1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell OcteonTx2 RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell International Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/delay.h>
14 #include <linux/irq.h>
15 #include <linux/pci.h>
16 #include <linux/sysfs.h>
17 
18 #include "cgx.h"
19 #include "rvu.h"
20 #include "rvu_reg.h"
21 #include "ptp.h"
22 
23 #include "rvu_trace.h"
24 
25 #define DRV_NAME	"rvu_af"
26 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
27 
28 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
29 
30 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
31 				struct rvu_block *block, int lf);
32 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
33 				  struct rvu_block *block, int lf);
34 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
35 
36 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
37 			 int type, int num,
38 			 void (mbox_handler)(struct work_struct *),
39 			 void (mbox_up_handler)(struct work_struct *));
40 enum {
41 	TYPE_AFVF,
42 	TYPE_AFPF,
43 };
44 
45 /* Supported devices */
46 static const struct pci_device_id rvu_id_table[] = {
47 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
48 	{ 0, }  /* end of table */
49 };
50 
51 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
52 MODULE_DESCRIPTION(DRV_STRING);
53 MODULE_LICENSE("GPL v2");
54 MODULE_DEVICE_TABLE(pci, rvu_id_table);
55 
56 static char *mkex_profile; /* MKEX profile name */
57 module_param(mkex_profile, charp, 0000);
58 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
59 
60 static void rvu_setup_hw_capabilities(struct rvu *rvu)
61 {
62 	struct rvu_hwinfo *hw = rvu->hw;
63 
64 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
65 	hw->cap.nix_fixed_txschq_mapping = false;
66 	hw->cap.nix_shaping = true;
67 	hw->cap.nix_tx_link_bp = true;
68 	hw->cap.nix_rx_multicast = true;
69 	hw->rvu = rvu;
70 
71 	if (is_rvu_96xx_B0(rvu)) {
72 		hw->cap.nix_fixed_txschq_mapping = true;
73 		hw->cap.nix_txsch_per_cgx_lmac = 4;
74 		hw->cap.nix_txsch_per_lbk_lmac = 132;
75 		hw->cap.nix_txsch_per_sdp_lmac = 76;
76 		hw->cap.nix_shaping = false;
77 		hw->cap.nix_tx_link_bp = false;
78 		if (is_rvu_96xx_A0(rvu))
79 			hw->cap.nix_rx_multicast = false;
80 	}
81 
82 	if (!is_rvu_otx2(rvu))
83 		hw->cap.per_pf_mbox_regs = true;
84 }
85 
86 /* Poll a RVU block's register 'offset', for a 'zero'
87  * or 'nonzero' at bits specified by 'mask'
88  */
89 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
90 {
91 	unsigned long timeout = jiffies + usecs_to_jiffies(10000);
92 	void __iomem *reg;
93 	u64 reg_val;
94 
95 	reg = rvu->afreg_base + ((block << 28) | offset);
96 again:
97 	reg_val = readq(reg);
98 	if (zero && !(reg_val & mask))
99 		return 0;
100 	if (!zero && (reg_val & mask))
101 		return 0;
102 	if (time_before(jiffies, timeout)) {
103 		usleep_range(1, 5);
104 		goto again;
105 	}
106 	return -EBUSY;
107 }
108 
109 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
110 {
111 	int id;
112 
113 	if (!rsrc->bmap)
114 		return -EINVAL;
115 
116 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
117 	if (id >= rsrc->max)
118 		return -ENOSPC;
119 
120 	__set_bit(id, rsrc->bmap);
121 
122 	return id;
123 }
124 
125 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
126 {
127 	int start;
128 
129 	if (!rsrc->bmap)
130 		return -EINVAL;
131 
132 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
133 	if (start >= rsrc->max)
134 		return -ENOSPC;
135 
136 	bitmap_set(rsrc->bmap, start, nrsrc);
137 	return start;
138 }
139 
140 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
141 {
142 	if (!rsrc->bmap)
143 		return;
144 	if (start >= rsrc->max)
145 		return;
146 
147 	bitmap_clear(rsrc->bmap, start, nrsrc);
148 }
149 
150 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
151 {
152 	int start;
153 
154 	if (!rsrc->bmap)
155 		return false;
156 
157 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
158 	if (start >= rsrc->max)
159 		return false;
160 
161 	return true;
162 }
163 
164 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
165 {
166 	if (!rsrc->bmap)
167 		return;
168 
169 	__clear_bit(id, rsrc->bmap);
170 }
171 
172 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
173 {
174 	int used;
175 
176 	if (!rsrc->bmap)
177 		return 0;
178 
179 	used = bitmap_weight(rsrc->bmap, rsrc->max);
180 	return (rsrc->max - used);
181 }
182 
183 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
184 {
185 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
186 			     sizeof(long), GFP_KERNEL);
187 	if (!rsrc->bmap)
188 		return -ENOMEM;
189 	return 0;
190 }
191 
192 /* Get block LF's HW index from a PF_FUNC's block slot number */
193 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
194 {
195 	u16 match = 0;
196 	int lf;
197 
198 	mutex_lock(&rvu->rsrc_lock);
199 	for (lf = 0; lf < block->lf.max; lf++) {
200 		if (block->fn_map[lf] == pcifunc) {
201 			if (slot == match) {
202 				mutex_unlock(&rvu->rsrc_lock);
203 				return lf;
204 			}
205 			match++;
206 		}
207 	}
208 	mutex_unlock(&rvu->rsrc_lock);
209 	return -ENODEV;
210 }
211 
212 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
213  * Some silicon variants of OcteonTX2 supports
214  * multiple blocks of same type.
215  *
216  * @pcifunc has to be zero when no LF is yet attached.
217  *
218  * For a pcifunc if LFs are attached from multiple blocks of same type, then
219  * return blkaddr of first encountered block.
220  */
221 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
222 {
223 	int devnum, blkaddr = -ENODEV;
224 	u64 cfg, reg;
225 	bool is_pf;
226 
227 	switch (blktype) {
228 	case BLKTYPE_NPC:
229 		blkaddr = BLKADDR_NPC;
230 		goto exit;
231 	case BLKTYPE_NPA:
232 		blkaddr = BLKADDR_NPA;
233 		goto exit;
234 	case BLKTYPE_NIX:
235 		/* For now assume NIX0 */
236 		if (!pcifunc) {
237 			blkaddr = BLKADDR_NIX0;
238 			goto exit;
239 		}
240 		break;
241 	case BLKTYPE_SSO:
242 		blkaddr = BLKADDR_SSO;
243 		goto exit;
244 	case BLKTYPE_SSOW:
245 		blkaddr = BLKADDR_SSOW;
246 		goto exit;
247 	case BLKTYPE_TIM:
248 		blkaddr = BLKADDR_TIM;
249 		goto exit;
250 	case BLKTYPE_CPT:
251 		/* For now assume CPT0 */
252 		if (!pcifunc) {
253 			blkaddr = BLKADDR_CPT0;
254 			goto exit;
255 		}
256 		break;
257 	}
258 
259 	/* Check if this is a RVU PF or VF */
260 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
261 		is_pf = false;
262 		devnum = rvu_get_hwvf(rvu, pcifunc);
263 	} else {
264 		is_pf = true;
265 		devnum = rvu_get_pf(pcifunc);
266 	}
267 
268 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
269 	 * 'BLKADDR_NIX1'.
270 	 */
271 	if (blktype == BLKTYPE_NIX) {
272 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
273 			RVU_PRIV_HWVFX_NIXX_CFG(0);
274 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
275 		if (cfg) {
276 			blkaddr = BLKADDR_NIX0;
277 			goto exit;
278 		}
279 
280 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
281 			RVU_PRIV_HWVFX_NIXX_CFG(1);
282 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
283 		if (cfg)
284 			blkaddr = BLKADDR_NIX1;
285 	}
286 
287 	if (blktype == BLKTYPE_CPT) {
288 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
289 			RVU_PRIV_HWVFX_CPTX_CFG(0);
290 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
291 		if (cfg) {
292 			blkaddr = BLKADDR_CPT0;
293 			goto exit;
294 		}
295 
296 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
297 			RVU_PRIV_HWVFX_CPTX_CFG(1);
298 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
299 		if (cfg)
300 			blkaddr = BLKADDR_CPT1;
301 	}
302 
303 exit:
304 	if (is_block_implemented(rvu->hw, blkaddr))
305 		return blkaddr;
306 	return -ENODEV;
307 }
308 
309 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
310 				struct rvu_block *block, u16 pcifunc,
311 				u16 lf, bool attach)
312 {
313 	int devnum, num_lfs = 0;
314 	bool is_pf;
315 	u64 reg;
316 
317 	if (lf >= block->lf.max) {
318 		dev_err(&rvu->pdev->dev,
319 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
320 			__func__, lf, block->name, block->lf.max);
321 		return;
322 	}
323 
324 	/* Check if this is for a RVU PF or VF */
325 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
326 		is_pf = false;
327 		devnum = rvu_get_hwvf(rvu, pcifunc);
328 	} else {
329 		is_pf = true;
330 		devnum = rvu_get_pf(pcifunc);
331 	}
332 
333 	block->fn_map[lf] = attach ? pcifunc : 0;
334 
335 	switch (block->addr) {
336 	case BLKADDR_NPA:
337 		pfvf->npalf = attach ? true : false;
338 		num_lfs = pfvf->npalf;
339 		break;
340 	case BLKADDR_NIX0:
341 	case BLKADDR_NIX1:
342 		pfvf->nixlf = attach ? true : false;
343 		num_lfs = pfvf->nixlf;
344 		break;
345 	case BLKADDR_SSO:
346 		attach ? pfvf->sso++ : pfvf->sso--;
347 		num_lfs = pfvf->sso;
348 		break;
349 	case BLKADDR_SSOW:
350 		attach ? pfvf->ssow++ : pfvf->ssow--;
351 		num_lfs = pfvf->ssow;
352 		break;
353 	case BLKADDR_TIM:
354 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
355 		num_lfs = pfvf->timlfs;
356 		break;
357 	case BLKADDR_CPT0:
358 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
359 		num_lfs = pfvf->cptlfs;
360 		break;
361 	case BLKADDR_CPT1:
362 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
363 		num_lfs = pfvf->cpt1_lfs;
364 		break;
365 	}
366 
367 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
368 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
369 }
370 
371 inline int rvu_get_pf(u16 pcifunc)
372 {
373 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
374 }
375 
376 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
377 {
378 	u64 cfg;
379 
380 	/* Get numVFs attached to this PF and first HWVF */
381 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
382 	*numvfs = (cfg >> 12) & 0xFF;
383 	*hwvf = cfg & 0xFFF;
384 }
385 
386 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
387 {
388 	int pf, func;
389 	u64 cfg;
390 
391 	pf = rvu_get_pf(pcifunc);
392 	func = pcifunc & RVU_PFVF_FUNC_MASK;
393 
394 	/* Get first HWVF attached to this PF */
395 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
396 
397 	return ((cfg & 0xFFF) + func - 1);
398 }
399 
400 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
401 {
402 	/* Check if it is a PF or VF */
403 	if (pcifunc & RVU_PFVF_FUNC_MASK)
404 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
405 	else
406 		return &rvu->pf[rvu_get_pf(pcifunc)];
407 }
408 
409 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
410 {
411 	int pf, vf, nvfs;
412 	u64 cfg;
413 
414 	pf = rvu_get_pf(pcifunc);
415 	if (pf >= rvu->hw->total_pfs)
416 		return false;
417 
