1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/pci.h>
16 #include <linux/sysfs.h>
17 
18 #include "cgx.h"
19 #include "rvu.h"
20 #include "rvu_reg.h"
21 
22 #define DRV_NAME	"octeontx2-af"
23 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
24 #define DRV_VERSION	"1.0"
25 
26 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
27 
28 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
29 				struct rvu_block *block, int lf);
30 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31 				  struct rvu_block *block, int lf);
32 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
33 
34 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
35 			 int type, int num,
36 			 void (mbox_handler)(struct work_struct *),
37 			 void (mbox_up_handler)(struct work_struct *));
38 enum {
39 	TYPE_AFVF,
40 	TYPE_AFPF,
41 };
42 
43 /* Supported devices */
44 static const struct pci_device_id rvu_id_table[] = {
45 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
46 	{ 0, }  /* end of table */
47 };
48 
49 MODULE_AUTHOR("Marvell International Ltd.");
50 MODULE_DESCRIPTION(DRV_STRING);
51 MODULE_LICENSE("GPL v2");
52 MODULE_VERSION(DRV_VERSION);
53 MODULE_DEVICE_TABLE(pci, rvu_id_table);
54 
55 static char *mkex_profile; /* MKEX profile name */
56 module_param(mkex_profile, charp, 0000);
57 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
58 
59 static void rvu_setup_hw_capabilities(struct rvu *rvu)
60 {
61 	struct rvu_hwinfo *hw = rvu->hw;
62 
63 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
64 	hw->cap.nix_fixed_txschq_mapping = false;
65 	hw->cap.nix_shaping = true;
66 	hw->cap.nix_tx_link_bp = true;
67 	hw->cap.nix_rx_multicast = true;
68 
69 	if (is_rvu_96xx_B0(rvu)) {
70 		hw->cap.nix_fixed_txschq_mapping = true;
71 		hw->cap.nix_txsch_per_cgx_lmac = 4;
72 		hw->cap.nix_txsch_per_lbk_lmac = 132;
73 		hw->cap.nix_txsch_per_sdp_lmac = 76;
74 		hw->cap.nix_shaping = false;
75 		hw->cap.nix_tx_link_bp = false;
76 		if (is_rvu_96xx_A0(rvu))
77 			hw->cap.nix_rx_multicast = false;
78 	}
79 }
80 
81 /* Poll a RVU block's register 'offset', for a 'zero'
82  * or 'nonzero' at bits specified by 'mask'
83  */
84 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
85 {
86 	unsigned long timeout = jiffies + usecs_to_jiffies(10000);
87 	void __iomem *reg;
88 	u64 reg_val;
89 
90 	reg = rvu->afreg_base + ((block << 28) | offset);
91 again:
92 	reg_val = readq(reg);
93 	if (zero && !(reg_val & mask))
94 		return 0;
95 	if (!zero && (reg_val & mask))
96 		return 0;
97 	if (time_before(jiffies, timeout)) {
98 		usleep_range(1, 5);
99 		goto again;
100 	}
101 	return -EBUSY;
102 }
103 
104 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
105 {
106 	int id;
107 
108 	if (!rsrc->bmap)
109 		return -EINVAL;
110 
111 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
112 	if (id >= rsrc->max)
113 		return -ENOSPC;
114 
115 	__set_bit(id, rsrc->bmap);
116 
117 	return id;
118 }
119 
120 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
121 {
122 	int start;
123 
124 	if (!rsrc->bmap)
125 		return -EINVAL;
126 
127 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
128 	if (start >= rsrc->max)
129 		return -ENOSPC;
130 
131 	bitmap_set(rsrc->bmap, start, nrsrc);
132 	return start;
133 }
134 
135 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
136 {
137 	if (!rsrc->bmap)
138 		return;
139 	if (start >= rsrc->max)
140 		return;
141 
142 	bitmap_clear(rsrc->bmap, start, nrsrc);
143 }
144 
145 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
146 {
147 	int start;
148 
149 	if (!rsrc->bmap)
150 		return false;
151 
152 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
153 	if (start >= rsrc->max)
154 		return false;
155 
156 	return true;
157 }
158 
159 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
160 {
161 	if (!rsrc->bmap)
162 		return;
163 
164 	__clear_bit(id, rsrc->bmap);
165 }
166 
167 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
168 {
169 	int used;
170 
171 	if (!rsrc->bmap)
172 		return 0;
173 
174 	used = bitmap_weight(rsrc->bmap, rsrc->max);
175 	return (rsrc->max - used);
176 }
177 
178 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
179 {
180 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
181 			     sizeof(long), GFP_KERNEL);
182 	if (!rsrc->bmap)
183 		return -ENOMEM;
184 	return 0;
185 }
186 
187 /* Get block LF's HW index from a PF_FUNC's block slot number */
188 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
189 {
190 	u16 match = 0;
191 	int lf;
192 
193 	mutex_lock(&rvu->rsrc_lock);
194 	for (lf = 0; lf < block->lf.max; lf++) {
195 		if (block->fn_map[lf] == pcifunc) {
196 			if (slot == match) {
197 				mutex_unlock(&rvu->rsrc_lock);
198 				return lf;
199 			}
200 			match++;
201 		}
202 	}
203 	mutex_unlock(&rvu->rsrc_lock);
204 	return -ENODEV;
205 }
206 
207 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
208  * Some silicon variants of OcteonTX2 supports
209  * multiple blocks of same type.
210  *
211  * @pcifunc has to be zero when no LF is yet attached.
212  */
213 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
214 {
215 	int devnum, blkaddr = -ENODEV;
216 	u64 cfg, reg;
217 	bool is_pf;
218 
219 	switch (blktype) {
220 	case BLKTYPE_NPC:
221 		blkaddr = BLKADDR_NPC;
222 		goto exit;
223 	case BLKTYPE_NPA:
224 		blkaddr = BLKADDR_NPA;
225 		goto exit;
226 	case BLKTYPE_NIX:
227 		/* For now assume NIX0 */
228 		if (!pcifunc) {
229 			blkaddr = BLKADDR_NIX0;
230 			goto exit;
231 		}
232 		break;
233 	case BLKTYPE_SSO:
234 		blkaddr = BLKADDR_SSO;
235 		goto exit;
236 	case BLKTYPE_SSOW:
237 		blkaddr = BLKADDR_SSOW;
238 		goto exit;
239 	case BLKTYPE_TIM:
240 		blkaddr = BLKADDR_TIM;
241 		goto exit;
242 	case BLKTYPE_CPT:
243 		/* For now assume CPT0 */
244 		if (!pcifunc) {
245 			blkaddr = BLKADDR_CPT0;
246 			goto exit;
247 		}
248 		break;
249 	}
250 
251 	/* Check if this is a RVU PF or VF */
252 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
253 		is_pf = false;
254 		devnum = rvu_get_hwvf(rvu, pcifunc);
255 	} else {
256 		is_pf = true;
257 		devnum = rvu_get_pf(pcifunc);
258 	}
259 
260 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' */
261 	if (blktype == BLKTYPE_NIX) {
262 		reg = is_pf ? RVU_PRIV_PFX_NIX0_CFG : RVU_PRIV_HWVFX_NIX0_CFG;
263 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
264 		if (cfg)
265 			blkaddr = BLKADDR_NIX0;
266 	}
267 
268 	/* Check if the 'pcifunc' has a CPT LF from 'BLKADDR_CPT0' */
269 	if (blktype == BLKTYPE_CPT) {
270 		reg = is_pf ? RVU_PRIV_PFX_CPT0_CFG : RVU_PRIV_HWVFX_CPT0_CFG;
271 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
272 		if (cfg)
273 			blkaddr = BLKADDR_CPT0;
274 	}
275 
276 exit:
277 	if (is_block_implemented(rvu->hw, blkaddr))
278 		return blkaddr;
279 	return -ENODEV;
280 }
281 
282 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
283 				struct rvu_block *block, u16 pcifunc,
284 				u16 lf, bool attach)
285 {
286 	int devnum, num_lfs = 0;
287 	bool is_pf;
288 	u64 reg;
289 
290 	if (lf >= block->lf.max) {
291 		dev_err(&rvu->pdev->dev,
292 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
293 			__func__, lf, block->name, block->lf.max);
294 		return;
295 	}
296 
297 	/* Check if this is for a RVU PF or VF */
298 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
299 		is_pf = false;
300 		devnum = rvu_get_hwvf(rvu, pcifunc);
301 	} else {
302 		is_pf = true;
303 		devnum = rvu_get_pf(pcifunc);
304 	}
305 
306 	block->fn_map[lf] = attach ? pcifunc : 0;
307 
308 	switch (block->type) {
309 	case BLKTYPE_NPA:
310 		pfvf->npalf = attach ? true : false;
311 		num_lfs = pfvf->npalf;
312 		break;
313 	case BLKTYPE_NIX:
314 		pfvf->nixlf = attach ? true : false;
315 		num_lfs = pfvf->nixlf;
316 		break;
317 	case BLKTYPE_SSO:
318 		attach ? pfvf->sso++ : pfvf->sso--;
319 		num_lfs = pfvf->sso;
320 		break;
321 	case BLKTYPE_SSOW:
322 		attach ? pfvf->ssow++ : pfvf->ssow--;
323 		num_lfs = pfvf->ssow;
324 		break;
325 	case BLKTYPE_TIM:
326 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
327 		num_lfs = pfvf->timlfs;
328 		break;
