1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 
20 #include "rvu_trace.h"
21 #include "rvu_npc_hash.h"
22 
23 #define DRV_NAME	"rvu_af"
24 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
25 
26 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
27 
28 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
29 				struct rvu_block *block, int lf);
30 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31 				  struct rvu_block *block, int lf);
32 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
33 
34 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
35 			 int type, int num,
36 			 void (mbox_handler)(struct work_struct *),
37 			 void (mbox_up_handler)(struct work_struct *));
38 enum {
39 	TYPE_AFVF,
40 	TYPE_AFPF,
41 };
42 
43 /* Supported devices */
44 static const struct pci_device_id rvu_id_table[] = {
45 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
46 	{ 0, }  /* end of table */
47 };
48 
49 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
50 MODULE_DESCRIPTION(DRV_STRING);
51 MODULE_LICENSE("GPL v2");
52 MODULE_DEVICE_TABLE(pci, rvu_id_table);
53 
54 static char *mkex_profile; /* MKEX profile name */
55 module_param(mkex_profile, charp, 0000);
56 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
57 
58 static char *kpu_profile; /* KPU profile name */
59 module_param(kpu_profile, charp, 0000);
60 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
61 
62 static void rvu_setup_hw_capabilities(struct rvu *rvu)
63 {
64 	struct rvu_hwinfo *hw = rvu->hw;
65 
66 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
67 	hw->cap.nix_fixed_txschq_mapping = false;
68 	hw->cap.nix_shaping = true;
69 	hw->cap.nix_tx_link_bp = true;
70 	hw->cap.nix_rx_multicast = true;
71 	hw->cap.nix_shaper_toggle_wait = false;
72 	hw->cap.npc_hash_extract = false;
73 	hw->cap.npc_exact_match_enabled = false;
74 	hw->rvu = rvu;
75 
76 	if (is_rvu_pre_96xx_C0(rvu)) {
77 		hw->cap.nix_fixed_txschq_mapping = true;
78 		hw->cap.nix_txsch_per_cgx_lmac = 4;
79 		hw->cap.nix_txsch_per_lbk_lmac = 132;
80 		hw->cap.nix_txsch_per_sdp_lmac = 76;
81 		hw->cap.nix_shaping = false;
82 		hw->cap.nix_tx_link_bp = false;
83 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
84 			hw->cap.nix_rx_multicast = false;
85 	}
86 	if (!is_rvu_pre_96xx_C0(rvu))
87 		hw->cap.nix_shaper_toggle_wait = true;
88 
89 	if (!is_rvu_otx2(rvu))
90 		hw->cap.per_pf_mbox_regs = true;
91 
92 	if (is_rvu_npc_hash_extract_en(rvu))
93 		hw->cap.npc_hash_extract = true;
94 }
95 
96 /* Poll a RVU block's register 'offset', for a 'zero'
97  * or 'nonzero' at bits specified by 'mask'
98  */
99 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
100 {
101 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
102 	bool twice = false;
103 	void __iomem *reg;
104 	u64 reg_val;
105 
106 	reg = rvu->afreg_base + ((block << 28) | offset);
107 again:
108 	reg_val = readq(reg);
109 	if (zero && !(reg_val & mask))
110 		return 0;
111 	if (!zero && (reg_val & mask))
112 		return 0;
113 	if (time_before(jiffies, timeout)) {
114 		usleep_range(1, 5);
115 		goto again;
116 	}
117 	/* In scenarios where CPU is scheduled out before checking
118 	 * 'time_before' (above) and gets scheduled in such that
119 	 * jiffies are beyond timeout value, then check again if HW is
120 	 * done with the operation in the meantime.
121 	 */
122 	if (!twice) {
123 		twice = true;
124 		goto again;
125 	}
126 	return -EBUSY;
127 }
128 
129 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
130 {
131 	int id;
132 
133 	if (!rsrc->bmap)
134 		return -EINVAL;
135 
136 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
137 	if (id >= rsrc->max)
138 		return -ENOSPC;
139 
140 	__set_bit(id, rsrc->bmap);
141 
142 	return id;
143 }
144 
145 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
146 {
147 	int start;
148 
149 	if (!rsrc->bmap)
150 		return -EINVAL;
151 
152 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
153 	if (start >= rsrc->max)
154 		return -ENOSPC;
155 
156 	bitmap_set(rsrc->bmap, start, nrsrc);
157 	return start;
158 }
159 
160 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
161 {
162 	if (!rsrc->bmap)
163 		return;
164 	if (start >= rsrc->max)
165 		return;
166 
167 	bitmap_clear(rsrc->bmap, start, nrsrc);
168 }
169 
170 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
171 {
172 	int start;
173 
174 	if (!rsrc->bmap)
175 		return false;
176 
177 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
178 	if (start >= rsrc->max)
179 		return false;
180 
181 	return true;
182 }
183 
184 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
185 {
186 	if (!rsrc->bmap)
187 		return;
188 
189 	__clear_bit(id, rsrc->bmap);
190 }
191 
192 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
193 {
194 	int used;
195 
196 	if (!rsrc->bmap)
197 		return 0;
198 
199 	used = bitmap_weight(rsrc->bmap, rsrc->max);
200 	return (rsrc->max - used);
201 }
202 
203 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
204 {
205 	if (!rsrc->bmap)
206 		return false;
207 
208 	return !test_bit(id, rsrc->bmap);
209 }
210 
211 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
212 {
213 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
214 			     sizeof(long), GFP_KERNEL);
215 	if (!rsrc->bmap)
216 		return -ENOMEM;
217 	return 0;
218 }
219 
220 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
221 {
222 	kfree(rsrc->bmap);
223 }
224 
225 /* Get block LF's HW index from a PF_FUNC's block slot number */
226 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
227 {
228 	u16 match = 0;
229 	int lf;
230 
231 	mutex_lock(&rvu->rsrc_lock);
232 	for (lf = 0; lf < block->lf.max; lf++) {
233 		if (block->fn_map[lf] == pcifunc) {
234 			if (slot == match) {
235 				mutex_unlock(&rvu->rsrc_lock);
236 				return lf;
237 			}
238 			match++;
239 		}
240 	}
241 	mutex_unlock(&rvu->rsrc_lock);
242 	return -ENODEV;
243 }
244 
245 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
246  * Some silicon variants of OcteonTX2 supports
247  * multiple blocks of same type.
248  *
249  * @pcifunc has to be zero when no LF is yet attached.
250  *
251  * For a pcifunc if LFs are attached from multiple blocks of same type, then
252  * return blkaddr of first encountered block.
253  */
254 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
255 {
256 	int devnum, blkaddr = -ENODEV;
257 	u64 cfg, reg;
258 	bool is_pf;
259 
260 	switch (blktype) {
261 	case BLKTYPE_NPC:
262 		blkaddr = BLKADDR_NPC;
263 		goto exit;
264 	case BLKTYPE_NPA:
265 		blkaddr = BLKADDR_NPA;
266 		goto exit;
267 	case BLKTYPE_NIX:
268 		/* For now assume NIX0 */
269 		if (!pcifunc) {
270 			blkaddr = BLKADDR_NIX0;
271 			goto exit;
272 		}
273 		break;
274 	case BLKTYPE_SSO:
275 		blkaddr = BLKADDR_SSO;
276 		goto exit;
277 	case BLKTYPE_SSOW:
278 		blkaddr = BLKADDR_SSOW;
279 		goto exit;
280 	case BLKTYPE_TIM:
281 		blkaddr = BLKADDR_TIM;
282 		goto exit;
283 	case BLKTYPE_CPT:
284 		/* For now assume CPT0 */
285 		if (!pcifunc) {
286 			blkaddr = BLKADDR_CPT0;
287 			goto exit;
288 		}
289 		break;
290 	}
291 
292 	/* Check if this is a RVU PF or VF */
293 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
294 		is_pf = false;
295 		devnum = rvu_get_hwvf(rvu, pcifunc);
296 	} else {
297 		is_pf = true;
298 		devnum = rvu_get_pf(pcifunc);
299 	}
300 
301 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
302 	 * 'BLKADDR_NIX1'.
303 	 */
304 	if (blktype == BLKTYPE_NIX) {
305 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
306 			RVU_PRIV_HWVFX_NIXX_CFG(0);
307 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
308 		if (cfg) {
309 			blkaddr = BLKADDR_NIX0;
310 			goto exit;
311 		}
312 
313 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
314 			RVU_PRIV_HWVFX_NIXX_CFG(1);
315 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
316 		if (cfg)
317 			blkaddr = BLKADDR_NIX1;
318 	}
319 
320 	if (blktype == BLKTYPE_CPT) {
321 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
322 			RVU_PRIV_HWVFX_CPTX_CFG(0);
323 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
324 		if (cfg) {
325 			blkaddr = BLKADDR_CPT0;
326 			goto exit;
327 		}
328 
329 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
330 			RVU_PRIV_HWVFX_CPTX_CFG(1);
331 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
332 		if (cfg)
333 			blkaddr = BLKADDR_CPT1;
334 	}
335 
336 exit:
337 	if (is_block_implemented(rvu->hw, blkaddr))
338 		return blkaddr;
339 	return -ENODEV;
340 }
341 
342 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
343 				struct rvu_block *block, u16 pcifunc,
344 				u16 lf, bool attach)
345 {
346 	int devnum, num_lfs = 0;
347 	bool is_pf;
348 	u64 reg;
349 
350 	if (lf >= block->lf.max) {
351 		dev_err(&rvu->pdev->dev,
352 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
353 			__func__, lf, block->name, block->lf.max);
354 		return;
355 	}
356 
357 	/* Check if this is for a RVU PF or VF */
358 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
359 		is_pf = false;
360 		devnum = rvu_get_hwvf(rvu, pcifunc);
361 	} else {
362 		is_pf = true;
363 		devnum = rvu_get_pf(pcifunc);
364 	}
365 
366 	block->fn_map[lf] = attach ? pcifunc : 0;
367 
368 	switch (block->addr) {
369 	case BLKADDR_NPA:
370 		pfvf->npalf = attach ? true : false;
371 		num_lfs = pfvf->npalf;
372 		break;
373 	case BLKADDR_NIX0:
374 	case BLKADDR_NIX1:
375 		pfvf->nixlf = attach ? true : false;
376 		num_lfs = pfvf->nixlf;
377 		break;
378 	case BLKADDR_SSO:
379 		attach ? pfvf->sso++ : pfvf->sso--;
380 		num_lfs = pfvf->sso;
381 		break;
382 	case BLKADDR_SSOW:
383 		attach ? pfvf->ssow++ : pfvf->ssow--;
384 		num_lfs = pfvf->ssow;
385 		break;
386 	case BLKADDR_TIM:
387 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
388 		num_lfs = pfvf->timlfs;
389 		break;
390 	case BLKADDR_CPT0:
391 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
392 		num_lfs = pfvf->cptlfs;
393 		break;
394 	case BLKADDR_CPT1:
395 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
396 		num_lfs = pfvf->cpt1_lfs;
397 		break;
398 	}
399 
400 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
401 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
402 }
403 
404 inline int rvu_get_pf(u16 pcifunc)
405 {
406 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
407 }
408 
409 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
410 {
411 	u64 cfg;
412 
413 	/* Get numVFs attached to this PF and first HWVF */
414 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
415 	if (numvfs)
416 		*numvfs = (cfg >> 12) & 0xFF;
417 	if (hwvf)
418 		*hwvf = cfg & 0xFFF;
419 }
420 
421 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
422 {
423 	int pf, func;
424 	u64 cfg;
425 
426 	pf = rvu_get_pf(pcifunc);
427 	func = pcifunc & RVU_PFVF_FUNC_MASK;
428 
429 	/* Get first HWVF attached to this PF */
430 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
431 
432 	return ((cfg & 0xFFF) + func - 1);
433 }
434 
435 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
436 {
437 	/* Check if it is a PF or VF */
438 	if (pcifunc & RVU_PFVF_FUNC_MASK)
439 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
440 	else
441 		return &rvu->pf[rvu_get_pf(pcifunc)];
442 }
443 
444 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
445 {
446 	int pf, vf, nvfs;
447 	u64 cfg;
448 
449 	pf = rvu_get_pf(pcifunc);
450 	if (pf >= rvu->hw->total_pfs)
451 		return false;
452 
453 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
454 		return true;
455 
456 	/* Check if VF is within number of VFs attached to this PF */
457 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
458 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
459 	nvfs = (cfg >> 12) & 0xFF;
460 	if (vf >= nvfs)
461 		return false;
462 
463 	return true;
464 }
465 
466 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
467 {
468 	struct rvu_block *block;
469 
470 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
471 		return false;
472 
473 	block = &hw->block[blkaddr];
474 	return block->implemented;
475 }
476 
477 static void rvu_check_block_implemented(struct rvu *rvu)
478 {
479 	struct rvu_hwinfo *hw = rvu->hw;
480 	struct rvu_block *block;
481 	int blkid;
482 	u64 cfg;
483 
484 	/* For each block check if 'implemented' bit is set */
485 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
486 		block = &hw->block[blkid];