418 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
419 		return true;
420 
421 	/* Check if VF is within number of VFs attached to this PF */
422 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
423 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
424 	nvfs = (cfg >> 12) & 0xFF;
425 	if (vf >= nvfs)
426 		return false;
427 
428 	return true;
429 }
430 
431 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
432 {
433 	struct rvu_block *block;
434 
435 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
436 		return false;
437 
438 	block = &hw->block[blkaddr];
439 	return block->implemented;
440 }
441 
442 static void rvu_check_block_implemented(struct rvu *rvu)
443 {
444 	struct rvu_hwinfo *hw = rvu->hw;
445 	struct rvu_block *block;
446 	int blkid;
447 	u64 cfg;
448 
449 	/* For each block check if 'implemented' bit is set */
450 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
451 		block = &hw->block[blkid];
452 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
453 		if (cfg & BIT_ULL(11))
454 			block->implemented = true;
455 	}
456 }
457 
458 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
459 {
460 	rvu_write64(rvu, BLKADDR_RVUM,
461 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
462 		    RVU_BLK_RVUM_REVID);
463 }
464 
465 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
466 {
467 	rvu_write64(rvu, BLKADDR_RVUM,
468 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
469 }
470 
471 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
472 {
473 	int err;
474 
475 	if (!block->implemented)
476 		return 0;
477 
478 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
479 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
480 			   true);
481 	return err;
482 }
483 
484 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
485 {
486 	struct rvu_block *block = &rvu->hw->block[blkaddr];
487 
488 	if (!block->implemented)
489 		return;
490 
491 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
492 	rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
493 }
494 
495 static void rvu_reset_all_blocks(struct rvu *rvu)
496 {
497 	/* Do a HW reset of all RVU blocks */
498 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
499 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
500 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
501 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
502 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
503 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
504 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
505 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
506 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
507 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
508 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
509 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
510 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
511 }
512 
513 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
514 {
515 	struct rvu_pfvf *pfvf;
516 	u64 cfg;
517 	int lf;
518 
519 	for (lf = 0; lf < block->lf.max; lf++) {
520 		cfg = rvu_read64(rvu, block->addr,
521 				 block->lfcfg_reg | (lf << block->lfshift));
522 		if (!(cfg & BIT_ULL(63)))
523 			continue;
524 
525 		/* Set this resource as being used */
526 		__set_bit(lf, block->lf.bmap);
527 
528 		/* Get, to whom this LF is attached */
529 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
530 		rvu_update_rsrc_map(rvu, pfvf, block,
531 				    (cfg >> 8) & 0xFFFF, lf, true);
532 
533 		/* Set start MSIX vector for this LF within this PF/VF */
534 		rvu_set_msix_offset(rvu, pfvf, block, lf);
535 	}
536 }
537 
538 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
539 {
540 	int min_vecs;
541 
542 	if (!vf)
543 		goto check_pf;
544 
545 	if (!nvecs) {
546 		dev_warn(rvu->dev,
547 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
548 			 pf, vf - 1, nvecs);
549 	}
550 	return;
551 
552 check_pf:
553 	if (pf == 0)
554 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
555 	else
556 		min_vecs = RVU_PF_INT_VEC_CNT;
557 
558 	if (!(nvecs < min_vecs))
559 		return;
560 	dev_warn(rvu->dev,
561 		 "PF%d is configured with too few vectors, %d, min is %d\n",
562 		 pf, nvecs, min_vecs);
563 }
564 
565 static int rvu_setup_msix_resources(struct rvu *rvu)
566 {
567 	struct rvu_hwinfo *hw = rvu->hw;
568 	int pf, vf, numvfs, hwvf, err;
569 	int nvecs, offset, max_msix;
570 	struct rvu_pfvf *pfvf;
571 	u64 cfg, phy_addr;
572 	dma_addr_t iova;
573 
574 	for (pf = 0; pf < hw->total_pfs; pf++) {
575 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
576 		/* If PF is not enabled, nothing to do */
577 		if (!((cfg >> 20) & 0x01))
578 			continue;
579 
580 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
581 
582 		pfvf = &rvu->pf[pf];
583 		/* Get num of MSIX vectors attached to this PF */
584 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
585 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
586 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
587 
588 		/* Alloc msix bitmap for this PF */
589 		err = rvu_alloc_bitmap(&pfvf->msix);
590 		if (err)
591 			return err;
592 
593 		/* Allocate memory for MSIX vector to RVU block LF mapping */
594 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
595 						sizeof(u16), GFP_KERNEL);
596 		if (!pfvf->msix_lfmap)
597 			return -ENOMEM;
598 
599 		/* For PF0 (AF) firmware will set msix vector offsets for
600 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
601 		 */
602 		if (!pf)
603 			goto setup_vfmsix;
604 
605 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
606 		 * These are allocated on driver init and never freed,
607 		 * so no need to set 'msix_lfmap' for these.
608 		 */
609 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
610 		nvecs = (cfg >> 12) & 0xFF;
611 		cfg &= ~0x7FFULL;
612 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
613 		rvu_write64(rvu, BLKADDR_RVUM,
614 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
615 setup_vfmsix:
616 		/* Alloc msix bitmap for VFs */
617 		for (vf = 0; vf < numvfs; vf++) {
618 			pfvf =  &rvu->hwvf[hwvf + vf];
619 			/* Get num of MSIX vectors attached to this VF */
620 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
621 					 RVU_PRIV_PFX_MSIX_CFG(pf));
622 			pfvf->msix.max = (cfg & 0xFFF) + 1;
623 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
624 
625 			/* Alloc msix bitmap for this VF */
626 			err = rvu_alloc_bitmap(&pfvf->msix);
627 			if (err)
628 				return err;
629 
630 			pfvf->msix_lfmap =
631 				devm_kcalloc(rvu->dev, pfvf->msix.max,
632 					     sizeof(u16), GFP_KERNEL);
633 			if (!pfvf->msix_lfmap)
634 				return -ENOMEM;
635 
636 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
637 			 * These are allocated on driver init and never freed,
638 			 * so no need to set 'msix_lfmap' for these.
639 			 */
640 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
641 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
642 			nvecs = (cfg >> 12) & 0xFF;
643 			cfg &= ~0x7FFULL;
644 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
645 			rvu_write64(rvu, BLKADDR_RVUM,
646 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
647 				    cfg | offset);
648 		}
649 	}
650 
651 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
652 	 * create an IOMMU mapping for the physical address configured by
653 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
654 	 */
655 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
656 	max_msix = cfg & 0xFFFFF;
657 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
658 		phy_addr = rvu->fwdata->msixtr_base;
659 	else
660 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
661 
662 	iova = dma_map_resource(rvu->dev, phy_addr,
663 				max_msix * PCI_MSIX_ENTRY_SIZE,
664 				DMA_BIDIRECTIONAL, 0);
665 
666 	if (dma_mapping_error(rvu->dev, iova))
667 		return -ENOMEM;
668 
669 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
670 	rvu->msix_base_iova = iova;
671 	rvu->msixtr_base_phy = phy_addr;
672 
673 	return 0;
674 }
675 
676 static void rvu_reset_msix(struct rvu *rvu)
677 {
678 	/* Restore msixtr base register */
679 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
680 		    rvu->msixtr_base_phy);
681 }
682 
683 static void rvu_free_hw_resources(struct rvu *rvu)
684 {
685 	struct rvu_hwinfo *hw = rvu->hw;
686 	struct rvu_block *block;
687 	struct rvu_pfvf  *pfvf;
688 	int id, max_msix;
689 	u64 cfg;
690 
691 	rvu_npa_freemem(rvu);
692 	rvu_npc_freemem(rvu);
693 	rvu_nix_freemem(rvu);
694 
695 	/* Free block LF bitmaps */
696 	for (id = 0; id < BLK_COUNT; id++) {
697 		block = &hw->block[id];
698 		kfree(block->lf.bmap);
699 	}
700 
701 	/* Free MSIX bitmaps */
702 	for (id = 0; id < hw->total_pfs; id++) {
703 		pfvf = &rvu->pf[id];
704 		kfree(pfvf->msix.bmap);
705 	}
706 
707 	for (id = 0; id < hw->total_vfs; id++) {
708 		pfvf = &rvu->hwvf[id];
709 		kfree(pfvf->msix.bmap);
710 	}
711 
712 	/* Unmap MSIX vector base IOVA mapping */
713 	if (!rvu->msix_base_iova)
714 		return;
715 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
716 	max_msix = cfg & 0xFFFFF;
717 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
718 			   max_msix * PCI_MSIX_ENTRY_SIZE,
719 			   DMA_BIDIRECTIONAL, 0);
720 
721 	rvu_reset_msix(rvu);
722 	mutex_destroy(&rvu->rsrc_lock);
723 }
724 
725 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
726 {
727 	struct rvu_hwinfo *hw = rvu->hw;
728 	int pf, vf, numvfs, hwvf;
729 	struct rvu_pfvf *pfvf;
730 	u64 *mac;
731 
732 	for (pf = 0; pf < hw->total_pfs; pf++) {
733 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
734 		if (!pf)
735 			goto lbkvf;
736 
737 		if (!is_pf_cgxmapped(rvu, pf))
738 			continue;
739 		/* Assign MAC address to PF */
740 		pfvf = &rvu->pf[pf];
741 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
742 			mac = &rvu->fwdata->pf_macs[pf];
743 			if (*mac)
744 				u64_to_ether_addr(*mac, pfvf->mac_addr);
745 			else
746 				eth_random_addr(pfvf->mac_addr);
747 		} else {
748 			eth_random_addr(pfvf->mac_addr);
749 		}
750 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
751 
752 lbkvf:
753 		/* Assign MAC address to VFs*/
754 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
755 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
756 			pfvf = &rvu->hwvf[hwvf];
757 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
758 				mac = &rvu->fwdata->vf_macs[hwvf];
759 				if (*mac)
760 					u64_to_ether_addr(*mac, pfvf->mac_addr);
761 				else
762 					eth_random_addr(pfvf->mac_addr);