329 	case BLKTYPE_CPT:
330 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
331 		num_lfs = pfvf->cptlfs;
332 		break;
333 	}
334 
335 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
336 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
337 }
338 
339 inline int rvu_get_pf(u16 pcifunc)
340 {
341 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
342 }
343 
344 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
345 {
346 	u64 cfg;
347 
348 	/* Get numVFs attached to this PF and first HWVF */
349 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
350 	*numvfs = (cfg >> 12) & 0xFF;
351 	*hwvf = cfg & 0xFFF;
352 }
353 
354 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
355 {
356 	int pf, func;
357 	u64 cfg;
358 
359 	pf = rvu_get_pf(pcifunc);
360 	func = pcifunc & RVU_PFVF_FUNC_MASK;
361 
362 	/* Get first HWVF attached to this PF */
363 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
364 
365 	return ((cfg & 0xFFF) + func - 1);
366 }
367 
368 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
369 {
370 	/* Check if it is a PF or VF */
371 	if (pcifunc & RVU_PFVF_FUNC_MASK)
372 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
373 	else
374 		return &rvu->pf[rvu_get_pf(pcifunc)];
375 }
376 
377 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
378 {
379 	int pf, vf, nvfs;
380 	u64 cfg;
381 
382 	pf = rvu_get_pf(pcifunc);
383 	if (pf >= rvu->hw->total_pfs)
384 		return false;
385 
386 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
387 		return true;
388 
389 	/* Check if VF is within number of VFs attached to this PF */
390 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
391 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
392 	nvfs = (cfg >> 12) & 0xFF;
393 	if (vf >= nvfs)
394 		return false;
395 
396 	return true;
397 }
398 
399 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
400 {
401 	struct rvu_block *block;
402 
403 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
404 		return false;
405 
406 	block = &hw->block[blkaddr];
407 	return block->implemented;
408 }
409 
410 static void rvu_check_block_implemented(struct rvu *rvu)
411 {
412 	struct rvu_hwinfo *hw = rvu->hw;
413 	struct rvu_block *block;
414 	int blkid;
415 	u64 cfg;
416 
417 	/* For each block check if 'implemented' bit is set */
418 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
419 		block = &hw->block[blkid];
420 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
421 		if (cfg & BIT_ULL(11))
422 			block->implemented = true;
423 	}
424 }
425 
426 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
427 {
428 	rvu_write64(rvu, BLKADDR_RVUM,
429 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
430 		    RVU_BLK_RVUM_REVID);
431 }
432 
433 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
434 {
435 	rvu_write64(rvu, BLKADDR_RVUM,
436 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
437 }
438 
439 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
440 {
441 	int err;
442 
443 	if (!block->implemented)
444 		return 0;
445 
446 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
447 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
448 			   true);
449 	return err;
450 }
451 
452 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
453 {
454 	struct rvu_block *block = &rvu->hw->block[blkaddr];
455 
456 	if (!block->implemented)
457 		return;
458 
459 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
460 	rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
461 }
462 
463 static void rvu_reset_all_blocks(struct rvu *rvu)
464 {
465 	/* Do a HW reset of all RVU blocks */
466 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
467 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
468 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
469 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
470 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
471 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
472 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
473 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
474 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
475 }
476 
477 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
478 {
479 	struct rvu_pfvf *pfvf;
480 	u64 cfg;
481 	int lf;
482 
483 	for (lf = 0; lf < block->lf.max; lf++) {
484 		cfg = rvu_read64(rvu, block->addr,
485 				 block->lfcfg_reg | (lf << block->lfshift));
486 		if (!(cfg & BIT_ULL(63)))
487 			continue;
488 
489 		/* Set this resource as being used */
490 		__set_bit(lf, block->lf.bmap);
491 
492 		/* Get, to whom this LF is attached */
493 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
494 		rvu_update_rsrc_map(rvu, pfvf, block,
495 				    (cfg >> 8) & 0xFFFF, lf, true);
496 
497 		/* Set start MSIX vector for this LF within this PF/VF */
498 		rvu_set_msix_offset(rvu, pfvf, block, lf);
499 	}
500 }
501 
502 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
503 {
504 	int min_vecs;
505 
506 	if (!vf)
507 		goto check_pf;
508 
509 	if (!nvecs) {
510 		dev_warn(rvu->dev,
511 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
512 			 pf, vf - 1, nvecs);
513 	}
514 	return;
515 
516 check_pf:
517 	if (pf == 0)
518 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
519 	else
520 		min_vecs = RVU_PF_INT_VEC_CNT;
521 
522 	if (!(nvecs < min_vecs))
523 		return;
524 	dev_warn(rvu->dev,
525 		 "PF%d is configured with too few vectors, %d, min is %d\n",
526 		 pf, nvecs, min_vecs);
527 }
528 
529 static int rvu_setup_msix_resources(struct rvu *rvu)
530 {
531 	struct rvu_hwinfo *hw = rvu->hw;
532 	int pf, vf, numvfs, hwvf, err;
533 	int nvecs, offset, max_msix;
534 	struct rvu_pfvf *pfvf;
535 	u64 cfg, phy_addr;
536 	dma_addr_t iova;
537 
538 	for (pf = 0; pf < hw->total_pfs; pf++) {
539 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
540 		/* If PF is not enabled, nothing to do */
541 		if (!((cfg >> 20) & 0x01))
542 			continue;
543 
544 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
545 
546 		pfvf = &rvu->pf[pf];
547 		/* Get num of MSIX vectors attached to this PF */
548 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
549 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
550 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
551 
552 		/* Alloc msix bitmap for this PF */
553 		err = rvu_alloc_bitmap(&pfvf->msix);
554 		if (err)
555 			return err;
556 
557 		/* Allocate memory for MSIX vector to RVU block LF mapping */
558 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
559 						sizeof(u16), GFP_KERNEL);
560 		if (!pfvf->msix_lfmap)
561 			return -ENOMEM;
562 
563 		/* For PF0 (AF) firmware will set msix vector offsets for
564 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
565 		 */
566 		if (!pf)
567 			goto setup_vfmsix;
568 
569 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
570 		 * These are allocated on driver init and never freed,
571 		 * so no need to set 'msix_lfmap' for these.
572 		 */
573 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
574 		nvecs = (cfg >> 12) & 0xFF;
575 		cfg &= ~0x7FFULL;
576 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
577 		rvu_write64(rvu, BLKADDR_RVUM,
578 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
579 setup_vfmsix:
580 		/* Alloc msix bitmap for VFs */
581 		for (vf = 0; vf < numvfs; vf++) {
582 			pfvf =  &rvu->hwvf[hwvf + vf];
583 			/* Get num of MSIX vectors attached to this VF */
584 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
585 					 RVU_PRIV_PFX_MSIX_CFG(pf));
586 			pfvf->msix.max = (cfg & 0xFFF) + 1;
587 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
588 
589 			/* Alloc msix bitmap for this VF */
590 			err = rvu_alloc_bitmap(&pfvf->msix);
591 			if (err)
592 				return err;
593 
594 			pfvf->msix_lfmap =
595 				devm_kcalloc(rvu->dev, pfvf->msix.max,
596 					     sizeof(u16), GFP_KERNEL);
597 			if (!pfvf->msix_lfmap)
598 				return -ENOMEM;
599 
600 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
601 			 * These are allocated on driver init and never freed,
602 			 * so no need to set 'msix_lfmap' for these.
