresh.
1739 		 */
1740 		if (attach->modify)
1741 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1742 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1743 				 attach->sso, attach);
1744 	}
1745 
1746 	if (attach->ssow) {
1747 		if (attach->modify)
1748 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1749 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1750 				 attach->ssow, attach);
1751 	}
1752 
1753 	if (attach->timlfs) {
1754 		if (attach->modify)
1755 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1756 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1757 				 attach->timlfs, attach);
1758 	}
1759 
1760 	if (attach->cptlfs) {
1761 		if (attach->modify &&
1762 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1763 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1764 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1765 				 attach->cptlfs, attach);
1766 	}
1767 
1768 exit:
1769 	mutex_unlock(&rvu->rsrc_lock);
1770 	return err;
1771 }
1772 
1773 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1774 			       int blkaddr, int lf)
1775 {
1776 	u16 vec;
1777 
1778 	if (lf < 0)
1779 		return MSIX_VECTOR_INVALID;
1780 
1781 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1782 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1783 			return vec;
1784 	}
1785 	return MSIX_VECTOR_INVALID;
1786 }
1787 
1788 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1789 				struct rvu_block *block, int lf)
1790 {
1791 	u16 nvecs, vec, offset;
1792 	u64 cfg;
1793 
1794 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1795 			 (lf << block->lfshift));
1796 	nvecs = (cfg >> 12) & 0xFF;
1797 
1798 	/* Check and alloc MSIX vectors, must be contiguous */
1799 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1800 		return;
1801 
1802 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1803 
1804 	/* Config MSIX offset in LF */
1805 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1806 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1807 
1808 	/* Update the bitmap as well */
1809 	for (vec = 0; vec < nvecs; vec++)
1810 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1811 }
1812 
1813 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1814 				  struct rvu_block *block, int lf)
1815 {
1816 	u16 nvecs, vec, offset;
1817 	u64 cfg;
1818 
1819 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1820 			 (lf << block->lfshift));
1821 	nvecs = (cfg >> 12) & 0xFF;
1822 
1823 	/* Clear MSIX offset in LF */
1824 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1825 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1826 
1827 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1828 
1829 	/* Update the mapping */
1830 	for (vec = 0; vec < nvecs; vec++)
1831 		pfvf->msix_lfmap[offset + vec] = 0;
1832 
1833 	/* Free the same in MSIX bitmap */
1834 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1835 }
1836 
1837 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1838 				 struct msix_offset_rsp *rsp)
1839 {
1840 	struct rvu_hwinfo *hw = rvu->hw;
1841 	u16 pcifunc = req->hdr.pcifunc;
1842 	struct rvu_pfvf *pfvf;
1843 	int lf, slot, blkaddr;
1844 
1845 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1846 	if (!pfvf->msix.bmap)
1847 		return 0;
1848 
1849 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1850 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1851 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1852 
1853 	/* Get BLKADDR from which LFs are attached to pcifunc */
1854 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1855 	if (blkaddr < 0) {
1856 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1857 	} else {
1858 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1859 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1860 	}
1861 
1862 	rsp->sso = pfvf->sso;
1863 	for (slot = 0; slot < rsp->sso; slot++) {
1864 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1865 		rsp->sso_msixoff[slot] =
1866 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1867 	}
1868 
1869 	rsp->ssow = pfvf->ssow;
1870 	for (slot = 0; slot < rsp->ssow; slot++) {
1871 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1872 		rsp->ssow_msixoff[slot] =
1873 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1874 	}
1875 
1876 	rsp->timlfs = pfvf->timlfs;
1877 	for (slot = 0; slot < rsp->timlfs; slot++) {
1878 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1879 		rsp->timlf_msixoff[slot] =
1880 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1881 	}
1882 
1883 	rsp->cptlfs = pfvf->cptlfs;
1884 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1885 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1886 		rsp->cptlf_msixoff[slot] =
1887 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1888 	}
1889 
1890 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1891 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1892 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1893 		rsp->cpt1_lf_msixoff[slot] =
1894 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1895 	}
1896 
1897 	return 0;
1898 }
1899 
1900 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1901 				   struct free_rsrcs_rsp *rsp)
1902 {
1903 	struct rvu_hwinfo *hw = rvu->hw;
1904 	struct rvu_block *block;
1905 	struct nix_txsch *txsch;
1906 	struct nix_hw *nix_hw;
1907 
1908 	mutex_lock(&rvu->rsrc_lock);
1909 
1910 	block = &hw->block[BLKADDR_NPA];
1911 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1912 
1913 	block = &hw->block[BLKADDR_NIX0];
1914 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1915 
1916 	block = &hw->block[BLKADDR_NIX1];
1917 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1918 
1919 	block = &hw->block[BLKADDR_SSO];
1920 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1921 
1922 	block = &hw->block[BLKADDR_SSOW];
1923 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1924 
1925 	block = &hw->block[BLKADDR_TIM];
1926 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1927 
1928 	block = &hw->block[BLKADDR_CPT0];
1929 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1930 
1931 	block = &hw->block[BLKADDR_CPT1];
1932 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1933 
1934 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1935 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1936 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1937 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1938 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1939 		/* NIX1 */
1940 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1941 			goto out;
1942 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1943 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1944 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1945 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1946 	} else {
1947 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1948 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1949 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