763 			} else {
764 				eth_random_addr(pfvf->mac_addr);
765 			}
766 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
767 		}
768 	}
769 }
770 
771 static int rvu_fwdata_init(struct rvu *rvu)
772 {
773 	u64 fwdbase;
774 	int err;
775 
776 	/* Get firmware data base address */
777 	err = cgx_get_fwdata_base(&fwdbase);
778 	if (err)
779 		goto fail;
780 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
781 	if (!rvu->fwdata)
782 		goto fail;
783 	if (!is_rvu_fwdata_valid(rvu)) {
784 		dev_err(rvu->dev,
785 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
786 		iounmap(rvu->fwdata);
787 		rvu->fwdata = NULL;
788 		return -EINVAL;
789 	}
790 	return 0;
791 fail:
792 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
793 	return -EIO;
794 }
795 
796 static void rvu_fwdata_exit(struct rvu *rvu)
797 {
798 	if (rvu->fwdata)
799 		iounmap(rvu->fwdata);
800 }
801 
802 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
803 {
804 	struct rvu_hwinfo *hw = rvu->hw;
805 	struct rvu_block *block;
806 	int blkid;
807 	u64 cfg;
808 
809 	/* Init NIX LF's bitmap */
810 	block = &hw->block[blkaddr];
811 	if (!block->implemented)
812 		return 0;
813 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
814 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
815 	block->lf.max = cfg & 0xFFF;
816 	block->addr = blkaddr;
817 	block->type = BLKTYPE_NIX;
818 	block->lfshift = 8;
819 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
820 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
821 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
822 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
823 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
824 	block->lfreset_reg = NIX_AF_LF_RST;
825 	sprintf(block->name, "NIX%d", blkid);
826 	rvu->nix_blkaddr[blkid] = blkaddr;
827 	return rvu_alloc_bitmap(&block->lf);
828 }
829 
830 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
831 {
832 	struct rvu_hwinfo *hw = rvu->hw;
833 	struct rvu_block *block;
834 	int blkid;
835 	u64 cfg;
836 
837 	/* Init CPT LF's bitmap */
838 	block = &hw->block[blkaddr];
839 	if (!block->implemented)
840 		return 0;
841 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
842 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
843 	block->lf.max = cfg & 0xFF;
844 	block->addr = blkaddr;
845 	block->type = BLKTYPE_CPT;
846 	block->multislot = true;
847 	block->lfshift = 3;
848 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
849 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
850 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
851 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
852 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
853 	block->lfreset_reg = CPT_AF_LF_RST;
854 	sprintf(block->name, "CPT%d", blkid);
855 	return rvu_alloc_bitmap(&block->lf);
856 }
857 
858 static void rvu_get_lbk_bufsize(struct rvu *rvu)
859 {
860 	struct pci_dev *pdev = NULL;
861 	void __iomem *base;
862 	u64 lbk_const;
863 
864 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
865 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
866 	if (!pdev)
867 		return;
868 
869 	base = pci_ioremap_bar(pdev, 0);
870 	if (!base)
871 		goto err_put;
872 
873 	lbk_const = readq(base + LBK_CONST);
874 
875 	/* cache fifo size */
876 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
877 
878 	iounmap(base);
879 err_put:
880 	pci_dev_put(pdev);
881 }
882 
883 static int rvu_setup_hw_resources(struct rvu *rvu)
884 {
885 	struct rvu_hwinfo *hw = rvu->hw;
886 	struct rvu_block *block;
887 	int blkid, err;
888 	u64 cfg;
889 
890 	/* Get HW supported max RVU PF & VF count */
891 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
892 	hw->total_pfs = (cfg >> 32) & 0xFF;
893 	hw->total_vfs = (cfg >> 20) & 0xFFF;
894 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
895 
896 	/* Init NPA LF's bitmap */
897 	block = &hw->block[BLKADDR_NPA];
898 	if (!block->implemented)
899 		goto nix;
900 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
901 	block->lf.max = (cfg >> 16) & 0xFFF;
902 	block->addr = BLKADDR_NPA;
903 	block->type = BLKTYPE_NPA;
904 	block->lfshift = 8;
905 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
906 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
907 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
908 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
909 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
910 	block->lfreset_reg = NPA_AF_LF_RST;
911 	sprintf(block->name, "NPA");
912 	err = rvu_alloc_bitmap(&block->lf);
913 	if (err)
914 		return err;
915 
916 nix:
917 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
918 	if (err)
919 		return err;
920 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
921 	if (err)
922 		return err;
923 
924 	/* Init SSO group's bitmap */
925 	block = &hw->block[BLKADDR_SSO];
926 	if (!block->implemented)
927 		goto ssow;
928 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
929 	block->lf.max = cfg & 0xFFFF;
930 	block->addr = BLKADDR_SSO;
931 	block->type = BLKTYPE_SSO;
932 	block->multislot = true;
933 	block->lfshift = 3;
934 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
935 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
936 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
937 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
938 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
939 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
940 	sprintf(block->name, "SSO GROUP");
941 	err = rvu_alloc_bitmap(&block->lf);
942 	if (err)
943 		return err;
944 
945 ssow:
946 	/* Init SSO workslot's bitmap */
947 	block = &hw->block[BLKADDR_SSOW];
948 	if (!block->implemented)
949 		goto tim;
950 	block->lf.max = (cfg >> 56) & 0xFF;
951 	block->addr = BLKADDR_SSOW;
952 	block->type = BLKTYPE_SSOW;
953 	block->multislot = true;
954 	block->lfshift = 3;
955 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
956 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
957 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
958 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
959 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
960 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
961 	sprintf(block->name, "SSOWS");
962 	err = rvu_alloc_bitmap(&block->lf);
963 	if (err)
964 		return err;
965 
966 tim:
967 	/* Init TIM LF's bitmap */
968 	block = &hw->block[BLKADDR_TIM];
969 	if (!block->implemented)
970 		goto cpt;
971 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
972 	block->lf.max = cfg & 0xFFFF;
973 	block->addr = BLKADDR_TIM;
974 	block->type = BLKTYPE_TIM;
975 	block->multislot = true;
976 	block->lfshift = 3;
977 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
978 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
979 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
980 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
981 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
982 	block->lfreset_reg = TIM_AF_LF_RST;
983 	sprintf(block->name, "TIM");
984 	err = rvu_alloc_bitmap(&block->lf);
985 	if (err)
986 		return err;
987 
988 cpt:
989 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
990 	if (err)
991 		return err;
992 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
993 	if (err)
994 		return err;
995 
996 	/* Allocate memory for PFVF data */
997 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
998 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
999 	if (!rvu->pf)
1000 		return -ENOMEM;
1001 
1002 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1003 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1004 	if (!rvu->hwvf)
1005 		return -ENOMEM;
1006 
1007 	mutex_init(&rvu->rsrc_lock);
1008 
1009 	rvu_fwdata_init(rvu);
1010 
1011 	err = rvu_setup_msix_resources(rvu);
1012 	if (err)
1013 		return err;
1014 
1015 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1016 		block = &hw->block[blkid];
1017 		if (!block->lf.bmap)
1018 			continue;
1019 
1020 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1021 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1022 					     sizeof(u16), GFP_KERNEL);
1023 		if (!block->fn_map) {
1024 			err = -ENOMEM;
1025 			goto msix_err;
1026 		}
1027 
1028 		/* Scan all blocks to check if low level firmware has
1029 		 * already provisioned any of the resources to a PF/VF.
1030 		 */
1031 		rvu_scan_block(rvu, block);
1032 	}
1033 
1034 	err = rvu_set_channels_base(rvu);
1035 	if (err)
1036 		goto msix_err;
1037 
1038 	err = rvu_npc_init(rvu);
1039 	if (err)
1040 		goto npc_err;
1041 
1042 	err = rvu_cgx_init(rvu);
1043 	if (err)
1044 		goto cgx_err;
1045 
1046 	/* Assign MACs for CGX mapped functions */
1047 	rvu_setup_pfvf_macaddress(rvu);
1048 
1049 	err = rvu_npa_init(rvu);
1050 	if (err)
1051 		goto npa_err;
1052 
1053 	rvu_get_lbk_bufsize(rvu);
1054 
1055 	err = rvu_nix_init(rvu);
1056 	if (err)
1057 		goto nix_err;
1058 
1059 	rvu_program_channels(rvu);
1060 
1061 	return 0;
1062 
1063 nix_err:
1064 	rvu_nix_freemem(rvu);
1065 npa_err:
1066 	rvu_npa_freemem(rvu);
1067 cgx_err:
1068 	rvu_cgx_exit(rvu);
1069 npc_err:
1070 	rvu_npc_freemem(rvu);
1071 	rvu_fwdata_exit(rvu);
1072 msix_err:
1073 	rvu_reset_msix(rvu);
1074 	return err;
1075 }
1076 
1077 /* NPA and NIX admin queue APIs */
1078 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1079 {
1080 	if (!aq)
1081 		return;
1082 
1083 	qmem_free(rvu->dev, aq->inst);
1084 	qmem_free(rvu->dev, aq->res);
1085 	devm_kfree(rvu->dev, aq);
1086 }
1087 
1088 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1089 		 int qsize, int inst_size, int res_size)
1090 {
1091 	struct admin_queue *aq;
1092 	int err;
1093 
1094 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1095 	if (!*ad_queue)
1096 		return -ENOMEM;
1097 	aq = *ad_queue;
1098 
1099 	/* Alloc memory for instructions i.e AQ */
1100 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1101 	if (err) {
1102 		devm_kfree(rvu->dev, aq);
1103 		return err;
1104 	}
1105 
1106 	/* Alloc memory for results */
1107 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1108 	if (err) {
1109 		rvu_aq_free(rvu, aq);
1110 		return err;
1111 	}
1112 
1113 	spin_lock_init(&aq->lock);
1114 	return 0;
1115 }
1116 
1117 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1118 			   struct ready_msg_rsp *rsp)
1119 {
1120 	if (rvu->fwdata) {
1121 		rsp->rclk_freq = rvu->fwdata->rclk;
1122 		rsp->sclk_freq = rvu->fwdata->sclk;
1123 	}
1124 	return 0;
1125 }
1126 
1127 /* Get current count of a RVU block's LF/slots
1128  * provisioned to a given RVU func.