603 			 */
604 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
605 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
606 			nvecs = (cfg >> 12) & 0xFF;
607 			cfg &= ~0x7FFULL;
608 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
609 			rvu_write64(rvu, BLKADDR_RVUM,
610 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
611 				    cfg | offset);
612 		}
613 	}
614 
615 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
616 	 * create a IOMMU mapping for the physcial address configured by
617 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
618 	 */
619 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
620 	max_msix = cfg & 0xFFFFF;
621 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
622 		phy_addr = rvu->fwdata->msixtr_base;
623 	else
624 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
625 
626 	iova = dma_map_resource(rvu->dev, phy_addr,
627 				max_msix * PCI_MSIX_ENTRY_SIZE,
628 				DMA_BIDIRECTIONAL, 0);
629 
630 	if (dma_mapping_error(rvu->dev, iova))
631 		return -ENOMEM;
632 
633 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
634 	rvu->msix_base_iova = iova;
635 	rvu->msixtr_base_phy = phy_addr;
636 
637 	return 0;
638 }
639 
640 static void rvu_reset_msix(struct rvu *rvu)
641 {
642 	/* Restore msixtr base register */
643 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
644 		    rvu->msixtr_base_phy);
645 }
646 
647 static void rvu_free_hw_resources(struct rvu *rvu)
648 {
649 	struct rvu_hwinfo *hw = rvu->hw;
650 	struct rvu_block *block;
651 	struct rvu_pfvf  *pfvf;
652 	int id, max_msix;
653 	u64 cfg;
654 
655 	rvu_npa_freemem(rvu);
656 	rvu_npc_freemem(rvu);
657 	rvu_nix_freemem(rvu);
658 
659 	/* Free block LF bitmaps */
660 	for (id = 0; id < BLK_COUNT; id++) {
661 		block = &hw->block[id];
662 		kfree(block->lf.bmap);
663 	}
664 
665 	/* Free MSIX bitmaps */
666 	for (id = 0; id < hw->total_pfs; id++) {
667 		pfvf = &rvu->pf[id];
668 		kfree(pfvf->msix.bmap);
669 	}
670 
671 	for (id = 0; id < hw->total_vfs; id++) {
672 		pfvf = &rvu->hwvf[id];
673 		kfree(pfvf->msix.bmap);
674 	}
675 
676 	/* Unmap MSIX vector base IOVA mapping */
677 	if (!rvu->msix_base_iova)
678 		return;
679 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
680 	max_msix = cfg & 0xFFFFF;
681 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
682 			   max_msix * PCI_MSIX_ENTRY_SIZE,
683 			   DMA_BIDIRECTIONAL, 0);
684 
685 	rvu_reset_msix(rvu);
686 	mutex_destroy(&rvu->rsrc_lock);
687 }
688 
689 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
690 {
691 	struct rvu_hwinfo *hw = rvu->hw;
692 	int pf, vf, numvfs, hwvf;
693 	struct rvu_pfvf *pfvf;
694 	u64 *mac;
695 
696 	for (pf = 0; pf < hw->total_pfs; pf++) {
697 		if (!is_pf_cgxmapped(rvu, pf))
698 			continue;
699 		/* Assign MAC address to PF */
700 		pfvf = &rvu->pf[pf];
701 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
702 			mac = &rvu->fwdata->pf_macs[pf];
703 			if (*mac)
704 				u64_to_ether_addr(*mac, pfvf->mac_addr);
705 			else
706 				eth_random_addr(pfvf->mac_addr);
707 		} else {
708 			eth_random_addr(pfvf->mac_addr);
709 		}
710 
711 		/* Assign MAC address to VFs */
712 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
713 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
714 			pfvf = &rvu->hwvf[hwvf];
715 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
716 				mac = &rvu->fwdata->vf_macs[hwvf];
717 				if (*mac)
718 					u64_to_ether_addr(*mac, pfvf->mac_addr);
719 				else
720 					eth_random_addr(pfvf->mac_addr);
721 			} else {
722 				eth_random_addr(pfvf->mac_addr);
723 			}
724 		}
725 	}
726 }
727 
728 static int rvu_fwdata_init(struct rvu *rvu)
729 {
730 	u64 fwdbase;
731 	int err;
732 
733 	/* Get firmware data base address */
734 	err = cgx_get_fwdata_base(&fwdbase);
735 	if (err)
736 		goto fail;
737 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
738 	if (!rvu->fwdata)
739 		goto fail;
740 	if (!is_rvu_fwdata_valid(rvu)) {
741 		dev_err(rvu->dev,
742 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
743 		iounmap(rvu->fwdata);
744 		rvu->fwdata = NULL;
745 		return -EINVAL;
746 	}
747 	return 0;
748 fail:
749 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
750 	return -EIO;
751 }
752 
753 static void rvu_fwdata_exit(struct rvu *rvu)
754 {
755 	if (rvu->fwdata)
756 		iounmap(rvu->fwdata);
757 }
758 
759 static int rvu_setup_hw_resources(struct rvu *rvu)
760 {
761 	struct rvu_hwinfo *hw = rvu->hw;
762 	struct rvu_block *block;
763 	int blkid, err;
764 	u64 cfg;
765 
766 	/* Get HW supported max RVU PF & VF count */
767 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
768 	hw->total_pfs = (cfg >> 32) & 0xFF;
769 	hw->total_vfs = (cfg >> 20) & 0xFFF;
770 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
771 
772 	/* Init NPA LF's bitmap */
773 	block = &hw->block[BLKADDR_NPA];
774 	if (!block->implemented)
775 		goto nix;
776 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
777 	block->lf.max = (cfg >> 16) & 0xFFF;
778 	block->addr = BLKADDR_NPA;
779 	block->type = BLKTYPE_NPA;
780 	block->lfshift = 8;
781 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
782 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
783 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
784 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
785 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
786 	block->lfreset_reg = NPA_AF_LF_RST;
787 	sprintf(block->name, "NPA");
788 	err = rvu_alloc_bitmap(&block->lf);
789 	if (err)
790 		return err;
791 
792 nix:
793 	/* Init NIX LF's bitmap */
794 	block = &hw->block[BLKADDR_NIX0];
795 	if (!block->implemented)
796 		goto sso;
797 	cfg = rvu_read64(rvu, BLKADDR_NIX0, NIX_AF_CONST2);
798 	block->lf.max = cfg & 0xFFF;
799 	block->addr = BLKADDR_NIX0;
800 	block->type = BLKTYPE_NIX;
801 	block->lfshift = 8;
802 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
803 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIX0_CFG;
804 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIX0_CFG;
805 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
806 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
807 	block->lfreset_reg = NIX_AF_LF_RST;
808 	sprintf(block->name, "NIX");
809 	err = rvu_alloc_bitmap(&block->lf);
810 	if (err)
811 		return err;
812 
813 sso:
814 	/* Init SSO group's bitmap */
815 	block = &hw->block[BLKADDR_SSO];
816 	if (!block->implemented)
817 		goto ssow;
818 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
819 	block->lf.max = cfg & 0xFFFF;
820 	block->addr = BLKADDR_SSO;
821 	block->type = BLKTYPE_SSO;
822 	block->multislot = true;
823 	block->lfshift = 3;
824 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
825 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
826 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
827 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
828 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
829 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
830 	sprintf(block->name, "SSO GROUP");
831 	err = rvu_alloc_bitmap(&block->lf);
832 	if (err)
833 		return err;
834 
835 ssow:
836 	/* Init SSO workslot's bitmap */
837 	block = &hw->block[BLKADDR_SSOW];
838 	if (!block->implemented)
839 		goto tim;
840 	block->lf.max = (cfg >> 56) & 0xFF;
841 	block->addr = BLKADDR_SSOW;
842 	block->type = BLKTYPE_SSOW;
843 	block->multislot = true;
844 	block->lfshift = 3;
845 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
846 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
847 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
848 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
849 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
850 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
851 	sprintf(block->name, "SSOWS");
852 	err = rvu_alloc_bitmap(&block->lf);
853 	if (err)
854 		return err;
855 
856 tim:
857 	/* Init TIM LF's bitmap */
858 	block = &hw->block[BLKADDR_TIM];
859 	if (!block->implemented)
860 		goto cpt;
861 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
862 	block->lf.max = cfg & 0xFFFF;
863 	block->addr = BLKADDR_TIM;
864 	block->type = BLKTYPE_TIM;
865 	block->multislot = true;
866 	block->lfshift = 3;
867 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
868 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
869 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
870 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
871 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
872 	block->lfreset_reg = TIM_AF_LF_RST;
873 	sprintf(block->name, "TIM");
874 	err = rvu_alloc_bitmap(&block->lf);
875 	if (err)
876 		return err;
877 
878 cpt:
879 	/* Init CPT LF's bitmap */
880 	block = &hw->block[BLKADDR_CPT0];
881 	if (!block->implemented)
882 		goto init;
883 	cfg = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_CONSTANTS0);
884 	block->lf.max = cfg & 0xFF;
885 	block->addr = BLKADDR_CPT0;
886 	block->type = BLKTYPE_CPT;
887 	block->multislot = true;
888 	block->lfshift = 3;
889 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
890 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPT0_CFG;
891 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPT0_CFG;
892 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
893 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
894 	block->lfreset_reg = CPT_AF_LF_RST;
895 	sprintf(block->name, "CPT");
896 	err = rvu_alloc_bitmap(&block->lf);
897 	if (err)
898 		return err;
899 
900 init:
901 	/* Allocate memory for PFVF data */
902 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
903 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
904 	if (!rvu->pf)
905 		return -ENOMEM;
906 
907 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
908 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
909 	if (!rvu->hwvf)
910 		return -ENOMEM;
911 
912 	mutex_init(&rvu->rsrc_lock);
913 
914 	rvu_fwdata_init(rvu);
915 
916 	err = rvu_setup_msix_resources(rvu);
917 	if (err)
918 		return err;
919 
920 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
921 		block = &hw->block[blkid];
922 		if (!block->lf.bmap)
923 			continue;
924 
925 		/* Allocate memory for block LF/slot to pcifunc mapping info */
926 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
927 					     sizeof(u16), GFP_KERNEL);
928 		if (!block->fn_map) {
929 			err = -ENOMEM;
930 			goto msix_err;
931 		}
932 
933 		/* Scan all blocks to check if low level firmware has
934 		 * already provisioned any of the resources to a PF/VF.
935 		 */
936 		rvu_scan_block(rvu, block);
937 	}
938 
939 	err = rvu_npc_init(rvu);
940 	if (err)
941 		goto npc_err;
942 
943 	err = rvu_cgx_init(rvu);
944 	if (err)
945 		goto cgx_err;
946 
947 	/* Assign MACs for CGX mapped functions */
948 	rvu_setup_pfvf_macaddress(rvu);
949 
950 	err = rvu_npa_init(rvu);
951 	if (err)
952 		goto npa_err;
953 
954 	err = rvu_nix_init(rvu);
955 	if (err)
956 		goto nix_err;
957 
958 	return 0;
959 
960 nix_err:
961 	rvu_nix_freemem(rvu);
962 npa_err:
963 	rvu_npa_freemem(rvu);
964 cgx_err:
965 	rvu_cgx_exit(rvu);
966 npc_err:
967 	rvu_npc_freemem(rvu);
968 	rvu_fwdata_exit(rvu);
969 msix_err:
970 	rvu_reset_msix(rvu);
971 	return err;
972 }
973 
974 /* NPA and NIX admin queue APIs */
975 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
976 {
977 	if (!aq)
978 		return;
979 
980 	qmem_free(rvu->dev, aq->inst);
981 	qmem_free(rvu->dev, aq->res);
982 	devm_kfree(rvu->dev, aq);
983 }
984 
985 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
986 		 int qsize, int inst_size, int res_size)
987 {
988 	struct admin_queue *aq;
989 	int err;
990 
991 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
992 	if (!*ad_queue)
993 		return -ENOMEM;
994 	aq = *ad_queue;
995 
996 	/* Alloc memory for instructions i.e AQ */
997 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
998 	if (err) {
999 		devm_kfree(rvu->dev, aq);
1000 		return err;
1001 	}
1002 
1003 	/* Alloc memory for results */
1004 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1005 	if (err) {
1006 		rvu_aq_free(rvu, aq);
1007 		return err;
1008 	}
1009 
1010 	spin_lock_init(&aq->lock);
1011 	return 0;
1012 }
1013 
1014 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1015 			   struct ready_msg_rsp *rsp)
1016 {
1017 	if (rvu->fwdata) {
1018 		rsp->rclk_freq = rvu->fwdata->rclk;
1019 		rsp->sclk_freq = rvu->fwdata->sclk;
1020 	}
1021 	return 0;
1022 }
1023 
1024 /* Get current count of a RVU block's LF/slots
1025  * provisioned to a given RVU func.
