1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/pci.h>
16 #include <linux/sysfs.h>
17 
18 #include "cgx.h"
19 #include "rvu.h"
20 #include "rvu_reg.h"
21 
22 #define DRV_NAME	"octeontx2-af"
23 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
24 #define DRV_VERSION	"1.0"
25 
26 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
27 
28 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
29 				struct rvu_block *block, int lf);
30 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31 				  struct rvu_block *block, int lf);
32 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
33 
34 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
35 			 int type, int num,
36 			 void (mbox_handler)(struct work_struct *),
37 			 void (mbox_up_handler)(struct work_struct *));
38 enum {
39 	TYPE_AFVF,
40 	TYPE_AFPF,
41 };
42 
43 /* Supported devices */
44 static const struct pci_device_id rvu_id_table[] = {
45 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
46 	{ 0, }  /* end of table */
47 };
48 
49 MODULE_AUTHOR("Marvell International Ltd.");
50 MODULE_DESCRIPTION(DRV_STRING);
51 MODULE_LICENSE("GPL v2");
52 MODULE_VERSION(DRV_VERSION);
53 MODULE_DEVICE_TABLE(pci, rvu_id_table);
54 
55 /* Poll a RVU block's register 'offset', for a 'zero'
56  * or 'nonzero' at bits specified by 'mask'
57  */
58 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
59 {
60 	unsigned long timeout = jiffies + usecs_to_jiffies(100);
61 	void __iomem *reg;
62 	u64 reg_val;
63 
64 	reg = rvu->afreg_base + ((block << 28) | offset);
65 	while (time_before(jiffies, timeout)) {
66 		reg_val = readq(reg);
67 		if (zero && !(reg_val & mask))
68 			return 0;
69 		if (!zero && (reg_val & mask))
70 			return 0;
71 		usleep_range(1, 5);
72 		timeout--;
73 	}
74 	return -EBUSY;
75 }
76 
77 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
78 {
79 	int id;
80 
81 	if (!rsrc->bmap)
82 		return -EINVAL;
83 
84 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
85 	if (id >= rsrc->max)
86 		return -ENOSPC;
87 
88 	__set_bit(id, rsrc->bmap);
89 
90 	return id;
91 }
92 
93 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
94 {
95 	int start;
96 
97 	if (!rsrc->bmap)
98 		return -EINVAL;
99 
100 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
101 	if (start >= rsrc->max)
102 		return -ENOSPC;
103 
104 	bitmap_set(rsrc->bmap, start, nrsrc);
105 	return start;
106 }
107 
108 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
109 {
110 	if (!rsrc->bmap)
111 		return;
112 	if (start >= rsrc->max)
113 		return;
114 
115 	bitmap_clear(rsrc->bmap, start, nrsrc);
116 }
117 
118 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
119 {
120 	int start;
121 
122 	if (!rsrc->bmap)
123 		return false;
124 
125 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
126 	if (start >= rsrc->max)
127 		return false;
128 
129 	return true;
130 }
131 
132 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
133 {
134 	if (!rsrc->bmap)
135 		return;
136 
137 	__clear_bit(id, rsrc->bmap);
138 }
139 
140 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
141 {
142 	int used;
143 
144 	if (!rsrc->bmap)
145 		return 0;
146 
147 	used = bitmap_weight(rsrc->bmap, rsrc->max);
148 	return (rsrc->max - used);
149 }
150 
151 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
152 {
153 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
154 			     sizeof(long), GFP_KERNEL);
155 	if (!rsrc->bmap)
156 		return -ENOMEM;
157 	return 0;
158 }
159 
160 /* Get block LF's HW index from a PF_FUNC's block slot number */
161 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
162 {
163 	u16 match = 0;
164 	int lf;
165 
166 	mutex_lock(&rvu->rsrc_lock);
167 	for (lf = 0; lf < block->lf.max; lf++) {
168 		if (block->fn_map[lf] == pcifunc) {
169 			if (slot == match) {
170 				mutex_unlock(&rvu->rsrc_lock);
171 				return lf;
172 			}
173 			match++;
174 		}
175 	}
176 	mutex_unlock(&rvu->rsrc_lock);
177 	return -ENODEV;
178 }
179 
180 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
181  * Some silicon variants of OcteonTX2 supports
182  * multiple blocks of same type.
183  *
184  * @pcifunc has to be zero when no LF is yet attached.
185  */
186 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
187 {
188 	int devnum, blkaddr = -ENODEV;
189 	u64 cfg, reg;
190 	bool is_pf;
191 
192 	switch (blktype) {
193 	case BLKTYPE_NPC:
194 		blkaddr = BLKADDR_NPC;
195 		goto exit;
196 	case BLKTYPE_NPA:
197 		blkaddr = BLKADDR_NPA;
198 		goto exit;
199 	case BLKTYPE_NIX:
200 		/* For now assume NIX0 */
201 		if (!pcifunc) {
202 			blkaddr = BLKADDR_NIX0;
203 			goto exit;
204 		}
205 		break;
206 	case BLKTYPE_SSO:
207 		blkaddr = BLKADDR_SSO;
208 		goto exit;
209 	case BLKTYPE_SSOW:
210 		blkaddr = BLKADDR_SSOW;
211 		goto exit;
212 	case BLKTYPE_TIM:
213 		blkaddr = BLKADDR_TIM;
214 		goto exit;
215 	case BLKTYPE_CPT:
216 		/* For now assume CPT0 */
217 		if (!pcifunc) {
218 			blkaddr = BLKADDR_CPT0;
219 			goto exit;
220 		}
221 		break;
222 	}
223 
224 	/* Check if this is a RVU PF or VF */
225 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
226 		is_pf = false;
227 		devnum = rvu_get_hwvf(rvu, pcifunc);
228 	} else {
229 		is_pf = true;
230 		devnum = rvu_get_pf(pcifunc);
231 	}
232 
233 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' */
234 	if (blktype == BLKTYPE_NIX) {
235 		reg = is_pf ? RVU_PRIV_PFX_NIX0_CFG : RVU_PRIV_HWVFX_NIX0_CFG;
236 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
237 		if (cfg)
238 			blkaddr = BLKADDR_NIX0;
239 	}
240 
241 	/* Check if the 'pcifunc' has a CPT LF from 'BLKADDR_CPT0' */
242 	if (blktype == BLKTYPE_CPT) {
243 		reg = is_pf ? RVU_PRIV_PFX_CPT0_CFG : RVU_PRIV_HWVFX_CPT0_CFG;
244 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
245 		if (cfg)
246 			blkaddr = BLKADDR_CPT0;
247 	}
248 
249 exit:
250 	if (is_block_implemented(rvu->hw, blkaddr))
251 		return blkaddr;
252 	return -ENODEV;
253 }
254 
255 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
256 				struct rvu_block *block, u16 pcifunc,
257 				u16 lf, bool attach)
258 {
259 	int devnum, num_lfs = 0;
260 	bool is_pf;
261 	u64 reg;
262 
263 	if (lf >= block->lf.max) {
264 		dev_err(&rvu->pdev->dev,
265 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
266 			__func__, lf, block->name, block->lf.max);
267 		return;
268 	}
269 
270 	/* Check if this is for a RVU PF or VF */
271 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
272 		is_pf = false;
273 		devnum = rvu_get_hwvf(rvu, pcifunc);
274 	} else {
275 		is_pf = true;
276 		devnum = rvu_get_pf(pcifunc);
277 	}
278 
279 	block->fn_map[lf] = attach ? pcifunc : 0;
280 
281 	switch (block->type) {
282 	case BLKTYPE_NPA:
283 		pfvf->npalf = attach ? true : false;
284 		num_lfs = pfvf->npalf;
285 		break;
286 	case BLKTYPE_NIX:
287 		pfvf->nixlf = attach ? true : false;
288 		num_lfs = pfvf->nixlf;
289 		break;
290 	case BLKTYPE_SSO:
291 		attach ? pfvf->sso++ : pfvf->sso--;
292 		num_lfs = pfvf->sso;
293 		break;
294 	case BLKTYPE_SSOW:
295 		attach ? pfvf->ssow++ : pfvf->ssow--;
296 		num_lfs = pfvf->ssow;
297 		break;
298 	case BLKTYPE_TIM:
299 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
300 		num_lfs = pfvf->timlfs;
301 		break;
302 	case BLKTYPE_CPT:
303 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
304 		num_lfs = pfvf->cptlfs;
305 		break;
306 	}
307 
308 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
309 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
