xref: /openbmc/linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision 25ebbc57ca56df3cf9149e9da6b1d3169c8487db)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 #include "mcs.h"
20 
21 #include "rvu_trace.h"
22 #include "rvu_npc_hash.h"
23 
24 #define DRV_NAME	"rvu_af"
25 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
26 
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 				struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 				  struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32 
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 			 int type, int num,
35 			 void (mbox_handler)(struct work_struct *),
36 			 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 	TYPE_AFVF,
39 	TYPE_AFPF,
40 };
41 
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 	{ 0, }  /* end of table */
46 };
47 
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52 
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56 
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60 
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 	struct rvu_hwinfo *hw = rvu->hw;
64 
65 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 	hw->cap.nix_fixed_txschq_mapping = false;
67 	hw->cap.nix_shaping = true;
68 	hw->cap.nix_tx_link_bp = true;
69 	hw->cap.nix_rx_multicast = true;
70 	hw->cap.nix_shaper_toggle_wait = false;
71 	hw->cap.npc_hash_extract = false;
72 	hw->cap.npc_exact_match_enabled = false;
73 	hw->rvu = rvu;
74 
75 	if (is_rvu_pre_96xx_C0(rvu)) {
76 		hw->cap.nix_fixed_txschq_mapping = true;
77 		hw->cap.nix_txsch_per_cgx_lmac = 4;
78 		hw->cap.nix_txsch_per_lbk_lmac = 132;
79 		hw->cap.nix_txsch_per_sdp_lmac = 76;
80 		hw->cap.nix_shaping = false;
81 		hw->cap.nix_tx_link_bp = false;
82 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
83 			hw->cap.nix_rx_multicast = false;
84 	}
85 	if (!is_rvu_pre_96xx_C0(rvu))
86 		hw->cap.nix_shaper_toggle_wait = true;
87 
88 	if (!is_rvu_otx2(rvu))
89 		hw->cap.per_pf_mbox_regs = true;
90 
91 	if (is_rvu_npc_hash_extract_en(rvu))
92 		hw->cap.npc_hash_extract = true;
93 }
94 
95 /* Poll a RVU block's register 'offset', for a 'zero'
96  * or 'nonzero' at bits specified by 'mask'
97  */
98 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
99 {
100 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
101 	bool twice = false;
102 	void __iomem *reg;
103 	u64 reg_val;
104 
105 	reg = rvu->afreg_base + ((block << 28) | offset);
106 again:
107 	reg_val = readq(reg);
108 	if (zero && !(reg_val & mask))
109 		return 0;
110 	if (!zero && (reg_val & mask))
111 		return 0;
112 	if (time_before(jiffies, timeout)) {
113 		usleep_range(1, 5);
114 		goto again;
115 	}
116 	/* In scenarios where CPU is scheduled out before checking
117 	 * 'time_before' (above) and gets scheduled in such that
118 	 * jiffies are beyond timeout value, then check again if HW is
119 	 * done with the operation in the meantime.
120 	 */
121 	if (!twice) {
122 		twice = true;
123 		goto again;
124 	}
125 	return -EBUSY;
126 }
127 
128 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
129 {
130 	int id;
131 
132 	if (!rsrc->bmap)
133 		return -EINVAL;
134 
135 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
136 	if (id >= rsrc->max)
137 		return -ENOSPC;
138 
139 	__set_bit(id, rsrc->bmap);
140 
141 	return id;
142 }
143 
144 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
145 {
146 	int start;
147 
148 	if (!rsrc->bmap)
149 		return -EINVAL;
150 
151 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
152 	if (start >= rsrc->max)
153 		return -ENOSPC;
154 
155 	bitmap_set(rsrc->bmap, start, nrsrc);
156 	return start;
157 }
158 
159 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
160 {
161 	if (!rsrc->bmap)
162 		return;
163 	if (start >= rsrc->max)
164 		return;
165 
166 	bitmap_clear(rsrc->bmap, start, nrsrc);
167 }
168 
169 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
170 {
171 	int start;
172 
173 	if (!rsrc->bmap)
174 		return false;
175 
176 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
177 	if (start >= rsrc->max)
178 		return false;
179 
180 	return true;
181 }
182 
183 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
184 {
185 	if (!rsrc->bmap)
186 		return;
187 
188 	__clear_bit(id, rsrc->bmap);
189 }
190 
191 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
192 {
193 	int used;
194 
195 	if (!rsrc->bmap)
196 		return 0;
197 
198 	used = bitmap_weight(rsrc->bmap, rsrc->max);
199 	return (rsrc->max - used);
200 }
201 
202 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
203 {
204 	if (!rsrc->bmap)
205 		return false;
206 
207 	return !test_bit(id, rsrc->bmap);
208 }
209 
210 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
211 {
212 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
213 			     sizeof(long), GFP_KERNEL);
214 	if (!rsrc->bmap)
215 		return -ENOMEM;
216 	return 0;
217 }
218 
219 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
220 {
221 	kfree(rsrc->bmap);
222 }
223 
224 /* Get block LF's HW index from a PF_FUNC's block slot number */
225 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
226 {
227 	u16 match = 0;
228 	int lf;
229 
230 	mutex_lock(&rvu->rsrc_lock);
231 	for (lf = 0; lf < block->lf.max; lf++) {
232 		if (block->fn_map[lf] == pcifunc) {
233 			if (slot == match) {
234 				mutex_unlock(&rvu->rsrc_lock);
235 				return lf;
236 			}
237 			match++;
238 		}
239 	}
240 	mutex_unlock(&rvu->rsrc_lock);
241 	return -ENODEV;
242 }
243 
244 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
245  * Some silicon variants of OcteonTX2 supports
246  * multiple blocks of same type.
247  *
248  * @pcifunc has to be zero when no LF is yet attached.
249  *
250  * For a pcifunc if LFs are attached from multiple blocks of same type, then
251  * return blkaddr of first encountered block.
252  */
253 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
254 {
255 	int devnum, blkaddr = -ENODEV;
256 	u64 cfg, reg;
257 	bool is_pf;
258 
259 	switch (blktype) {
260 	case BLKTYPE_NPC:
261 		blkaddr = BLKADDR_NPC;
262 		goto exit;
263 	case BLKTYPE_NPA:
264 		blkaddr = BLKADDR_NPA;
265 		goto exit;
266 	case BLKTYPE_NIX:
267 		/* For now assume NIX0 */
268 		if (!pcifunc) {
269 			blkaddr = BLKADDR_NIX0;
270 			goto exit;
271 		}
272 		break;
273 	case BLKTYPE_SSO:
274 		blkaddr = BLKADDR_SSO;
275 		goto exit;
276 	case BLKTYPE_SSOW:
277 		blkaddr = BLKADDR_SSOW;
278 		goto exit;
279 	case BLKTYPE_TIM:
280 		blkaddr = BLKADDR_TIM;
281 		goto exit;
282 	case BLKTYPE_CPT:
283 		/* For now assume CPT0 */
284 		if (!pcifunc) {
285 			blkaddr = BLKADDR_CPT0;
286 			goto exit;
287 		}
288 		break;
289 	}
290 
291 	/* Check if this is a RVU PF or VF */
292 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
293 		is_pf = false;
294 		devnum = rvu_get_hwvf(rvu, pcifunc);
295 	} else {
296 		is_pf = true;
297 		devnum = rvu_get_pf(pcifunc);
298 	}
299 
300 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
301 	 * 'BLKADDR_NIX1'.
302 	 */
303 	if (blktype == BLKTYPE_NIX) {
304 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
305 			RVU_PRIV_HWVFX_NIXX_CFG(0);
306 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
307 		if (cfg) {
308 			blkaddr = BLKADDR_NIX0;
309 			goto exit;
310 		}
311 
312 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
313 			RVU_PRIV_HWVFX_NIXX_CFG(1);
314 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
315 		if (cfg)
316 			blkaddr = BLKADDR_NIX1;
317 	}
318 
319 	if (blktype == BLKTYPE_CPT) {
320 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
321 			RVU_PRIV_HWVFX_CPTX_CFG(0);
322 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
323 		if (cfg) {
324 			blkaddr = BLKADDR_CPT0;
325 			goto exit;
326 		}
327 
328 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
329 			RVU_PRIV_HWVFX_CPTX_CFG(1);
330 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
331 		if (cfg)
332 			blkaddr = BLKADDR_CPT1;
333 	}
334 
335 exit:
336 	if (is_block_implemented(rvu->hw, blkaddr))
337 		return blkaddr;
338 	return -ENODEV;
339 }
340 
341 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
342 				struct rvu_block *block, u16 pcifunc,
343 				u16 lf, bool attach)
344 {
345 	int devnum, num_lfs = 0;
346 	bool is_pf;
347 	u64 reg;
348 
349 	if (lf >= block->lf.max) {
350 		dev_err(&rvu->pdev->dev,
351 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
352 			__func__, lf, block->name, block->lf.max);
353 		return;
354 	}
355 
356 	/* Check if this is for a RVU PF or VF */
357 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
358 		is_pf = false;
359 		devnum = rvu_get_hwvf(rvu, pcifunc);
360 	} else {
361 		is_pf = true;
362 		devnum = rvu_get_pf(pcifunc);
363 	}
364 
365 	block->fn_map[lf] = attach ? pcifunc : 0;
366 
367 	switch (block->addr) {
368 	case BLKADDR_NPA:
369 		pfvf->npalf = attach ? true : false;
370 		num_lfs = pfvf->npalf;
371 		break;
372 	case BLKADDR_NIX0:
373 	case BLKADDR_NIX1:
374 		pfvf->nixlf = attach ? true : false;
375 		num_lfs = pfvf->nixlf;
376 		break;
377 	case BLKADDR_SSO:
378 		attach ? pfvf->sso++ : pfvf->sso--;
379 		num_lfs = pfvf->sso;
380 		break;
381 	case BLKADDR_SSOW:
382 		attach ? pfvf->ssow++ : pfvf->ssow--;
383 		num_lfs = pfvf->ssow;
384 		break;
385 	case BLKADDR_TIM:
386 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
387 		num_lfs = pfvf->timlfs;
388 		break;
389 	case BLKADDR_CPT0:
390 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
391 		num_lfs = pfvf->cptlfs;
392 		break;
393 	case BLKADDR_CPT1:
394 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
395 		num_lfs = pfvf->cpt1_lfs;
396 		break;
397 	}
398 
399 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
400 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
401 }
402 
403 inline int rvu_get_pf(u16 pcifunc)
404 {
405 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
406 }
407 
408 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
409 {
410 	u64 cfg;
411 
412 	/* Get numVFs attached to this PF and first HWVF */
413 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
414 	if (numvfs)
415 		*numvfs = (cfg >> 12) & 0xFF;
416 	if (hwvf)
417 		*hwvf = cfg & 0xFFF;
418 }
419 
420 int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
421 {
422 	int pf, func;
423 	u64 cfg;
424 
425 	pf = rvu_get_pf(pcifunc);
426 	func = pcifunc & RVU_PFVF_FUNC_MASK;
427 
428 	/* Get first HWVF attached to this PF */
429 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
430 
431 	return ((cfg & 0xFFF) + func - 1);
432 }
433 
434 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
435 {
436 	/* Check if it is a PF or VF */
437 	if (pcifunc & RVU_PFVF_FUNC_MASK)
438 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
439 	else
440 		return &rvu->pf[rvu_get_pf(pcifunc)];
441 }
442 
443 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
444 {
445 	int pf, vf, nvfs;
446 	u64 cfg;
447 
448 	pf = rvu_get_pf(pcifunc);
449 	if (pf >= rvu->hw->total_pfs)
450 		return false;
451 
452 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
453 		return true;
454 
455 	/* Check if VF is within number of VFs attached to this PF */
456 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
457 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
458 	nvfs = (cfg >> 12) & 0xFF;
459 	if (vf >= nvfs)
460 		return false;
461 
462 	return true;
463 }
464 
465 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
466 {
467 	struct rvu_block *block;
468 
469 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
470 		return false;
471 
472 	block = &hw->block[blkaddr];
473 	return block->implemented;
474 }
475 
476 static void rvu_check_block_implemented(struct rvu *rvu)
477 {
478 	struct rvu_hwinfo *hw = rvu->hw;
479 	struct rvu_block *block;
480 	int blkid;
481 	u64 cfg;
482 
483 	/* For each block check if 'implemented' bit is set */
484 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
485 		block = &hw->block[blkid];
486 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
487 		if (cfg & BIT_ULL(11))
488 			block->implemented = true;
489 	}
490 }
491 
492 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
493 {
494 	rvu_write64(rvu, BLKADDR_RVUM,
495 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
496 		    RVU_BLK_RVUM_REVID);
497 }
498 
499 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
500 {