487 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
488 		if (cfg & BIT_ULL(11))
489 			block->implemented = true;
490 	}
491 }
492 
493 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
494 {
495 	rvu_write64(rvu, BLKADDR_RVUM,
496 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
497 		    RVU_BLK_RVUM_REVID);
498 }
499 
500 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
501 {
502 	rvu_write64(rvu, BLKADDR_RVUM,
503 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
504 }
505 
506 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
507 {
508 	int err;
509 
510 	if (!block->implemented)
511 		return 0;
512 
513 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
514 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
515 			   true);
516 	return err;
517 }
518 
519 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
520 {
521 	struct rvu_block *block = &rvu->hw->block[blkaddr];
522 	int err;
523 
524 	if (!block->implemented)
525 		return;
526 
527 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
528 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
529 	if (err) {
530 		dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
531 		while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
532 			;
533 	}
534 }
535 
536 static void rvu_reset_all_blocks(struct rvu *rvu)
537 {
538 	/* Do a HW reset of all RVU blocks */
539 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
540 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
541 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
542 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
543 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
544 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
545 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
546 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
547 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
548 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
549 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
550 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
551 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
552 }
553 
554 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
555 {
556 	struct rvu_pfvf *pfvf;
557 	u64 cfg;
558 	int lf;
559 
560 	for (lf = 0; lf < block->lf.max; lf++) {
561 		cfg = rvu_read64(rvu, block->addr,
562 				 block->lfcfg_reg | (lf << block->lfshift));
563 		if (!(cfg & BIT_ULL(63)))
564 			continue;
565 
566 		/* Set this resource as being used */
567 		__set_bit(lf, block->lf.bmap);
568 
569 		/* Get, to whom this LF is attached */
570 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
571 		rvu_update_rsrc_map(rvu, pfvf, block,
572 				    (cfg >> 8) & 0xFFFF, lf, true);
573 
574 		/* Set start MSIX vector for this LF within this PF/VF */
575 		rvu_set_msix_offset(rvu, pfvf, block, lf);
576 	}
577 }
578 
579 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
580 {
581 	int min_vecs;
582 
583 	if (!vf)
584 		goto check_pf;
585 
586 	if (!nvecs) {
587 		dev_warn(rvu->dev,
588 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
589 			 pf, vf - 1, nvecs);
590 	}
591 	return;
592 
593 check_pf:
594 	if (pf == 0)
595 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
596 	else
597 		min_vecs = RVU_PF_INT_VEC_CNT;
598 
599 	if (!(nvecs < min_vecs))
600 		return;
601 	dev_warn(rvu->dev,
602 		 "PF%d is configured with too few vectors, %d, min is %d\n",
603 		 pf, nvecs, min_vecs);
604 }
605 
606 static int rvu_setup_msix_resources(struct rvu *rvu)
607 {
608 	struct rvu_hwinfo *hw = rvu->hw;
609 	int pf, vf, numvfs, hwvf, err;
610 	int nvecs, offset, max_msix;
611 	struct rvu_pfvf *pfvf;
612 	u64 cfg, phy_addr;
613 	dma_addr_t iova;
614 
615 	for (pf = 0; pf < hw->total_pfs; pf++) {
616 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
617 		/* If PF is not enabled, nothing to do */
618 		if (!((cfg >> 20) & 0x01))
619 			continue;
620 
621 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
622 
623 		pfvf = &rvu->pf[pf];
624 		/* Get num of MSIX vectors attached to this PF */
625 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
626 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
627 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
628 
629 		/* Alloc msix bitmap for this PF */
630 		err = rvu_alloc_bitmap(&pfvf->msix);
631 		if (err)
632 			return err;
633 
634 		/* Allocate memory for MSIX vector to RVU block LF mapping */
635 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
636 						sizeof(u16), GFP_KERNEL);
637 		if (!pfvf->msix_lfmap)
638 			return -ENOMEM;
639 
640 		/* For PF0 (AF) firmware will set msix vector offsets for
641 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
642 		 */
643 		if (!pf)
644 			goto setup_vfmsix;
645 
646 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
647 		 * These are allocated on driver init and never freed,
648 		 * so no need to set 'msix_lfmap' for these.
649 		 */
650 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
651 		nvecs = (cfg >> 12) & 0xFF;
652 		cfg &= ~0x7FFULL;
653 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
654 		rvu_write64(rvu, BLKADDR_RVUM,
655 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
656 setup_vfmsix:
657 		/* Alloc msix bitmap for VFs */
658 		for (vf = 0; vf < numvfs; vf++) {
659 			pfvf =  &rvu->hwvf[hwvf + vf];
660 			/* Get num of MSIX vectors attached to this VF */
661 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
662 					 RVU_PRIV_PFX_MSIX_CFG(pf));
663 			pfvf->msix.max = (cfg & 0xFFF) + 1;
664 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
665 
666 			/* Alloc msix bitmap for this VF */
667 			err = rvu_alloc_bitmap(&pfvf->msix);
668 			if (err)
669 				return err;
670 
671 			pfvf->msix_lfmap =
672 				devm_kcalloc(rvu->dev, pfvf->msix.max,
673 					     sizeof(u16), GFP_KERNEL);
674 			if (!pfvf->msix_lfmap)
675 				return -ENOMEM;
676 
677 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
678 			 * These are allocated on driver init and never freed,
679 			 * so no need to set 'msix_lfmap' for these.
680 			 */
681 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
682 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
683 			nvecs = (cfg >> 12) & 0xFF;
684 			cfg &= ~0x7FFULL;
685 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
686 			rvu_write64(rvu, BLKADDR_RVUM,
687 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
688 				    cfg | offset);
689 		}
690 	}
691 
692 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
693 	 * create an IOMMU mapping for the physical address configured by
694 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
695 	 */
696 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
697 	max_msix = cfg & 0xFFFFF;
698 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
699 		phy_addr = rvu->fwdata->msixtr_base;
700 	else
701 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
702 
703 	iova = dma_map_resource(rvu->dev, phy_addr,
704 				max_msix * PCI_MSIX_ENTRY_SIZE,
705 				DMA_BIDIRECTIONAL, 0);
706 
707 	if (dma_mapping_error(rvu->dev, iova))
708 		return -ENOMEM;
709 
710 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
711 	rvu->msix_base_iova = iova;
712 	rvu->msixtr_base_phy = phy_addr;
713 
714 	return 0;
715 }
716 
717 static void rvu_reset_msix(struct rvu *rvu)
718 {
719 	/* Restore msixtr base register */
720 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
721 		    rvu->msixtr_base_phy);
722 }
723 
724 static void rvu_free_hw_resources(struct rvu *rvu)
725 {
726 	struct rvu_hwinfo *hw = rvu->hw;
727 	struct rvu_block *block;
728 	struct rvu_pfvf  *pfvf;
729 	int id, max_msix;
730 	u64 cfg;
731 
732 	rvu_npa_freemem(rvu);
733 	rvu_npc_freemem(rvu);
734 	rvu_nix_freemem(rvu);
735 
736 	/* Free block LF bitmaps */
737 	for (id = 0; id < BLK_COUNT; id++) {
738 		block = &hw->block[id];
739 		kfree(block->lf.bmap);
740 	}
741 
742 	/* Free MSIX bitmaps */
743 	for (id = 0; id < hw->total_pfs; id++) {
744 		pfvf = &rvu->pf[id];
745 		kfree(pfvf->msix.bmap);
746 	}
747 
748 	for (id = 0; id < hw->total_vfs; id++) {
749 		pfvf = &rvu->hwvf[id];
750 		kfree(pfvf->msix.bmap);
751 	}
752 
753 	/* Unmap MSIX vector base IOVA mapping */
754 	if (!rvu->msix_base_iova)
755 		return;
756 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
757 	max_msix = cfg & 0xFFFFF;
758 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
759 			   max_msix * PCI_MSIX_ENTRY_SIZE,
760 			   DMA_BIDIRECTIONAL, 0);
761 
762 	rvu_reset_msix(rvu);
763 	mutex_destroy(&rvu->rsrc_lock);
764 }
765 
766 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
767 {
768 	struct rvu_hwinfo *hw = rvu->hw;
769 	int pf, vf, numvfs, hwvf;
770 	struct rvu_pfvf *pfvf;
771 	u64 *mac;
772 
773 	for (pf = 0; pf < hw->total_pfs; pf++) {
774 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
775 		if (!pf)
776 			goto lbkvf;
777 
778 		if (!is_pf_cgxmapped(rvu, pf))
779 			continue;
780 		/* Assign MAC address to PF */
781 		pfvf = &rvu->pf[pf];
782 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
783 			mac = &rvu->fwdata->pf_macs[pf];
784 			if (*mac)
785 				u64_to_ether_addr(*mac, pfvf->mac_addr);
786 			else
787 				eth_random_addr(pfvf->mac_addr);
788 		} else {
789 			eth_random_addr(pfvf->mac_addr);
790 		}
791 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
792 
793 lbkvf:
794 		/* Assign MAC address to VFs*/
795 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
796 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
797 			pfvf = &rvu->hwvf[hwvf];
798 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
799 				mac = &rvu->fwdata->vf_macs[hwvf];
800 				if (*mac)
801 					u64_to_ether_addr(*mac, pfvf->mac_addr);
802 				else
803 					eth_random_addr(pfvf->mac_addr);
804 			} else {
805 				eth_random_addr(pfvf->mac_addr);
806 			}
807 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
808 		}
809 	}
810 }
811 
812 static int rvu_fwdata_init(struct rvu *rvu)
813 {
814 	u64 fwdbase;
815 	int err;
816 
817 	/* Get firmware data base address */
818 	err = cgx_get_fwdata_base(&fwdbase);
819 	if (err)
820 		goto fail;
821 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
822 	if (!rvu->fwdata)
823 		goto fail;
824 	if (!is_rvu_fwdata_valid(rvu)) {
825 		dev_err(rvu->dev,
826 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
827 		iounmap(rvu->fwdata);
828 		rvu->fwdata = NULL;
829 		return -EINVAL;
830 	}
831 	return 0;
832 fail:
833 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
834 	return -EIO;
835 }
836 
837 static void rvu_fwdata_exit(struct rvu *rvu)
838 {
839 	if (rvu->fwdata)
840 		iounmap(rvu->fwdata);
841 }
842 
843 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
844 {
845 	struct rvu_hwinfo *hw = rvu->hw;
846 	struct rvu_block *block;
847 	int blkid;
848 	u64 cfg;
849 
850 	/* Init NIX LF's bitmap */
851 	block = &hw->block[blkaddr];
852 	if (!block->implemented)
853 		return 0;
854 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
855 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
856 	block->lf.max = cfg & 0xFFF;
857 	block->addr = blkaddr;
858 	block->type = BLKTYPE_NIX;
859 	block->lfshift = 8;
860 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
861 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
862 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
863 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
864 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
865 	block->lfreset_reg = NIX_AF_LF_RST;
866 	block->rvu = rvu;
867 	sprintf(block->name, "NIX%d", blkid);
868 	rvu->nix_blkaddr[blkid] = blkaddr;
869 	return rvu_alloc_bitmap(&block->lf);
870 }
871 
872 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
873 {
874 	struct rvu_hwinfo *hw = rvu->hw;
875 	struct rvu_block *block;
876 	int blkid;
877 	u64 cfg;
878 
879 	/* Init CPT LF's bitmap */
880 	block = &hw->block[blkaddr];
881 	if (!block->implemented)
882 		return 0;
883 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
884 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
885 	block->lf.max = cfg & 0xFF;
886 	block->addr = blkaddr;
887 	block->type = BLKTYPE_CPT;
888 	block->multislot = true;
889 	block->lfshift = 3;
890 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
891 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
892 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