310 }
311 
312 inline int rvu_get_pf(u16 pcifunc)
313 {
314 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
315 }
316 
317 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
318 {
319 	u64 cfg;
320 
321 	/* Get numVFs attached to this PF and first HWVF */
322 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
323 	*numvfs = (cfg >> 12) & 0xFF;
324 	*hwvf = cfg & 0xFFF;
325 }
326 
327 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
328 {
329 	int pf, func;
330 	u64 cfg;
331 
332 	pf = rvu_get_pf(pcifunc);
333 	func = pcifunc & RVU_PFVF_FUNC_MASK;
334 
335 	/* Get first HWVF attached to this PF */
336 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
337 
338 	return ((cfg & 0xFFF) + func - 1);
339 }
340 
341 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
342 {
343 	/* Check if it is a PF or VF */
344 	if (pcifunc & RVU_PFVF_FUNC_MASK)
345 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
346 	else
347 		return &rvu->pf[rvu_get_pf(pcifunc)];
348 }
349 
350 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
351 {
352 	int pf, vf, nvfs;
353 	u64 cfg;
354 
355 	pf = rvu_get_pf(pcifunc);
356 	if (pf >= rvu->hw->total_pfs)
357 		return false;
358 
359 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
360 		return true;
361 
362 	/* Check if VF is within number of VFs attached to this PF */
363 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
364 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
365 	nvfs = (cfg >> 12) & 0xFF;
366 	if (vf >= nvfs)
367 		return false;
368 
369 	return true;
370 }
371 
372 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
373 {
374 	struct rvu_block *block;
375 
376 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
377 		return false;
378 
379 	block = &hw->block[blkaddr];
380 	return block->implemented;
381 }
382 
383 static void rvu_check_block_implemented(struct rvu *rvu)
384 {
385 	struct rvu_hwinfo *hw = rvu->hw;
386 	struct rvu_block *block;
387 	int blkid;
388 	u64 cfg;
389 
390 	/* For each block check if 'implemented' bit is set */
391 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
392 		block = &hw->block[blkid];
393 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
394 		if (cfg & BIT_ULL(11))
395 			block->implemented = true;
396 	}
397 }
398 
399 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
400 {
401 	int err;
402 
403 	if (!block->implemented)
404 		return 0;
405 
406 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
407 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
408 			   true);
409 	return err;
410 }
411 
412 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
413 {
414 	struct rvu_block *block = &rvu->hw->block[blkaddr];
415 
416 	if (!block->implemented)
417 		return;
418 
419 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
420 	rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
421 }
422 
423 static void rvu_reset_all_blocks(struct rvu *rvu)
424 {
425 	/* Do a HW reset of all RVU blocks */
426 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
427 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
428 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
429 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
430 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
431 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
432 	rvu_block_reset(rvu, BLKADDR_NDC0, NDC_AF_BLK_RST);
433 	rvu_block_reset(rvu, BLKADDR_NDC1, NDC_AF_BLK_RST);
434 	rvu_block_reset(rvu, BLKADDR_NDC2, NDC_AF_BLK_RST);
435 }
436 
437 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
438 {
439 	struct rvu_pfvf *pfvf;
440 	u64 cfg;
441 	int lf;
442 
443 	for (lf = 0; lf < block->lf.max; lf++) {
444 		cfg = rvu_read64(rvu, block->addr,
445 				 block->lfcfg_reg | (lf << block->lfshift));
446 		if (!(cfg & BIT_ULL(63)))
447 			continue;
448 
449 		/* Set this resource as being used */
450 		__set_bit(lf, block->lf.bmap);
451 
452 		/* Get, to whom this LF is attached */
453 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
454 		rvu_update_rsrc_map(rvu, pfvf, block,
455 				    (cfg >> 8) & 0xFFFF, lf, true);
456 
457 		/* Set start MSIX vector for this LF within this PF/VF */
458 		rvu_set_msix_offset(rvu, pfvf, block, lf);
459 	}
460 }
461 
462 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
463 {
464 	int min_vecs;
465 
466 	if (!vf)
467 		goto check_pf;
468 
469 	if (!nvecs) {
470 		dev_warn(rvu->dev,
471 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
472 			 pf, vf - 1, nvecs);
473 	}
474 	return;
475 
476 check_pf:
477 	if (pf == 0)
478 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
479 	else
480 		min_vecs = RVU_PF_INT_VEC_CNT;
481 
482 	if (!(nvecs < min_vecs))
483 		return;
484 	dev_warn(rvu->dev,
485 		 "PF%d is configured with too few vectors, %d, min is %d\n",
486 		 pf, nvecs, min_vecs);
487 }
488 
489 static int rvu_setup_msix_resources(struct rvu *rvu)
490 {
491 	struct rvu_hwinfo *hw = rvu->hw;
492 	int pf, vf, numvfs, hwvf, err;
493 	int nvecs, offset, max_msix;
494 	struct rvu_pfvf *pfvf;
495 	u64 cfg, phy_addr;
496 	dma_addr_t iova;
497 
498 	for (pf = 0; pf < hw->total_pfs; pf++) {
499 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
500 		/* If PF is not enabled, nothing to do */
501 		if (!((cfg >> 20) & 0x01))
502 			continue;
503 
504 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
505 
506 		pfvf = &rvu->pf[pf];
507 		/* Get num of MSIX vectors attached to this PF */
508 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
509 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
510 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
511 
512 		/* Alloc msix bitmap for this PF */
513 		err = rvu_alloc_bitmap(&pfvf->msix);
514 		if (err)
515 			return err;
516 
517 		/* Allocate memory for MSIX vector to RVU block LF mapping */
518 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
519 						sizeof(u16), GFP_KERNEL);
520 		if (!pfvf->msix_lfmap)
521 			return -ENOMEM;
522 
523 		/* For PF0 (AF) firmware will set msix vector offsets for
524 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
525 		 */
526 		if (!pf)
527 			goto setup_vfmsix;
528 
529 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
530 		 * These are allocated on driver init and never freed,
531 		 * so no need to set 'msix_lfmap' for these.
532 		 */
533 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
534 		nvecs = (cfg >> 12) & 0xFF;
535 		cfg &= ~0x7FFULL;
536 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
537 		rvu_write64(rvu, BLKADDR_RVUM,
538 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
539 setup_vfmsix:
540 		/* Alloc msix bitmap for VFs */
541 		for (vf = 0; vf < numvfs; vf++) {
542 			pfvf =  &rvu->hwvf[hwvf + vf];
543 			/* Get num of MSIX vectors attached to this VF */
544 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
545 					 RVU_PRIV_PFX_MSIX_CFG(pf));
546 			pfvf->msix.max = (cfg & 0xFFF) + 1;
547 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
548 
549 			/* Alloc msix bitmap for this VF */
550 			err = rvu_alloc_bitmap(&pfvf->msix);
551 			if (err)
552 				return err;
553 
554 			pfvf->msix_lfmap =
555 				devm_kcalloc(rvu->dev, pfvf->msix.max,
556 					     sizeof(u16), GFP_KERNEL);
557 			if (!pfvf->msix_lfmap)
558 				return -ENOMEM;
559 
560 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
561 			 * These are allocated on driver init and never freed,
562 			 * so no need to set 'msix_lfmap' for these.