1950 				rvu_rsrc_free_count(&txsch->schq);
1951 
1952 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1953 		rsp->schq[NIX_TXSCH_LVL_TL4] =
1954 				rvu_rsrc_free_count(&txsch->schq);
1955 
1956 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1957 		rsp->schq[NIX_TXSCH_LVL_TL3] =
1958 				rvu_rsrc_free_count(&txsch->schq);
1959 
1960 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1961 		rsp->schq[NIX_TXSCH_LVL_TL2] =
1962 				rvu_rsrc_free_count(&txsch->schq);
1963 
1964 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1965 			goto out;
1966 
1967 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1968 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1969 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1970 				rvu_rsrc_free_count(&txsch->schq);
1971 
1972 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1973 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1974 				rvu_rsrc_free_count(&txsch->schq);
1975 
1976 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1977 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1978 				rvu_rsrc_free_count(&txsch->schq);
1979 
1980 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1981 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1982 				rvu_rsrc_free_count(&txsch->schq);
1983 	}
1984 
1985 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1986 out:
1987 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1988 	mutex_unlock(&rvu->rsrc_lock);
1989 
1990 	return 0;
1991 }
1992 
1993 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1994 			    struct msg_rsp *rsp)
1995 {
1996 	u16 pcifunc = req->hdr.pcifunc;
1997 	u16 vf, numvfs;
1998 	u64 cfg;
1999 
2000 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
2001 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
2002 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
2003 	numvfs = (cfg >> 12) & 0xFF;
2004 
2005 	if (vf && vf <= numvfs)
2006 		__rvu_flr_handler(rvu, pcifunc);
2007 	else
2008 		return RVU_INVALID_VF_ID;
2009 
2010 	return 0;
2011 }
2012 
2013 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2014 				struct get_hw_cap_rsp *rsp)
2015 {
2016 	struct rvu_hwinfo *hw = rvu->hw;
2017 
2018 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2019 	rsp->nix_shaping = hw->cap.nix_shaping;
2020 	rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2021 
2022 	return 0;
2023 }
2024 
2025 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2026 				 struct msg_rsp *rsp)
2027 {
2028 	struct rvu_hwinfo *hw = rvu->hw;
2029 	u16 pcifunc = req->hdr.pcifunc;
2030 	struct rvu_pfvf *pfvf;
2031 	int blkaddr, nixlf;
2032 	u16 target;
2033 
2034 	/* Only PF can add VF permissions */
2035 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
2036 		return -EOPNOTSUPP;
2037 
2038 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2039 	pfvf = rvu_get_pfvf(rvu, target);
2040 
2041 	if (req->flags & RESET_VF_PERM) {
2042 		pfvf->flags &= RVU_CLEAR_VF_PERM;
2043 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2044 		 (req->flags & VF_TRUSTED)) {
2045 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2046 		/* disable multicast and promisc entries */
2047 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2048 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2049 			if (blkaddr < 0)
2050 				return 0;
2051 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2052 					   target, 0);
2053 			if (nixlf < 0)
2054 				return 0;
2055 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2056 						     NIXLF_ALLMULTI_ENTRY,
2057 						     false);
2058 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2059 						     NIXLF_PROMISC_ENTRY,
2060 						     false);
2061 		}
2062 	}
2063 
2064 	return 0;
2065 }
2066 
2067 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2068 				struct mbox_msghdr *req)
2069 {
2070 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2071 
2072 	/* Check if valid, if not reply with a invalid msg */
2073 	if (req->sig != OTX2_MBOX_REQ_SIG)
2074 		goto bad_message;
2075 
2076 	switch (req->id) {
2077 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
2078 	case _id: {							\
2079 		struct _rsp_type *rsp;					\
2080 		int err;						\
2081 									\
2082 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
2083 			mbox, devid,					\
2084 			sizeof(struct _rsp_type));			\
2085 		/* some handlers should complete even if reply */	\
2086 		/* could not be allocated */				\
2087 		if (!rsp &&						\
2088 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
2089 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
2090 		    _id != MBOX_MSG_VF_FLR)				\
2091 			return -ENOMEM;					\
2092 		if (rsp) {						\
2093 			rsp->hdr.id = _id;				\
2094 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
2095 			rsp->hdr.pcifunc = req->pcifunc;		\
2096 			rsp->hdr.rc = 0;				\
2097 		}							\
2098 									\
2099 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
2100 						    (struct _req_type *)req, \
2101 						    rsp);		\
2102 		if (rsp && err)						\
2103 			rsp->hdr.rc = err;				\
2104 									\
2105 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
2106 		return rsp ? err : -ENOMEM;				\
2107 	}
2108 MBOX_MESSAGES
2109 #undef M
2110 
2111 bad_message:
2112 	default:
2113 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2114 		return -ENODEV;
2115 	}
2116 }
2117 
2118 static void __rvu_mbox_handler(struct rvu_work *mwork, int type, bool poll)
2119 {
2120 	struct rvu *rvu = mwork->rvu;
2121 	int offset, err, id, devid;
2122 	struct otx2_mbox_dev *mdev;
2123 	struct mbox_hdr *req_hdr;
2124 	struct mbox_msghdr *msg;
2125 	struct mbox_wq_info *mw;
2126 	struct otx2_mbox *mbox;
2127 
2128 	switch (type) {
2129 	case TYPE_AFPF:
2130 		mw = &rvu->afpf_wq_info;
2131 		break;
2132 	case TYPE_AFVF:
2133 		mw = &rvu->afvf_wq_info;
2134 		break;
2135 	default:
2136 		return;
2137 	}
2138 
2139 	devid = mwork - mw->mbox_wrk;
2140 	mbox = &mw->mbox;
2141 	mdev = &mbox->dev[devid];
2142 
2143 	/* Process received mbox messages */
2144 	req_hdr = mdev->mbase + mbox->rx_start;
2145 	if (mw->mbox_wrk[devid].num_msgs == 0)
2146 		return;
2147 
2148 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2149 
2150 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2151 		msg = mdev->mbase + offset;
2152 
2153 		/* Set which PF/VF sent this message based on mbox IRQ */
2154 		switch (type) {
2155 		case TYPE_AFPF:
2156 			msg->pcifunc &=
2157 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2158 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2159 			break;
2160 		case TYPE_AFVF:
2161 			msg->pcifunc &=
2162 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2163 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2164 			break;
2165 		}
2166 
2167 		err = rvu_process_mbox_msg(mbox, devid, msg);
2168 		if (!err) {
2169 			offset = mbox->rx_start + msg->next_msgoff;
2170 			continue;
2171 		}
2172 