1129  */
1130 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1131 {
1132 	switch (blkaddr) {
1133 	case BLKADDR_NPA:
1134 		return pfvf->npalf ? 1 : 0;
1135 	case BLKADDR_NIX0:
1136 	case BLKADDR_NIX1:
1137 		return pfvf->nixlf ? 1 : 0;
1138 	case BLKADDR_SSO:
1139 		return pfvf->sso;
1140 	case BLKADDR_SSOW:
1141 		return pfvf->ssow;
1142 	case BLKADDR_TIM:
1143 		return pfvf->timlfs;
1144 	case BLKADDR_CPT0:
1145 		return pfvf->cptlfs;
1146 	case BLKADDR_CPT1:
1147 		return pfvf->cpt1_lfs;
1148 	}
1149 	return 0;
1150 }
1151 
1152 /* Return true if LFs of block type are attached to pcifunc */
1153 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1154 {
1155 	switch (blktype) {
1156 	case BLKTYPE_NPA:
1157 		return pfvf->npalf ? 1 : 0;
1158 	case BLKTYPE_NIX:
1159 		return pfvf->nixlf ? 1 : 0;
1160 	case BLKTYPE_SSO:
1161 		return !!pfvf->sso;
1162 	case BLKTYPE_SSOW:
1163 		return !!pfvf->ssow;
1164 	case BLKTYPE_TIM:
1165 		return !!pfvf->timlfs;
1166 	case BLKTYPE_CPT:
1167 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1168 	}
1169 
1170 	return false;
1171 }
1172 
1173 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1174 {
1175 	struct rvu_pfvf *pfvf;
1176 
1177 	if (!is_pf_func_valid(rvu, pcifunc))
1178 		return false;
1179 
1180 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1181 
1182 	/* Check if this PFFUNC has a LF of type blktype attached */
1183 	if (!is_blktype_attached(pfvf, blktype))
1184 		return false;
1185 
1186 	return true;
1187 }
1188 
1189 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1190 			   int pcifunc, int slot)
1191 {
1192 	u64 val;
1193 
1194 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1195 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1196 	/* Wait for the lookup to finish */
1197 	/* TODO: put some timeout here */
1198 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1199 		;
1200 
1201 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1202 
1203 	/* Check LF valid bit */
1204 	if (!(val & (1ULL << 12)))
1205 		return -1;
1206 
1207 	return (val & 0xFFF);
1208 }
1209 
1210 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1211 {
1212 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1213 	struct rvu_hwinfo *hw = rvu->hw;
1214 	struct rvu_block *block;
1215 	int slot, lf, num_lfs;
1216 	int blkaddr;
1217 
1218 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1219 	if (blkaddr < 0)
1220 		return;
1221 
1222 	if (blktype == BLKTYPE_NIX)
1223 		rvu_nix_reset_mac(pfvf, pcifunc);
1224 
1225 	block = &hw->block[blkaddr];
1226 
1227 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1228 	if (!num_lfs)
1229 		return;
1230 
1231 	for (slot = 0; slot < num_lfs; slot++) {
1232 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1233 		if (lf < 0) /* This should never happen */
1234 			continue;
1235 
1236 		/* Disable the LF */
1237 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1238 			    (lf << block->lfshift), 0x00ULL);
1239 
1240 		/* Update SW maintained mapping info as well */
1241 		rvu_update_rsrc_map(rvu, pfvf, block,
1242 				    pcifunc, lf, false);
1243 
1244 		/* Free the resource */
1245 		rvu_free_rsrc(&block->lf, lf);
1246 
1247 		/* Clear MSIX vector offset for this LF */
1248 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1249 	}
1250 }
1251 
1252 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1253 			    u16 pcifunc)
1254 {
1255 	struct rvu_hwinfo *hw = rvu->hw;
1256 	bool detach_all = true;
1257 	struct rvu_block *block;
1258 	int blkid;
1259 
1260 	mutex_lock(&rvu->rsrc_lock);
1261 
1262 	/* Check for partial resource detach */
1263 	if (detach && detach->partial)
1264 		detach_all = false;
1265 
1266 	/* Check for RVU block's LFs attached to this func,
1267 	 * if so, detach them.
1268 	 */
1269 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1270 		block = &hw->block[blkid];
1271 		if (!block->lf.bmap)
1272 			continue;
1273 		if (!detach_all && detach) {
1274 			if (blkid == BLKADDR_NPA && !detach->npalf)
1275 				continue;
1276 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1277 				continue;
1278 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1279 				continue;
1280 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1281 				continue;
1282 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1283 				continue;
1284 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1285 				continue;
1286 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1287 				continue;
1288 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1289 				continue;
1290 		}
1291 		rvu_detach_block(rvu, pcifunc, block->type);
1292 	}
1293 
1294 	mutex_unlock(&rvu->rsrc_lock);
1295 	return 0;
1296 }
1297 
1298 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1299 				      struct rsrc_detach *detach,
1300 				      struct msg_rsp *rsp)
1301 {
1302 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1303 }
1304 
1305 static int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1306 {
1307 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1308 	int blkaddr = BLKADDR_NIX0, vf;
1309 	struct rvu_pfvf *pf;
1310 
1311 	/* All CGX mapped PFs are set with assigned NIX block during init */
1312 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1313 		pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1314 		blkaddr = pf->nix_blkaddr;
1315 	} else if (is_afvf(pcifunc)) {
1316 		vf = pcifunc - 1;
1317 		/* Assign NIX based on VF number. All even numbered VFs get
1318 		 * NIX0 and odd numbered gets NIX1
1319 		 */
1320 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1321 		/* NIX1 is not present on all silicons */
1322 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1323 			blkaddr = BLKADDR_NIX0;
1324 	}
1325 
1326 	switch (blkaddr) {
1327 	case BLKADDR_NIX1:
1328 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1329 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1330 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1331 		break;
1332 	case BLKADDR_NIX0:
1333 	default:
1334 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1335 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1336 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1337 		break;
1338 	}
1339 
1340 	return pfvf->nix_blkaddr;
1341 }
1342 
1343 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1344 				  u16 pcifunc, struct rsrc_attach *attach)
1345 {
1346 	int blkaddr;
1347 
1348 	switch (blktype) {
1349 	case BLKTYPE_NIX:
1350 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1351 		break;
1352 	case BLKTYPE_CPT:
1353 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1354 			return rvu_get_blkaddr(rvu, blktype, 0);
1355 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1356 			  BLKADDR_CPT0;
1357 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1358 			return -ENODEV;
1359 		break;
1360 	default:
1361 		return rvu_get_blkaddr(rvu, blktype, 0);
1362 	}
1363 
1364 	if (is_block_implemented(rvu->hw, blkaddr))
1365 		return blkaddr;
1366 
1367 	return -ENODEV;
1368 }
1369 
1370 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1371 			     int num_lfs, struct rsrc_attach *attach)
1372 {
1373 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1374 	struct rvu_hwinfo *hw = rvu->hw;
1375 	struct rvu_block *block;
1376 	int slot, lf;
1377 	int blkaddr;
1378 	u64 cfg;
1379 
1380 	if (!num_lfs)
1381 		return;
1382 
1383 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1384 	if (blkaddr < 0)
1385 		return;
1386 
1387 	block = &hw->block[blkaddr];
1388 	if (!block->lf.bmap)
1389 		return;
1390 
1391 	for (slot = 0; slot < num_lfs; slot++) {
1392 		/* Allocate the resource */
1393 		lf = rvu_alloc_rsrc(&block->lf);
1394 		if (lf < 0)
1395 			return;
1396 
1397 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1398 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1399 			    (lf << block->lfshift), cfg);
1400 		rvu_update_rsrc_map(rvu, pfvf, block,
1401 				    pcifunc, lf, true);
1402 
1403 		/* Set start MSIX vector for this LF within this PF/VF */
1404 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1405 	}
1406 }
1407 
1408 static int rvu_check_rsrc_availability(struct rvu *rvu,
1409 				       struct rsrc_attach *req, u16 pcifunc)
1410 {
1411 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1412 	int free_lfs, mappedlfs, blkaddr;
1413 	struct rvu_hwinfo *hw = rvu->hw;
1414 	struct rvu_block *block;
1415 
1416 	/* Only one NPA LF can be attached */
1417 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1418 		block = &hw->block[BLKADDR_NPA];
1419 		free_lfs = rvu_rsrc_free_count(&block->lf);
1420 		if (!free_lfs)
1421 			goto fail;
1422 	} else if (req->npalf) {
1423 		dev_err(&rvu->pdev->dev,
1424 			"Func 0x%x: Invalid req, already has NPA\n",
1425 			 pcifunc);
1426 		return -EINVAL;
1427 	}
1428 
1429 	/* Only one NIX LF can be attached */
1430 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1431 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1432 						 pcifunc, req);
1433 		if (blkaddr < 0)
1434 			return blkaddr;
1435 		block = &hw->block[blkaddr];
1436 		free_lfs = rvu_rsrc_free_count(&block->lf);
1437 		if (!free_lfs)
1438 			goto fail;
1439 	} else if (req->nixlf) {
1440 		dev_err(&rvu->pdev->dev,
1441 			"Func 0x%x: Invalid req, already has NIX\n",
1442 			pcifunc);
1443 		return -EINVAL;
1444 	}
1445 
1446 	if (req->sso) {
1447 		block = &hw->block[BLKADDR_SSO];
1448 		/* Is request within limits ? */
1449 		if (req->sso > block->lf.max) {
1450 			dev_err(&rvu->pdev->dev,
1451 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1452 				 pcifunc, req->sso, block->lf.max);
1453 			return -EINVAL;
1454 		}
1455 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1456 		free_lfs = rvu_rsrc_free_count(&block->lf);
1457 		/* Check if additional resources are available */
1458 		if (req->sso > mappedlfs &&
1459 		    ((req->sso - mappedlfs) > free_lfs))
1460 			goto fail;
1461 	}
1462 
1463 	if (req->ssow) {
1464 		block = &hw->block[BLKADDR_SSOW];
1465 		if (req->ssow > block->lf.max) {
1466 			dev_err(&rvu->pdev->dev,
1467 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1468 				 pcifunc, req->sso, block->lf.max);
1469 			return -EINVAL;
1470 		}
1471 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1472 		free_lfs = rvu_rsrc_free_count(&block->lf);
1473 		if (req->ssow > mappedlfs &&
1474 		    ((req->ssow - mappedlfs) > free_lfs))
1475 			goto fail;
1476 	}
1477 
1478 	if (req->timlfs) {
1479 		block = &hw->block[BLKADDR_TIM];
1480 		if (req->timlfs > block->lf.max) {
1481 			dev_err(&rvu->pdev->dev,
1482 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1483 				 pcifunc, req->timlfs, block->lf.max);
1484 			return -EINVAL;
1485 		}
1486 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1487 		free_lfs = rvu_rsrc_free_count(&block->lf);
1488 		if (req->timlfs > mappedlfs &&
1489 		    ((req->timlfs - mappedlfs) > free_lfs))
1490 			goto fail;
1491 	}
1492 
1493 	if (req->cptlfs) {
1494 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1495 						 pcifunc, req);
1496 		if (blkaddr < 0)
1497 			return blkaddr;
1498 		block = &hw->block[blkaddr];
1499 		if (req->cptlfs > block->lf.max) {
1500 			dev_err(&rvu->pdev->dev,
1501 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1502 				 pcifunc, req->cptlfs, block->lf.max);
1503 			return -EINVAL;
1504 		}
1505 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1506 		free_lfs = rvu_rsrc_free_count(&block->lf);
1507 		if (req->cptlfs > mappedlfs &&
1508 		    ((req->cptlfs - mappedlfs) > free_lfs))
1509 			goto fail;
1510 	}
1511 
1512 	return 0;
1513 
1514 fail:
1515 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1516 	return -ENOSPC;
1517 }
1518 
1519 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1520 				       struct rsrc_attach *attach)
1521 {
1522 	int blkaddr, num_lfs;
1523 
1524 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1525 					 attach->hdr.pcifunc, attach);
1526 	if (blkaddr < 0)
1527 		return false;
1528 
1529 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1530 					blkaddr);
1531 	/* Requester already has LFs from given block ? */
1532 	return !!num_lfs;
1533 }
1534 
1535 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1536 				      struct rsrc_attach *attach,
1537 				      struct msg_rsp *rsp)
1538 {
1539 	u16 pcifunc = attach->hdr.pcifunc;
1540 	int err;
1541 
1542 	/* If first request, detach all existing attached resources */
1543 	if (!attach->modify)
1544 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1545 
1546 	mutex_lock(&rvu->rsrc_lock);
1547 
1548 	/* Check if the request can be accommodated */
1549 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1550 	if (err)
1551 		goto exit;
1552 
1553 	/* Now attach the requested resources */
1554 	if (attach->npalf)
1555 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1556 
1557 	if (attach->nixlf)
1558 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1559 
1560 	if (attach->sso) {
1561 		/* RVU func doesn't know which exact LF or slot is attached
1562 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1563 		 * request, simply detach all existing attached LFs/slots
1564 		 * and attach a fresh.