563 			 */
564 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
565 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
566 			nvecs = (cfg >> 12) & 0xFF;
567 			cfg &= ~0x7FFULL;
568 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
569 			rvu_write64(rvu, BLKADDR_RVUM,
570 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
571 				    cfg | offset);
572 		}
573 	}
574 
575 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
576 	 * create a IOMMU mapping for the physcial address configured by
577 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
578 	 */
579 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
580 	max_msix = cfg & 0xFFFFF;
581 	phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
582 	iova = dma_map_resource(rvu->dev, phy_addr,
583 				max_msix * PCI_MSIX_ENTRY_SIZE,
584 				DMA_BIDIRECTIONAL, 0);
585 
586 	if (dma_mapping_error(rvu->dev, iova))
587 		return -ENOMEM;
588 
589 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
590 	rvu->msix_base_iova = iova;
591 
592 	return 0;
593 }
594 
595 static void rvu_free_hw_resources(struct rvu *rvu)
596 {
597 	struct rvu_hwinfo *hw = rvu->hw;
598 	struct rvu_block *block;
599 	struct rvu_pfvf  *pfvf;
600 	int id, max_msix;
601 	u64 cfg;
602 
603 	rvu_npa_freemem(rvu);
604 	rvu_npc_freemem(rvu);
605 	rvu_nix_freemem(rvu);
606 
607 	/* Free block LF bitmaps */
608 	for (id = 0; id < BLK_COUNT; id++) {
609 		block = &hw->block[id];
610 		kfree(block->lf.bmap);
611 	}
612 
613 	/* Free MSIX bitmaps */
614 	for (id = 0; id < hw->total_pfs; id++) {
615 		pfvf = &rvu->pf[id];
616 		kfree(pfvf->msix.bmap);
617 	}
618 
619 	for (id = 0; id < hw->total_vfs; id++) {
620 		pfvf = &rvu->hwvf[id];
621 		kfree(pfvf->msix.bmap);
622 	}
623 
624 	/* Unmap MSIX vector base IOVA mapping */
625 	if (!rvu->msix_base_iova)
626 		return;
627 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
628 	max_msix = cfg & 0xFFFFF;
629 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
630 			   max_msix * PCI_MSIX_ENTRY_SIZE,
631 			   DMA_BIDIRECTIONAL, 0);
632 
633 	mutex_destroy(&rvu->rsrc_lock);
634 }
635 
636 static int rvu_setup_hw_resources(struct rvu *rvu)
637 {
638 	struct rvu_hwinfo *hw = rvu->hw;
639 	struct rvu_block *block;
640 	int blkid, err;
641 	u64 cfg;
642 
643 	/* Get HW supported max RVU PF & VF count */
644 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
645 	hw->total_pfs = (cfg >> 32) & 0xFF;
646 	hw->total_vfs = (cfg >> 20) & 0xFFF;
647 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
648 
649 	/* Init NPA LF's bitmap */
650 	block = &hw->block[BLKADDR_NPA];
651 	if (!block->implemented)
652 		goto nix;
653 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
654 	block->lf.max = (cfg >> 16) & 0xFFF;
655 	block->addr = BLKADDR_NPA;
656 	block->type = BLKTYPE_NPA;
657 	block->lfshift = 8;
658 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
659 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
660 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
661 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
662 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
663 	block->lfreset_reg = NPA_AF_LF_RST;
664 	sprintf(block->name, "NPA");
665 	err = rvu_alloc_bitmap(&block->lf);
666 	if (err)
667 		return err;
668 
669 nix:
670 	/* Init NIX LF's bitmap */
671 	block = &hw->block[BLKADDR_NIX0];
672 	if (!block->implemented)
673 		goto sso;
674 	cfg = rvu_read64(rvu, BLKADDR_NIX0, NIX_AF_CONST2);
675 	block->lf.max = cfg & 0xFFF;
676 	block->addr = BLKADDR_NIX0;
677 	block->type = BLKTYPE_NIX;
678 	block->lfshift = 8;
679 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
680 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIX0_CFG;
681 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIX0_CFG;
682 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
683 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
684 	block->lfreset_reg = NIX_AF_LF_RST;
685 	sprintf(block->name, "NIX");
686 	err = rvu_alloc_bitmap(&block->lf);
687 	if (err)
688 		return err;
689 
690 sso:
691 	/* Init SSO group's bitmap */
692 	block = &hw->block[BLKADDR_SSO];
693 	if (!block->implemented)
694 		goto ssow;
695 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
696 	block->lf.max = cfg & 0xFFFF;
697 	block->addr = BLKADDR_SSO;
698 	block->type = BLKTYPE_SSO;
699 	block->multislot = true;
700 	block->lfshift = 3;
701 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
702 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
703 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
704 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
705 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
706 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
707 	sprintf(block->name, "SSO GROUP");
708 	err = rvu_alloc_bitmap(&block->lf);
709 	if (err)
710 		return err;
711 
712 ssow:
713 	/* Init SSO workslot's bitmap */
714 	block = &hw->block[BLKADDR_SSOW];
715 	if (!block->implemented)
716 		goto tim;
717 	block->lf.max = (cfg >> 56) & 0xFF;
718 	block->addr = BLKADDR_SSOW;
719 	block->type = BLKTYPE_SSOW;
720 	block->multislot = true;
721 	block->lfshift = 3;
722 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
723 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
724 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
725 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
726 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
727 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
728 	sprintf(block->name, "SSOWS");
729 	err = rvu_alloc_bitmap(&block->lf);
730 	if (err)
731 		return err;
732 
733 tim:
734 	/* Init TIM LF's bitmap */
735 	block = &hw->block[BLKADDR_TIM];
736 	if (!block->implemented)
737 		goto cpt;
738 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
739 	block->lf.max = cfg & 0xFFFF;
740 	block->addr = BLKADDR_TIM;
741 	block->type = BLKTYPE_TIM;
742 	block->multislot = true;
743 	block->lfshift = 3;
744 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
745 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
746 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
747 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
748 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
749 	block->lfreset_reg = TIM_AF_LF_RST;
750 	sprintf(block->name, "TIM");
751 	err = rvu_alloc_bitmap(&block->lf);
752 	if (err)
753 		return err;
754 
755 cpt:
756 	/* Init CPT LF's bitmap */
757 	block = &hw->block[BLKADDR_CPT0];
758 	if (!block->implemented)
759 		goto init;
760 	cfg = rvu_read64(rvu, BLKADDR_CPT0, CPT_AF_CONSTANTS0);
761 	block->lf.max = cfg & 0xFF;
762 	block->addr = BLKADDR_CPT0;
763 	block->type = BLKTYPE_CPT;
764 	block->multislot = true;
765 	block->lfshift = 3;
766 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
767 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPT0_CFG;
768 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPT0_CFG;
769 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
770 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
771 	block->lfreset_reg = CPT_AF_LF_RST;
772 	sprintf(block->name, "CPT");
773 	err = rvu_alloc_bitmap(&block->lf);
774 	if (err)
775 		return err;
776 
777 init:
778 	/* Allocate memory for PFVF data */
779 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
780 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
781 	if (!rvu->pf)
782 		return -ENOMEM;
783 
784 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
785 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
786 	if (!rvu->hwvf)
787 		return -ENOMEM;
788 
789 	mutex_init(&rvu->rsrc_lock);
790 
791 	err = rvu_setup_msix_resources(rvu);
792 	if (err)
793 		return err;
794 
795 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
796 		block = &hw->block[blkid];
797 		if (!block->lf.bmap)
798 			continue;
799 
800 		/* Allocate memory for block LF/slot to pcifunc mapping info */
801 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
802 					     sizeof(u16), GFP_KERNEL);
803 		if (!block->fn_map)
804 			return -ENOMEM;
805 
806 		/* Scan all blocks to check if low level firmware has
807 		 * already provisioned any of the resources to a PF/VF.
808 		 */
809 		rvu_scan_block(rvu, block);
810 	}
811 
812 	err = rvu_npc_init(rvu);
813 	if (err)
814 		return err;
815 
816 	err = rvu_npa_init(rvu);
817 	if (err)
818 		return err;
819 
820 	err = rvu_nix_init(rvu);
821 	if (err)
822 		return err;
823 
824 	return 0;
825 }
826 
827 /* NPA and NIX admin queue APIs */
828 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
829 {
830 	if (!aq)
831 		return;
832 
833 	qmem_free(rvu->dev, aq->inst);
834 	qmem_free(rvu->dev, aq->res);
835 	devm_kfree(rvu->dev, aq);
836 }
837 
838 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
839 		 int qsize, int inst_size, int res_size)
840 {
841 	struct admin_queue *aq;
842 	int err;
843 
844 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
845 	if (!*ad_queue)
846 		return -ENOMEM;
847 	aq = *ad_queue;
848 
849 	/* Alloc memory for instructions i.e AQ */
850 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
851 	if (err) {
852 		devm_kfree(rvu->dev, aq);
853 		return err;
854 	}
855 
856 	/* Alloc memory for results */
857 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
858 	if (err) {
859 		rvu_aq_free(rvu, aq);
860 		return err;
861 	}
862 
863 	spin_lock_init(&aq->lock);
864 	return 0;
865 }
866 
867 static int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
868 				  struct ready_msg_rsp *rsp)
869 {
870 	return 0;
871 }
872 
873 /* Get current count of a RVU block's LF/slots
874  * provisioned to a given RVU func.
875  */
876 static u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blktype)
877 {
878 	switch (blktype) {
879 	case BLKTYPE_NPA:
880 		return pfvf->npalf ? 1 : 0;
881 	case BLKTYPE_NIX:
882 		return pfvf->nixlf ? 1 : 0;
883 	case BLKTYPE_SSO:
884 		return pfvf->sso;
885 	case BLKTYPE_SSOW:
886 		return pfvf->ssow;
887 	case BLKTYPE_TIM:
888 		return pfvf->timlfs;
889 	case BLKTYPE_CPT:
890 		return pfvf->cptlfs;
891 	}
892 	return 0;
893 }
894 
895 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
896 {
897 	struct rvu_pfvf *pfvf;
898 
899 	if (!is_pf_func_valid(rvu, pcifunc))
900 		return false;
901 
902 	pfvf = rvu_get_pfvf(rvu, pcifunc);
903 
904 	/* Check if this PFFUNC has a LF of type blktype attached */
905 	if (!rvu_get_rsrc_mapcount(pfvf, blktype))
906 		return false;
907 
908 	return true;
909 }
910 
911 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
912 			   int pcifunc, int slot)
913 {
914 	u64 val;
915 
916 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
917 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
918 	/* Wait for the lookup to finish */
919 	/* TODO: put some timeout here */
920 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
921 		;
922 
923 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
924 
925 	/* Check LF valid bit */
926 	if (!(val & (1ULL << 12)))
927 		return -1;
928 
929 	return (val & 0xFFF);
930 }
931 
932 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
933 {
934 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
935 	struct rvu_hwinfo *hw = rvu->hw;
936 	struct rvu_block *block;
937 	int slot, lf, num_lfs;
938 	int blkaddr;
939 
940 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
941 	if (blkaddr < 0)
942 		return;
943 
944 	block = &hw->block[blkaddr];
945 
946 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->type);
947 	if (!num_lfs)
948 		return;
949 
950 	for (slot = 0; slot < num_lfs; slot++) {
951 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
952 		if (lf < 0) /* This should never happen */
953 			continue;
954 
955 		/* Disable the LF */
956 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
957 			    (lf << block->lfshift), 0x00ULL);
958 
959 		/* Update SW maintained mapping info as well */
960 		rvu_update_rsrc_map(rvu, pfvf, block,
961 				    pcifunc, lf, false);
962 
963 		/* Free the resource */
964 		rvu_free_rsrc(&block->lf, lf);
965 
966 		/* Clear MSIX vector offset for this LF */
967 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
968 	}
969 }
970 
971 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
972 			    u16 pcifunc)
973 {
974 	struct rvu_hwinfo *hw = rvu->hw;
975 	bool detach_all = true;
976 	struct rvu_block *block;
977 	int blkid;
978 
979 	mutex_lock(&rvu->rsrc_lock);
980 
981 	/* Check for partial resource detach */
982 	if (detach && detach->partial)
983 		detach_all = false;
984 
985 	/* Check for RVU block's LFs attached to this func,
986 	 * if so, detach them.
