1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/pci.h>
16 #include <linux/sysfs.h>
17 
18 #include "cgx.h"
19 #include "rvu.h"
20 #include "rvu_reg.h"
21 
22 #define DRV_NAME	"octeontx2-af"
23 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
24 #define DRV_VERSION	"1.0"
25 
26 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
27 
28 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
29 				struct rvu_block *block, int lf);
30 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31 				  struct rvu_block *block, int lf);
32 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
33 
34 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
35 			 int type, int num,
36 			 void (mbox_handler)(struct work_struct *),
37 			 void (mbox_up_handler)(struct work_struct *));
38 enum {
39 	TYPE_AFVF,
40 	TYPE_AFPF,
41 };
42 
43 /* Supported devices */
44 static const struct pci_device_id rvu_id_table[] = {
45 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
46 	{ 0, }  /* end of table */
47 };
48 
49 MODULE_AUTHOR("Marvell International Ltd.");
50 MODULE_DESCRIPTION(DRV_STRING);
51 MODULE_LICENSE("GPL v2");
52 MODULE_VERSION(DRV_VERSION);
53 MODULE_DEVICE_TABLE(pci, rvu_id_table);
54 
55 /* Poll a RVU block's register 'offset', for a 'zero'
56  * or 'nonzero' at bits specified by 'mask'
57  */
58 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
59 {
60 	unsigned long timeout = jiffies + usecs_to_jiffies(100);
61 	void __iomem *reg;
62 	u64 reg_val;
63 
64 	reg = rvu->afreg_base + ((block << 28) | offset);
65 	while (time_before(jiffies, timeout)) {
66 		reg_val = readq(reg);
67 		if (zero && !(reg_val & mask))
68 			return 0;
69 		if (!zero && (reg_val & mask))
70 			return 0;
71 		usleep_range(1, 5);
72 		timeout--;
73 	}
74 	return -EBUSY;
75 }
76 
77 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
78 {
79 	int id;
80 
81 	if (!rsrc->bmap)
82 		return -EINVAL;
83 
84 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
85 	if (id >= rsrc->max)
86 		return -ENOSPC;
87 
88 	__set_bit(id, rsrc->bmap);
89 
90 	return id;
91 }
92 
93 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
94 {
95 	int start;
96 
97 	if (!rsrc->bmap)
98 		return -EINVAL;
99 
100 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
101 	if (start >= rsrc->max)
102 		return -ENOSPC;
103 
104 	bitmap_set(rsrc->bmap, start, nrsrc);
105 	return start;
106 }
107 
108 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
109 {
110 	if (!rsrc->bmap)
111 		return;
112 	if (start >= rsrc->max)
113 		return;
114 
115 	bitmap_clear(rsrc->bmap, start, nrsrc);
116 }
117 
118 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
119 {
120 	int start;
121 
122 	if (!rsrc->bmap)
123 		return false;
124 
125 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
126 	if (start >= rsrc->max)
127 		return false;
128 
129 	return true;
130 }
131 
132 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
133 {
134 	if (!rsrc->bmap)
135 		return;
136 
137 	__clear_bit(id, rsrc->bmap);
138 }
139 
140 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
141 {
142 	int used;
143 
144 	if (!rsrc->bmap)
145 		return 0;
146 
147 	used = bitmap_weight(rsrc->bmap, rsrc->max);
148 	return (rsrc->max - used);
149 }
150 
151 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
152 {
153 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
154 			     sizeof(long), GFP_KERNEL);
155 	if (!rsrc->bmap)
156 		return -ENOMEM;
157 	return 0;
158 }
159 
160 /* Get block LF's HW index from a PF_FUNC's block slot number */
161 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
162 {
163 	u16 match = 0;
164 	int lf;
165 
166 	mutex_lock(&rvu->rsrc_lock);
167 	for (lf = 0; lf < block->lf.max; lf++) {
168 		if (block->fn_map[lf] == pcifunc) {
169 			if (slot == match) {
170 				mutex_unlock(&rvu->rsrc_lock);
171 				return lf;
172 			}
173 			match++;
174 		}
175 	}
176 	mutex_unlock(&rvu->rsrc_lock);
177 	return -ENODEV;
178 }
179 
180 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
181  * Some silicon variants of OcteonTX2 supports
182  * multiple blocks of same type.
183  *
184  * @pcifunc has to be zero when no LF is yet attached.
185  */
186 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
187 {
188 	int devnum, blkaddr = -ENODEV;
189 	u64 cfg, reg;
190 	bool is_pf;
191 
192 	switch (blktype) {
193 	case BLKTYPE_NPC:
194 		blkaddr = BLKADDR_NPC;
195 		goto exit;
196 	case BLKTYPE_NPA:
197 		blkaddr = BLKADDR_NPA;
198 		goto exit;
199 	case BLKTYPE_NIX:
200 		/* For now assume NIX0 */
201 		if (!pcifunc) {
202 			blkaddr = BLKADDR_NIX0;
203 			goto exit;
204 		}
205 		break;
206 	case BLKTYPE_SSO:
207 		blkaddr = BLKADDR_SSO;
208 		goto exit;
209 	case BLKTYPE_SSOW:
210 		blkaddr = BLKADDR_SSOW;
211 		goto exit;
212 	case BLKTYPE_TIM:
213 		blkaddr = BLKADDR_TIM;
214 		goto exit;
215 	case BLKTYPE_CPT:
216 		/* For now assume CPT0 */
217 		if (!pcifunc) {
218 			blkaddr = BLKADDR_CPT0;
219 			goto exit;
220 		}
221 		break;
222 	}
223 
224 	/* Check if this is a RVU PF or VF */
225 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
226 		is_pf = false;
227 		devnum = rvu_get_hwvf(rvu, pcifunc);
228 	} else {
229 		is_pf = true;
230 		devnum = rvu_get_pf(pcifunc);
231 	}
232 
233 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' */
234 	if (blktype == BLKTYPE_NIX) {
235 		reg = is_pf ? RVU_PRIV_PFX_NIX0_CFG : RVU_PRIV_HWVFX_NIX0_CFG;
236 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
237 		if (cfg)
238 			blkaddr = BLKADDR_NIX0;
239 	}
240 
241 	/* Check if the 'pcifunc' has a CPT LF from 'BLKADDR_CPT0' */
242 	if (blktype == BLKTYPE_CPT) {
243 		reg = is_pf ? RVU_PRIV_PFX_CPT0_CFG : RVU_PRIV_HWVFX_CPT0_CFG;
244 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
245 		if (cfg)
246 			blkaddr = BLKADDR_CPT0;
247 	}
248 
249 exit:
250 	if (is_block_implemented(rvu->hw, blkaddr))
251 		return blkaddr;
252 	return -ENODEV;
253 }
254 
255 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
256 				struct rvu_block *block, u16 pcifunc,
257 				u16 lf, bool attach)
258 {
259 	int devnum, num_lfs = 0;
260 	bool is_pf;
261 	u64 reg;
262 
263 	if (lf >= block->lf.max) {
264 		dev_err(&rvu->pdev->dev,
265 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
266 			__func__, lf, block->name, block->lf.max);
267 		return;
268 	}
269 
270 	/* Check if this is for a RVU PF or VF */
271 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
272 		is_pf = false;
273 		devnum = rvu_get_hwvf(rvu, pcifunc);
274 	} else {
275 		is_pf = true;
276 		devnum = rvu_get_pf(pcifunc);
277 	}
278 
279 	block->fn_map[lf] = attach ? pcifunc : 0;
280 
281 	switch (block->type) {
282 	case BLKTYPE_NPA:
283 		pfvf->npalf = attach ? true : false;
284 		num_lfs = pfvf->npalf;
285 		break;
286 	case BLKTYPE_NIX:
287 		pfvf->nixlf = attach ? true : false;
288 		num_lfs = pfvf->nixlf;
289 		break;
290 	case BLKTYPE_SSO:
291 		attach ? pfvf->sso++ : pfvf->sso--;
292 		num_lfs = pfvf->sso;
293 		break;
294 	case BLKTYPE_SSOW:
295 		attach ? pfvf->ssow++ : pfvf->ssow--;
296 		num_lfs = pfvf->ssow;
297 		break;
298 	case BLKTYPE_TIM:
299 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
300 		num_lfs = pfvf->timlfs;
301 		break;
302 	case BLKTYPE_CPT:
303 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
304 		num_lfs = pfvf->cptlfs;
305 		break;
306 	}
307 
308 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
309 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