1565 		 */
1566 		if (attach->modify)
1567 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1568 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1569 				 attach->sso, attach);
1570 	}
1571 
1572 	if (attach->ssow) {
1573 		if (attach->modify)
1574 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1575 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1576 				 attach->ssow, attach);
1577 	}
1578 
1579 	if (attach->timlfs) {
1580 		if (attach->modify)
1581 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1582 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1583 				 attach->timlfs, attach);
1584 	}
1585 
1586 	if (attach->cptlfs) {
1587 		if (attach->modify &&
1588 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1589 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1590 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1591 				 attach->cptlfs, attach);
1592 	}
1593 
1594 exit:
1595 	mutex_unlock(&rvu->rsrc_lock);
1596 	return err;
1597 }
1598 
1599 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1600 			       int blkaddr, int lf)
1601 {
1602 	u16 vec;
1603 
1604 	if (lf < 0)
1605 		return MSIX_VECTOR_INVALID;
1606 
1607 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1608 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1609 			return vec;
1610 	}
1611 	return MSIX_VECTOR_INVALID;
1612 }
1613 
1614 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1615 				struct rvu_block *block, int lf)
1616 {
1617 	u16 nvecs, vec, offset;
1618 	u64 cfg;
1619 
1620 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1621 			 (lf << block->lfshift));
1622 	nvecs = (cfg >> 12) & 0xFF;
1623 
1624 	/* Check and alloc MSIX vectors, must be contiguous */
1625 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1626 		return;
1627 
1628 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1629 
1630 	/* Config MSIX offset in LF */
1631 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1632 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1633 
1634 	/* Update the bitmap as well */
1635 	for (vec = 0; vec < nvecs; vec++)
1636 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1637 }
1638 
1639 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1640 				  struct rvu_block *block, int lf)
1641 {
1642 	u16 nvecs, vec, offset;
1643 	u64 cfg;
1644 
1645 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1646 			 (lf << block->lfshift));
1647 	nvecs = (cfg >> 12) & 0xFF;
1648 
1649 	/* Clear MSIX offset in LF */
1650 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1651 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1652 
1653 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1654 
1655 	/* Update the mapping */
1656 	for (vec = 0; vec < nvecs; vec++)
1657 		pfvf->msix_lfmap[offset + vec] = 0;
1658 
1659 	/* Free the same in MSIX bitmap */
1660 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1661 }
1662 
1663 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1664 				 struct msix_offset_rsp *rsp)
1665 {
1666 	struct rvu_hwinfo *hw = rvu->hw;
1667 	u16 pcifunc = req->hdr.pcifunc;
1668 	struct rvu_pfvf *pfvf;
1669 	int lf, slot, blkaddr;
1670 
1671 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1672 	if (!pfvf->msix.bmap)
1673 		return 0;
1674 
1675 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1676 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1677 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1678 
1679 	/* Get BLKADDR from which LFs are attached to pcifunc */
1680 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1681 	if (blkaddr < 0) {
1682 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1683 	} else {
1684 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1685 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1686 	}
1687 
1688 	rsp->sso = pfvf->sso;
1689 	for (slot = 0; slot < rsp->sso; slot++) {
1690 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1691 		rsp->sso_msixoff[slot] =
1692 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1693 	}
1694 
1695 	rsp->ssow = pfvf->ssow;
1696 	for (slot = 0; slot < rsp->ssow; slot++) {
1697 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1698 		rsp->ssow_msixoff[slot] =
1699 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1700 	}
1701 
1702 	rsp->timlfs = pfvf->timlfs;
1703 	for (slot = 0; slot < rsp->timlfs; slot++) {
1704 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1705 		rsp->timlf_msixoff[slot] =
1706 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1707 	}
1708 
1709 	rsp->cptlfs = pfvf->cptlfs;
1710 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1711 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1712 		rsp->cptlf_msixoff[slot] =
1713 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1714 	}
1715 
1716 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1717 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1718 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1719 		rsp->cpt1_lf_msixoff[slot] =
1720 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1727 			    struct msg_rsp *rsp)
1728 {
1729 	u16 pcifunc = req->hdr.pcifunc;
1730 	u16 vf, numvfs;
1731 	u64 cfg;
1732 
1733 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1734 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1735 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1736 	numvfs = (cfg >> 12) & 0xFF;
1737 
1738 	if (vf && vf <= numvfs)
1739 		__rvu_flr_handler(rvu, pcifunc);
1740 	else
1741 		return RVU_INVALID_VF_ID;
1742 
1743 	return 0;
1744 }
1745 
1746 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1747 				struct get_hw_cap_rsp *rsp)
1748 {
1749 	struct rvu_hwinfo *hw = rvu->hw;
1750 
1751 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1752 	rsp->nix_shaping = hw->cap.nix_shaping;
1753 
1754 	return 0;
1755 }
1756 
1757 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1758 				struct mbox_msghdr *req)
1759 {
1760 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1761 
1762 	/* Check if valid, if not reply with a invalid msg */
1763 	if (req->sig != OTX2_MBOX_REQ_SIG)
1764 		goto bad_message;
1765 
1766 	switch (req->id) {
1767 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1768 	case _id: {							\
1769 		struct _rsp_type *rsp;					\
1770 		int err;						\
1771 									\
1772 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1773 			mbox, devid,					\
1774 			sizeof(struct _rsp_type));			\
1775 		/* some handlers should complete even if reply */	\
1776 		/* could not be allocated */				\
1777 		if (!rsp &&						\
1778 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1779 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
1780 		    _id != MBOX_MSG_VF_FLR)				\
1781 			return -ENOMEM;					\
1782 		if (rsp) {						\
1783 			rsp->hdr.id = _id;				\
1784 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
1785 			rsp->hdr.pcifunc = req->pcifunc;		\
1786 			rsp->hdr.rc = 0;				\
1787 		}							\
1788 									\
1789 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
1790 						    (struct _req_type *)req, \
1791 						    rsp);		\
1792 		if (rsp && err)						\
1793 			rsp->hdr.rc = err;				\
1794 									\
1795 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
1796 		return rsp ? err : -ENOMEM;				\
1797 	}
1798 MBOX_MESSAGES
1799 #undef M
1800 
1801 bad_message:
1802 	default:
1803 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
1804 		return -ENODEV;
1805 	}
1806 }
1807 
1808 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
1809 {
1810 	struct rvu *rvu = mwork->rvu;
1811 	int offset, err, id, devid;
1812 	struct otx2_mbox_dev *mdev;
1813 	struct mbox_hdr *req_hdr;
1814 	struct mbox_msghdr *msg;
1815 	struct mbox_wq_info *mw;
1816 	struct otx2_mbox *mbox;
1817 
1818 	switch (type) {
1819 	case TYPE_AFPF:
1820 		mw = &rvu->afpf_wq_info;
1821 		break;
1822 	case TYPE_AFVF:
1823 		mw = &rvu->afvf_wq_info;
1824 		break;
1825 	default:
1826 		return;
1827 	}
1828 
1829 	devid = mwork - mw->mbox_wrk;
1830 	mbox = &mw->mbox;
1831 	mdev = &mbox->dev[devid];
1832 
1833 	/* Process received mbox messages */
1834 	req_hdr = mdev->mbase + mbox->rx_start;
1835 	if (mw->mbox_wrk[devid].num_msgs == 0)
1836 		return;
1837 
1838 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
1839 
1840 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
1841 		msg = mdev->mbase + offset;
1842 
1843 		/* Set which PF/VF sent this message based on mbox IRQ */
1844 		switch (type) {
1845 		case TYPE_AFPF:
1846 			msg->pcifunc &=
1847 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
1848 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
1849 			break;
1850 		case TYPE_AFVF:
1851 			msg->pcifunc &=
1852 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
1853 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
1854 			break;
1855 		}
1856 
1857 		err = rvu_process_mbox_msg(mbox, devid, msg);
1858 		if (!err) {
1859 			offset = mbox->rx_start + msg->next_msgoff;
1860 			continue;
1861 		}
1862 
1863 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
1864 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
1865 				 err, otx2_mbox_id2name(msg->id),
1866 				 msg->id, rvu_get_pf(msg->pcifunc),
1867 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
1868 		else
1869 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
1870 				 err, otx2_mbox_id2name(msg->id),
1871 				 msg->id, devid);
1872 	}
1873 	mw->mbox_wrk[devid].num_msgs = 0;
1874 
1875 	/* Send mbox responses to VF/PF */
1876 	otx2_mbox_msg_send(mbox, devid);
1877 }
1878 
1879 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
1880 {
1881 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1882 
1883 	__rvu_mbox_handler(mwork, TYPE_AFPF);
1884 }
1885 
1886 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
1887 {
1888 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1889 
1890 	__rvu_mbox_handler(mwork, TYPE_AFVF);
1891 }
1892 
1893 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
1894 {
1895 	struct rvu *rvu = mwork->rvu;
1896 	struct otx2_mbox_dev *mdev;
1897 	struct mbox_hdr *rsp_hdr;
1898 	struct mbox_msghdr *msg;
1899 	struct mbox_wq_info *mw;
1900 	struct otx2_mbox *mbox;
1901 	int offset, id, devid;
1902 
1903 	switch (type) {
1904 	case TYPE_AFPF:
1905 		mw = &rvu->afpf_wq_info;
1906 		break;
1907 	case TYPE_AFVF:
1908 		mw = &rvu->afvf_wq_info;
1909 		break;
1910 	default:
1911 		return;
1912 	}
1913 
1914 	devid = mwork - mw->mbox_wrk_up;
1915 	mbox = &mw->mbox_up;
1916 	mdev = &mbox->dev[devid];
1917 
1918 	rsp_hdr = mdev->mbase + mbox->rx_start;
1919 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
1920 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
1921 		return;
1922 	}
1923 
1924 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
1925 
1926 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
1927 		msg = mdev->mbase + offset;
1928 
1929 		if (msg->id >= MBOX_MSG_MAX) {
1930 			dev_err(rvu->dev,
1931 				"Mbox msg with unknown ID 0x%x\n", msg->id);
1932 			goto end;
1933 		}
1934 
1935 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
1936 			dev_err(rvu->dev,
1937 				"Mbox msg with wrong signature %x, ID 0x%x\n",
1938 				msg->sig, msg->id);
1939 			goto end;
1940 		}
1941 
1942 		switch (msg->id) {
1943 		case MBOX_MSG_CGX_LINK_EVENT:
1944 			break;
1945 		default:
1946 			if (msg->rc)
1947 				dev_err(rvu->dev,
1948 					"Mbox msg response has err %d, ID 0x%x\n",
1949 					msg->rc, msg->id);
1950 			break;
1951 		}
1952 end:
1953 		offset = mbox->rx_start + msg->next_msgoff;
1954 		mdev->msgs_acked++;
1955 	}
1956 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
1957 
1958 	otx2_mbox_reset(mbox, devid);
1959 }
1960 
1961 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
1962 {
1963 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1964 
1965 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
1966 }
1967 
1968 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
1969 {
1970 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
1971 
1972 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
1973 }
1974 
1975 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
1976 				int num, int type)
1977 {
1978 	struct rvu_hwinfo *hw = rvu->hw;
1979 	int region;
1980 	u64 bar4;
1981 
1982 	/* For cn10k platform VF mailbox regions of a PF follows after the
1983 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
1984 	 * RVU_PF_VF_BAR4_ADDR register.