2173 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2174 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2175 				 err, otx2_mbox_id2name(msg->id),
2176 				 msg->id, rvu_get_pf(msg->pcifunc),
2177 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2178 		else
2179 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2180 				 err, otx2_mbox_id2name(msg->id),
2181 				 msg->id, devid);
2182 	}
2183 	mw->mbox_wrk[devid].num_msgs = 0;
2184 
2185 	if (poll)
2186 		otx2_mbox_wait_for_zero(mbox, devid);
2187 
2188 	/* Send mbox responses to VF/PF */
2189 	otx2_mbox_msg_send(mbox, devid);
2190 }
2191 
2192 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2193 {
2194 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2195 	struct rvu *rvu = mwork->rvu;
2196 
2197 	mutex_lock(&rvu->mbox_lock);
2198 	__rvu_mbox_handler(mwork, TYPE_AFPF, true);
2199 	mutex_unlock(&rvu->mbox_lock);
2200 }
2201 
2202 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2203 {
2204 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2205 
2206 	__rvu_mbox_handler(mwork, TYPE_AFVF, false);
2207 }
2208 
2209 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2210 {
2211 	struct rvu *rvu = mwork->rvu;
2212 	struct otx2_mbox_dev *mdev;
2213 	struct mbox_hdr *rsp_hdr;
2214 	struct mbox_msghdr *msg;
2215 	struct mbox_wq_info *mw;
2216 	struct otx2_mbox *mbox;
2217 	int offset, id, devid;
2218 
2219 	switch (type) {
2220 	case TYPE_AFPF:
2221 		mw = &rvu->afpf_wq_info;
2222 		break;
2223 	case TYPE_AFVF:
2224 		mw = &rvu->afvf_wq_info;
2225 		break;
2226 	default:
2227 		return;
2228 	}
2229 
2230 	devid = mwork - mw->mbox_wrk_up;
2231 	mbox = &mw->mbox_up;
2232 	mdev = &mbox->dev[devid];
2233 
2234 	rsp_hdr = mdev->mbase + mbox->rx_start;
2235 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2236 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2237 		return;
2238 	}
2239 
2240 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2241 
2242 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2243 		msg = mdev->mbase + offset;
2244 
2245 		if (msg->id >= MBOX_MSG_MAX) {
2246 			dev_err(rvu->dev,
2247 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2248 			goto end;
2249 		}
2250 
2251 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2252 			dev_err(rvu->dev,
2253 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2254 				msg->sig, msg->id);
2255 			goto end;
2256 		}
2257 
2258 		switch (msg->id) {
2259 		case MBOX_MSG_CGX_LINK_EVENT:
2260 			break;
2261 		default:
2262 			if (msg->rc)
2263 				dev_err(rvu->dev,
2264 					"Mbox msg response has err %d, ID 0x%x\n",
2265 					msg->rc, msg->id);
2266 			break;
2267 		}
2268 end:
2269 		offset = mbox->rx_start + msg->next_msgoff;
2270 		mdev->msgs_acked++;
2271 	}
2272 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2273 
2274 	otx2_mbox_reset(mbox, devid);
2275 }
2276 
2277 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2278 {
2279 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2280 
2281 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2282 }
2283 
2284 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2285 {
2286 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2287 
2288 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2289 }
2290 
2291 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2292 				int num, int type, unsigned long *pf_bmap)
2293 {
2294 	struct rvu_hwinfo *hw = rvu->hw;
2295 	int region;
2296 	u64 bar4;
2297 
2298 	/* For cn10k platform VF mailbox regions of a PF follows after the
2299 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2300 	 * RVU_PF_VF_BAR4_ADDR register.
2301 	 */
2302 	if (type == TYPE_AFVF) {
2303 		for (region = 0; region < num; region++) {
2304 			if (!test_bit(region, pf_bmap))
2305 				continue;
2306 
2307 			if (hw->cap.per_pf_mbox_regs) {
2308 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2309 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2310 						  MBOX_SIZE;
2311 				bar4 += region * MBOX_SIZE;
2312 			} else {
2313 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2314 				bar4 += region * MBOX_SIZE;
2315 			}
2316 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2317 			if (!mbox_addr[region])
2318 				goto error;
2319 		}
2320 		return 0;
2321 	}
2322 
2323 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2324 	 * PF registers. Whereas for Octeontx2 it is read from
2325 	 * RVU_AF_PF_BAR4_ADDR register.
2326 	 */
2327 	for (region = 0; region < num; region++) {
2328 		if (!test_bit(region, pf_bmap))
2329 			continue;
2330 
2331 		if (hw->cap.per_pf_mbox_regs) {
2332 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2333 					  RVU_AF_PFX_BAR4_ADDR(region));
2334 		} else {
2335 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2336 					  RVU_AF_PF_BAR4_ADDR);
2337 			bar4 += region * MBOX_SIZE;
2338 		}
2339 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2340 		if (!mbox_addr[region])
2341 			goto error;
2342 	}
2343 	return 0;
2344 
2345 error:
2346 	while (region--)
2347 		iounmap((void __iomem *)mbox_addr[region]);
2348 	return -ENOMEM;
2349 }
2350 
2351 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2352 			 int type, int num,
2353 			 void (mbox_handler)(struct work_struct *),
2354 			 void (mbox_up_handler)(struct work_struct *))
2355 {
2356 	int err = -EINVAL, i, dir, dir_up;
2357 	void __iomem *reg_base;
2358 	struct rvu_work *mwork;
2359 	unsigned long *pf_bmap;
2360 	void **mbox_regions;
2361 	const char *name;
2362 	u64 cfg;
2363 
2364 	pf_bmap = bitmap_zalloc(num, GFP_KERNEL);
2365 	if (!pf_bmap)
2366 		return -ENOMEM;
2367 
2368 	/* RVU VFs */
2369 	if (type == TYPE_AFVF)
2370 		bitmap_set(pf_bmap, 0, num);
2371 
2372 	if (type == TYPE_AFPF) {
2373 		/* Mark enabled PFs in bitmap */
2374 		for (i = 0; i < num; i++) {
2375 			cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i));
2376 			if (cfg & BIT_ULL(20))
2377 				set_bit(i, pf_bmap);
2378 		}
2379 	}
2380 
2381 	mutex_init(&rvu->mbox_lock);
2382 
2383 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2384 	if (!mbox_regions) {
2385 		err = -ENOMEM;
2386 		goto free_bitmap;
2387 	}
2388 
2389 	switch (type) {
2390 	case TYPE_AFPF:
2391 		name = "rvu_afpf_mailbox";
2392 		dir = MBOX_DIR_AFPF;
2393 		dir_up = MBOX_DIR_AFPF_UP;
2394 		reg_base = rvu->afreg_base;
2395 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF, pf_bmap);
2396 		if (err)
2397 			goto free_regions;
2398 		break;
2399 	case TYPE_AFVF:
2400 		name = "rvu_afvf_mailbox";
2401 		dir = MBOX_DIR_PFVF;
2402 		dir_up = MBOX_DIR_PFVF_UP;
2403 		reg_base = rvu->pfreg_base;
2404 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF, pf_bmap);
2405 		if (err)
2406 			goto free_regions;
2407 		break;
2408 	default:
2409 		goto free_regions;
2410 	}
2411 
2412 	mw->mbox_wq = alloc_workqueue(name,
2413 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2414 				      num);
2415 	if (!mw->mbox_wq) {
2416 		err = -ENOMEM;
2417 		goto unmap_regions;
2418 	}
2419 