310 }
311 
312 inline int rvu_get_pf(u16 pcifunc)
313 {
314 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
315 }
316 
317 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
318 {
319 	u64 cfg;
320 
321 	/* Get numVFs attached to this PF and first HWVF */
322 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
323 	*numvfs = (cfg >> 12) & 0xFF;
324 	*hwvf = cfg & 0xFFF;
325 }
326 
327 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
328 {
329 	int pf, func;
330 	u64 cfg;
331 
332 	pf = rvu_get_pf(pcifunc);
333 	func = pcifunc & RVU_PFVF_FUNC_MASK;
334 
335 	/* Get first HWVF attached to this PF */
336 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
337 
338 	return ((cfg & 0xFFF) + func - 1);
339 }
340 
341 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
342 {
343 	/* Check if it is a PF or VF */
344 	if (pcifunc & RVU_PFVF_FUNC_MASK)
345 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
346 	else
347 		return &rvu->pf[rvu_get_pf(pcifunc)];
348 }
349 
350 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
351 {
352 	int pf, vf, nvfs;
353 	u64 cfg;
354 
355 	pf = rvu_get_pf(pcifunc);
356 	if (pf >= rvu->hw->total_pfs)
357 		return false;
358 
359 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
360 		return true;
361 
362 	/* Check if VF is within number of VFs attached to this PF */
363 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
364 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
365 	nvfs = (cfg >> 12) & 0xFF;
366 	if (vf >= nvfs)
367 		return false;
368 
369 	return true;
370 }
371 
372 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
373 {
374 	struct rvu_block *block;
375 
376 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
377 		return false;
378 
379 	block = &hw->block[blkaddr];
380 	return block->implemented;
381 }
382 
383 static void rvu_check_block_implemented(struct rvu *rvu)
384 {
385 	struct rvu_hwinfo *hw = rvu->hw;
386 	struct rvu_block *block;
387 	int blkid;
388 	u64 cfg;
389 
390 	/* For each block check if 'implemented' bit is set */
391 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
392 		block = &hw->block[blkid];
393 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
394 		if (cfg & BIT_ULL(11))
395 			block->implemented = true;
396 	}
397 }
398 
399 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
400 {
401 	int err;
402 
403 	if (!block->implemented)
404 		return 0;
405 
406 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
407 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
408 			   true);
409 	return err;
410 }
411 
412 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
413 {
414 	struct rvu_block *block = &rvu->hw->block[blkaddr];
415 
416 	if (!block->implemented)
417 		return;
418 
419 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
420 	rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
421 }
422 
423 static void rvu_reset_all_blocks(struct rvu *rvu)
424 {
425 	/* Do a HW reset of all RVU blocks */
426 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
427 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
428 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
429 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
430 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
431 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
432 	rvu_block_reset(rvu, BLKADDR_NDC0, NDC_AF_BLK_RST);
433 	rvu_block_reset(rvu, BLKADDR_NDC1, NDC_AF_BLK_RST);
434 	rvu_block_reset(rvu, BLKADDR_NDC2, NDC_AF_BLK_RST);
435 }
436 
437 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
438 {
439 	struct rvu_pfvf *pfvf;
440 	u64 cfg;
441 	int lf;
442 
443 	for (lf = 0; lf < block->lf.max; lf++) {
444 		cfg = rvu_read64(rvu, block->addr,
445 				 block->lfcfg_reg | (lf << block->lfshift));
446 		if (!(cfg & BIT_ULL(63)))
447 			continue;
448 
449 		/* Set this resource as being used */
450 		__set_bit(lf, block->lf.bmap);
451 
452 		/* Get, to whom this LF is attached */
453 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
454 		rvu_update_rsrc_map(rvu, pfvf, block,
455 				    (cfg >> 8) & 0xFFFF, lf, true);
456 
457 		/* Set start MSIX vector for this LF within this PF/VF */
458 		rvu_set_msix_offset(rvu, pfvf, block, lf);
459 	}
460 }
461 
462 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
463 {
464 	int min_vecs;
465 
466 	if (!vf)
467 		goto check_pf;
468 
469 	if (!nvecs) {
470 		dev_warn(rvu->dev,
471 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
472 			 pf, vf - 1, nvecs);
473 	}
474 	return;
475 
476 check_pf:
477 	if (pf == 0)
478 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
479 	else
480 		min_vecs = RVU_PF_INT_VEC_CNT;
481 
482 	if (!(nvecs < min_vecs))
483 		return;
484 	dev_warn(rvu->dev,
485 		 "PF%d is configured with too few vectors, %d, min is %d\n",
486 		 pf, nvecs, min_vecs);
487 }
488 
489 static int rvu_setup_msix_resources(struct rvu *rvu)
490 {
491 	struct rvu_hwinfo *hw = rvu->hw;
492 	int pf, vf, numvfs, hwvf, err;
493 	int nvecs, offset, max_msix;
494 	struct rvu_pfvf *pfvf;
495 	u64 cfg, phy_addr;
496 	dma_addr_t iova;
497 
498 	for (pf = 0; pf < hw->total_pfs; pf++) {
499 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
500 		/* If PF is not enabled, nothing to do */
501 		if (!((cfg >> 20) & 0x01))
502 			continue;
503 
504 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
505 
506 		pfvf = &rvu->pf[pf];
507 		/* Get num of MSIX vectors attached to this PF */
508 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
509 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
510 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
511 
512 		/* Alloc msix bitmap for this PF */
513 		err = rvu_alloc_bitmap(&pfvf->msix);
514 		if (err)
515 			return err;
516 
517 		/* Allocate memory for MSIX vector to RVU block LF mapping */
518 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
519 						sizeof(u16), GFP_KERNEL);
520 		if (!pfvf->msix_lfmap)
521 			return -ENOMEM;
522 
523 		/* For PF0 (AF) firmware will set msix vector offsets for
524 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
525 		 */
526 		if (!pf)
527 			goto setup_vfmsix;
528 
529 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
530 		 * These are allocated on driver init and never freed,
531 		 * so no need to set 'msix_lfmap' for these.
532 		 */
533 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
534 		nvecs = (cfg >> 12) & 0xFF;
535 		cfg &= ~0x7FFULL;
536 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
537 		rvu_write64(rvu, BLKADDR_RVUM,
538 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
539 setup_vfmsix:
540 		/* Alloc msix bitmap for VFs */
541 		for (vf = 0; vf < numvfs; vf++) {
542 			pfvf =  &rvu->hwvf[hwvf + vf];
543 			/* Get num of MSIX vectors attached to this VF */
544 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
545 					 RVU_PRIV_PFX_MSIX_CFG(pf));
546 			pfvf->msix.max = (cfg & 0xFFF) + 1;
547 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
548 
549 			/* Alloc msix bitmap for this VF */
550 			err = rvu_alloc_bitmap(&pfvf->msix);
551 			if (err)
552 				return err;
553 
554 			pfvf->msix_lfmap =
555 				devm_kcalloc(rvu->dev, pfvf->msix.max,
556 					     sizeof(u16), GFP_KERNEL);
557 			if (!pfvf->msix_lfmap)
558 				return -ENOMEM;
559 
560 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
561 			 * These are allocated on driver init and never freed,
562 			 * so no need to set 'msix_lfmap' for these.