501 	rvu_write64(rvu, BLKADDR_RVUM,
502 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
503 }
504 
505 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
506 {
507 	int err;
508 
509 	if (!block->implemented)
510 		return 0;
511 
512 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
513 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
514 			   true);
515 	return err;
516 }
517 
518 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
519 {
520 	struct rvu_block *block = &rvu->hw->block[blkaddr];
521 	int err;
522 
523 	if (!block->implemented)
524 		return;
525 
526 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
527 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
528 	if (err) {
529 		dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
530 		while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
531 			;
532 	}
533 }
534 
535 static void rvu_reset_all_blocks(struct rvu *rvu)
536 {
537 	/* Do a HW reset of all RVU blocks */
538 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
539 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
540 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
541 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
542 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
543 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
544 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
545 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
546 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
547 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
548 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
549 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
550 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
551 }
552 
553 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
554 {
555 	struct rvu_pfvf *pfvf;
556 	u64 cfg;
557 	int lf;
558 
559 	for (lf = 0; lf < block->lf.max; lf++) {
560 		cfg = rvu_read64(rvu, block->addr,
561 				 block->lfcfg_reg | (lf << block->lfshift));
562 		if (!(cfg & BIT_ULL(63)))
563 			continue;
564 
565 		/* Set this resource as being used */
566 		__set_bit(lf, block->lf.bmap);
567 
568 		/* Get, to whom this LF is attached */
569 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
570 		rvu_update_rsrc_map(rvu, pfvf, block,
571 				    (cfg >> 8) & 0xFFFF, lf, true);
572 
573 		/* Set start MSIX vector for this LF within this PF/VF */
574 		rvu_set_msix_offset(rvu, pfvf, block, lf);
575 	}
576 }
577 
578 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
579 {
580 	int min_vecs;
581 
582 	if (!vf)
583 		goto check_pf;
584 
585 	if (!nvecs) {
586 		dev_warn(rvu->dev,
587 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
588 			 pf, vf - 1, nvecs);
589 	}
590 	return;
591 
592 check_pf:
593 	if (pf == 0)
594 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
595 	else
596 		min_vecs = RVU_PF_INT_VEC_CNT;
597 
598 	if (!(nvecs < min_vecs))
599 		return;
600 	dev_warn(rvu->dev,
601 		 "PF%d is configured with too few vectors, %d, min is %d\n",
602 		 pf, nvecs, min_vecs);
603 }
604 
605 static int rvu_setup_msix_resources(struct rvu *rvu)
606 {
607 	struct rvu_hwinfo *hw = rvu->hw;
608 	int pf, vf, numvfs, hwvf, err;
609 	int nvecs, offset, max_msix;
610 	struct rvu_pfvf *pfvf;
611 	u64 cfg, phy_addr;
612 	dma_addr_t iova;
613 
614 	for (pf = 0; pf < hw->total_pfs; pf++) {
615 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
616 		/* If PF is not enabled, nothing to do */
617 		if (!((cfg >> 20) & 0x01))
618 			continue;
619 
620 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
621 
622 		pfvf = &rvu->pf[pf];
623 		/* Get num of MSIX vectors attached to this PF */
624 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
625 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
626 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
627 
628 		/* Alloc msix bitmap for this PF */
629 		err = rvu_alloc_bitmap(&pfvf->msix);
630 		if (err)
631 			return err;
632 
633 		/* Allocate memory for MSIX vector to RVU block LF mapping */
634 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
635 						sizeof(u16), GFP_KERNEL);
636 		if (!pfvf->msix_lfmap)
637 			return -ENOMEM;
638 
639 		/* For PF0 (AF) firmware will set msix vector offsets for
640 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
641 		 */
642 		if (!pf)
643 			goto setup_vfmsix;
644 
645 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
646 		 * These are allocated on driver init and never freed,
647 		 * so no need to set 'msix_lfmap' for these.
648 		 */
649 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
650 		nvecs = (cfg >> 12) & 0xFF;
651 		cfg &= ~0x7FFULL;
652 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
653 		rvu_write64(rvu, BLKADDR_RVUM,
654 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
655 setup_vfmsix:
656 		/* Alloc msix bitmap for VFs */
657 		for (vf = 0; vf < numvfs; vf++) {
658 			pfvf =  &rvu->hwvf[hwvf + vf];
659 			/* Get num of MSIX vectors attached to this VF */
660 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
661 					 RVU_PRIV_PFX_MSIX_CFG(pf));
662 			pfvf->msix.max = (cfg & 0xFFF) + 1;
663 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
664 
665 			/* Alloc msix bitmap for this VF */
666 			err = rvu_alloc_bitmap(&pfvf->msix);
667 			if (err)
668 				return err;
669 
670 			pfvf->msix_lfmap =
671 				devm_kcalloc(rvu->dev, pfvf->msix.max,
672 					     sizeof(u16), GFP_KERNEL);
673 			if (!pfvf->msix_lfmap)
674 				return -ENOMEM;
675 
676 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
677 			 * These are allocated on driver init and never freed,
678 			 * so no need to set 'msix_lfmap' for these.
679 			 */
680 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
681 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
682 			nvecs = (cfg >> 12) & 0xFF;
683 			cfg &= ~0x7FFULL;
684 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
685 			rvu_write64(rvu, BLKADDR_RVUM,
686 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
687 				    cfg | offset);
688 		}
689 	}
690 
691 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
692 	 * create an IOMMU mapping for the physical address configured by
693 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
694 	 */
695 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
696 	max_msix = cfg & 0xFFFFF;
697 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
698 		phy_addr = rvu->fwdata->msixtr_base;
699 	else
700 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
701 
702 	iova = dma_map_resource(rvu->dev, phy_addr,
703 				max_msix * PCI_MSIX_ENTRY_SIZE,
704 				DMA_BIDIRECTIONAL, 0);
705 
706 	if (dma_mapping_error(rvu->dev, iova))
707 		return -ENOMEM;
708 
709 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
710 	rvu->msix_base_iova = iova;
711 	rvu->msixtr_base_phy = phy_addr;
712 
713 	return 0;
714 }
715 
716 static void rvu_reset_msix(struct rvu *rvu)
717 {
718 	/* Restore msixtr base register */
719 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
720 		    rvu->msixtr_base_phy);
721 }
722 
723 static void rvu_free_hw_resources(struct rvu *rvu)
724 {
725 	struct rvu_hwinfo *hw = rvu->hw;
726 	struct rvu_block *block;
727 	struct rvu_pfvf  *pfvf;
728 	int id, max_msix;
729 	u64 cfg;
730 
731 	rvu_npa_freemem(rvu);
732 	rvu_npc_freemem(rvu);
733 	rvu_nix_freemem(rvu);
734 
735 	/* Free block LF bitmaps */
736 	for (id = 0; id < BLK_COUNT; id++) {
737 		block = &hw->block[id];
738 		kfree(block->lf.bmap);
739 	}
740 
741 	/* Free MSIX bitmaps */
742 	for (id = 0; id < hw->total_pfs; id++) {
743 		pfvf = &rvu->pf[id];
744 		kfree(pfvf->msix.bmap);
745 	}
746 
747 	for (id = 0; id < hw->total_vfs; id++) {
748 		pfvf = &rvu->hwvf[id];
749 		kfree(pfvf->msix.bmap);
750 	}
751 
752 	/* Unmap MSIX vector base IOVA mapping */
753 	if (!rvu->msix_base_iova)
754 		return;
755 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
756 	max_msix = cfg & 0xFFFFF;
757 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
758 			   max_msix * PCI_MSIX_ENTRY_SIZE,
759 			   DMA_BIDIRECTIONAL, 0);
760 
761 	rvu_reset_msix(rvu);
762 	mutex_destroy(&rvu->rsrc_lock);
763 }
764 
765 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
766 {
767 	struct rvu_hwinfo *hw = rvu->hw;
768 	int pf, vf, numvfs, hwvf;
769 	struct rvu_pfvf *pfvf;
770 	u64 *mac;
771 
772 	for (pf = 0; pf < hw->total_pfs; pf++) {
773 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
774 		if (!pf)
775 			goto lbkvf;
776 
777 		if (!is_pf_cgxmapped(rvu, pf))
778 			continue;
779 		/* Assign MAC address to PF */
780 		pfvf = &rvu->pf[pf];
781 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
782 			mac = &rvu->fwdata->pf_macs[pf];
783 			if (*mac)
784 				u64_to_ether_addr(*mac, pfvf->mac_addr);
785 			else
786 				eth_random_addr(pfvf->mac_addr);
787 		} else {
788 			eth_random_addr(pfvf->mac_addr);
789 		}
790 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
791 
792 lbkvf:
793 		/* Assign MAC address to VFs*/
794 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
795 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
796 			pfvf = &rvu->hwvf[hwvf];
797 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
798 				mac = &rvu->fwdata->vf_macs[hwvf];
799 				if (*mac)
800 					u64_to_ether_addr(*mac, pfvf->mac_addr);
801 				else
802 					eth_random_addr(pfvf->mac_addr);
803 			} else {
804 				eth_random_addr(pfvf->mac_addr);
805 			}
806 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
807 		}
808 	}
809 }
810 
811 static int rvu_fwdata_init(struct rvu *rvu)
812 {
813 	u64 fwdbase;
814 	int err;
815 
816 	/* Get firmware data base address */
817 	err = cgx_get_fwdata_base(&fwdbase);
818 	if (err)
819 		goto fail;
820 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
821 	if (!rvu->fwdata)
822 		goto fail;
823 	if (!is_rvu_fwdata_valid(rvu)) {
824 		dev_err(rvu->dev,
825 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
826 		iounmap(rvu->fwdata);
827 		rvu->fwdata = NULL;
828 		return -EINVAL;
829 	}
830 	return 0;
831 fail:
832 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
833 	return -EIO;
834 }
835 
836 static void rvu_fwdata_exit(struct rvu *rvu)
837 {
838 	if (rvu->fwdata)
839 		iounmap(rvu->fwdata);
840 }
841 
842 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
843 {
844 	struct rvu_hwinfo *hw = rvu->hw;
845 	struct rvu_block *block;
846 	int blkid;
847 	u64 cfg;
848 
849 	/* Init NIX LF's bitmap */
850 	block = &hw->block[blkaddr];
851 	if (!block->implemented)
852 		return 0;
853 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
854 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
855 	block->lf.max = cfg & 0xFFF;
856 	block->addr = blkaddr;
857 	block->type = BLKTYPE_NIX;
858 	block->lfshift = 8;
859 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
860 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
861 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
862 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
863 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
864 	block->lfreset_reg = NIX_AF_LF_RST;
865 	block->rvu = rvu;
866 	sprintf(block->name, "NIX%d", blkid);
867 	rvu->nix_blkaddr[blkid] = blkaddr;
868 	return rvu_alloc_bitmap(&block->lf);
869 }
870 
871 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
872 {
873 	struct rvu_hwinfo *hw = rvu->hw;
874 	struct rvu_block *block;
875 	int blkid;
876 	u64 cfg;
877 
878 	/* Init CPT LF's bitmap */
879 	block = &hw->block[blkaddr];
880 	if (!block->implemented)
881 		return 0;
882 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
883 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
884 	block->lf.max = cfg & 0xFF;
885 	block->addr = blkaddr;
886 	block->type = BLKTYPE_CPT;
887 	block->multislot = true;
888 	block->lfshift = 3;
889 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
890 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
891 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
892 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
893 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
894 	block->lfreset_reg = CPT_AF_LF_RST;
895 	block->rvu = rvu;
896 	sprintf(block->name, "CPT%d", blkid);
897 	return rvu_alloc_bitmap(&block->lf);
898 }
899 
900 static void rvu_get_lbk_bufsize(struct rvu *rvu)
901 {
902 	struct pci_dev *pdev = NULL;