2420 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2421 				    sizeof(struct rvu_work), GFP_KERNEL);
2422 	if (!mw->mbox_wrk) {
2423 		err = -ENOMEM;
2424 		goto exit;
2425 	}
2426 
2427 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2428 				       sizeof(struct rvu_work), GFP_KERNEL);
2429 	if (!mw->mbox_wrk_up) {
2430 		err = -ENOMEM;
2431 		goto exit;
2432 	}
2433 
2434 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2435 				     reg_base, dir, num, pf_bmap);
2436 	if (err)
2437 		goto exit;
2438 
2439 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2440 				     reg_base, dir_up, num, pf_bmap);
2441 	if (err)
2442 		goto exit;
2443 
2444 	for (i = 0; i < num; i++) {
2445 		if (!test_bit(i, pf_bmap))
2446 			continue;
2447 
2448 		mwork = &mw->mbox_wrk[i];
2449 		mwork->rvu = rvu;
2450 		INIT_WORK(&mwork->work, mbox_handler);
2451 
2452 		mwork = &mw->mbox_wrk_up[i];
2453 		mwork->rvu = rvu;
2454 		INIT_WORK(&mwork->work, mbox_up_handler);
2455 	}
2456 	goto free_regions;
2457 
2458 exit:
2459 	destroy_workqueue(mw->mbox_wq);
2460 unmap_regions:
2461 	while (num--)
2462 		iounmap((void __iomem *)mbox_regions[num]);
2463 free_regions:
2464 	kfree(mbox_regions);
2465 free_bitmap:
2466 	bitmap_free(pf_bmap);
2467 	return err;
2468 }
2469 
2470 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2471 {
2472 	struct otx2_mbox *mbox = &mw->mbox;
2473 	struct otx2_mbox_dev *mdev;
2474 	int devid;
2475 
2476 	if (mw->mbox_wq) {
2477 		destroy_workqueue(mw->mbox_wq);
2478 		mw->mbox_wq = NULL;
2479 	}
2480 
2481 	for (devid = 0; devid < mbox->ndevs; devid++) {
2482 		mdev = &mbox->dev[devid];
2483 		if (mdev->hwbase)
2484 			iounmap((void __iomem *)mdev->hwbase);
2485 	}
2486 
2487 	otx2_mbox_destroy(&mw->mbox);
2488 	otx2_mbox_destroy(&mw->mbox_up);
2489 }
2490 
2491 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2492 			   int mdevs, u64 intr)
2493 {
2494 	struct otx2_mbox_dev *mdev;
2495 	struct otx2_mbox *mbox;
2496 	struct mbox_hdr *hdr;
2497 	int i;
2498 
2499 	for (i = first; i < mdevs; i++) {
2500 		/* start from 0 */
2501 		if (!(intr & BIT_ULL(i - first)))
2502 			continue;
2503 
2504 		mbox = &mw->mbox;
2505 		mdev = &mbox->dev[i];
2506 		hdr = mdev->mbase + mbox->rx_start;
2507 
2508 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2509 		 * handler to  ensure that it holds a correct value next time
2510 		 * when the interrupt handler is called.
2511 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2512 		 * pf>mbox.up_num_msgs holds the data for use in
2513 		 * pfaf_mbox_up_handler.
2514 		 */
2515 
2516 		if (hdr->num_msgs) {
2517 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2518 			hdr->num_msgs = 0;
2519 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2520 		}
2521 		mbox = &mw->mbox_up;
2522 		mdev = &mbox->dev[i];
2523 		hdr = mdev->mbase + mbox->rx_start;
2524 		if (hdr->num_msgs) {
2525 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2526 			hdr->num_msgs = 0;
2527 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2528 		}
2529 	}
2530 }
2531 
2532 static irqreturn_t rvu_mbox_pf_intr_handler(int irq, void *rvu_irq)
2533 {
2534 	struct rvu *rvu = (struct rvu *)rvu_irq;
2535 	u64 intr;
2536 
2537 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2538 	/* Clear interrupts */
2539 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2540 	if (intr)
2541 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2542 
2543 	/* Sync with mbox memory region */
2544 	rmb();
2545 
2546 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2547 
2548 	return IRQ_HANDLED;
2549 }
2550 
2551 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2552 {
2553 	struct rvu *rvu = (struct rvu *)rvu_irq;
2554 	int vfs = rvu->vfs;
2555 	u64 intr;
2556 
2557 	/* Sync with mbox memory region */
2558 	rmb();
2559 
2560 	/* Handle VF interrupts */
2561 	if (vfs > 64) {
2562 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2563 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2564 
2565 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2566 		vfs -= 64;
2567 	}
2568 
2569 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2570 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2571 	if (intr)
2572 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2573 
2574 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2575 
2576 	return IRQ_HANDLED;
2577 }
2578 
2579 static void rvu_enable_mbox_intr(struct rvu *rvu)
2580 {
2581 	struct rvu_hwinfo *hw = rvu->hw;
2582 
2583 	/* Clear spurious irqs, if any */
2584 	rvu_write64(rvu, BLKADDR_RVUM,
2585 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2586 
2587 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2588 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2589 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2590 }
2591 
2592 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2593 {
2594 	struct rvu_block *block;
2595 	int slot, lf, num_lfs;
2596 	int err;
2597 
2598 	block = &rvu->hw->block[blkaddr];
2599 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2600 					block->addr);
2601 	if (!num_lfs)
2602 		return;
2603 	for (slot = 0; slot < num_lfs; slot++) {
2604 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2605 		if (lf < 0)
2606 			continue;
2607 
2608 		/* Cleanup LF and reset it */
2609 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2610 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2611 		else if (block->addr == BLKADDR_NPA)
2612 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2613 		else if ((block->addr == BLKADDR_CPT0) ||
2614 			 (block->addr == BLKADDR_CPT1))
2615 			rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2616 					    slot);
2617 
2618 		err = rvu_lf_reset(rvu, block, lf);
2619 		if (err) {
2620 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2621 				block->addr, lf);
2622 		}
2623 	}
2624 }
2625 
2626 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2627 {
2628 	if (rvu_npc_exact_has_match_table(rvu))
2629 		rvu_npc_exact_reset(rvu, pcifunc);
2630 
2631 	mutex_lock(&rvu->flr_lock);
2632 	/* Reset order should reflect inter-block dependencies:
2633 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2634 	 * 2. Flush and reset SSO/SSOW
2635 	 * 3. Cleanup pools (NPA)
2636 	 */
2637 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2638 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2639 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2640 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2641 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2642 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2643 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2644 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2645 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2646 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2647 	/* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
2648 	 * entries, check and free the MCAM entries explicitly to avoid leak.
