1 // SPDX-License-Identifier: GPL-2.0 2 /* Marvell RVU Admin Function driver 3 * 4 * Copyright (C) 2018 Marvell. 5 * 6 */ 7 8 #include <linux/module.h> 9 #include <linux/interrupt.h> 10 #include <linux/delay.h> 11 #include <linux/irq.h> 12 #include <linux/pci.h> 13 #include <linux/sysfs.h> 14 15 #include "cgx.h" 16 #include "rvu.h" 17 #include "rvu_reg.h" 18 #include "ptp.h" 19 20 #include "rvu_trace.h" 21 22 #define DRV_NAME "rvu_af" 23 #define DRV_STRING "Marvell OcteonTX2 RVU Admin Function Driver" 24 25 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc); 26 27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf, 28 struct rvu_block *block, int lf); 29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf, 30 struct rvu_block *block, int lf); 31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc); 32 33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw, 34 int type, int num, 35 void (mbox_handler)(struct work_struct *), 36 void (mbox_up_handler)(struct work_struct *)); 37 enum { 38 TYPE_AFVF, 39 TYPE_AFPF, 40 }; 41 42 /* Supported devices */ 43 static const struct pci_device_id rvu_id_table[] = { 44 { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) }, 45 { 0, } /* end of table */ 46 }; 47 48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>"); 49 MODULE_DESCRIPTION(DRV_STRING); 50 MODULE_LICENSE("GPL v2"); 51 MODULE_DEVICE_TABLE(pci, rvu_id_table); 52 53 static char *mkex_profile; /* MKEX profile name */ 54 module_param(mkex_profile, charp, 0000); 55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string"); 56 57 static char *kpu_profile; /* KPU profile name */ 58 module_param(kpu_profile, charp, 0000); 59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string"); 60 61 static void rvu_setup_hw_capabilities(struct rvu *rvu) 62 { 63 struct rvu_hwinfo *hw = rvu->hw; 64 65 hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1; 66 hw->cap.nix_fixed_txschq_mapping = false; 67 hw->cap.nix_shaping = true; 68 hw->cap.nix_tx_link_bp = true; 69 hw->cap.nix_rx_multicast = true; 70 hw->cap.nix_shaper_toggle_wait = false; 71 hw->rvu = rvu; 72 73 if (is_rvu_pre_96xx_C0(rvu)) { 74 hw->cap.nix_fixed_txschq_mapping = true; 75 hw->cap.nix_txsch_per_cgx_lmac = 4; 76 hw->cap.nix_txsch_per_lbk_lmac = 132; 77 hw->cap.nix_txsch_per_sdp_lmac = 76; 78 hw->cap.nix_shaping = false; 79 hw->cap.nix_tx_link_bp = false; 80 if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu)) 81 hw->cap.nix_rx_multicast = false; 82 } 83 if (!is_rvu_pre_96xx_C0(rvu)) 84 hw->cap.nix_shaper_toggle_wait = true; 85 86 if (!is_rvu_otx2(rvu)) 87 hw->cap.per_pf_mbox_regs = true; 88 } 89 90 /* Poll a RVU block's register 'offset', for a 'zero' 91 * or 'nonzero' at bits specified by 'mask' 92 */ 93 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero) 94 { 95 unsigned long timeout = jiffies + usecs_to_jiffies(20000); 96 bool twice = false; 97 void __iomem *reg; 98 u64 reg_val; 99 100 reg = rvu->afreg_base + ((block << 28) | offset); 101 again: 102 reg_val = readq(reg); 103 if (zero && !(reg_val & mask)) 104 return 0; 105 if (!zero && (reg_val & mask)) 106 return 0; 107 if (time_before(jiffies, timeout)) { 108 usleep_range(1, 5); 109 goto again; 110 } 111 /* In scenarios where CPU is scheduled out before checking 112 * 'time_before' (above) and gets scheduled in such that 113 * jiffies are beyond timeout value, then check again if HW is 114 * done with the operation in the meantime. 115 */ 116 if (!twice) { 117 twice = true; 118 goto again; 119 } 120 return -EBUSY; 121 } 122 123 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc) 124 { 125 int id; 126 127 if (!rsrc->bmap) 128 return -EINVAL; 129 130 id = find_first_zero_bit(rsrc->bmap, rsrc->max); 131 if (id >= rsrc->max) 132 return -ENOSPC; 133 134 __set_bit(id, rsrc->bmap); 135 136 return id; 137 } 138 139 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc) 140 { 141 int start; 142 143 if (!rsrc->bmap) 144 return -EINVAL; 145 146 start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0); 147 if (start >= rsrc->max) 148 return -ENOSPC; 149 150 bitmap_set(rsrc->bmap, start, nrsrc); 151 return start; 152 } 153 154 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start) 155 { 156 if (!rsrc->bmap) 157 return; 158 if (start >= rsrc->max) 159 return; 160 161 bitmap_clear(rsrc->bmap, start, nrsrc); 162 } 163 164 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc) 165 { 166 int start; 167 168 if (!rsrc->bmap) 169 return false; 170 171 start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0); 172 if (start >= rsrc->max) 173 return false; 174 175 return true; 176 } 177 178 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id) 179 { 180 if (!rsrc->bmap) 181 return; 182 183 __clear_bit(id, rsrc->bmap); 184 } 185 186 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc) 187 { 188 int used; 189 190 if (!rsrc->bmap) 191 return 0; 192 193 used = bitmap_weight(rsrc->bmap, rsrc->max); 194 return (rsrc->max - used); 195 } 196 197 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id) 198 { 199 if (!rsrc->bmap) 200 return false; 201 202 return !test_bit(id, rsrc->bmap); 203 } 204 205 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc) 206 { 207 rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max), 208 sizeof(long), GFP_KERNEL); 209 if (!rsrc->bmap) 210 return -ENOMEM; 211 return 0; 212 } 213 214 void rvu_free_bitmap(struct rsrc_bmap *rsrc) 215 { 216 kfree(rsrc->bmap); 217 } 218 219 /* Get block LF's HW index from a PF_FUNC's block slot number */ 220 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot) 221 { 222 u16 match = 0; 223 int lf; 224 225 mutex_lock(&rvu->rsrc_lock); 226 for (lf = 0; lf < block->lf.max; lf++) { 227 if (block->fn_map[lf] == pcifunc) { 228 if (slot == match) { 229 mutex_unlock(&rvu->rsrc_lock); 230 return lf; 231 } 232 match++; 233 } 234 } 235 mutex_unlock(&rvu->rsrc_lock); 236 return -ENODEV; 237 } 238 239 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E. 240 * Some silicon variants of OcteonTX2 supports 241 * multiple blocks of same type. 242 * 243 * @pcifunc has to be zero when no LF is yet attached. 244 * 245 * For a pcifunc if LFs are attached from multiple blocks of same type, then 246 * return blkaddr of first encountered block. 247 */ 248 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc) 249 { 250 int devnum, blkaddr = -ENODEV; 251 u64 cfg, reg; 252 bool is_pf; 253 254 switch (blktype) { 255 case BLKTYPE_NPC: 256 blkaddr = BLKADDR_NPC; 257 goto exit; 258 case BLKTYPE_NPA: 259 blkaddr = BLKADDR_NPA; 260 goto exit; 261 case BLKTYPE_NIX: 262 /* For now assume NIX0 */ 263 if (!pcifunc) { 264 blkaddr = BLKADDR_NIX0; 265 goto exit; 266 } 267 break; 268 case BLKTYPE_SSO: 269 blkaddr = BLKADDR_SSO; 270 goto exit; 271 case BLKTYPE_SSOW: 272 blkaddr = BLKADDR_SSOW; 273 goto exit; 274 case BLKTYPE_TIM: 275 blkaddr = BLKADDR_TIM; 276 goto exit; 277 case BLKTYPE_CPT: 278 /* For now assume CPT0 */ 279 if (!pcifunc) { 280 blkaddr = BLKADDR_CPT0; 281 goto exit; 282 } 283 break; 284 } 285 286 /* Check if this is a RVU PF or VF */ 287 if (pcifunc & RVU_PFVF_FUNC_MASK) { 288 is_pf = false; 289 devnum = rvu_get_hwvf(rvu, pcifunc); 290 } else { 291 is_pf = true; 292 devnum = rvu_get_pf(pcifunc); 293 } 294 295 /* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or 296 * 'BLKADDR_NIX1'. 297 */ 298 if (blktype == BLKTYPE_NIX) { 299 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) : 300 RVU_PRIV_HWVFX_NIXX_CFG(0); 301 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16)); 302 if (cfg) { 303 blkaddr = BLKADDR_NIX0; 304 goto exit; 305 } 306 307 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) : 308 RVU_PRIV_HWVFX_NIXX_CFG(1); 309 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16)); 310 if (cfg) 311 blkaddr = BLKADDR_NIX1; 312 } 313 314 if (blktype == BLKTYPE_CPT) { 315 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) : 316 RVU_PRIV_HWVFX_CPTX_CFG(0); 317 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16)); 318 if (cfg) { 319 blkaddr = BLKADDR_CPT0; 320 goto exit; 321 } 322 323 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) : 324 RVU_PRIV_HWVFX_CPTX_CFG(1); 325 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16)); 326 if (cfg) 327 blkaddr = BLKADDR_CPT1; 328 } 329 330 exit: 331 if (is_block_implemented(rvu->hw, blkaddr)) 332 return blkaddr; 333 return -ENODEV; 334 } 335 336 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf, 337 struct rvu_block *block, u16 pcifunc, 338 u16 lf, bool attach) 339 { 340 int devnum, num_lfs = 0; 341 bool is_pf; 342 u64 reg; 343 344 if (lf >= block->lf.max) { 345 dev_err(&rvu->pdev->dev, 346 "%s: FATAL: LF %d is >= %s's max lfs i.e %d\n", 347 __func__, lf, block->name, block->lf.max); 348 return; 349 } 350 351 /* Check if this is for a RVU PF or VF */ 352 if (pcifunc & RVU_PFVF_FUNC_MASK) { 353 is_pf = false; 354 devnum = rvu_get_hwvf(rvu, pcifunc); 355 } else { 356 is_pf = true; 357 devnum = rvu_get_pf(pcifunc); 358 } 359 360 block->fn_map[lf] = attach ? pcifunc : 0; 361 362 switch (block->addr) { 363 case BLKADDR_NPA: 364 pfvf->npalf = attach ? true : false; 365 num_lfs = pfvf->npalf; 366 break; 367 case BLKADDR_NIX0: 368 case BLKADDR_NIX1: 369 pfvf->nixlf = attach ? true : false; 370 num_lfs = pfvf->nixlf; 371 break; 372 case BLKADDR_SSO: 373 attach ? pfvf->sso++ : pfvf->sso--; 374 num_lfs = pfvf->sso; 375 break; 376 case BLKADDR_SSOW: 377 attach ? pfvf->ssow++ : pfvf->ssow--; 378 num_lfs = pfvf->ssow; 379 break; 380 case BLKADDR_TIM: 381 attach ? pfvf->timlfs++ : pfvf->timlfs--; 382 num_lfs = pfvf->timlfs; 383 break; 384 case BLKADDR_CPT0: 385 attach ? pfvf->cptlfs++ : pfvf->cptlfs--; 386 num_lfs = pfvf->cptlfs; 387 break; 388 case BLKADDR_CPT1: 389 attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--; 390 num_lfs = pfvf->cpt1_lfs; 391 break; 392 } 393 394 reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg; 395 rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs); 396 } 397 398 inline int rvu_get_pf(u16 pcifunc) 399 { 400 return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK; 401 } 402 403 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf) 404 { 405 u64 cfg; 406 407 /* Get numVFs attached to this PF and first HWVF */ 408 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf)); 409 if (numvfs) 410 *numvfs = (cfg >> 12) & 0xFF; 411 if (hwvf) 412 *hwvf = cfg & 0xFFF; 413 } 414 415 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc) 416 { 417 int pf, func; 418 u64 cfg; 419 420 pf = rvu_get_pf(pcifunc); 421 func = pcifunc & RVU_PFVF_FUNC_MASK; 422 423 /* Get first HWVF attached to this PF */ 424 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf)); 425 426 return ((cfg & 0xFFF) + func - 1); 427 } 428 429 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc) 430 { 431 /* Check if it is a PF or VF */ 432 if (pcifunc & RVU_PFVF_FUNC_MASK) 433 return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)]; 434 else 435 return &rvu->pf[rvu_get_pf(pcifunc)]; 436 } 437 438 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc) 439 { 440 int pf, vf, nvfs; 441 u64 cfg; 442 443 pf = rvu_get_pf(pcifunc); 444 if (pf >= rvu->hw->total_pfs) 445 return false; 446 447 if (!