563 			 */
564 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
565 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
566 			nvecs = (cfg >> 12) & 0xFF;
567 			cfg &= ~0x7FFULL;
568 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
569 			rvu_write64(rvu, BLKADDR_RVUM,
570 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
571 				    cfg | offset);
572 		}
573 	}
574 
575 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
576 	 * create a IOMMU mapping for the physcial address configured by
577 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
578 	 */
579 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
580 	max_msix = cfg & 0xFFFFF;
581 	phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
582 	iova = dma_map_resource(rvu->dev, phy_addr,
583 				max_msix * PCI_MSIX_ENTRY_SIZE,
584 				DMA_BIDIRECTIONAL, 0);
585 
586 	if (dma_mapping_error(rvu->dev, iova))
587 		return -ENOMEM;
588 
589 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
590 	rvu->msix_base_iova = iova;
591 
592 	return 0;
593 }
594 
595 static void rvu_free_hw_resources(struct rvu *rvu)
596 {
597 	struct rvu_hwinfo *hw = rvu->hw;
598 	struct rvu_block *block;
599 	struct rvu_pfvf  *pfvf;
600 	int id, max_msix;
601 	u64 cfg;
602 
603 	rvu_npa_freemem(rvu);
604 	rvu_npc_freemem(rvu);
605 	rvu_nix_freemem(rvu);
606 
607 	/* Free block LF bitmaps */
608 	for (id = 0; id < BLK_COUNT; id++) {
609 		block = &hw->block[id];
610 		kfree(block->lf.bmap);
611 	}
612 
613 	/* Free MSIX bitmaps */
614 	for (id = 0; id < hw->total_pfs; id++) {
615 		pfvf = &rvu->pf[id];
616 		kfree(pfvf->msix.bmap);
617 	}
618 
619 	for (id = 0; id < hw->total_vfs; id++) {
620 		pfvf = &rvu->hwvf[id];
621 		kfree(pfvf->msix.bmap);
622 	}
623 
624 	/* Unmap MSIX vector base IOVA mapping */
625 	if (!rvu->msix_base_iova)
626 		return;
627 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
628 	max_msix = cfg & 0xFFFFF;
629 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
630 			   max_msix * PCI_MSIX_ENTRY_SIZE,
631 			   DMA_BIDIRECTIONAL, 0);
632 
633 	mutex_destroy(&rvu->rsrc_lock);
634 }
635 
636 static int rvu_setup_hw_resources(struct rvu *rvu)
637 {
638 	struct rvu_hwinfo *hw = rvu->hw;
639 	struct rvu_block *block;
640 	int blkid, err;
641 	u64 cfg;
642 
643 	/* Get HW supported max RVU PF & VF count */
644 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
645 	hw->total_pfs = (cfg >> 32) & 0xFF;
646 	hw->total_vfs = (cfg >> 20) & 0xFFF;
647 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
648 
649 	/* Init NPA LF's bitmap */
650 	block = &hw->block[BLKADDR_NPA];
651 	if (!block->implemented)
652 		goto nix;
653 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
654 	block->lf.max = (cfg >> 16) & 0xFFF;
655 	block->addr = BLKADDR_NPA;
656 	block->type = BLKTYPE_NPA;
657 	block->lfshift = 8;
658 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
659 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
660 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
661 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
662 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
663 	block->lfreset_reg = NPA_AF_LF_RST;
664 	sprintf(block->name, "NPA");
665 	err = rvu_alloc_bitmap(&block->lf);
666 	if (err)
667 		return err;
668 
669 nix:
670 	/* Init NIX LF's bitmap */
671 	block = &hw->block[BLKADDR_NIX0];
672 	if (!block->implemented)
673 		goto sso;
674 	cfg = rvu_read64(rvu, BLKADDR_NIX0, NIX_AF_CONST2);
675 	block->lf.max = cfg & 0xFFF;
676 	block->addr = BLKADDR_NIX0;
677 	block->type = BLKTYPE_NIX;
678 	block->lfshift = 8;
679 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
680 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIX0_CFG;
681 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIX0_CFG;
682 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
683 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
684 	block->lfreset_reg = NIX_AF_LF_RST;
685 	sprintf(block->name, "NIX");
686 	err = rvu_alloc_bitmap(&block->lf);
687 	if (err)
688 		return err;
689 
690 sso:
691 	/* Init SSO group's bitmap */
692 	block = &hw->block[BLKADDR_SSO];
693 	if (!block->implemented)
694 		goto ssow;
695 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
696 	block->lf.max = cfg & 0xFFFF;
697 	block->addr = BLKADDR_SSO;
698 	block->type = BLKTYPE_SSO;
699 	block->multislot = true;
700 	block->lfshift = 3;
701 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
702 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
703 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
704 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
705 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
706 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
707 	sprintf(block->name, "SSO GROUP");
708 	err = rvu_alloc_bitmap(&block->lf);
709 	if (err)
710 		return err;
711 
712 ssow:
713 	/* Init SSO workslot's bitmap */
714 	block = &hw->block[BLKADDR_SSOW];
715 	if (!block->implemented)
716 		goto tim;
717 	block->lf.max = (cfg >> 56) & 0xFF;
718 	block->addr = BLKADDR_SSOW;
719 	block->type = BLKTYPE_SSOW;
720 	block->multislot = true;
721 	block->lfshift = 3;
722 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
723 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
724 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
725 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
726 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
727 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
728 	sprintf(block->name, "SSOWS");
729 	err = rvu_alloc_bitmap(&block->lf);
730 	if (err)
731 		return err;
732 
733 tim:
734 	/* Init TIM LF's bitmap */
735 	block = &hw->block[BLKADDR_TIM];
736 	if (!block->implemented)
737 		goto cpt;
738 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
739 	block->lf.max = cfg & 0xFFFF;
740 	block->addr = BLKADDR_TIM;
741 	block->type = BLKTYPE_TIM;
742 	block->multislot = true;
743 	block->lfshift = 3;
744 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
745 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
746 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
747 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
748 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
749 	block->lfreset_reg = TIM_AF_LF_RST;
750 	sprintf(block->name, "TIM");
751 	err = rvu_alloc_bitmap(&block->lf);
752 	if (err)
753 		return err;
754 
755 cpt:
756 	/* Init CPT LF's bitmap */
757 	block = &hw->block[BLKADDR_CPT0];
758 	if (!block->implemented)
759 		goto init;
760 	cfg = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_CONSTANTS0);
761 	block->lf.max = cfg & 0xFF;
762 	block->addr = BLKADDR_CPT0;
763 	block->type = BLKTYPE_CPT;
764 	block->multislot = true;
765 	block->lfshift = 3;
766 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
767 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPT0_CFG;
768 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPT0_CFG;
769 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
770 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
771 	block->lfreset_reg = CPT_AF_LF_RST;
772 	sprintf(block->name, "CPT");
773 	err = rvu_alloc_bitmap(&block->lf);
774 	if (err)
775 		return err;
776 
777 init:
778 	/* Allocate memory for PFVF data */
779 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
780 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
781 	if (!rvu->pf)
782 		return -ENOMEM;
783 
784 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
785 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
786 	if (!rvu->hwvf)
787 		return -ENOMEM;
788 
789 	mutex_init(&rvu->rsrc_lock);
790 
791 	err = rvu_setup_msix_resources(rvu);
792 	if (err)
793 		return err;
794 
795 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
796 		block = &hw->block[blkid];
797 		if (!block->lf.bmap)
798 			continue;
799 
800 		/* Allocate memory for block LF/slot to pcifunc mapping info */
801 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
802 					     sizeof(u16), GFP_KERNEL);
803 		if (!block->fn_map)
804 			return -ENOMEM;
805 
806 		/* Scan all blocks to check if low level firmware has
807 		 * already provisioned any of the resources to a PF/VF.
808 		 */
809 		rvu_scan_block(rvu, block);
810 	}
811 
812 	err = rvu_npc_init(rvu);
813 	if (err)
814 		goto exit;
815 
816 	err = rvu_cgx_init(rvu);
817 	if (err)
818 		goto exit;
819 
820 	err = rvu_npa_init(rvu);
821 	if (err)
822 		goto cgx_err;
823 
824 	err = rvu_nix_init(rvu);
825 	if (err)
826 		goto cgx_err;
827 
828 	return 0;
829 
830 cgx_err:
831 	rvu_cgx_exit(rvu);
832 exit:
833 	return err;
834 }
835 
836 /* NPA and NIX admin queue APIs */
837 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
838 {
839 	if (!aq)
840 		return;
841 
842 	qmem_free(rvu->dev, aq->inst);
843 	qmem_free(rvu->dev, aq->res);
844 	devm_kfree(rvu->dev, aq);
845 }
846 
847 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
848 		 int qsize, int inst_size, int res_size)
849 {
850 	struct admin_queue *aq;
851 	int err;
852 
853 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
854 	if (!*ad_queue)
855 		return -ENOMEM;
856 	aq = *ad_queue;
857 
858 	/* Alloc memory for instructions i.e AQ */
859 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
860 	if (err) {
861 		devm_kfree(rvu->dev, aq);
862 		return err;
863 	}
864 
865 	/* Alloc memory for results */
866 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
867 	if (err) {
868 		rvu_aq_free(rvu, aq);
869 		return err;
870 	}
871 
872 	spin_lock_init(&aq->lock);
873 	return 0;
874 }
875 
876 static int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
877 				  struct ready_msg_rsp *rsp)
878 {
879 	return 0;
880 }
881 
882 /* Get current count of a RVU block's LF/slots
883  * provisioned to a given RVU func.
884  */
885 static u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blktype)
886 {
887 	switch (blktype) {
888 	case BLKTYPE_NPA:
889 		return pfvf->npalf ? 1 : 0;
890 	case BLKTYPE_NIX:
891 		return pfvf->nixlf ? 1 : 0;
892 	case BLKTYPE_SSO:
893 		return pfvf->sso;
894 	case BLKTYPE_SSOW:
895 		return pfvf->ssow;
896 	case BLKTYPE_TIM:
897 		return pfvf->timlfs;
898 	case BLKTYPE_CPT:
899 		return pfvf->cptlfs;
900 	}
901 	return 0;
902 }
903 
904 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
905 {
906 	struct rvu_pfvf *pfvf;
907 
908 	if (!is_pf_func_valid(rvu, pcifunc))
909 		return false;
910 
911 	pfvf = rvu_get_pfvf(rvu, pcifunc);
912 
913 	/* Check if this PFFUNC has a LF of type blktype attached */
914 	if (!rvu_get_rsrc_mapcount(pfvf, blktype))
915 		return false;
916 
917 	return true;
918 }
919 
920 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
921 			   int pcifunc, int slot)
922 {
923 	u64 val;
924 
925 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
926 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
927 	/* Wait for the lookup to finish */
928 	/* TODO: put some timeout here */
929 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
930 		;
931 
932 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
933 
934 	/* Check LF valid bit */
935 	if (!(val & (1ULL << 12)))
936 		return -1;
937 
938 	return (val & 0xFFF);
939 }
940 
941 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
942 {
943 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
944 	struct rvu_hwinfo *hw = rvu->hw;
945 	struct rvu_block *block;
946 	int slot, lf, num_lfs;
947 	int blkaddr;
948 
949 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
950 	if (blkaddr < 0)
951 		return;
952 
953 	block = &hw->block[blkaddr];
954 
955 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->type);
956 	if (!num_lfs)
957 		return;
958 
959 	for (slot = 0; slot < num_lfs; slot++) {
960 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
961 		if (lf < 0) /* This should never happen */
962 			continue;
963 
964 		/* Disable the LF */
965 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
966 			    (lf << block->lfshift), 0x00ULL);
967 
968 		/* Update SW maintained mapping info as well */
969 		rvu_update_rsrc_map(rvu, pfvf, block,
970 				    pcifunc, lf, false);
971 
972 		/* Free the resource */
973 		rvu_free_rsrc(&block->lf, lf);
974 
975 		/* Clear MSIX vector offset for this LF */
976 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
977 	}
978 }
979 
980 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
981 			    u16 pcifunc)
982 {
983 	struct rvu_hwinfo *hw = rvu->hw;
984 	bool detach_all = true;
985 	struct rvu_block *block;
986 	int blkid;
987 
988 	mutex_lock(&rvu->rsrc_lock);
989 
990 	/* Check for partial resource detach */
991 	if (detach && detach->partial)
992 		detach_all = false;
993 
994 	/* Check for RVU block's LFs attached to this func,
995 	 * if so, detach them.