1026  */
1027 static u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blktype)
1028 {
1029 	switch (blktype) {
1030 	case BLKTYPE_NPA:
1031 		return pfvf->npalf ? 1 : 0;
1032 	case BLKTYPE_NIX:
1033 		return pfvf->nixlf ? 1 : 0;
1034 	case BLKTYPE_SSO:
1035 		return pfvf->sso;
1036 	case BLKTYPE_SSOW:
1037 		return pfvf->ssow;
1038 	case BLKTYPE_TIM:
1039 		return pfvf->timlfs;
1040 	case BLKTYPE_CPT:
1041 		return pfvf->cptlfs;
1042 	}
1043 	return 0;
1044 }
1045 
1046 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1047 {
1048 	struct rvu_pfvf *pfvf;
1049 
1050 	if (!is_pf_func_valid(rvu, pcifunc))
1051 		return false;
1052 
1053 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1054 
1055 	/* Check if this PFFUNC has a LF of type blktype attached */
1056 	if (!rvu_get_rsrc_mapcount(pfvf, blktype))
1057 		return false;
1058 
1059 	return true;
1060 }
1061 
1062 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1063 			   int pcifunc, int slot)
1064 {
1065 	u64 val;
1066 
1067 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1068 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1069 	/* Wait for the lookup to finish */
1070 	/* TODO: put some timeout here */
1071 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1072 		;
1073 
1074 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1075 
1076 	/* Check LF valid bit */
1077 	if (!(val & (1ULL << 12)))
1078 		return -1;
1079 
1080 	return (val & 0xFFF);
1081 }
1082 
1083 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1084 {
1085 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1086 	struct rvu_hwinfo *hw = rvu->hw;
1087 	struct rvu_block *block;
1088 	int slot, lf, num_lfs;
1089 	int blkaddr;
1090 
1091 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1092 	if (blkaddr < 0)
1093 		return;
1094 
1095 	block = &hw->block[blkaddr];
1096 
1097 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1098 	if (!num_lfs)
1099 		return;
1100 
1101 	for (slot = 0; slot < num_lfs; slot++) {
1102 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1103 		if (lf < 0) /* This should never happen */
1104 			continue;
1105 
1106 		/* Disable the LF */
1107 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1108 			    (lf << block->lfshift), 0x00ULL);
1109 
1110 		/* Update SW maintained mapping info as well */
1111 		rvu_update_rsrc_map(rvu, pfvf, block,
1112 				    pcifunc, lf, false);
1113 
1114 		/* Free the resource */
1115 		rvu_free_rsrc(&block->lf, lf);
1116 
1117 		/* Clear MSIX vector offset for this LF */
1118 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1119 	}
1120 }
1121 
1122 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1123 			    u16 pcifunc)
1124 {
1125 	struct rvu_hwinfo *hw = rvu->hw;
1126 	bool detach_all = true;
1127 	struct rvu_block *block;
1128 	int blkid;
1129 
1130 	mutex_lock(&rvu->rsrc_lock);
1131 
1132 	/* Check for partial resource detach */
1133 	if (detach && detach->partial)
1134 		detach_all = false;
1135 
1136 	/* Check for RVU block's LFs attached to this func,
1137 	 * if so, detach them.
1138 	 */
1139 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1140 		block = &hw->block[blkid];
1141 		if (!block->lf.bmap)
1142 			continue;
1143 		if (!detach_all && detach) {
1144 			if (blkid == BLKADDR_NPA && !detach->npalf)
1145 				continue;
1146 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1147 				continue;
1148 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1149 				continue;
1150 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1151 				continue;
1152 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1153 				continue;
1154 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1155 				continue;
1156 		}
1157 		rvu_detach_block(rvu, pcifunc, block->type);
1158 	}
1159 
1160 	mutex_unlock(&rvu->rsrc_lock);
1161 	return 0;
1162 }
1163 
1164 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1165 				      struct rsrc_detach *detach,
1166 				      struct msg_rsp *rsp)
1167 {
1168 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1169 }
1170 
1171 static void rvu_attach_block(struct rvu *rvu, int pcifunc,
1172 			     int blktype, int num_lfs)
1173 {
1174 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1175 	struct rvu_hwinfo *hw = rvu->hw;
1176 	struct rvu_block *block;
1177 	int slot, lf;
1178 	int blkaddr;
1179 	u64 cfg;
1180 
1181 	if (!num_lfs)
1182 		return;
1183 
1184 	blkaddr = rvu_get_blkaddr(rvu, blktype, 0);
1185 	if (blkaddr < 0)
1186 		return;
1187 
1188 	block = &hw->block[blkaddr];
1189 	if (!block->lf.bmap)
1190 		return;
1191 
1192 	for (slot = 0; slot < num_lfs; slot++) {
1193 		/* Allocate the resource */
1194 		lf = rvu_alloc_rsrc(&block->lf);
1195 		if (lf < 0)
1196 			return;
1197 
1198 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1199 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1200 			    (lf << block->lfshift), cfg);
1201 		rvu_update_rsrc_map(rvu, pfvf, block,
1202 				    pcifunc, lf, true);
1203 
1204 		/* Set start MSIX vector for this LF within this PF/VF */
1205 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1206 	}
1207 }
1208 
1209 static int rvu_check_rsrc_availability(struct rvu *rvu,
1210 				       struct rsrc_attach *req, u16 pcifunc)
1211 {
1212 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1213 	struct rvu_hwinfo *hw = rvu->hw;
1214 	struct rvu_block *block;
1215 	int free_lfs, mappedlfs;
1216 
1217 	/* Only one NPA LF can be attached */
1218 	if (req->npalf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NPA)) {
1219 		block = &hw->block[BLKADDR_NPA];
1220 		free_lfs = rvu_rsrc_free_count(&block->lf);
1221 		if (!free_lfs)
1222 			goto fail;
1223 	} else if (req->npalf) {
1224 		dev_err(&rvu->pdev->dev,
1225 			"Func 0x%x: Invalid req, already has NPA\n",
1226 			 pcifunc);
1227 		return -EINVAL;
1228 	}
1229 
1230 	/* Only one NIX LF can be attached */
1231 	if (req->nixlf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NIX)) {
1232 		block = &hw->block[BLKADDR_NIX0];
1233 		free_lfs = rvu_rsrc_free_count(&block->lf);
1234 		if (!free_lfs)
1235 			goto fail;
1236 	} else if (req->nixlf) {
1237 		dev_err(&rvu->pdev->dev,
1238 			"Func 0x%x: Invalid req, already has NIX\n",
1239 			pcifunc);
1240 		return -EINVAL;
1241 	}
1242 
1243 	if (req->sso) {
1244 		block = &hw->block[BLKADDR_SSO];
1245 		/* Is request within limits ? */
1246 		if (req->sso > block->lf.max) {
1247 			dev_err(&rvu->pdev->dev,
1248 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1249 				 pcifunc, req->sso, block->lf.max);
1250 			return -EINVAL;
1251 		}
1252 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1253 		free_lfs = rvu_rsrc_free_count(&block->lf);
1254 		/* Check if additional resources are available */
1255 		if (req->sso > mappedlfs &&
1256 		    ((req->sso - mappedlfs) > free_lfs))
1257 			goto fail;
1258 	}
1259 
1260 	if (req->ssow) {
1261 		block = &hw->block[BLKADDR_SSOW];
1262 		if (req->ssow > block->lf.max) {
1263 			dev_err(&rvu->pdev->dev,
1264 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1265 				 pcifunc, req->sso, block->lf.max);
1266 			return -EINVAL;
1267 		}
1268 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1269 		free_lfs = rvu_rsrc_free_count(&block->lf);
1270 		if (req->ssow > mappedlfs &&
1271 		    ((req->ssow - mappedlfs) > free_lfs))
1272 			goto fail;
1273 	}
1274 
1275 	if (req->timlfs) {
1276 		block = &hw->block[BLKADDR_TIM];
1277 		if (req->timlfs > block->lf.max) {
1278 			dev_err(&rvu->pdev->dev,
1279 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1280 				 pcifunc, req->timlfs, block->lf.max);
1281 			return -EINVAL;
1282 		}
1283 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1284 		free_lfs = rvu_rsrc_free_count(&block->lf);
1285 		if (req->timlfs > mappedlfs &&
1286 		    ((req->timlfs - mappedlfs) > free_lfs))
1287 			goto fail;
1288 	}
1289 
1290 	if (req->cptlfs) {
1291 		block = &hw->block[BLKADDR_CPT0];
1292 		if (req->cptlfs > block->lf.max) {
1293 			dev_err(&rvu->pdev->dev,
1294 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1295 				 pcifunc, req->cptlfs, block->lf.max);
1296 			return -EINVAL;
1297 		}
1298 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1299 		free_lfs = rvu_rsrc_free_count(&block->lf);
1300 		if (req->cptlfs > mappedlfs &&
1301 		    ((req->cptlfs - mappedlfs) > free_lfs))
1302 			goto fail;
1303 	}
1304 
1305 	return 0;
1306 
1307 fail:
1308 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1309 	return -ENOSPC;
1310 }
1311 
1312 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1313 				      struct rsrc_attach *attach,
1314 				      struct msg_rsp *rsp)
1315 {
1316 	u16 pcifunc = attach->hdr.pcifunc;
1317 	int err;
1318 
1319 	/* If first request, detach all existing attached resources */
1320 	if (!attach->modify)
1321 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1322 
1323 	mutex_lock(&rvu->rsrc_lock);
1324 
1325 	/* Check if the request can be accommodated */
1326 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1327 	if (err)
1328 		goto exit;
1329 
1330 	/* Now attach the requested resources */
1331 	if (attach->npalf)
1332 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1);
1333 
1334 	if (attach->nixlf)
1335 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1);
1336 
1337 	if (attach->sso) {
1338 		/* RVU func doesn't know which exact LF or slot is attached
1339 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1340 		 * request, simply detach all existing attached LFs/slots
1341 		 * and attach a fresh.