2649 	 * Since LF is detached use LF number as -1.
2650 	 */
2651 	rvu_npc_free_mcam_entries(rvu, pcifunc, -1);
2652 	rvu_mac_reset(rvu, pcifunc);
2653 
2654 	if (rvu->mcs_blk_cnt)
2655 		rvu_mcs_flr_handler(rvu, pcifunc);
2656 
2657 	mutex_unlock(&rvu->flr_lock);
2658 }
2659 
2660 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2661 {
2662 	int reg = 0;
2663 
2664 	/* pcifunc = 0(PF0) | (vf + 1) */
2665 	__rvu_flr_handler(rvu, vf + 1);
2666 
2667 	if (vf >= 64) {
2668 		reg = 1;
2669 		vf = vf - 64;
2670 	}
2671 
2672 	/* Signal FLR finish and enable IRQ */
2673 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2674 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2675 }
2676 
2677 static void rvu_flr_handler(struct work_struct *work)
2678 {
2679 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2680 	struct rvu *rvu = flrwork->rvu;
2681 	u16 pcifunc, numvfs, vf;
2682 	u64 cfg;
2683 	int pf;
2684 
2685 	pf = flrwork - rvu->flr_wrk;
2686 	if (pf >= rvu->hw->total_pfs) {
2687 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2688 		return;
2689 	}
2690 
2691 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2692 	numvfs = (cfg >> 12) & 0xFF;
2693 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2694 
2695 	for (vf = 0; vf < numvfs; vf++)
2696 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2697 
2698 	__rvu_flr_handler(rvu, pcifunc);
2699 
2700 	/* Signal FLR finish */
2701 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2702 
2703 	/* Enable interrupt */
2704 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2705 }
2706 
2707 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2708 {
2709 	int dev, vf, reg = 0;
2710 	u64 intr;
2711 
2712 	if (start_vf >= 64)
2713 		reg = 1;
2714 
2715 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2716 	if (!intr)
2717 		return;
2718 
2719 	for (vf = 0; vf < numvfs; vf++) {
2720 		if (!(intr & BIT_ULL(vf)))
2721 			continue;
2722 		/* Clear and disable the interrupt */
2723 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2724 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2725 
2726 		dev = vf + start_vf + rvu->hw->total_pfs;
2727 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2728 	}
2729 }
2730 
2731 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2732 {
2733 	struct rvu *rvu = (struct rvu *)rvu_irq;
2734 	u64 intr;
2735 	u8  pf;
2736 
2737 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2738 	if (!intr)
2739 		goto afvf_flr;
2740 
2741 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2742 		if (intr & (1ULL << pf)) {
2743 			/* clear interrupt */
2744 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2745 				    BIT_ULL(pf));
2746 			/* Disable the interrupt */
2747 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2748 				    BIT_ULL(pf));
2749 			/* PF is already dead do only AF related operations */
2750 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2751 		}
2752 	}
2753 
2754 afvf_flr:
2755 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2756 	if (rvu->vfs > 64)
2757 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2758 
2759 	return IRQ_HANDLED;
2760 }
2761 
2762 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2763 {
2764 	int vf;
2765 
2766 	/* Nothing to be done here other than clearing the
2767 	 * TRPEND bit.
2768 	 */
2769 	for (vf = 0; vf < 64; vf++) {
2770 		if (intr & (1ULL << vf)) {
2771 			/* clear the trpend due to ME(master enable) */
2772 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2773 			/* clear interrupt */
2774 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2775 		}
2776 	}
2777 }
2778 
2779 /* Handles ME interrupts from VFs of AF */
2780 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2781 {
2782 	struct rvu *rvu = (struct rvu *)rvu_irq;
2783 	int vfset;
2784 	u64 intr;
2785 
2786 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2787 
2788 	for (vfset = 0; vfset <= 1; vfset++) {
2789 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2790 		if (intr)
2791 			rvu_me_handle_vfset(rvu, vfset, intr);
2792 	}
2793 
2794 	return IRQ_HANDLED;
2795 }
2796 
2797 /* Handles ME interrupts from PFs */
2798 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2799 {
2800 	struct rvu *rvu = (struct rvu *)rvu_irq;
2801 	u64 intr;
2802 	u8  pf;
2803 
2804 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2805 
2806 	/* Nothing to be done here other than clearing the
2807 	 * TRPEND bit.