996 	 */
997 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
998 		block = &hw->block[blkid];
999 		if (!block->lf.bmap)
1000 			continue;
1001 		if (!detach_all && detach) {
1002 			if (blkid == BLKADDR_NPA && !detach->npalf)
1003 				continue;
1004 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1005 				continue;
1006 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1007 				continue;
1008 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1009 				continue;
1010 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1011 				continue;
1012 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1013 				continue;
1014 		}
1015 		rvu_detach_block(rvu, pcifunc, block->type);
1016 	}
1017 
1018 	mutex_unlock(&rvu->rsrc_lock);
1019 	return 0;
1020 }
1021 
1022 static int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1023 					     struct rsrc_detach *detach,
1024 					     struct msg_rsp *rsp)
1025 {
1026 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1027 }
1028 
1029 static void rvu_attach_block(struct rvu *rvu, int pcifunc,
1030 			     int blktype, int num_lfs)
1031 {
1032 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1033 	struct rvu_hwinfo *hw = rvu->hw;
1034 	struct rvu_block *block;
1035 	int slot, lf;
1036 	int blkaddr;
1037 	u64 cfg;
1038 
1039 	if (!num_lfs)
1040 		return;
1041 
1042 	blkaddr = rvu_get_blkaddr(rvu, blktype, 0);
1043 	if (blkaddr < 0)
1044 		return;
1045 
1046 	block = &hw->block[blkaddr];
1047 	if (!block->lf.bmap)
1048 		return;
1049 
1050 	for (slot = 0; slot < num_lfs; slot++) {
1051 		/* Allocate the resource */
1052 		lf = rvu_alloc_rsrc(&block->lf);
1053 		if (lf < 0)
1054 			return;
1055 
1056 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1057 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1058 			    (lf << block->lfshift), cfg);
1059 		rvu_update_rsrc_map(rvu, pfvf, block,
1060 				    pcifunc, lf, true);
1061 
1062 		/* Set start MSIX vector for this LF within this PF/VF */
1063 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1064 	}
1065 }
1066 
1067 static int rvu_check_rsrc_availability(struct rvu *rvu,
1068 				       struct rsrc_attach *req, u16 pcifunc)
1069 {
1070 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1071 	struct rvu_hwinfo *hw = rvu->hw;
1072 	struct rvu_block *block;
1073 	int free_lfs, mappedlfs;
1074 
1075 	/* Only one NPA LF can be attached */
1076 	if (req->npalf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NPA)) {
1077 		block = &hw->block[BLKADDR_NPA];
1078 		free_lfs = rvu_rsrc_free_count(&block->lf);
1079 		if (!free_lfs)
1080 			goto fail;
1081 	} else if (req->npalf) {
1082 		dev_err(&rvu->pdev->dev,
1083 			"Func 0x%x: Invalid req, already has NPA\n",
1084 			 pcifunc);
1085 		return -EINVAL;
1086 	}
1087 
1088 	/* Only one NIX LF can be attached */
1089 	if (req->nixlf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NIX)) {
1090 		block = &hw->block[BLKADDR_NIX0];
1091 		free_lfs = rvu_rsrc_free_count(&block->lf);
1092 		if (!free_lfs)
1093 			goto fail;
1094 	} else if (req->nixlf) {
1095 		dev_err(&rvu->pdev->dev,
1096 			"Func 0x%x: Invalid req, already has NIX\n",
1097 			pcifunc);
1098 		return -EINVAL;
1099 	}
1100 
1101 	if (req->sso) {
1102 		block = &hw->block[BLKADDR_SSO];
1103 		/* Is request within limits ? */
1104 		if (req->sso > block->lf.max) {
1105 			dev_err(&rvu->pdev->dev,
1106 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1107 				 pcifunc, req->sso, block->lf.max);
1108 			return -EINVAL;
1109 		}
1110 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1111 		free_lfs = rvu_rsrc_free_count(&block->lf);
1112 		/* Check if additional resources are available */
1113 		if (req->sso > mappedlfs &&
1114 		    ((req->sso - mappedlfs) > free_lfs))
1115 			goto fail;
1116 	}
1117 
1118 	if (req->ssow) {
1119 		block = &hw->block[BLKADDR_SSOW];
1120 		if (req->ssow > block->lf.max) {
1121 			dev_err(&rvu->pdev->dev,
1122 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1123 				 pcifunc, req->sso, block->lf.max);
1124 			return -EINVAL;
1125 		}
1126 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1127 		free_lfs = rvu_rsrc_free_count(&block->lf);
1128 		if (req->ssow > mappedlfs &&
1129 		    ((req->ssow - mappedlfs) > free_lfs))
1130 			goto fail;
1131 	}
1132 
1133 	if (req->timlfs) {
1134 		block = &hw->block[BLKADDR_TIM];
1135 		if (req->timlfs > block->lf.max) {
1136 			dev_err(&rvu->pdev->dev,
1137 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1138 				 pcifunc, req->timlfs, block->lf.max);
1139 			return -EINVAL;
1140 		}
1141 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1142 		free_lfs = rvu_rsrc_free_count(&block->lf);
1143 		if (req->timlfs > mappedlfs &&
1144 		    ((req->timlfs - mappedlfs) > free_lfs))
1145 			goto fail;
1146 	}
1147 
1148 	if (req->cptlfs) {
1149 		block = &hw->block[BLKADDR_CPT0];
1150 		if (req->cptlfs > block->lf.max) {
1151 			dev_err(&rvu->pdev->dev,
1152 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1153 				 pcifunc, req->cptlfs, block->lf.max);
1154 			return -EINVAL;
1155 		}
1156 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1157 		free_lfs = rvu_rsrc_free_count(&block->lf);
1158 		if (req->cptlfs > mappedlfs &&
1159 		    ((req->cptlfs - mappedlfs) > free_lfs))
1160 			goto fail;
1161 	}
1162 
1163 	return 0;
1164 
1165 fail:
1166 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1167 	return -ENOSPC;
1168 }
1169 
1170 static int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1171 					     struct rsrc_attach *attach,
1172 					     struct msg_rsp *rsp)
1173 {
1174 	u16 pcifunc = attach->hdr.pcifunc;
1175 	int err;
1176 
1177 	/* If first request, detach all existing attached resources */
1178 	if (!attach->modify)
1179 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1180 
1181 	mutex_lock(&rvu->rsrc_lock);
1182 
1183 	/* Check if the request can be accommodated */
1184 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1185 	if (err)
1186 		goto exit;
1187 
1188 	/* Now attach the requested resources */
1189 	if (attach->npalf)
1190 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1);
1191 
1192 	if (attach->nixlf)
1193 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1);
1194 
1195 	if (attach->sso) {
1196 		/* RVU func doesn't know which exact LF or slot is attached
1197 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1198 		 * request, simply detach all existing attached LFs/slots
1199 		 * and attach a fresh.