987 	 */
988 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
989 		block = &hw->block[blkid];
990 		if (!block->lf.bmap)
991 			continue;
992 		if (!detach_all && detach) {
993 			if (blkid == BLKADDR_NPA && !detach->npalf)
994 				continue;
995 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
996 				continue;
997 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
998 				continue;
999 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1000 				continue;
1001 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1002 				continue;
1003 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1004 				continue;
1005 		}
1006 		rvu_detach_block(rvu, pcifunc, block->type);
1007 	}
1008 
1009 	mutex_unlock(&rvu->rsrc_lock);
1010 	return 0;
1011 }
1012 
1013 static int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1014 					     struct rsrc_detach *detach,
1015 					     struct msg_rsp *rsp)
1016 {
1017 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1018 }
1019 
1020 static void rvu_attach_block(struct rvu *rvu, int pcifunc,
1021 			     int blktype, int num_lfs)
1022 {
1023 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1024 	struct rvu_hwinfo *hw = rvu->hw;
1025 	struct rvu_block *block;
1026 	int slot, lf;
1027 	int blkaddr;
1028 	u64 cfg;
1029 
1030 	if (!num_lfs)
1031 		return;
1032 
1033 	blkaddr = rvu_get_blkaddr(rvu, blktype, 0);
1034 	if (blkaddr < 0)
1035 		return;
1036 
1037 	block = &hw->block[blkaddr];
1038 	if (!block->lf.bmap)
1039 		return;
1040 
1041 	for (slot = 0; slot < num_lfs; slot++) {
1042 		/* Allocate the resource */
1043 		lf = rvu_alloc_rsrc(&block->lf);
1044 		if (lf < 0)
1045 			return;
1046 
1047 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1048 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1049 			    (lf << block->lfshift), cfg);
1050 		rvu_update_rsrc_map(rvu, pfvf, block,
1051 				    pcifunc, lf, true);
1052 
1053 		/* Set start MSIX vector for this LF within this PF/VF */
1054 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1055 	}
1056 }
1057 
1058 static int rvu_check_rsrc_availability(struct rvu *rvu,
1059 				       struct rsrc_attach *req, u16 pcifunc)
1060 {
1061 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1062 	struct rvu_hwinfo *hw = rvu->hw;
1063 	struct rvu_block *block;
1064 	int free_lfs, mappedlfs;
1065 
1066 	/* Only one NPA LF can be attached */
1067 	if (req->npalf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NPA)) {
1068 		block = &hw->block[BLKADDR_NPA];
1069 		free_lfs = rvu_rsrc_free_count(&block->lf);
1070 		if (!free_lfs)
1071 			goto fail;
1072 	} else if (req->npalf) {
1073 		dev_err(&rvu->pdev->dev,
1074 			"Func 0x%x: Invalid req, already has NPA\n",
1075 			 pcifunc);
1076 		return -EINVAL;
1077 	}
1078 
1079 	/* Only one NIX LF can be attached */
1080 	if (req->nixlf && !rvu_get_rsrc_mapcount(pfvf, BLKTYPE_NIX)) {
1081 		block = &hw->block[BLKADDR_NIX0];
1082 		free_lfs = rvu_rsrc_free_count(&block->lf);
1083 		if (!free_lfs)
1084 			goto fail;
1085 	} else if (req->nixlf) {
1086 		dev_err(&rvu->pdev->dev,
1087 			"Func 0x%x: Invalid req, already has NIX\n",
1088 			pcifunc);
1089 		return -EINVAL;
1090 	}
1091 
1092 	if (req->sso) {
1093 		block = &hw->block[BLKADDR_SSO];
1094 		/* Is request within limits ? */
1095 		if (req->sso > block->lf.max) {
1096 			dev_err(&rvu->pdev->dev,
1097 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1098 				 pcifunc, req->sso, block->lf.max);
1099 			return -EINVAL;
1100 		}
1101 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1102 		free_lfs = rvu_rsrc_free_count(&block->lf);
1103 		/* Check if additional resources are available */
1104 		if (req->sso > mappedlfs &&
1105 		    ((req->sso - mappedlfs) > free_lfs))
1106 			goto fail;
1107 	}
1108 
1109 	if (req->ssow) {
1110 		block = &hw->block[BLKADDR_SSOW];
1111 		if (req->ssow > block->lf.max) {
1112 			dev_err(&rvu->pdev->dev,
1113 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1114 				 pcifunc, req->sso, block->lf.max);
1115 			return -EINVAL;
1116 		}
1117 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1118 		free_lfs = rvu_rsrc_free_count(&block->lf);
1119 		if (req->ssow > mappedlfs &&
1120 		    ((req->ssow - mappedlfs) > free_lfs))
1121 			goto fail;
1122 	}
1123 
1124 	if (req->timlfs) {
1125 		block = &hw->block[BLKADDR_TIM];
1126 		if (req->timlfs > block->lf.max) {
1127 			dev_err(&rvu->pdev->dev,
1128 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1129 				 pcifunc, req->timlfs, block->lf.max);
1130 			return -EINVAL;
1131 		}
1132 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1133 		free_lfs = rvu_rsrc_free_count(&block->lf);
1134 		if (req->timlfs > mappedlfs &&
1135 		    ((req->timlfs - mappedlfs) > free_lfs))
1136 			goto fail;
1137 	}
1138 
1139 	if (req->cptlfs) {
1140 		block = &hw->block[BLKADDR_CPT0];
1141 		if (req->cptlfs > block->lf.max) {
1142 			dev_err(&rvu->pdev->dev,
1143 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1144 				 pcifunc, req->cptlfs, block->lf.max);
1145 			return -EINVAL;
1146 		}
1147 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->type);
1148 		free_lfs = rvu_rsrc_free_count(&block->lf);
1149 		if (req->cptlfs > mappedlfs &&
1150 		    ((req->cptlfs - mappedlfs) > free_lfs))
1151 			goto fail;
1152 	}
1153 
1154 	return 0;
1155 
1156 fail:
1157 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1158 	return -ENOSPC;
1159 }
1160 
1161 static int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1162 					     struct rsrc_attach *attach,
1163 					     struct msg_rsp *rsp)
1164 {
1165 	u16 pcifunc = attach->hdr.pcifunc;
1166 	int err;
1167 
1168 	/* If first request, detach all existing attached resources */
1169 	if (!attach->modify)
1170 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1171 
1172 	mutex_lock(&rvu->rsrc_lock);
1173 
1174 	/* Check if the request can be accommodated */
1175 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1176 	if (err)
1177 		goto exit;
1178 
1179 	/* Now attach the requested resources */
1180 	if (attach->npalf)
1181 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1);
1182 
1183 	if (attach->nixlf)
1184 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1);
1185 
1186 	if (attach->sso) {
1187 		/* RVU func doesn't know which exact LF or slot is attached
1188 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1189 		 * request, simply detach all existing attached LFs/slots
1190 		 * and attach a fresh.