903 	void __iomem *base;
904 	u64 lbk_const;
905 
906 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
907 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
908 	if (!pdev)
909 		return;
910 
911 	base = pci_ioremap_bar(pdev, 0);
912 	if (!base)
913 		goto err_put;
914 
915 	lbk_const = readq(base + LBK_CONST);
916 
917 	/* cache fifo size */
918 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
919 
920 	iounmap(base);
921 err_put:
922 	pci_dev_put(pdev);
923 }
924 
925 static int rvu_setup_hw_resources(struct rvu *rvu)
926 {
927 	struct rvu_hwinfo *hw = rvu->hw;
928 	struct rvu_block *block;
929 	int blkid, err;
930 	u64 cfg;
931 
932 	/* Get HW supported max RVU PF & VF count */
933 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
934 	hw->total_pfs = (cfg >> 32) & 0xFF;
935 	hw->total_vfs = (cfg >> 20) & 0xFFF;
936 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
937 
938 	/* Init NPA LF's bitmap */
939 	block = &hw->block[BLKADDR_NPA];
940 	if (!block->implemented)
941 		goto nix;
942 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
943 	block->lf.max = (cfg >> 16) & 0xFFF;
944 	block->addr = BLKADDR_NPA;
945 	block->type = BLKTYPE_NPA;
946 	block->lfshift = 8;
947 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
948 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
949 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
950 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
951 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
952 	block->lfreset_reg = NPA_AF_LF_RST;
953 	block->rvu = rvu;
954 	sprintf(block->name, "NPA");
955 	err = rvu_alloc_bitmap(&block->lf);
956 	if (err) {
957 		dev_err(rvu->dev,
958 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
959 		return err;
960 	}
961 
962 nix:
963 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
964 	if (err) {
965 		dev_err(rvu->dev,
966 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
967 		return err;
968 	}
969 
970 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
971 	if (err) {
972 		dev_err(rvu->dev,
973 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
974 		return err;
975 	}
976 
977 	/* Init SSO group's bitmap */
978 	block = &hw->block[BLKADDR_SSO];
979 	if (!block->implemented)
980 		goto ssow;
981 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
982 	block->lf.max = cfg & 0xFFFF;
983 	block->addr = BLKADDR_SSO;
984 	block->type = BLKTYPE_SSO;
985 	block->multislot = true;
986 	block->lfshift = 3;
987 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
988 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
989 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
990 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
991 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
992 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
993 	block->rvu = rvu;
994 	sprintf(block->name, "SSO GROUP");
995 	err = rvu_alloc_bitmap(&block->lf);
996 	if (err) {
997 		dev_err(rvu->dev,
998 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
999 		return err;
1000 	}
1001 
1002 ssow:
1003 	/* Init SSO workslot's bitmap */
1004 	block = &hw->block[BLKADDR_SSOW];
1005 	if (!block->implemented)
1006 		goto tim;
1007 	block->lf.max = (cfg >> 56) & 0xFF;
1008 	block->addr = BLKADDR_SSOW;
1009 	block->type = BLKTYPE_SSOW;
1010 	block->multislot = true;
1011 	block->lfshift = 3;
1012 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1013 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1014 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1015 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1016 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1017 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1018 	block->rvu = rvu;
1019 	sprintf(block->name, "SSOWS");
1020 	err = rvu_alloc_bitmap(&block->lf);
1021 	if (err) {
1022 		dev_err(rvu->dev,
1023 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
1024 		return err;
1025 	}
1026 
1027 tim:
1028 	/* Init TIM LF's bitmap */
1029 	block = &hw->block[BLKADDR_TIM];
1030 	if (!block->implemented)
1031 		goto cpt;
1032 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1033 	block->lf.max = cfg & 0xFFFF;
1034 	block->addr = BLKADDR_TIM;
1035 	block->type = BLKTYPE_TIM;
1036 	block->multislot = true;
1037 	block->lfshift = 3;
1038 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1039 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1040 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1041 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1042 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1043 	block->lfreset_reg = TIM_AF_LF_RST;
1044 	block->rvu = rvu;
1045 	sprintf(block->name, "TIM");
1046 	err = rvu_alloc_bitmap(&block->lf);
1047 	if (err) {
1048 		dev_err(rvu->dev,
1049 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1050 		return err;
1051 	}
1052 
1053 cpt:
1054 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1055 	if (err) {
1056 		dev_err(rvu->dev,
1057 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1058 		return err;
1059 	}
1060 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1061 	if (err) {
1062 		dev_err(rvu->dev,
1063 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1064 		return err;
1065 	}
1066 
1067 	/* Allocate memory for PFVF data */
1068 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1069 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1070 	if (!rvu->pf) {
1071 		dev_err(rvu->dev,
1072 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1073 		return -ENOMEM;
1074 	}
1075 
1076 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1077 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1078 	if (!rvu->hwvf) {
1079 		dev_err(rvu->dev,
1080 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1081 		return -ENOMEM;
1082 	}
1083 
1084 	mutex_init(&rvu->rsrc_lock);
1085 
1086 	rvu_fwdata_init(rvu);
1087 
1088 	err = rvu_setup_msix_resources(rvu);
1089 	if (err) {
1090 		dev_err(rvu->dev,
1091 			"%s: Failed to setup MSIX resources\n", __func__);
1092 		return err;
1093 	}
1094 
1095 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1096 		block = &hw->block[blkid];
1097 		if (!block->lf.bmap)
1098 			continue;
1099 
1100 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1101 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1102 					     sizeof(u16), GFP_KERNEL);
1103 		if (!block->fn_map) {
1104 			err = -ENOMEM;
1105 			goto msix_err;
1106 		}
1107 
1108 		/* Scan all blocks to check if low level firmware has
1109 		 * already provisioned any of the resources to a PF/VF.
1110 		 */
1111 		rvu_scan_block(rvu, block);
1112 	}
1113 
1114 	err = rvu_set_channels_base(rvu);
1115 	if (err)
1116 		goto msix_err;
1117 
1118 	err = rvu_npc_init(rvu);
1119 	if (err) {
1120 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1121 		goto npc_err;
1122 	}
1123 
1124 	err = rvu_cgx_init(rvu);
1125 	if (err) {
1126 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1127 		goto cgx_err;
1128 	}
1129 
1130 	err = rvu_npc_exact_init(rvu);
1131 	if (err) {
1132 		dev_err(rvu->dev, "failed to initialize exact match table\n");
1133 		return err;
1134 	}
1135 
1136 	/* Assign MACs for CGX mapped functions */
1137 	rvu_setup_pfvf_macaddress(rvu);
1138 
1139 	err = rvu_npa_init(rvu);
1140 	if (err) {
1141 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1142 		goto npa_err;
1143 	}
1144 
1145 	rvu_get_lbk_bufsize(rvu);
1146 
1147 	err = rvu_nix_init(rvu);
1148 	if (err) {
1149 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1150 		goto nix_err;
1151 	}
1152 
1153 	err = rvu_sdp_init(rvu);
1154 	if (err) {
1155 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1156 		goto nix_err;
1157 	}
1158 
1159 	rvu_program_channels(rvu);
1160 
1161 	err = rvu_mcs_init(rvu);
1162 	if (err) {
1163 		dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
1164 		goto nix_err;
1165 	}
1166 
1167 	err = rvu_cpt_init(rvu);
1168 	if (err) {
1169 		dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__);
1170 		goto mcs_err;
1171 	}
1172 
1173 	return 0;
1174 
1175 mcs_err:
1176 	rvu_mcs_exit(rvu);
1177 nix_err:
1178 	rvu_nix_freemem(rvu);
1179 npa_err:
1180 	rvu_npa_freemem(rvu);
1181 cgx_err:
1182 	rvu_cgx_exit(rvu);
1183 npc_err:
1184 	rvu_npc_freemem(rvu);
1185 	rvu_fwdata_exit(rvu);
1186 msix_err:
1187 	rvu_reset_msix(rvu);
1188 	return err;
1189 }
1190 
1191 /* NPA and NIX admin queue APIs */
1192 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1193 {
1194 	if (!aq)
1195 		return;
1196 
1197 	qmem_free(rvu->dev, aq->inst);
1198 	qmem_free(rvu->dev, aq->res);
1199 	devm_kfree(rvu->dev, aq);
1200 }
1201 
1202 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1203 		 int qsize, int inst_size, int res_size)
1204 {
1205 	struct admin_queue *aq;
1206 	int err;
1207 
1208 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1209 	if (!*ad_queue)
1210 		return -ENOMEM;
1211 	aq = *ad_queue;
1212 
1213 	/* Alloc memory for instructions i.e AQ */
1214 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1215 	if (err) {
1216 		devm_kfree(rvu->dev, aq);
1217 		return err;
1218 	}
1219 
1220 	/* Alloc memory for results */
1221 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1222 	if (err) {
1223 		rvu_aq_free(rvu, aq);
1224 		return err;
1225 	}
1226 
1227 	spin_lock_init(&aq->lock);
1228 	return 0;
1229 }
1230 
1231 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1232 			   struct ready_msg_rsp *rsp)
1233 {
1234 	if (rvu->fwdata) {
1235 		rsp->rclk_freq = rvu->fwdata->rclk;
1236 		rsp->sclk_freq = rvu->fwdata->sclk;
1237 	}
1238 	return 0;
1239 }
1240 
1241 /* Get current count of a RVU block's LF/slots
1242  * provisioned to a given RVU func.
1243  */
1244 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1245 {
1246 	switch (blkaddr) {
1247 	case BLKADDR_NPA:
1248 		return pfvf->npalf ? 1 : 0;
1249 	case BLKADDR_NIX0:
1250 	case BLKADDR_NIX1:
1251 		return pfvf->nixlf ? 1 : 0;
1252 	case BLKADDR_SSO:
1253 		return pfvf->sso;
1254 	case BLKADDR_SSOW:
1255 		return pfvf->ssow;
1256 	case BLKADDR_TIM:
1257 		return pfvf->timlfs;
1258 	case BLKADDR_CPT0:
1259 		return pfvf->cptlfs;
1260 	case BLKADDR_CPT1:
1261 		return pfvf->cpt1_lfs;
1262 	}
1263 	return 0;
1264 }
1265 
1266 /* Return true if LFs of block type are attached to pcifunc */
1267 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1268 {
1269 	switch (blktype) {
1270 	case BLKTYPE_NPA:
1271 		return pfvf->npalf ? 1 : 0;
1272 	case BLKTYPE_NIX:
1273 		return pfvf->nixlf ? 1 : 0;
1274 	case BLKTYPE_SSO:
1275 		return !!pfvf->sso;
1276 	case BLKTYPE_SSOW:
1277 		return !!pfvf->ssow;
1278 	case BLKTYPE_TIM:
1279 		return !!pfvf->timlfs;
1280 	case BLKTYPE_CPT:
1281 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1282 	}
1283 
1284 	return false;
1285 }
1286 
1287 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1288 {
1289 	struct rvu_pfvf *pfvf;
1290 
1291 	if (!is_pf_func_valid(rvu, pcifunc))
1292 		return false;
1293 
1294 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1295 
1296 	/* Check if this PFFUNC has a LF of type blktype attached */
1297 	if (!is_blktype_attached(pfvf, blktype))
1298 		return false;
1299 
1300 	return true;
1301 }
1302 
1303 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1304 			   int pcifunc, int slot)
1305 {
1306 	u64 val;
1307 
1308 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1309 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1310 	/* Wait for the lookup to finish */
1311 	/* TODO: put some timeout here */
1312 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1313 		;
1314 
1315 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1316 
1317 	/* Check LF valid bit */
1318 	if (!(val & (1ULL << 12)))
1319 		return -1;
1320 
1321 	return (val & 0xFFF);
1322 }
1323 
1324 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1325 			      u16 global_slot, u16 *slot_in_block)
1326 {
1327 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1328 	int numlfs, total_lfs = 0, nr_blocks = 0;
1329 	int i, num_blkaddr[BLK_COUNT] = { 0 };
1330 	struct rvu_block *block;
1331 	int blkaddr;
1332 	u16 start_slot;
1333 
1334 	if (!is_blktype_attached(pfvf, blktype))
1335 		return -ENODEV;
1336 
1337 	/* Get all the block addresses from which LFs are attached to
1338 	 * the given pcifunc in num_blkaddr[].