1200 		 */
1201 		if (attach->modify)
1202 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1203 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO, attach->sso);
1204 	}
1205 
1206 	if (attach->ssow) {
1207 		if (attach->modify)
1208 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1209 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW, attach->ssow);
1210 	}
1211 
1212 	if (attach->timlfs) {
1213 		if (attach->modify)
1214 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1215 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM, attach->timlfs);
1216 	}
1217 
1218 	if (attach->cptlfs) {
1219 		if (attach->modify)
1220 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1221 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT, attach->cptlfs);
1222 	}
1223 
1224 exit:
1225 	mutex_unlock(&rvu->rsrc_lock);
1226 	return err;
1227 }
1228 
1229 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1230 			       int blkaddr, int lf)
1231 {
1232 	u16 vec;
1233 
1234 	if (lf < 0)
1235 		return MSIX_VECTOR_INVALID;
1236 
1237 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1238 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1239 			return vec;
1240 	}
1241 	return MSIX_VECTOR_INVALID;
1242 }
1243 
1244 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1245 				struct rvu_block *block, int lf)
1246 {
1247 	u16 nvecs, vec, offset;
1248 	u64 cfg;
1249 
1250 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1251 			 (lf << block->lfshift));
1252 	nvecs = (cfg >> 12) & 0xFF;
1253 
1254 	/* Check and alloc MSIX vectors, must be contiguous */
1255 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1256 		return;
1257 
1258 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1259 
1260 	/* Config MSIX offset in LF */
1261 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1262 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1263 
1264 	/* Update the bitmap as well */
1265 	for (vec = 0; vec < nvecs; vec++)
1266 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1267 }
1268 
1269 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1270 				  struct rvu_block *block, int lf)
1271 {
1272 	u16 nvecs, vec, offset;
1273 	u64 cfg;
1274 
1275 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1276 			 (lf << block->lfshift));
1277 	nvecs = (cfg >> 12) & 0xFF;
1278 
1279 	/* Clear MSIX offset in LF */
1280 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1281 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1282 
1283 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1284 
1285 	/* Update the mapping */
1286 	for (vec = 0; vec < nvecs; vec++)
1287 		pfvf->msix_lfmap[offset + vec] = 0;
1288 
1289 	/* Free the same in MSIX bitmap */
1290 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1291 }
1292 
1293 static int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1294 					struct msix_offset_rsp *rsp)
1295 {
1296 	struct rvu_hwinfo *hw = rvu->hw;
1297 	u16 pcifunc = req->hdr.pcifunc;
1298 	struct rvu_pfvf *pfvf;
1299 	int lf, slot;
1300 
1301 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1302 	if (!pfvf->msix.bmap)
1303 		return 0;
1304 
1305 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1306 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1307 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1308 
1309 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NIX0], pcifunc, 0);
1310 	rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NIX0, lf);
1311 
1312 	rsp->sso = pfvf->sso;
1313 	for (slot = 0; slot < rsp->sso; slot++) {
1314 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1315 		rsp->sso_msixoff[slot] =
1316 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1317 	}
1318 
1319 	rsp->ssow = pfvf->ssow;
1320 	for (slot = 0; slot < rsp->ssow; slot++) {
1321 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1322 		rsp->ssow_msixoff[slot] =
1323 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1324 	}
1325 
1326 	rsp->timlfs = pfvf->timlfs;
1327 	for (slot = 0; slot < rsp->timlfs; slot++) {
1328 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1329 		rsp->timlf_msixoff[slot] =
1330 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1331 	}
1332 
1333 	rsp->cptlfs = pfvf->cptlfs;
1334 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1335 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1336 		rsp->cptlf_msixoff[slot] =
1337 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1338 	}
1339 	return 0;
1340 }
1341 
1342 static int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1343 				   struct msg_rsp *rsp)
1344 {
1345 	u16 pcifunc = req->hdr.pcifunc;
1346 	u16 vf, numvfs;
1347 	u64 cfg;
1348 
1349 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1350 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1351 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1352 	numvfs = (cfg >> 12) & 0xFF;
1353 
1354 	if (vf && vf <= numvfs)
1355 		__rvu_flr_handler(rvu, pcifunc);
1356 	else
1357 		return RVU_INVALID_VF_ID;
1358 
1359 	return 0;
1360 }
1361 
1362 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1363 				struct mbox_msghdr *req)
1364 {
1365 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1366 
1367 	/* Check if valid, if not reply with a invalid msg */
1368 	if (req->sig != OTX2_MBOX_REQ_SIG)
1369 		goto bad_message;
1370 
1371 	switch (req->id) {
1372 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1373 	case _id: {							\
1374 		struct _rsp_type *rsp;					\
1375 		int err;						\
1376 									\
1377 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1378 			mbox, devid,					\
1379 			sizeof(struct _rsp_type));			\
1380 		/* some handlers should complete even if reply */	\
1381 		/* could not be allocated */				\
1382 		if (!rsp &&						\
1383 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1384 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
1385 		    _id != MBOX_MSG_VF_FLR)				\
1386 			return -ENOMEM;					\
1387 		if (rsp) {						\
1388 			rsp->hdr.id = _id;				\
1389 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
1390 			rsp->hdr.pcifunc = req->pcifunc;		\
1391 			rsp->hdr.rc = 0;				\
1392 		}							\
1393 									\
1394 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
1395 						    (struct _req_type *)req, \
1396 						    rsp);		\
1397 		if (rsp && err)						\
1398 			rsp->hdr.rc = err;				\
1399 									\
1400 		return rsp ? err : -ENOMEM;				\
1401 	}
1402 MBOX_MESSAGES
1403 #undef M
1404 
1405 bad_message:
1406 	default:
1407 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
1408 		return -ENODEV;
1409 	}
1410 }
1411 
1412 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
1413 {
1414 	struct rvu *rvu = mwork->rvu;
1415 	int offset, err, id, devid;
1416 	struct otx2_mbox_dev *mdev;
1417 	struct mbox_hdr *req_hdr;
1418 	struct mbox_msghdr *msg;
1419 	struct mbox_wq_info *mw;
1420 	struct otx2_mbox *mbox;
1421 
1422 	switch (type) {
1423 	case TYPE_AFPF:
1424 		mw = &rvu->afpf_wq_info;
1425 		break;
1426 	case TYPE_AFVF:
1427 		mw = &rvu->afvf_wq_info;
1428 		break;
1429 	default:
1430 		return;
1431 	}
1432 
1433 	devid = mwork - mw->mbox_wrk;
1434 	mbox = &mw->mbox;
1435 	mdev = &mbox->dev[devid];
1436 
1437 	/* Process received mbox messages */
1438 	req_hdr = mdev->mbase + mbox->rx_start;
1439 	if (req_hdr->num_msgs == 0)
1440 		return;
1441 
1442 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
1443 
1444 	for (id = 0; id < req_hdr->num_msgs; id++) {
1445 		msg = mdev->mbase + offset;
1446 
1447 		/* Set which PF/VF sent this message based on mbox IRQ */
1448 		switch (type) {
1449 		case TYPE_AFPF:
1450 			msg->pcifunc &=
1451 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
1452 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
1453 			break;
1454 		case TYPE_AFVF:
1455 			msg->pcifunc &=
1456 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
1457 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
1458 			break;
1459 		}
1460 
1461 		err = rvu_process_mbox_msg(mbox, devid, msg);
1462 		if (!err) {
1463 			offset = mbox->rx_start + msg->next_msgoff;
1464 			continue;
1465 		}
1466 
1467 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
1468 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
1469 				 err, otx2_mbox_id2name(msg->id),
1470 				 msg->id, devid,
1471 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
1472 		else
1473 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
1474 				 err, otx2_mbox_id2name(msg->id),
1475 				 msg->id, devid);
1476 	}
1477 
1478 	/* Send mbox responses to VF/PF */
1479 	otx2_mbox_msg_send(mbox, devid);
1480 }
1481 
1482 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
1483 {
1484 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1485 
1486 	__rvu_mbox_handler(mwork, TYPE_AFPF);
1487 }
1488 
1489 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
1490 {
1491 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1492 
1493 	__rvu_mbox_handler(mwork, TYPE_AFVF);
1494 }
1495 
1496 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
1497 {
1498 	struct rvu *rvu = mwork->rvu;
1499 	struct otx2_mbox_dev *mdev;
1500 	struct mbox_hdr *rsp_hdr;
1501 	struct mbox_msghdr *msg;
1502 	struct mbox_wq_info *mw;
1503 	struct otx2_mbox *mbox;
1504 	int offset, id, devid;
1505 
1506 	switch (type) {
1507 	case TYPE_AFPF:
1508 		mw = &rvu->afpf_wq_info;
1509 		break;
1510 	case TYPE_AFVF:
1511 		mw = &rvu->afvf_wq_info;
1512 		break;
1513 	default:
1514 		return;
1515 	}
1516 
1517 	devid = mwork - mw->mbox_wrk_up;
1518 	mbox = &mw->mbox_up;
1519 	mdev = &mbox->dev[devid];
1520 
1521 	rsp_hdr = mdev->mbase + mbox->rx_start;
1522 	if (rsp_hdr->num_msgs == 0) {
1523 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
1524 		return;
1525 	}
1526 
1527 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
1528 
1529 	for (id = 0; id < rsp_hdr->num_msgs; id++) {
1530 		msg = mdev->mbase + offset;
1531 
1532 		if (msg->id >= MBOX_MSG_MAX) {
1533 			dev_err(rvu->dev,
1534 				"Mbox msg with unknown ID 0x%x\n", msg->id);
1535 			goto end;
1536 		}
1537 
1538 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
1539 			dev_err(rvu->dev,
1540 				"Mbox msg with wrong signature %x, ID 0x%x\n",
1541 				msg->sig, msg->id);
1542 			goto end;
1543 		}
1544 
1545 		switch (msg->id) {
1546 		case MBOX_MSG_CGX_LINK_EVENT:
1547 			break;
1548 		default:
1549 			if (msg->rc)
1550 				dev_err(rvu->dev,
1551 					"Mbox msg response has err %d, ID 0x%x\n",
1552 					msg->rc, msg->id);
1553 			break;
1554 		}
1555 end:
1556 		offset = mbox->rx_start + msg->next_msgoff;
1557 		mdev->msgs_acked++;
1558 	}
1559 
1560 	otx2_mbox_reset(mbox, devid);
1561 }
1562 
1563 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
1564 {
1565 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1566 
1567 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
1568 }
1569 
1570 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
1571 {
1572 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1573 
1574 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
1575 }
1576 
1577 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
1578 			 int type, int num,
1579 			 void (mbox_handler)(struct work_struct *),
1580 			 void (mbox_up_handler)(struct work_struct *))
1581 {
1582 	void __iomem *hwbase = NULL, *reg_base;
1583 	int err, i, dir, dir_up;
1584 	struct rvu_work *mwork;
1585 	const char *name;
1586 	u64 bar4_addr;
1587 
1588 	switch (type) {
1589 	case TYPE_AFPF:
1590 		name = "rvu_afpf_mailbox";
1591 		bar4_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PF_BAR4_ADDR);
1592 		dir = MBOX_DIR_AFPF;
1593 		dir_up = MBOX_DIR_AFPF_UP;
1594 		reg_base = rvu->afreg_base;
1595 		break;
1596 	case TYPE_AFVF:
1597 		name = "rvu_afvf_mailbox";
1598 		bar4_addr = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
1599 		dir = MBOX_DIR_PFVF;
1600 		dir_up = MBOX_DIR_PFVF_UP;
1601 		reg_base = rvu->pfreg_base;
1602 		break;
1603 	default:
1604 		return -EINVAL;
1605 	}
1606 
1607 	mw->mbox_wq = alloc_workqueue(name,
1608 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
1609 				      num);
1610 	if (!mw->mbox_wq)
1611 		return -ENOMEM;
1612 
1613 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
1614 				    sizeof(struct rvu_work), GFP_KERNEL);
1615 	if (!mw->mbox_wrk) {
1616 		err = -ENOMEM;
1617 		goto exit;
1618 	}
1619 
1620 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
1621 				       sizeof(struct rvu_work), GFP_KERNEL);
1622 	if (!mw->mbox_wrk_up) {
1623 		err = -ENOMEM;
1624 		goto exit;
1625 	}
1626 
1627 	/* Mailbox is a reserved memory (in RAM) region shared between
1628 	 * RVU devices, shouldn't be mapped as device memory to allow
1629 	 * unaligned accesses.