1191 		 */
1192 		if (attach->modify)
1193 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1194 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO, attach->sso);
1195 	}
1196 
1197 	if (attach->ssow) {
1198 		if (attach->modify)
1199 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1200 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW, attach->ssow);
1201 	}
1202 
1203 	if (attach->timlfs) {
1204 		if (attach->modify)
1205 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1206 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM, attach->timlfs);
1207 	}
1208 
1209 	if (attach->cptlfs) {
1210 		if (attach->modify)
1211 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1212 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT, attach->cptlfs);
1213 	}
1214 
1215 exit:
1216 	mutex_unlock(&rvu->rsrc_lock);
1217 	return err;
1218 }
1219 
1220 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1221 			       int blkaddr, int lf)
1222 {
1223 	u16 vec;
1224 
1225 	if (lf < 0)
1226 		return MSIX_VECTOR_INVALID;
1227 
1228 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1229 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1230 			return vec;
1231 	}
1232 	return MSIX_VECTOR_INVALID;
1233 }
1234 
1235 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1236 				struct rvu_block *block, int lf)
1237 {
1238 	u16 nvecs, vec, offset;
1239 	u64 cfg;
1240 
1241 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1242 			 (lf << block->lfshift));
1243 	nvecs = (cfg >> 12) & 0xFF;
1244 
1245 	/* Check and alloc MSIX vectors, must be contiguous */
1246 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1247 		return;
1248 
1249 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1250 
1251 	/* Config MSIX offset in LF */
1252 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1253 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1254 
1255 	/* Update the bitmap as well */
1256 	for (vec = 0; vec < nvecs; vec++)
1257 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1258 }
1259 
1260 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1261 				  struct rvu_block *block, int lf)
1262 {
1263 	u16 nvecs, vec, offset;
1264 	u64 cfg;
1265 
1266 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1267 			 (lf << block->lfshift));
1268 	nvecs = (cfg >> 12) & 0xFF;
1269 
1270 	/* Clear MSIX offset in LF */
1271 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1272 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1273 
1274 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1275 
1276 	/* Update the mapping */
1277 	for (vec = 0; vec < nvecs; vec++)
1278 		pfvf->msix_lfmap[offset + vec] = 0;
1279 
1280 	/* Free the same in MSIX bitmap */
1281 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1282 }
1283 
1284 static int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1285 					struct msix_offset_rsp *rsp)
1286 {
1287 	struct rvu_hwinfo *hw = rvu->hw;
1288 	u16 pcifunc = req->hdr.pcifunc;
1289 	struct rvu_pfvf *pfvf;
1290 	int lf, slot;
1291 
1292 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1293 	if (!pfvf->msix.bmap)
1294 		return 0;
1295 
1296 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1297 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1298 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1299 
1300 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NIX0], pcifunc, 0);
1301 	rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NIX0, lf);
1302 
1303 	rsp->sso = pfvf->sso;
1304 	for (slot = 0; slot < rsp->sso; slot++) {
1305 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1306 		rsp->sso_msixoff[slot] =
1307 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1308 	}
1309 
1310 	rsp->ssow = pfvf->ssow;
1311 	for (slot = 0; slot < rsp->ssow; slot++) {
1312 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1313 		rsp->ssow_msixoff[slot] =
1314 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1315 	}
1316 
1317 	rsp->timlfs = pfvf->timlfs;
1318 	for (slot = 0; slot < rsp->timlfs; slot++) {
1319 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1320 		rsp->timlf_msixoff[slot] =
1321 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1322 	}
1323 
1324 	rsp->cptlfs = pfvf->cptlfs;
1325 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1326 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1327 		rsp->cptlf_msixoff[slot] =
1328 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1329 	}
1330 	return 0;
1331 }
1332 
1333 static int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1334 				   struct msg_rsp *rsp)
1335 {
1336 	u16 pcifunc = req->hdr.pcifunc;
1337 	u16 vf, numvfs;
1338 	u64 cfg;
1339 
1340 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1341 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1342 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1343 	numvfs = (cfg >> 12) & 0xFF;
1344 
1345 	if (vf && vf <= numvfs)
1346 		__rvu_flr_handler(rvu, pcifunc);
1347 	else
1348 		return RVU_INVALID_VF_ID;
1349 
1350 	return 0;
1351 }
1352 
1353 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1354 				struct mbox_msghdr *req)
1355 {
1356 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1357 
1358 	/* Check if valid, if not reply with a invalid msg */
1359 	if (req->sig != OTX2_MBOX_REQ_SIG)
1360 		goto bad_message;
1361 
1362 	switch (req->id) {
1363 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1364 	case _id: {							\
1365 		struct _rsp_type *rsp;					\
1366 		int err;						\
1367 									\
1368 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1369 			mbox, devid,					\
1370 			sizeof(struct _rsp_type));			\
1371 		/* some handlers should complete even if reply */	\
1372 		/* could not be allocated */				\
1373 		if (!rsp &&						\
1374 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1375 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
1376 		    _id != MBOX_MSG_VF_FLR)				\
1377 			return -ENOMEM;					\
1378 		if (rsp) {						\
1379 			rsp->hdr.id = _id;				\
1380 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
1381 			rsp->hdr.pcifunc = req->pcifunc;		\
1382 			rsp->hdr.rc = 0;				\
1383 		}							\
1384 									\
1385 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
1386 						    (struct _req_type *)req, \
1387 						    rsp);		\
1388 		if (rsp && err)						\
1389 			rsp->hdr.rc = err;				\
1390 									\
1391 		return rsp ? err : -ENOMEM;				\
1392 	}
1393 MBOX_MESSAGES
1394 #undef M
1395 
1396 bad_message:
1397 	default:
1398 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
1399 		return -ENODEV;
1400 	}
1401 }
1402 
1403 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
1404 {
1405 	struct rvu *rvu = mwork->rvu;
1406 	int offset, err, id, devid;
1407 	struct otx2_mbox_dev *mdev;
1408 	struct mbox_hdr *req_hdr;
1409 	struct mbox_msghdr *msg;
1410 	struct mbox_wq_info *mw;
1411 	struct otx2_mbox *mbox;
1412 
1413 	switch (type) {
1414 	case TYPE_AFPF:
1415 		mw = &rvu->afpf_wq_info;
1416 		break;
1417 	case TYPE_AFVF:
1418 		mw = &rvu->afvf_wq_info;
1419 		break;
1420 	default:
1421 		return;
1422 	}
1423 
1424 	devid = mwork - mw->mbox_wrk;
1425 	mbox = &mw->mbox;
1426 	mdev = &mbox->dev[devid];
1427 
1428 	/* Process received mbox messages */
1429 	req_hdr = mdev->mbase + mbox->rx_start;
1430 	if (req_hdr->num_msgs == 0)
1431 		return;
1432 
1433 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
1434 
1435 	for (id = 0; id < req_hdr->num_msgs; id++) {
1436 		msg = mdev->mbase + offset;
1437 
1438 		/* Set which PF/VF sent this message based on mbox IRQ */
1439 		switch (type) {
1440 		case TYPE_AFPF:
1441 			msg->pcifunc &=
1442 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
1443 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
1444 			break;
1445 		case TYPE_AFVF:
1446 			msg->pcifunc &=
1447 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
1448 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
1449 			break;
1450 		}
1451 
1452 		err = rvu_process_mbox_msg(mbox, devid, msg);
1453 		if (!err) {
1454 			offset = mbox->rx_start + msg->next_msgoff;
1455 			continue;
1456 		}
1457 
1458 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
1459 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
1460 				 err, otx2_mbox_id2name(msg->id),
1461 				 msg->id, devid,
1462 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
1463 		else
1464 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
1465 				 err, otx2_mbox_id2name(msg->id),
1466 				 msg->id, devid);
1467 	}
1468 
1469 	/* Send mbox responses to VF/PF */
1470 	otx2_mbox_msg_send(mbox, devid);
1471 }
1472 
1473 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
1474 {
1475 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1476 
1477 	__rvu_mbox_handler(mwork, TYPE_AFPF);
1478 }
1479 
1480 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
1481 {
1482 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1483 
1484 	__rvu_mbox_handler(mwork, TYPE_AFVF);
1485 }
1486 
1487 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
1488 {
1489 	struct rvu *rvu = mwork->rvu;
1490 	struct otx2_mbox_dev *mdev;
1491 	struct mbox_hdr *rsp_hdr;
1492 	struct mbox_msghdr *msg;
1493 	struct mbox_wq_info *mw;
1494 	struct otx2_mbox *mbox;
1495 	int offset, id, devid;
1496 
1497 	switch (type) {
1498 	case TYPE_AFPF:
1499 		mw = &rvu->afpf_wq_info;
1500 		break;
1501 	case TYPE_AFVF:
1502 		mw = &rvu->afvf_wq_info;
1503 		break;
1504 	default:
1505 		return;
1506 	}
1507 
1508 	devid = mwork - mw->mbox_wrk_up;
1509 	mbox = &mw->mbox_up;
1510 	mdev = &mbox->dev[devid];
1511 
1512 	rsp_hdr = mdev->mbase + mbox->rx_start;
1513 	if (rsp_hdr->num_msgs == 0) {
1514 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
1515 		return;
1516 	}
1517 
1518 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
1519 
1520 	for (id = 0; id < rsp_hdr->num_msgs; id++) {
1521 		msg = mdev->mbase + offset;
1522 
1523 		if (msg->id >= MBOX_MSG_MAX) {
1524 			dev_err(rvu->dev,
1525 				"Mbox msg with unknown ID 0x%x\n", msg->id);
1526 			goto end;
1527 		}
1528 
1529 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
1530 			dev_err(rvu->dev,
1531 				"Mbox msg with wrong signature %x, ID 0x%x\n",
1532 				msg->sig, msg->id);
1533 			goto end;
1534 		}
1535 
1536 		switch (msg->id) {
1537 		case MBOX_MSG_CGX_LINK_EVENT:
1538 			break;
1539 		default:
1540 			if (msg->rc)
1541 				dev_err(rvu->dev,
1542 					"Mbox msg response has err %d, ID 0x%x\n",
1543 					msg->rc, msg->id);
1544 			break;
1545 		}
1546 end:
1547 		offset = mbox->rx_start + msg->next_msgoff;
1548 		mdev->msgs_acked++;
1549 	}
1550 
1551 	otx2_mbox_reset(mbox, devid);
1552 }
1553 
1554 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
1555 {
1556 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1557 
1558 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
1559 }
1560 
1561 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
1562 {
1563 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1564 
1565 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
1566 }
1567 
1568 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
1569 			 int type, int num,
1570 			 void (mbox_handler)(struct work_struct *),
1571 			 void (mbox_up_handler)(struct work_struct *))
1572 {
1573 	void __iomem *hwbase = NULL, *reg_base;
1574 	int err, i, dir, dir_up;
1575 	struct rvu_work *mwork;
1576 	const char *name;
1577 	u64 bar4_addr;
1578 
1579 	switch (type) {
1580 	case TYPE_AFPF:
1581 		name = "rvu_afpf_mailbox";
1582 		bar4_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PF_BAR4_ADDR);
1583 		dir = MBOX_DIR_AFPF;
1584 		dir_up = MBOX_DIR_AFPF_UP;
1585 		reg_base = rvu->afreg_base;
1586 		break;
1587 	case TYPE_AFVF:
1588 		name = "rvu_afvf_mailbox";
1589 		bar4_addr = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
1590 		dir = MBOX_DIR_PFVF;
1591 		dir_up = MBOX_DIR_PFVF_UP;
1592 		reg_base = rvu->pfreg_base;
1593 		break;
1594 	default:
1595 		return -EINVAL;
1596 	}
1597 
1598 	mw->mbox_wq = alloc_workqueue(name,
1599 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
1600 				      num);
1601 	if (!mw->mbox_wq)
1602 		return -ENOMEM;
1603 
1604 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
1605 				    sizeof(struct rvu_work), GFP_KERNEL);
1606 	if (!mw->mbox_wrk) {
1607 		err = -ENOMEM;
1608 		goto exit;
1609 	}
1610 
1611 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
1612 				       sizeof(struct rvu_work), GFP_KERNEL);
1613 	if (!mw->mbox_wrk_up) {
1614 		err = -ENOMEM;
1615 		goto exit;
1616 	}
1617 
1618 	/* Mailbox is a reserved memory (in RAM) region shared between
1619 	 * RVU devices, shouldn't be mapped as device memory to allow
1620 	 * unaligned accesses.