(pcifunc & RVU_PFVF_FUNC_MASK)) 448 return true; 449 450 /* Check if VF is within number of VFs attached to this PF */ 451 vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1; 452 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf)); 453 nvfs = (cfg >> 12) & 0xFF; 454 if (vf >= nvfs) 455 return false; 456 457 return true; 458 } 459 460 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr) 461 { 462 struct rvu_block *block; 463 464 if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT) 465 return false; 466 467 block = &hw->block[blkaddr]; 468 return block->implemented; 469 } 470 471 static void rvu_check_block_implemented(struct rvu *rvu) 472 { 473 struct rvu_hwinfo *hw = rvu->hw; 474 struct rvu_block *block; 475 int blkid; 476 u64 cfg; 477 478 /* For each block check if 'implemented' bit is set */ 479 for (blkid = 0; blkid < BLK_COUNT; blkid++) { 480 block = &hw->block[blkid]; 481 cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid)); 482 if (cfg & BIT_ULL(11)) 483 block->implemented = true; 484 } 485 } 486 487 static void rvu_setup_rvum_blk_revid(struct rvu *rvu) 488 { 489 rvu_write64(rvu, BLKADDR_RVUM, 490 RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 491 RVU_BLK_RVUM_REVID); 492 } 493 494 static void rvu_clear_rvum_blk_revid(struct rvu *rvu) 495 { 496 rvu_write64(rvu, BLKADDR_RVUM, 497 RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00); 498 } 499 500 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf) 501 { 502 int err; 503 504 if (!block->implemented) 505 return 0; 506 507 rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12)); 508 err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12), 509 true); 510 return err; 511 } 512 513 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg) 514 { 515 struct rvu_block *block = &rvu->hw->block[blkaddr]; 516 int err; 517 518 if (!block->implemented) 519 return; 520 521 rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0)); 522 err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true); 523 if (err) 524 dev_err(rvu->dev, "HW block:%d reset failed\n", blkaddr); 525 } 526 527 static void rvu_reset_all_blocks(struct rvu *rvu) 528 { 529 /* Do a HW reset of all RVU blocks */ 530 rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST); 531 rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST); 532 rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST); 533 rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST); 534 rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST); 535 rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST); 536 rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST); 537 rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST); 538 rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST); 539 rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST); 540 rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST); 541 rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST); 542 rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST); 543 } 544 545 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block) 546 { 547 struct rvu_pfvf *pfvf; 548 u64 cfg; 549 int lf; 550 551 for (lf = 0; lf < block->lf.max; lf++) { 552 cfg = rvu_read64(rvu, block->addr, 553 block->lfcfg_reg | (lf << block->lfshift)); 554 if (!(cfg & BIT_ULL(63))) 555 continue; 556 557 /* Set this resource as being used */ 558 __set_bit(lf, block->lf.bmap); 559 560 /* Get, to whom this LF is attached */ 561 pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF); 562 rvu_update_rsrc_map(rvu, pfvf, block, 563 (cfg >> 8) & 0xFFFF, lf, true); 564 565 /* Set start MSIX vector for this LF within this PF/VF */ 566 rvu_set_msix_offset(rvu, pfvf, block, lf); 567 } 568 } 569 570 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf) 571 { 572 int min_vecs; 573 574 if (!vf) 575 goto check_pf; 576 577 if (!nvecs) { 578 dev_warn(rvu->dev, 579 "PF%d:VF%d is configured with zero msix vectors, %d\n", 580 pf, vf - 1, nvecs); 581 } 582 return; 583 584 check_pf: 585 if (pf == 0) 586 min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT; 587 else 588 min_vecs = RVU_PF_INT_VEC_CNT; 589 590 if (!(nvecs < min_vecs)) 591 return; 592 dev_warn(rvu->dev, 593 "PF%d is configured with too few vectors, %d, min is %d\n", 594 pf, nvecs, min_vecs); 595 } 596 597 static int rvu_setup_msix_resources(struct rvu *rvu) 598 { 599 struct rvu_hwinfo *hw = rvu->hw; 600 int pf, vf, numvfs, hwvf, err; 601 int nvecs, offset, max_msix; 602 struct rvu_pfvf *pfvf; 603 u64 cfg, phy_addr; 604 dma_addr_t iova; 605 606 for (pf = 0; pf < hw->total_pfs; pf++) { 607 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf)); 608 /* If PF is not enabled, nothing to do */ 609 if (!((cfg >> 20) & 0x01)) 610 continue; 611 612 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf); 613 614 pfvf = &rvu->pf[pf]; 615 /* Get num of MSIX vectors attached to this PF */ 616 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf)); 617 pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1; 618 rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0); 619 620 /* Alloc msix bitmap for this PF */ 621 err = rvu_alloc_bitmap(&pfvf->msix); 622 if (err) 623 return err; 624 625 /* Allocate memory for MSIX vector to RVU block LF mapping */ 626 pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max, 627 sizeof(u16), GFP_KERNEL); 628 if (!pfvf->msix_lfmap) 629 return -ENOMEM; 630 631 /* For PF0 (AF) firmware will set msix vector offsets for 632 * AF, block AF and PF0_INT vectors, so jump to VFs. 633 */ 634 if (!pf) 635 goto setup_vfmsix; 636 637 /* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors. 638 * These are allocated on driver init and never freed, 639 * so no need to set 'msix_lfmap' for these. 640 */ 641 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf)); 642 nvecs = (cfg >> 12) & 0xFF; 643 cfg &= ~0x7FFULL; 644 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs); 645 rvu_write64(rvu, BLKADDR_RVUM, 646 RVU_PRIV_PFX_INT_CFG(pf), cfg | offset); 647 setup_vfmsix: 648 /* Alloc msix bitmap for VFs */ 649 for (vf = 0; vf < numvfs; vf++) { 650 pfvf = &rvu->hwvf[hwvf + vf]; 651 /* Get num of MSIX vectors attached to this VF */ 652 cfg = rvu_read64(rvu, BLKADDR_RVUM, 653 RVU_PRIV_PFX_MSIX_CFG(pf)); 654 pfvf->msix.max = (cfg & 0xFFF) + 1; 655 rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1); 656 657 /* Alloc msix bitmap for this VF */ 658 err = rvu_alloc_bitmap(&pfvf->msix); 659 if (err) 660 return err; 661 662 pfvf->msix_lfmap = 663 devm_kcalloc(rvu->dev, pfvf->msix.max, 664 sizeof(u16), GFP_KERNEL); 665 if (!pfvf->msix_lfmap) 666 return -ENOMEM; 667 668 /* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors. 669 * These are allocated on driver init and never freed, 670 * so no need to set 'msix_lfmap' for these. 671 */ 672 cfg = rvu_read64(rvu, BLKADDR_RVUM, 673 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf)); 674 nvecs = (cfg >> 12) & 0xFF; 675 cfg &= ~0x7FFULL; 676 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs); 677 rvu_write64(rvu, BLKADDR_RVUM, 678 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf), 679 cfg | offset); 680 } 681 } 682 683 /* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence 684 * create an IOMMU mapping for the physical address configured by 685 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA. 686 */ 687 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST); 688 max_msix = cfg & 0xFFFFF; 689 if (rvu->fwdata && rvu->fwdata->msixtr_base) 690 phy_addr = rvu->fwdata->msixtr_base; 691 else 692 phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE); 693 694 iova = dma_map_resource(rvu->dev, phy_addr, 695 max_msix * PCI_MSIX_ENTRY_SIZE, 696 DMA_BIDIRECTIONAL, 0); 697 698 if (dma_mapping_error(rvu->dev, iova)) 699 return -ENOMEM; 700 701 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova); 702 rvu->msix_base_iova = iova; 703 rvu->msixtr_base_phy = phy_addr; 704 705 return 0; 706 } 707 708 static void rvu_reset_msix(struct rvu *rvu) 709 { 710 /* Restore msixtr base register */ 711 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, 712 rvu->msixtr_base_phy); 713 } 714 715 static void rvu_free_hw_resources(struct rvu *rvu) 716 { 717 struct rvu_hwinfo *hw = rvu->hw; 718 struct rvu_block *block; 719 struct rvu_pfvf *pfvf; 720 int id, max_msix; 721 u64 cfg; 722 723 rvu_npa_freemem(rvu); 724 rvu_npc_freemem(rvu); 725 rvu_nix_freemem(rvu); 726 727 /* Free block LF bitmaps */ 728 for (id = 0; id < BLK_COUNT; id++) { 729 block = &hw->block[id]; 730 kfree(block->lf.bmap); 731 } 732 733 /* Free MSIX bitmaps */ 734 for (id = 0; id < hw->total_pfs; id++) { 735 pfvf = &rvu->pf[id]; 736 kfree(pfvf->msix.bmap); 737 } 738 739 for (id = 0; id < hw->total_vfs; id++) { 740 pfvf = &rvu->hwvf[id]; 741 kfree(pfvf->msix.bmap); 742 } 743 744 /* Unmap MSIX vector base IOVA mapping */ 745 if (!rvu->msix_base_iova) 746 return; 747 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST); 748 max_msix = cfg & 0xFFFFF; 749 dma_unmap_resource(rvu->dev, rvu->msix_base_iova, 750 max_msix * PCI_MSIX_ENTRY_SIZE, 751 DMA_BIDIRECTIONAL, 0); 752 753 rvu_reset_msix(rvu); 754 mutex_destroy(&rvu->rsrc_lock); 755 } 756 757 static void rvu_setup_pfvf_macaddress(struct rvu *rvu) 758 { 759 struct rvu_hwinfo *hw = rvu->hw; 760 int pf, vf, numvfs, hwvf; 761 struct rvu_pfvf *pfvf; 762 u64 *mac; 763 764 for (pf = 0; pf < hw->total_pfs; pf++) { 765 /* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */ 766 if (!pf) 767 goto lbkvf; 768 769 if (!is_pf_cgxmapped(rvu, pf)) 770 continue; 771 /* Assign MAC address to PF */ 772 pfvf = &rvu->pf[pf]; 773 if (rvu->fwdata && pf < PF_MACNUM_MAX) { 774 mac = &rvu->fwdata->pf_macs[pf]; 775 if (*mac) 776 u64_to_ether_addr(*mac, pfvf->mac_addr); 777 else 778 eth_random_addr(pfvf->mac_addr); 779 } else { 780 eth_random_addr(pfvf->mac_addr); 781 } 782 ether_addr_copy(pfvf->default_mac, pfvf->mac_addr); 783 784 lbkvf: 785 /* Assign MAC address to VFs*/ 786 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf); 787 for (vf = 0; vf < numvfs; vf++, hwvf++) { 788 pfvf = &rvu->hwvf[hwvf]; 789 if (rvu->fwdata && hwvf < VF_MACNUM_MAX) { 790 mac = &rvu->fwdata->vf_macs[hwvf]; 791 if (*mac) 792 u64_to_ether_addr(*mac, pfvf->mac_addr); 793 else 794 eth_random_addr(pfvf->mac_addr); 795 } else { 796 eth_random_addr(pfvf->mac_addr); 797 } 798 ether_addr_copy(pfvf->default_mac, pfvf->mac_addr); 799 } 800 } 801 } 802 803 static int rvu_fwdata_init(struct rvu *rvu) 804 { 805 u64 fwdbase; 806 int err; 807 808 /* Get firmware data base address */ 809 err = cgx_get_fwdata_base(&fwdbase); 810 if (err) 811 goto fail; 812 rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata)); 813 if (!rvu->fwdata) 814 goto fail; 815 if (!is_rvu_fwdata_valid(rvu)) { 816 dev_err(rvu->dev, 817 "Mismatch in 'fwdata' struct btw kernel and firmware\n"); 818 iounmap(rvu->fwdata); 819 rvu->fwdata = NULL; 820 return -EINVAL; 821 } 822 return 0; 823 fail: 824 dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n"); 825 return -EIO; 826 } 827 828 static void rvu_fwdata_exit(struct rvu *rvu) 829 { 830 if (rvu->fwdata) 831 iounmap(rvu->fwdata); 832 } 833 834 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr) 835 { 836 struct rvu_hwinfo *hw = rvu->hw; 837 struct rvu_block *block; 838 int blkid; 839 u64 cfg; 840 841 /* Init NIX LF's bitmap */ 842 block = &hw->block[blkaddr]; 843 if (!block->implemented) 844 return 0; 845 blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1; 846 cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2); 847 block->lf.max = cfg & 0xFFF; 848 block->addr = blkaddr; 849 block->type = BLKTYPE_NIX; 850 block->lfshift = 8; 851 block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG; 852 block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid); 853 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid); 854 block->lfcfg_reg = NIX_PRIV_LFX_CFG; 855 block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG; 856 block->lfreset_reg = NIX_AF_LF_RST; 857 block->rvu = rvu; 858 sprintf(block->name, "NIX%d", blkid); 859 rvu->nix_blkaddr[blkid] = blkaddr; 860 return rvu_alloc_bitmap(&block->lf); 861 } 862 863 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr) 864 { 865 struct rvu_hwinfo *hw = rvu->hw; 866 struct rvu_block *block; 867 int blkid; 868 u64 cfg; 869 870 /* Init CPT LF's bitmap */ 871 block = &hw->block[blkaddr]; 872 if (!block->implemented) 873 return 0; 874 blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1; 875 cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0); 876 block->lf.max = cfg & 0xFF; 877 block->addr = blkaddr; 878 block->type = BLKTYPE_CPT; 879 block->multislot = true; 880 block->lfshift = 3; 881 