1339 	 */
1340 	for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1341 		block = &rvu->hw->block[blkaddr];
1342 		if (block->type != blktype)
1343 			continue;
1344 		if (!is_block_implemented(rvu->hw, blkaddr))
1345 			continue;
1346 
1347 		numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1348 		if (numlfs) {
1349 			total_lfs += numlfs;
1350 			num_blkaddr[nr_blocks] = blkaddr;
1351 			nr_blocks++;
1352 		}
1353 	}
1354 
1355 	if (global_slot >= total_lfs)
1356 		return -ENODEV;
1357 
1358 	/* Based on the given global slot number retrieve the
1359 	 * correct block address out of all attached block
1360 	 * addresses and slot number in that block.
1361 	 */
1362 	total_lfs = 0;
1363 	blkaddr = -ENODEV;
1364 	for (i = 0; i < nr_blocks; i++) {
1365 		numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1366 		total_lfs += numlfs;
1367 		if (global_slot < total_lfs) {
1368 			blkaddr = num_blkaddr[i];
1369 			start_slot = total_lfs - numlfs;
1370 			*slot_in_block = global_slot - start_slot;
1371 			break;
1372 		}
1373 	}
1374 
1375 	return blkaddr;
1376 }
1377 
1378 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1379 {
1380 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1381 	struct rvu_hwinfo *hw = rvu->hw;
1382 	struct rvu_block *block;
1383 	int slot, lf, num_lfs;
1384 	int blkaddr;
1385 
1386 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1387 	if (blkaddr < 0)
1388 		return;
1389 
1390 	if (blktype == BLKTYPE_NIX)
1391 		rvu_nix_reset_mac(pfvf, pcifunc);
1392 
1393 	block = &hw->block[blkaddr];
1394 
1395 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1396 	if (!num_lfs)
1397 		return;
1398 
1399 	for (slot = 0; slot < num_lfs; slot++) {
1400 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1401 		if (lf < 0) /* This should never happen */
1402 			continue;
1403 
1404 		/* Disable the LF */
1405 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1406 			    (lf << block->lfshift), 0x00ULL);
1407 
1408 		/* Update SW maintained mapping info as well */
1409 		rvu_update_rsrc_map(rvu, pfvf, block,
1410 				    pcifunc, lf, false);
1411 
1412 		/* Free the resource */
1413 		rvu_free_rsrc(&block->lf, lf);
1414 
1415 		/* Clear MSIX vector offset for this LF */
1416 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1417 	}
1418 }
1419 
1420 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1421 			    u16 pcifunc)
1422 {
1423 	struct rvu_hwinfo *hw = rvu->hw;
1424 	bool detach_all = true;
1425 	struct rvu_block *block;
1426 	int blkid;
1427 
1428 	mutex_lock(&rvu->rsrc_lock);
1429 
1430 	/* Check for partial resource detach */
1431 	if (detach && detach->partial)
1432 		detach_all = false;
1433 
1434 	/* Check for RVU block's LFs attached to this func,
1435 	 * if so, detach them.
1436 	 */
1437 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1438 		block = &hw->block[blkid];
1439 		if (!block->lf.bmap)
1440 			continue;
1441 		if (!detach_all && detach) {
1442 			if (blkid == BLKADDR_NPA && !detach->npalf)
1443 				continue;
1444 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1445 				continue;
1446 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1447 				continue;
1448 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1449 				continue;
1450 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1451 				continue;
1452 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1453 				continue;
1454 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1455 				continue;
1456 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1457 				continue;
1458 		}
1459 		rvu_detach_block(rvu, pcifunc, block->type);
1460 	}
1461 
1462 	mutex_unlock(&rvu->rsrc_lock);
1463 	return 0;
1464 }
1465 
1466 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1467 				      struct rsrc_detach *detach,
1468 				      struct msg_rsp *rsp)
1469 {
1470 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1471 }
1472 
1473 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1474 {
1475 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1476 	int blkaddr = BLKADDR_NIX0, vf;
1477 	struct rvu_pfvf *pf;
1478 
1479 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1480 
1481 	/* All CGX mapped PFs are set with assigned NIX block during init */
1482 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1483 		blkaddr = pf->nix_blkaddr;
1484 	} else if (is_afvf(pcifunc)) {
1485 		vf = pcifunc - 1;
1486 		/* Assign NIX based on VF number. All even numbered VFs get
1487 		 * NIX0 and odd numbered gets NIX1
1488 		 */
1489 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1490 		/* NIX1 is not present on all silicons */
1491 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1492 			blkaddr = BLKADDR_NIX0;
1493 	}
1494 
1495 	/* if SDP1 then the blkaddr is NIX1 */
1496 	if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1497 		blkaddr = BLKADDR_NIX1;
1498 
1499 	switch (blkaddr) {
1500 	case BLKADDR_NIX1:
1501 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1502 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1503 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1504 		break;
1505 	case BLKADDR_NIX0:
1506 	default:
1507 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1508 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1509 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1510 		break;
1511 	}
1512 
1513 	return pfvf->nix_blkaddr;
1514 }
1515 
1516 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1517 				  u16 pcifunc, struct rsrc_attach *attach)
1518 {
1519 	int blkaddr;
1520 
1521 	switch (blktype) {
1522 	case BLKTYPE_NIX:
1523 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1524 		break;
1525 	case BLKTYPE_CPT:
1526 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1527 			return rvu_get_blkaddr(rvu, blktype, 0);
1528 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1529 			  BLKADDR_CPT0;
1530 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1531 			return -ENODEV;
1532 		break;
1533 	default:
1534 		return rvu_get_blkaddr(rvu, blktype, 0);
1535 	}
1536 
1537 	if (is_block_implemented(rvu->hw, blkaddr))
1538 		return blkaddr;
1539 
1540 	return -ENODEV;
1541 }
1542 
1543 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1544 			     int num_lfs, struct rsrc_attach *attach)
1545 {
1546 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1547 	struct rvu_hwinfo *hw = rvu->hw;
1548 	struct rvu_block *block;
1549 	int slot, lf;
1550 	int blkaddr;
1551 	u64 cfg;
1552 
1553 	if (!num_lfs)
1554 		return;
1555 
1556 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1557 	if (blkaddr < 0)
1558 		return;
1559 
1560 	block = &hw->block[blkaddr];
1561 	if (!block->lf.bmap)
1562 		return;
1563 
1564 	for (slot = 0; slot < num_lfs; slot++) {
1565 		/* Allocate the resource */
1566 		lf = rvu_alloc_rsrc(&block->lf);
1567 		if (lf < 0)
1568 			return;
1569 
1570 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1571 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1572 			    (lf << block->lfshift), cfg);
1573 		rvu_update_rsrc_map(rvu, pfvf, block,
1574 				    pcifunc, lf, true);
1575 
1576 		/* Set start MSIX vector for this LF within this PF/VF */
1577 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1578 	}
1579 }
1580 
1581 static int rvu_check_rsrc_availability(struct rvu *rvu,
1582 				       struct rsrc_attach *req, u16 pcifunc)
1583 {
1584 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1585 	int free_lfs, mappedlfs, blkaddr;
1586 	struct rvu_hwinfo *hw = rvu->hw;
1587 	struct rvu_block *block;
1588 
1589 	/* Only one NPA LF can be attached */
1590 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1591 		block = &hw->block[BLKADDR_NPA];
1592 		free_lfs = rvu_rsrc_free_count(&block->lf);
1593 		if (!free_lfs)
1594 			goto fail;
1595 	} else if (req->npalf) {
1596 		dev_err(&rvu->pdev->dev,
1597 			"Func 0x%x: Invalid req, already has NPA\n",
1598 			 pcifunc);
1599 		return -EINVAL;
1600 	}
1601 
1602 	/* Only one NIX LF can be attached */
1603 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1604 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1605 						 pcifunc, req);
1606 		if (blkaddr < 0)
1607 			return blkaddr;
1608 		block = &hw->block[blkaddr];
1609 		free_lfs = rvu_rsrc_free_count(&block->lf);
1610 		if (!free_lfs)
1611 			goto fail;
1612 	} else if (req->nixlf) {
1613 		dev_err(&rvu->pdev->dev,
1614 			"Func 0x%x: Invalid req, already has NIX\n",
1615 			pcifunc);
1616 		return -EINVAL;
1617 	}
1618 
1619 	if (req->sso) {
1620 		block = &hw->block[BLKADDR_SSO];
1621 		/* Is request within limits ? */
1622 		if (req->sso > block->lf.max) {
1623 			dev_err(&rvu->pdev->dev,
1624 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1625 				 pcifunc, req->sso, block->lf.max);
1626 			return -EINVAL;
1627 		}
1628 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1629 		free_lfs = rvu_rsrc_free_count(&block->lf);
1630 		/* Check if additional resources are available */
1631 		if (req->sso > mappedlfs &&
1632 		    ((req->sso - mappedlfs) > free_lfs))
1633 			goto fail;
1634 	}
1635 
1636 	if (req->ssow) {
1637 		block = &hw->block[BLKADDR_SSOW];
1638 		if (req->ssow > block->lf.max) {
1639 			dev_err(&rvu->pdev->dev,
1640 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1641 				 pcifunc, req->sso, block->lf.max);
1642 			return -EINVAL;
1643 		}
1644 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1645 		free_lfs = rvu_rsrc_free_count(&block->lf);
1646 		if (req->ssow > mappedlfs &&
1647 		    ((req->ssow - mappedlfs) > free_lfs))
1648 			goto fail;
1649 	}
1650 
1651 	if (req->timlfs) {
1652 		block = &hw->block[BLKADDR_TIM];
1653 		if (req->timlfs > block->lf.max) {
1654 			dev_err(&rvu->pdev->dev,
1655 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1656 				 pcifunc, req->timlfs, block->lf.max);
1657 			return -EINVAL;
1658 		}
1659 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1660 		free_lfs = rvu_rsrc_free_count(&block->lf);
1661 		if (req->timlfs > mappedlfs &&
1662 		    ((req->timlfs - mappedlfs) > free_lfs))
1663 			goto fail;
1664 	}
1665 
1666 	if (req->cptlfs) {
1667 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1668 						 pcifunc, req);
1669 		if (blkaddr < 0)
1670 			return blkaddr;
1671 		block = &hw->block[blkaddr];
1672 		if (req->cptlfs > block->lf.max) {
1673 			dev_err(&rvu->pdev->dev,
1674 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1675 				 pcifunc, req->cptlfs, block->lf.max);
1676 			return -EINVAL;
1677 		}
1678 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1679 		free_lfs = rvu_rsrc_free_count(&block->lf);
1680 		if (req->cptlfs > mappedlfs &&
1681 		    ((req->cptlfs - mappedlfs) > free_lfs))
1682 			goto fail;
1683 	}
1684 
1685 	return 0;
1686 
1687 fail:
1688 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1689 	return -ENOSPC;
1690 }
1691 
1692 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1693 				       struct rsrc_attach *attach)
1694 {
1695 	int blkaddr, num_lfs;
1696 
1697 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1698 					 attach->hdr.pcifunc, attach);
1699 	if (blkaddr < 0)
1700 		return false;
1701 
1702 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1703 					blkaddr);
1704 	/* Requester already has LFs from given block ? */
1705 	return !!num_lfs;
1706 }
1707 
1708 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1709 				      struct rsrc_attach *attach,
1710 				      struct msg_rsp *rsp)
1711 {
1712 	u16 pcifunc = attach->hdr.pcifunc;
1713 	int err;
1714 
1715 	/* If first request, detach all existing attached resources */
1716 	if (!attach->modify)
1717 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1718 
1719 	mutex_lock(&rvu->rsrc_lock);
1720 
1721 	/* Check if the request can be accommodated */
1722 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1723 	if (err)
1724 		goto exit;
1725 
1726 	/* Now attach the requested resources */
1727 	if (attach->npalf)
1728 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1729 
1730 	if (attach->nixlf)
1731 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1732 
1733 	if (attach->sso) {
1734 		/* RVU func doesn't know which exact LF or slot is attached
1735 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1736 		 * request, simply detach all existing attached LFs/slots
1737 		 * and attach a fresh.