1342 		 */
1343 		if (attach->modify)
1344 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1345 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO, attach->sso);
1346 	}
1347 
1348 	if (attach->ssow) {
1349 		if (attach->modify)
1350 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1351 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW, attach->ssow);
1352 	}
1353 
1354 	if (attach->timlfs) {
1355 		if (attach->modify)
1356 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1357 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM, attach->timlfs);
1358 	}
1359 
1360 	if (attach->cptlfs) {
1361 		if (attach->modify)
1362 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1363 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT, attach->cptlfs);
1364 	}
1365 
1366 exit:
1367 	mutex_unlock(&rvu->rsrc_lock);
1368 	return err;
1369 }
1370 
1371 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1372 			       int blkaddr, int lf)
1373 {
1374 	u16 vec;
1375 
1376 	if (lf < 0)
1377 		return MSIX_VECTOR_INVALID;
1378 
1379 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1380 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1381 			return vec;
1382 	}
1383 	return MSIX_VECTOR_INVALID;
1384 }
1385 
1386 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1387 				struct rvu_block *block, int lf)
1388 {
1389 	u16 nvecs, vec, offset;
1390 	u64 cfg;
1391 
1392 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1393 			 (lf << block->lfshift));
1394 	nvecs = (cfg >> 12) & 0xFF;
1395 
1396 	/* Check and alloc MSIX vectors, must be contiguous */
1397 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1398 		return;
1399 
1400 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1401 
1402 	/* Config MSIX offset in LF */
1403 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1404 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1405 
1406 	/* Update the bitmap as well */
1407 	for (vec = 0; vec < nvecs; vec++)
1408 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1409 }
1410 
1411 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1412 				  struct rvu_block *block, int lf)
1413 {
1414 	u16 nvecs, vec, offset;
1415 	u64 cfg;
1416 
1417 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1418 			 (lf << block->lfshift));
1419 	nvecs = (cfg >> 12) & 0xFF;
1420 
1421 	/* Clear MSIX offset in LF */
1422 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1423 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1424 
1425 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1426 
1427 	/* Update the mapping */
1428 	for (vec = 0; vec < nvecs; vec++)
1429 		pfvf->msix_lfmap[offset + vec] = 0;
1430 
1431 	/* Free the same in MSIX bitmap */
1432 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1433 }
1434 
1435 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1436 				 struct msix_offset_rsp *rsp)
1437 {
1438 	struct rvu_hwinfo *hw = rvu->hw;
1439 	u16 pcifunc = req->hdr.pcifunc;
1440 	struct rvu_pfvf *pfvf;
1441 	int lf, slot;
1442 
1443 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1444 	if (!pfvf->msix.bmap)
1445 		return 0;
1446 
1447 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1448 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1449 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1450 
1451 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NIX0], pcifunc, 0);
1452 	rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NIX0, lf);
1453 
1454 	rsp->sso = pfvf->sso;
1455 	for (slot = 0; slot < rsp->sso; slot++) {
1456 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1457 		rsp->sso_msixoff[slot] =
1458 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1459 	}
1460 
1461 	rsp->ssow = pfvf->ssow;
1462 	for (slot = 0; slot < rsp->ssow; slot++) {
1463 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1464 		rsp->ssow_msixoff[slot] =
1465 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1466 	}
1467 
1468 	rsp->timlfs = pfvf->timlfs;
1469 	for (slot = 0; slot < rsp->timlfs; slot++) {
1470 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1471 		rsp->timlf_msixoff[slot] =
1472 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1473 	}
1474 
1475 	rsp->cptlfs = pfvf->cptlfs;
1476 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1477 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1478 		rsp->cptlf_msixoff[slot] =
1479 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1480 	}
1481 	return 0;
1482 }
1483 
1484 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1485 			    struct msg_rsp *rsp)
1486 {
1487 	u16 pcifunc = req->hdr.pcifunc;
1488 	u16 vf, numvfs;
1489 	u64 cfg;
1490 
1491 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1492 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1493 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1494 	numvfs = (cfg >> 12) & 0xFF;
1495 
1496 	if (vf && vf <= numvfs)
1497 		__rvu_flr_handler(rvu, pcifunc);
1498 	else
1499 		return RVU_INVALID_VF_ID;
1500 
1501 	return 0;
1502 }
1503 
1504 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1505 				struct get_hw_cap_rsp *rsp)
1506 {
1507 	struct rvu_hwinfo *hw = rvu->hw;
1508 
1509 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1510 	rsp->nix_shaping = hw->cap.nix_shaping;
1511 
1512 	return 0;
1513 }
1514 
1515 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1516 				struct mbox_msghdr *req)
1517 {
1518 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1519 
1520 	/* Check if valid, if not reply with a invalid msg */
1521 	if (req->sig != OTX2_MBOX_REQ_SIG)
1522 		goto bad_message;
1523 
1524 	switch (req->id) {
1525 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1526 	case _id: {							\
1527 		struct _rsp_type *rsp;					\
1528 		int err;						\
1529 									\
1530 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1531 			mbox, devid,					\
1532 			sizeof(struct _rsp_type));			\
1533 		/* some handlers should complete even if reply */	\
1534 		/* could not be allocated */				\
1535 		if (!rsp &&						\
1536 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1537 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
1538 		    _id != MBOX_MSG_VF_FLR)				\
1539 			return -ENOMEM;					\
1540 		if (rsp) {						\
1541 			rsp->hdr.id = _id;				\
1542 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
1543 			rsp->hdr.pcifunc = req->pcifunc;		\
1544 			rsp->hdr.rc = 0;				\
1545 		}							\
1546 									\
1547 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
1548 						    (struct _req_type *)req, \
1549 						    rsp);		\
1550 		if (rsp && err)						\
1551 			rsp->hdr.rc = err;				\
1552 									\
1553 		return rsp ? err : -ENOMEM;				\
1554 	}
1555 MBOX_MESSAGES
1556 #undef M
1557 
1558 bad_message:
1559 	default:
1560 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
1561 		return -ENODEV;
1562 	}
1563 }
1564 
1565 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
1566 {
1567 	struct rvu *rvu = mwork->rvu;
1568 	int offset, err, id, devid;
1569 	struct otx2_mbox_dev *mdev;
1570 	struct mbox_hdr *req_hdr;
1571 	struct mbox_msghdr *msg;
1572 	struct mbox_wq_info *mw;
1573 	struct otx2_mbox *mbox;
1574 
1575 	switch (type) {
1576 	case TYPE_AFPF:
1577 		mw = &rvu->afpf_wq_info;
1578 		break;
1579 	case TYPE_AFVF:
1580 		mw = &rvu->afvf_wq_info;
1581 		break;
1582 	default:
1583 		return;
1584 	}
1585 
1586 	devid = mwork - mw->mbox_wrk;
1587 	mbox = &mw->mbox;
1588 	mdev = &mbox->dev[devid];
1589 
1590 	/* Process received mbox messages */
1591 	req_hdr = mdev->mbase + mbox->rx_start;
1592 	if (mw->mbox_wrk[devid].num_msgs == 0)
1593 		return;
1594 
1595 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
1596 
1597 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
1598 		msg = mdev->mbase + offset;
1599 
1600 		/* Set which PF/VF sent this message based on mbox IRQ */
1601 		switch (type) {
1602 		case TYPE_AFPF:
1603 			msg->pcifunc &=
1604 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
1605 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
1606 			break;
1607 		case TYPE_AFVF:
1608 			msg->pcifunc &=
1609 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
1610 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
1611 			break;
1612 		}
1613 
1614 		err = rvu_process_mbox_msg(mbox, devid, msg);
1615 		if (!err) {
1616 			offset = mbox->rx_start + msg->next_msgoff;
1617 			continue;
1618 		}
1619 
1620 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
1621 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
1622 				 err, otx2_mbox_id2name(msg->id),
1623 				 msg->id, rvu_get_pf(msg->pcifunc),
1624 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
1625 		else
1626 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
1627 				 err, otx2_mbox_id2name(msg->id),
1628 				 msg->id, devid);
1629 	}
1630 	mw->mbox_wrk[devid].num_msgs = 0;
1631 
1632 	/* Send mbox responses to VF/PF */
1633 	otx2_mbox_msg_send(mbox, devid);
1634 }
1635 
1636 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
1637 {
1638 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1639 
1640 	__rvu_mbox_handler(mwork, TYPE_AFPF);
1641 }
1642 
1643 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
1644 {
1645 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1646 
1647 	__rvu_mbox_handler(mwork, TYPE_AFVF);
1648 }
1649 
1650 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
1651 {
1652 	struct rvu *rvu = mwork->rvu;
1653 	struct otx2_mbox_dev *mdev;
1654 	struct mbox_hdr *rsp_hdr;
1655 	struct mbox_msghdr *msg;
1656 	struct mbox_wq_info *mw;
1657 	struct otx2_mbox *mbox;
1658 	int offset, id, devid;
1659 
1660 	switch (type) {
1661 	case TYPE_AFPF:
1662 		mw = &rvu->afpf_wq_info;
1663 		break;
1664 	case TYPE_AFVF:
1665 		mw = &rvu->afvf_wq_info;
1666 		break;
1667 	default:
1668 		return;
1669 	}
1670 
1671 	devid = mwork - mw->mbox_wrk_up;
1672 	mbox = &mw->mbox_up;
1673 	mdev = &mbox->dev[devid];
1674 
1675 	rsp_hdr = mdev->mbase + mbox->rx_start;
1676 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
1677 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
1678 		return;
1679 	}
1680 
1681 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
1682 
1683 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
1684 		msg = mdev->mbase + offset;
1685 
1686 		if (msg->id >= MBOX_MSG_MAX) {
1687 			dev_err(rvu->dev,
1688 				"Mbox msg with unknown ID 0x%x\n", msg->id);
1689 			goto end;
1690 		}
1691 
1692 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
1693 			dev_err(rvu->dev,
1694 				"Mbox msg with wrong signature %x, ID 0x%x\n",
1695 				msg->sig, msg->id);
1696 			goto end;
1697 		}
1698 
1699 		switch (msg->id) {
1700 		case MBOX_MSG_CGX_LINK_EVENT:
1701 			break;
1702 		default:
1703 			if (msg->rc)
1704 				dev_err(rvu->dev,
1705 					"Mbox msg response has err %d, ID 0x%x\n",
1706 					msg->rc, msg->id);