block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG; 882 block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid); 883 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid); 884 block->lfcfg_reg = CPT_PRIV_LFX_CFG; 885 block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG; 886 block->lfreset_reg = CPT_AF_LF_RST; 887 block->rvu = rvu; 888 sprintf(block->name, "CPT%d", blkid); 889 return rvu_alloc_bitmap(&block->lf); 890 } 891 892 static void rvu_get_lbk_bufsize(struct rvu *rvu) 893 { 894 struct pci_dev *pdev = NULL; 895 void __iomem *base; 896 u64 lbk_const; 897 898 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, 899 PCI_DEVID_OCTEONTX2_LBK, pdev); 900 if (!pdev) 901 return; 902 903 base = pci_ioremap_bar(pdev, 0); 904 if (!base) 905 goto err_put; 906 907 lbk_const = readq(base + LBK_CONST); 908 909 /* cache fifo size */ 910 rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const); 911 912 iounmap(base); 913 err_put: 914 pci_dev_put(pdev); 915 } 916 917 static int rvu_setup_hw_resources(struct rvu *rvu) 918 { 919 struct rvu_hwinfo *hw = rvu->hw; 920 struct rvu_block *block; 921 int blkid, err; 922 u64 cfg; 923 924 /* Get HW supported max RVU PF & VF count */ 925 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST); 926 hw->total_pfs = (cfg >> 32) & 0xFF; 927 hw->total_vfs = (cfg >> 20) & 0xFFF; 928 hw->max_vfs_per_pf = (cfg >> 40) & 0xFF; 929 930 /* Init NPA LF's bitmap */ 931 block = &hw->block[BLKADDR_NPA]; 932 if (!block->implemented) 933 goto nix; 934 cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST); 935 block->lf.max = (cfg >> 16) & 0xFFF; 936 block->addr = BLKADDR_NPA; 937 block->type = BLKTYPE_NPA; 938 block->lfshift = 8; 939 block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG; 940 block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG; 941 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG; 942 block->lfcfg_reg = NPA_PRIV_LFX_CFG; 943 block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG; 944 block->lfreset_reg = NPA_AF_LF_RST; 945 block->rvu = rvu; 946 sprintf(block->name, "NPA"); 947 err = rvu_alloc_bitmap(&block->lf); 948 if (err) { 949 dev_err(rvu->dev, 950 "%s: Failed to allocate NPA LF bitmap\n", __func__); 951 return err; 952 } 953 954 nix: 955 err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0); 956 if (err) { 957 dev_err(rvu->dev, 958 "%s: Failed to allocate NIX0 LFs bitmap\n", __func__); 959 return err; 960 } 961 962 err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1); 963 if (err) { 964 dev_err(rvu->dev, 965 "%s: Failed to allocate NIX1 LFs bitmap\n", __func__); 966 return err; 967 } 968 969 /* Init SSO group's bitmap */ 970 block = &hw->block[BLKADDR_SSO]; 971 if (!block->implemented) 972 goto ssow; 973 cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST); 974 block->lf.max = cfg & 0xFFFF; 975 block->addr = BLKADDR_SSO; 976 block->type = BLKTYPE_SSO; 977 block->multislot = true; 978 block->lfshift = 3; 979 block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG; 980 block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG; 981 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG; 982 block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG; 983 block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG; 984 block->lfreset_reg = SSO_AF_LF_HWGRP_RST; 985 block->rvu = rvu; 986 sprintf(block->name, "SSO GROUP"); 987 err = rvu_alloc_bitmap(&block->lf); 988 if (err) { 989 dev_err(rvu->dev, 990 "%s: Failed to allocate SSO LF bitmap\n", __func__); 991 return err; 992 } 993 994 ssow: 995 /* Init SSO workslot's bitmap */ 996 block = &hw->block[BLKADDR_SSOW]; 997 if (!block->implemented) 998 goto tim; 999 block->lf.max = (cfg >> 56) & 0xFF; 1000 block->addr = BLKADDR_SSOW; 1001 block->type = BLKTYPE_SSOW; 1002 block->multislot = true; 1003 block->lfshift = 3; 1004 block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG; 1005 block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG; 1006 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG; 1007 block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG; 1008 block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG; 1009 block->lfreset_reg = SSOW_AF_LF_HWS_RST; 1010 block->rvu = rvu; 1011 sprintf(block->name, "SSOWS"); 1012 err = rvu_alloc_bitmap(&block->lf); 1013 if (err) { 1014 dev_err(rvu->dev, 1015 "%s: Failed to allocate SSOW LF bitmap\n", __func__); 1016 return err; 1017 } 1018 1019 tim: 1020 /* Init TIM LF's bitmap */ 1021 block = &hw->block[BLKADDR_TIM]; 1022 if (!block->implemented) 1023 goto cpt; 1024 cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST); 1025 block->lf.max = cfg & 0xFFFF; 1026 block->addr = BLKADDR_TIM; 1027 block->type = BLKTYPE_TIM; 1028 block->multislot = true; 1029 block->lfshift = 3; 1030 block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG; 1031 block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG; 1032 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG; 1033 block->lfcfg_reg = TIM_PRIV_LFX_CFG; 1034 block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG; 1035 block->lfreset_reg = TIM_AF_LF_RST; 1036 block->rvu = rvu; 1037 sprintf(block->name, "TIM"); 1038 err = rvu_alloc_bitmap(&block->lf); 1039 if (err) { 1040 dev_err(rvu->dev, 1041 "%s: Failed to allocate TIM LF bitmap\n", __func__); 1042 return err; 1043 } 1044 1045 cpt: 1046 err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0); 1047 if (err) { 1048 dev_err(rvu->dev, 1049 "%s: Failed to allocate CPT0 LF bitmap\n", __func__); 1050 return err; 1051 } 1052 err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1); 1053 if (err) { 1054 dev_err(rvu->dev, 1055 "%s: Failed to allocate CPT1 LF bitmap\n", __func__); 1056 return err; 1057 } 1058 1059 /* Allocate memory for PFVF data */ 1060 rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs, 1061 sizeof(struct rvu_pfvf), GFP_KERNEL); 1062 if (!rvu->pf) { 1063 dev_err(rvu->dev, 1064 "%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__); 1065 return -ENOMEM; 1066 } 1067 1068 rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs, 1069 sizeof(struct rvu_pfvf), GFP_KERNEL); 1070 if (!rvu->hwvf) { 1071 dev_err(rvu->dev, 1072 "%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__); 1073 return -ENOMEM; 1074 } 1075 1076 mutex_init(&rvu->rsrc_lock); 1077 1078 rvu_fwdata_init(rvu); 1079 1080 err = rvu_setup_msix_resources(rvu); 1081 if (err) { 1082 dev_err(rvu->dev, 1083 "%s: Failed to setup MSIX resources\n", __func__); 1084 return err; 1085 } 1086 1087 for (blkid = 0; blkid < BLK_COUNT; blkid++) { 1088 block = &hw->block[blkid]; 1089 if (!block->lf.bmap) 1090 continue; 1091 1092 /* Allocate memory for block LF/slot to pcifunc mapping info */ 1093 block->fn_map = devm_kcalloc(rvu->dev, block->lf.max, 1094 sizeof(u16), GFP_KERNEL); 1095 if (!block->fn_map) { 1096 err = -ENOMEM; 1097 goto msix_err; 1098 } 1099 1100 /* Scan all blocks to check if low level firmware has 1101 * already provisioned any of the resources to a PF/VF. 1102 */ 1103 rvu_scan_block(rvu, block); 1104 } 1105 1106 err = rvu_set_channels_base(rvu); 1107 if (err) 1108 goto msix_err; 1109 1110 err = rvu_npc_init(rvu); 1111 if (err) { 1112 dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__); 1113 goto npc_err; 1114 } 1115 1116 err = rvu_cgx_init(rvu); 1117 if (err) { 1118 dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__); 1119 goto cgx_err; 1120 } 1121 1122 /* Assign MACs for CGX mapped functions */ 1123 rvu_setup_pfvf_macaddress(rvu); 1124 1125 err = rvu_npa_init(rvu); 1126 if (err) { 1127 dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__); 1128 goto npa_err; 1129 } 1130 1131 rvu_get_lbk_bufsize(rvu); 1132 1133 err = rvu_nix_init(rvu); 1134 if (err) { 1135 dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__); 1136 goto nix_err; 1137 } 1138 1139 err = rvu_sdp_init(rvu); 1140 if (err) { 1141 dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__); 1142 goto nix_err; 1143 } 1144 1145 rvu_program_channels(rvu); 1146 1147 return 0; 1148 1149 nix_err: 1150 rvu_nix_freemem(rvu); 1151 npa_err: 1152 rvu_npa_freemem(rvu); 1153 cgx_err: 1154 rvu_cgx_exit(rvu); 1155 npc_err: 1156 rvu_npc_freemem(rvu); 1157 rvu_fwdata_exit(rvu); 1158 msix_err: 1159 rvu_reset_msix(rvu); 1160 return err; 1161 } 1162 1163 /* NPA and NIX admin queue APIs */ 1164 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq) 1165 { 1166 if (!aq) 1167 return; 1168 1169 qmem_free(rvu->dev, aq->inst); 1170 qmem_free(rvu->dev, aq->res); 1171 devm_kfree(rvu->dev, aq); 1172 } 1173 1174 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue, 1175 int qsize, int inst_size, int res_size) 1176 { 1177 struct admin_queue *aq; 1178 int err; 1179 1180 *ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL); 1181 if (!*ad_queue) 1182 return -ENOMEM; 1183 aq = *ad_queue; 1184 1185 /* Alloc memory for instructions i.e AQ */ 1186 err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size); 1187 if (err) { 1188 devm_kfree(rvu->dev, aq); 1189 return err; 1190 } 1191 1192 /* Alloc memory for results */ 1193 err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size); 1194 if (err) { 1195 rvu_aq_free(rvu, aq); 1196 return err; 1197 } 1198 1199 spin_lock_init(&aq->lock); 1200 return 0; 1201 } 1202 1203 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req, 1204 struct ready_msg_rsp *rsp) 1205 { 1206 if (rvu->fwdata) { 1207 rsp->rclk_freq = rvu->fwdata->rclk; 1208 rsp->sclk_freq = rvu->fwdata->sclk; 1209 } 1210 return 0; 1211 } 1212 1213 /* Get current count of a RVU block's LF/slots 1214 * provisioned to a given RVU func. 1215 */ 1216 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr) 1217 { 1218 switch (blkaddr) { 1219 case BLKADDR_NPA: 1220 return pfvf->npalf ? 1 : 0; 1221 case BLKADDR_NIX0: 1222 case BLKADDR_NIX1: 1223 return pfvf->nixlf ? 1 : 0; 1224 case BLKADDR_SSO: 1225 return pfvf->sso; 1226 case BLKADDR_SSOW: 1227 return pfvf->ssow; 1228 case BLKADDR_TIM: 1229 return pfvf->timlfs; 1230 case BLKADDR_CPT0: 1231 return pfvf->cptlfs; 1232 case BLKADDR_CPT1: 1233 return pfvf->cpt1_lfs; 1234 } 1235 return 0; 1236 } 1237 1238 /* Return true if LFs of block type are attached to pcifunc */ 1239 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype) 1240 { 1241 switch (blktype) { 1242 case BLKTYPE_NPA: 1243 return pfvf->npalf ? 1 : 0; 1244 case BLKTYPE_NIX: 1245 return pfvf->nixlf ? 1 : 0; 1246 case BLKTYPE_SSO: 1247 return !!pfvf->sso; 1248 case BLKTYPE_SSOW: 1249 return !!pfvf->ssow; 1250 case BLKTYPE_TIM: 1251 return !!pfvf->timlfs; 1252 case BLKTYPE_CPT: 1253 return pfvf->cptlfs || pfvf->cpt1_lfs; 1254 } 1255 1256 return false; 1257 } 1258 1259 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype) 1260 { 1261 struct rvu_pfvf *pfvf; 1262 1263 if (!is_pf_func_valid(rvu, pcifunc)) 1264 return false; 1265 1266 pfvf = rvu_get_pfvf(rvu, pcifunc); 1267 1268 /* Check if this PFFUNC has a LF of type blktype attached */ 1269 if (!is_blktype_attached(pfvf, blktype)) 1270 return false; 1271 1272 return true; 1273 } 1274 1275 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block, 1276 int pcifunc, int slot) 1277 { 1278 u64 val; 1279 1280 val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13); 1281 rvu_write64(rvu, block->addr, block->lookup_reg, val); 1282 /* Wait for the lookup to finish */ 1283 /* TODO: put some timeout here */ 1284 while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13)) 1285 ; 1286 1287 val = rvu_read64(rvu, block->addr, block->lookup_reg); 1288 1289 /* Check LF valid bit */ 1290 if (!(val & (1ULL << 12))) 1291 return -1; 1292 1293 return (val & 0xFFF); 1294 } 1295 1296 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc, 1297 u16 global_slot, u16 *slot_in_block) 1298 { 1299 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); 1300 int numlfs, total_lfs = 0, nr_blocks = 0; 1301 int i, num_blkaddr[BLK_COUNT] = { 0 }; 1302 struct rvu_block *block; 1303 int blkaddr; 1304 u16 start_slot; 1305 1306 if (!is_blktype_attached(pfvf, blktype)) 1307 return -ENODEV; 1308 1309 /* Get all the block addresses from which LFs are attached to 1310 * the given pcifunc in num_blkaddr[]. 