2808 	 */
2809 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2810 		if (intr & (1ULL << pf)) {
2811 			/* clear the trpend due to ME(master enable) */
2812 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2813 				    BIT_ULL(pf));
2814 			/* clear interrupt */
2815 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2816 				    BIT_ULL(pf));
2817 		}
2818 	}
2819 
2820 	return IRQ_HANDLED;
2821 }
2822 
2823 static void rvu_unregister_interrupts(struct rvu *rvu)
2824 {
2825 	int irq;
2826 
2827 	rvu_cpt_unregister_interrupts(rvu);
2828 
2829 	/* Disable the Mbox interrupt */
2830 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2831 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2832 
2833 	/* Disable the PF FLR interrupt */
2834 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2835 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2836 
2837 	/* Disable the PF ME interrupt */
2838 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2839 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2840 
2841 	for (irq = 0; irq < rvu->num_vec; irq++) {
2842 		if (rvu->irq_allocated[irq]) {
2843 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2844 			rvu->irq_allocated[irq] = false;
2845 		}
2846 	}
2847 
2848 	pci_free_irq_vectors(rvu->pdev);
2849 	rvu->num_vec = 0;
2850 }
2851 
2852 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2853 {
2854 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2855 	int offset;
2856 
2857 	pfvf = &rvu->pf[0];
2858 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2859 
2860 	/* Make sure there are enough MSIX vectors configured so that
2861 	 * VF interrupts can be handled. Offset equal to zero means
2862 	 * that PF vectors are not configured and overlapping AF vectors.
2863 	 */
2864 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2865 	       offset;
2866 }
2867 
2868 static int rvu_register_interrupts(struct rvu *rvu)
2869 {
2870 	int ret, offset, pf_vec_start;
2871 
2872 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2873 
2874 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2875 					   NAME_SIZE, GFP_KERNEL);
2876 	if (!rvu->irq_name)
2877 		return -ENOMEM;
2878 
2879 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2880 					  sizeof(bool), GFP_KERNEL);
2881 	if (!rvu->irq_allocated)
2882 		return -ENOMEM;
2883 
2884 	/* Enable MSI-X */
2885 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2886 				    rvu->num_vec, PCI_IRQ_MSIX);
2887 	if (ret < 0) {
2888 		dev_err(rvu->dev,
2889 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2890 			rvu->num_vec, ret);
2891 		return ret;
2892 	}
2893 
2894 	/* Register mailbox interrupt handler */
2895 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2896 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2897 			  rvu_mbox_pf_intr_handler, 0,
2898 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2899 	if (ret) {
2900 		dev_err(rvu->dev,
2901 			"RVUAF: IRQ registration failed for mbox irq\n");
2902 		goto fail;
2903 	}
2904 
2905 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2906 
2907 	/* Enable mailbox interrupts from all PFs */
2908 	rvu_enable_mbox_intr(rvu);
2909 
2910 	/* Register FLR interrupt handler */
2911 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2912 		"RVUAF FLR");
2913 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2914 			  rvu_flr_intr_handler, 0,
2915 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2916 			  rvu);
2917 	if (ret) {
2918 		dev_err(rvu->dev,
2919 			"RVUAF: IRQ registration failed for FLR\n");
2920 		goto fail;
2921 	}
2922 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2923 
2924 	/* Enable FLR interrupt for all PFs*/
2925 	rvu_write64(rvu, BLKADDR_RVUM,
2926 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2927 
2928 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2929 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2930 
2931 	/* Register ME interrupt handler */
2932 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2933 		"RVUAF ME");
2934 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2935 			  rvu_me_pf_intr_handler, 0,
2936 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2937 			  rvu);
2938 	if (ret) {
2939 		dev_err(rvu->dev,
2940 			"RVUAF: IRQ registration failed for ME\n");
2941 	}
2942 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2943 
2944 	/* Clear TRPEND bit for all PF */
2945 	rvu_write64(rvu, BLKADDR_RVUM,
2946 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2947 	/* Enable ME interrupt for all PFs*/
2948 	rvu_write64(rvu, BLKADDR_RVUM,
2949 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2950 
2951 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2952 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2953 
2954 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2955 		return 0;
2956 
2957 	/* Get PF MSIX vectors offset. */
2958 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2959 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2960 
2961 	/* Register MBOX0 interrupt. */
2962 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2963 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2964 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2965 			  rvu_mbox_intr_handler, 0,
2966 			  &rvu->irq_name[offset * NAME_SIZE],
2967 			  rvu);
2968 	if (ret)
2969 		dev_err(rvu->dev,
2970 			"RVUAF: IRQ registration failed for Mbox0\n");
2971 
2972 	rvu->irq_allocated[offset] = true;
2973 
2974 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2975 	 * simply increment current offset by 1.
2976 	 */
2977 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2978 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2979 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2980 			  rvu_mbox_intr_handler, 0,
2981 			  &rvu->irq_name[offset * NAME_SIZE],
2982 			  rvu);
2983 	if (ret)
2984 		dev_err(rvu->dev,
2985 			"RVUAF: IRQ registration failed for Mbox1\n");
2986 
2987 	rvu->irq_allocated[offset] = true;
2988 
2989 	/* Register FLR interrupt handler for AF's VFs */
2990 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2991 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2992 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2993 			  rvu_flr_intr_handler, 0,
2994 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2995 	if (ret) {
2996 		dev_err(rvu->dev,