1738 		 */
1739 		if (attach->modify)
1740 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1741 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1742 				 attach->sso, attach);
1743 	}
1744 
1745 	if (attach->ssow) {
1746 		if (attach->modify)
1747 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1748 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1749 				 attach->ssow, attach);
1750 	}
1751 
1752 	if (attach->timlfs) {
1753 		if (attach->modify)
1754 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1755 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1756 				 attach->timlfs, attach);
1757 	}
1758 
1759 	if (attach->cptlfs) {
1760 		if (attach->modify &&
1761 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1762 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1763 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1764 				 attach->cptlfs, attach);
1765 	}
1766 
1767 exit:
1768 	mutex_unlock(&rvu->rsrc_lock);
1769 	return err;
1770 }
1771 
1772 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1773 			       int blkaddr, int lf)
1774 {
1775 	u16 vec;
1776 
1777 	if (lf < 0)
1778 		return MSIX_VECTOR_INVALID;
1779 
1780 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1781 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1782 			return vec;
1783 	}
1784 	return MSIX_VECTOR_INVALID;
1785 }
1786 
1787 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1788 				struct rvu_block *block, int lf)
1789 {
1790 	u16 nvecs, vec, offset;
1791 	u64 cfg;
1792 
1793 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1794 			 (lf << block->lfshift));
1795 	nvecs = (cfg >> 12) & 0xFF;
1796 
1797 	/* Check and alloc MSIX vectors, must be contiguous */
1798 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1799 		return;
1800 
1801 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1802 
1803 	/* Config MSIX offset in LF */
1804 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1805 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1806 
1807 	/* Update the bitmap as well */
1808 	for (vec = 0; vec < nvecs; vec++)
1809 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1810 }
1811 
1812 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1813 				  struct rvu_block *block, int lf)
1814 {
1815 	u16 nvecs, vec, offset;
1816 	u64 cfg;
1817 
1818 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1819 			 (lf << block->lfshift));
1820 	nvecs = (cfg >> 12) & 0xFF;
1821 
1822 	/* Clear MSIX offset in LF */
1823 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1824 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1825 
1826 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1827 
1828 	/* Update the mapping */
1829 	for (vec = 0; vec < nvecs; vec++)
1830 		pfvf->msix_lfmap[offset + vec] = 0;
1831 
1832 	/* Free the same in MSIX bitmap */
1833 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1834 }
1835 
1836 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1837 				 struct msix_offset_rsp *rsp)
1838 {
1839 	struct rvu_hwinfo *hw = rvu->hw;
1840 	u16 pcifunc = req->hdr.pcifunc;
1841 	struct rvu_pfvf *pfvf;
1842 	int lf, slot, blkaddr;
1843 
1844 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1845 	if (!pfvf->msix.bmap)
1846 		return 0;
1847 
1848 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1849 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1850 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1851 
1852 	/* Get BLKADDR from which LFs are attached to pcifunc */
1853 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1854 	if (blkaddr < 0) {
1855 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1856 	} else {
1857 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1858 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1859 	}
1860 
1861 	rsp->sso = pfvf->sso;
1862 	for (slot = 0; slot < rsp->sso; slot++) {
1863 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1864 		rsp->sso_msixoff[slot] =
1865 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1866 	}
1867 
1868 	rsp->ssow = pfvf->ssow;
1869 	for (slot = 0; slot < rsp->ssow; slot++) {
1870 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1871 		rsp->ssow_msixoff[slot] =
1872 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1873 	}
1874 
1875 	rsp->timlfs = pfvf->timlfs;
1876 	for (slot = 0; slot < rsp->timlfs; slot++) {
1877 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1878 		rsp->timlf_msixoff[slot] =
1879 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1880 	}
1881 
1882 	rsp->cptlfs = pfvf->cptlfs;
1883 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1884 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1885 		rsp->cptlf_msixoff[slot] =
1886 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1887 	}
1888 
1889 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1890 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1891 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1892 		rsp->cpt1_lf_msixoff[slot] =
1893 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1894 	}
1895 
1896 	return 0;
1897 }
1898 
1899 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1900 				   struct free_rsrcs_rsp *rsp)
1901 {
1902 	struct rvu_hwinfo *hw = rvu->hw;
1903 	struct rvu_block *block;
1904 	struct nix_txsch *txsch;
1905 	struct nix_hw *nix_hw;
1906 
1907 	mutex_lock(&rvu->rsrc_lock);
1908 
1909 	block = &hw->block[BLKADDR_NPA];
1910 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1911 
1912 	block = &hw->block[BLKADDR_NIX0];
1913 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1914 
1915 	block = &hw->block[BLKADDR_NIX1];
1916 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1917 
1918 	block = &hw->block[BLKADDR_SSO];
1919 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1920 
1921 	block = &hw->block[BLKADDR_SSOW];
1922 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1923 
1924 	block = &hw->block[BLKADDR_TIM];
1925 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1926 
1927 	block = &hw->block[BLKADDR_CPT0];
1928 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1929 
1930 	block = &hw->block[BLKADDR_CPT1];
1931 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1932 
1933 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1934 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1935 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1936 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1937 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1938 		/* NIX1 */
1939 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1940 			goto out;
1941 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1942 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1943 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1944 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1945 	} else {
1946 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1947 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1948 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
1949 				rvu_rsrc_free_count(&txsch->schq);
1950 
1951 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1952 		rsp->schq[NIX_TXSCH_LVL_TL4] =
1953 				rvu_rsrc_free_count(&txsch->schq);
1954 
1955 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1956 		rsp->schq[NIX_TXSCH_LVL_TL3] =
1957 				rvu_rsrc_free_count(&txsch->schq);
1958 
1959 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1960 		rsp->schq[NIX_TXSCH_LVL_TL2] =
1961 				rvu_rsrc_free_count(&txsch->schq);
1962 
1963 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1964 			goto out;
1965 
1966 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1967 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1968 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1969 				rvu_rsrc_free_count(&txsch->schq);
1970 
1971 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1972 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1973 				rvu_rsrc_free_count(&txsch->schq);
1974 
1975 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1976 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1977 				rvu_rsrc_free_count(&txsch->schq);
1978 
1979 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1980 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1981 				rvu_rsrc_free_count(&txsch->schq);
1982 	}
1983 
1984 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1985 out:
1986 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1987 	mutex_unlock(&rvu->rsrc_lock);
1988 
1989 	return 0;
1990 }
1991 
1992 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1993 			    struct msg_rsp *rsp)
1994 {
1995 	u16 pcifunc = req->hdr.pcifunc;
1996 	u16 vf, numvfs;
1997 	u64 cfg;
1998 
1999 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
2000 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
2001 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
2002 	numvfs = (cfg >> 12) & 0xFF;
2003 
2004 	if (vf && vf <= numvfs)
2005 		__rvu_flr_handler(rvu, pcifunc);
2006 	else
2007 		return RVU_INVALID_VF_ID;
2008 
2009 	return 0;
2010 }
2011 
2012 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2013 				struct get_hw_cap_rsp *rsp)
2014 {
2015 	struct rvu_hwinfo *hw = rvu->hw;
2016 
2017 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2018 	rsp->nix_shaping = hw->cap.nix_shaping;
2019 	rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2020 
2021 	return 0;
2022 }
2023 
2024 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2025 				 struct msg_rsp *rsp)
2026 {
2027 	struct rvu_hwinfo *hw = rvu->hw;
2028 	u16 pcifunc = req->hdr.pcifunc;
2029 	struct rvu_pfvf *pfvf;
2030 	int blkaddr, nixlf;
2031 	u16 target;
2032 
2033 	/* Only PF can add VF permissions */
2034 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
2035 		return -EOPNOTSUPP;
2036 
2037 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2038 	pfvf = rvu_get_pfvf(rvu, target);
2039 
2040 	if (req->flags & RESET_VF_PERM) {
2041 		pfvf->flags &= RVU_CLEAR_VF_PERM;
2042 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2043 		 (req->flags & VF_TRUSTED)) {
2044 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2045 		/* disable multicast and promisc entries */
2046 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2047 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2048 			if (blkaddr < 0)
2049 				return 0;
2050 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2051 					   target, 0);
2052 			if (nixlf < 0)
2053 				return 0;
2054 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2055 						     NIXLF_ALLMULTI_ENTRY,
2056 						     false);
2057 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2058 						     NIXLF_PROMISC_ENTRY,
2059 						     false);
2060 		}
2061 	}
2062 
2063 	return 0;
2064 }
2065 
2066 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2067 				struct mbox_msghdr *req)
2068 {
2069 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2070 
2071 	/* Check if valid, if not reply with a invalid msg */
2072 	if (req->sig != OTX2_MBOX_REQ_SIG)
2073 		goto bad_message;
2074 
2075 	switch (req->id) {
2076 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
2077 	case _id: {							\
2078 		struct _rsp_type *rsp;					\
2079 		int err;						\
2080 									\
2081 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
2082 			mbox, devid,					\
2083 			sizeof(struct _rsp_type));			\
2084 		/* some handlers should complete even if reply */	\
2085 		/* could not be allocated */				\
2086 		if (!rsp &&						\
2087 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
2088 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
2089 		    _id != MBOX_MSG_VF_FLR)				\
2090 			return -ENOMEM;					\
2091 		if (rsp) {						\
2092 			rsp->hdr.id = _id;				\
2093 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
2094 			rsp->hdr.pcifunc = req->pcifunc;		\
2095 			rsp->hdr.rc = 0;				\
2096 		}							\
2097 									\
2098 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
2099 						    (struct _req_type *)req, \
2100 						    rsp);		\
2101 		if (rsp && err)						\
2102 			rsp->hdr.rc = err;				\
2103 									\
2104 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
2105 		return rsp ? err : -ENOMEM;				\
2106 	}
2107 MBOX_MESSAGES
2108 #undef M
2109 
2110 bad_message:
2111 	default:
2112 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2113 		return -ENODEV;
2114 	}
2115 }
2116 
2117 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
2118 {
2119 	struct rvu *rvu = mwork->rvu;
2120 	int offset, err, id, devid;
2121 	struct otx2_mbox_dev *mdev;
2122 	struct mbox_hdr *req_hdr;
2123 	struct mbox_msghdr *msg;
2124 	struct mbox_wq_info *mw;
2125 	struct otx2_mbox *mbox;
2126 
2127 	switch (type) {
2128 	case TYPE_AFPF:
2129 		mw = &rvu->afpf_wq_info;
2130 		break;
2131 	case TYPE_AFVF:
2132 		mw = &rvu->afvf_wq_info;
2133 		break;
2134 	default:
2135 		return;
2136 	}
2137 
2138 	devid = mwork - mw->mbox_wrk;
2139 	mbox = &mw->mbox;
2140 	mdev = &mbox->dev[devid];
2141 
2142 	/* Process received mbox messages */
2143 	req_hdr = mdev->mbase + mbox->rx_start;
2144 	if (mw->mbox_wrk[devid].num_msgs == 0)
2145 		return;
2146 
2147 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2148 
2149 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2150 		msg = mdev->mbase + offset;
2151 