1311 */ 1312 for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) { 1313 block = &rvu->hw->block[blkaddr]; 1314 if (block->type != blktype) 1315 continue; 1316 if (!is_block_implemented(rvu->hw, blkaddr)) 1317 continue; 1318 1319 numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr); 1320 if (numlfs) { 1321 total_lfs += numlfs; 1322 num_blkaddr[nr_blocks] = blkaddr; 1323 nr_blocks++; 1324 } 1325 } 1326 1327 if (global_slot >= total_lfs) 1328 return -ENODEV; 1329 1330 /* Based on the given global slot number retrieve the 1331 * correct block address out of all attached block 1332 * addresses and slot number in that block. 1333 */ 1334 total_lfs = 0; 1335 blkaddr = -ENODEV; 1336 for (i = 0; i < nr_blocks; i++) { 1337 numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]); 1338 total_lfs += numlfs; 1339 if (global_slot < total_lfs) { 1340 blkaddr = num_blkaddr[i]; 1341 start_slot = total_lfs - numlfs; 1342 *slot_in_block = global_slot - start_slot; 1343 break; 1344 } 1345 } 1346 1347 return blkaddr; 1348 } 1349 1350 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype) 1351 { 1352 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); 1353 struct rvu_hwinfo *hw = rvu->hw; 1354 struct rvu_block *block; 1355 int slot, lf, num_lfs; 1356 int blkaddr; 1357 1358 blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc); 1359 if (blkaddr < 0) 1360 return; 1361 1362 if (blktype == BLKTYPE_NIX) 1363 rvu_nix_reset_mac(pfvf, pcifunc); 1364 1365 block = &hw->block[blkaddr]; 1366 1367 num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr); 1368 if (!num_lfs) 1369 return; 1370 1371 for (slot = 0; slot < num_lfs; slot++) { 1372 lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot); 1373 if (lf < 0) /* This should never happen */ 1374 continue; 1375 1376 /* Disable the LF */ 1377 rvu_write64(rvu, blkaddr, block->lfcfg_reg | 1378 (lf << block->lfshift), 0x00ULL); 1379 1380 /* Update SW maintained mapping info as well */ 1381 rvu_update_rsrc_map(rvu, pfvf, block, 1382 pcifunc, lf, false); 1383 1384 /* Free the resource */ 1385 rvu_free_rsrc(&block->lf, lf); 1386 1387 /* Clear MSIX vector offset for this LF */ 1388 rvu_clear_msix_offset(rvu, pfvf, block, lf); 1389 } 1390 } 1391 1392 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach, 1393 u16 pcifunc) 1394 { 1395 struct rvu_hwinfo *hw = rvu->hw; 1396 bool detach_all = true; 1397 struct rvu_block *block; 1398 int blkid; 1399 1400 mutex_lock(&rvu->rsrc_lock); 1401 1402 /* Check for partial resource detach */ 1403 if (detach && detach->partial) 1404 detach_all = false; 1405 1406 /* Check for RVU block's LFs attached to this func, 1407 * if so, detach them. 1408 */ 1409 for (blkid = 0; blkid < BLK_COUNT; blkid++) { 1410 block = &hw->block[blkid]; 1411 if (!block->lf.bmap) 1412 continue; 1413 if (!detach_all && detach) { 1414 if (blkid == BLKADDR_NPA && !detach->npalf) 1415 continue; 1416 else if ((blkid == BLKADDR_NIX0) && !detach->nixlf) 1417 continue; 1418 else if ((blkid == BLKADDR_NIX1) && !detach->nixlf) 1419 continue; 1420 else if ((blkid == BLKADDR_SSO) && !detach->sso) 1421 continue; 1422 else if ((blkid == BLKADDR_SSOW) && !detach->ssow) 1423 continue; 1424 else if ((blkid == BLKADDR_TIM) && !detach->timlfs) 1425 continue; 1426 else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs) 1427 continue; 1428 else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs) 1429 continue; 1430 } 1431 rvu_detach_block(rvu, pcifunc, block->type); 1432 } 1433 1434 mutex_unlock(&rvu->rsrc_lock); 1435 return 0; 1436 } 1437 1438 int rvu_mbox_handler_detach_resources(struct rvu *rvu, 1439 struct rsrc_detach *detach, 1440 struct msg_rsp *rsp) 1441 { 1442 return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc); 1443 } 1444 1445 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc) 1446 { 1447 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); 1448 int blkaddr = BLKADDR_NIX0, vf; 1449 struct rvu_pfvf *pf; 1450 1451 pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK); 1452 1453 /* All CGX mapped PFs are set with assigned NIX block during init */ 1454 if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) { 1455 blkaddr = pf->nix_blkaddr; 1456 } else if (is_afvf(pcifunc)) { 1457 vf = pcifunc - 1; 1458 /* Assign NIX based on VF number. All even numbered VFs get 1459 * NIX0 and odd numbered gets NIX1 1460 */ 1461 blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0; 1462 /* NIX1 is not present on all silicons */ 1463 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1)) 1464 blkaddr = BLKADDR_NIX0; 1465 } 1466 1467 /* if SDP1 then the blkaddr is NIX1 */ 1468 if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1) 1469 blkaddr = BLKADDR_NIX1; 1470 1471 switch (blkaddr) { 1472 case BLKADDR_NIX1: 1473 pfvf->nix_blkaddr = BLKADDR_NIX1; 1474 pfvf->nix_rx_intf = NIX_INTFX_RX(1); 1475 pfvf->nix_tx_intf = NIX_INTFX_TX(1); 1476 break; 1477 case BLKADDR_NIX0: 1478 default: 1479 pfvf->nix_blkaddr = BLKADDR_NIX0; 1480 pfvf->nix_rx_intf = NIX_INTFX_RX(0); 1481 pfvf->nix_tx_intf = NIX_INTFX_TX(0); 1482 break; 1483 } 1484 1485 return pfvf->nix_blkaddr; 1486 } 1487 1488 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype, 1489 u16 pcifunc, struct rsrc_attach *attach) 1490 { 1491 int blkaddr; 1492 1493 switch (blktype) { 1494 case BLKTYPE_NIX: 1495 blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc); 1496 break; 1497 case BLKTYPE_CPT: 1498 if (attach->hdr.ver < RVU_MULTI_BLK_VER) 1499 return rvu_get_blkaddr(rvu, blktype, 0); 1500 blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr : 1501 BLKADDR_CPT0; 1502 if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1) 1503 return -ENODEV; 1504 break; 1505 default: 1506 return rvu_get_blkaddr(rvu, blktype, 0); 1507 } 1508 1509 if (is_block_implemented(rvu->hw, blkaddr)) 1510 return blkaddr; 1511 1512 return -ENODEV; 1513 } 1514 1515 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype, 1516 int num_lfs, struct rsrc_attach *attach) 1517 { 1518 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); 1519 struct rvu_hwinfo *hw = rvu->hw; 1520 struct rvu_block *block; 1521 int slot, lf; 1522 int blkaddr; 1523 u64 cfg; 1524 1525 if (!num_lfs) 1526 return; 1527 1528 blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach); 1529 if (blkaddr < 0) 1530 return; 1531 1532 block = &hw->block[blkaddr]; 1533 if (!block->lf.bmap) 1534 return; 1535 1536 for (slot = 0; slot < num_lfs; slot++) { 1537 /* Allocate the resource */ 1538 lf = rvu_alloc_rsrc(&block->lf); 1539 if (lf < 0) 1540 return; 1541 1542 cfg = (1ULL << 63) | (pcifunc << 8) | slot; 1543 rvu_write64(rvu, blkaddr, block->lfcfg_reg | 1544 (lf << block->lfshift), cfg); 1545 rvu_update_rsrc_map(rvu, pfvf, block, 1546 pcifunc, lf, true); 1547 1548 /* Set start MSIX vector for this LF within this PF/VF */ 1549 rvu_set_msix_offset(rvu, pfvf, block, lf); 1550 } 1551 } 1552 1553 static int rvu_check_rsrc_availability(struct rvu *rvu, 1554 struct rsrc_attach *req, u16 pcifunc) 1555 { 1556 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc); 1557 int free_lfs, mappedlfs, blkaddr; 1558 struct rvu_hwinfo *hw = rvu->hw; 1559 struct rvu_block *block; 1560 1561 /* Only one NPA LF can be attached */ 1562 if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) { 1563 block = &hw->block[BLKADDR_NPA]; 1564 free_lfs = rvu_rsrc_free_count(&block->lf); 1565 if (!free_lfs) 1566 goto fail; 1567 } else if (req->npalf) { 1568 dev_err(&rvu->pdev->dev, 1569 "Func 0x%x: Invalid req, already has NPA\n", 1570 pcifunc); 1571 return -EINVAL; 1572 } 1573 1574 /* Only one NIX LF can be attached */ 1575 if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) { 1576 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX, 1577 pcifunc, req); 1578 if (blkaddr < 0) 1579 return blkaddr; 1580 block = &hw->block[blkaddr]; 1581 free_lfs = rvu_rsrc_free_count(&block->lf); 1582 if (!free_lfs) 1583 goto fail; 1584 } else if (req->nixlf) { 1585 dev_err(&rvu->pdev->dev, 1586 "Func 0x%x: Invalid req, already has NIX\n", 1587 pcifunc); 1588 return -EINVAL; 1589 } 1590 1591 if (req->sso) { 1592 block = &hw->block[BLKADDR_SSO]; 1593 /* Is request within limits ? */ 1594 if (req->sso > block->lf.max) { 1595 dev_err(&rvu->pdev->dev, 1596 "Func 0x%x: Invalid SSO req, %d > max %d\n", 1597 pcifunc, req->sso, block->lf.max); 1598 return -EINVAL; 1599 } 1600 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr); 1601 free_lfs = rvu_rsrc_free_count(&block->lf); 1602 /* Check if additional resources are available */ 1603 if (req->sso > mappedlfs && 1604 ((req->sso - mappedlfs) > free_lfs)) 1605 goto fail; 1606 } 1607 1608 if (req->ssow) { 1609 block = &hw->block[BLKADDR_SSOW]; 1610 if (req->ssow > block->lf.max) { 1611 dev_err(&rvu->pdev->dev, 1612 "Func 0x%x: Invalid SSOW req, %d > max %d\n", 1613 pcifunc, req->sso, block->lf.max); 1614 return -EINVAL; 1615 } 1616 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr); 1617 free_lfs = rvu_rsrc_free_count(&block->lf); 1618 if (req->ssow > mappedlfs && 1619 ((req->ssow - mappedlfs) > free_lfs)) 1620 goto fail; 1621 } 1622 1623 if (req->timlfs) { 1624 block = &hw->block[BLKADDR_TIM]; 1625 if (req->timlfs > block->lf.max) { 1626 dev_err(&rvu->pdev->dev, 1627 "Func 0x%x: Invalid TIMLF req, %d > max %d\n", 1628 pcifunc, req->timlfs, block->lf.max); 1629 return -EINVAL; 1630 } 1631 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr); 1632 free_lfs = rvu_rsrc_free_count(&block->lf); 1633 if (req->timlfs > mappedlfs && 1634 ((req->timlfs - mappedlfs) > free_lfs)) 1635 goto fail; 1636 } 1637 1638 if (req->cptlfs) { 1639 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT, 1640 pcifunc, req); 1641 if (blkaddr < 0) 1642 return blkaddr; 1643 block = &hw->block[blkaddr]; 1644 if (req->cptlfs > block->lf.max) { 1645 dev_err(&rvu->pdev->dev, 1646 "Func 0x%x: Invalid CPTLF req, %d > max %d\n", 1647 pcifunc, req->cptlfs, block->lf.max); 1648 return -EINVAL; 1649 } 1650 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr); 1651 free_lfs = rvu_rsrc_free_count(&block->lf); 1652 if (req->cptlfs > mappedlfs && 1653 ((req->cptlfs - mappedlfs) > free_lfs)) 1654 goto fail; 1655 } 1656 1657 return 0; 1658 1659 fail: 1660 dev_info(rvu->dev, "Request for %s failed\n", block->name); 1661 return -ENOSPC; 1662 } 1663 1664 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype, 1665 struct rsrc_attach *attach) 1666 { 1667 int blkaddr, num_lfs; 1668 1669 blkaddr = rvu_get_attach_blkaddr(rvu, blktype, 1670 attach->hdr.pcifunc, attach); 1671 if (blkaddr < 0) 1672 return false; 1673 1674 num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc), 1675 blkaddr); 1676 /* Requester already has LFs from given block ? */ 1677 return !!num_lfs; 1678 } 1679 1680 int rvu_mbox_handler_attach_resources(struct rvu *rvu, 1681 struct rsrc_attach *attach, 1682 struct msg_rsp *rsp) 1683 { 1684 u16 pcifunc = attach->hdr.pcifunc; 1685 int err; 1686 1687 /* If first request, detach all existing attached resources */ 1688 if (!attach->modify) 1689 rvu_detach_rsrcs(rvu, NULL, pcifunc); 1690 1691 mutex_lock(&rvu->rsrc_lock); 1692 1693 /* Check if the request can be accommodated */ 1694 err = rvu_check_rsrc_availability(rvu, attach, pcifunc); 1695 if (err) 1696 goto exit; 1697 1698 /* Now attach the requested resources */ 1699 if (attach->npalf) 1700 rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach); 1701 1702 if (attach->nixlf) 1703 rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach); 1704 1705 if (attach->sso) { 1706 /* RVU func doesn't know which exact LF or slot is attached 1707 * to it, it always sees as slot 0,1,2. So for a 'modify' 1708 * request, simply detach all existing attached LFs/slots 1709 * and attach a fresh. 