2997 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2998 		goto fail;
2999 	}
3000 	rvu->irq_allocated[offset] = true;
3001 
3002 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
3003 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
3004 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3005 			  rvu_flr_intr_handler, 0,
3006 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3007 	if (ret) {
3008 		dev_err(rvu->dev,
3009 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
3010 		goto fail;
3011 	}
3012 	rvu->irq_allocated[offset] = true;
3013 
3014 	/* Register ME interrupt handler for AF's VFs */
3015 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
3016 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
3017 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3018 			  rvu_me_vf_intr_handler, 0,
3019 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3020 	if (ret) {
3021 		dev_err(rvu->dev,
3022 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
3023 		goto fail;
3024 	}
3025 	rvu->irq_allocated[offset] = true;
3026 
3027 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
3028 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
3029 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3030 			  rvu_me_vf_intr_handler, 0,
3031 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3032 	if (ret) {
3033 		dev_err(rvu->dev,
3034 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
3035 		goto fail;
3036 	}
3037 	rvu->irq_allocated[offset] = true;
3038 
3039 	ret = rvu_cpt_register_interrupts(rvu);
3040 	if (ret)
3041 		goto fail;
3042 
3043 	return 0;
3044 
3045 fail:
3046 	rvu_unregister_interrupts(rvu);
3047 	return ret;
3048 }
3049 
3050 static void rvu_flr_wq_destroy(struct rvu *rvu)
3051 {
3052 	if (rvu->flr_wq) {
3053 		destroy_workqueue(rvu->flr_wq);
3054 		rvu->flr_wq = NULL;
3055 	}
3056 }
3057 
3058 static int rvu_flr_init(struct rvu *rvu)
3059 {
3060 	int dev, num_devs;
3061 	u64 cfg;
3062 	int pf;
3063 
3064 	/* Enable FLR for all PFs*/
3065 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
3066 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
3067 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
3068 			    cfg | BIT_ULL(22));
3069 	}
3070 
3071 	rvu->flr_wq = alloc_ordered_workqueue("rvu_afpf_flr",
3072 					      WQ_HIGHPRI | WQ_MEM_RECLAIM);
3073 	if (!rvu->flr_wq)
3074 		return -ENOMEM;
3075 
3076 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
3077 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
3078 				    sizeof(struct rvu_work), GFP_KERNEL);
3079 	if (!rvu->flr_wrk) {
3080 		destroy_workqueue(rvu->flr_wq);
3081 		return -ENOMEM;
3082 	}
3083 
3084 	for (dev = 0; dev < num_devs; dev++) {
3085 		rvu->flr_wrk[dev].rvu = rvu;
3086 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3087 	}
3088 
3089 	mutex_init(&rvu->flr_lock);
3090 
3091 	return 0;
3092 }
3093 
3094 static void rvu_disable_afvf_intr(struct rvu *rvu)
3095 {
3096 	int vfs = rvu->vfs;
3097 
3098 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3099 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3100 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3101 	if (vfs <= 64)
3102 		return;
3103 
3104 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3105 		      INTR_MASK(vfs - 64));
3106 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3107 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3108 }
3109 
3110 static void rvu_enable_afvf_intr(struct rvu *rvu)
3111 {
3112 	int vfs = rvu->vfs;
3113 
3114 	/* Clear any pending interrupts and enable AF VF interrupts for
3115 	 * the first 64 VFs.
3116 	 */
3117 	/* Mbox */
3118 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3119 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3120 
3121 	/* FLR */
3122 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3123 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3124 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3125 
3126 	/* Same for remaining VFs, if any. */
3127 	if (vfs <= 64)
3128 		return;
3129 
3130 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3131 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3132 		      INTR_MASK(vfs - 64));
3133 
3134 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3135 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3136 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3137 }
3138 
3139 int rvu_get_num_lbk_chans(void)
3140 {
3141 	struct pci_dev *pdev;
3142 	void __iomem *base;
3143 	int ret = -EIO;
3144 
3145 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3146 			      NULL);
3147 	if (!pdev)
3148 		goto err;
3149 
3150 	base = pci_ioremap_bar(pdev, 0);
3151 	if (!base)
3152 		goto err_put;
3153 
3154 	/* Read number of available LBK channels from LBK(0)_CONST register. */
3155 	ret = (readq(base + 0x10) >> 32) & 0xffff;
3156 	iounmap(base);
3157 err_put:
3158 	pci_dev_put(pdev);
3159 err:
3160 	return ret;
3161 }
3162 
3163 static int rvu_enable_sriov(struct rvu *rvu)
3164 {
3165 	struct pci_dev *pdev = rvu->pdev;
3166 	int err, chans, vfs;
3167 
3168 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3169 		dev_warn(&pdev->dev,
3170 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
3171 		return 0;
3172 	}
3173 
3174 	chans = rvu_get_num_lbk_chans();
3175 	if (chans < 0)
3176 		return chans;
3177 
3178 	vfs = pci_sriov_get_totalvfs(pdev);
3179 
3180 	/* Limit VFs in case we have more VFs than LBK channels available. */
3181 	if (vfs > chans)
3182 		vfs = chans;
3183 
3184 	if (!vfs)
3185 		return 0;
3186 
3187 	/* LBK channel number 63 is used for switching packets between
3188 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3189 	 */
3190 	if (vfs > 62)
3191 		vfs = 62;
3192 
3193 	/* Save VFs number for reference in VF interrupts handlers.
3194 	 * Since interrupts might start arriving during SRIOV enablement
3195 	 * ordinary API cannot be used to get number of enabled VFs.
3196 	 */
3197 	rvu->vfs = vfs;
3198 
3199 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3200 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3201 	if (err)
3202 		return err;
3203 
3204 	rvu_enable_afvf_intr(rvu);
3205 	/* Make sure IRQs are enabled before SRIOV. */
3206 	mb();
3207 
3208 	err = pci_enable_sriov(pdev, vfs);
3209 	if (err) {
3210 		rvu_disable_afvf_intr(rvu);