893 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
894 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
895 	block->lfreset_reg = CPT_AF_LF_RST;
896 	block->rvu = rvu;
897 	sprintf(block->name, "CPT%d", blkid);
898 	return rvu_alloc_bitmap(&block->lf);
899 }
900 
901 static void rvu_get_lbk_bufsize(struct rvu *rvu)
902 {
903 	struct pci_dev *pdev = NULL;
904 	void __iomem *base;
905 	u64 lbk_const;
906 
907 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
908 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
909 	if (!pdev)
910 		return;
911 
912 	base = pci_ioremap_bar(pdev, 0);
913 	if (!base)
914 		goto err_put;
915 
916 	lbk_const = readq(base + LBK_CONST);
917 
918 	/* cache fifo size */
919 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
920 
921 	iounmap(base);
922 err_put:
923 	pci_dev_put(pdev);
924 }
925 
926 static int rvu_setup_hw_resources(struct rvu *rvu)
927 {
928 	struct rvu_hwinfo *hw = rvu->hw;
929 	struct rvu_block *block;
930 	int blkid, err;
931 	u64 cfg;
932 
933 	/* Get HW supported max RVU PF & VF count */
934 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
935 	hw->total_pfs = (cfg >> 32) & 0xFF;
936 	hw->total_vfs = (cfg >> 20) & 0xFFF;
937 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
938 
939 	/* Init NPA LF's bitmap */
940 	block = &hw->block[BLKADDR_NPA];
941 	if (!block->implemented)
942 		goto nix;
943 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
944 	block->lf.max = (cfg >> 16) & 0xFFF;
945 	block->addr = BLKADDR_NPA;
946 	block->type = BLKTYPE_NPA;
947 	block->lfshift = 8;
948 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
949 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
950 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
951 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
952 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
953 	block->lfreset_reg = NPA_AF_LF_RST;
954 	block->rvu = rvu;
955 	sprintf(block->name, "NPA");
956 	err = rvu_alloc_bitmap(&block->lf);
957 	if (err) {
958 		dev_err(rvu->dev,
959 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
960 		return err;
961 	}
962 
963 nix:
964 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
965 	if (err) {
966 		dev_err(rvu->dev,
967 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
968 		return err;
969 	}
970 
971 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
972 	if (err) {
973 		dev_err(rvu->dev,
974 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
975 		return err;
976 	}
977 
978 	/* Init SSO group's bitmap */
979 	block = &hw->block[BLKADDR_SSO];
980 	if (!block->implemented)
981 		goto ssow;
982 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
983 	block->lf.max = cfg & 0xFFFF;
984 	block->addr = BLKADDR_SSO;
985 	block->type = BLKTYPE_SSO;
986 	block->multislot = true;
987 	block->lfshift = 3;
988 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
989 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
990 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
991 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
992 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
993 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
994 	block->rvu = rvu;
995 	sprintf(block->name, "SSO GROUP");
996 	err = rvu_alloc_bitmap(&block->lf);
997 	if (err) {
998 		dev_err(rvu->dev,
999 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
1000 		return err;
1001 	}
1002 
1003 ssow:
1004 	/* Init SSO workslot's bitmap */
1005 	block = &hw->block[BLKADDR_SSOW];
1006 	if (!block->implemented)
1007 		goto tim;
1008 	block->lf.max = (cfg >> 56) & 0xFF;
1009 	block->addr = BLKADDR_SSOW;
1010 	block->type = BLKTYPE_SSOW;
1011 	block->multislot = true;
1012 	block->lfshift = 3;
1013 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1014 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1015 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1016 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1017 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1018 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1019 	block->rvu = rvu;
1020 	sprintf(block->name, "SSOWS");
1021 	err = rvu_alloc_bitmap(&block->lf);
1022 	if (err) {
1023 		dev_err(rvu->dev,
1024 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
1025 		return err;
1026 	}
1027 
1028 tim:
1029 	/* Init TIM LF's bitmap */
1030 	block = &hw->block[BLKADDR_TIM];
1031 	if (!block->implemented)
1032 		goto cpt;
1033 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1034 	block->lf.max = cfg & 0xFFFF;
1035 	block->addr = BLKADDR_TIM;
1036 	block->type = BLKTYPE_TIM;
1037 	block->multislot = true;
1038 	block->lfshift = 3;
1039 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1040 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1041 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1042 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1043 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1044 	block->lfreset_reg = TIM_AF_LF_RST;
1045 	block->rvu = rvu;
1046 	sprintf(block->name, "TIM");
1047 	err = rvu_alloc_bitmap(&block->lf);
1048 	if (err) {
1049 		dev_err(rvu->dev,
1050 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1051 		return err;
1052 	}
1053 
1054 cpt:
1055 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1056 	if (err) {
1057 		dev_err(rvu->dev,
1058 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1059 		return err;
1060 	}
1061 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1062 	if (err) {
1063 		dev_err(rvu->dev,
1064 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1065 		return err;
1066 	}
1067 
1068 	/* Allocate memory for PFVF data */
1069 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1070 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1071 	if (!rvu->pf) {
1072 		dev_err(rvu->dev,
1073 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1074 		return -ENOMEM;
1075 	}
1076 
1077 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1078 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1079 	if (!rvu->hwvf) {
1080 		dev_err(rvu->dev,
1081 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1082 		return -ENOMEM;
1083 	}
1084 
1085 	mutex_init(&rvu->rsrc_lock);
1086 
1087 	rvu_fwdata_init(rvu);
1088 
1089 	err = rvu_setup_msix_resources(rvu);
1090 	if (err) {
1091 		dev_err(rvu->dev,
1092 			"%s: Failed to setup MSIX resources\n", __func__);
1093 		return err;
1094 	}
1095 
1096 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1097 		block = &hw->block[blkid];
1098 		if (!block->lf.bmap)
1099 			continue;
1100 
1101 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1102 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1103 					     sizeof(u16), GFP_KERNEL);
1104 		if (!block->fn_map) {
1105 			err = -ENOMEM;
1106 			goto msix_err;
1107 		}
1108 
1109 		/* Scan all blocks to check if low level firmware has
1110 		 * already provisioned any of the resources to a PF/VF.
1111 		 */
1112 		rvu_scan_block(rvu, block);
1113 	}
1114 
1115 	err = rvu_set_channels_base(rvu);
1116 	if (err)
1117 		goto msix_err;
1118 
1119 	err = rvu_npc_init(rvu);
1120 	if (err) {
1121 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1122 		goto npc_err;
1123 	}
1124 
1125 	err = rvu_cgx_init(rvu);
1126 	if (err) {
1127 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1128 		goto cgx_err;
1129 	}
1130 
1131 	err = rvu_npc_exact_init(rvu);
1132 	if (err) {
1133 		dev_err(rvu->dev, "failed to initialize exact match table\n");
1134 		return err;
1135 	}
1136 
1137 	/* Assign MACs for CGX mapped functions */
1138 	rvu_setup_pfvf_macaddress(rvu);
1139 
1140 	err = rvu_npa_init(rvu);
1141 	if (err) {
1142 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1143 		goto npa_err;
1144 	}
1145 
1146 	rvu_get_lbk_bufsize(rvu);
1147 
1148 	err = rvu_nix_init(rvu);
1149 	if (err) {
1150 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1151 		goto nix_err;
1152 	}
1153 
1154 	err = rvu_sdp_init(rvu);
1155 	if (err) {
1156 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1157 		goto nix_err;
1158 	}
1159 
1160 	rvu_program_channels(rvu);
1161 
1162 	return 0;
1163 
1164 nix_err:
1165 	rvu_nix_freemem(rvu);
1166 npa_err:
1167 	rvu_npa_freemem(rvu);
1168 cgx_err:
1169 	rvu_cgx_exit(rvu);
1170 npc_err:
1171 	rvu_npc_freemem(rvu);
1172 	rvu_fwdata_exit(rvu);
1173 msix_err:
1174 	rvu_reset_msix(rvu);
1175 	return err;
1176 }
1177 
1178 /* NPA and NIX admin queue APIs */
1179 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1180 {
1181 	if (!aq)
1182 		return;
1183 
1184 	qmem_free(rvu->dev, aq->inst);
1185 	qmem_free(rvu->dev, aq->res);
1186 	devm_kfree(rvu->dev, aq);
1187 }
1188 
1189 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1190 		 int qsize, int inst_size, int res_size)
1191 {
1192 	struct admin_queue *aq;
1193 	int err;
1194 
1195 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1196 	if (!*ad_queue)
1197 		return -ENOMEM;
1198 	aq = *ad_queue;
1199 
1200 	/* Alloc memory for instructions i.e AQ */
1201 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1202 	if (err) {
1203 		devm_kfree(rvu->dev, aq);
1204 		return err;
1205 	}
1206 
1207 	/* Alloc memory for results */
1208 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1209 	if (err) {
1210 		rvu_aq_free(rvu, aq);
1211 		return err;
1212 	}
1213 
1214 	spin_lock_init(&aq->lock);
1215 	return 0;
1216 }
1217 
1218 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1219 			   struct ready_msg_rsp *rsp)
1220 {
1221 	if (rvu->fwdata) {
1222 		rsp->rclk_freq = rvu->fwdata->rclk;
1223 		rsp->sclk_freq = rvu->fwdata->sclk;
1224 	}
1225 	return 0;
1226 }
1227 
1228 /* Get current count of a RVU block's LF/slots
1229  * provisioned to a given RVU func.
1230  */
1231 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1232 {
1233 	switch (blkaddr) {
1234 	case BLKADDR_NPA:
1235 		return pfvf->npalf ? 1 : 0;
1236 	case BLKADDR_NIX0:
1237 	case BLKADDR_NIX1:
1238 		return pfvf->nixlf ? 1 : 0;
1239 	case BLKADDR_SSO:
1240 		return pfvf->sso;
1241 	case BLKADDR_SSOW:
1242 		return pfvf->ssow;
1243 	case BLKADDR_TIM:
1244 		return pfvf->timlfs;
1245 	case BLKADDR_CPT0:
1246 		return pfvf->cptlfs;
1247 	case BLKADDR_CPT1:
1248 		return pfvf->cpt1_lfs;
1249 	}
1250 	return 0;
1251 }
1252 
1253 /* Return true if LFs of block type are attached to pcifunc */
1254 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1255 {
1256 	switch (blktype) {
1257 	case BLKTYPE_NPA:
1258 		return pfvf->npalf ? 1 : 0;
1259 	case BLKTYPE_NIX:
1260 		return pfvf->nixlf ? 1 : 0;
1261 	case BLKTYPE_SSO:
1262 		return !!pfvf->sso;
1263 	case BLKTYPE_SSOW:
1264 		return !!pfvf->ssow;
1265 	case BLKTYPE_TIM:
1266 		return !!pfvf->timlfs;
1267 	case BLKTYPE_CPT:
1268 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1269 	}
1270 
1271 	return false;
1272 }
1273 
1274 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1275 {
1276 	struct rvu_pfvf *pfvf;
1277 
1278 	if (!is_pf_func_valid(rvu, pcifunc))
1279 		return false;
1280 
1281 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1282 
1283 	/* Check if this PFFUNC has a LF of type blktype attached */
1284 	if (!is_blktype_attached(pfvf, blktype))
1285 		return false;
1286 
1287 	return true;
1288 }
1289 
1290 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1291 			   int pcifunc, int slot)
1292 {
1293 	u64 val;
1294 
1295 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1296 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1297 	/* Wait for the lookup to finish */
1298 	/* TODO: put some timeout here */
1299 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1300 		;
1301 
1302 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1303 
1304 	/* Check LF valid bit */
1305 	if (!(val & (1ULL << 12)))
1306 		return -1;
1307 
1308 	return (val & 0xFFF);
1309 }
1310 
1311 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1312 			      u16 global_slot, u16 *slot_in_block)
1313 {
1314 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1315 	int numlfs, total_lfs = 0, nr_blocks = 0;
1316 	int i, num_blkaddr[BLK_COUNT] = { 0 };
1317 	struct rvu_block *block;
1318 	int blkaddr;
1319 	u16 start_slot;
1320 
1321 	if (!is_blktype_attached(pfvf, blktype))
1322 		return -ENODEV;
1323 
1324 	/* Get all the block addresses from which LFs are attached to
1325 	 * the given pcifunc in num_blkaddr[].