1630 	 */
1631 	hwbase = ioremap_wc(bar4_addr, MBOX_SIZE * num);
1632 	if (!hwbase) {
1633 		dev_err(rvu->dev, "Unable to map mailbox region\n");
1634 		err = -ENOMEM;
1635 		goto exit;
1636 	}
1637 
1638 	err = otx2_mbox_init(&mw->mbox, hwbase, rvu->pdev, reg_base, dir, num);
1639 	if (err)
1640 		goto exit;
1641 
1642 	err = otx2_mbox_init(&mw->mbox_up, hwbase, rvu->pdev,
1643 			     reg_base, dir_up, num);
1644 	if (err)
1645 		goto exit;
1646 
1647 	for (i = 0; i < num; i++) {
1648 		mwork = &mw->mbox_wrk[i];
1649 		mwork->rvu = rvu;
1650 		INIT_WORK(&mwork->work, mbox_handler);
1651 
1652 		mwork = &mw->mbox_wrk_up[i];
1653 		mwork->rvu = rvu;
1654 		INIT_WORK(&mwork->work, mbox_up_handler);
1655 	}
1656 
1657 	return 0;
1658 exit:
1659 	if (hwbase)
1660 		iounmap((void __iomem *)hwbase);
1661 	destroy_workqueue(mw->mbox_wq);
1662 	return err;
1663 }
1664 
1665 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
1666 {
1667 	if (mw->mbox_wq) {
1668 		flush_workqueue(mw->mbox_wq);
1669 		destroy_workqueue(mw->mbox_wq);
1670 		mw->mbox_wq = NULL;
1671 	}
1672 
1673 	if (mw->mbox.hwbase)
1674 		iounmap((void __iomem *)mw->mbox.hwbase);
1675 
1676 	otx2_mbox_destroy(&mw->mbox);
1677 	otx2_mbox_destroy(&mw->mbox_up);
1678 }
1679 
1680 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
1681 			   int mdevs, u64 intr)
1682 {
1683 	struct otx2_mbox_dev *mdev;
1684 	struct otx2_mbox *mbox;
1685 	struct mbox_hdr *hdr;
1686 	int i;
1687 
1688 	for (i = first; i < mdevs; i++) {
1689 		/* start from 0 */
1690 		if (!(intr & BIT_ULL(i - first)))
1691 			continue;
1692 
1693 		mbox = &mw->mbox;
1694 		mdev = &mbox->dev[i];
1695 		hdr = mdev->mbase + mbox->rx_start;
1696 		if (hdr->num_msgs)
1697 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
1698 
1699 		mbox = &mw->mbox_up;
1700 		mdev = &mbox->dev[i];
1701 		hdr = mdev->mbase + mbox->rx_start;
1702 		if (hdr->num_msgs)
1703 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
1704 	}
1705 }
1706 
1707 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
1708 {
1709 	struct rvu *rvu = (struct rvu *)rvu_irq;
1710 	int vfs = rvu->vfs;
1711 	u64 intr;
1712 
1713 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
1714 	/* Clear interrupts */
1715 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
1716 
1717 	/* Sync with mbox memory region */
1718 	rmb();
1719 
1720 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
1721 
1722 	/* Handle VF interrupts */
1723 	if (vfs > 64) {
1724 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
1725 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
1726 
1727 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
1728 		vfs -= 64;
1729 	}
1730 
1731 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
1732 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
1733 
1734 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
1735 
1736 	return IRQ_HANDLED;
1737 }
1738 
1739 static void rvu_enable_mbox_intr(struct rvu *rvu)
1740 {
1741 	struct rvu_hwinfo *hw = rvu->hw;
1742 
1743 	/* Clear spurious irqs, if any */
1744 	rvu_write64(rvu, BLKADDR_RVUM,
1745 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
1746 
1747 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
1748 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
1749 		    INTR_MASK(hw->total_pfs) & ~1ULL);
1750 }
1751 
1752 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
1753 {
1754 	struct rvu_block *block;
1755 	int slot, lf, num_lfs;
1756 	int err;
1757 
1758 	block = &rvu->hw->block[blkaddr];
1759 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
1760 					block->type);
1761 	if (!num_lfs)
1762 		return;
1763 	for (slot = 0; slot < num_lfs; slot++) {
1764 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
1765 		if (lf < 0)
1766 			continue;
1767 
1768 		/* Cleanup LF and reset it */
1769 		if (block->addr == BLKADDR_NIX0)
1770 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
1771 		else if (block->addr == BLKADDR_NPA)
1772 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
1773 
1774 		err = rvu_lf_reset(rvu, block, lf);
1775 		if (err) {
1776 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
1777 				block->addr, lf);
1778 		}
1779 	}
1780 }
1781 
1782 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
1783 {
1784 	mutex_lock(&rvu->flr_lock);
1785 	/* Reset order should reflect inter-block dependencies:
1786 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
1787 	 * 2. Flush and reset SSO/SSOW
1788 	 * 3. Cleanup pools (NPA)
1789 	 */
1790 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
1791 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
1792 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
1793 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
1794 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
1795 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
1796 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
1797 	mutex_unlock(&rvu->flr_lock);
1798 }
1799 
1800 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
1801 {
1802 	int reg = 0;
1803 
1804 	/* pcifunc = 0(PF0) | (vf + 1) */
1805 	__rvu_flr_handler(rvu, vf + 1);
1806 
1807 	if (vf >= 64) {
1808 		reg = 1;
1809 		vf = vf - 64;
1810 	}
1811 
1812 	/* Signal FLR finish and enable IRQ */
1813 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
1814 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
1815 }
1816 
1817 static void rvu_flr_handler(struct work_struct *work)
1818 {
1819 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
1820 	struct rvu *rvu = flrwork->rvu;
1821 	u16 pcifunc, numvfs, vf;
1822 	u64 cfg;
1823 	int pf;
1824 
1825 	pf = flrwork - rvu->flr_wrk;
1826 	if (pf >= rvu->hw->total_pfs) {
1827 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
1828 		return;
1829 	}
1830 
1831 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
1832 	numvfs = (cfg >> 12) & 0xFF;
1833 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
1834 
1835 	for (vf = 0; vf < numvfs; vf++)
1836 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
1837 
1838 	__rvu_flr_handler(rvu, pcifunc);
1839 
1840 	/* Signal FLR finish */
1841 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
1842 
1843 	/* Enable interrupt */
1844 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
1845 }
1846 
1847 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
1848 {
1849 	int dev, vf, reg = 0;
1850 	u64 intr;
1851 
1852 	if (start_vf >= 64)
1853 		reg = 1;
1854 
1855 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
1856 	if (!intr)
1857 		return;
1858 
1859 	for (vf = 0; vf < numvfs; vf++) {
1860 		if (!(intr & BIT_ULL(vf)))
1861 			continue;
1862 		dev = vf + start_vf + rvu->hw->total_pfs;
1863 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
1864 		/* Clear and disable the interrupt */
1865 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
1866 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
1867 	}
1868 }
1869 
1870 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
1871 {
1872 	struct rvu *rvu = (struct rvu *)rvu_irq;
1873 	u64 intr;
1874 	u8  pf;
1875 
1876 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
1877 	if (!intr)
1878 		goto afvf_flr;
1879 
1880 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
1881 		if (intr & (1ULL << pf)) {
1882 			/* PF is already dead do only AF related operations */
1883 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
1884 			/* clear interrupt */
1885 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
1886 				    BIT_ULL(pf));
1887 			/* Disable the interrupt */
1888 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
1889 				    BIT_ULL(pf));
1890 		}
1891 	}
1892 
1893 afvf_flr:
1894 	rvu_afvf_queue_flr_work(rvu, 0, 64);
1895 	if (rvu->vfs > 64)
1896 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
1897 
1898 	return IRQ_HANDLED;
1899 }
1900 
1901 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
1902 {
1903 	int vf;
1904 
1905 	/* Nothing to be done here other than clearing the
1906 	 * TRPEND bit.