1707 			break;
1708 		}
1709 end:
1710 		offset = mbox->rx_start + msg->next_msgoff;
1711 		mdev->msgs_acked++;
1712 	}
1713 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
1714 
1715 	otx2_mbox_reset(mbox, devid);
1716 }
1717 
1718 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
1719 {
1720 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1721 
1722 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
1723 }
1724 
1725 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
1726 {
1727 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1728 
1729 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
1730 }
1731 
1732 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
1733 			 int type, int num,
1734 			 void (mbox_handler)(struct work_struct *),
1735 			 void (mbox_up_handler)(struct work_struct *))
1736 {
1737 	void __iomem *hwbase = NULL, *reg_base;
1738 	int err, i, dir, dir_up;
1739 	struct rvu_work *mwork;
1740 	const char *name;
1741 	u64 bar4_addr;
1742 
1743 	switch (type) {
1744 	case TYPE_AFPF:
1745 		name = "rvu_afpf_mailbox";
1746 		bar4_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PF_BAR4_ADDR);
1747 		dir = MBOX_DIR_AFPF;
1748 		dir_up = MBOX_DIR_AFPF_UP;
1749 		reg_base = rvu->afreg_base;
1750 		break;
1751 	case TYPE_AFVF:
1752 		name = "rvu_afvf_mailbox";
1753 		bar4_addr = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
1754 		dir = MBOX_DIR_PFVF;
1755 		dir_up = MBOX_DIR_PFVF_UP;
1756 		reg_base = rvu->pfreg_base;
1757 		break;
1758 	default:
1759 		return -EINVAL;
1760 	}
1761 
1762 	mw->mbox_wq = alloc_workqueue(name,
1763 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
1764 				      num);
1765 	if (!mw->mbox_wq)
1766 		return -ENOMEM;
1767 
1768 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
1769 				    sizeof(struct rvu_work), GFP_KERNEL);
1770 	if (!mw->mbox_wrk) {
1771 		err = -ENOMEM;
1772 		goto exit;
1773 	}
1774 
1775 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
1776 				       sizeof(struct rvu_work), GFP_KERNEL);
1777 	if (!mw->mbox_wrk_up) {
1778 		err = -ENOMEM;
1779 		goto exit;
1780 	}
1781 
1782 	/* Mailbox is a reserved memory (in RAM) region shared between
1783 	 * RVU devices, shouldn't be mapped as device memory to allow
1784 	 * unaligned accesses.
1785 	 */
1786 	hwbase = ioremap_wc(bar4_addr, MBOX_SIZE * num);
1787 	if (!hwbase) {
1788 		dev_err(rvu->dev, "Unable to map mailbox region\n");
1789 		err = -ENOMEM;
1790 		goto exit;
1791 	}
1792 
1793 	err = otx2_mbox_init(&mw->mbox, hwbase, rvu->pdev, reg_base, dir, num);
1794 	if (err)
1795 		goto exit;
1796 
1797 	err = otx2_mbox_init(&mw->mbox_up, hwbase, rvu->pdev,
1798 			     reg_base, dir_up, num);
1799 	if (err)
1800 		goto exit;
1801 
1802 	for (i = 0; i < num; i++) {
1803 		mwork = &mw->mbox_wrk[i];
1804 		mwork->rvu = rvu;
1805 		INIT_WORK(&mwork->work, mbox_handler);
1806 
1807 		mwork = &mw->mbox_wrk_up[i];
1808 		mwork->rvu = rvu;
1809 		INIT_WORK(&mwork->work, mbox_up_handler);
1810 	}
1811 
1812 	return 0;
1813 exit:
1814 	if (hwbase)
1815 		iounmap((void __iomem *)hwbase);
1816 	destroy_workqueue(mw->mbox_wq);
1817 	return err;
1818 }
1819 
1820 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
1821 {
1822 	if (mw->mbox_wq) {
1823 		flush_workqueue(mw->mbox_wq);
1824 		destroy_workqueue(mw->mbox_wq);
1825 		mw->mbox_wq = NULL;
1826 	}
1827 
1828 	if (mw->mbox.hwbase)
1829 		iounmap((void __iomem *)mw->mbox.hwbase);
1830 
1831 	otx2_mbox_destroy(&mw->mbox);
1832 	otx2_mbox_destroy(&mw->mbox_up);
1833 }
1834 
1835 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
1836 			   int mdevs, u64 intr)
1837 {
1838 	struct otx2_mbox_dev *mdev;
1839 	struct otx2_mbox *mbox;
1840 	struct mbox_hdr *hdr;
1841 	int i;
1842 
1843 	for (i = first; i < mdevs; i++) {
1844 		/* start from 0 */
1845 		if (!(intr & BIT_ULL(i - first)))
1846 			continue;
1847 
1848 		mbox = &mw->mbox;
1849 		mdev = &mbox->dev[i];
1850 		hdr = mdev->mbase + mbox->rx_start;
1851 
1852 		/*The hdr->num_msgs is set to zero immediately in the interrupt
1853 		 * handler to  ensure that it holds a correct value next time
1854 		 * when the interrupt handler is called.
1855 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
1856 		 * pf>mbox.up_num_msgs holds the data for use in
1857 		 * pfaf_mbox_up_handler.
1858 		 */
1859 
1860 		if (hdr->num_msgs) {
1861 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
1862 			hdr->num_msgs = 0;
1863 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
1864 		}
1865 		mbox = &mw->mbox_up;
1866 		mdev = &mbox->dev[i];
1867 		hdr = mdev->mbase + mbox->rx_start;
1868 		if (hdr->num_msgs) {
1869 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
1870 			hdr->num_msgs = 0;
1871 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
1872 		}
1873 	}
1874 }
1875 
1876 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
1877 {
1878 	struct rvu *rvu = (struct rvu *)rvu_irq;
1879 	int vfs = rvu->vfs;
1880 	u64 intr;
1881 
1882 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
1883 	/* Clear interrupts */
1884 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
1885 
1886 	/* Sync with mbox memory region */
1887 	rmb();
1888 
1889 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
1890 
1891 	/* Handle VF interrupts */
1892 	if (vfs > 64) {
1893 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
1894 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
1895 
1896 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
1897 		vfs -= 64;
1898 	}
1899 
1900 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
1901 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
1902 
1903 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
1904 
1905 	return IRQ_HANDLED;
1906 }
1907 
1908 static void rvu_enable_mbox_intr(struct rvu *rvu)
1909 {
1910 	struct rvu_hwinfo *hw = rvu->hw;
1911 
1912 	/* Clear spurious irqs, if any */
1913 	rvu_write64(rvu, BLKADDR_RVUM,
1914 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
1915 
1916 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
1917 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
1918 		    INTR_MASK(hw->total_pfs) & ~1ULL);
1919 }
1920 
1921 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
1922 {
1923 	struct rvu_block *block;
1924 	int slot, lf, num_lfs;
1925 	int err;
1926 
1927 	block = &rvu->hw->block[blkaddr];
1928 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
1929 					block->type);
1930 	if (!num_lfs)
1931 		return;
1932 	for (slot = 0; slot < num_lfs; slot++) {
1933 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
1934 		if (lf < 0)
1935 			continue;
1936 
1937 		/* Cleanup LF and reset it */
1938 		if (block->addr == BLKADDR_NIX0)
1939 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
1940 		else if (block->addr == BLKADDR_NPA)
1941 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
1942 
1943 		err = rvu_lf_reset(rvu, block, lf);
1944 		if (err) {
1945 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
1946 				block->addr, lf);
1947 		}
1948 	}
1949 }
1950 
1951 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
1952 {
1953 	mutex_lock(&rvu->flr_lock);
1954 	/* Reset order should reflect inter-block dependencies:
1955 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
1956 	 * 2. Flush and reset SSO/SSOW
1957 	 * 3. Cleanup pools (NPA)
1958 	 */
1959 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
1960 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
1961 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
1962 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
1963 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
1964 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
1965 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
1966 	mutex_unlock(&rvu->flr_lock);
1967 }
1968 
1969 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
1970 {
1971 	int reg = 0;
1972 
1973 	/* pcifunc = 0(PF0) | (vf + 1) */
1974 	__rvu_flr_handler(rvu, vf + 1);
1975 
1976 	if (vf >= 64) {
1977 		reg = 1;
1978 		vf = vf - 64;
1979 	}
1980 
1981 	/* Signal FLR finish and enable IRQ */
1982 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
1983 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
1984 }
1985 
1986 static void rvu_flr_handler(struct work_struct *work)
1987 {
1988 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
1989 	struct rvu *rvu = flrwork->rvu;
1990 	u16 pcifunc, numvfs, vf;
1991 	u64 cfg;
1992 	int pf;
1993 
1994 	pf = flrwork - rvu->flr_wrk;
1995 	if (pf >= rvu->hw->total_pfs) {
1996 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
1997 		return;
1998 	}
1999 
2000 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2001 	numvfs = (cfg >> 12) & 0xFF;
2002 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2003 
2004 	for (vf = 0; vf < numvfs; vf++)
2005 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2006 
2007 	__rvu_flr_handler(rvu, pcifunc);
2008 
2009 	/* Signal FLR finish */
2010 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2011 
2012 	/* Enable interrupt */
2013 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2014 }
2015 
2016 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2017 {
2018 	int dev, vf, reg = 0;
2019 	u64 intr;
2020 
2021 	if (start_vf >= 64)
2022 		reg = 1;
2023 
2024 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2025 	if (!intr)
2026 		return;
2027 
2028 	for (vf = 0; vf < numvfs; vf++) {
2029 		if (!(intr & BIT_ULL(vf)))
2030 			continue;
2031 		dev = vf + start_vf + rvu->hw->total_pfs;
2032 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2033 		/* Clear and disable the interrupt */
2034 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2035 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2036 	}
2037 }
2038 
2039 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2040 {
2041 	struct rvu *rvu = (struct rvu *)rvu_irq;
2042 	u64 intr;
2043 	u8  pf;
2044 
2045 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2046 	if (!intr)
2047 		goto afvf_flr;
2048 
2049 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2050 		if (intr & (1ULL << pf)) {
2051 			/* PF is already dead do only AF related operations */
2052 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2053 			/* clear interrupt */
2054 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2055 				    BIT_ULL(pf));
2056 			/* Disable the interrupt */
2057 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2058 				    BIT_ULL(pf));
2059 		}
2060 	}
2061 
2062 afvf_flr:
2063 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2064 	if (rvu->vfs > 64)
2065 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2066 
2067 	return IRQ_HANDLED;
2068 }
2069 
2070 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2071 {
2072 	int vf;
2073 
2074 	/* Nothing to be done here other than clearing the
2075 	 * TRPEND bit.