1710 */ 1711 if (attach->modify) 1712 rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO); 1713 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO, 1714 attach->sso, attach); 1715 } 1716 1717 if (attach->ssow) { 1718 if (attach->modify) 1719 rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW); 1720 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW, 1721 attach->ssow, attach); 1722 } 1723 1724 if (attach->timlfs) { 1725 if (attach->modify) 1726 rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM); 1727 rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM, 1728 attach->timlfs, attach); 1729 } 1730 1731 if (attach->cptlfs) { 1732 if (attach->modify && 1733 rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach)) 1734 rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT); 1735 rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT, 1736 attach->cptlfs, attach); 1737 } 1738 1739 exit: 1740 mutex_unlock(&rvu->rsrc_lock); 1741 return err; 1742 } 1743 1744 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf, 1745 int blkaddr, int lf) 1746 { 1747 u16 vec; 1748 1749 if (lf < 0) 1750 return MSIX_VECTOR_INVALID; 1751 1752 for (vec = 0; vec < pfvf->msix.max; vec++) { 1753 if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf)) 1754 return vec; 1755 } 1756 return MSIX_VECTOR_INVALID; 1757 } 1758 1759 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf, 1760 struct rvu_block *block, int lf) 1761 { 1762 u16 nvecs, vec, offset; 1763 u64 cfg; 1764 1765 cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg | 1766 (lf << block->lfshift)); 1767 nvecs = (cfg >> 12) & 0xFF; 1768 1769 /* Check and alloc MSIX vectors, must be contiguous */ 1770 if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs)) 1771 return; 1772 1773 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs); 1774 1775 /* Config MSIX offset in LF */ 1776 rvu_write64(rvu, block->addr, block->msixcfg_reg | 1777 (lf << block->lfshift), (cfg & ~0x7FFULL) | offset); 1778 1779 /* Update the bitmap as well */ 1780 for (vec = 0; vec < nvecs; vec++) 1781 pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf); 1782 } 1783 1784 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf, 1785 struct rvu_block *block, int lf) 1786 { 1787 u16 nvecs, vec, offset; 1788 u64 cfg; 1789 1790 cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg | 1791 (lf << block->lfshift)); 1792 nvecs = (cfg >> 12) & 0xFF; 1793 1794 /* Clear MSIX offset in LF */ 1795 rvu_write64(rvu, block->addr, block->msixcfg_reg | 1796 (lf << block->lfshift), cfg & ~0x7FFULL); 1797 1798 offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf); 1799 1800 /* Update the mapping */ 1801 for (vec = 0; vec < nvecs; vec++) 1802 pfvf->msix_lfmap[offset + vec] = 0; 1803 1804 /* Free the same in MSIX bitmap */ 1805 rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset); 1806 } 1807 1808 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req, 1809 struct msix_offset_rsp *rsp) 1810 { 1811 struct rvu_hwinfo *hw = rvu->hw; 1812 u16 pcifunc = req->hdr.pcifunc; 1813 struct rvu_pfvf *pfvf; 1814 int lf, slot, blkaddr; 1815 1816 pfvf = rvu_get_pfvf(rvu, pcifunc); 1817 if (!pfvf->msix.bmap) 1818 return 0; 1819 1820 /* Set MSIX offsets for each block's LFs attached to this PF/VF */ 1821 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0); 1822 rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf); 1823 1824 /* Get BLKADDR from which LFs are attached to pcifunc */ 1825 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc); 1826 if (blkaddr < 0) { 1827 rsp->nix_msixoff = MSIX_VECTOR_INVALID; 1828 } else { 1829 lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0); 1830 rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf); 1831 } 1832 1833 rsp->sso = pfvf->sso; 1834 for (slot = 0; slot < rsp->sso; slot++) { 1835 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot); 1836 rsp->sso_msixoff[slot] = 1837 rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf); 1838 } 1839 1840 rsp->ssow = pfvf->ssow; 1841 for (slot = 0; slot < rsp->ssow; slot++) { 1842 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot); 1843 rsp->ssow_msixoff[slot] = 1844 rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf); 1845 } 1846 1847 rsp->timlfs = pfvf->timlfs; 1848 for (slot = 0; slot < rsp->timlfs; slot++) { 1849 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot); 1850 rsp->timlf_msixoff[slot] = 1851 rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf); 1852 } 1853 1854 rsp->cptlfs = pfvf->cptlfs; 1855 for (slot = 0; slot < rsp->cptlfs; slot++) { 1856 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot); 1857 rsp->cptlf_msixoff[slot] = 1858 rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf); 1859 } 1860 1861 rsp->cpt1_lfs = pfvf->cpt1_lfs; 1862 for (slot = 0; slot < rsp->cpt1_lfs; slot++) { 1863 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot); 1864 rsp->cpt1_lf_msixoff[slot] = 1865 rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf); 1866 } 1867 1868 return 0; 1869 } 1870 1871 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req, 1872 struct free_rsrcs_rsp *rsp) 1873 { 1874 struct rvu_hwinfo *hw = rvu->hw; 1875 struct rvu_block *block; 1876 struct nix_txsch *txsch; 1877 struct nix_hw *nix_hw; 1878 1879 mutex_lock(&rvu->rsrc_lock); 1880 1881 block = &hw->block[BLKADDR_NPA]; 1882 rsp->npa = rvu_rsrc_free_count(&block->lf); 1883 1884 block = &hw->block[BLKADDR_NIX0]; 1885 rsp->nix = rvu_rsrc_free_count(&block->lf); 1886 1887 block = &hw->block[BLKADDR_NIX1]; 1888 rsp->nix1 = rvu_rsrc_free_count(&block->lf); 1889 1890 block = &hw->block[BLKADDR_SSO]; 1891 rsp->sso = rvu_rsrc_free_count(&block->lf); 1892 1893 block = &hw->block[BLKADDR_SSOW]; 1894 rsp->ssow = rvu_rsrc_free_count(&block->lf); 1895 1896 block = &hw->block[BLKADDR_TIM]; 1897 rsp->tim = rvu_rsrc_free_count(&block->lf); 1898 1899 block = &hw->block[BLKADDR_CPT0]; 1900 rsp->cpt = rvu_rsrc_free_count(&block->lf); 1901 1902 block = &hw->block[BLKADDR_CPT1]; 1903 rsp->cpt1 = rvu_rsrc_free_count(&block->lf); 1904 1905 if (rvu->hw->cap.nix_fixed_txschq_mapping) { 1906 rsp->schq[NIX_TXSCH_LVL_SMQ] = 1; 1907 rsp->schq[NIX_TXSCH_LVL_TL4] = 1; 1908 rsp->schq[NIX_TXSCH_LVL_TL3] = 1; 1909 rsp->schq[NIX_TXSCH_LVL_TL2] = 1; 1910 /* NIX1 */ 1911 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1)) 1912 goto out; 1913 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1; 1914 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1; 1915 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1; 1916 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1; 1917 } else { 1918 nix_hw = get_nix_hw(hw, BLKADDR_NIX0); 1919 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ]; 1920 rsp->schq[NIX_TXSCH_LVL_SMQ] = 1921 rvu_rsrc_free_count(&txsch->schq); 1922 1923 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4]; 1924 rsp->schq[NIX_TXSCH_LVL_TL4] = 1925 rvu_rsrc_free_count(&txsch->schq); 1926 1927 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3]; 1928 rsp->schq[NIX_TXSCH_LVL_TL3] = 1929 rvu_rsrc_free_count(&txsch->schq); 1930 1931 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2]; 1932 rsp->schq[NIX_TXSCH_LVL_TL2] = 1933 rvu_rsrc_free_count(&txsch->schq); 1934 1935 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1)) 1936 goto out; 1937 1938 nix_hw = get_nix_hw(hw, BLKADDR_NIX1); 1939 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ]; 1940 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1941 rvu_rsrc_free_count(&txsch->schq); 1942 1943 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4]; 1944 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1945 rvu_rsrc_free_count(&txsch->schq); 1946 1947 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3]; 1948 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1949 rvu_rsrc_free_count(&txsch->schq); 1950 1951 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2]; 1952 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1953 rvu_rsrc_free_count(&txsch->schq); 1954 } 1955 1956 rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1; 1957 out: 1958 rsp->schq[NIX_TXSCH_LVL_TL1] = 1; 1959 mutex_unlock(&rvu->rsrc_lock); 1960 1961 return 0; 1962 } 1963 1964 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req, 1965 struct msg_rsp *rsp) 1966 { 1967 u16 pcifunc = req->hdr.pcifunc; 1968 u16 vf, numvfs; 1969 u64 cfg; 1970 1971 vf = pcifunc & RVU_PFVF_FUNC_MASK; 1972 cfg = rvu_read64(rvu, BLKADDR_RVUM, 1973 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc))); 1974 numvfs = (cfg >> 12) & 0xFF; 1975 1976 if (vf && vf <= numvfs) 1977 __rvu_flr_handler(rvu, pcifunc); 1978 else 1979 return RVU_INVALID_VF_ID; 1980 1981 return 0; 1982 } 1983 1984 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req, 1985 struct get_hw_cap_rsp *rsp) 1986 { 1987 struct rvu_hwinfo *hw = rvu->hw; 1988 1989 rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping; 1990 rsp->nix_shaping = hw->cap.nix_shaping; 1991 1992 return 0; 1993 } 1994 1995 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req, 1996 struct msg_rsp *rsp) 1997 { 1998 struct rvu_hwinfo *hw = rvu->hw; 1999 u16 pcifunc = req->hdr.pcifunc; 2000 struct rvu_pfvf *pfvf; 2001 int blkaddr, nixlf; 2002 u16 target; 2003 2004 /* Only PF can add VF permissions */ 2005 if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc)) 2006 return -EOPNOTSUPP; 2007 2008 target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1); 2009 pfvf = rvu_get_pfvf(rvu, target); 2010 2011 if (req->flags & RESET_VF_PERM) { 2012 pfvf->flags &= RVU_CLEAR_VF_PERM; 2013 } else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^ 2014 (req->flags & VF_TRUSTED)) { 2015 change_bit(PF_SET_VF_TRUSTED, &pfvf->flags); 2016 /* disable multicast and promisc entries */ 2017 if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) { 2018 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target); 2019 if (blkaddr < 0) 2020 return 0; 2021 nixlf = rvu_get_lf(rvu, &hw->block[blkaddr], 2022 target, 0); 2023 if (nixlf < 0) 2024 return 0; 2025 npc_enadis_default_mce_entry(rvu, target, nixlf, 2026 NIXLF_ALLMULTI_ENTRY, 2027 false); 2028 npc_enadis_default_mce_entry(rvu, target, nixlf, 2029 NIXLF_PROMISC_ENTRY, 2030 false); 2031 } 2032 } 2033 2034 return 0; 2035 } 2036 2037 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid, 2038 struct mbox_msghdr *req) 2039 { 2040 struct rvu *rvu = pci_get_drvdata(mbox->pdev); 2041 2042 /* Check if valid, if not reply with a invalid msg */ 2043 if (req->sig != OTX2_MBOX_REQ_SIG) 2044 goto bad_message; 2045 2046 switch (req->id) { 2047 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \ 2048 case _id: { \ 2049 struct _rsp_type *rsp; \ 2050 int err; \ 2051 \ 2052 rsp = (struct _rsp_type *)otx2_mbox_alloc_msg( \ 2053 mbox, devid, \ 2054 sizeof(struct _rsp_type)); \ 2055 /* some handlers should complete even if reply */ \ 2056 /* could not be allocated */ \ 2057 if (!rsp && \ 2058 _id != MBOX_MSG_DETACH_RESOURCES && \ 2059 _id != MBOX_MSG_NIX_TXSCH_FREE && \ 2060 _id != MBOX_MSG_VF_FLR) \ 2061 return -ENOMEM; \ 2062 if (rsp) { \ 2063 rsp->hdr.id = _id; \ 2064 rsp->hdr.sig = OTX2_MBOX_RSP_SIG; \ 2065 rsp->hdr.pcifunc = req->pcifunc; \ 2066 rsp->hdr.rc = 0; \ 2067 } \ 2068 \ 2069 err = rvu_mbox_handler_ ## _fn_name(rvu, \ 2070 (struct _req_type *)req, \ 2071 rsp); \ 2072 if (rsp && err) \ 2073 rsp->hdr.rc = err; \ 2074 \ 2075 trace_otx2_msg_process(mbox->pdev, _id, err); \ 2076 return rsp ? err : -ENOMEM; \ 2077 } 2078 MBOX_MESSAGES 2079 #undef M 2080 2081 bad_message: 2082 default: 2083 otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id); 2084 return -ENODEV; 2085 } 2086 } 2087 2088 static void __rvu_mbox_handler(struct rvu_work *mwork, int type) 2089 { 2090 struct rvu *rvu = mwork->rvu; 2091 int offset, err, id, devid; 2092 struct otx2_mbox_dev *mdev; 2093 struct mbox_hdr *req_hdr; 2094 struct mbox_msghdr *msg; 2095 struct mbox_wq_info *mw; 2096 struct otx2_mbox *mbox; 2097 2098 switch (type) { 2099 case TYPE_AFPF: 2100 