2152 		/* Set which PF/VF sent this message based on mbox IRQ */
2153 		switch (type) {
2154 		case TYPE_AFPF:
2155 			msg->pcifunc &=
2156 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2157 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2158 			break;
2159 		case TYPE_AFVF:
2160 			msg->pcifunc &=
2161 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2162 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2163 			break;
2164 		}
2165 
2166 		err = rvu_process_mbox_msg(mbox, devid, msg);
2167 		if (!err) {
2168 			offset = mbox->rx_start + msg->next_msgoff;
2169 			continue;
2170 		}
2171 
2172 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2173 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2174 				 err, otx2_mbox_id2name(msg->id),
2175 				 msg->id, rvu_get_pf(msg->pcifunc),
2176 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2177 		else
2178 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2179 				 err, otx2_mbox_id2name(msg->id),
2180 				 msg->id, devid);
2181 	}
2182 	mw->mbox_wrk[devid].num_msgs = 0;
2183 
2184 	/* Send mbox responses to VF/PF */
2185 	otx2_mbox_msg_send(mbox, devid);
2186 }
2187 
2188 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2189 {
2190 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2191 
2192 	__rvu_mbox_handler(mwork, TYPE_AFPF);
2193 }
2194 
2195 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2196 {
2197 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2198 
2199 	__rvu_mbox_handler(mwork, TYPE_AFVF);
2200 }
2201 
2202 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2203 {
2204 	struct rvu *rvu = mwork->rvu;
2205 	struct otx2_mbox_dev *mdev;
2206 	struct mbox_hdr *rsp_hdr;
2207 	struct mbox_msghdr *msg;
2208 	struct mbox_wq_info *mw;
2209 	struct otx2_mbox *mbox;
2210 	int offset, id, devid;
2211 
2212 	switch (type) {
2213 	case TYPE_AFPF:
2214 		mw = &rvu->afpf_wq_info;
2215 		break;
2216 	case TYPE_AFVF:
2217 		mw = &rvu->afvf_wq_info;
2218 		break;
2219 	default:
2220 		return;
2221 	}
2222 
2223 	devid = mwork - mw->mbox_wrk_up;
2224 	mbox = &mw->mbox_up;
2225 	mdev = &mbox->dev[devid];
2226 
2227 	rsp_hdr = mdev->mbase + mbox->rx_start;
2228 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2229 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2230 		return;
2231 	}
2232 
2233 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2234 
2235 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2236 		msg = mdev->mbase + offset;
2237 
2238 		if (msg->id >= MBOX_MSG_MAX) {
2239 			dev_err(rvu->dev,
2240 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2241 			goto end;
2242 		}
2243 
2244 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2245 			dev_err(rvu->dev,
2246 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2247 				msg->sig, msg->id);
2248 			goto end;
2249 		}
2250 
2251 		switch (msg->id) {
2252 		case MBOX_MSG_CGX_LINK_EVENT:
2253 			break;
2254 		default:
2255 			if (msg->rc)
2256 				dev_err(rvu->dev,
2257 					"Mbox msg response has err %d, ID 0x%x\n",
2258 					msg->rc, msg->id);
2259 			break;
2260 		}
2261 end:
2262 		offset = mbox->rx_start + msg->next_msgoff;
2263 		mdev->msgs_acked++;
2264 	}
2265 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2266 
2267 	otx2_mbox_reset(mbox, devid);
2268 }
2269 
2270 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2271 {
2272 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2273 
2274 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2275 }
2276 
2277 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2278 {
2279 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2280 
2281 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2282 }
2283 
2284 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2285 				int num, int type)
2286 {
2287 	struct rvu_hwinfo *hw = rvu->hw;
2288 	int region;
2289 	u64 bar4;
2290 
2291 	/* For cn10k platform VF mailbox regions of a PF follows after the
2292 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2293 	 * RVU_PF_VF_BAR4_ADDR register.
2294 	 */
2295 	if (type == TYPE_AFVF) {
2296 		for (region = 0; region < num; region++) {
2297 			if (hw->cap.per_pf_mbox_regs) {
2298 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2299 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2300 						  MBOX_SIZE;
2301 				bar4 += region * MBOX_SIZE;
2302 			} else {
2303 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2304 				bar4 += region * MBOX_SIZE;
2305 			}
2306 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2307 			if (!mbox_addr[region])
2308 				goto error;
2309 		}
2310 		return 0;
2311 	}
2312 
2313 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2314 	 * PF registers. Whereas for Octeontx2 it is read from
2315 	 * RVU_AF_PF_BAR4_ADDR register.
2316 	 */
2317 	for (region = 0; region < num; region++) {
2318 		if (hw->cap.per_pf_mbox_regs) {
2319 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2320 					  RVU_AF_PFX_BAR4_ADDR(region));
2321 		} else {
2322 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2323 					  RVU_AF_PF_BAR4_ADDR);
2324 			bar4 += region * MBOX_SIZE;
2325 		}
2326 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2327 		if (!mbox_addr[region])
2328 			goto error;
2329 	}
2330 	return 0;
2331 
2332 error:
2333 	while (region--)
2334 		iounmap((void __iomem *)mbox_addr[region]);
2335 	return -ENOMEM;
2336 }
2337 
2338 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2339 			 int type, int num,
2340 			 void (mbox_handler)(struct work_struct *),
2341 			 void (mbox_up_handler)(struct work_struct *))
2342 {
2343 	int err = -EINVAL, i, dir, dir_up;
2344 	void __iomem *reg_base;
2345 	struct rvu_work *mwork;
2346 	void **mbox_regions;
2347 	const char *name;
2348 
2349 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2350 	if (!mbox_regions)
2351 		return -ENOMEM;
2352 
2353 	switch (type) {
2354 	case TYPE_AFPF:
2355 		name = "rvu_afpf_mailbox";
2356 		dir = MBOX_DIR_AFPF;
2357 		dir_up = MBOX_DIR_AFPF_UP;
2358 		reg_base = rvu->afreg_base;
2359 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2360 		if (err)
2361 			goto free_regions;
2362 		break;
2363 	case TYPE_AFVF:
2364 		name = "rvu_afvf_mailbox";
2365 		dir = MBOX_DIR_PFVF;
2366 		dir_up = MBOX_DIR_PFVF_UP;
2367 		reg_base = rvu->pfreg_base;
2368 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2369 		if (err)
2370 			goto free_regions;
2371 		break;
2372 	default:
2373 		goto free_regions;
2374 	}
2375 
2376 	mw->mbox_wq = alloc_workqueue(name,
2377 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2378 				      num);
2379 	if (!mw->mbox_wq) {
2380 		err = -ENOMEM;
2381 		goto unmap_regions;
2382 	}
2383 
2384 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2385 				    sizeof(struct rvu_work), GFP_KERNEL);
2386 	if (!mw->mbox_wrk) {
2387 		err = -ENOMEM;
2388 		goto exit;
2389 	}
2390 
2391 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2392 				       sizeof(struct rvu_work), GFP_KERNEL);
2393 	if (!mw->mbox_wrk_up) {
2394 		err = -ENOMEM;
2395 		goto exit;
2396 	}
2397 
2398 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2399 				     reg_base, dir, num);
2400 	if (err)
2401 		goto exit;
2402 
2403 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2404 				     reg_base, dir_up, num);
2405 	if (err)
2406 		goto exit;
2407 
2408 	for (i = 0; i < num; i++) {
2409 		mwork = &mw->mbox_wrk[i];
2410 		mwork->rvu = rvu;
2411 		INIT_WORK(&mwork->work, mbox_handler);
2412 
2413 		mwork = &mw->mbox_wrk_up[i];
2414 		mwork->rvu = rvu;
2415 		INIT_WORK(&mwork->work, mbox_up_handler);
2416 	}
2417 	kfree(mbox_regions);
2418 	return 0;
2419 
2420 exit:
2421 	destroy_workqueue(mw->mbox_wq);
2422 unmap_regions:
2423 	while (num--)
2424 		iounmap((void __iomem *)mbox_regions[num]);
2425 free_regions:
2426 	kfree(mbox_regions);
2427 	return err;
2428 }
2429 
2430 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2431 {
2432 	struct otx2_mbox *mbox = &mw->mbox;
2433 	struct otx2_mbox_dev *mdev;
2434 	int devid;
2435 
2436 	if (mw->mbox_wq) {
2437 		destroy_workqueue(mw->mbox_wq);
2438 		mw->mbox_wq = NULL;
2439 	}
2440 
2441 	for (devid = 0; devid < mbox->ndevs; devid++) {
2442 		mdev = &mbox->dev[devid];
2443 		if (mdev->hwbase)
2444 			iounmap((void __iomem *)mdev->hwbase);
2445 	}
2446 
2447 	otx2_mbox_destroy(&mw->mbox);
2448 	otx2_mbox_destroy(&mw->mbox_up);
2449 }
2450 
2451 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2452 			   int mdevs, u64 intr)
2453 {
2454 	struct otx2_mbox_dev *mdev;
2455 	struct otx2_mbox *mbox;
2456 	struct mbox_hdr *hdr;
2457 	int i;
2458 
2459 	for (i = first; i < mdevs; i++) {
2460 		/* start from 0 */
2461 		if (!(intr & BIT_ULL(i - first)))
2462 			continue;
2463 
2464 		mbox = &mw->mbox;
2465 		mdev = &mbox->dev[i];
2466 		hdr = mdev->mbase + mbox->rx_start;
2467 
2468 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2469 		 * handler to  ensure that it holds a correct value next time
2470 		 * when the interrupt handler is called.
2471 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2472 		 * pf>mbox.up_num_msgs holds the data for use in
2473 		 * pfaf_mbox_up_handler.
2474 		 */
2475 
2476 		if (hdr->num_msgs) {
2477 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2478 			hdr->num_msgs = 0;
2479 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2480 		}
2481 		mbox = &mw->mbox_up;
2482 		mdev = &mbox->dev[i];
2483 		hdr = mdev->mbase + mbox->rx_start;
2484 		if (hdr->num_msgs) {
2485 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2486 			hdr->num_msgs = 0;
2487 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2488 		}
2489 	}
2490 }
2491 
2492 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2493 {
2494 	struct rvu *rvu = (struct rvu *)rvu_irq;
2495 	int vfs = rvu->vfs;
2496 	u64 intr;
2497 
2498 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2499 	/* Clear interrupts */
2500 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2501 	if (intr)
2502 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2503 
2504 	/* Sync with mbox memory region */
2505 	rmb();
2506 
2507 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2508 
2509 	/* Handle VF interrupts */
2510 	if (vfs > 64) {
2511 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2512 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2513 
2514 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2515 		vfs -= 64;
2516 	}
2517 
2518 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2519 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2520 	if (intr)
2521 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2522 
2523 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2524 
2525 	return IRQ_HANDLED;
2526 }
2527 
2528 static void rvu_enable_mbox_intr(struct rvu *rvu)
2529 {
2530 	struct rvu_hwinfo *hw = rvu->hw;
2531 
2532 	/* Clear spurious irqs, if any */
2533 	rvu_write64(rvu, BLKADDR_RVUM,
2534 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2535 
2536 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2537 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2538 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2539 }
2540 
2541 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2542 {
2543 	struct rvu_block *block;
2544 	int slot, lf, num_lfs;
2545 	int err;
2546 
2547 	block = &rvu->hw->block[blkaddr];
2548 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2549 					block->addr);
2550 	if (!num_lfs)
2551 		return;
2552 	for (slot = 0; slot < num_lfs; slot++) {
2553 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2554 		if (lf < 0)
2555 			continue;
2556 
2557 		/* Cleanup LF and reset it */
2558 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2559 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2560 		else if (block->addr == BLKADDR_NPA)
2561 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2562 		else if ((block->addr == BLKADDR_CPT0) ||
2563 			 (block->addr == BLKADDR_CPT1))
2564 			rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2565 					    slot);
2566 
2567 		err = rvu_lf_reset(rvu, block, lf);
2568 		if (err) {
2569 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2570 				block->addr, lf);
2571 		}
2572 	}
2573 }
2574 
2575 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2576 {
2577 	if (rvu_npc_exact_has_match_table(rvu))
2578 		rvu_npc_exact_reset(rvu, pcifunc);
2579 
2580 	mutex_lock(&rvu->flr_lock);
2581 	/* Reset order should reflect inter-block dependencies:
2582 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2583 	 * 2. Flush and reset SSO/SSOW
2584 	 * 3. Cleanup pools (NPA)
2585 	 */
2586 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2587 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2588 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2589 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2590 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2591 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2592 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2593 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2594 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2595 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2596 	/* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
2597 	 * entries, check and free the MCAM entries explicitly to avoid leak.