1326 	 */
1327 	for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1328 		block = &rvu->hw->block[blkaddr];
1329 		if (block->type != blktype)
1330 			continue;
1331 		if (!is_block_implemented(rvu->hw, blkaddr))
1332 			continue;
1333 
1334 		numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1335 		if (numlfs) {
1336 			total_lfs += numlfs;
1337 			num_blkaddr[nr_blocks] = blkaddr;
1338 			nr_blocks++;
1339 		}
1340 	}
1341 
1342 	if (global_slot >= total_lfs)
1343 		return -ENODEV;
1344 
1345 	/* Based on the given global slot number retrieve the
1346 	 * correct block address out of all attached block
1347 	 * addresses and slot number in that block.
1348 	 */
1349 	total_lfs = 0;
1350 	blkaddr = -ENODEV;
1351 	for (i = 0; i < nr_blocks; i++) {
1352 		numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1353 		total_lfs += numlfs;
1354 		if (global_slot < total_lfs) {
1355 			blkaddr = num_blkaddr[i];
1356 			start_slot = total_lfs - numlfs;
1357 			*slot_in_block = global_slot - start_slot;
1358 			break;
1359 		}
1360 	}
1361 
1362 	return blkaddr;
1363 }
1364 
1365 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1366 {
1367 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1368 	struct rvu_hwinfo *hw = rvu->hw;
1369 	struct rvu_block *block;
1370 	int slot, lf, num_lfs;
1371 	int blkaddr;
1372 
1373 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1374 	if (blkaddr < 0)
1375 		return;
1376 
1377 	if (blktype == BLKTYPE_NIX)
1378 		rvu_nix_reset_mac(pfvf, pcifunc);
1379 
1380 	block = &hw->block[blkaddr];
1381 
1382 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1383 	if (!num_lfs)
1384 		return;
1385 
1386 	for (slot = 0; slot < num_lfs; slot++) {
1387 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1388 		if (lf < 0) /* This should never happen */
1389 			continue;
1390 
1391 		/* Disable the LF */
1392 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1393 			    (lf << block->lfshift), 0x00ULL);
1394 
1395 		/* Update SW maintained mapping info as well */
1396 		rvu_update_rsrc_map(rvu, pfvf, block,
1397 				    pcifunc, lf, false);
1398 
1399 		/* Free the resource */
1400 		rvu_free_rsrc(&block->lf, lf);
1401 
1402 		/* Clear MSIX vector offset for this LF */
1403 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1404 	}
1405 }
1406 
1407 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1408 			    u16 pcifunc)
1409 {
1410 	struct rvu_hwinfo *hw = rvu->hw;
1411 	bool detach_all = true;
1412 	struct rvu_block *block;
1413 	int blkid;
1414 
1415 	mutex_lock(&rvu->rsrc_lock);
1416 
1417 	/* Check for partial resource detach */
1418 	if (detach && detach->partial)
1419 		detach_all = false;
1420 
1421 	/* Check for RVU block's LFs attached to this func,
1422 	 * if so, detach them.
1423 	 */
1424 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1425 		block = &hw->block[blkid];
1426 		if (!block->lf.bmap)
1427 			continue;
1428 		if (!detach_all && detach) {
1429 			if (blkid == BLKADDR_NPA && !detach->npalf)
1430 				continue;
1431 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1432 				continue;
1433 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1434 				continue;
1435 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1436 				continue;
1437 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1438 				continue;
1439 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1440 				continue;
1441 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1442 				continue;
1443 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1444 				continue;
1445 		}
1446 		rvu_detach_block(rvu, pcifunc, block->type);
1447 	}
1448 
1449 	mutex_unlock(&rvu->rsrc_lock);
1450 	return 0;
1451 }
1452 
1453 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1454 				      struct rsrc_detach *detach,
1455 				      struct msg_rsp *rsp)
1456 {
1457 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1458 }
1459 
1460 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1461 {
1462 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1463 	int blkaddr = BLKADDR_NIX0, vf;
1464 	struct rvu_pfvf *pf;
1465 
1466 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1467 
1468 	/* All CGX mapped PFs are set with assigned NIX block during init */
1469 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1470 		blkaddr = pf->nix_blkaddr;
1471 	} else if (is_afvf(pcifunc)) {
1472 		vf = pcifunc - 1;
1473 		/* Assign NIX based on VF number. All even numbered VFs get
1474 		 * NIX0 and odd numbered gets NIX1
1475 		 */
1476 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1477 		/* NIX1 is not present on all silicons */
1478 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1479 			blkaddr = BLKADDR_NIX0;
1480 	}
1481 
1482 	/* if SDP1 then the blkaddr is NIX1 */
1483 	if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1484 		blkaddr = BLKADDR_NIX1;
1485 
1486 	switch (blkaddr) {
1487 	case BLKADDR_NIX1:
1488 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1489 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1490 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1491 		break;
1492 	case BLKADDR_NIX0:
1493 	default:
1494 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1495 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1496 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1497 		break;
1498 	}
1499 
1500 	return pfvf->nix_blkaddr;
1501 }
1502 
1503 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1504 				  u16 pcifunc, struct rsrc_attach *attach)
1505 {
1506 	int blkaddr;
1507 
1508 	switch (blktype) {
1509 	case BLKTYPE_NIX:
1510 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1511 		break;
1512 	case BLKTYPE_CPT:
1513 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1514 			return rvu_get_blkaddr(rvu, blktype, 0);
1515 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1516 			  BLKADDR_CPT0;
1517 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1518 			return -ENODEV;
1519 		break;
1520 	default:
1521 		return rvu_get_blkaddr(rvu, blktype, 0);
1522 	}
1523 
1524 	if (is_block_implemented(rvu->hw, blkaddr))
1525 		return blkaddr;
1526 
1527 	return -ENODEV;
1528 }
1529 
1530 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1531 			     int num_lfs, struct rsrc_attach *attach)
1532 {
1533 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1534 	struct rvu_hwinfo *hw = rvu->hw;
1535 	struct rvu_block *block;
1536 	int slot, lf;
1537 	int blkaddr;
1538 	u64 cfg;
1539 
1540 	if (!num_lfs)
1541 		return;
1542 
1543 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1544 	if (blkaddr < 0)
1545 		return;
1546 
1547 	block = &hw->block[blkaddr];
1548 	if (!block->lf.bmap)
1549 		return;
1550 
1551 	for (slot = 0; slot < num_lfs; slot++) {
1552 		/* Allocate the resource */
1553 		lf = rvu_alloc_rsrc(&block->lf);
1554 		if (lf < 0)
1555 			return;
1556 
1557 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1558 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1559 			    (lf << block->lfshift), cfg);
1560 		rvu_update_rsrc_map(rvu, pfvf, block,
1561 				    pcifunc, lf, true);
1562 
1563 		/* Set start MSIX vector for this LF within this PF/VF */
1564 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1565 	}
1566 }
1567 
1568 static int rvu_check_rsrc_availability(struct rvu *rvu,
1569 				       struct rsrc_attach *req, u16 pcifunc)
1570 {
1571 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1572 	int free_lfs, mappedlfs, blkaddr;
1573 	struct rvu_hwinfo *hw = rvu->hw;
1574 	struct rvu_block *block;
1575 
1576 	/* Only one NPA LF can be attached */
1577 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1578 		block = &hw->block[BLKADDR_NPA];
1579 		free_lfs = rvu_rsrc_free_count(&block->lf);
1580 		if (!free_lfs)
1581 			goto fail;
1582 	} else if (req->npalf) {
1583 		dev_err(&rvu->pdev->dev,
1584 			"Func 0x%x: Invalid req, already has NPA\n",
1585 			 pcifunc);
1586 		return -EINVAL;
1587 	}
1588 
1589 	/* Only one NIX LF can be attached */
1590 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1591 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1592 						 pcifunc, req);
1593 		if (blkaddr < 0)
1594 			return blkaddr;
1595 		block = &hw->block[blkaddr];
1596 		free_lfs = rvu_rsrc_free_count(&block->lf);
1597 		if (!free_lfs)
1598 			goto fail;
1599 	} else if (req->nixlf) {
1600 		dev_err(&rvu->pdev->dev,
1601 			"Func 0x%x: Invalid req, already has NIX\n",
1602 			pcifunc);
1603 		return -EINVAL;
1604 	}
1605 
1606 	if (req->sso) {
1607 		block = &hw->block[BLKADDR_SSO];
1608 		/* Is request within limits ? */
1609 		if (req->sso > block->lf.max) {
1610 			dev_err(&rvu->pdev->dev,
1611 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1612 				 pcifunc, req->sso, block->lf.max);
1613 			return -EINVAL;
1614 		}
1615 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1616 		free_lfs = rvu_rsrc_free_count(&block->lf);
1617 		/* Check if additional resources are available */
1618 		if (req->sso > mappedlfs &&
1619 		    ((req->sso - mappedlfs) > free_lfs))
1620 			goto fail;
1621 	}
1622 
1623 	if (req->ssow) {
1624 		block = &hw->block[BLKADDR_SSOW];
1625 		if (req->ssow > block->lf.max) {
1626 			dev_err(&rvu->pdev->dev,
1627 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1628 				 pcifunc, req->sso, block->lf.max);
1629 			return -EINVAL;
1630 		}
1631 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1632 		free_lfs = rvu_rsrc_free_count(&block->lf);
1633 		if (req->ssow > mappedlfs &&
1634 		    ((req->ssow - mappedlfs) > free_lfs))
1635 			goto fail;
1636 	}
1637 
1638 	if (req->timlfs) {
1639 		block = &hw->block[BLKADDR_TIM];
1640 		if (req->timlfs > block->lf.max) {
1641 			dev_err(&rvu->pdev->dev,
1642 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1643 				 pcifunc, req->timlfs, block->lf.max);
1644 			return -EINVAL;
1645 		}
1646 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1647 		free_lfs = rvu_rsrc_free_count(&block->lf);
1648 		if (req->timlfs > mappedlfs &&
1649 		    ((req->timlfs - mappedlfs) > free_lfs))
1650 			goto fail;
1651 	}
1652 
1653 	if (req->cptlfs) {
1654 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1655 						 pcifunc, req);
1656 		if (blkaddr < 0)
1657 			return blkaddr;
1658 		block = &hw->block[blkaddr];
1659 		if (req->cptlfs > block->lf.max) {
1660 			dev_err(&rvu->pdev->dev,
1661 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1662 				 pcifunc, req->cptlfs, block->lf.max);
1663 			return -EINVAL;
1664 		}
1665 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1666 		free_lfs = rvu_rsrc_free_count(&block->lf);
1667 		if (req->cptlfs > mappedlfs &&
1668 		    ((req->cptlfs - mappedlfs) > free_lfs))
1669 			goto fail;
1670 	}
1671 
1672 	return 0;
1673 
1674 fail:
1675 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1676 	return -ENOSPC;
1677 }
1678 
1679 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1680 				       struct rsrc_attach *attach)
1681 {
1682 	int blkaddr, num_lfs;
1683 
1684 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1685 					 attach->hdr.pcifunc, attach);
1686 	if (blkaddr < 0)
1687 		return false;
1688 
1689 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1690 					blkaddr);
1691 	/* Requester already has LFs from given block ? */
1692 	return !!num_lfs;
1693 }
1694 
1695 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1696 				      struct rsrc_attach *attach,
1697 				      struct msg_rsp *rsp)
1698 {
1699 	u16 pcifunc = attach->hdr.pcifunc;
1700 	int err;
1701 
1702 	/* If first request, detach all existing attached resources */
1703 	if (!attach->modify)
1704 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1705 
1706 	mutex_lock(&rvu->rsrc_lock);
1707 
1708 	/* Check if the request can be accommodated */
1709 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1710 	if (err)
1711 		goto exit;
1712 
1713 	/* Now attach the requested resources */
1714 	if (attach->npalf)
1715 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1716 
1717 	if (attach->nixlf)
1718 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1719 
1720 	if (attach->sso) {
1721 		/* RVU func doesn't know which exact LF or slot is attached
1722 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1723 		 * request, simply detach all existing attached LFs/slots
1724 		 * and attach a fresh.