mw = &rvu->afpf_wq_info; 2101 break; 2102 case TYPE_AFVF: 2103 mw = &rvu->afvf_wq_info; 2104 break; 2105 default: 2106 return; 2107 } 2108 2109 devid = mwork - mw->mbox_wrk; 2110 mbox = &mw->mbox; 2111 mdev = &mbox->dev[devid]; 2112 2113 /* Process received mbox messages */ 2114 req_hdr = mdev->mbase + mbox->rx_start; 2115 if (mw->mbox_wrk[devid].num_msgs == 0) 2116 return; 2117 2118 offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN); 2119 2120 for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) { 2121 msg = mdev->mbase + offset; 2122 2123 /* Set which PF/VF sent this message based on mbox IRQ */ 2124 switch (type) { 2125 case TYPE_AFPF: 2126 msg->pcifunc &= 2127 ~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT); 2128 msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT); 2129 break; 2130 case TYPE_AFVF: 2131 msg->pcifunc &= 2132 ~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT); 2133 msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1; 2134 break; 2135 } 2136 2137 err = rvu_process_mbox_msg(mbox, devid, msg); 2138 if (!err) { 2139 offset = mbox->rx_start + msg->next_msgoff; 2140 continue; 2141 } 2142 2143 if (msg->pcifunc & RVU_PFVF_FUNC_MASK) 2144 dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n", 2145 err, otx2_mbox_id2name(msg->id), 2146 msg->id, rvu_get_pf(msg->pcifunc), 2147 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1); 2148 else 2149 dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n", 2150 err, otx2_mbox_id2name(msg->id), 2151 msg->id, devid); 2152 } 2153 mw->mbox_wrk[devid].num_msgs = 0; 2154 2155 /* Send mbox responses to VF/PF */ 2156 otx2_mbox_msg_send(mbox, devid); 2157 } 2158 2159 static inline void rvu_afpf_mbox_handler(struct work_struct *work) 2160 { 2161 struct rvu_work *mwork = container_of(work, struct rvu_work, work); 2162 2163 __rvu_mbox_handler(mwork, TYPE_AFPF); 2164 } 2165 2166 static inline void rvu_afvf_mbox_handler(struct work_struct *work) 2167 { 2168 struct rvu_work *mwork = container_of(work, struct rvu_work, work); 2169 2170 __rvu_mbox_handler(mwork, TYPE_AFVF); 2171 } 2172 2173 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type) 2174 { 2175 struct rvu *rvu = mwork->rvu; 2176 struct otx2_mbox_dev *mdev; 2177 struct mbox_hdr *rsp_hdr; 2178 struct mbox_msghdr *msg; 2179 struct mbox_wq_info *mw; 2180 struct otx2_mbox *mbox; 2181 int offset, id, devid; 2182 2183 switch (type) { 2184 case TYPE_AFPF: 2185 mw = &rvu->afpf_wq_info; 2186 break; 2187 case TYPE_AFVF: 2188 mw = &rvu->afvf_wq_info; 2189 break; 2190 default: 2191 return; 2192 } 2193 2194 devid = mwork - mw->mbox_wrk_up; 2195 mbox = &mw->mbox_up; 2196 mdev = &mbox->dev[devid]; 2197 2198 rsp_hdr = mdev->mbase + mbox->rx_start; 2199 if (mw->mbox_wrk_up[devid].up_num_msgs == 0) { 2200 dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n"); 2201 return; 2202 } 2203 2204 offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN); 2205 2206 for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) { 2207 msg = mdev->mbase + offset; 2208 2209 if (msg->id >= MBOX_MSG_MAX) { 2210 dev_err(rvu->dev, 2211 "Mbox msg with unknown ID 0x%x\n", msg->id); 2212 goto end; 2213 } 2214 2215 if (msg->sig != OTX2_MBOX_RSP_SIG) { 2216 dev_err(rvu->dev, 2217 "Mbox msg with wrong signature %x, ID 0x%x\n", 2218 msg->sig, msg->id); 2219 goto end; 2220 } 2221 2222 switch (msg->id) { 2223 case MBOX_MSG_CGX_LINK_EVENT: 2224 break; 2225 default: 2226 if (msg->rc) 2227 dev_err(rvu->dev, 2228 "Mbox msg response has err %d, ID 0x%x\n", 2229 msg->rc, msg->id); 2230 break; 2231 } 2232 end: 2233 offset = mbox->rx_start + msg->next_msgoff; 2234 mdev->msgs_acked++; 2235 } 2236 mw->mbox_wrk_up[devid].up_num_msgs = 0; 2237 2238 otx2_mbox_reset(mbox, devid); 2239 } 2240 2241 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work) 2242 { 2243 struct rvu_work *mwork = container_of(work, struct rvu_work, work); 2244 2245 __rvu_mbox_up_handler(mwork, TYPE_AFPF); 2246 } 2247 2248 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work) 2249 { 2250 struct rvu_work *mwork = container_of(work, struct rvu_work, work); 2251 2252 __rvu_mbox_up_handler(mwork, TYPE_AFVF); 2253 } 2254 2255 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr, 2256 int num, int type) 2257 { 2258 struct rvu_hwinfo *hw = rvu->hw; 2259 int region; 2260 u64 bar4; 2261 2262 /* For cn10k platform VF mailbox regions of a PF follows after the 2263 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from 2264 * RVU_PF_VF_BAR4_ADDR register. 2265 */ 2266 if (type == TYPE_AFVF) { 2267 for (region = 0; region < num; region++) { 2268 if (hw->cap.per_pf_mbox_regs) { 2269 bar4 = rvu_read64(rvu, BLKADDR_RVUM, 2270 RVU_AF_PFX_BAR4_ADDR(0)) + 2271 MBOX_SIZE; 2272 bar4 += region * MBOX_SIZE; 2273 } else { 2274 bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR); 2275 bar4 += region * MBOX_SIZE; 2276 } 2277 mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE); 2278 if (!mbox_addr[region]) 2279 goto error; 2280 } 2281 return 0; 2282 } 2283 2284 /* For cn10k platform AF <-> PF mailbox region of a PF is read from per 2285 * PF registers. Whereas for Octeontx2 it is read from 2286 * RVU_AF_PF_BAR4_ADDR register. 2287 */ 2288 for (region = 0; region < num; region++) { 2289 if (hw->cap.per_pf_mbox_regs) { 2290 bar4 = rvu_read64(rvu, BLKADDR_RVUM, 2291 RVU_AF_PFX_BAR4_ADDR(region)); 2292 } else { 2293 bar4 = rvu_read64(rvu, BLKADDR_RVUM, 2294 RVU_AF_PF_BAR4_ADDR); 2295 bar4 += region * MBOX_SIZE; 2296 } 2297 mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE); 2298 if (!mbox_addr[region]) 2299 goto error; 2300 } 2301 return 0; 2302 2303 error: 2304 while (region--) 2305 iounmap((void __iomem *)mbox_addr[region]); 2306 return -ENOMEM; 2307 } 2308 2309 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw, 2310 int type, int num, 2311 void (mbox_handler)(struct work_struct *), 2312 void (mbox_up_handler)(struct work_struct *)) 2313 { 2314 int err = -EINVAL, i, dir, dir_up; 2315 void __iomem *reg_base; 2316 struct rvu_work *mwork; 2317 void **mbox_regions; 2318 const char *name; 2319 2320 mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL); 2321 if (!mbox_regions) 2322 return -ENOMEM; 2323 2324 switch (type) { 2325 case TYPE_AFPF: 2326 name = "rvu_afpf_mailbox"; 2327 dir = MBOX_DIR_AFPF; 2328 dir_up = MBOX_DIR_AFPF_UP; 2329 reg_base = rvu->afreg_base; 2330 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF); 2331 if (err) 2332 goto free_regions; 2333 break; 2334 case TYPE_AFVF: 2335 name = "rvu_afvf_mailbox"; 2336 dir = MBOX_DIR_PFVF; 2337 dir_up = MBOX_DIR_PFVF_UP; 2338 reg_base = rvu->pfreg_base; 2339 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF); 2340 if (err) 2341 goto free_regions; 2342 break; 2343 default: 2344 return err; 2345 } 2346 2347 mw->mbox_wq = alloc_workqueue(name, 2348 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM, 2349 num); 2350 if (!mw->mbox_wq) { 2351 err = -ENOMEM; 2352 goto unmap_regions; 2353 } 2354 2355 mw->mbox_wrk = devm_kcalloc(rvu->dev, num, 2356 sizeof(struct rvu_work), GFP_KERNEL); 2357 if (!mw->mbox_wrk) { 2358 err = -ENOMEM; 2359 goto exit; 2360 } 2361 2362 mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num, 2363 sizeof(struct rvu_work), GFP_KERNEL); 2364 if (!mw->mbox_wrk_up) { 2365 err = -ENOMEM; 2366 goto exit; 2367 } 2368 2369 err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev, 2370 reg_base, dir, num); 2371 if (err) 2372 goto exit; 2373 2374 err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev, 2375 reg_base, dir_up, num); 2376 if (err) 2377 goto exit; 2378 2379 for (i = 0; i < num; i++) { 2380 mwork = &mw->mbox_wrk[i]; 2381 mwork->rvu = rvu; 2382 INIT_WORK(&mwork->work, mbox_handler); 2383 2384 mwork = &mw->mbox_wrk_up[i]; 2385 mwork->rvu = rvu; 2386 INIT_WORK(&mwork->work, mbox_up_handler); 2387 } 2388 kfree(mbox_regions); 2389 return 0; 2390 2391 exit: 2392 destroy_workqueue(mw->mbox_wq); 2393 unmap_regions: 2394 while (num--) 2395 iounmap((void __iomem *)mbox_regions[num]); 2396 free_regions: 2397 kfree(mbox_regions); 2398 return err; 2399 } 2400 2401 static void rvu_mbox_destroy(struct mbox_wq_info *mw) 2402 { 2403 struct otx2_mbox *mbox = &mw->mbox; 2404 struct otx2_mbox_dev *mdev; 2405 int devid; 2406 2407 if (mw->mbox_wq) { 2408 destroy_workqueue(mw->mbox_wq); 2409 mw->mbox_wq = NULL; 2410 } 2411 2412 for (devid = 0; devid < mbox->ndevs; devid++) { 2413 mdev = &mbox->dev[devid]; 2414 if (mdev->hwbase) 2415 iounmap((void __iomem *)mdev->hwbase); 2416 } 2417 2418 otx2_mbox_destroy(&mw->mbox); 2419 otx2_mbox_destroy(&mw->mbox_up); 2420 } 2421 2422 static void rvu_queue_work(struct mbox_wq_info *mw, int first, 2423 int mdevs, u64 intr) 2424 { 2425 struct otx2_mbox_dev *mdev; 2426 struct otx2_mbox *mbox; 2427 struct mbox_hdr *hdr; 2428 int i; 2429 2430 for (i = first; i < mdevs; i++) { 2431 /* start from 0 */ 2432 if (!(intr & BIT_ULL(i - first))) 2433 continue; 2434 2435 mbox = &mw->mbox; 2436 mdev = &mbox->dev[i]; 2437 hdr = mdev->mbase + mbox->rx_start; 2438 2439 /*The hdr->num_msgs is set to zero immediately in the interrupt 2440 * handler to ensure that it holds a correct value next time 2441 * when the interrupt handler is called. 2442 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler 2443 * pf>mbox.up_num_msgs holds the data for use in 2444 * pfaf_mbox_up_handler. 2445 */ 2446 2447 if (hdr->num_msgs) { 2448 mw->mbox_wrk[i].num_msgs = hdr->num_msgs; 2449 hdr->num_msgs = 0; 2450 queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work); 2451 } 2452 mbox = &mw->mbox_up; 2453 mdev = &mbox->dev[i]; 2454 hdr = mdev->mbase + mbox->rx_start; 2455 if (hdr->num_msgs) { 2456 mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs; 2457 hdr->num_msgs = 0; 2458 queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work); 2459 } 2460 } 2461 } 2462 2463 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq) 2464 { 2465 struct rvu *rvu = (struct rvu *)rvu_irq; 2466 int vfs = rvu->vfs; 2467 u64 intr; 2468 2469 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT); 2470 /* Clear interrupts */ 2471 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr); 2472 if (intr) 2473 trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr); 2474 2475 /* Sync with mbox memory region */ 2476 rmb(); 2477 2478 rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr); 2479 2480 /* Handle VF interrupts */ 2481 if (vfs > 64) { 2482 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1)); 2483 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr); 2484 2485 rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr); 2486 vfs -= 64; 2487 } 2488 2489 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0)); 2490 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr); 2491 if (intr) 2492 trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr); 2493 2494 rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr); 2495 2496 return IRQ_HANDLED; 2497 } 2498 2499 static void rvu_enable_mbox_intr(struct rvu *rvu) 2500 { 2501 struct rvu_hwinfo *hw = rvu->hw; 2502 2503 /* Clear spurious irqs, if any */ 2504 rvu_write64(rvu, BLKADDR_RVUM, 2505 RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs)); 2506 2507 /* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */ 2508 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S, 2509 INTR_MASK(hw->total_pfs) & ~1ULL); 2510 } 2511 2512 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr) 2513 { 2514 struct rvu_block *block; 2515 int slot, lf, num_lfs; 2516 int err; 2517 2518 block = &rvu->hw->block[blkaddr]; 2519 num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc), 2520 block->addr); 2521 if (!num_lfs) 2522 return; 2523 for (slot = 0; slot < num_lfs; slot++) { 2524 lf = rvu_get_lf(rvu, block, pcifunc, slot); 2525 if (lf < 0) 2526 continue; 2527 2528 /* Cleanup LF and reset it */ 2529 if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1) 2530 rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf); 