1907 	 */
1908 	for (vf = 0; vf < 64; vf++) {
1909 		if (intr & (1ULL << vf)) {
1910 			/* clear the trpend due to ME(master enable) */
1911 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
1912 			/* clear interrupt */
1913 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
1914 		}
1915 	}
1916 }
1917 
1918 /* Handles ME interrupts from VFs of AF */
1919 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
1920 {
1921 	struct rvu *rvu = (struct rvu *)rvu_irq;
1922 	int vfset;
1923 	u64 intr;
1924 
1925 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
1926 
1927 	for (vfset = 0; vfset <= 1; vfset++) {
1928 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
1929 		if (intr)
1930 			rvu_me_handle_vfset(rvu, vfset, intr);
1931 	}
1932 
1933 	return IRQ_HANDLED;
1934 }
1935 
1936 /* Handles ME interrupts from PFs */
1937 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
1938 {
1939 	struct rvu *rvu = (struct rvu *)rvu_irq;
1940 	u64 intr;
1941 	u8  pf;
1942 
1943 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
1944 
1945 	/* Nothing to be done here other than clearing the
1946 	 * TRPEND bit.
1947 	 */
1948 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
1949 		if (intr & (1ULL << pf)) {
1950 			/* clear the trpend due to ME(master enable) */
1951 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
1952 				    BIT_ULL(pf));
1953 			/* clear interrupt */
1954 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
1955 				    BIT_ULL(pf));
1956 		}
1957 	}
1958 
1959 	return IRQ_HANDLED;
1960 }
1961 
1962 static void rvu_unregister_interrupts(struct rvu *rvu)
1963 {
1964 	int irq;
1965 
1966 	/* Disable the Mbox interrupt */
1967 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
1968 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
1969 
1970 	/* Disable the PF FLR interrupt */
1971 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
1972 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
1973 
1974 	/* Disable the PF ME interrupt */
1975 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
1976 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
1977 
1978 	for (irq = 0; irq < rvu->num_vec; irq++) {
1979 		if (rvu->irq_allocated[irq])
1980 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
1981 	}
1982 
1983 	pci_free_irq_vectors(rvu->pdev);
1984 	rvu->num_vec = 0;
1985 }
1986 
1987 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
1988 {
1989 	struct rvu_pfvf *pfvf = &rvu->pf[0];
1990 	int offset;
1991 
1992 	pfvf = &rvu->pf[0];
1993 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
1994 
1995 	/* Make sure there are enough MSIX vectors configured so that
1996 	 * VF interrupts can be handled. Offset equal to zero means
1997 	 * that PF vectors are not configured and overlapping AF vectors.
1998 	 */
1999 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2000 	       offset;
2001 }
2002 
2003 static int rvu_register_interrupts(struct rvu *rvu)
2004 {
2005 	int ret, offset, pf_vec_start;
2006 
2007 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2008 
2009 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2010 					   NAME_SIZE, GFP_KERNEL);
2011 	if (!rvu->irq_name)
2012 		return -ENOMEM;
2013 
2014 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2015 					  sizeof(bool), GFP_KERNEL);
2016 	if (!rvu->irq_allocated)
2017 		return -ENOMEM;
2018 
2019 	/* Enable MSI-X */
2020 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2021 				    rvu->num_vec, PCI_IRQ_MSIX);
2022 	if (ret < 0) {
2023 		dev_err(rvu->dev,
2024 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2025 			rvu->num_vec, ret);
2026 		return ret;
2027 	}
2028 
2029 	/* Register mailbox interrupt handler */
2030 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2031 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2032 			  rvu_mbox_intr_handler, 0,
2033 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2034 	if (ret) {
2035 		dev_err(rvu->dev,
2036 			"RVUAF: IRQ registration failed for mbox irq\n");
2037 		goto fail;
2038 	}
2039 
2040 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2041 
2042 	/* Enable mailbox interrupts from all PFs */
2043 	rvu_enable_mbox_intr(rvu);
2044 
2045 	/* Register FLR interrupt handler */
2046 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2047 		"RVUAF FLR");
2048 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2049 			  rvu_flr_intr_handler, 0,
2050 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2051 			  rvu);
2052 	if (ret) {
2053 		dev_err(rvu->dev,
2054 			"RVUAF: IRQ registration failed for FLR\n");
2055 		goto fail;
2056 	}
2057 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2058 
2059 	/* Enable FLR interrupt for all PFs*/
2060 	rvu_write64(rvu, BLKADDR_RVUM,
2061 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2062 
2063 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2064 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2065 
2066 	/* Register ME interrupt handler */
2067 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2068 		"RVUAF ME");
2069 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2070 			  rvu_me_pf_intr_handler, 0,
2071 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2072 			  rvu);
2073 	if (ret) {
2074 		dev_err(rvu->dev,
2075 			"RVUAF: IRQ registration failed for ME\n");
2076 	}
2077 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2078 
2079 	/* Enable ME interrupt for all PFs*/
2080 	rvu_write64(rvu, BLKADDR_RVUM,
2081 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2082 
2083 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2084 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2085 
2086 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2087 		return 0;
2088 
2089 	/* Get PF MSIX vectors offset. */
2090 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2091 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2092 
2093 	/* Register MBOX0 interrupt. */
2094 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2095 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2096 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2097 			  rvu_mbox_intr_handler, 0,
2098 			  &rvu->irq_name[offset * NAME_SIZE],
2099 			  rvu);
2100 	if (ret)
2101 		dev_err(rvu->dev,
2102 			"RVUAF: IRQ registration failed for Mbox0\n");
2103 
2104 	rvu->irq_allocated[offset] = true;
2105 
2106 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2107 	 * simply increment current offset by 1.
2108 	 */
2109 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2110 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2111 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2112 			  rvu_mbox_intr_handler, 0,
2113 			  &rvu->irq_name[offset * NAME_SIZE],
2114 			  rvu);
2115 	if (ret)
2116 		dev_err(rvu->dev,
2117 			"RVUAF: IRQ registration failed for Mbox1\n");
2118 
2119 	rvu->irq_allocated[offset] = true;
2120 
2121 	/* Register FLR interrupt handler for AF's VFs */
2122 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2123 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2124 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2125 			  rvu_flr_intr_handler, 0,
2126 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2127 	if (ret) {
2128 		dev_err(rvu->dev,
2129 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2130 		goto fail;
2131 	}
2132 	rvu->irq_allocated[offset] = true;
2133 
2134 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2135 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2136 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2137 			  rvu_flr_intr_handler, 0,
2138 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2139 	if (ret) {
2140 		dev_err(rvu->dev,
2141 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2142 		goto fail;
2143 	}
2144 	rvu->irq_allocated[offset] = true;
2145 
2146 	/* Register ME interrupt handler for AF's VFs */
2147 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2148 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2149 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2150 			  rvu_me_vf_intr_handler, 0,
2151 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2152 	if (ret) {
2153 		dev_err(rvu->dev,
2154 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2155 		goto fail;
2156 	}
2157 	rvu->irq_allocated[offset] = true;
2158 
2159 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2160 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2161 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2162 			  rvu_me_vf_intr_handler, 0,
2163 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2164 	if (ret) {
2165 		dev_err(rvu->dev,
2166 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2167 		goto fail;
2168 	}
2169 	rvu->irq_allocated[offset] = true;
2170 	return 0;
2171 
2172 fail:
2173 	rvu_unregister_interrupts(rvu);
2174 	return ret;
2175 }
2176 
2177 static void rvu_flr_wq_destroy(struct rvu *rvu)
2178 {
2179 	if (rvu->flr_wq) {
2180 		flush_workqueue(rvu->flr_wq);
2181 		destroy_workqueue(rvu->flr_wq);
2182 		rvu->flr_wq = NULL;
2183 	}
2184 }
2185 
2186 static int rvu_flr_init(struct rvu *rvu)
2187 {
2188 	int dev, num_devs;
2189 	u64 cfg;
2190 	int pf;
2191 
2192 	/* Enable FLR for all PFs*/
2193 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2194 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2195 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2196 			    cfg | BIT_ULL(22));
2197 	}
2198 
2199 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2200 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2201 				       1);
2202 	if (!rvu->flr_wq)
2203 		return -ENOMEM;
2204 
2205 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2206 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2207 				    sizeof(struct rvu_work), GFP_KERNEL);
2208 	if (!rvu->flr_wrk) {
2209 		destroy_workqueue(rvu->flr_wq);
2210 		return -ENOMEM;
2211 	}
2212 
2213 	for (dev = 0; dev < num_devs; dev++) {
2214 		rvu->flr_wrk[dev].rvu = rvu;
2215 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2216 	}
2217 
2218 	mutex_init(&rvu->flr_lock);
2219 
2220 	return 0;
2221 }
2222 
2223 static void rvu_disable_afvf_intr(struct rvu *rvu)
2224 {
2225 	int vfs = rvu->vfs;
2226 
2227 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2228 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2229 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2230 	if (vfs <= 64)
2231 		return;
2232 
2233 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2234 		      INTR_MASK(vfs - 64));
2235 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2236 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2237 }
2238 
2239 static void rvu_enable_afvf_intr(struct rvu *rvu)
2240 {
2241 	int vfs = rvu->vfs;
2242 
2243 	/* Clear any pending interrupts and enable AF VF interrupts for
2244 	 * the first 64 VFs.