1725 		 */
1726 		if (attach->modify)
1727 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1728 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1729 				 attach->sso, attach);
1730 	}
1731 
1732 	if (attach->ssow) {
1733 		if (attach->modify)
1734 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1735 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1736 				 attach->ssow, attach);
1737 	}
1738 
1739 	if (attach->timlfs) {
1740 		if (attach->modify)
1741 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1742 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1743 				 attach->timlfs, attach);
1744 	}
1745 
1746 	if (attach->cptlfs) {
1747 		if (attach->modify &&
1748 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1749 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1750 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1751 				 attach->cptlfs, attach);
1752 	}
1753 
1754 exit:
1755 	mutex_unlock(&rvu->rsrc_lock);
1756 	return err;
1757 }
1758 
1759 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1760 			       int blkaddr, int lf)
1761 {
1762 	u16 vec;
1763 
1764 	if (lf < 0)
1765 		return MSIX_VECTOR_INVALID;
1766 
1767 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1768 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1769 			return vec;
1770 	}
1771 	return MSIX_VECTOR_INVALID;
1772 }
1773 
1774 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1775 				struct rvu_block *block, int lf)
1776 {
1777 	u16 nvecs, vec, offset;
1778 	u64 cfg;
1779 
1780 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1781 			 (lf << block->lfshift));
1782 	nvecs = (cfg >> 12) & 0xFF;
1783 
1784 	/* Check and alloc MSIX vectors, must be contiguous */
1785 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1786 		return;
1787 
1788 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1789 
1790 	/* Config MSIX offset in LF */
1791 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1792 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1793 
1794 	/* Update the bitmap as well */
1795 	for (vec = 0; vec < nvecs; vec++)
1796 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1797 }
1798 
1799 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1800 				  struct rvu_block *block, int lf)
1801 {
1802 	u16 nvecs, vec, offset;
1803 	u64 cfg;
1804 
1805 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1806 			 (lf << block->lfshift));
1807 	nvecs = (cfg >> 12) & 0xFF;
1808 
1809 	/* Clear MSIX offset in LF */
1810 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1811 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1812 
1813 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1814 
1815 	/* Update the mapping */
1816 	for (vec = 0; vec < nvecs; vec++)
1817 		pfvf->msix_lfmap[offset + vec] = 0;
1818 
1819 	/* Free the same in MSIX bitmap */
1820 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1821 }
1822 
1823 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1824 				 struct msix_offset_rsp *rsp)
1825 {
1826 	struct rvu_hwinfo *hw = rvu->hw;
1827 	u16 pcifunc = req->hdr.pcifunc;
1828 	struct rvu_pfvf *pfvf;
1829 	int lf, slot, blkaddr;
1830 
1831 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1832 	if (!pfvf->msix.bmap)
1833 		return 0;
1834 
1835 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1836 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1837 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1838 
1839 	/* Get BLKADDR from which LFs are attached to pcifunc */
1840 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1841 	if (blkaddr < 0) {
1842 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1843 	} else {
1844 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1845 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1846 	}
1847 
1848 	rsp->sso = pfvf->sso;
1849 	for (slot = 0; slot < rsp->sso; slot++) {
1850 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1851 		rsp->sso_msixoff[slot] =
1852 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1853 	}
1854 
1855 	rsp->ssow = pfvf->ssow;
1856 	for (slot = 0; slot < rsp->ssow; slot++) {
1857 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1858 		rsp->ssow_msixoff[slot] =
1859 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1860 	}
1861 
1862 	rsp->timlfs = pfvf->timlfs;
1863 	for (slot = 0; slot < rsp->timlfs; slot++) {
1864 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1865 		rsp->timlf_msixoff[slot] =
1866 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1867 	}
1868 
1869 	rsp->cptlfs = pfvf->cptlfs;
1870 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1871 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1872 		rsp->cptlf_msixoff[slot] =
1873 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1874 	}
1875 
1876 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1877 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1878 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1879 		rsp->cpt1_lf_msixoff[slot] =
1880 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1881 	}
1882 
1883 	return 0;
1884 }
1885 
1886 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1887 				   struct free_rsrcs_rsp *rsp)
1888 {
1889 	struct rvu_hwinfo *hw = rvu->hw;
1890 	struct rvu_block *block;
1891 	struct nix_txsch *txsch;
1892 	struct nix_hw *nix_hw;
1893 
1894 	mutex_lock(&rvu->rsrc_lock);
1895 
1896 	block = &hw->block[BLKADDR_NPA];
1897 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1898 
1899 	block = &hw->block[BLKADDR_NIX0];
1900 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1901 
1902 	block = &hw->block[BLKADDR_NIX1];
1903 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1904 
1905 	block = &hw->block[BLKADDR_SSO];
1906 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1907 
1908 	block = &hw->block[BLKADDR_SSOW];
1909 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1910 
1911 	block = &hw->block[BLKADDR_TIM];
1912 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1913 
1914 	block = &hw->block[BLKADDR_CPT0];
1915 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1916 
1917 	block = &hw->block[BLKADDR_CPT1];
1918 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1919 
1920 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1921 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1922 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1923 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1924 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1925 		/* NIX1 */
1926 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1927 			goto out;
1928 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1929 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1930 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1931 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1932 	} else {
1933 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1934 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1935 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
1936 				rvu_rsrc_free_count(&txsch->schq);
1937 
1938 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1939 		rsp->schq[NIX_TXSCH_LVL_TL4] =
1940 				rvu_rsrc_free_count(&txsch->schq);
1941 
1942 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1943 		rsp->schq[NIX_TXSCH_LVL_TL3] =
1944 				rvu_rsrc_free_count(&txsch->schq);
1945 
1946 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1947 		rsp->schq[NIX_TXSCH_LVL_TL2] =
1948 				rvu_rsrc_free_count(&txsch->schq);
1949 
1950 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1951 			goto out;
1952 
1953 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1954 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1955 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1956 				rvu_rsrc_free_count(&txsch->schq);
1957 
1958 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1959 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1960 				rvu_rsrc_free_count(&txsch->schq);
1961 
1962 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1963 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1964 				rvu_rsrc_free_count(&txsch->schq);
1965 
1966 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1967 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1968 				rvu_rsrc_free_count(&txsch->schq);
1969 	}
1970 
1971 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1972 out:
1973 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1974 	mutex_unlock(&rvu->rsrc_lock);
1975 
1976 	return 0;
1977 }
1978 
1979 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1980 			    struct msg_rsp *rsp)
1981 {
1982 	u16 pcifunc = req->hdr.pcifunc;
1983 	u16 vf, numvfs;
1984 	u64 cfg;
1985 
1986 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1987 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1988 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1989 	numvfs = (cfg >> 12) & 0xFF;
1990 
1991 	if (vf && vf <= numvfs)
1992 		__rvu_flr_handler(rvu, pcifunc);
1993 	else
1994 		return RVU_INVALID_VF_ID;
1995 
1996 	return 0;
1997 }
1998 
1999 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2000 				struct get_hw_cap_rsp *rsp)
2001 {
2002 	struct rvu_hwinfo *hw = rvu->hw;
2003 
2004 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2005 	rsp->nix_shaping = hw->cap.nix_shaping;
2006 	rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2007 
2008 	return 0;
2009 }
2010 
2011 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2012 				 struct msg_rsp *rsp)
2013 {
2014 	struct rvu_hwinfo *hw = rvu->hw;
2015 	u16 pcifunc = req->hdr.pcifunc;
2016 	struct rvu_pfvf *pfvf;
2017 	int blkaddr, nixlf;
2018 	u16 target;
2019 
2020 	/* Only PF can add VF permissions */
2021 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
2022 		return -EOPNOTSUPP;
2023 
2024 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2025 	pfvf = rvu_get_pfvf(rvu, target);
2026 
2027 	if (req->flags & RESET_VF_PERM) {
2028 		pfvf->flags &= RVU_CLEAR_VF_PERM;
2029 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2030 		 (req->flags & VF_TRUSTED)) {
2031 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2032 		/* disable multicast and promisc entries */
2033 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2034 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2035 			if (blkaddr < 0)
2036 				return 0;
2037 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2038 					   target, 0);
2039 			if (nixlf < 0)
2040 				return 0;
2041 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2042 						     NIXLF_ALLMULTI_ENTRY,
2043 						     false);
2044 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2045 						     NIXLF_PROMISC_ENTRY,
2046 						     false);
2047 		}
2048 	}
2049 
2050 	return 0;
2051 }
2052 
2053 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2054 				struct mbox_msghdr *req)
2055 {
2056 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2057 
2058 	/* Check if valid, if not reply with a invalid msg */
2059 	if (req->sig != OTX2_MBOX_REQ_SIG)
2060 		goto bad_message;
2061 
2062 	switch (req->id) {
2063 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
2064 	case _id: {							\
2065 		struct _rsp_type *rsp;					\
2066 		int err;						\
2067 									\