1621 	 */
1622 	hwbase = ioremap_wc(bar4_addr, MBOX_SIZE * num);
1623 	if (!hwbase) {
1624 		dev_err(rvu->dev, "Unable to map mailbox region\n");
1625 		err = -ENOMEM;
1626 		goto exit;
1627 	}
1628 
1629 	err = otx2_mbox_init(&mw->mbox, hwbase, rvu->pdev, reg_base, dir, num);
1630 	if (err)
1631 		goto exit;
1632 
1633 	err = otx2_mbox_init(&mw->mbox_up, hwbase, rvu->pdev,
1634 			     reg_base, dir_up, num);
1635 	if (err)
1636 		goto exit;
1637 
1638 	for (i = 0; i < num; i++) {
1639 		mwork = &mw->mbox_wrk[i];
1640 		mwork->rvu = rvu;
1641 		INIT_WORK(&mwork->work, mbox_handler);
1642 
1643 		mwork = &mw->mbox_wrk_up[i];
1644 		mwork->rvu = rvu;
1645 		INIT_WORK(&mwork->work, mbox_up_handler);
1646 	}
1647 
1648 	return 0;
1649 exit:
1650 	if (hwbase)
1651 		iounmap((void __iomem *)hwbase);
1652 	destroy_workqueue(mw->mbox_wq);
1653 	return err;
1654 }
1655 
1656 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
1657 {
1658 	if (mw->mbox_wq) {
1659 		flush_workqueue(mw->mbox_wq);
1660 		destroy_workqueue(mw->mbox_wq);
1661 		mw->mbox_wq = NULL;
1662 	}
1663 
1664 	if (mw->mbox.hwbase)
1665 		iounmap((void __iomem *)mw->mbox.hwbase);
1666 
1667 	otx2_mbox_destroy(&mw->mbox);
1668 	otx2_mbox_destroy(&mw->mbox_up);
1669 }
1670 
1671 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
1672 			   int mdevs, u64 intr)
1673 {
1674 	struct otx2_mbox_dev *mdev;
1675 	struct otx2_mbox *mbox;
1676 	struct mbox_hdr *hdr;
1677 	int i;
1678 
1679 	for (i = first; i < mdevs; i++) {
1680 		/* start from 0 */
1681 		if (!(intr & BIT_ULL(i - first)))
1682 			continue;
1683 
1684 		mbox = &mw->mbox;
1685 		mdev = &mbox->dev[i];
1686 		hdr = mdev->mbase + mbox->rx_start;
1687 		if (hdr->num_msgs)
1688 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
1689 
1690 		mbox = &mw->mbox_up;
1691 		mdev = &mbox->dev[i];
1692 		hdr = mdev->mbase + mbox->rx_start;
1693 		if (hdr->num_msgs)
1694 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
1695 	}
1696 }
1697 
1698 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
1699 {
1700 	struct rvu *rvu = (struct rvu *)rvu_irq;
1701 	int vfs = rvu->vfs;
1702 	u64 intr;
1703 
1704 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
1705 	/* Clear interrupts */
1706 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
1707 
1708 	/* Sync with mbox memory region */
1709 	rmb();
1710 
1711 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
1712 
1713 	/* Handle VF interrupts */
1714 	if (vfs > 64) {
1715 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
1716 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
1717 
1718 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
1719 		vfs -= 64;
1720 	}
1721 
1722 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
1723 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
1724 
1725 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
1726 
1727 	return IRQ_HANDLED;
1728 }
1729 
1730 static void rvu_enable_mbox_intr(struct rvu *rvu)
1731 {
1732 	struct rvu_hwinfo *hw = rvu->hw;
1733 
1734 	/* Clear spurious irqs, if any */
1735 	rvu_write64(rvu, BLKADDR_RVUM,
1736 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
1737 
1738 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
1739 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
1740 		    INTR_MASK(hw->total_pfs) & ~1ULL);
1741 }
1742 
1743 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
1744 {
1745 	struct rvu_block *block;
1746 	int slot, lf, num_lfs;
1747 	int err;
1748 
1749 	block = &rvu->hw->block[blkaddr];
1750 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
1751 					block->type);
1752 	if (!num_lfs)
1753 		return;
1754 	for (slot = 0; slot < num_lfs; slot++) {
1755 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
1756 		if (lf < 0)
1757 			continue;
1758 
1759 		/* Cleanup LF and reset it */
1760 		if (block->addr == BLKADDR_NIX0)
1761 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
1762 		else if (block->addr == BLKADDR_NPA)
1763 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
1764 
1765 		err = rvu_lf_reset(rvu, block, lf);
1766 		if (err) {
1767 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
1768 				block->addr, lf);
1769 		}
1770 	}
1771 }
1772 
1773 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
1774 {
1775 	mutex_lock(&rvu->flr_lock);
1776 	/* Reset order should reflect inter-block dependencies:
1777 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
1778 	 * 2. Flush and reset SSO/SSOW
1779 	 * 3. Cleanup pools (NPA)
1780 	 */
1781 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
1782 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
1783 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
1784 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
1785 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
1786 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
1787 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
1788 	mutex_unlock(&rvu->flr_lock);
1789 }
1790 
1791 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
1792 {
1793 	int reg = 0;
1794 
1795 	/* pcifunc = 0(PF0) | (vf + 1) */
1796 	__rvu_flr_handler(rvu, vf + 1);
1797 
1798 	if (vf >= 64) {
1799 		reg = 1;
1800 		vf = vf - 64;
1801 	}
1802 
1803 	/* Signal FLR finish and enable IRQ */
1804 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
1805 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
1806 }
1807 
1808 static void rvu_flr_handler(struct work_struct *work)
1809 {
1810 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
1811 	struct rvu *rvu = flrwork->rvu;
1812 	u16 pcifunc, numvfs, vf;
1813 	u64 cfg;
1814 	int pf;
1815 
1816 	pf = flrwork - rvu->flr_wrk;
1817 	if (pf >= rvu->hw->total_pfs) {
1818 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
1819 		return;
1820 	}
1821 
1822 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
1823 	numvfs = (cfg >> 12) & 0xFF;
1824 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
1825 
1826 	for (vf = 0; vf < numvfs; vf++)
1827 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
1828 
1829 	__rvu_flr_handler(rvu, pcifunc);
1830 
1831 	/* Signal FLR finish */
1832 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
1833 
1834 	/* Enable interrupt */
1835 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
1836 }
1837 
1838 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
1839 {
1840 	int dev, vf, reg = 0;
1841 	u64 intr;
1842 
1843 	if (start_vf >= 64)
1844 		reg = 1;
1845 
1846 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
1847 	if (!intr)
1848 		return;
1849 
1850 	for (vf = 0; vf < numvfs; vf++) {
1851 		if (!(intr & BIT_ULL(vf)))
1852 			continue;
1853 		dev = vf + start_vf + rvu->hw->total_pfs;
1854 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
1855 		/* Clear and disable the interrupt */
1856 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
1857 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
1858 	}
1859 }
1860 
1861 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
1862 {
1863 	struct rvu *rvu = (struct rvu *)rvu_irq;
1864 	u64 intr;
1865 	u8  pf;
1866 
1867 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
1868 	if (!intr)
1869 		goto afvf_flr;
1870 
1871 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
1872 		if (intr & (1ULL << pf)) {
1873 			/* PF is already dead do only AF related operations */
1874 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
1875 			/* clear interrupt */
1876 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
1877 				    BIT_ULL(pf));
1878 			/* Disable the interrupt */
1879 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
1880 				    BIT_ULL(pf));
1881 		}
1882 	}
1883 
1884 afvf_flr:
1885 	rvu_afvf_queue_flr_work(rvu, 0, 64);
1886 	if (rvu->vfs > 64)
1887 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
1888 
1889 	return IRQ_HANDLED;
1890 }
1891 
1892 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
1893 {
1894 	int vf;
1895 
1896 	/* Nothing to be done here other than clearing the
1897 	 * TRPEND bit.