1985 	 */
1986 	if (type == TYPE_AFVF) {
1987 		for (region = 0; region < num; region++) {
1988 			if (hw->cap.per_pf_mbox_regs) {
1989 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
1990 						  RVU_AF_PFX_BAR4_ADDR(0)) +
1991 						  MBOX_SIZE;
1992 				bar4 += region * MBOX_SIZE;
1993 			} else {
1994 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
1995 				bar4 += region * MBOX_SIZE;
1996 			}
1997 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
1998 			if (!mbox_addr[region])
1999 				goto error;
2000 		}
2001 		return 0;
2002 	}
2003 
2004 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2005 	 * PF registers. Whereas for Octeontx2 it is read from
2006 	 * RVU_AF_PF_BAR4_ADDR register.
2007 	 */
2008 	for (region = 0; region < num; region++) {
2009 		if (hw->cap.per_pf_mbox_regs) {
2010 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2011 					  RVU_AF_PFX_BAR4_ADDR(region));
2012 		} else {
2013 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2014 					  RVU_AF_PF_BAR4_ADDR);
2015 			bar4 += region * MBOX_SIZE;
2016 		}
2017 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2018 		if (!mbox_addr[region])
2019 			goto error;
2020 	}
2021 	return 0;
2022 
2023 error:
2024 	while (region--)
2025 		iounmap((void __iomem *)mbox_addr[region]);
2026 	return -ENOMEM;
2027 }
2028 
2029 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2030 			 int type, int num,
2031 			 void (mbox_handler)(struct work_struct *),
2032 			 void (mbox_up_handler)(struct work_struct *))
2033 {
2034 	int err = -EINVAL, i, dir, dir_up;
2035 	void __iomem *reg_base;
2036 	struct rvu_work *mwork;
2037 	void **mbox_regions;
2038 	const char *name;
2039 
2040 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2041 	if (!mbox_regions)
2042 		return -ENOMEM;
2043 
2044 	switch (type) {
2045 	case TYPE_AFPF:
2046 		name = "rvu_afpf_mailbox";
2047 		dir = MBOX_DIR_AFPF;
2048 		dir_up = MBOX_DIR_AFPF_UP;
2049 		reg_base = rvu->afreg_base;
2050 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2051 		if (err)
2052 			goto free_regions;
2053 		break;
2054 	case TYPE_AFVF:
2055 		name = "rvu_afvf_mailbox";
2056 		dir = MBOX_DIR_PFVF;
2057 		dir_up = MBOX_DIR_PFVF_UP;
2058 		reg_base = rvu->pfreg_base;
2059 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2060 		if (err)
2061 			goto free_regions;
2062 		break;
2063 	default:
2064 		return err;
2065 	}
2066 
2067 	mw->mbox_wq = alloc_workqueue(name,
2068 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2069 				      num);
2070 	if (!mw->mbox_wq) {
2071 		err = -ENOMEM;
2072 		goto unmap_regions;
2073 	}
2074 
2075 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2076 				    sizeof(struct rvu_work), GFP_KERNEL);
2077 	if (!mw->mbox_wrk) {
2078 		err = -ENOMEM;
2079 		goto exit;
2080 	}
2081 
2082 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2083 				       sizeof(struct rvu_work), GFP_KERNEL);
2084 	if (!mw->mbox_wrk_up) {
2085 		err = -ENOMEM;
2086 		goto exit;
2087 	}
2088 
2089 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2090 				     reg_base, dir, num);
2091 	if (err)
2092 		goto exit;
2093 
2094 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2095 				     reg_base, dir_up, num);
2096 	if (err)
2097 		goto exit;
2098 
2099 	for (i = 0; i < num; i++) {
2100 		mwork = &mw->mbox_wrk[i];
2101 		mwork->rvu = rvu;
2102 		INIT_WORK(&mwork->work, mbox_handler);
2103 
2104 		mwork = &mw->mbox_wrk_up[i];
2105 		mwork->rvu = rvu;
2106 		INIT_WORK(&mwork->work, mbox_up_handler);
2107 	}
2108 	kfree(mbox_regions);
2109 	return 0;
2110 
2111 exit:
2112 	destroy_workqueue(mw->mbox_wq);
2113 unmap_regions:
2114 	while (num--)
2115 		iounmap((void __iomem *)mbox_regions[num]);
2116 free_regions:
2117 	kfree(mbox_regions);
2118 	return err;
2119 }
2120 
2121 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2122 {
2123 	struct otx2_mbox *mbox = &mw->mbox;
2124 	struct otx2_mbox_dev *mdev;
2125 	int devid;
2126 
2127 	if (mw->mbox_wq) {
2128 		flush_workqueue(mw->mbox_wq);
2129 		destroy_workqueue(mw->mbox_wq);
2130 		mw->mbox_wq = NULL;
2131 	}
2132 
2133 	for (devid = 0; devid < mbox->ndevs; devid++) {
2134 		mdev = &mbox->dev[devid];
2135 		if (mdev->hwbase)
2136 			iounmap((void __iomem *)mdev->hwbase);
2137 	}
2138 
2139 	otx2_mbox_destroy(&mw->mbox);
2140 	otx2_mbox_destroy(&mw->mbox_up);
2141 }
2142 
2143 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2144 			   int mdevs, u64 intr)
2145 {
2146 	struct otx2_mbox_dev *mdev;
2147 	struct otx2_mbox *mbox;
2148 	struct mbox_hdr *hdr;
2149 	int i;
2150 
2151 	for (i = first; i < mdevs; i++) {
2152 		/* start from 0 */
2153 		if (!(intr & BIT_ULL(i - first)))
2154 			continue;
2155 
2156 		mbox = &mw->mbox;
2157 		mdev = &mbox->dev[i];
2158 		hdr = mdev->mbase + mbox->rx_start;
2159 
2160 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2161 		 * handler to  ensure that it holds a correct value next time
2162 		 * when the interrupt handler is called.
2163 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2164 		 * pf>mbox.up_num_msgs holds the data for use in
2165 		 * pfaf_mbox_up_handler.
2166 		 */
2167 
2168 		if (hdr->num_msgs) {
2169 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2170 			hdr->num_msgs = 0;
2171 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2172 		}
2173 		mbox = &mw->mbox_up;
2174 		mdev = &mbox->dev[i];
2175 		hdr = mdev->mbase + mbox->rx_start;
2176 		if (hdr->num_msgs) {
2177 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2178 			hdr->num_msgs = 0;
2179 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2180 		}
2181 	}
2182 }
2183 
2184 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2185 {
2186 	struct rvu *rvu = (struct rvu *)rvu_irq;
2187 	int vfs = rvu->vfs;
2188 	u64 intr;
2189 
2190 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2191 	/* Clear interrupts */
2192 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2193 	if (intr)
2194 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2195 
2196 	/* Sync with mbox memory region */
2197 	rmb();
2198 
2199 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2200 
2201 	/* Handle VF interrupts */
2202 	if (vfs > 64) {
2203 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2204 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2205 
2206 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2207 		vfs -= 64;
2208 	}
2209 
2210 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2211 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2212 	if (intr)
2213 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2214 
2215 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2216 
2217 	return IRQ_HANDLED;
2218 }
2219 
2220 static void rvu_enable_mbox_intr(struct rvu *rvu)
2221 {
2222 	struct rvu_hwinfo *hw = rvu->hw;
2223 
2224 	/* Clear spurious irqs, if any */
2225 	rvu_write64(rvu, BLKADDR_RVUM,
2226 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2227 
2228 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2229 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2230 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2231 }
2232 
2233 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2234 {
2235 	struct rvu_block *block;
2236 	int slot, lf, num_lfs;
2237 	int err;
2238 
2239 	block = &rvu->hw->block[blkaddr];
2240 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2241 					block->addr);
2242 	if (!num_lfs)
2243 		return;
2244 	for (slot = 0; slot < num_lfs; slot++) {
2245 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2246 		if (lf < 0)
2247 			continue;
2248 
2249 		/* Cleanup LF and reset it */
2250 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2251 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2252 		else if (block->addr == BLKADDR_NPA)
2253 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2254 		else if ((block->addr == BLKADDR_CPT0) ||
2255 			 (block->addr == BLKADDR_CPT1))
2256 			rvu_cpt_lf_teardown(rvu, pcifunc, lf, slot);
2257 
2258 		err = rvu_lf_reset(rvu, block, lf);
2259 		if (err) {
2260 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2261 				block->addr, lf);
2262 		}
2263 	}
2264 }
2265 
2266 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2267 {
2268 	mutex_lock(&rvu->flr_lock);
2269 	/* Reset order should reflect inter-block dependencies:
2270 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2271 	 * 2. Flush and reset SSO/SSOW
2272 	 * 3. Cleanup pools (NPA)
2273 	 */
2274 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2275 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2276 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2277 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2278 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2279 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2280 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2281 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2282 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2283 	mutex_unlock(&rvu->flr_lock);
2284 }
2285 
2286 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2287 {
2288 	int reg = 0;
2289 
2290 	/* pcifunc = 0(PF0) | (vf + 1) */
2291 	__rvu_flr_handler(rvu, vf + 1);
2292 
2293 	if (vf >= 64) {
2294 		reg = 1;
2295 		vf = vf - 64;
2296 	}
2297 
2298 	/* Signal FLR finish and enable IRQ */
2299 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2300 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2301 }
2302 
2303 static void rvu_flr_handler(struct work_struct *work)
2304 {
2305 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2306 	struct rvu *rvu = flrwork->rvu;
2307 	u16 pcifunc, numvfs, vf;
2308 	u64 cfg;
2309 	int pf;
2310 
2311 	pf = flrwork - rvu->flr_wrk;
2312 	if (pf >= rvu->hw->total_pfs) {
2313 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2314 		return;
2315 	}
2316 
2317 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2318 	numvfs = (cfg >> 12) & 0xFF;
2319 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2320 
2321 	for (vf = 0; vf < numvfs; vf++)
2322 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2323 
2324 	__rvu_flr_handler(rvu, pcifunc);
2325 
2326 	/* Signal FLR finish */
2327 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2328 
2329 	/* Enable interrupt */
2330 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2331 }
2332 
2333 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2334 {
2335 	int dev, vf, reg = 0;
2336 	u64 intr;
2337 
2338 	if (start_vf >= 64)
2339 		reg = 1;
2340 
2341 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2342 	if (!intr)
2343 		return;
2344 
2345 	for (vf = 0; vf < numvfs; vf++) {
2346 		if (!(intr & BIT_ULL(vf)))
2347 			continue;
2348 		dev = vf + start_vf + rvu->hw->total_pfs;
2349 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2350 		/* Clear and disable the interrupt */
2351 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2352 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2353 	}
2354 }
2355 
2356 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2357 {
2358 	struct rvu *rvu = (struct rvu *)rvu_irq;
2359 	u64 intr;
2360 	u8  pf;
2361 
2362 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2363 	if (!intr)
2364 		goto afvf_flr;
2365 
2366 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2367 		if (intr & (1ULL << pf)) {
2368 			/* PF is already dead do only AF related operations */
2369 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2370 			/* clear interrupt */
2371 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2372 				    BIT_ULL(pf));
2373 			/* Disable the interrupt */
2374 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2375 				    BIT_ULL(pf));
2376 		}
2377 	}
2378 
2379 afvf_flr:
2380 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2381 	if (rvu->vfs > 64)
2382 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2383 
2384 	return IRQ_HANDLED;
2385 }
2386 
2387 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2388 {
2389 	int vf;
2390 
2391 	/* Nothing to be done here other than clearing the
2392 	 * TRPEND bit.