2068 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
2069 			mbox, devid,					\
2070 			sizeof(struct _rsp_type));			\
2071 		/* some handlers should complete even if reply */	\
2072 		/* could not be allocated */				\
2073 		if (!rsp &&						\
2074 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
2075 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
2076 		    _id != MBOX_MSG_VF_FLR)				\
2077 			return -ENOMEM;					\
2078 		if (rsp) {						\
2079 			rsp->hdr.id = _id;				\
2080 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
2081 			rsp->hdr.pcifunc = req->pcifunc;		\
2082 			rsp->hdr.rc = 0;				\
2083 		}							\
2084 									\
2085 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
2086 						    (struct _req_type *)req, \
2087 						    rsp);		\
2088 		if (rsp && err)						\
2089 			rsp->hdr.rc = err;				\
2090 									\
2091 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
2092 		return rsp ? err : -ENOMEM;				\
2093 	}
2094 MBOX_MESSAGES
2095 #undef M
2096 
2097 bad_message:
2098 	default:
2099 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2100 		return -ENODEV;
2101 	}
2102 }
2103 
2104 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
2105 {
2106 	struct rvu *rvu = mwork->rvu;
2107 	int offset, err, id, devid;
2108 	struct otx2_mbox_dev *mdev;
2109 	struct mbox_hdr *req_hdr;
2110 	struct mbox_msghdr *msg;
2111 	struct mbox_wq_info *mw;
2112 	struct otx2_mbox *mbox;
2113 
2114 	switch (type) {
2115 	case TYPE_AFPF:
2116 		mw = &rvu->afpf_wq_info;
2117 		break;
2118 	case TYPE_AFVF:
2119 		mw = &rvu->afvf_wq_info;
2120 		break;
2121 	default:
2122 		return;
2123 	}
2124 
2125 	devid = mwork - mw->mbox_wrk;
2126 	mbox = &mw->mbox;
2127 	mdev = &mbox->dev[devid];
2128 
2129 	/* Process received mbox messages */
2130 	req_hdr = mdev->mbase + mbox->rx_start;
2131 	if (mw->mbox_wrk[devid].num_msgs == 0)
2132 		return;
2133 
2134 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2135 
2136 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2137 		msg = mdev->mbase + offset;
2138 
2139 		/* Set which PF/VF sent this message based on mbox IRQ */
2140 		switch (type) {
2141 		case TYPE_AFPF:
2142 			msg->pcifunc &=
2143 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2144 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2145 			break;
2146 		case TYPE_AFVF:
2147 			msg->pcifunc &=
2148 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2149 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2150 			break;
2151 		}
2152 
2153 		err = rvu_process_mbox_msg(mbox, devid, msg);
2154 		if (!err) {
2155 			offset = mbox->rx_start + msg->next_msgoff;
2156 			continue;
2157 		}
2158 
2159 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2160 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2161 				 err, otx2_mbox_id2name(msg->id),
2162 				 msg->id, rvu_get_pf(msg->pcifunc),
2163 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2164 		else
2165 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2166 				 err, otx2_mbox_id2name(msg->id),
2167 				 msg->id, devid);
2168 	}
2169 	mw->mbox_wrk[devid].num_msgs = 0;
2170 
2171 	/* Send mbox responses to VF/PF */
2172 	otx2_mbox_msg_send(mbox, devid);
2173 }
2174 
2175 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2176 {
2177 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2178 
2179 	__rvu_mbox_handler(mwork, TYPE_AFPF);
2180 }
2181 
2182 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2183 {
2184 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2185 
2186 	__rvu_mbox_handler(mwork, TYPE_AFVF);
2187 }
2188 
2189 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2190 {
2191 	struct rvu *rvu = mwork->rvu;
2192 	struct otx2_mbox_dev *mdev;
2193 	struct mbox_hdr *rsp_hdr;
2194 	struct mbox_msghdr *msg;
2195 	struct mbox_wq_info *mw;
2196 	struct otx2_mbox *mbox;
2197 	int offset, id, devid;
2198 
2199 	switch (type) {
2200 	case TYPE_AFPF:
2201 		mw = &rvu->afpf_wq_info;
2202 		break;
2203 	case TYPE_AFVF:
2204 		mw = &rvu->afvf_wq_info;
2205 		break;
2206 	default:
2207 		return;
2208 	}
2209 
2210 	devid = mwork - mw->mbox_wrk_up;
2211 	mbox = &mw->mbox_up;
2212 	mdev = &mbox->dev[devid];
2213 
2214 	rsp_hdr = mdev->mbase + mbox->rx_start;
2215 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2216 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2217 		return;
2218 	}
2219 
2220 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2221 
2222 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2223 		msg = mdev->mbase + offset;
2224 
2225 		if (msg->id >= MBOX_MSG_MAX) {
2226 			dev_err(rvu->dev,
2227 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2228 			goto end;
2229 		}
2230 
2231 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2232 			dev_err(rvu->dev,
2233 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2234 				msg->sig, msg->id);
2235 			goto end;
2236 		}
2237 
2238 		switch (msg->id) {
2239 		case MBOX_MSG_CGX_LINK_EVENT:
2240 			break;
2241 		default:
2242 			if (msg->rc)
2243 				dev_err(rvu->dev,
2244 					"Mbox msg response has err %d, ID 0x%x\n",
2245 					msg->rc, msg->id);
2246 			break;
2247 		}
2248 end:
2249 		offset = mbox->rx_start + msg->next_msgoff;
2250 		mdev->msgs_acked++;
2251 	}
2252 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2253 
2254 	otx2_mbox_reset(mbox, devid);
2255 }
2256 
2257 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2258 {
2259 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2260 
2261 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2262 }
2263 
2264 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2265 {
2266 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2267 
2268 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2269 }
2270 
2271 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2272 				int num, int type)
2273 {
2274 	struct rvu_hwinfo *hw = rvu->hw;
2275 	int region;
2276 	u64 bar4;
2277 
2278 	/* For cn10k platform VF mailbox regions of a PF follows after the
2279 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2280 	 * RVU_PF_VF_BAR4_ADDR register.
2281 	 */
2282 	if (type == TYPE_AFVF) {
2283 		for (region = 0; region < num; region++) {
2284 			if (hw->cap.per_pf_mbox_regs) {
2285 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2286 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2287 						  MBOX_SIZE;
2288 				bar4 += region * MBOX_SIZE;
2289 			} else {
2290 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2291 				bar4 += region * MBOX_SIZE;
2292 			}
2293 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2294 			if (!mbox_addr[region])
2295 				goto error;
2296 		}
2297 		return 0;
2298 	}
2299 
2300 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2301 	 * PF registers. Whereas for Octeontx2 it is read from
2302 	 * RVU_AF_PF_BAR4_ADDR register.
2303 	 */
2304 	for (region = 0; region < num; region++) {
2305 		if (hw->cap.per_pf_mbox_regs) {
2306 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2307 					  RVU_AF_PFX_BAR4_ADDR(region));
2308 		} else {
2309 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2310 					  RVU_AF_PF_BAR4_ADDR);
2311 			bar4 += region * MBOX_SIZE;
2312 		}
2313 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2314 		if (!mbox_addr[region])
2315 			goto error;
2316 	}
2317 	return 0;
2318 
2319 error:
2320 	while (region--)
2321 		iounmap((void __iomem *)mbox_addr[region]);
2322 	return -ENOMEM;
2323 }
2324 
2325 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2326 			 int type, int num,
2327 			 void (mbox_handler)(struct work_struct *),
2328 			 void (mbox_up_handler)(struct work_struct *))
2329 {
2330 	int err = -EINVAL, i, dir, dir_up;
2331 	void __iomem *reg_base;
2332 	struct rvu_work *mwork;
2333 	void **mbox_regions;
2334 	const char *name;
2335 
2336 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2337 	if (!mbox_regions)
2338 		return -ENOMEM;
2339 
2340 	switch (type) {
2341 	case TYPE_AFPF:
2342 		name = "rvu_afpf_mailbox";
2343 		dir = MBOX_DIR_AFPF;
2344 		dir_up = MBOX_DIR_AFPF_UP;
2345 		reg_base = rvu->afreg_base;
2346 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2347 		if (err)
2348 			goto free_regions;
2349 		break;
2350 	case TYPE_AFVF:
2351 		name = "rvu_afvf_mailbox";
2352 		dir = MBOX_DIR_PFVF;
2353 		dir_up = MBOX_DIR_PFVF_UP;
2354 		reg_base = rvu->pfreg_base;
2355 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2356 		if (err)
2357 			goto free_regions;
2358 		break;
2359 	default:
2360 		goto free_regions;
2361 	}
2362 
2363 	mw->mbox_wq = alloc_workqueue(name,
2364 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2365 				      num);
2366 	if (!mw->mbox_wq) {
2367 		err = -ENOMEM;
2368 		goto unmap_regions;
2369 	}
2370 
2371 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2372 				    sizeof(struct rvu_work), GFP_KERNEL);
2373 	if (!mw->mbox_wrk) {
2374 		err = -ENOMEM;
2375 		goto exit;
2376 	}
2377 
2378 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2379 				       sizeof(struct rvu_work), GFP_KERNEL);
2380 	if (!mw->mbox_wrk_up) {
2381 		err = -ENOMEM;
2382 		goto exit;
2383 	}
2384 
2385 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2386 				     reg_base, dir, num);
2387 	if (err)
2388 		goto exit;
2389 
2390 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2391 				     reg_base, dir_up, num);
2392 	if (err)
2393 		goto exit;
2394 
2395 	for (i = 0; i < num; i++) {
2396 		mwork = &mw->mbox_wrk[i];
2397 		mwork->rvu = rvu;
2398 		INIT_WORK(&mwork->work, mbox_handler);
2399 
2400 		mwork = &mw->mbox_wrk_up[i];
2401 		mwork->rvu = rvu;
2402 		INIT_WORK(&mwork->work, mbox_up_handler);
2403 	}
2404 	kfree(mbox_regions);
2405 	return 0;
2406 
2407 exit:
2408 	destroy_workqueue(mw->mbox_wq);
2409 unmap_regions:
2410 	while (num--)
2411 		iounmap((void __iomem *)mbox_regions[num]);
2412 free_regions:
2413 	kfree(mbox_regions);
2414 	return err;
2415 }
2416 
2417 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2418 {
2419 	struct otx2_mbox *mbox = &mw->mbox;
2420 	struct otx2_mbox_dev *mdev;
2421 	int devid;
2422 
2423 	if (mw->mbox_wq) {
2424 		destroy_workqueue(mw->mbox_wq);
2425 		mw->mbox_wq = NULL;
2426 	}
2427 
2428 	for (devid = 0; devid < mbox->ndevs; devid++) {
2429 		mdev = &mbox->dev[devid];
2430 		if (mdev->hwbase)
2431 			iounmap((void __iomem *)mdev->hwbase);
2432 	}
2433 
2434 	otx2_mbox_destroy(&mw->mbox);
2435 	otx2_mbox_destroy(&mw->mbox_up);
2436 }
2437 
2438 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2439 			   int mdevs, u64 intr)
2440 {
2441 	struct otx2_mbox_dev *mdev;
2442 	struct otx2_mbox *mbox;
2443 	struct mbox_hdr *hdr;
2444 	int i;
2445 
2446 	for (i = first; i < mdevs; i++) {
2447 		/* start from 0 */
2448 		if (!(intr & BIT_ULL(i - first)))
2449 			continue;
2450 
2451 		mbox = &mw->mbox;
2452 		mdev = &mbox->dev[i];
2453 		hdr = mdev->mbase + mbox->rx_start;
2454 
2455 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2456 		 * handler to  ensure that it holds a correct value next time
2457 		 * when the interrupt handler is called.
2458 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2459 		 * pf>mbox.up_num_msgs holds the data for use in
2460 		 * pfaf_mbox_up_handler.