1898 	 */
1899 	for (vf = 0; vf < 64; vf++) {
1900 		if (intr & (1ULL << vf)) {
1901 			/* clear the trpend due to ME(master enable) */
1902 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
1903 			/* clear interrupt */
1904 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
1905 		}
1906 	}
1907 }
1908 
1909 /* Handles ME interrupts from VFs of AF */
1910 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
1911 {
1912 	struct rvu *rvu = (struct rvu *)rvu_irq;
1913 	int vfset;
1914 	u64 intr;
1915 
1916 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
1917 
1918 	for (vfset = 0; vfset <= 1; vfset++) {
1919 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
1920 		if (intr)
1921 			rvu_me_handle_vfset(rvu, vfset, intr);
1922 	}
1923 
1924 	return IRQ_HANDLED;
1925 }
1926 
1927 /* Handles ME interrupts from PFs */
1928 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
1929 {
1930 	struct rvu *rvu = (struct rvu *)rvu_irq;
1931 	u64 intr;
1932 	u8  pf;
1933 
1934 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
1935 
1936 	/* Nothing to be done here other than clearing the
1937 	 * TRPEND bit.
1938 	 */
1939 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
1940 		if (intr & (1ULL << pf)) {
1941 			/* clear the trpend due to ME(master enable) */
1942 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
1943 				    BIT_ULL(pf));
1944 			/* clear interrupt */
1945 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
1946 				    BIT_ULL(pf));
1947 		}
1948 	}
1949 
1950 	return IRQ_HANDLED;
1951 }
1952 
1953 static void rvu_unregister_interrupts(struct rvu *rvu)
1954 {
1955 	int irq;
1956 
1957 	/* Disable the Mbox interrupt */
1958 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
1959 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
1960 
1961 	/* Disable the PF FLR interrupt */
1962 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
1963 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
1964 
1965 	/* Disable the PF ME interrupt */
1966 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
1967 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
1968 
1969 	for (irq = 0; irq < rvu->num_vec; irq++) {
1970 		if (rvu->irq_allocated[irq])
1971 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
1972 	}
1973 
1974 	pci_free_irq_vectors(rvu->pdev);
1975 	rvu->num_vec = 0;
1976 }
1977 
1978 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
1979 {
1980 	struct rvu_pfvf *pfvf = &rvu->pf[0];
1981 	int offset;
1982 
1983 	pfvf = &rvu->pf[0];
1984 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
1985 
1986 	/* Make sure there are enough MSIX vectors configured so that
1987 	 * VF interrupts can be handled. Offset equal to zero means
1988 	 * that PF vectors are not configured and overlapping AF vectors.
1989 	 */
1990 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
1991 	       offset;
1992 }
1993 
1994 static int rvu_register_interrupts(struct rvu *rvu)
1995 {
1996 	int ret, offset, pf_vec_start;
1997 
1998 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
1999 
2000 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2001 					   NAME_SIZE, GFP_KERNEL);
2002 	if (!rvu->irq_name)
2003 		return -ENOMEM;
2004 
2005 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2006 					  sizeof(bool), GFP_KERNEL);
2007 	if (!rvu->irq_allocated)
2008 		return -ENOMEM;
2009 
2010 	/* Enable MSI-X */
2011 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2012 				    rvu->num_vec, PCI_IRQ_MSIX);
2013 	if (ret < 0) {
2014 		dev_err(rvu->dev,
2015 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2016 			rvu->num_vec, ret);
2017 		return ret;
2018 	}
2019 
2020 	/* Register mailbox interrupt handler */
2021 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2022 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2023 			  rvu_mbox_intr_handler, 0,
2024 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2025 	if (ret) {
2026 		dev_err(rvu->dev,
2027 			"RVUAF: IRQ registration failed for mbox irq\n");
2028 		goto fail;
2029 	}
2030 
2031 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2032 
2033 	/* Enable mailbox interrupts from all PFs */
2034 	rvu_enable_mbox_intr(rvu);
2035 
2036 	/* Register FLR interrupt handler */
2037 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2038 		"RVUAF FLR");
2039 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2040 			  rvu_flr_intr_handler, 0,
2041 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2042 			  rvu);
2043 	if (ret) {
2044 		dev_err(rvu->dev,
2045 			"RVUAF: IRQ registration failed for FLR\n");
2046 		goto fail;
2047 	}
2048 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2049 
2050 	/* Enable FLR interrupt for all PFs*/
2051 	rvu_write64(rvu, BLKADDR_RVUM,
2052 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2053 
2054 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2055 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2056 
2057 	/* Register ME interrupt handler */
2058 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2059 		"RVUAF ME");
2060 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2061 			  rvu_me_pf_intr_handler, 0,
2062 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2063 			  rvu);
2064 	if (ret) {
2065 		dev_err(rvu->dev,
2066 			"RVUAF: IRQ registration failed for ME\n");
2067 	}
2068 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2069 
2070 	/* Enable ME interrupt for all PFs*/
2071 	rvu_write64(rvu, BLKADDR_RVUM,
2072 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2073 
2074 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2075 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2076 
2077 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2078 		return 0;
2079 
2080 	/* Get PF MSIX vectors offset. */
2081 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2082 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2083 
2084 	/* Register MBOX0 interrupt. */
2085 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2086 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2087 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2088 			  rvu_mbox_intr_handler, 0,
2089 			  &rvu->irq_name[offset * NAME_SIZE],
2090 			  rvu);
2091 	if (ret)
2092 		dev_err(rvu->dev,
2093 			"RVUAF: IRQ registration failed for Mbox0\n");
2094 
2095 	rvu->irq_allocated[offset] = true;
2096 
2097 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2098 	 * simply increment current offset by 1.
2099 	 */
2100 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2101 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2102 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2103 			  rvu_mbox_intr_handler, 0,
2104 			  &rvu->irq_name[offset * NAME_SIZE],
2105 			  rvu);
2106 	if (ret)
2107 		dev_err(rvu->dev,
2108 			"RVUAF: IRQ registration failed for Mbox1\n");
2109 
2110 	rvu->irq_allocated[offset] = true;
2111 
2112 	/* Register FLR interrupt handler for AF's VFs */
2113 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2114 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2115 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2116 			  rvu_flr_intr_handler, 0,
2117 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2118 	if (ret) {
2119 		dev_err(rvu->dev,
2120 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2121 		goto fail;
2122 	}
2123 	rvu->irq_allocated[offset] = true;
2124 
2125 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2126 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2127 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2128 			  rvu_flr_intr_handler, 0,
2129 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2130 	if (ret) {
2131 		dev_err(rvu->dev,
2132 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2133 		goto fail;
2134 	}
2135 	rvu->irq_allocated[offset] = true;
2136 
2137 	/* Register ME interrupt handler for AF's VFs */
2138 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2139 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2140 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2141 			  rvu_me_vf_intr_handler, 0,
2142 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2143 	if (ret) {
2144 		dev_err(rvu->dev,
2145 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2146 		goto fail;
2147 	}
2148 	rvu->irq_allocated[offset] = true;
2149 
2150 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2151 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2152 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2153 			  rvu_me_vf_intr_handler, 0,
2154 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2155 	if (ret) {
2156 		dev_err(rvu->dev,
2157 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2158 		goto fail;
2159 	}
2160 	rvu->irq_allocated[offset] = true;
2161 	return 0;
2162 
2163 fail:
2164 	rvu_unregister_interrupts(rvu);
2165 	return ret;
2166 }
2167 
2168 static void rvu_flr_wq_destroy(struct rvu *rvu)
2169 {
2170 	if (rvu->flr_wq) {
2171 		flush_workqueue(rvu->flr_wq);
2172 		destroy_workqueue(rvu->flr_wq);
2173 		rvu->flr_wq = NULL;
2174 	}
2175 }
2176 
2177 static int rvu_flr_init(struct rvu *rvu)
2178 {
2179 	int dev, num_devs;
2180 	u64 cfg;
2181 	int pf;
2182 
2183 	/* Enable FLR for all PFs*/
2184 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2185 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2186 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2187 			    cfg | BIT_ULL(22));
2188 	}
2189 
2190 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2191 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2192 				       1);
2193 	if (!rvu->flr_wq)
2194 		return -ENOMEM;
2195 
2196 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2197 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2198 				    sizeof(struct rvu_work), GFP_KERNEL);
2199 	if (!rvu->flr_wrk) {
2200 		destroy_workqueue(rvu->flr_wq);
2201 		return -ENOMEM;
2202 	}
2203 
2204 	for (dev = 0; dev < num_devs; dev++) {
2205 		rvu->flr_wrk[dev].rvu = rvu;
2206 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2207 	}
2208 
2209 	mutex_init(&rvu->flr_lock);
2210 
2211 	return 0;
2212 }
2213 
2214 static void rvu_disable_afvf_intr(struct rvu *rvu)
2215 {
2216 	int vfs = rvu->vfs;
2217 
2218 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2219 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2220 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2221 	if (vfs <= 64)
2222 		return;
2223 
2224 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2225 		      INTR_MASK(vfs - 64));
2226 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2227 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2228 }
2229 
2230 static void rvu_enable_afvf_intr(struct rvu *rvu)
2231 {
2232 	int vfs = rvu->vfs;
2233 
2234 	/* Clear any pending interrupts and enable AF VF interrupts for
2235 	 * the first 64 VFs.