2076 	 */
2077 	for (vf = 0; vf < 64; vf++) {
2078 		if (intr & (1ULL << vf)) {
2079 			/* clear the trpend due to ME(master enable) */
2080 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2081 			/* clear interrupt */
2082 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2083 		}
2084 	}
2085 }
2086 
2087 /* Handles ME interrupts from VFs of AF */
2088 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2089 {
2090 	struct rvu *rvu = (struct rvu *)rvu_irq;
2091 	int vfset;
2092 	u64 intr;
2093 
2094 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2095 
2096 	for (vfset = 0; vfset <= 1; vfset++) {
2097 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2098 		if (intr)
2099 			rvu_me_handle_vfset(rvu, vfset, intr);
2100 	}
2101 
2102 	return IRQ_HANDLED;
2103 }
2104 
2105 /* Handles ME interrupts from PFs */
2106 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2107 {
2108 	struct rvu *rvu = (struct rvu *)rvu_irq;
2109 	u64 intr;
2110 	u8  pf;
2111 
2112 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2113 
2114 	/* Nothing to be done here other than clearing the
2115 	 * TRPEND bit.
2116 	 */
2117 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2118 		if (intr & (1ULL << pf)) {
2119 			/* clear the trpend due to ME(master enable) */
2120 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2121 				    BIT_ULL(pf));
2122 			/* clear interrupt */
2123 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2124 				    BIT_ULL(pf));
2125 		}
2126 	}
2127 
2128 	return IRQ_HANDLED;
2129 }
2130 
2131 static void rvu_unregister_interrupts(struct rvu *rvu)
2132 {
2133 	int irq;
2134 
2135 	/* Disable the Mbox interrupt */
2136 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2137 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2138 
2139 	/* Disable the PF FLR interrupt */
2140 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2141 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2142 
2143 	/* Disable the PF ME interrupt */
2144 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2145 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2146 
2147 	for (irq = 0; irq < rvu->num_vec; irq++) {
2148 		if (rvu->irq_allocated[irq])
2149 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2150 	}
2151 
2152 	pci_free_irq_vectors(rvu->pdev);
2153 	rvu->num_vec = 0;
2154 }
2155 
2156 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2157 {
2158 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2159 	int offset;
2160 
2161 	pfvf = &rvu->pf[0];
2162 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2163 
2164 	/* Make sure there are enough MSIX vectors configured so that
2165 	 * VF interrupts can be handled. Offset equal to zero means
2166 	 * that PF vectors are not configured and overlapping AF vectors.
2167 	 */
2168 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2169 	       offset;
2170 }
2171 
2172 static int rvu_register_interrupts(struct rvu *rvu)
2173 {
2174 	int ret, offset, pf_vec_start;
2175 
2176 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2177 
2178 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2179 					   NAME_SIZE, GFP_KERNEL);
2180 	if (!rvu->irq_name)
2181 		return -ENOMEM;
2182 
2183 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2184 					  sizeof(bool), GFP_KERNEL);
2185 	if (!rvu->irq_allocated)
2186 		return -ENOMEM;
2187 
2188 	/* Enable MSI-X */
2189 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2190 				    rvu->num_vec, PCI_IRQ_MSIX);
2191 	if (ret < 0) {
2192 		dev_err(rvu->dev,
2193 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2194 			rvu->num_vec, ret);
2195 		return ret;
2196 	}
2197 
2198 	/* Register mailbox interrupt handler */
2199 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2200 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2201 			  rvu_mbox_intr_handler, 0,
2202 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2203 	if (ret) {
2204 		dev_err(rvu->dev,
2205 			"RVUAF: IRQ registration failed for mbox irq\n");
2206 		goto fail;
2207 	}
2208 
2209 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2210 
2211 	/* Enable mailbox interrupts from all PFs */
2212 	rvu_enable_mbox_intr(rvu);
2213 
2214 	/* Register FLR interrupt handler */
2215 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2216 		"RVUAF FLR");
2217 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2218 			  rvu_flr_intr_handler, 0,
2219 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2220 			  rvu);
2221 	if (ret) {
2222 		dev_err(rvu->dev,
2223 			"RVUAF: IRQ registration failed for FLR\n");
2224 		goto fail;
2225 	}
2226 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2227 
2228 	/* Enable FLR interrupt for all PFs*/
2229 	rvu_write64(rvu, BLKADDR_RVUM,
2230 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2231 
2232 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2233 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2234 
2235 	/* Register ME interrupt handler */
2236 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2237 		"RVUAF ME");
2238 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2239 			  rvu_me_pf_intr_handler, 0,
2240 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2241 			  rvu);
2242 	if (ret) {
2243 		dev_err(rvu->dev,
2244 			"RVUAF: IRQ registration failed for ME\n");
2245 	}
2246 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2247 
2248 	/* Clear TRPEND bit for all PF */
2249 	rvu_write64(rvu, BLKADDR_RVUM,
2250 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2251 	/* Enable ME interrupt for all PFs*/
2252 	rvu_write64(rvu, BLKADDR_RVUM,
2253 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2254 
2255 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2256 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2257 
2258 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2259 		return 0;
2260 
2261 	/* Get PF MSIX vectors offset. */
2262 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2263 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2264 
2265 	/* Register MBOX0 interrupt. */
2266 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2267 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2268 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2269 			  rvu_mbox_intr_handler, 0,
2270 			  &rvu->irq_name[offset * NAME_SIZE],
2271 			  rvu);
2272 	if (ret)
2273 		dev_err(rvu->dev,
2274 			"RVUAF: IRQ registration failed for Mbox0\n");
2275 
2276 	rvu->irq_allocated[offset] = true;
2277 
2278 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2279 	 * simply increment current offset by 1.
2280 	 */
2281 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2282 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2283 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2284 			  rvu_mbox_intr_handler, 0,
2285 			  &rvu->irq_name[offset * NAME_SIZE],
2286 			  rvu);
2287 	if (ret)
2288 		dev_err(rvu->dev,
2289 			"RVUAF: IRQ registration failed for Mbox1\n");
2290 
2291 	rvu->irq_allocated[offset] = true;
2292 
2293 	/* Register FLR interrupt handler for AF's VFs */
2294 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2295 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2296 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2297 			  rvu_flr_intr_handler, 0,
2298 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2299 	if (ret) {
2300 		dev_err(rvu->dev,
2301 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2302 		goto fail;
2303 	}
2304 	rvu->irq_allocated[offset] = true;
2305 
2306 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2307 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2308 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2309 			  rvu_flr_intr_handler, 0,
2310 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2311 	if (ret) {
2312 		dev_err(rvu->dev,
2313 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2314 		goto fail;
2315 	}
2316 	rvu->irq_allocated[offset] = true;
2317 
2318 	/* Register ME interrupt handler for AF's VFs */
2319 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2320 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2321 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2322 			  rvu_me_vf_intr_handler, 0,
2323 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2324 	if (ret) {
2325 		dev_err(rvu->dev,
2326 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2327 		goto fail;
2328 	}
2329 	rvu->irq_allocated[offset] = true;
2330 
2331 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2332 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2333 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2334 			  rvu_me_vf_intr_handler, 0,
2335 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2336 	if (ret) {
2337 		dev_err(rvu->dev,
2338 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2339 		goto fail;
2340 	}
2341 	rvu->irq_allocated[offset] = true;
2342 	return 0;
2343 
2344 fail:
2345 	rvu_unregister_interrupts(rvu);
2346 	return ret;
2347 }
2348 
2349 static void rvu_flr_wq_destroy(struct rvu *rvu)
2350 {
2351 	if (rvu->flr_wq) {
2352 		flush_workqueue(rvu->flr_wq);
2353 		destroy_workqueue(rvu->flr_wq);
2354 		rvu->flr_wq = NULL;
2355 	}
2356 }
2357 
2358 static int rvu_flr_init(struct rvu *rvu)
2359 {
2360 	int dev, num_devs;
2361 	u64 cfg;
2362 	int pf;
2363 
2364 	/* Enable FLR for all PFs*/
2365 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2366 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2367 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2368 			    cfg | BIT_ULL(22));
2369 	}
2370 
2371 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2372 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2373 				       1);
2374 	if (!rvu->flr_wq)
2375 		return -ENOMEM;
2376 
2377 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2378 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2379 				    sizeof(struct rvu_work), GFP_KERNEL);
2380 	if (!rvu->flr_wrk) {
2381 		destroy_workqueue(rvu->flr_wq);
2382 		return -ENOMEM;
2383 	}
2384 
2385 	for (dev = 0; dev < num_devs; dev++) {
2386 		rvu->flr_wrk[dev].rvu = rvu;
2387 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2388 	}
2389 
2390 	mutex_init(&rvu->flr_lock);
2391 
2392 	return 0;
2393 }
2394 
2395 static void rvu_disable_afvf_intr(struct rvu *rvu)
2396 {
2397 	int vfs = rvu->vfs;
2398 
2399 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2400 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2401 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2402 	if (vfs <= 64)
2403 		return;
2404 
2405 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2406 		      INTR_MASK(vfs - 64));
2407 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2408 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2409 }
2410 
2411 static void rvu_enable_afvf_intr(struct rvu *rvu)
2412 {
2413 	int vfs = rvu->vfs;
2414 
2415 	/* Clear any pending interrupts and enable AF VF interrupts for
2416 	 * the first 64 VFs.