2461 		 */
2462 
2463 		if (hdr->num_msgs) {
2464 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2465 			hdr->num_msgs = 0;
2466 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2467 		}
2468 		mbox = &mw->mbox_up;
2469 		mdev = &mbox->dev[i];
2470 		hdr = mdev->mbase + mbox->rx_start;
2471 		if (hdr->num_msgs) {
2472 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2473 			hdr->num_msgs = 0;
2474 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2475 		}
2476 	}
2477 }
2478 
2479 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2480 {
2481 	struct rvu *rvu = (struct rvu *)rvu_irq;
2482 	int vfs = rvu->vfs;
2483 	u64 intr;
2484 
2485 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2486 	/* Clear interrupts */
2487 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2488 	if (intr)
2489 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2490 
2491 	/* Sync with mbox memory region */
2492 	rmb();
2493 
2494 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2495 
2496 	/* Handle VF interrupts */
2497 	if (vfs > 64) {
2498 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2499 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2500 
2501 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2502 		vfs -= 64;
2503 	}
2504 
2505 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2506 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2507 	if (intr)
2508 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2509 
2510 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2511 
2512 	return IRQ_HANDLED;
2513 }
2514 
2515 static void rvu_enable_mbox_intr(struct rvu *rvu)
2516 {
2517 	struct rvu_hwinfo *hw = rvu->hw;
2518 
2519 	/* Clear spurious irqs, if any */
2520 	rvu_write64(rvu, BLKADDR_RVUM,
2521 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2522 
2523 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2524 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2525 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2526 }
2527 
2528 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2529 {
2530 	struct rvu_block *block;
2531 	int slot, lf, num_lfs;
2532 	int err;
2533 
2534 	block = &rvu->hw->block[blkaddr];
2535 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2536 					block->addr);
2537 	if (!num_lfs)
2538 		return;
2539 	for (slot = 0; slot < num_lfs; slot++) {
2540 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2541 		if (lf < 0)
2542 			continue;
2543 
2544 		/* Cleanup LF and reset it */
2545 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2546 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2547 		else if (block->addr == BLKADDR_NPA)
2548 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2549 		else if ((block->addr == BLKADDR_CPT0) ||
2550 			 (block->addr == BLKADDR_CPT1))
2551 			rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2552 					    slot);
2553 
2554 		err = rvu_lf_reset(rvu, block, lf);
2555 		if (err) {
2556 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2557 				block->addr, lf);
2558 		}
2559 	}
2560 }
2561 
2562 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2563 {
2564 	if (rvu_npc_exact_has_match_table(rvu))
2565 		rvu_npc_exact_reset(rvu, pcifunc);
2566 
2567 	mutex_lock(&rvu->flr_lock);
2568 	/* Reset order should reflect inter-block dependencies:
2569 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2570 	 * 2. Flush and reset SSO/SSOW
2571 	 * 3. Cleanup pools (NPA)
2572 	 */
2573 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2574 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2575 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2576 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2577 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2578 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2579 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2580 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2581 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2582 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2583 	mutex_unlock(&rvu->flr_lock);
2584 }
2585 
2586 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2587 {
2588 	int reg = 0;
2589 
2590 	/* pcifunc = 0(PF0) | (vf + 1) */
2591 	__rvu_flr_handler(rvu, vf + 1);
2592 
2593 	if (vf >= 64) {
2594 		reg = 1;
2595 		vf = vf - 64;
2596 	}
2597 
2598 	/* Signal FLR finish and enable IRQ */
2599 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2600 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2601 }
2602 
2603 static void rvu_flr_handler(struct work_struct *work)
2604 {
2605 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2606 	struct rvu *rvu = flrwork->rvu;
2607 	u16 pcifunc, numvfs, vf;
2608 	u64 cfg;
2609 	int pf;
2610 
2611 	pf = flrwork - rvu->flr_wrk;
2612 	if (pf >= rvu->hw->total_pfs) {
2613 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2614 		return;
2615 	}
2616 
2617 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2618 	numvfs = (cfg >> 12) & 0xFF;
2619 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2620 
2621 	for (vf = 0; vf < numvfs; vf++)
2622 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2623 
2624 	__rvu_flr_handler(rvu, pcifunc);
2625 
2626 	/* Signal FLR finish */
2627 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2628 
2629 	/* Enable interrupt */
2630 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2631 }
2632 
2633 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2634 {
2635 	int dev, vf, reg = 0;
2636 	u64 intr;
2637 
2638 	if (start_vf >= 64)
2639 		reg = 1;
2640 
2641 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2642 	if (!intr)
2643 		return;
2644 
2645 	for (vf = 0; vf < numvfs; vf++) {
2646 		if (!(intr & BIT_ULL(vf)))
2647 			continue;
2648 		/* Clear and disable the interrupt */
2649 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2650 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2651 
2652 		dev = vf + start_vf + rvu->hw->total_pfs;
2653 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2654 	}
2655 }
2656 
2657 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2658 {
2659 	struct rvu *rvu = (struct rvu *)rvu_irq;
2660 	u64 intr;
2661 	u8  pf;
2662 
2663 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2664 	if (!intr)
2665 		goto afvf_flr;
2666 
2667 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2668 		if (intr & (1ULL << pf)) {
2669 			/* clear interrupt */
2670 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2671 				    BIT_ULL(pf));
2672 			/* Disable the interrupt */
2673 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2674 				    BIT_ULL(pf));
2675 			/* PF is already dead do only AF related operations */
2676 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2677 		}
2678 	}
2679 
2680 afvf_flr:
2681 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2682 	if (rvu->vfs > 64)
2683 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2684 
2685 	return IRQ_HANDLED;
2686 }
2687 
2688 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2689 {
2690 	int vf;
2691 
2692 	/* Nothing to be done here other than clearing the
2693 	 * TRPEND bit.
2694 	 */
2695 	for (vf = 0; vf < 64; vf++) {
2696 		if (intr & (1ULL << vf)) {
2697 			/* clear the trpend due to ME(master enable) */
2698 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2699 			/* clear interrupt */
2700 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2701 		}
2702 	}
2703 }
2704 
2705 /* Handles ME interrupts from VFs of AF */
2706 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2707 {
2708 	struct rvu *rvu = (struct rvu *)rvu_irq;
2709 	int vfset;
2710 	u64 intr;
2711 
2712 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2713 
2714 	for (vfset = 0; vfset <= 1; vfset++) {
2715 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2716 		if (intr)
2717 			rvu_me_handle_vfset(rvu, vfset, intr);
2718 	}
2719 
2720 	return IRQ_HANDLED;
2721 }
2722 
2723 /* Handles ME interrupts from PFs */
2724 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2725 {
2726 	struct rvu *rvu = (struct rvu *)rvu_irq;
2727 	u64 intr;
2728 	u8  pf;
2729 
2730 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2731 
2732 	/* Nothing to be done here other than clearing the
2733 	 * TRPEND bit.
2734 	 */
2735 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2736 		if (intr & (1ULL << pf)) {
2737 			/* clear the trpend due to ME(master enable) */
2738 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2739 				    BIT_ULL(pf));
2740 			/* clear interrupt */
2741 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2742 				    BIT_ULL(pf));
2743 		}
2744 	}
2745 
2746 	return IRQ_HANDLED;
2747 }
2748 
2749 static void rvu_unregister_interrupts(struct rvu *rvu)
2750 {
2751 	int irq;
2752 
2753 	rvu_cpt_unregister_interrupts(rvu);
2754 
2755 	/* Disable the Mbox interrupt */
2756 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2757 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2758 
2759 	/* Disable the PF FLR interrupt */
2760 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2761 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2762 
2763 	/* Disable the PF ME interrupt */
2764 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2765 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2766 
2767 	for (irq = 0; irq < rvu->num_vec; irq++) {
2768 		if (rvu->irq_allocated[irq]) {
2769 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2770 			rvu->irq_allocated[irq] = false;
2771 		}
2772 	}
2773 
2774 	pci_free_irq_vectors(rvu->pdev);
2775 	rvu->num_vec = 0;
2776 }
2777 
2778 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2779 {
2780 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2781 	int offset;
2782 
2783 	pfvf = &rvu->pf[0];
2784 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2785 
2786 	/* Make sure there are enough MSIX vectors configured so that
2787 	 * VF interrupts can be handled. Offset equal to zero means
2788 	 * that PF vectors are not configured and overlapping AF vectors.
2789 	 */
2790 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2791 	       offset;
2792 }
2793 
2794 static int rvu_register_interrupts(struct rvu *rvu)
2795 {
2796 	int ret, offset, pf_vec_start;
2797 
2798 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2799 
2800 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2801 					   NAME_SIZE, GFP_KERNEL);
2802 	if (!rvu->irq_name)
2803 		return -ENOMEM;
2804 
2805 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2806 					  sizeof(bool), GFP_KERNEL);
2807 	if (!rvu->irq_allocated)
2808 		return -ENOMEM;
2809 
2810 	/* Enable MSI-X */
2811 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2812 				    rvu->num_vec, PCI_IRQ_MSIX);
2813 	if (ret < 0) {
2814 		dev_err(rvu->dev,
2815 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2816 			rvu->num_vec, ret);
2817 		return ret;
2818 	}
2819 
2820 	/* Register mailbox interrupt handler */
2821 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2822 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2823 			  rvu_mbox_intr_handler, 0,
2824 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2825 	if (ret) {
2826 		dev_err(rvu->dev,
2827 			"RVUAF: IRQ registration failed for mbox irq\n");
2828 		goto fail;
2829 	}
2830 
2831 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2832 
2833 	/* Enable mailbox interrupts from all PFs */
2834 	rvu_enable_mbox_intr(rvu);
2835 
2836 	/* Register FLR interrupt handler */
2837 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2838 		"RVUAF FLR");
2839 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2840 			  rvu_flr_intr_handler, 0,
2841 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2842 			  rvu);
2843 	if (ret) {
2844 		dev_err(rvu->dev,
2845 			"RVUAF: IRQ registration failed for FLR\n");
2846 		goto fail;
2847 	}
2848 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2849 
2850 	/* Enable FLR interrupt for all PFs*/
2851 	rvu_write64(rvu, BLKADDR_RVUM,
2852 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2853 
2854 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2855 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2856 
2857 	/* Register ME interrupt handler */
2858 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2859 		"RVUAF ME");
2860 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2861 			  rvu_me_pf_intr_handler, 0,
2862 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2863 			  rvu);
2864 	if (ret) {
2865 		dev_err(rvu->dev,
2866 			"RVUAF: IRQ registration failed for ME\n");
2867 	}
2868 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2869 
2870 	/* Clear TRPEND bit for all PF */
2871 	rvu_write64(rvu, BLKADDR_RVUM,
2872 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2873 	/* Enable ME interrupt for all PFs*/
2874 	rvu_write64(rvu, BLKADDR_RVUM,
2875 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2876 
2877 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2878 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2879 
2880 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2881 		return 0;
2882 
2883 	/* Get PF MSIX vectors offset. */
2884 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2885 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2886 
2887 	/* Register MBOX0 interrupt. */
2888 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2889 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2890 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2891 			  rvu_mbox_intr_handler, 0,
2892 			  &rvu->irq_name[offset * NAME_SIZE],
2893 			  rvu);
2894 	if (ret)
2895 		dev_err(rvu->dev,
2896 			"RVUAF: IRQ registration failed for Mbox0\n");
2897 
2898 	rvu->irq_allocated[offset] = true;
2899 
2900 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2901 	 * simply increment current offset by 1.