2236 	 */
2237 	/* Mbox */
2238 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2239 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2240 
2241 	/* FLR */
2242 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2243 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2244 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2245 
2246 	/* Same for remaining VFs, if any. */
2247 	if (vfs <= 64)
2248 		return;
2249 
2250 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2251 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2252 		      INTR_MASK(vfs - 64));
2253 
2254 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2255 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2256 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2257 }
2258 
2259 #define PCI_DEVID_OCTEONTX2_LBK 0xA061
2260 
2261 static int lbk_get_num_chans(void)
2262 {
2263 	struct pci_dev *pdev;
2264 	void __iomem *base;
2265 	int ret = -EIO;
2266 
2267 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2268 			      NULL);
2269 	if (!pdev)
2270 		goto err;
2271 
2272 	base = pci_ioremap_bar(pdev, 0);
2273 	if (!base)
2274 		goto err_put;
2275 
2276 	/* Read number of available LBK channels from LBK(0)_CONST register. */
2277 	ret = (readq(base + 0x10) >> 32) & 0xffff;
2278 	iounmap(base);
2279 err_put:
2280 	pci_dev_put(pdev);
2281 err:
2282 	return ret;
2283 }
2284 
2285 static int rvu_enable_sriov(struct rvu *rvu)
2286 {
2287 	struct pci_dev *pdev = rvu->pdev;
2288 	int err, chans, vfs;
2289 
2290 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2291 		dev_warn(&pdev->dev,
2292 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
2293 		return 0;
2294 	}
2295 
2296 	chans = lbk_get_num_chans();
2297 	if (chans < 0)
2298 		return chans;
2299 
2300 	vfs = pci_sriov_get_totalvfs(pdev);
2301 
2302 	/* Limit VFs in case we have more VFs than LBK channels available. */
2303 	if (vfs > chans)
2304 		vfs = chans;
2305 
2306 	/* AF's VFs work in pairs and talk over consecutive loopback channels.
2307 	 * Thus we want to enable maximum even number of VFs. In case
2308 	 * odd number of VFs are available then the last VF on the list
2309 	 * remains disabled.
2310 	 */
2311 	if (vfs & 0x1) {
2312 		dev_warn(&pdev->dev,
2313 			 "Number of VFs should be even. Enabling %d out of %d.\n",
2314 			 vfs - 1, vfs);
2315 		vfs--;
2316 	}
2317 
2318 	if (!vfs)
2319 		return 0;
2320 
2321 	/* Save VFs number for reference in VF interrupts handlers.
2322 	 * Since interrupts might start arriving during SRIOV enablement
2323 	 * ordinary API cannot be used to get number of enabled VFs.
2324 	 */
2325 	rvu->vfs = vfs;
2326 
2327 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
2328 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
2329 	if (err)
2330 		return err;
2331 
2332 	rvu_enable_afvf_intr(rvu);
2333 	/* Make sure IRQs are enabled before SRIOV. */
2334 	mb();
2335 
2336 	err = pci_enable_sriov(pdev, vfs);
2337 	if (err) {
2338 		rvu_disable_afvf_intr(rvu);
2339 		rvu_mbox_destroy(&rvu->afvf_wq_info);
2340 		return err;
2341 	}
2342 
2343 	return 0;
2344 }
2345 
2346 static void rvu_disable_sriov(struct rvu *rvu)
2347 {
2348 	rvu_disable_afvf_intr(rvu);
2349 	rvu_mbox_destroy(&rvu->afvf_wq_info);
2350 	pci_disable_sriov(rvu->pdev);
2351 }
2352 
2353 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2354 {
2355 	struct device *dev = &pdev->dev;
2356 	struct rvu *rvu;
2357 	int    err;
2358 
2359 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
2360 	if (!rvu)
2361 		return -ENOMEM;
2362 
2363 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
2364 	if (!rvu->hw) {
2365 		devm_kfree(dev, rvu);
2366 		return -ENOMEM;
2367 	}
2368 
2369 	pci_set_drvdata(pdev, rvu);
2370 	rvu->pdev = pdev;
2371 	rvu->dev = &pdev->dev;
2372 
2373 	err = pci_enable_device(pdev);
2374 	if (err) {
2375 		dev_err(dev, "Failed to enable PCI device\n");
2376 		goto err_freemem;
2377 	}
2378 
2379 	err = pci_request_regions(pdev, DRV_NAME);
2380 	if (err) {
2381 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2382 		goto err_disable_device;
2383 	}
2384 
2385 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
2386 	if (err) {
2387 		dev_err(dev, "Unable to set DMA mask\n");
2388 		goto err_release_regions;
2389 	}
2390 
2391 	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
2392 	if (err) {
2393 		dev_err(dev, "Unable to set consistent DMA mask\n");
2394 		goto err_release_regions;
2395 	}
2396 
2397 	/* Map Admin function CSRs */
2398 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
2399 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
2400 	if (!rvu->afreg_base || !rvu->pfreg_base) {
2401 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
2402 		err = -ENOMEM;
2403 		goto err_release_regions;
2404 	}
2405 
2406 	/* Check which blocks the HW supports */
2407 	rvu_check_block_implemented(rvu);
2408 
2409 	rvu_reset_all_blocks(rvu);
2410 
2411 	err = rvu_setup_hw_resources(rvu);
2412 	if (err)
2413 		goto err_release_regions;
2414 
2415 	/* Init mailbox btw AF and PFs */
2416 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
2417 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
2418 			    rvu_afpf_mbox_up_handler);
2419 	if (err)
2420 		goto err_hwsetup;
2421 
2422 	err = rvu_cgx_probe(rvu);
2423 	if (err)
2424 		goto err_mbox;
2425 
2426 	err = rvu_flr_init(rvu);
2427 	if (err)
2428 		goto err_cgx;
2429 
2430 	err = rvu_register_interrupts(rvu);
2431 	if (err)
2432 		goto err_flr;
2433 
2434 	/* Enable AF's VFs (if any) */
2435 	err = rvu_enable_sriov(rvu);
2436 	if (err)
2437 		goto err_irq;
2438 
2439 	return 0;
2440 err_irq:
2441 	rvu_unregister_interrupts(rvu);
2442 err_flr:
2443 	rvu_flr_wq_destroy(rvu);
2444 err_cgx:
2445 	rvu_cgx_wq_destroy(rvu);
2446 err_mbox:
2447 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2448 err_hwsetup:
2449 	rvu_reset_all_blocks(rvu);
2450 	rvu_free_hw_resources(rvu);
2451 err_release_regions:
2452 	pci_release_regions(pdev);
2453 err_disable_device:
2454 	pci_disable_device(pdev);
2455 err_freemem:
2456 	pci_set_drvdata(pdev, NULL);
2457 	devm_kfree(&pdev->dev, rvu->hw);
2458 	devm_kfree(dev, rvu);
2459 	return err;
2460 }
2461 
2462 static void rvu_remove(struct pci_dev *pdev)
2463 {
2464 	struct rvu *rvu = pci_get_drvdata(pdev);
2465 
2466 	rvu_unregister_interrupts(rvu);
2467 	rvu_flr_wq_destroy(rvu);
2468 	rvu_cgx_wq_destroy(rvu);
2469 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2470 	rvu_disable_sriov(rvu);
2471 	rvu_reset_all_blocks(rvu);
2472 	rvu_free_hw_resources(rvu);
2473 
2474 	pci_release_regions(pdev);
2475 	pci_disable_device(pdev);
2476 	pci_set_drvdata(pdev, NULL);
2477 
2478 	devm_kfree(&pdev->dev, rvu->hw);
2479 	devm_kfree(&pdev->dev, rvu);
2480 }
2481 
2482 static struct pci_driver rvu_driver = {
2483 	.name = DRV_NAME,
2484 	.id_table = rvu_id_table,
2485 	.probe = rvu_probe,
2486 	.remove = rvu_remove,
2487 };
2488 
2489 static int __init rvu_init_module(void)
2490 {
2491 	int err;
2492 
2493 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
2494 
2495 	err = pci_register_driver(&cgx_driver);
2496 	if (err < 0)
2497 		return err;
2498 
2499 	err =  pci_register_driver(&rvu_driver);
2500 	if (err < 0)
2501 		pci_unregister_driver(&cgx_driver);
2502 
2503 	return err;
2504 }
2505 
2506 static void __exit rvu_cleanup_module(void)
2507 {
2508 	pci_unregister_driver(&rvu_driver);
2509 	pci_unregister_driver(&cgx_driver);
2510 }
2511 
2512 module_init(rvu_init_module);
2513 module_exit(rvu_cleanup_module);
2514