2417 	 */
2418 	/* Mbox */
2419 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2420 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2421 
2422 	/* FLR */
2423 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2424 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2425 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2426 
2427 	/* Same for remaining VFs, if any. */
2428 	if (vfs <= 64)
2429 		return;
2430 
2431 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2432 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2433 		      INTR_MASK(vfs - 64));
2434 
2435 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2436 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2437 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2438 }
2439 
2440 #define PCI_DEVID_OCTEONTX2_LBK 0xA061
2441 
2442 static int lbk_get_num_chans(void)
2443 {
2444 	struct pci_dev *pdev;
2445 	void __iomem *base;
2446 	int ret = -EIO;
2447 
2448 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2449 			      NULL);
2450 	if (!pdev)
2451 		goto err;
2452 
2453 	base = pci_ioremap_bar(pdev, 0);
2454 	if (!base)
2455 		goto err_put;
2456 
2457 	/* Read number of available LBK channels from LBK(0)_CONST register. */
2458 	ret = (readq(base + 0x10) >> 32) & 0xffff;
2459 	iounmap(base);
2460 err_put:
2461 	pci_dev_put(pdev);
2462 err:
2463 	return ret;
2464 }
2465 
2466 static int rvu_enable_sriov(struct rvu *rvu)
2467 {
2468 	struct pci_dev *pdev = rvu->pdev;
2469 	int err, chans, vfs;
2470 
2471 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2472 		dev_warn(&pdev->dev,
2473 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
2474 		return 0;
2475 	}
2476 
2477 	chans = lbk_get_num_chans();
2478 	if (chans < 0)
2479 		return chans;
2480 
2481 	vfs = pci_sriov_get_totalvfs(pdev);
2482 
2483 	/* Limit VFs in case we have more VFs than LBK channels available. */
2484 	if (vfs > chans)
2485 		vfs = chans;
2486 
2487 	if (!vfs)
2488 		return 0;
2489 
2490 	/* Save VFs number for reference in VF interrupts handlers.
2491 	 * Since interrupts might start arriving during SRIOV enablement
2492 	 * ordinary API cannot be used to get number of enabled VFs.
2493 	 */
2494 	rvu->vfs = vfs;
2495 
2496 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
2497 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
2498 	if (err)
2499 		return err;
2500 
2501 	rvu_enable_afvf_intr(rvu);
2502 	/* Make sure IRQs are enabled before SRIOV. */
2503 	mb();
2504 
2505 	err = pci_enable_sriov(pdev, vfs);
2506 	if (err) {
2507 		rvu_disable_afvf_intr(rvu);
2508 		rvu_mbox_destroy(&rvu->afvf_wq_info);
2509 		return err;
2510 	}
2511 
2512 	return 0;
2513 }
2514 
2515 static void rvu_disable_sriov(struct rvu *rvu)
2516 {
2517 	rvu_disable_afvf_intr(rvu);
2518 	rvu_mbox_destroy(&rvu->afvf_wq_info);
2519 	pci_disable_sriov(rvu->pdev);
2520 }
2521 
2522 static void rvu_update_module_params(struct rvu *rvu)
2523 {
2524 	const char *default_pfl_name = "default";
2525 
2526 	strscpy(rvu->mkex_pfl_name,
2527 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
2528 }
2529 
2530 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2531 {
2532 	struct device *dev = &pdev->dev;
2533 	struct rvu *rvu;
2534 	int    err;
2535 
2536 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
2537 	if (!rvu)
2538 		return -ENOMEM;
2539 
2540 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
2541 	if (!rvu->hw) {
2542 		devm_kfree(dev, rvu);
2543 		return -ENOMEM;
2544 	}
2545 
2546 	pci_set_drvdata(pdev, rvu);
2547 	rvu->pdev = pdev;
2548 	rvu->dev = &pdev->dev;
2549 
2550 	err = pci_enable_device(pdev);
2551 	if (err) {
2552 		dev_err(dev, "Failed to enable PCI device\n");
2553 		goto err_freemem;
2554 	}
2555 
2556 	err = pci_request_regions(pdev, DRV_NAME);
2557 	if (err) {
2558 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2559 		goto err_disable_device;
2560 	}
2561 
2562 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
2563 	if (err) {
2564 		dev_err(dev, "DMA mask config failed, abort\n");
2565 		goto err_release_regions;
2566 	}
2567 
2568 	pci_set_master(pdev);
2569 
2570 	/* Map Admin function CSRs */
2571 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
2572 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
2573 	if (!rvu->afreg_base || !rvu->pfreg_base) {
2574 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
2575 		err = -ENOMEM;
2576 		goto err_release_regions;
2577 	}
2578 
2579 	/* Store module params in rvu structure */
2580 	rvu_update_module_params(rvu);
2581 
2582 	/* Check which blocks the HW supports */
2583 	rvu_check_block_implemented(rvu);
2584 
2585 	rvu_reset_all_blocks(rvu);
2586 
2587 	rvu_setup_hw_capabilities(rvu);
2588 
2589 	err = rvu_setup_hw_resources(rvu);
2590 	if (err)
2591 		goto err_release_regions;
2592 
2593 	/* Init mailbox btw AF and PFs */
2594 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
2595 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
2596 			    rvu_afpf_mbox_up_handler);
2597 	if (err)
2598 		goto err_hwsetup;
2599 
2600 	err = rvu_flr_init(rvu);
2601 	if (err)
2602 		goto err_mbox;
2603 
2604 	err = rvu_register_interrupts(rvu);
2605 	if (err)
2606 		goto err_flr;
2607 
2608 	rvu_setup_rvum_blk_revid(rvu);
2609 
2610 	/* Enable AF's VFs (if any) */
2611 	err = rvu_enable_sriov(rvu);
2612 	if (err)
2613 		goto err_irq;
2614 
2615 	/* Initialize debugfs */
2616 	rvu_dbg_init(rvu);
2617 
2618 	return 0;
2619 err_irq:
2620 	rvu_unregister_interrupts(rvu);
2621 err_flr:
2622 	rvu_flr_wq_destroy(rvu);
2623 err_mbox:
2624 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2625 err_hwsetup:
2626 	rvu_cgx_exit(rvu);
2627 	rvu_fwdata_exit(rvu);
2628 	rvu_reset_all_blocks(rvu);
2629 	rvu_free_hw_resources(rvu);
2630 	rvu_clear_rvum_blk_revid(rvu);
2631 err_release_regions:
2632 	pci_release_regions(pdev);
2633 err_disable_device:
2634 	pci_disable_device(pdev);
2635 err_freemem:
2636 	pci_set_drvdata(pdev, NULL);
2637 	devm_kfree(&pdev->dev, rvu->hw);
2638 	devm_kfree(dev, rvu);
2639 	return err;
2640 }
2641 
2642 static void rvu_remove(struct pci_dev *pdev)
2643 {
2644 	struct rvu *rvu = pci_get_drvdata(pdev);
2645 
2646 	rvu_dbg_exit(rvu);
2647 	rvu_unregister_interrupts(rvu);
2648 	rvu_flr_wq_destroy(rvu);
2649 	rvu_cgx_exit(rvu);
2650 	rvu_fwdata_exit(rvu);
2651 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2652 	rvu_disable_sriov(rvu);
2653 	rvu_reset_all_blocks(rvu);
2654 	rvu_free_hw_resources(rvu);
2655 	rvu_clear_rvum_blk_revid(rvu);
2656 	pci_release_regions(pdev);
2657 	pci_disable_device(pdev);
2658 	pci_set_drvdata(pdev, NULL);
2659 
2660 	devm_kfree(&pdev->dev, rvu->hw);
2661 	devm_kfree(&pdev->dev, rvu);
2662 }
2663 
2664 static struct pci_driver rvu_driver = {
2665 	.name = DRV_NAME,
2666 	.id_table = rvu_id_table,
2667 	.probe = rvu_probe,
2668 	.remove = rvu_remove,
2669 };
2670 
2671 static int __init rvu_init_module(void)
2672 {
2673 	int err;
2674 
2675 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
2676 
2677 	err = pci_register_driver(&cgx_driver);
2678 	if (err < 0)
2679 		return err;
2680 
2681 	err =  pci_register_driver(&rvu_driver);
2682 	if (err < 0)
2683 		pci_unregister_driver(&cgx_driver);
2684 
2685 	return err;
2686 }
2687 
2688 static void __exit rvu_cleanup_module(void)
2689 {
2690 	pci_unregister_driver(&rvu_driver);
2691 	pci_unregister_driver(&cgx_driver);
2692 }
2693 
2694 module_init(rvu_init_module);
2695 module_exit(rvu_cleanup_module);
2696