3211 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3212 		return err;
3213 	}
3214 
3215 	return 0;
3216 }
3217 
3218 static void rvu_disable_sriov(struct rvu *rvu)
3219 {
3220 	rvu_disable_afvf_intr(rvu);
3221 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3222 	pci_disable_sriov(rvu->pdev);
3223 }
3224 
3225 static void rvu_update_module_params(struct rvu *rvu)
3226 {
3227 	const char *default_pfl_name = "default";
3228 
3229 	strscpy(rvu->mkex_pfl_name,
3230 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3231 	strscpy(rvu->kpu_pfl_name,
3232 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3233 }
3234 
3235 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3236 {
3237 	struct device *dev = &pdev->dev;
3238 	struct rvu *rvu;
3239 	int    err;
3240 
3241 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3242 	if (!rvu)
3243 		return -ENOMEM;
3244 
3245 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3246 	if (!rvu->hw) {
3247 		devm_kfree(dev, rvu);
3248 		return -ENOMEM;
3249 	}
3250 
3251 	pci_set_drvdata(pdev, rvu);
3252 	rvu->pdev = pdev;
3253 	rvu->dev = &pdev->dev;
3254 
3255 	err = pci_enable_device(pdev);
3256 	if (err) {
3257 		dev_err(dev, "Failed to enable PCI device\n");
3258 		goto err_freemem;
3259 	}
3260 
3261 	err = pci_request_regions(pdev, DRV_NAME);
3262 	if (err) {
3263 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3264 		goto err_disable_device;
3265 	}
3266 
3267 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3268 	if (err) {
3269 		dev_err(dev, "DMA mask config failed, abort\n");
3270 		goto err_release_regions;
3271 	}
3272 
3273 	pci_set_master(pdev);
3274 
3275 	rvu->ptp = ptp_get();
3276 	if (IS_ERR(rvu->ptp)) {
3277 		err = PTR_ERR(rvu->ptp);
3278 		if (err)
3279 			goto err_release_regions;
3280 		rvu->ptp = NULL;
3281 	}
3282 
3283 	/* Map Admin function CSRs */
3284 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3285 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3286 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3287 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3288 		err = -ENOMEM;
3289 		goto err_put_ptp;
3290 	}
3291 
3292 	/* Store module params in rvu structure */
3293 	rvu_update_module_params(rvu);
3294 
3295 	/* Check which blocks the HW supports */
3296 	rvu_check_block_implemented(rvu);
3297 
3298 	rvu_reset_all_blocks(rvu);
3299 
3300 	rvu_setup_hw_capabilities(rvu);
3301 
3302 	err = rvu_setup_hw_resources(rvu);
3303 	if (err)
3304 		goto err_put_ptp;
3305 
3306 	/* Init mailbox btw AF and PFs */
3307 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3308 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3309 			    rvu_afpf_mbox_up_handler);
3310 	if (err) {
3311 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3312 		goto err_hwsetup;
3313 	}
3314 
3315 	err = rvu_flr_init(rvu);
3316 	if (err) {
3317 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3318 		goto err_mbox;
3319 	}
3320 
3321 	err = rvu_register_interrupts(rvu);
3322 	if (err) {
3323 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3324 		goto err_flr;
3325 	}
3326 
3327 	err = rvu_register_dl(rvu);
3328 	if (err) {
3329 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3330 		goto err_irq;
3331 	}
3332 
3333 	rvu_setup_rvum_blk_revid(rvu);
3334 
3335 	/* Enable AF's VFs (if any) */
3336 	err = rvu_enable_sriov(rvu);
3337 	if (err) {
3338 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3339 		goto err_dl;
3340 	}
3341 
3342 	/* Initialize debugfs */
3343 	rvu_dbg_init(rvu);
3344 
3345 	mutex_init(&rvu->rswitch.switch_lock);
3346 
3347 	if (rvu->fwdata)
3348 		ptp_start(rvu, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3349 			  rvu->fwdata->ptp_ext_tstamp);
3350 
3351 	return 0;
3352 err_dl:
3353 	rvu_unregister_dl(rvu);
3354 err_irq:
3355 	rvu_unregister_interrupts(rvu);
3356 err_flr:
3357 	rvu_flr_wq_destroy(rvu);
3358 err_mbox:
3359 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3360 err_hwsetup:
3361 	rvu_cgx_exit(rvu);
3362 	rvu_fwdata_exit(rvu);
3363 	rvu_mcs_exit(rvu);
3364 	rvu_reset_all_blocks(rvu);
3365 	rvu_free_hw_resources(rvu);
3366 	rvu_clear_rvum_blk_revid(rvu);
3367 err_put_ptp:
3368 	ptp_put(rvu->ptp);
3369 err_release_regions:
3370 	pci_release_regions(pdev);
3371 err_disable_device:
3372 	pci_disable_device(pdev);
3373 err_freemem:
3374 	pci_set_drvdata(pdev, NULL);
3375 	devm_kfree(&pdev->dev, rvu->hw);
3376 	devm_kfree(dev, rvu);
3377 	return err;
3378 }
3379 
3380 static void rvu_remove(struct pci_dev *pdev)
3381 {
3382 	struct rvu *rvu = pci_get_drvdata(pdev);
3383 
3384 	rvu_dbg_exit(rvu);
3385 	rvu_unregister_dl(rvu);
3386 	rvu_unregister_interrupts(rvu);
3387 	rvu_flr_wq_destroy(rvu);
3388 	rvu_cgx_exit(rvu);
3389 	rvu_fwdata_exit(rvu);
3390 	rvu_mcs_exit(rvu);
3391 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3392 	rvu_disable_sriov(rvu);
3393 	rvu_reset_all_blocks(rvu);
3394 	rvu_free_hw_resources(rvu);
3395 	rvu_clear_rvum_blk_revid(rvu);
3396 	ptp_put(rvu->ptp);
3397 	pci_release_regions(pdev);
3398 	pci_disable_device(pdev);
3399 	pci_set_drvdata(pdev, NULL);
3400 
3401 	devm_kfree(&pdev->dev, rvu->hw);
3402 	devm_kfree(&pdev->dev, rvu);
3403 }
3404 
3405 static struct pci_driver rvu_driver = {
3406 	.name = DRV_NAME,
3407 	.id_table = rvu_id_table,
3408 	.probe = rvu_probe,
3409 	.remove = rvu_remove,
3410 };
3411 
3412 static int __init rvu_init_module(void)
3413 {
3414 	int err;
3415 
3416 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3417 
3418 	err = pci_register_driver(&cgx_driver);
3419 	if (err < 0)
3420 		return err;
3421 
3422 	err = pci_register_driver(&ptp_driver);
3423 	if (err < 0)
3424 		goto ptp_err;
3425 
3426 	err = pci_register_driver(&mcs_driver);
3427 	if (err < 0)
3428 		goto mcs_err;
3429 
3430 	err =  pci_register_driver(&rvu_driver);
3431 	if (err < 0)
3432 		goto rvu_err;
3433 
3434 	return 0;
3435 rvu_err:
3436 	pci_unregister_driver(&mcs_driver);
3437 mcs_err:
3438 	pci_unregister_driver(&ptp_driver);
3439 ptp_err:
3440 	pci_unregister_driver(&cgx_driver);
3441 
3442 	return err;
3443 }
3444 
3445 static void __exit rvu_cleanup_module(void)
3446 {
3447 	pci_unregister_driver(&rvu_driver);
3448 	pci_unregister_driver(&mcs_driver);
3449 	pci_unregister_driver(&ptp_driver);
3450 	pci_unregister_driver(&cgx_driver);
3451 }
3452 
3453 module_init(rvu_init_module);
3454 module_exit(rvu_cleanup_module);
3455