2902 	 */
2903 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2904 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2905 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2906 			  rvu_mbox_intr_handler, 0,
2907 			  &rvu->irq_name[offset * NAME_SIZE],
2908 			  rvu);
2909 	if (ret)
2910 		dev_err(rvu->dev,
2911 			"RVUAF: IRQ registration failed for Mbox1\n");
2912 
2913 	rvu->irq_allocated[offset] = true;
2914 
2915 	/* Register FLR interrupt handler for AF's VFs */
2916 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2917 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2918 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2919 			  rvu_flr_intr_handler, 0,
2920 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2921 	if (ret) {
2922 		dev_err(rvu->dev,
2923 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2924 		goto fail;
2925 	}
2926 	rvu->irq_allocated[offset] = true;
2927 
2928 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2929 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2930 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2931 			  rvu_flr_intr_handler, 0,
2932 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2933 	if (ret) {
2934 		dev_err(rvu->dev,
2935 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2936 		goto fail;
2937 	}
2938 	rvu->irq_allocated[offset] = true;
2939 
2940 	/* Register ME interrupt handler for AF's VFs */
2941 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2942 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2943 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2944 			  rvu_me_vf_intr_handler, 0,
2945 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2946 	if (ret) {
2947 		dev_err(rvu->dev,
2948 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2949 		goto fail;
2950 	}
2951 	rvu->irq_allocated[offset] = true;
2952 
2953 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2954 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2955 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2956 			  rvu_me_vf_intr_handler, 0,
2957 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2958 	if (ret) {
2959 		dev_err(rvu->dev,
2960 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2961 		goto fail;
2962 	}
2963 	rvu->irq_allocated[offset] = true;
2964 
2965 	ret = rvu_cpt_register_interrupts(rvu);
2966 	if (ret)
2967 		goto fail;
2968 
2969 	return 0;
2970 
2971 fail:
2972 	rvu_unregister_interrupts(rvu);
2973 	return ret;
2974 }
2975 
2976 static void rvu_flr_wq_destroy(struct rvu *rvu)
2977 {
2978 	if (rvu->flr_wq) {
2979 		destroy_workqueue(rvu->flr_wq);
2980 		rvu->flr_wq = NULL;
2981 	}
2982 }
2983 
2984 static int rvu_flr_init(struct rvu *rvu)
2985 {
2986 	int dev, num_devs;
2987 	u64 cfg;
2988 	int pf;
2989 
2990 	/* Enable FLR for all PFs*/
2991 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2992 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2993 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2994 			    cfg | BIT_ULL(22));
2995 	}
2996 
2997 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2998 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2999 				       1);
3000 	if (!rvu->flr_wq)
3001 		return -ENOMEM;
3002 
3003 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
3004 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
3005 				    sizeof(struct rvu_work), GFP_KERNEL);
3006 	if (!rvu->flr_wrk) {
3007 		destroy_workqueue(rvu->flr_wq);
3008 		return -ENOMEM;
3009 	}
3010 
3011 	for (dev = 0; dev < num_devs; dev++) {
3012 		rvu->flr_wrk[dev].rvu = rvu;
3013 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3014 	}
3015 
3016 	mutex_init(&rvu->flr_lock);
3017 
3018 	return 0;
3019 }
3020 
3021 static void rvu_disable_afvf_intr(struct rvu *rvu)
3022 {
3023 	int vfs = rvu->vfs;
3024 
3025 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3026 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3027 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3028 	if (vfs <= 64)
3029 		return;
3030 
3031 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3032 		      INTR_MASK(vfs - 64));
3033 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3034 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3035 }
3036 
3037 static void rvu_enable_afvf_intr(struct rvu *rvu)
3038 {
3039 	int vfs = rvu->vfs;
3040 
3041 	/* Clear any pending interrupts and enable AF VF interrupts for
3042 	 * the first 64 VFs.
3043 	 */
3044 	/* Mbox */
3045 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3046 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3047 
3048 	/* FLR */
3049 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3050 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3051 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3052 
3053 	/* Same for remaining VFs, if any. */
3054 	if (vfs <= 64)
3055 		return;
3056 
3057 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3058 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3059 		      INTR_MASK(vfs - 64));
3060 
3061 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3062 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3063 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3064 }
3065 
3066 int rvu_get_num_lbk_chans(void)
3067 {
3068 	struct pci_dev *pdev;
3069 	void __iomem *base;
3070 	int ret = -EIO;
3071 
3072 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3073 			      NULL);
3074 	if (!pdev)
3075 		goto err;
3076 
3077 	base = pci_ioremap_bar(pdev, 0);
3078 	if (!base)
3079 		goto err_put;
3080 
3081 	/* Read number of available LBK channels from LBK(0)_CONST register. */
3082 	ret = (readq(base + 0x10) >> 32) & 0xffff;
3083 	iounmap(base);
3084 err_put:
3085 	pci_dev_put(pdev);
3086 err:
3087 	return ret;
3088 }
3089 
3090 static int rvu_enable_sriov(struct rvu *rvu)
3091 {
3092 	struct pci_dev *pdev = rvu->pdev;
3093 	int err, chans, vfs;
3094 
3095 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3096 		dev_warn(&pdev->dev,
3097 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
3098 		return 0;
3099 	}
3100 
3101 	chans = rvu_get_num_lbk_chans();
3102 	if (chans < 0)
3103 		return chans;
3104 
3105 	vfs = pci_sriov_get_totalvfs(pdev);
3106 
3107 	/* Limit VFs in case we have more VFs than LBK channels available. */
3108 	if (vfs > chans)
3109 		vfs = chans;
3110 
3111 	if (!vfs)
3112 		return 0;
3113 
3114 	/* LBK channel number 63 is used for switching packets between
3115 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3116 	 */
3117 	if (vfs > 62)
3118 		vfs = 62;
3119 
3120 	/* Save VFs number for reference in VF interrupts handlers.
3121 	 * Since interrupts might start arriving during SRIOV enablement
3122 	 * ordinary API cannot be used to get number of enabled VFs.
3123 	 */
3124 	rvu->vfs = vfs;
3125 
3126 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3127 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3128 	if (err)
3129 		return err;
3130 
3131 	rvu_enable_afvf_intr(rvu);
3132 	/* Make sure IRQs are enabled before SRIOV. */
3133 	mb();
3134 
3135 	err = pci_enable_sriov(pdev, vfs);
3136 	if (err) {
3137 		rvu_disable_afvf_intr(rvu);
3138 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3139 		return err;
3140 	}
3141 
3142 	return 0;
3143 }
3144 
3145 static void rvu_disable_sriov(struct rvu *rvu)
3146 {
3147 	rvu_disable_afvf_intr(rvu);
3148 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3149 	pci_disable_sriov(rvu->pdev);
3150 }
3151 
3152 static void rvu_update_module_params(struct rvu *rvu)
3153 {
3154 	const char *default_pfl_name = "default";
3155 
3156 	strscpy(rvu->mkex_pfl_name,
3157 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3158 	strscpy(rvu->kpu_pfl_name,
3159 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3160 }
3161 
3162 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3163 {
3164 	struct device *dev = &pdev->dev;
3165 	struct rvu *rvu;
3166 	int    err;
3167 
3168 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3169 	if (!rvu)
3170 		return -ENOMEM;
3171 
3172 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3173 	if (!rvu->hw) {
3174 		devm_kfree(dev, rvu);
3175 		return -ENOMEM;
3176 	}
3177 
3178 	pci_set_drvdata(pdev, rvu);
3179 	rvu->pdev = pdev;
3180 	rvu->dev = &pdev->dev;
3181 
3182 	err = pci_enable_device(pdev);
3183 	if (err) {
3184 		dev_err(dev, "Failed to enable PCI device\n");
3185 		goto err_freemem;
3186 	}
3187 
3188 	err = pci_request_regions(pdev, DRV_NAME);
3189 	if (err) {
3190 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3191 		goto err_disable_device;
3192 	}
3193 
3194 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3195 	if (err) {
3196 		dev_err(dev, "DMA mask config failed, abort\n");
3197 		goto err_release_regions;
3198 	}
3199 
3200 	pci_set_master(pdev);
3201 
3202 	rvu->ptp = ptp_get();
3203 	if (IS_ERR(rvu->ptp)) {
3204 		err = PTR_ERR(rvu->ptp);
3205 		if (err == -EPROBE_DEFER)
3206 			goto err_release_regions;
3207 		rvu->ptp = NULL;
3208 	}
3209 
3210 	/* Map Admin function CSRs */
3211 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3212 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3213 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3214 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3215 		err = -ENOMEM;
3216 		goto err_put_ptp;
3217 	}
3218 
3219 	/* Store module params in rvu structure */
3220 	rvu_update_module_params(rvu);
3221 
3222 	/* Check which blocks the HW supports */
3223 	rvu_check_block_implemented(rvu);
3224 
3225 	rvu_reset_all_blocks(rvu);
3226 
3227 	rvu_setup_hw_capabilities(rvu);
3228 
3229 	err = rvu_setup_hw_resources(rvu);
3230 	if (err)
3231 		goto err_put_ptp;
3232 
3233 	/* Init mailbox btw AF and PFs */
3234 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3235 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3236 			    rvu_afpf_mbox_up_handler);
3237 	if (err) {
3238 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3239 		goto err_hwsetup;
3240 	}
3241 
3242 	err = rvu_flr_init(rvu);
3243 	if (err) {
3244 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3245 		goto err_mbox;
3246 	}
3247 
3248 	err = rvu_register_interrupts(rvu);
3249 	if (err) {
3250 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3251 		goto err_flr;
3252 	}
3253 
3254 	err = rvu_register_dl(rvu);
3255 	if (err) {
3256 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3257 		goto err_irq;
3258 	}
3259 
3260 	rvu_setup_rvum_blk_revid(rvu);
3261 
3262 	/* Enable AF's VFs (if any) */
3263 	err = rvu_enable_sriov(rvu);
3264 	if (err) {
3265 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3266 		goto err_dl;
3267 	}
3268 
3269 	/* Initialize debugfs */
3270 	rvu_dbg_init(rvu);
3271 
3272 	mutex_init(&rvu->rswitch.switch_lock);
3273 
3274 	if (rvu->fwdata)
3275 		ptp_start(rvu->ptp, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3276 			  rvu->fwdata->ptp_ext_tstamp);
3277 
3278 	return 0;
3279 err_dl:
3280 	rvu_unregister_dl(rvu);
3281 err_irq:
3282 	rvu_unregister_interrupts(rvu);
3283 err_flr:
3284 	rvu_flr_wq_destroy(rvu);
3285 err_mbox:
3286 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3287 err_hwsetup:
3288 	rvu_cgx_exit(rvu);
3289 	rvu_fwdata_exit(rvu);
3290 	rvu_reset_all_blocks(rvu);
3291 	rvu_free_hw_resources(rvu);
3292 	rvu_clear_rvum_blk_revid(rvu);
3293 err_put_ptp:
3294 	ptp_put(rvu->ptp);
3295 err_release_regions:
3296 	pci_release_regions(pdev);
3297 err_disable_device:
3298 	pci_disable_device(pdev);
3299 err_freemem:
3300 	pci_set_drvdata(pdev, NULL);
3301 	devm_kfree(&pdev->dev, rvu->hw);
3302 	devm_kfree(dev, rvu);
3303 	return err;
3304 }
3305 
3306 static void rvu_remove(struct pci_dev *pdev)
3307 {
3308 	struct rvu *rvu = pci_get_drvdata(pdev);
3309 
3310 	rvu_dbg_exit(rvu);
3311 	rvu_unregister_dl(rvu);
3312 	rvu_unregister_interrupts(rvu);
3313 	rvu_flr_wq_destroy(rvu);
3314 	rvu_cgx_exit(rvu);
3315 	rvu_fwdata_exit(rvu);
3316 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3317 	rvu_disable_sriov(rvu);
3318 	rvu_reset_all_blocks(rvu);
3319 	rvu_free_hw_resources(rvu);
3320 	rvu_clear_rvum_blk_revid(rvu);
3321 	ptp_put(rvu->ptp);
3322 	pci_release_regions(pdev);
3323 	pci_disable_device(pdev);
3324 	pci_set_drvdata(pdev, NULL);
3325 
3326 	devm_kfree(&pdev->dev, rvu->hw);
3327 	devm_kfree(&pdev->dev, rvu);
3328 }
3329 
3330 static struct pci_driver rvu_driver = {
3331 	.name = DRV_NAME,
3332 	.id_table = rvu_id_table,
3333 	.probe = rvu_probe,
3334 	.remove = rvu_remove,
3335 };
3336 
3337 static int __init rvu_init_module(void)
3338 {
3339 	int err;
3340 
3341 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3342 
3343 	err = pci_register_driver(&cgx_driver);
3344 	if (err < 0)
3345 		return err;
3346 
3347 	err = pci_register_driver(&ptp_driver);
3348 	if (err < 0)
3349 		goto ptp_err;
3350 
3351 	err =  pci_register_driver(&rvu_driver);
3352 	if (err < 0)
3353 		goto rvu_err;
3354 
3355 	return 0;
3356 rvu_err:
3357 	pci_unregister_driver(&ptp_driver);
3358 ptp_err:
3359 	pci_unregister_driver(&cgx_driver);
3360 
3361 	return err;
3362 }
3363 
3364 static void __exit rvu_cleanup_module(void)
3365 {
3366 	pci_unregister_driver(&rvu_driver);
3367 	pci_unregister_driver(&ptp_driver);
3368 	pci_unregister_driver(&cgx_driver);
3369 }
3370 
3371 module_init(rvu_init_module);
3372 module_exit(rvu_cleanup_module);
3373