2531 else if (block->addr == BLKADDR_NPA) 2532 rvu_npa_lf_teardown(rvu, pcifunc, lf); 2533 else if ((block->addr == BLKADDR_CPT0) || 2534 (block->addr == BLKADDR_CPT1)) 2535 rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf, 2536 slot); 2537 2538 err = rvu_lf_reset(rvu, block, lf); 2539 if (err) { 2540 dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n", 2541 block->addr, lf); 2542 } 2543 } 2544 } 2545 2546 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc) 2547 { 2548 mutex_lock(&rvu->flr_lock); 2549 /* Reset order should reflect inter-block dependencies: 2550 * 1. Reset any packet/work sources (NIX, CPT, TIM) 2551 * 2. Flush and reset SSO/SSOW 2552 * 3. Cleanup pools (NPA) 2553 */ 2554 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0); 2555 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1); 2556 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0); 2557 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1); 2558 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM); 2559 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW); 2560 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO); 2561 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA); 2562 rvu_reset_lmt_map_tbl(rvu, pcifunc); 2563 rvu_detach_rsrcs(rvu, NULL, pcifunc); 2564 mutex_unlock(&rvu->flr_lock); 2565 } 2566 2567 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf) 2568 { 2569 int reg = 0; 2570 2571 /* pcifunc = 0(PF0) | (vf + 1) */ 2572 __rvu_flr_handler(rvu, vf + 1); 2573 2574 if (vf >= 64) { 2575 reg = 1; 2576 vf = vf - 64; 2577 } 2578 2579 /* Signal FLR finish and enable IRQ */ 2580 rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf)); 2581 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf)); 2582 } 2583 2584 static void rvu_flr_handler(struct work_struct *work) 2585 { 2586 struct rvu_work *flrwork = container_of(work, struct rvu_work, work); 2587 struct rvu *rvu = flrwork->rvu; 2588 u16 pcifunc, numvfs, vf; 2589 u64 cfg; 2590 int pf; 2591 2592 pf = flrwork - rvu->flr_wrk; 2593 if (pf >= rvu->hw->total_pfs) { 2594 rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs); 2595 return; 2596 } 2597 2598 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf)); 2599 numvfs = (cfg >> 12) & 0xFF; 2600 pcifunc = pf << RVU_PFVF_PF_SHIFT; 2601 2602 for (vf = 0; vf < numvfs; vf++) 2603 __rvu_flr_handler(rvu, (pcifunc | (vf + 1))); 2604 2605 __rvu_flr_handler(rvu, pcifunc); 2606 2607 /* Signal FLR finish */ 2608 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf)); 2609 2610 /* Enable interrupt */ 2611 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S, BIT_ULL(pf)); 2612 } 2613 2614 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs) 2615 { 2616 int dev, vf, reg = 0; 2617 u64 intr; 2618 2619 if (start_vf >= 64) 2620 reg = 1; 2621 2622 intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg)); 2623 if (!intr) 2624 return; 2625 2626 for (vf = 0; vf < numvfs; vf++) { 2627 if (!(intr & BIT_ULL(vf))) 2628 continue; 2629 /* Clear and disable the interrupt */ 2630 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf)); 2631 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf)); 2632 2633 dev = vf + start_vf + rvu->hw->total_pfs; 2634 queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work); 2635 } 2636 } 2637 2638 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq) 2639 { 2640 struct rvu *rvu = (struct rvu *)rvu_irq; 2641 u64 intr; 2642 u8 pf; 2643 2644 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT); 2645 if (!intr) 2646 goto afvf_flr; 2647 2648 for (pf = 0; pf < rvu->hw->total_pfs; pf++) { 2649 if (intr & (1ULL << pf)) { 2650 /* clear interrupt */ 2651 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT, 2652 BIT_ULL(pf)); 2653 /* Disable the interrupt */ 2654 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C, 2655 BIT_ULL(pf)); 2656 /* PF is already dead do only AF related operations */ 2657 queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work); 2658 } 2659 } 2660 2661 afvf_flr: 2662 rvu_afvf_queue_flr_work(rvu, 0, 64); 2663 if (rvu->vfs > 64) 2664 rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64); 2665 2666 return IRQ_HANDLED; 2667 } 2668 2669 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr) 2670 { 2671 int vf; 2672 2673 /* Nothing to be done here other than clearing the 2674 * TRPEND bit. 2675 */ 2676 for (vf = 0; vf < 64; vf++) { 2677 if (intr & (1ULL << vf)) { 2678 /* clear the trpend due to ME(master enable) */ 2679 rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf)); 2680 /* clear interrupt */ 2681 rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf)); 2682 } 2683 } 2684 } 2685 2686 /* Handles ME interrupts from VFs of AF */ 2687 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq) 2688 { 2689 struct rvu *rvu = (struct rvu *)rvu_irq; 2690 int vfset; 2691 u64 intr; 2692 2693 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT); 2694 2695 for (vfset = 0; vfset <= 1; vfset++) { 2696 intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset)); 2697 if (intr) 2698 rvu_me_handle_vfset(rvu, vfset, intr); 2699 } 2700 2701 return IRQ_HANDLED; 2702 } 2703 2704 /* Handles ME interrupts from PFs */ 2705 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq) 2706 { 2707 struct rvu *rvu = (struct rvu *)rvu_irq; 2708 u64 intr; 2709 u8 pf; 2710 2711 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT); 2712 2713 /* Nothing to be done here other than clearing the 2714 * TRPEND bit. 2715 */ 2716 for (pf = 0; pf < rvu->hw->total_pfs; pf++) { 2717 if (intr & (1ULL << pf)) { 2718 /* clear the trpend due to ME(master enable) */ 2719 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, 2720 BIT_ULL(pf)); 2721 /* clear interrupt */ 2722 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT, 2723 BIT_ULL(pf)); 2724 } 2725 } 2726 2727 return IRQ_HANDLED; 2728 } 2729 2730 static void rvu_unregister_interrupts(struct rvu *rvu) 2731 { 2732 int irq; 2733 2734 rvu_cpt_unregister_interrupts(rvu); 2735 2736 /* Disable the Mbox interrupt */ 2737 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C, 2738 INTR_MASK(rvu->hw->total_pfs) & ~1ULL); 2739 2740 /* Disable the PF FLR interrupt */ 2741 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C, 2742 INTR_MASK(rvu->hw->total_pfs) & ~1ULL); 2743 2744 /* Disable the PF ME interrupt */ 2745 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C, 2746 INTR_MASK(rvu->hw->total_pfs) & ~1ULL); 2747 2748 for (irq = 0; irq < rvu->num_vec; irq++) { 2749 if (rvu->irq_allocated[irq]) { 2750 free_irq(pci_irq_vector(rvu->pdev, irq), rvu); 2751 rvu->irq_allocated[irq] = false; 2752 } 2753 } 2754 2755 pci_free_irq_vectors(rvu->pdev); 2756 rvu->num_vec = 0; 2757 } 2758 2759 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu) 2760 { 2761 struct rvu_pfvf *pfvf = &rvu->pf[0]; 2762 int offset; 2763 2764 pfvf = &rvu->pf[0]; 2765 offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff; 2766 2767 /* Make sure there are enough MSIX vectors configured so that 2768 * VF interrupts can be handled. Offset equal to zero means 2769 * that PF vectors are not configured and overlapping AF vectors. 2770 */ 2771 return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) && 2772 offset; 2773 } 2774 2775 static int rvu_register_interrupts(struct rvu *rvu) 2776 { 2777 int ret, offset, pf_vec_start; 2778 2779 rvu->num_vec = pci_msix_vec_count(rvu->pdev); 2780 2781 rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec, 2782 NAME_SIZE, GFP_KERNEL); 2783 if (!rvu->irq_name) 2784 return -ENOMEM; 2785 2786 rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec, 2787 sizeof(bool), GFP_KERNEL); 2788 if (!rvu->irq_allocated) 2789 return -ENOMEM; 2790 2791 /* Enable MSI-X */ 2792 ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec, 2793 rvu->num_vec, PCI_IRQ_MSIX); 2794 if (ret < 0) { 2795 dev_err(rvu->dev, 2796 "RVUAF: Request for %d msix vectors failed, ret %d\n", 2797 rvu->num_vec, ret); 2798 return ret; 2799 } 2800 2801 /* Register mailbox interrupt handler */ 2802 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox"); 2803 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX), 2804 rvu_mbox_intr_handler, 0, 2805 &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu); 2806 if (ret) { 2807 dev_err(rvu->dev, 2808 "RVUAF: IRQ registration failed for mbox irq\n"); 2809 goto fail; 2810 } 2811 2812 rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true; 2813 2814 /* Enable mailbox interrupts from all PFs */ 2815 rvu_enable_mbox_intr(rvu); 2816 2817 /* Register FLR interrupt handler */ 2818 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE], 2819 "RVUAF FLR"); 2820 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR), 2821 rvu_flr_intr_handler, 0, 2822 &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE], 2823 rvu); 2824 if (ret) { 2825 dev_err(rvu->dev, 2826 "RVUAF: IRQ registration failed for FLR\n"); 2827 goto fail; 2828 } 2829 rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true; 2830 2831 /* Enable FLR interrupt for all PFs*/ 2832 rvu_write64(rvu, BLKADDR_RVUM, 2833 RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs)); 2834 2835 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S, 2836 INTR_MASK(rvu->hw->total_pfs) & ~1ULL); 2837 2838 /* Register ME interrupt handler */ 2839 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE], 2840 "RVUAF ME"); 2841 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME), 2842 rvu_me_pf_intr_handler, 0, 2843 &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE], 2844 rvu); 2845 if (ret) { 2846 dev_err(rvu->dev, 2847 "RVUAF: IRQ registration failed for ME\n"); 2848 } 2849 rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true; 2850 2851 /* Clear TRPEND bit for all PF */ 2852 rvu_write64(rvu, BLKADDR_RVUM, 2853 RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs)); 2854 /* Enable ME interrupt for all PFs*/ 2855 rvu_write64(rvu, BLKADDR_RVUM, 2856 RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs)); 2857 2858 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S, 2859 INTR_MASK(rvu->hw->total_pfs) & ~1ULL); 2860 2861 if (!rvu_afvf_msix_vectors_num_ok(rvu)) 2862 return 0; 2863 2864 /* Get PF MSIX vectors offset. */ 2865 pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM, 2866 RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff; 2867 2868 /* Register MBOX0 interrupt. */ 2869 offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0; 2870 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0"); 2871 ret = request_irq(pci_irq_vector(rvu->pdev, offset), 2872 rvu_mbox_intr_handler, 0, 2873 &rvu->irq_name[offset * NAME_SIZE], 2874 rvu); 2875 if (ret) 2876 dev_err(rvu->dev, 2877 "RVUAF: IRQ registration failed for Mbox0\n"); 2878 2879 rvu->irq_allocated[offset] = true; 2880 2881 /* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so 2882 * simply increment current offset by 1. 