2393 	 */
2394 	for (vf = 0; vf < 64; vf++) {
2395 		if (intr & (1ULL << vf)) {
2396 			/* clear the trpend due to ME(master enable) */
2397 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2398 			/* clear interrupt */
2399 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2400 		}
2401 	}
2402 }
2403 
2404 /* Handles ME interrupts from VFs of AF */
2405 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2406 {
2407 	struct rvu *rvu = (struct rvu *)rvu_irq;
2408 	int vfset;
2409 	u64 intr;
2410 
2411 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2412 
2413 	for (vfset = 0; vfset <= 1; vfset++) {
2414 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2415 		if (intr)
2416 			rvu_me_handle_vfset(rvu, vfset, intr);
2417 	}
2418 
2419 	return IRQ_HANDLED;
2420 }
2421 
2422 /* Handles ME interrupts from PFs */
2423 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2424 {
2425 	struct rvu *rvu = (struct rvu *)rvu_irq;
2426 	u64 intr;
2427 	u8  pf;
2428 
2429 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2430 
2431 	/* Nothing to be done here other than clearing the
2432 	 * TRPEND bit.
2433 	 */
2434 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2435 		if (intr & (1ULL << pf)) {
2436 			/* clear the trpend due to ME(master enable) */
2437 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2438 				    BIT_ULL(pf));
2439 			/* clear interrupt */
2440 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2441 				    BIT_ULL(pf));
2442 		}
2443 	}
2444 
2445 	return IRQ_HANDLED;
2446 }
2447 
2448 static void rvu_unregister_interrupts(struct rvu *rvu)
2449 {
2450 	int irq;
2451 
2452 	/* Disable the Mbox interrupt */
2453 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2454 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2455 
2456 	/* Disable the PF FLR interrupt */
2457 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2458 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2459 
2460 	/* Disable the PF ME interrupt */
2461 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2462 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2463 
2464 	for (irq = 0; irq < rvu->num_vec; irq++) {
2465 		if (rvu->irq_allocated[irq])
2466 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2467 	}
2468 
2469 	pci_free_irq_vectors(rvu->pdev);
2470 	rvu->num_vec = 0;
2471 }
2472 
2473 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2474 {
2475 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2476 	int offset;
2477 
2478 	pfvf = &rvu->pf[0];
2479 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2480 
2481 	/* Make sure there are enough MSIX vectors configured so that
2482 	 * VF interrupts can be handled. Offset equal to zero means
2483 	 * that PF vectors are not configured and overlapping AF vectors.
2484 	 */
2485 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2486 	       offset;
2487 }
2488 
2489 static int rvu_register_interrupts(struct rvu *rvu)
2490 {
2491 	int ret, offset, pf_vec_start;
2492 
2493 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2494 
2495 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2496 					   NAME_SIZE, GFP_KERNEL);
2497 	if (!rvu->irq_name)
2498 		return -ENOMEM;
2499 
2500 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2501 					  sizeof(bool), GFP_KERNEL);
2502 	if (!rvu->irq_allocated)
2503 		return -ENOMEM;
2504 
2505 	/* Enable MSI-X */
2506 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2507 				    rvu->num_vec, PCI_IRQ_MSIX);
2508 	if (ret < 0) {
2509 		dev_err(rvu->dev,
2510 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2511 			rvu->num_vec, ret);
2512 		return ret;
2513 	}
2514 
2515 	/* Register mailbox interrupt handler */
2516 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2517 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2518 			  rvu_mbox_intr_handler, 0,
2519 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2520 	if (ret) {
2521 		dev_err(rvu->dev,
2522 			"RVUAF: IRQ registration failed for mbox irq\n");
2523 		goto fail;
2524 	}
2525 
2526 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2527 
2528 	/* Enable mailbox interrupts from all PFs */
2529 	rvu_enable_mbox_intr(rvu);
2530 
2531 	/* Register FLR interrupt handler */
2532 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2533 		"RVUAF FLR");
2534 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2535 			  rvu_flr_intr_handler, 0,
2536 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2537 			  rvu);
2538 	if (ret) {
2539 		dev_err(rvu->dev,
2540 			"RVUAF: IRQ registration failed for FLR\n");
2541 		goto fail;
2542 	}
2543 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2544 
2545 	/* Enable FLR interrupt for all PFs*/
2546 	rvu_write64(rvu, BLKADDR_RVUM,
2547 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2548 
2549 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2550 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2551 
2552 	/* Register ME interrupt handler */
2553 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2554 		"RVUAF ME");
2555 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2556 			  rvu_me_pf_intr_handler, 0,
2557 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2558 			  rvu);
2559 	if (ret) {
2560 		dev_err(rvu->dev,
2561 			"RVUAF: IRQ registration failed for ME\n");
2562 	}
2563 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2564 
2565 	/* Clear TRPEND bit for all PF */
2566 	rvu_write64(rvu, BLKADDR_RVUM,
2567 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2568 	/* Enable ME interrupt for all PFs*/
2569 	rvu_write64(rvu, BLKADDR_RVUM,
2570 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2571 
2572 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2573 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2574 
2575 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2576 		return 0;
2577 
2578 	/* Get PF MSIX vectors offset. */
2579 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2580 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2581 
2582 	/* Register MBOX0 interrupt. */
2583 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2584 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2585 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2586 			  rvu_mbox_intr_handler, 0,
2587 			  &rvu->irq_name[offset * NAME_SIZE],
2588 			  rvu);
2589 	if (ret)
2590 		dev_err(rvu->dev,
2591 			"RVUAF: IRQ registration failed for Mbox0\n");
2592 
2593 	rvu->irq_allocated[offset] = true;
2594 
2595 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2596 	 * simply increment current offset by 1.
2597 	 */
2598 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2599 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2600 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2601 			  rvu_mbox_intr_handler, 0,
2602 			  &rvu->irq_name[offset * NAME_SIZE],
2603 			  rvu);
2604 	if (ret)
2605 		dev_err(rvu->dev,
2606 			"RVUAF: IRQ registration failed for Mbox1\n");
2607 
2608 	rvu->irq_allocated[offset] = true;
2609 
2610 	/* Register FLR interrupt handler for AF's VFs */
2611 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2612 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2613 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2614 			  rvu_flr_intr_handler, 0,
2615 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2616 	if (ret) {
2617 		dev_err(rvu->dev,
2618 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2619 		goto fail;
2620 	}
2621 	rvu->irq_allocated[offset] = true;
2622 
2623 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2624 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2625 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2626 			  rvu_flr_intr_handler, 0,
2627 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2628 	if (ret) {
2629 		dev_err(rvu->dev,
2630 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2631 		goto fail;
2632 	}
2633 	rvu->irq_allocated[offset] = true;
2634 
2635 	/* Register ME interrupt handler for AF's VFs */
2636 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2637 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2638 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2639 			  rvu_me_vf_intr_handler, 0,
2640 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2641 	if (ret) {
2642 		dev_err(rvu->dev,
2643 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2644 		goto fail;
2645 	}
2646 	rvu->irq_allocated[offset] = true;
2647 
2648 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2649 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2650 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2651 			  rvu_me_vf_intr_handler, 0,
2652 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2653 	if (ret) {
2654 		dev_err(rvu->dev,
2655 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2656 		goto fail;
2657 	}
2658 	rvu->irq_allocated[offset] = true;
2659 	return 0;
2660 
2661 fail:
2662 	rvu_unregister_interrupts(rvu);
2663 	return ret;
2664 }
2665 
2666 static void rvu_flr_wq_destroy(struct rvu *rvu)
2667 {
2668 	if (rvu->flr_wq) {
2669 		flush_workqueue(rvu->flr_wq);
2670 		destroy_workqueue(rvu->flr_wq);
2671 		rvu->flr_wq = NULL;
2672 	}
2673 }
2674 
2675 static int rvu_flr_init(struct rvu *rvu)
2676 {
2677 	int dev, num_devs;
2678 	u64 cfg;
2679 	int pf;
2680 
2681 	/* Enable FLR for all PFs*/
2682 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2683 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2684 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2685 			    cfg | BIT_ULL(22));
2686 	}
2687 
2688 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2689 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2690 				       1);
2691 	if (!rvu->flr_wq)
2692 		return -ENOMEM;
2693 
2694 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2695 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2696 				    sizeof(struct rvu_work), GFP_KERNEL);
2697 	if (!rvu->flr_wrk) {
2698 		destroy_workqueue(rvu->flr_wq);
2699 		return -ENOMEM;
2700 	}
2701 
2702 	for (dev = 0; dev < num_devs; dev++) {
2703 		rvu->flr_wrk[dev].rvu = rvu;
2704 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2705 	}
2706 
2707 	mutex_init(&rvu->flr_lock);
2708 
2709 	return 0;
2710 }
2711 
2712 static void rvu_disable_afvf_intr(struct rvu *rvu)
2713 {
2714 	int vfs = rvu->vfs;
2715 
2716 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2717 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2718 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2719 	if (vfs <= 64)
2720 		return;
2721 
2722 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2723 		      INTR_MASK(vfs - 64));
2724 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2725 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2726 }
2727 
2728 static void rvu_enable_afvf_intr(struct rvu *rvu)
2729 {
2730 	int vfs = rvu->vfs;
2731 
2732 	/* Clear any pending interrupts and enable AF VF interrupts for
2733 	 * the first 64 VFs.