2598 	 * Since LF is detached use LF number as -1.
2599 	 */
2600 	rvu_npc_free_mcam_entries(rvu, pcifunc, -1);
2601 
2602 	mutex_unlock(&rvu->flr_lock);
2603 }
2604 
2605 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2606 {
2607 	int reg = 0;
2608 
2609 	/* pcifunc = 0(PF0) | (vf + 1) */
2610 	__rvu_flr_handler(rvu, vf + 1);
2611 
2612 	if (vf >= 64) {
2613 		reg = 1;
2614 		vf = vf - 64;
2615 	}
2616 
2617 	/* Signal FLR finish and enable IRQ */
2618 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2619 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2620 }
2621 
2622 static void rvu_flr_handler(struct work_struct *work)
2623 {
2624 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2625 	struct rvu *rvu = flrwork->rvu;
2626 	u16 pcifunc, numvfs, vf;
2627 	u64 cfg;
2628 	int pf;
2629 
2630 	pf = flrwork - rvu->flr_wrk;
2631 	if (pf >= rvu->hw->total_pfs) {
2632 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2633 		return;
2634 	}
2635 
2636 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2637 	numvfs = (cfg >> 12) & 0xFF;
2638 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2639 
2640 	for (vf = 0; vf < numvfs; vf++)
2641 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2642 
2643 	__rvu_flr_handler(rvu, pcifunc);
2644 
2645 	/* Signal FLR finish */
2646 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2647 
2648 	/* Enable interrupt */
2649 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2650 }
2651 
2652 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2653 {
2654 	int dev, vf, reg = 0;
2655 	u64 intr;
2656 
2657 	if (start_vf >= 64)
2658 		reg = 1;
2659 
2660 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2661 	if (!intr)
2662 		return;
2663 
2664 	for (vf = 0; vf < numvfs; vf++) {
2665 		if (!(intr & BIT_ULL(vf)))
2666 			continue;
2667 		/* Clear and disable the interrupt */
2668 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2669 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2670 
2671 		dev = vf + start_vf + rvu->hw->total_pfs;
2672 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2673 	}
2674 }
2675 
2676 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2677 {
2678 	struct rvu *rvu = (struct rvu *)rvu_irq;
2679 	u64 intr;
2680 	u8  pf;
2681 
2682 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2683 	if (!intr)
2684 		goto afvf_flr;
2685 
2686 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2687 		if (intr & (1ULL << pf)) {
2688 			/* clear interrupt */
2689 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2690 				    BIT_ULL(pf));
2691 			/* Disable the interrupt */
2692 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2693 				    BIT_ULL(pf));
2694 			/* PF is already dead do only AF related operations */
2695 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2696 		}
2697 	}
2698 
2699 afvf_flr:
2700 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2701 	if (rvu->vfs > 64)
2702 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2703 
2704 	return IRQ_HANDLED;
2705 }
2706 
2707 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2708 {
2709 	int vf;
2710 
2711 	/* Nothing to be done here other than clearing the
2712 	 * TRPEND bit.
2713 	 */
2714 	for (vf = 0; vf < 64; vf++) {
2715 		if (intr & (1ULL << vf)) {
2716 			/* clear the trpend due to ME(master enable) */
2717 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2718 			/* clear interrupt */
2719 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2720 		}
2721 	}
2722 }
2723 
2724 /* Handles ME interrupts from VFs of AF */
2725 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2726 {
2727 	struct rvu *rvu = (struct rvu *)rvu_irq;
2728 	int vfset;
2729 	u64 intr;
2730 
2731 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2732 
2733 	for (vfset = 0; vfset <= 1; vfset++) {
2734 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2735 		if (intr)
2736 			rvu_me_handle_vfset(rvu, vfset, intr);
2737 	}
2738 
2739 	return IRQ_HANDLED;
2740 }
2741 
2742 /* Handles ME interrupts from PFs */
2743 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2744 {
2745 	struct rvu *rvu = (struct rvu *)rvu_irq;
2746 	u64 intr;
2747 	u8  pf;
2748 
2749 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2750 
2751 	/* Nothing to be done here other than clearing the
2752 	 * TRPEND bit.
2753 	 */
2754 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2755 		if (intr & (1ULL << pf)) {
2756 			/* clear the trpend due to ME(master enable) */
2757 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2758 				    BIT_ULL(pf));
2759 			/* clear interrupt */
2760 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2761 				    BIT_ULL(pf));
2762 		}
2763 	}
2764 
2765 	return IRQ_HANDLED;
2766 }
2767 
2768 static void rvu_unregister_interrupts(struct rvu *rvu)
2769 {
2770 	int irq;
2771 
2772 	rvu_cpt_unregister_interrupts(rvu);
2773 
2774 	/* Disable the Mbox interrupt */
2775 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2776 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2777 
2778 	/* Disable the PF FLR interrupt */
2779 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2780 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2781 
2782 	/* Disable the PF ME interrupt */
2783 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2784 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2785 
2786 	for (irq = 0; irq < rvu->num_vec; irq++) {
2787 		if (rvu->irq_allocated[irq]) {
2788 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2789 			rvu->irq_allocated[irq] = false;
2790 		}
2791 	}
2792 
2793 	pci_free_irq_vectors(rvu->pdev);
2794 	rvu->num_vec = 0;
2795 }
2796 
2797 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2798 {
2799 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2800 	int offset;
2801 
2802 	pfvf = &rvu->pf[0];
2803 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2804 
2805 	/* Make sure there are enough MSIX vectors configured so that
2806 	 * VF interrupts can be handled. Offset equal to zero means
2807 	 * that PF vectors are not configured and overlapping AF vectors.
2808 	 */
2809 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2810 	       offset;
2811 }
2812 
2813 static int rvu_register_interrupts(struct rvu *rvu)
2814 {
2815 	int ret, offset, pf_vec_start;
2816 
2817 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2818 
2819 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2820 					   NAME_SIZE, GFP_KERNEL);
2821 	if (!rvu->irq_name)
2822 		return -ENOMEM;
2823 
2824 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2825 					  sizeof(bool), GFP_KERNEL);
2826 	if (!rvu->irq_allocated)
2827 		return -ENOMEM;
2828 
2829 	/* Enable MSI-X */
2830 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2831 				    rvu->num_vec, PCI_IRQ_MSIX);
2832 	if (ret < 0) {
2833 		dev_err(rvu->dev,
2834 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2835 			rvu->num_vec, ret);
2836 		return ret;
2837 	}
2838 
2839 	/* Register mailbox interrupt handler */
2840 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2841 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2842 			  rvu_mbox_intr_handler, 0,
2843 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2844 	if (ret) {
2845 		dev_err(rvu->dev,
2846 			"RVUAF: IRQ registration failed for mbox irq\n");
2847 		goto fail;
2848 	}
2849 
2850 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2851 
2852 	/* Enable mailbox interrupts from all PFs */
2853 	rvu_enable_mbox_intr(rvu);
2854 
2855 	/* Register FLR interrupt handler */
2856 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2857 		"RVUAF FLR");
2858 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2859 			  rvu_flr_intr_handler, 0,
2860 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2861 			  rvu);
2862 	if (ret) {
2863 		dev_err(rvu->dev,
2864 			"RVUAF: IRQ registration failed for FLR\n");
2865 		goto fail;
2866 	}
2867 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2868 
2869 	/* Enable FLR interrupt for all PFs*/
2870 	rvu_write64(rvu, BLKADDR_RVUM,
2871 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2872 
2873 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2874 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2875 
2876 	/* Register ME interrupt handler */
2877 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2878 		"RVUAF ME");
2879 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2880 			  rvu_me_pf_intr_handler, 0,
2881 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2882 			  rvu);
2883 	if (ret) {
2884 		dev_err(rvu->dev,
2885 			"RVUAF: IRQ registration failed for ME\n");
2886 	}
2887 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2888 
2889 	/* Clear TRPEND bit for all PF */
2890 	rvu_write64(rvu, BLKADDR_RVUM,
2891 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2892 	/* Enable ME interrupt for all PFs*/
2893 	rvu_write64(rvu, BLKADDR_RVUM,
2894 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2895 
2896 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2897 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2898 
2899 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2900 		return 0;
2901 
2902 	/* Get PF MSIX vectors offset. */
2903 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2904 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2905 
2906 	/* Register MBOX0 interrupt. */
2907 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2908 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2909 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2910 			  rvu_mbox_intr_handler, 0,
2911 			  &rvu->irq_name[offset * NAME_SIZE],
2912 			  rvu);
2913 	if (ret)
2914 		dev_err(rvu->dev,
2915 			"RVUAF: IRQ registration failed for Mbox0\n");
2916 
2917 	rvu->irq_allocated[offset] = true;
2918 
2919 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2920 	 * simply increment current offset by 1.
2921 	 */
2922 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2923 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2924 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2925 			  rvu_mbox_intr_handler, 0,
2926 			  &rvu->irq_name[offset * NAME_SIZE],
2927 			  rvu);
2928 	if (ret)
2929 		dev_err(rvu->dev,
2930 			"RVUAF: IRQ registration failed for Mbox1\n");
2931 
2932 	rvu->irq_allocated[offset] = true;
2933 
2934 	/* Register FLR interrupt handler for AF's VFs */
2935 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2936 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2937 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2938 			  rvu_flr_intr_handler, 0,
2939 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2940 	if (ret) {
2941 		dev_err(rvu->dev,
2942 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2943 		goto fail;
2944 	}
2945 	rvu->irq_allocated[offset] = true;
2946 
2947 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2948 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2949 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2950 			  rvu_flr_intr_handler, 0,
2951 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2952 	if (ret) {
2953 		dev_err(rvu->dev,
2954 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2955 		goto fail;
2956 	}
2957 	rvu->irq_allocated[offset] = true;
2958 
2959 	/* Register ME interrupt handler for AF's VFs */
2960 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2961 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2962 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2963 			  rvu_me_vf_intr_handler, 0,
2964 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2965 	if (ret) {
2966 		dev_err(rvu->dev,
2967 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2968 		goto fail;
2969 	}
2970 	rvu->irq_allocated[offset] = true;
2971 
2972 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2973 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2974 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2975 			  rvu_me_vf_intr_handler, 0,
2976 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2977 	if (ret) {
2978 		dev_err(rvu->dev,
2979 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2980 		goto fail;
2981 	}
2982 	rvu->irq_allocated[offset] = true;
2983 
2984 	ret = rvu_cpt_register_interrupts(rvu);
2985 	if (ret)
2986 		goto fail;
2987 
2988 	return 0;
2989 
2990 fail:
2991 	rvu_unregister_interrupts(rvu);
2992 	return ret;
2993 }
2994 
2995 static void rvu_flr_wq_destroy(struct rvu *rvu)
2996 {
2997 	if (rvu->flr_wq) {
2998 		destroy_workqueue(rvu->flr_wq);
2999 		rvu->flr_wq = NULL;
3000 	}
3001 }
3002 
3003 static int rvu_flr_init(struct rvu *rvu)
3004 {
3005 	int dev, num_devs;
3006 	u64 cfg;
3007 	int pf;
3008 
3009 	/* Enable FLR for all PFs*/
3010 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
3011 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
3012 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
3013 			    cfg | BIT_ULL(22));
3014 	}
3015 
3016 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
3017 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
3018 				       1);
3019 	if (!rvu->flr_wq)
3020 		return -ENOMEM;
3021 
3022 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
3023 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
3024 				    sizeof(struct rvu_work), GFP_KERNEL);
3025 	if (!rvu->flr_wrk) {
3026 		destroy_workqueue(rvu->flr_wq);
3027 		return -ENOMEM;
3028 	}
3029 
3030 	for (dev = 0; dev < num_devs; dev++) {
3031 		rvu->flr_wrk[dev].rvu = rvu;
3032 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3033 	}
3034 
3035 	mutex_init(&rvu->flr_lock);
3036 
3037 	return 0;
3038 }
3039 
3040 static void rvu_disable_afvf_intr(struct rvu *rvu)
3041 {
3042 	int vfs = rvu->vfs;
3043 
3044 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3045 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3046 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3047 	if (vfs <= 64)
3048 		return;
3049 
3050 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3051 		      INTR_MASK(vfs - 64));
3052 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3053 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3054 }
3055 
3056 static void rvu_enable_afvf_intr(struct rvu *rvu)
3057 {
3058 	int vfs = rvu->vfs;
3059 
3060 	/* Clear any pending interrupts and enable AF VF interrupts for
3061 	 * the first 64 VFs.