2883 */ 2884 offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1; 2885 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1"); 2886 ret = request_irq(pci_irq_vector(rvu->pdev, offset), 2887 rvu_mbox_intr_handler, 0, 2888 &rvu->irq_name[offset * NAME_SIZE], 2889 rvu); 2890 if (ret) 2891 dev_err(rvu->dev, 2892 "RVUAF: IRQ registration failed for Mbox1\n"); 2893 2894 rvu->irq_allocated[offset] = true; 2895 2896 /* Register FLR interrupt handler for AF's VFs */ 2897 offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0; 2898 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0"); 2899 ret = request_irq(pci_irq_vector(rvu->pdev, offset), 2900 rvu_flr_intr_handler, 0, 2901 &rvu->irq_name[offset * NAME_SIZE], rvu); 2902 if (ret) { 2903 dev_err(rvu->dev, 2904 "RVUAF: IRQ registration failed for RVUAFVF FLR0\n"); 2905 goto fail; 2906 } 2907 rvu->irq_allocated[offset] = true; 2908 2909 offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1; 2910 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1"); 2911 ret = request_irq(pci_irq_vector(rvu->pdev, offset), 2912 rvu_flr_intr_handler, 0, 2913 &rvu->irq_name[offset * NAME_SIZE], rvu); 2914 if (ret) { 2915 dev_err(rvu->dev, 2916 "RVUAF: IRQ registration failed for RVUAFVF FLR1\n"); 2917 goto fail; 2918 } 2919 rvu->irq_allocated[offset] = true; 2920 2921 /* Register ME interrupt handler for AF's VFs */ 2922 offset = pf_vec_start + RVU_PF_INT_VEC_VFME0; 2923 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0"); 2924 ret = request_irq(pci_irq_vector(rvu->pdev, offset), 2925 rvu_me_vf_intr_handler, 0, 2926 &rvu->irq_name[offset * NAME_SIZE], rvu); 2927 if (ret) { 2928 dev_err(rvu->dev, 2929 "RVUAF: IRQ registration failed for RVUAFVF ME0\n"); 2930 goto fail; 2931 } 2932 rvu->irq_allocated[offset] = true; 2933 2934 offset = pf_vec_start + RVU_PF_INT_VEC_VFME1; 2935 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1"); 2936 ret = request_irq(pci_irq_vector(rvu->pdev, offset), 2937 rvu_me_vf_intr_handler, 0, 2938 &rvu->irq_name[offset * NAME_SIZE], rvu); 2939 if (ret) { 2940 dev_err(rvu->dev, 2941 "RVUAF: IRQ registration failed for RVUAFVF ME1\n"); 2942 goto fail; 2943 } 2944 rvu->irq_allocated[offset] = true; 2945 2946 ret = rvu_cpt_register_interrupts(rvu); 2947 if (ret) 2948 goto fail; 2949 2950 return 0; 2951 2952 fail: 2953 rvu_unregister_interrupts(rvu); 2954 return ret; 2955 } 2956 2957 static void rvu_flr_wq_destroy(struct rvu *rvu) 2958 { 2959 if (rvu->flr_wq) { 2960 destroy_workqueue(rvu->flr_wq); 2961 rvu->flr_wq = NULL; 2962 } 2963 } 2964 2965 static int rvu_flr_init(struct rvu *rvu) 2966 { 2967 int dev, num_devs; 2968 u64 cfg; 2969 int pf; 2970 2971 /* Enable FLR for all PFs*/ 2972 for (pf = 0; pf < rvu->hw->total_pfs; pf++) { 2973 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf)); 2974 rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf), 2975 cfg | BIT_ULL(22)); 2976 } 2977 2978 rvu->flr_wq = alloc_workqueue("rvu_afpf_flr", 2979 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM, 2980 1); 2981 if (!rvu->flr_wq) 2982 return -ENOMEM; 2983 2984 num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev); 2985 rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs, 2986 sizeof(struct rvu_work), GFP_KERNEL); 2987 if (!rvu->flr_wrk) { 2988 destroy_workqueue(rvu->flr_wq); 2989 return -ENOMEM; 2990 } 2991 2992 for (dev = 0; dev < num_devs; dev++) { 2993 rvu->flr_wrk[dev].rvu = rvu; 2994 INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler); 2995 } 2996 2997 mutex_init(&rvu->flr_lock); 2998 2999 return 0; 3000 } 3001 3002 static void rvu_disable_afvf_intr(struct rvu *rvu) 3003 { 3004 int vfs = rvu->vfs; 3005 3006 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs)); 3007 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs)); 3008 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs)); 3009 if (vfs <= 64) 3010 return; 3011 3012 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1), 3013 INTR_MASK(vfs - 64)); 3014 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64)); 3015 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64)); 3016 } 3017 3018 static void rvu_enable_afvf_intr(struct rvu *rvu) 3019 { 3020 int vfs = rvu->vfs; 3021 3022 /* Clear any pending interrupts and enable AF VF interrupts for 3023 * the first 64 VFs. 3024 */ 3025 /* Mbox */ 3026 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs)); 3027 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs)); 3028 3029 /* FLR */ 3030 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs)); 3031 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs)); 3032 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs)); 3033 3034 /* Same for remaining VFs, if any. */ 3035 if (vfs <= 64) 3036 return; 3037 3038 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64)); 3039 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1), 3040 INTR_MASK(vfs - 64)); 3041 3042 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64)); 3043 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64)); 3044 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64)); 3045 } 3046 3047 int rvu_get_num_lbk_chans(void) 3048 { 3049 struct pci_dev *pdev; 3050 void __iomem *base; 3051 int ret = -EIO; 3052 3053 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK, 3054 NULL); 3055 if (!pdev) 3056 goto err; 3057 3058 base = pci_ioremap_bar(pdev, 0); 3059 if (!base) 3060 goto err_put; 3061 3062 /* Read number of available LBK channels from LBK(0)_CONST register. */ 3063 ret = (readq(base + 0x10) >> 32) & 0xffff; 3064 iounmap(base); 3065 err_put: 3066 pci_dev_put(pdev); 3067 err: 3068 return ret; 3069 } 3070 3071 static int rvu_enable_sriov(struct rvu *rvu) 3072 { 3073 struct pci_dev *pdev = rvu->pdev; 3074 int err, chans, vfs; 3075 3076 if (!rvu_afvf_msix_vectors_num_ok(rvu)) { 3077 dev_warn(&pdev->dev, 3078 "Skipping SRIOV enablement since not enough IRQs are available\n"); 3079 return 0; 3080 } 3081 3082 chans = rvu_get_num_lbk_chans(); 3083 if (chans < 0) 3084 return chans; 3085 3086 vfs = pci_sriov_get_totalvfs(pdev); 3087 3088 /* Limit VFs in case we have more VFs than LBK channels available. */ 3089 if (vfs > chans) 3090 vfs = chans; 3091 3092 if (!vfs) 3093 return 0; 3094 3095 /* LBK channel number 63 is used for switching packets between 3096 * CGX mapped VFs. Hence limit LBK pairs till 62 only. 3097 */ 3098 if (vfs > 62) 3099 vfs = 62; 3100 3101 /* Save VFs number for reference in VF interrupts handlers. 3102 * Since interrupts might start arriving during SRIOV enablement 3103 * ordinary API cannot be used to get number of enabled VFs. 3104 */ 3105 rvu->vfs = vfs; 3106 3107 err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs, 3108 rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler); 3109 if (err) 3110 return err; 3111 3112 rvu_enable_afvf_intr(rvu); 3113 /* Make sure IRQs are enabled before SRIOV. */ 3114 mb(); 3115 3116 err = pci_enable_sriov(pdev, vfs); 3117 if (err) { 3118 rvu_disable_afvf_intr(rvu); 3119 rvu_mbox_destroy(&rvu->afvf_wq_info); 3120 return err; 3121 } 3122 3123 return 0; 3124 } 3125 3126 static void rvu_disable_sriov(struct rvu *rvu) 3127 { 3128 rvu_disable_afvf_intr(rvu); 3129 rvu_mbox_destroy(&rvu->afvf_wq_info); 3130 pci_disable_sriov(rvu->pdev); 3131 } 3132 3133 static void rvu_update_module_params(struct rvu *rvu) 3134 { 3135 const char *default_pfl_name = "default"; 3136 3137 strscpy(rvu->mkex_pfl_name, 3138 mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN); 3139 strscpy(rvu->kpu_pfl_name, 3140 kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN); 3141 } 3142 3143 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id) 3144 { 3145 struct device *dev = &pdev->dev; 3146 struct rvu *rvu; 3147 int err; 3148 3149 rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL); 3150 if (!rvu) 3151 return -ENOMEM; 3152 3153 rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL); 3154 if (!rvu->hw) { 3155 devm_kfree(dev, rvu); 3156 return -ENOMEM; 3157 } 3158 3159 pci_set_drvdata(pdev, rvu); 3160 rvu->pdev = pdev; 3161 rvu->dev = &pdev->dev; 3162 3163 err = pci_enable_device(pdev); 3164 if (err) { 3165 dev_err(dev, "Failed to enable PCI device\n"); 3166 goto err_freemem; 3167 } 3168 3169 err = pci_request_regions(pdev, DRV_NAME); 3170 if (err) { 3171 dev_err(dev, "PCI request regions failed 0x%x\n", err); 3172 goto err_disable_device; 3173 } 3174 3175 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48)); 3176 if (err) { 3177 dev_err(dev, "DMA mask config failed, abort\n"); 3178 goto err_release_regions; 3179 } 3180 3181 pci_set_master(pdev); 3182 3183 rvu->ptp = ptp_get(); 3184 if (IS_ERR(rvu->ptp)) { 3185 err = PTR_ERR(rvu->ptp); 3186 if (err == -EPROBE_DEFER) 3187 goto err_release_regions; 3188 rvu->ptp = NULL; 3189 } 3190 3191 /* Map Admin function CSRs */ 3192 rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0); 3193 rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0); 3194 if (!rvu->afreg_base || !rvu->pfreg_base) { 3195 dev_err(dev, "Unable to map admin function CSRs, aborting\n"); 3196 err = -ENOMEM; 3197 goto err_put_ptp; 3198 } 3199 3200 /* Store module params in rvu structure */ 3201 rvu_update_module_params(rvu); 3202 3203 /* Check which blocks the HW supports */ 3204 rvu_check_block_implemented(rvu); 3205 3206 rvu_reset_all_blocks(rvu); 3207 3208 rvu_setup_hw_capabilities(rvu); 3209 3210 err = rvu_setup_hw_resources(rvu); 3211 if (err) 3212 goto err_put_ptp; 3213 3214 /* Init mailbox btw AF and PFs */ 3215 err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF, 3216 rvu->hw->total_pfs, rvu_afpf_mbox_handler, 3217 rvu_afpf_mbox_up_handler); 3218 if (err) { 3219 dev_err(dev, "%s: Failed to initialize mbox\n", __func__); 3220 goto err_hwsetup; 3221 } 3222 3223 err = rvu_flr_init(rvu); 3224 if (err) { 3225 dev_err(dev, "%s: Failed to initialize flr\n", __func__); 3226 goto err_mbox; 3227 } 3228 3229 err = rvu_register_interrupts(rvu); 3230 if (err) { 3231 dev_err(dev, "%s: Failed to register interrupts\n", __func__); 3232 goto err_flr; 3233 } 3234 3235 err = rvu_register_dl(rvu); 3236 if (err) { 3237 dev_err(dev, "%s: Failed to register devlink\n", __func__); 3238 goto err_irq; 3239 } 3240 3241 rvu_setup_rvum_blk_revid(rvu); 3242 3243 /* Enable AF's VFs (if any) */ 3244 err = rvu_enable_sriov(rvu); 3245 if (err) { 3246 dev_err(dev, "%s: Failed to enable sriov\n", __func__); 3247 goto err_dl; 3248 } 3249 3250 /* Initialize debugfs */ 3251 rvu_dbg_init(rvu); 3252 3253 mutex_init(&rvu->rswitch.switch_lock); 3254 3255 if (rvu->fwdata) 3256 ptp_start(rvu->ptp, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate, 3257 rvu->fwdata->ptp_ext_tstamp); 3258 3259 return 0; 3260 err_dl: 3261 rvu_unregister_dl(rvu); 3262 err_irq: 3263 rvu_unregister_interrupts(rvu); 3264 err_flr: 3265 rvu_flr_wq_destroy(rvu); 3266 err_mbox: 3267 rvu_mbox_destroy(&rvu->afpf_wq_info); 3268 err_hwsetup: 3269 rvu_cgx_exit(rvu); 3270 rvu_fwdata_exit(rvu); 3271 rvu_reset_all_blocks(rvu); 3272 rvu_free_hw_resources(rvu); 3273 rvu_clear_rvum_blk_revid(rvu); 3274 err_put_ptp: 3275 ptp_put(rvu->ptp); 3276 err_release_regions: 3277 pci_release_regions(pdev); 3278 err_disable_device: 3279 pci_disable_device(pdev); 3280 err_freemem: 3281 pci_set_drvdata(pdev, NULL); 3282 devm_kfree(&pdev->dev, rvu->hw); 3283 devm_kfree(dev, rvu); 3284 return err; 3285 } 3286 3287 static void rvu_remove(struct pci_dev *pdev) 3288 { 3289 struct rvu *rvu = pci_get_drvdata(pdev); 3290 3291 rvu_dbg_exit(rvu); 3292 rvu_unregister_dl(rvu); 3293 rvu_unregister_interrupts(rvu); 3294 rvu_flr_wq_destroy(rvu); 3295 rvu_cgx_exit(rvu); 3296 rvu_fwdata_exit(rvu); 3297 rvu_mbox_destroy(&rvu->afpf_wq_info); 3298 rvu_disable_sriov(rvu); 3299 rvu_reset_all_blocks(rvu); 3300 rvu_free_hw_resources(rvu); 3301 rvu_clear_rvum_blk_revid(rvu); 3302 ptp_put(rvu->ptp); 3303 pci_release_regions(pdev); 3304 pci_disable_device(pdev); 3305 pci_set_drvdata(pdev, NULL); 3306 3307 devm_kfree(&pdev->dev, rvu->hw); 3308 devm_kfree(&pdev->dev, rvu); 3309 } 3310 3311 static struct pci_driver rvu_driver = { 3312 .name = DRV_NAME, 3313 .id_table = rvu_id_table, 3314 .probe = rvu_probe, 3315 .remove = rvu_remove, 3316 }; 3317 3318 static int __init rvu_init_module(void) 3319 { 3320 int err; 3321 3322 pr_info("%s: %s\n", DRV_NAME, DRV_STRING); 3323 3324 err = pci_register_driver(&cgx_driver); 3325 if (err < 0) 3326 return err; 3327 3328 err = pci_register_driver(&ptp_driver); 3329 if (err < 0) 3330 goto ptp_err; 3331 3332 err = pci_register_driver(&rvu_driver); 3333 if (err < 0) 3334 goto rvu_err; 3335 3336 return 0; 3337 rvu_err: 3338 pci_unregister_driver(&ptp_driver); 3339 ptp_err: 3340 pci_unregister_driver(&cgx_driver); 3341 3342 return err; 3343 } 3344 3345 static void __exit rvu_cleanup_module(void) 3346 { 3347 pci_unregister_driver(&rvu_driver); 3348 pci_unregister_driver(&ptp_driver); 3349 pci_unregister_driver(&cgx_driver); 3350 } 3351 3352 module_init(rvu_init_module); 3353 module_exit(rvu_cleanup_module); 3354