2734 	 */
2735 	/* Mbox */
2736 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2737 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2738 
2739 	/* FLR */
2740 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2741 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2742 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2743 
2744 	/* Same for remaining VFs, if any. */
2745 	if (vfs <= 64)
2746 		return;
2747 
2748 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2749 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2750 		      INTR_MASK(vfs - 64));
2751 
2752 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2753 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2754 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2755 }
2756 
2757 int rvu_get_num_lbk_chans(void)
2758 {
2759 	struct pci_dev *pdev;
2760 	void __iomem *base;
2761 	int ret = -EIO;
2762 
2763 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2764 			      NULL);
2765 	if (!pdev)
2766 		goto err;
2767 
2768 	base = pci_ioremap_bar(pdev, 0);
2769 	if (!base)
2770 		goto err_put;
2771 
2772 	/* Read number of available LBK channels from LBK(0)_CONST register. */
2773 	ret = (readq(base + 0x10) >> 32) & 0xffff;
2774 	iounmap(base);
2775 err_put:
2776 	pci_dev_put(pdev);
2777 err:
2778 	return ret;
2779 }
2780 
2781 static int rvu_enable_sriov(struct rvu *rvu)
2782 {
2783 	struct pci_dev *pdev = rvu->pdev;
2784 	int err, chans, vfs;
2785 
2786 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
2787 		dev_warn(&pdev->dev,
2788 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
2789 		return 0;
2790 	}
2791 
2792 	chans = rvu_get_num_lbk_chans();
2793 	if (chans < 0)
2794 		return chans;
2795 
2796 	vfs = pci_sriov_get_totalvfs(pdev);
2797 
2798 	/* Limit VFs in case we have more VFs than LBK channels available. */
2799 	if (vfs > chans)
2800 		vfs = chans;
2801 
2802 	if (!vfs)
2803 		return 0;
2804 
2805 	/* Save VFs number for reference in VF interrupts handlers.
2806 	 * Since interrupts might start arriving during SRIOV enablement
2807 	 * ordinary API cannot be used to get number of enabled VFs.
2808 	 */
2809 	rvu->vfs = vfs;
2810 
2811 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
2812 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
2813 	if (err)
2814 		return err;
2815 
2816 	rvu_enable_afvf_intr(rvu);
2817 	/* Make sure IRQs are enabled before SRIOV. */
2818 	mb();
2819 
2820 	err = pci_enable_sriov(pdev, vfs);
2821 	if (err) {
2822 		rvu_disable_afvf_intr(rvu);
2823 		rvu_mbox_destroy(&rvu->afvf_wq_info);
2824 		return err;
2825 	}
2826 
2827 	return 0;
2828 }
2829 
2830 static void rvu_disable_sriov(struct rvu *rvu)
2831 {
2832 	rvu_disable_afvf_intr(rvu);
2833 	rvu_mbox_destroy(&rvu->afvf_wq_info);
2834 	pci_disable_sriov(rvu->pdev);
2835 }
2836 
2837 static void rvu_update_module_params(struct rvu *rvu)
2838 {
2839 	const char *default_pfl_name = "default";
2840 
2841 	strscpy(rvu->mkex_pfl_name,
2842 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
2843 }
2844 
2845 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2846 {
2847 	struct device *dev = &pdev->dev;
2848 	struct rvu *rvu;
2849 	int    err;
2850 
2851 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
2852 	if (!rvu)
2853 		return -ENOMEM;
2854 
2855 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
2856 	if (!rvu->hw) {
2857 		devm_kfree(dev, rvu);
2858 		return -ENOMEM;
2859 	}
2860 
2861 	pci_set_drvdata(pdev, rvu);
2862 	rvu->pdev = pdev;
2863 	rvu->dev = &pdev->dev;
2864 
2865 	err = pci_enable_device(pdev);
2866 	if (err) {
2867 		dev_err(dev, "Failed to enable PCI device\n");
2868 		goto err_freemem;
2869 	}
2870 
2871 	err = pci_request_regions(pdev, DRV_NAME);
2872 	if (err) {
2873 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
2874 		goto err_disable_device;
2875 	}
2876 
2877 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
2878 	if (err) {
2879 		dev_err(dev, "DMA mask config failed, abort\n");
2880 		goto err_release_regions;
2881 	}
2882 
2883 	pci_set_master(pdev);
2884 
2885 	rvu->ptp = ptp_get();
2886 	if (IS_ERR(rvu->ptp)) {
2887 		err = PTR_ERR(rvu->ptp);
2888 		if (err == -EPROBE_DEFER)
2889 			goto err_release_regions;
2890 		rvu->ptp = NULL;
2891 	}
2892 
2893 	/* Map Admin function CSRs */
2894 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
2895 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
2896 	if (!rvu->afreg_base || !rvu->pfreg_base) {
2897 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
2898 		err = -ENOMEM;
2899 		goto err_put_ptp;
2900 	}
2901 
2902 	/* Store module params in rvu structure */
2903 	rvu_update_module_params(rvu);
2904 
2905 	/* Check which blocks the HW supports */
2906 	rvu_check_block_implemented(rvu);
2907 
2908 	rvu_reset_all_blocks(rvu);
2909 
2910 	rvu_setup_hw_capabilities(rvu);
2911 
2912 	err = rvu_setup_hw_resources(rvu);
2913 	if (err)
2914 		goto err_put_ptp;
2915 
2916 	/* Init mailbox btw AF and PFs */
2917 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
2918 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
2919 			    rvu_afpf_mbox_up_handler);
2920 	if (err)
2921 		goto err_hwsetup;
2922 
2923 	err = rvu_flr_init(rvu);
2924 	if (err)
2925 		goto err_mbox;
2926 
2927 	err = rvu_register_interrupts(rvu);
2928 	if (err)
2929 		goto err_flr;
2930 
2931 	err = rvu_register_dl(rvu);
2932 	if (err)
2933 		goto err_irq;
2934 
2935 	rvu_setup_rvum_blk_revid(rvu);
2936 
2937 	/* Enable AF's VFs (if any) */
2938 	err = rvu_enable_sriov(rvu);
2939 	if (err)
2940 		goto err_dl;
2941 
2942 	/* Initialize debugfs */
2943 	rvu_dbg_init(rvu);
2944 
2945 	return 0;
2946 err_dl:
2947 	rvu_unregister_dl(rvu);
2948 err_irq:
2949 	rvu_unregister_interrupts(rvu);
2950 err_flr:
2951 	rvu_flr_wq_destroy(rvu);
2952 err_mbox:
2953 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2954 err_hwsetup:
2955 	rvu_cgx_exit(rvu);
2956 	rvu_fwdata_exit(rvu);
2957 	rvu_reset_all_blocks(rvu);
2958 	rvu_free_hw_resources(rvu);
2959 	rvu_clear_rvum_blk_revid(rvu);
2960 err_put_ptp:
2961 	ptp_put(rvu->ptp);
2962 err_release_regions:
2963 	pci_release_regions(pdev);
2964 err_disable_device:
2965 	pci_disable_device(pdev);
2966 err_freemem:
2967 	pci_set_drvdata(pdev, NULL);
2968 	devm_kfree(&pdev->dev, rvu->hw);
2969 	devm_kfree(dev, rvu);
2970 	return err;
2971 }
2972 
2973 static void rvu_remove(struct pci_dev *pdev)
2974 {
2975 	struct rvu *rvu = pci_get_drvdata(pdev);
2976 
2977 	rvu_dbg_exit(rvu);
2978 	rvu_unregister_interrupts(rvu);
2979 	rvu_unregister_dl(rvu);
2980 	rvu_flr_wq_destroy(rvu);
2981 	rvu_cgx_exit(rvu);
2982 	rvu_fwdata_exit(rvu);
2983 	rvu_mbox_destroy(&rvu->afpf_wq_info);
2984 	rvu_disable_sriov(rvu);
2985 	rvu_reset_all_blocks(rvu);
2986 	rvu_free_hw_resources(rvu);
2987 	rvu_clear_rvum_blk_revid(rvu);
2988 	ptp_put(rvu->ptp);
2989 	pci_release_regions(pdev);
2990 	pci_disable_device(pdev);
2991 	pci_set_drvdata(pdev, NULL);
2992 
2993 	devm_kfree(&pdev->dev, rvu->hw);
2994 	devm_kfree(&pdev->dev, rvu);
2995 }
2996 
2997 static struct pci_driver rvu_driver = {
2998 	.name = DRV_NAME,
2999 	.id_table = rvu_id_table,
3000 	.probe = rvu_probe,
3001 	.remove = rvu_remove,
3002 };
3003 
3004 static int __init rvu_init_module(void)
3005 {
3006 	int err;
3007 
3008 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3009 
3010 	err = pci_register_driver(&cgx_driver);
3011 	if (err < 0)
3012 		return err;
3013 
3014 	err = pci_register_driver(&ptp_driver);
3015 	if (err < 0)
3016 		goto ptp_err;
3017 
3018 	err =  pci_register_driver(&rvu_driver);
3019 	if (err < 0)
3020 		goto rvu_err;
3021 
3022 	return 0;
3023 rvu_err:
3024 	pci_unregister_driver(&ptp_driver);
3025 ptp_err:
3026 	pci_unregister_driver(&cgx_driver);
3027 
3028 	return err;
3029 }
3030 
3031 static void __exit rvu_cleanup_module(void)
3032 {
3033 	pci_unregister_driver(&rvu_driver);
3034 	pci_unregister_driver(&ptp_driver);
3035 	pci_unregister_driver(&cgx_driver);
3036 }
3037 
3038 module_init(rvu_init_module);
3039 module_exit(rvu_cleanup_module);
3040