2245 	 */
2246 	/* Mbox */
2247 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2248 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2249 
2250 	/* FLR */
2251 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2252 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2253 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2254 
2255 	/* Same for remaining VFs, if any. */
2256 	if (vfs <= 64)
2257 		return;
2258 
2259 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2260 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2261 		      INTR_MASK(vfs - 64));
2262 
2263 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2264 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2265 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2266 }
2267 
2268 #define PCI_DEVID_OCTEONTX2_LBK 0xA061
2269 
2270 static int lbk_get_num_chans(void)
2271 {
2272 	struct pci_dev *pdev;
2273 	void __iomem *base;
2274 	int ret = -EIO;
2275 
2276 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2277 			      NULL);
2278 	if (!pdev)
2279 		goto err;
2280 
2281 	base = pci_ioremap_bar(pdev, 0);
2282 	if (!base)
2283 		goto err_put;
2284 
2285 	/* Read number of available LBK channels from LBK(0)_CONST register. */
2286 	ret = (readq(base + 0x10) >> 32) & 0xffff;
2287 	iounmap(base);
2288 err_put:
2289 	pci_dev_put(pdev);
2290 err:
2291 	return ret;
2292 }
2293 
2294 static int rvu_enable_sriov(struct rvu *rvu)
2295 {
2296 	struct pci_dev *pdev = rvu->pdev;
2297 	int err, chans, vfs;
2298 
2299 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2300 		dev_warn(&pdev->dev,
2301 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
2302 		return 0;
2303 	}
2304 
2305 	chans = lbk_get_num_chans();
2306 	if (chans < 0)
2307 		return chans;
2308 
2309 	vfs = pci_sriov_get_totalvfs(pdev);
2310 
2311 	/* Limit VFs in case we have more VFs than LBK channels available. */
2312 	if (vfs > chans)
2313 		vfs = chans;
2314 
2315 	/* AF's VFs work in pairs and talk over consecutive loopback channels.
2316 	 * Thus we want to enable maximum even number of VFs. In case
2317 	 * odd number of VFs are available then the last VF on the list
2318 	 * remains disabled.
2319 	 */
2320 	if (vfs & 0x1) {
2321 		dev_warn(&pdev->dev,
2322 			 "Number of VFs should be even. Enabling %d out of %d.\n",
2323 			 vfs - 1, vfs);
2324 		vfs--;
2325 	}
2326 
2327 	if (!vfs)
2328 		return 0;
2329 
2330 	/* Save VFs number for reference in VF interrupts handlers.
2331 	 * Since interrupts might start arriving during SRIOV enablement
2332 	 * ordinary API cannot be used to get number of enabled VFs.
2333 	 */
2334 	rvu->vfs = vfs;
2335 
2336 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
2337 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
2338 	if (err)
2339 		return err;
2340 
2341 	rvu_enable_afvf_intr(rvu);
2342 	/* Make sure IRQs are enabled before SRIOV. */
2343 	mb();
2344 
2345 	err = pci_enable_sriov(pdev, vfs);
2346 	if (err) {
2347 		rvu_disable_afvf_intr(rvu);
2348 		rvu_mbox_destroy(&rvu->afvf_wq_info);
2349 		return err;
2350 	}
2351 
2352 	return 0;
2353 }
2354 
2355 static void rvu_disable_sriov(struct rvu *rvu)
2356 {
2357 	rvu_disable_afvf_intr(rvu);
2358 	rvu_mbox_destroy(&rvu->afvf_wq_info);
2359 	pci_disable_sriov(rvu->pdev);
2360 }
2361 
2362 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2363 {
2364 	struct device *dev = &pdev->dev;
2365 	struct rvu *rvu;
2366 	int    err;
2367 
2368 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
2369 	if (!rvu)
2370 		return -ENOMEM;
2371 
2372 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
2373 	if (!rvu->hw) {
2374 		devm_kfree(dev, rvu);
2375 		return -ENOMEM;
2376 	}
2377 
2378 	pci_set_drvdata(pdev, rvu);
2379 	rvu->pdev = pdev;
2380 	rvu->dev = &pdev->dev;
2381 
2382 	err = pci_enable_device(pdev);
2383 	if (err) {
2384 		dev_err(dev, "Failed to enable PCI device\n");
2385 		goto err_freemem;
2386 	}
2387 
2388 	err = pci_request_regions(pdev, DRV_NAME);
2389 	if (err) {
2390 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2391 		goto err_disable_device;
2392 	}
2393 
2394 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
2395 	if (err) {
2396 		dev_err(dev, "Unable to set DMA mask\n");
2397 		goto err_release_regions;
2398 	}
2399 
2400 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
2401 	if (err) {
2402 		dev_err(dev, "Unable to set consistent DMA mask\n");
2403 		goto err_release_regions;
2404 	}
2405 
2406 	/* Map Admin function CSRs */
2407 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
2408 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
2409 	if (!rvu->afreg_base || !rvu->pfreg_base) {
2410 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
2411 		err = -ENOMEM;
2412 		goto err_release_regions;
2413 	}
2414 
2415 	/* Check which blocks the HW supports */
2416 	rvu_check_block_implemented(rvu);
2417 
2418 	rvu_reset_all_blocks(rvu);
2419 
2420 	err = rvu_setup_hw_resources(rvu);
2421 	if (err)
2422 		goto err_release_regions;
2423 
2424 	/* Init mailbox btw AF and PFs */
2425 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
2426 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
2427 			    rvu_afpf_mbox_up_handler);
2428 	if (err)
2429 		goto err_hwsetup;
2430 
2431 	err = rvu_flr_init(rvu);
2432 	if (err)
2433 		goto err_mbox;
2434 
2435 	err = rvu_register_interrupts(rvu);
2436 	if (err)
2437 		goto err_flr;
2438 
2439 	/* Enable AF's VFs (if any) */
2440 	err = rvu_enable_sriov(rvu);
2441 	if (err)
2442 		goto err_irq;
2443 
2444 	return 0;
2445 err_irq:
2446 	rvu_unregister_interrupts(rvu);
2447 err_flr:
2448 	rvu_flr_wq_destroy(rvu);
2449 err_mbox:
2450 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2451 err_hwsetup:
2452 	rvu_cgx_exit(rvu);
2453 	rvu_reset_all_blocks(rvu);
2454 	rvu_free_hw_resources(rvu);
2455 err_release_regions:
2456 	pci_release_regions(pdev);
2457 err_disable_device:
2458 	pci_disable_device(pdev);
2459 err_freemem:
2460 	pci_set_drvdata(pdev, NULL);
2461 	devm_kfree(&pdev->dev, rvu->hw);
2462 	devm_kfree(dev, rvu);
2463 	return err;
2464 }
2465 
2466 static void rvu_remove(struct pci_dev *pdev)
2467 {
2468 	struct rvu *rvu = pci_get_drvdata(pdev);
2469 
2470 	rvu_unregister_interrupts(rvu);
2471 	rvu_flr_wq_destroy(rvu);
2472 	rvu_cgx_exit(rvu);
2473 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2474 	rvu_disable_sriov(rvu);
2475 	rvu_reset_all_blocks(rvu);
2476 	rvu_free_hw_resources(rvu);
2477 
2478 	pci_release_regions(pdev);
2479 	pci_disable_device(pdev);
2480 	pci_set_drvdata(pdev, NULL);
2481 
2482 	devm_kfree(&pdev->dev, rvu->hw);
2483 	devm_kfree(&pdev->dev, rvu);
2484 }
2485 
2486 static struct pci_driver rvu_driver = {
2487 	.name = DRV_NAME,
2488 	.id_table = rvu_id_table,
2489 	.probe = rvu_probe,
2490 	.remove = rvu_remove,
2491 };
2492 
2493 static int __init rvu_init_module(void)
2494 {
2495 	int err;
2496 
2497 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
2498 
2499 	err = pci_register_driver(&cgx_driver);
2500 	if (err < 0)
2501 		return err;
2502 
2503 	err =  pci_register_driver(&rvu_driver);
2504 	if (err < 0)
2505 		pci_unregister_driver(&cgx_driver);
2506 
2507 	return err;
2508 }
2509 
2510 static void __exit rvu_cleanup_module(void)
2511 {
2512 	pci_unregister_driver(&rvu_driver);
2513 	pci_unregister_driver(&cgx_driver);
2514 }
2515 
2516 module_init(rvu_init_module);
2517 module_exit(rvu_cleanup_module);
2518