3062 	 */
3063 	/* Mbox */
3064 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3065 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3066 
3067 	/* FLR */
3068 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3069 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3070 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3071 
3072 	/* Same for remaining VFs, if any. */
3073 	if (vfs <= 64)
3074 		return;
3075 
3076 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3077 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3078 		      INTR_MASK(vfs - 64));
3079 
3080 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3081 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3082 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3083 }
3084 
3085 int rvu_get_num_lbk_chans(void)
3086 {
3087 	struct pci_dev *pdev;
3088 	void __iomem *base;
3089 	int ret = -EIO;
3090 
3091 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3092 			      NULL);
3093 	if (!pdev)
3094 		goto err;
3095 
3096 	base = pci_ioremap_bar(pdev, 0);
3097 	if (!base)
3098 		goto err_put;
3099 
3100 	/* Read number of available LBK channels from LBK(0)_CONST register. */
3101 	ret = (readq(base + 0x10) >> 32) & 0xffff;
3102 	iounmap(base);
3103 err_put:
3104 	pci_dev_put(pdev);
3105 err:
3106 	return ret;
3107 }
3108 
3109 static int rvu_enable_sriov(struct rvu *rvu)
3110 {
3111 	struct pci_dev *pdev = rvu->pdev;
3112 	int err, chans, vfs;
3113 
3114 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3115 		dev_warn(&pdev->dev,
3116 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
3117 		return 0;
3118 	}
3119 
3120 	chans = rvu_get_num_lbk_chans();
3121 	if (chans < 0)
3122 		return chans;
3123 
3124 	vfs = pci_sriov_get_totalvfs(pdev);
3125 
3126 	/* Limit VFs in case we have more VFs than LBK channels available. */
3127 	if (vfs > chans)
3128 		vfs = chans;
3129 
3130 	if (!vfs)
3131 		return 0;
3132 
3133 	/* LBK channel number 63 is used for switching packets between
3134 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3135 	 */
3136 	if (vfs > 62)
3137 		vfs = 62;
3138 
3139 	/* Save VFs number for reference in VF interrupts handlers.
3140 	 * Since interrupts might start arriving during SRIOV enablement
3141 	 * ordinary API cannot be used to get number of enabled VFs.
3142 	 */
3143 	rvu->vfs = vfs;
3144 
3145 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3146 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3147 	if (err)
3148 		return err;
3149 
3150 	rvu_enable_afvf_intr(rvu);
3151 	/* Make sure IRQs are enabled before SRIOV. */
3152 	mb();
3153 
3154 	err = pci_enable_sriov(pdev, vfs);
3155 	if (err) {
3156 		rvu_disable_afvf_intr(rvu);
3157 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3158 		return err;
3159 	}
3160 
3161 	return 0;
3162 }
3163 
3164 static void rvu_disable_sriov(struct rvu *rvu)
3165 {
3166 	rvu_disable_afvf_intr(rvu);
3167 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3168 	pci_disable_sriov(rvu->pdev);
3169 }
3170 
3171 static void rvu_update_module_params(struct rvu *rvu)
3172 {
3173 	const char *default_pfl_name = "default";
3174 
3175 	strscpy(rvu->mkex_pfl_name,
3176 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3177 	strscpy(rvu->kpu_pfl_name,
3178 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3179 }
3180 
3181 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3182 {
3183 	struct device *dev = &pdev->dev;
3184 	struct rvu *rvu;
3185 	int    err;
3186 
3187 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3188 	if (!rvu)
3189 		return -ENOMEM;
3190 
3191 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3192 	if (!rvu->hw) {
3193 		devm_kfree(dev, rvu);
3194 		return -ENOMEM;
3195 	}
3196 
3197 	pci_set_drvdata(pdev, rvu);
3198 	rvu->pdev = pdev;
3199 	rvu->dev = &pdev->dev;
3200 
3201 	err = pci_enable_device(pdev);
3202 	if (err) {
3203 		dev_err(dev, "Failed to enable PCI device\n");
3204 		goto err_freemem;
3205 	}
3206 
3207 	err = pci_request_regions(pdev, DRV_NAME);
3208 	if (err) {
3209 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3210 		goto err_disable_device;
3211 	}
3212 
3213 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3214 	if (err) {
3215 		dev_err(dev, "DMA mask config failed, abort\n");
3216 		goto err_release_regions;
3217 	}
3218 
3219 	pci_set_master(pdev);
3220 
3221 	rvu->ptp = ptp_get();
3222 	if (IS_ERR(rvu->ptp)) {
3223 		err = PTR_ERR(rvu->ptp);
3224 		if (err == -EPROBE_DEFER)
3225 			goto err_release_regions;
3226 		rvu->ptp = NULL;
3227 	}
3228 
3229 	/* Map Admin function CSRs */
3230 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3231 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3232 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3233 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3234 		err = -ENOMEM;
3235 		goto err_put_ptp;
3236 	}
3237 
3238 	/* Store module params in rvu structure */
3239 	rvu_update_module_params(rvu);
3240 
3241 	/* Check which blocks the HW supports */
3242 	rvu_check_block_implemented(rvu);
3243 
3244 	rvu_reset_all_blocks(rvu);
3245 
3246 	rvu_setup_hw_capabilities(rvu);
3247 
3248 	err = rvu_setup_hw_resources(rvu);
3249 	if (err)
3250 		goto err_put_ptp;
3251 
3252 	/* Init mailbox btw AF and PFs */
3253 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3254 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3255 			    rvu_afpf_mbox_up_handler);
3256 	if (err) {
3257 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3258 		goto err_hwsetup;
3259 	}
3260 
3261 	err = rvu_flr_init(rvu);
3262 	if (err) {
3263 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3264 		goto err_mbox;
3265 	}
3266 
3267 	err = rvu_register_interrupts(rvu);
3268 	if (err) {
3269 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3270 		goto err_flr;
3271 	}
3272 
3273 	err = rvu_register_dl(rvu);
3274 	if (err) {
3275 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3276 		goto err_irq;
3277 	}
3278 
3279 	rvu_setup_rvum_blk_revid(rvu);
3280 
3281 	/* Enable AF's VFs (if any) */
3282 	err = rvu_enable_sriov(rvu);
3283 	if (err) {
3284 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3285 		goto err_dl;
3286 	}
3287 
3288 	/* Initialize debugfs */
3289 	rvu_dbg_init(rvu);
3290 
3291 	mutex_init(&rvu->rswitch.switch_lock);
3292 
3293 	if (rvu->fwdata)
3294 		ptp_start(rvu->ptp, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3295 			  rvu->fwdata->ptp_ext_tstamp);
3296 
3297 	return 0;
3298 err_dl:
3299 	rvu_unregister_dl(rvu);
3300 err_irq:
3301 	rvu_unregister_interrupts(rvu);
3302 err_flr:
3303 	rvu_flr_wq_destroy(rvu);
3304 err_mbox:
3305 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3306 err_hwsetup:
3307 	rvu_cgx_exit(rvu);
3308 	rvu_fwdata_exit(rvu);
3309 	rvu_mcs_exit(rvu);
3310 	rvu_reset_all_blocks(rvu);
3311 	rvu_free_hw_resources(rvu);
3312 	rvu_clear_rvum_blk_revid(rvu);
3313 err_put_ptp:
3314 	ptp_put(rvu->ptp);
3315 err_release_regions:
3316 	pci_release_regions(pdev);
3317 err_disable_device:
3318 	pci_disable_device(pdev);
3319 err_freemem:
3320 	pci_set_drvdata(pdev, NULL);
3321 	devm_kfree(&pdev->dev, rvu->hw);
3322 	devm_kfree(dev, rvu);
3323 	return err;
3324 }
3325 
3326 static void rvu_remove(struct pci_dev *pdev)
3327 {
3328 	struct rvu *rvu = pci_get_drvdata(pdev);
3329 
3330 	rvu_dbg_exit(rvu);
3331 	rvu_unregister_dl(rvu);
3332 	rvu_unregister_interrupts(rvu);
3333 	rvu_flr_wq_destroy(rvu);
3334 	rvu_cgx_exit(rvu);
3335 	rvu_fwdata_exit(rvu);
3336 	rvu_mcs_exit(rvu);
3337 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3338 	rvu_disable_sriov(rvu);
3339 	rvu_reset_all_blocks(rvu);
3340 	rvu_free_hw_resources(rvu);
3341 	rvu_clear_rvum_blk_revid(rvu);
3342 	ptp_put(rvu->ptp);
3343 	pci_release_regions(pdev);
3344 	pci_disable_device(pdev);
3345 	pci_set_drvdata(pdev, NULL);
3346 
3347 	devm_kfree(&pdev->dev, rvu->hw);
3348 	devm_kfree(&pdev->dev, rvu);
3349 }
3350 
3351 static struct pci_driver rvu_driver = {
3352 	.name = DRV_NAME,
3353 	.id_table = rvu_id_table,
3354 	.probe = rvu_probe,
3355 	.remove = rvu_remove,
3356 };
3357 
3358 static int __init rvu_init_module(void)
3359 {
3360 	int err;
3361 
3362 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3363 
3364 	err = pci_register_driver(&cgx_driver);
3365 	if (err < 0)
3366 		return err;
3367 
3368 	err = pci_register_driver(&ptp_driver);
3369 	if (err < 0)
3370 		goto ptp_err;
3371 
3372 	err = pci_register_driver(&mcs_driver);
3373 	if (err < 0)
3374 		goto mcs_err;
3375 
3376 	err =  pci_register_driver(&rvu_driver);
3377 	if (err < 0)
3378 		goto rvu_err;
3379 
3380 	return 0;
3381 rvu_err:
3382 	pci_unregister_driver(&mcs_driver);
3383 mcs_err:
3384 	pci_unregister_driver(&ptp_driver);
3385 ptp_err:
3386 	pci_unregister_driver(&cgx_driver);
3387 
3388 	return err;
3389 }
3390 
3391 static void __exit rvu_cleanup_module(void)
3392 {
3393 	pci_unregister_driver(&rvu_driver);
3394 	pci_unregister_driver(&mcs_driver);
3395 	pci_unregister_driver(&ptp_driver);
3396 	pci_unregister_driver(&cgx_driver);
3397 }
3398 
3399 module_init(rvu_init_module);
3400 module_exit(rvu_cleanup_module);
3401